Sample records for switched optical networks

  1. Optical computer switching network (United States)

    Clymer, B.; Collins, S. A., Jr.


    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  2. Circuit switched optical networks

    DEFF Research Database (Denmark)

    Kloch, Allan


    modes and thereby capable of conversion is investigated thoroughly at 10 Gbit/s. A new device for all-optical wavelength conversion based on coupling of power between waveguides is proposed. The device exhibits a quasi-digital tranfer function that allows for improved performance in terms of both...

  3. Design of all Optical Packet Switching Networks

    Directory of Open Access Journals (Sweden)

    Hussein T. Mouftah


    Full Text Available Optical switches and wavelength converters are recognized as two of the most important DWDM system components in future all-optical networks. Optical switches perform the key functions of flexible routing, reconfigurable optical cross-connect (OXC, network protection and restoration, etc. in optical networks. Wavelength Converters are used to shift one incoming wavelength to another outgoing wavelength when this needs to be done.  Always residing in optical switches, they can effectively alleviate the blocking probability and help solve contention happening at the output port of switches. The deployment of wavelength converters within optical switches provides robust routing, switching and network management in optical layer, which is critical to the emerging all-optical Internet. However, the high cost of wavelength converters at current stage of manufacturing technology has to be taken into consideration when we design node architectures for an optical network. Our research explores the efficiency of wavelength converters in a long-haul optical network at different degrees of traffic load by running a simulation. Then, we propose a new cost-effective way to optimally design wavelength-convertible switch so as to achieve higher network performance while still keeping the total network cost down. Meanwhile, the routing and wavelength assignment (RWA algorithm used in the research is designed to be a generic one for both large-scale and small-scale traffic. Removing the constraint on the traffic load makes the RWA more adaptive and robust. When this new RWA works in conjunction with a newly introduced concept of wavelength-convertible switches, we shall explore the impact of large-scale traffic on the role of wavelength converter so as to determine the method towards optimal use of wavelength convertible switches for all-optical networks.

  4. Hybrid Optical Switching for Data Center Networks

    Directory of Open Access Journals (Sweden)

    Matteo Fiorani


    Full Text Available Current data centers networks rely on electronic switching and point-to-point interconnects. When considering future data center requirements, these solutions will raise issues in terms of flexibility, scalability, performance, and energy consumption. For this reason several optical switched interconnects, which make use of optical switches and wavelength division multiplexing (WDM, have been recently proposed. However, the solutions proposed so far suffer from low flexibility and are not able to provide service differentiation. In this paper we introduce a novel data center network based on hybrid optical switching (HOS. HOS combines optical circuit, burst, and packet switching on the same network. In this way different data center applications can be mapped to the optical transport mechanism that best suits their traffic characteristics. Furthermore, the proposed HOS network achieves high transmission efficiency and reduced energy consumption by using two parallel optical switches. We consider the architectures of both a traditional data center network and the proposed HOS network and present a combined analytical and simulation approach for their performance and energy consumption evaluation. We demonstrate that the proposed HOS data center network achieves high performance and flexibility while considerably reducing the energy consumption of current solutions.

  5. Node design in optical packet switched networks

    DEFF Research Database (Denmark)

    Nord, Martin


    The thesis discusses motivation, realisation and performance of the Optical Packet Switching (OPS) network paradigm. The work includes proposals for designs and methods to efficiently use both the wavelength- and time domain for contention resolution in asynchronous operation. The project has also...... adapting network performance to the different acceptable packet loss rate levels of supported applications, while improving overall bandwidth efficiency. The project has evaluated QoS differentiation methods and proposed schemes with improved efficiency, which also include jitter sensitivity as a Qo...... proposed parallel designs to overcome scalability constraints and to support migration scenarios. Furthermore, it has proposed and demonstrated optical input processing schemes for hybrids networks to simultaneously support OPS and Optical Circuit Switching. Quality of Service (QoS) differentiation enables...

  6. Analyses of resource reservation schemes for optical burst switching networks (United States)

    Solanska, Michaela; Scholtz, Lubomir; Ladanyi, Libor; Mullerova, Jarmila


    With growing demands of Internet Protocol services for transmission capacity and speed, the Optical Burst Switching presents the solution for future high-speed optical networks. Optical Burst Switching is a technology for transmitting large amounts of data bursts through a transparent optical switching network. To successfully transmit bursts over OBS network and reach the destination node, resource reservation schemes have to be implemented to allocate resources and configure optical switches for that burst at each node. The one-way resource reservation schemes and the performance evaluation of reservation schemes are presented. The OBS network model is performed using OMNeT++ simulation environment. During the reservation of network resources, the optical cross-connect based on semiconductor optical amplifier is used as the core node. Optical switches based on semiconductor optical amplifiers are a promising technology for high-speed optical communication networks.

  7. Quality of service in optical packet switched networks

    CERN Document Server

    Rahbar, Akbar G


    This book is a comprehensive study on OPS networks, its architectures, and developed techniques for improving its quality of switching and managing quality of service.  The book includes: Introduction to OPS networks, OOFDM networks, GMPLS-enabled optical networks, QoS in OPS networks Hybrid contention avoidance/resolution schemes in both long-haul and metro optical networks Hybrid optical switching schemes

  8. Architectures of electro-optical packet switched networks

    DEFF Research Database (Denmark)

    Berger, Michael Stubert


    This thesis focuses on network- andn ode architectuers for electrical and optical packet switched networks. Future packet switched networks could evolve towards many small, distributed units or towards fewer large, centralised switch units. This work assumes the latter evolution scenario and exam......This thesis focuses on network- andn ode architectuers for electrical and optical packet switched networks. Future packet switched networks could evolve towards many small, distributed units or towards fewer large, centralised switch units. This work assumes the latter evolution scenario...... from optics and electronics. An overview of the DAVID network architecture is given, focusing on the MAN and WAN architecture as well as the MPLS based network hierarchy. A statistical model of the optical slot generation process is presented and utilised to evaluate delay vs. efficiency. Furthermore...

  9. Optical Multidimensional Switching for Data Center Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija


    , the limitations of previously proposed optical subwavelength switching technologies are discussed and a novel concept of optical time division multiplexed switching is proposed. A detailed elaboration of the envisioned scheme is given, with a special focus on the problem of synchronization. A novel...... synchronization algorithm for the Hi-Ring architecture is proposed and experimentally validated. Furthermore, software controlled switching in the data plane is experimentally demonstrated when the proposed algorithm is used for synchronization. Finally, integration is discussed from two different perspectives...

  10. Self-Management of Hybrid Optical and Packet Switching Networks

    NARCIS (Netherlands)

    Fioreze, Tiago; Pras, Aiko

    Hybrid optical and packet switching networks enable data to be forwarded at multiple levels. Large IP flows at the IP level may be therefore moved to the optical level bypassing the per hop routing decisions of the IP level. Such move could be beneficial since congested IP networks could be

  11. Crossbar Switches For Optical Data-Communication Networks (United States)

    Monacos, Steve P.


    Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.

  12. Switched DWDM ethernet passive optical networks

    NARCIS (Netherlands)

    Roy, R.; Roeloffzen, C.G.H.; van Etten, Wim


    The IEEE Ethernet Passive Optical Networks (EPON) standard is a leading Time Division Multiplex (TDM) standard for PONs. The paper investigates the operation of an EPON based system in a Dense Wavelength Division Multiplex (DWDM) environment. It extends the concept of a multi-wavelength system from

  13. Large optical 3D MEMS switches in access networks (United States)

    Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.


    Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.

  14. Free-space optical switching core for storage area network (United States)

    Zhang, Fan; Collings, Neil; Crossland, William A.; Wilkinson, Timothy D.; Fan, Mark; Taghizadeh, Mohammad R.; Waddie, Andrew


    Storage Area Network (SAN) has gradually developed as the demand for storage capacity and fast access has increased. The traditional way of attaching storage directly to the servers over a SCSI bus has limited scalability. Several drawbacks and limitations have turned up. Switched Fibre Channel SAN resolves all of these issues. In this paper, the architecture of the switch fabric for the SAN is discussed. The complete design of the free-space optical switching core based on the diffractive element and the PLZT shutter is proposed.

  15. Integrated Optoelectronic Switching Technology for Fiber-Optic Communications Networks

    National Research Council Canada - National Science Library

    Fan, Regis


    .... most of the effort in optical amplifier switch modules have been focused on monolithic switches in which the entire device is fabricated on an InP substrate together with the semiconductor optical amplifiers (SOAs...

  16. Integrated optical buffers for packet-switched networks (United States)

    Burmeister, Emily Frances

    Routers form the backbone of the Internet, directing data to the right locations with huge throughput capacity of terabits/second) and very few errors (1 error allowed in 1012 bits). However, as the Internet continues to grow rapidly, so must the capacity of electronic routers, thereby also growing in footprint and power consumption. The energy bill alone has developers looking for an alternate solution. Today's routers can only operate with electrical signals although Internet data is transmitted optically. This requires the data to be converted from the optical domain to the electrical domain and back again. Optical routers have the potential of saving in power by omitting these conversions, but have been held back in part by the lack of a practical optical memory device. This work presents the first integrated optical buffer for next generation optical packet-switched networks. Buffering is required in a router to move packets of data in order to avoid collisions between packets heading to the same destination at the same time. The device presented here uses an InP-based two-by-two switch with a silica waveguide delay to form a recirculating buffer. Packet storage was shown with 98% packet recovery for 5 circulations. Autonomous contention resolution was demonstrated with two buffered channels to show that the technology is a realistic solution for creating multiple element buffers on multiple router ports. This thesis proposes and demonstrates the first integrated optical random access memory, thereby making a great stride toward high capacity optical routers.

  17. Passive and active optical bit-pattern recognition structures for multiwavelength optical packet switching networks. (United States)

    Aljada, Muhsen; Alameh, Kamal


    Next generation High-Speed optical packet switching networks require components capable of recognising the optical header to enable on-the-fly accurate switching of incoming data packets to their destinations. This paper experimentally demonstrates a comparison between two different optical header recognition structures; A passive structure based on the use of Fiber Bragg Gratings (FBGs), whereas the active structure employs Opto-VLSI processors that synthesise dynamic wavelength profile through digital phase holograms. The structures are experimentally demonstrated at 10Gbps. Performance comparison between the two structures is also discussed. These optical header recognition structures are attractive for multiwavelength optical network and applications.

  18. Radar signal transmission and switching over optical networks (United States)

    Esmail, Maged A.; Ragheb, Amr; Seleem, Hussein; Fathallah, Habib; Alshebeili, Saleh


    In this paper, we experimentally demonstrate a radar signal distribution over optical networks. The use of fiber enables us to distribute radar signals to distant sites with a low power loss. Moreover, fiber networks can reduce the radar system cost, by sharing precise and expensive radar signal generation and processing equipment. In order to overcome the bandwidth challenges in electrical switches, a semiconductor optical amplifier (SOA) is used as an all-optical device for wavelength conversion to the desired port (or channel) of a wavelength division multiplexing (WDM) network. Moreover, the effect of chromatic dispersion in double sideband (DSB) signals is combated by generating optical single sideband (OSSB) signals. The optimal values of the SOA device parameters required to generate an OSSB with a high sideband suppression ratio (SSR) are determined. We considered various parameters such as injection current, pump power, and probe power. In addition, the effect of signal wavelength conversion and transmission over fiber are studied in terms of signal dynamic range.

  19. Novel approach for all-optical packet switching in wide-area networks (United States)

    Chlamtac, Imrich; Fumagalli, Andrea F.; Wedzinga, Gosse


    All-optical Wavelength Division Multiplexing (WDM) networks are believed to be a fundamental component in future high speed backbones. However, while wavelength routing made circuit switching in WDM feasible the reality of extant optical technology does not yet provide the necessary devices to achieve individual optical packet switching. This paper proposes to achieve all-optical packet switching in WDM Wide Area Networks (WANs) via a novel technique, called slot routing. Using slot routing, entire slots, each carrying multiple packets on distinct wavelengths, are switched transparently and individually. As a result packets can be optically transmitted and switched in the network using available fast and wavelength non-sensitive devices. The proposed routing technique leads to an optical packet switching solution, that is simple, practical, and unique as it makes it possible to build a WDM all-optical WAN with optical devices based on proven technologies.

  20. Optical switching systems using nanostructures

    DEFF Research Database (Denmark)

    Stubkjær, Kristian


    High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems.......High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems....

  1. Synchronization in a Random Length Ring Network for SDN-Controlled Optical TDM Switching

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco


    In this paper we focus on optical time division multiplexed (TDM) switching and its main distinguishing characteristics compared with other optical subwavelength switching technologies. We review and discuss in detail the synchronization requirements that allow for proper switching operation....... In addition, we propose a novel synchronization algorithm that enables automatic synchronization of software defined networking controlled all-optical TDM switching nodes connected in a ring network. Besides providing synchronization, the algorithm also can facilitate dynamic slot size change and failure...... multiplexing transmission and switching of data bursts when using the proposed algorithm to provide synchronization....

  2. Optical Switching for Dynamic Distribution of Wireless-Over-Fiber Signals in Active Optical Networks

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Rodes, Guillermo; Tafur Monroy, Idelfonso


    of a four wavelength-division-multiplexed channel system operating on a WiMax frequency band and employing an orthogonal-frequency-division-multiplexing modulation at 625 Mbits/s per channel, transmission of the data over 20 km of optical fiber, and active switching in a 1 × 16 active optical switch....... The results show a negligible power penalty on each channel for both the best and the worst case in terms of inter-channel crosstalk. The presented system is highly scalable both in terms of port count and throughput, a desirable feature in highly branched access networks, and is modulation- and frequency...

  3. Energy efficiency benefits of introducing optical switching in Data Center Networks

    DEFF Research Database (Denmark)

    Pilimon, Artur; Zeimpeki, Alexandra; Fagertun, Anna Manolova


    layers of the network topology. The analysis is based on network-level simulations using a transport network planning tool applied to small-scale setups of the considered DCNs. The obtained results show that introducing all-optical switching within the DCN leads to reduced power consumption in all......In this paper we analyze the impact of WDM-enhanced optical circuit switching on the power consumption of multiple Data Center Network (DCN) architectures. Traditional three-tier Tree, Fat-Tree and a ring-based structure are evaluated and optical switching is selectively introduced on different...... an optically switched core benefits most the ring-based network. For the latter, the core ring nodes need fewer long-reach transponders at the trunk interfaces and benefit from more efficient traffic grooming in the access part....

  4. Monolithic InP-based fast optical switch module for optical networks of the future

    DEFF Research Database (Denmark)

    Xi, Chen; Regan, James; Durrant, Tim


    We summarized the development of Venture Photonics’ sub-10 ns fast optical switch which demonstrates low insertion loss, excellent crosstalk level and polarization independent switching performance.......We summarized the development of Venture Photonics’ sub-10 ns fast optical switch which demonstrates low insertion loss, excellent crosstalk level and polarization independent switching performance....

  5. 40 Gbit/s NRZ Packet-Length Insensitive Header Extraction for Optical Label Switching Networks

    DEFF Research Database (Denmark)

    Seoane, Jorge; Kehayas, E; Avramopoulos, H.


    A simple method for 40 Gbit/s NRZ header extraction based on envelope detection for optical label switching networks is presented. The scheme is insensitive to packet length and spacing and can be single-chip integrated cost-effectively......A simple method for 40 Gbit/s NRZ header extraction based on envelope detection for optical label switching networks is presented. The scheme is insensitive to packet length and spacing and can be single-chip integrated cost-effectively...

  6. Optically triggered high voltage switch network and method for switching a high voltage

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Andexler, George (Everett, WA); Silberkleit, Lee I. (Mountlake Terrace, WA)


    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  7. Optically triggered high voltage switch network and method for switching a high voltage (United States)

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.


    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  8. The Swiss Education and Research Network - SWITCH - Upgrades Optical Network to Transport 10 Gbps Using Sorrento Networks DWDM Platform

    CERN Multimedia


    "Sorrento Networks, a supplier of optical transport networking equipment for carriers and enterprises worldwide, today announced that SWITCH successfully completed 10 Gbps BER tests on the 220 km Zurich to Manno and 360 km Zurich to Geneva links in September and November 2003, using Sorrento's GigaMux DWDM system" (1/2 page).

  9. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching. (United States)

    Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan


    We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.

  10. A 10Gbps optical burst switching network incorporating ultra-fast (5ns) wavelength switched tunable laser sources (United States)

    Ryan, Neil; Todd, Michael; Farrell, Tom; Lavin, Adrian; Rigole, Pierre-Jean; Corbett, Brian; Roycroft, Brendan; Engelstaedter, Jan-Peter


    This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry >=10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of `dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra - fast Processing.

  11. Optical Packet Switching Demostrator

    DEFF Research Database (Denmark)

    Mortensen, Brian Bach; Berger, Michael Stübert


    In the IST project DAVID (data and voice integration over DWDM) work is carried out defining possible architectures of future optical packet switched networks. The feasibility of the architecture is to be verified in a demonstration set-up. This article describes the demonstrator set-up and the m......In the IST project DAVID (data and voice integration over DWDM) work is carried out defining possible architectures of future optical packet switched networks. The feasibility of the architecture is to be verified in a demonstration set-up. This article describes the demonstrator set...

  12. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    Abubakar Muhammad Umaru


    Full Text Available The optical burst switching (OBS paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT burst assembly algorithm via simulation. Simulation results show that the proposed algorithm outperforms the hybrid and the FAT algorithms in terms of burst end-to-end delay, packet end-to-end delay, and packet loss ratio.

  13. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system. (United States)

    Miao, Wang; Luo, Jun; Di Lucente, Stefano; Dorren, Harm; Calabretta, Nicola


    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. Modular structure with distributed control results in port-count independent optical switch reconfiguration time. RF tone in-band labeling technique allowing parallel processing of the label bits ensures the low latency operation regardless of the switch port-count. Hardware flow control is conducted at optical level by re-using the label wavelength without occupying extra bandwidth, space, and network resources which further improves the performance of latency within a simple structure. Dynamic switching including multicasting operation is validated for a 4 x 4 system. Error free operation of 40 Gb/s data packets has been achieved with only 1 dB penalty. The system could handle an input load up to 0.5 providing a packet loss lower that 10(-5) and an average latency less that 500 ns when a buffer size of 16 packets is employed. Investigation on scalability also indicates that the proposed system could potentially scale up to large port count with limited power penalty.

  14. Efficient IP Traffic over Optical Network Based on Wavelength Translation Switching

    DEFF Research Database (Denmark)

    Jha, Vikas; Kalia, Kartik; Chowdhary, Bhawani Shankar


    With the advent of TCP/IP protocol suite the overall era of communication technologies had been redefined. Now, we can’t ignore the presence of huge amount of IP traffic; data, voice or video increasing day by day creating more pressure on existing communicating media and supporting back bone....... With the humongous popularity of Internet the overall traffic on Internet has the same story. Focusing on transmission of IP traffic in an optical network with signals remaining in their optical nature generated at particular wavelength, proposed is the switching of optically generated IP packets through optical...... cross connects based on translation of wavelength when an IP packet is crossing the optical cross connect. Adding the concepts of layer 3 routing protocols along with the wavelength translation scheme, will help in spanning the overall optical network for a larger area....

  15. An analytical approach to optical burst switched networks

    CERN Document Server

    Venkatesh, T


    This book presents the latest results on modeling and analysis of OBS networks. It classifies all the literature on the topic, and its scope extends to include discussion of high-speed communication networks with limited or no buffers.

  16. Switch configuration for migration to optical fiber network (United States)

    Zobrist, George W.


    The purpose is to investigate the migration of an Ethernet LAN segment to fiber optics. At the present time it is proposed to support a Fiber Distributed Data Interface (FDDI) backbone and to upgrade the VAX cluster to fiber optic interface. Possibly some workstations will have an FDDI interface. The remaining stations on the Ethernet LAN will be segmented. The rationale for migrating from the present Ethernet configuration to a fiber optic backbone is due to the increase in the number of workstations and the movement of applications to a windowing environment, extensive document transfers, and compute intensive applications.

  17. A novel ingress node design for video streaming over optical burst switching networks. (United States)

    Askar, S; Zervas, G; Hunter, D K; Simeonidou, D


    This paper introduces a novel ingress node design which takes advantage of video data partitioning in order to deliver enhanced video streaming quality when using H.264/AVC codec over optical burst switching networks. Ns2 simulations show that the proposed scheme delivers improved video traffic quality without affecting other traffic, such as best effort traffic. Although the extra network load is comparatively small, the average gain in video PSNR was 5 dB over existing burst cloning schemes, with a maximum end-to-end delay of 17 ms, and jitter of less than 0.35 ms. © 2011 Optical Society of America

  18. Demonstration of dynamic point-to-multipoint LSPs in automatic switched optical networks (United States)

    Sun, Weiqiang; Wei, Xueqing; Zhang, Guoyin; Jin, Yaohui; Sun, Jun; Guo, Wei; Hu, Weisheng


    Automatic Switched Optical Networks, or ASON, is regarded as one promising networking technology for future optical networks. From network operators' perspective, it is well agreed that ASON should provide the following features: fast provisioning, easier network operation, higher network reliability, scalability, simpler planning and design, and multi-vendor inter-operability. Fast provisioning enables ASON to meet the requirements of more dynamic applications such as bandwidth on demand and content distribution. Protection and restoration is crucial because of the extremely high data-rate the network will carry. Mesh type network and fast provisioning capability leave more space for a more reliable and flexible network. Unlike traditional transport networks that are constructed purely for point-to-point connectivity, ASON deployed in regional or metro-area networks needs to provide high connectivity to its clients. And, as a result, the planning and designing problem becomes very complex due to the large number of devices, the variety of interface types and network protocols. It is also important that the network will be able to inter-connect devices from different vendors and provide support to different client signals such as SONET/SDH, Ethernet, IP, ATM and Frame Relay.

  19. Method to optimize optical switch topology for photonic network-on-chip (United States)

    Zhou, Ting; Jia, Hao


    In this paper, we propose a method to optimize the optical switch by substituting optical waveguide crossings for optical switching units and an optimizing algorithm to complete the optimization automatically. The functionality of the optical switch remains constant under optimization. With this method, we simplify the topology of optical switch, which means the insertion loss and power consumption of the whole optical switch can be effectively minimized. Simulation result shows that the number of switching units of the optical switch based on Spanke-Benes can be reduced by 16.7%, 20%, 20%, 19% and 17.9% for the scale from 4 × 4 to 8 × 8 respectively. As a proof of concept, the experimental demonstration of an optimized six-port optical switch based on Spanke-Benes structure by means of silicon photonics chip is reported.

  20. Assembly and offset assignment scheme for self-similar traffic in optical burst switched networks

    CSIR Research Space (South Africa)

    Muwonge, KB


    Full Text Available Scheme for Self- similar Traffic in Optical Burst Switched Networks K. Benon Muwonge, Member, IEEE and H. Anthony Chan, Sr Member, IEEE Department of Electrical... Forward Equivalence Classification (FEC) assembly scheme to efficiently assemble self- similar traffic and a Pareto-offset assignment scheme for offset assignment. Two buffers, a packet buffer and a burst buffer, are implemented at the Label Edge...

  1. Synchronization Algorithm for SDN-controlled All-Optical TDM Switching in a Random Length Ring Network

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco


    We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes.......We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes....

  2. On-chip switch for reconfigurable mode-multiplexing optical network. (United States)

    Sun, Chunlei; Yu, Yu; Chen, Guanyu; Zhang, Xinliang


    The switching and routing is essential for an advanced and reconfigurable optical network, and great efforts have been done for traditional single-mode system. We propose and demonstrate an on-chip switch compatible with mode-division multiplexing system. By controlling the induced phase difference, the functionalities of dynamically routing data channels can be achieved. The proposed switch is experimentally demonstrated with low insertion loss of ~1 dB and high extinction ratio of ~20 dB over the C-band for OFF-ON switchover. For further demonstration, the non-return-to-zero on-off keying signals at 10 Gb/s carried on the two spatial modes are successfully processed. Open and clear eye diagrams can be observed and the bit error rate measurements indicate a good data routing performance.

  3. Experimental Demonstration of Multidimensional Switching Nodes for All-Optical Data Centre Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Medhin, Ashenafi Kiros; Da Ros, Francesco

    t We experimentally demonstrate network nodes that enable SDM/WDM/TDM switching. 1 Tbit/s/core error-free performance is achieved for connections with different granularities being switched between three network nodes interconnected with 7-core multicore fibres.......t We experimentally demonstrate network nodes that enable SDM/WDM/TDM switching. 1 Tbit/s/core error-free performance is achieved for connections with different granularities being switched between three network nodes interconnected with 7-core multicore fibres....

  4. Impact of Bimodal Traffic on Latency in Optical Burst Switching Networks

    Directory of Open Access Journals (Sweden)

    Yuhua Chen


    Full Text Available This paper analyzes the impact of bimodal traffic composition on latency in optical burst switching networks. In particular, it studies the performance degradation to short-length packets caused by longer packets, both of which are part of a heterogeneous traffic model. The paper defines a customer satisfaction index for each of the classes of traffic, and a composite satisfaction index. The impact of higher overall utilization of the network as well as that of the ratio of the traffic mix on each of the customer satisfaction indices is specifically addressed.

  5. All-fiber optical mode switching based on cascaded mode selective couplers for short-reach MDM networks (United States)

    Ren, Fang; Li, Juhao; Wu, Zhongying; Yu, Jinyi; Mo, Qi; Wang, Jianping; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin


    We propose and experimentally demonstrate an all-fiber optical mode switching structure supporting independent switching, exchanging, adding, and dropping functionalities in which each mode can be switched individually. The mode switching structure consists of cascaded mode selective couplers (MSCs) capable of exciting and selecting specific higher order modes in few-mode fibers with high efficiency and one multiport optical switch routing the independent spatial modes to their destinations. The data carried on three different spatial modes can be switched, exchanged, added, and dropped through this all-fiber structure. For this experimental demonstration, optical on-off-keying (OOK) signals at 10-Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. The mode switch exhibits power penalties of less than 3.1 dB after through operation, less than 2.7 dB after exchange operation, less than 2.8 dB after switching operation, and less than 1.6 dB after mode adding and dropping operations at the bit-error rate (BER) of 10-3, while all three channels carried on three spatial modes are simultaneously routed. The proposed structure, compatible with current optical switching networks based on single-mode fibers, can potentially be used to expand the switching scalability in advanced and flexible short-reach mode-division multiplexing-based networks.

  6. FAST TCP over optical burst switched networks: Modeling and stability analysis

    KAUST Repository

    Shihada, Basem


    FAST TCP is important for promoting data-intensive applications since it can cleverly react to both packet loss and delay for detecting network congestion. This paper provides a continuous time model and extensive stability analysis of FAST TCP congestion-control mechanism in bufferless Optical Burst Switched Networks (OBS). The paper first shows that random burst contentions are essential to stabilize the network, but cause throughput degradation in FAST TCP flows when a burst with all the packets from a single round is dropped. Second, it shows that FAST TCP is vulnerable to burst delay and fails to detect network congestion due to the little variation of round-trip time, thus unstable. Finally it shows that introducing extra delays by implementing burst retransmission stabilizes FAST TCP over OBS. The paper proves that FAST TCP is not stable over barebone OBS. However, it is locally, exponentially, and asymptotically stable over OBS with burst retransmission.

  7. Enhanced just-in-time plus protocol for optical burst switching networks (United States)

    Rodrigues, Joel J. P. C.; Gregório, José M. B.; Vasilakos, Athanasios V.


    We propose a new one-way resource reservation protocol for optical burst switching (OBS) networks, called Enhanced Just-in-Time Plus (E-JIT+). The protocol is described in detail, and its formal specification is presented, following an extended finite state machine approach. The performance evaluation of E-JIT+ is analyzed in comparison with other proposed OBS protocols (JIT+ and E-JIT) for the following network topologies: rings; degree-two, degree-three, and degree-four chordal rings; mesh-torus; NSFNET; ARPANET; FCCN-NET; and the European Optical Network. We evaluate and compare the performance of the different protocols in terms of burst loss probability, taking into account the most important OBS network parameters. It was shown that E-JIT+ performs better than available one-way resource reservation protocols for all the evaluated network topologies. Moreover, the scalability of E-JIT+ was observed, and when the network traffic increases, the burst loss probability also increases, leading to a worse network performance.

  8. Experimental Demonstration of Multidimensional Switching Nodes for All-Optical Data Center Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Medhin, Ashenafi Kiros; Da Ros, Francesco


    architecture allows for scaling in different dimensions while at the same time providing support for connections with different granularity. The ring topology reduces the number of different physical links required, leading to simplified cabling and easier link management, while optical bypass holds...... the prospect of low latency and low-power consumption. The performance of the multidimensional switching nodes has been investigated in an experimental demonstration comprising three network nodes connected with multicore fibers. Both high capacity wavelength connections and time-shared subwavelength...

  9. Optically reconfigurable 1 x 4 remote node switch for access networks


    Tassaert, Martijn; Roelkens, Günther; Dorren, Harm JS; Raz, Oded


    In this paper we demonstrate an optically controlled 1 x 4 remote node switch, based on membrane InP switches bonded to a silicon-on-insulator circuit. We show that the switch exhibits cross talk better than 25 dB between the output ports, and that the switch operates without receiver sensitivity penalty. Furthermore, the proposed switch architecture allows for optical clock distribution as a means to avoid the need for clock recovery at the receiver side. This is demonstrated in a proof-of-p...

  10. Secured Hash Based Burst Header Authentication Design for Optical Burst Switched Networks (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.


    The optical burst switching (OBS) is a promising technology that could meet the fast growing network demand. They are featured with the ability to meet the bandwidth requirement of applications that demand intensive bandwidth. OBS proves to be a satisfactory technology to tackle the huge bandwidth constraints, but suffers from security vulnerabilities. The objective of this proposed work is to design a faster and efficient burst header authentication algorithm for core nodes. There are two important key features in this work, viz., header encryption and authentication. Since the burst header is an important in optical burst switched network, it has to be encrypted; otherwise it is be prone to attack. The proposed MD5&RC4-4S based burst header authentication algorithm runs 20.75 ns faster than the conventional algorithms. The modification suggested in the proposed RC4-4S algorithm gives a better security and solves the correlation problems between the publicly known outputs during key generation phase. The modified MD5 recommended in this work provides 7.81 % better avalanche effect than the conventional algorithm. The device utilization result also shows the suitability of the proposed algorithm for header authentication in real time applications.

  11. Content Aware Burst Assembly - Supporting Telesurgery and Telemedicine in Optical Burst Switching Networks

    Directory of Open Access Journals (Sweden)

    Henry Orosco


    Full Text Available The emerging Telemedicine and Telesurgery technologies allow patients to share medical experts remotely through communication networks. However, network bandwidth, network latency and jitter (variation of latency, are the obstacles to the widespread use of this technology remotely. Optical Burst Switching (OBS networks greatly expand network bandwidth in existing network infrastructure by utilizing multiple DWDM channels within a single fiber, enabling high bandwidth applications. However, the burst assembly process in OBS networks introduces latency and jitter, making it unsuitable for high bandwidth, latency sensitive applications such as telesurgery and telemedicine. In this paper, we propose a content aware burst assembly scheme which dynamically adjusts the burst assembly parameters based on the content being assembled. The proposed content aware burst assembly minimizes the latency and jitter within a video frame, as well as across the left-view and right-view frames for 3D vision generation. Simulation results have shown that the proposed scheme can effectively reduce the latency and jitter experienced by video streams, making OBS a promising candidate for supporting telesurgery and telemedicine applications.

  12. A novel implementation of TCP Vegas for optical burst switched networks

    KAUST Repository

    Shihada, Basem


    TCP performance over bufferless Optical Burst Switched (OBS) networks could be significantly degraded due to the misinterpretation of network congestion status (referred to as false congestion detection). It has been reported that burst retransmission in the OBS domain can improve the TCP throughput by hiding burst loss events from the upper TCP layer, which can effectively reduce the congestion window fluctuation at the expense of introducing additional delay. However, the additional delay may cause performance degradation for delay-based TCP implementations that are sensitive to packet round trip time in estimating the network congestion status. In this paper, a novel implementation of TCP Vegas that adopts a threshold-based mechanism is proposed for identifying the network congestion status in OBS networks. Analytical models are developed to evaluate the throughput of conventional TCP Vegas and threshold-based Vegas over OBS networks with burst retransmission. Simulation is conducted to validate the analytical model and to compare threshold-based Vegas with a number of legacy TCP implementations, such as TCP Sack and TCP Reno. The analytical model can be used to obtain a proper threshold value that results in an optimal steady state TCP throughput.

  13. Multiple-mode reconfigurable electro-optic switching network for optical fiber sensor array (United States)

    Chen, Ray T.; Wang, Michael R.; Jannson, Tomasz; Baumbick, Robert


    This paper reports the first switching network compatible with multimode fibers. A one-to-many cascaded reconfigurable interconnection was built. A thin glass substrate was used as the guiding medium which provides not only higher coupling efficiency from multimode fiber to waveguide but also better tolerance of phase-matching conditions. Involvement of a total-internal-reflection hologram and multimode waveguide eliminates interface problems between fibers and waveguides. The DCG polymer graft has proven to be reliable from -180 C to +200 C. Survivability of such an electrooptic system in harsh environments is further ensured. LiNbO3 was chosen as the E-O material because of its stability at high temperatures (phase-transition temperature of more than 1000 C) and maturity of E-O device technology. Further theoretical calculation was conducted to provide the optimal interaction length and device capacitance.

  14. A hybrid optical switch architecture to integrate IP into optical networks to provide flexible and intelligent bandwidth on demand for cloud computing (United States)

    Yang, Wei; Hall, Trevor J.


    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.

  15. Optical fiber switch (United States)

    Early, James W.; Lester, Charles S.


    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  16. Including 10-Gigabit-capable Passive Optical Network under End-to-End Generalized Multi-Protocol Label Switching Provisioned Quality of Service (United States)

    Brewka, Lukasz; Gavler, Anders; Wessing, Henrik; Dittmann, Lars


    End-to-end quality of service provisioning is still a challenging task despite many years of research and development in this area. Considering a generalized multi-protocol label switching based core/metro network and resource reservation protocol capable home gateways, it is the access part of the network where quality of service signaling is bridged. This article proposes strategies for generalized multi-protocol label switching control over next emerging passive optical network standard, i.e., the 10-gigabit-capable passive optical network. Node management and resource allocation approaches are discussed, and possible issues are raised. The analysis shows that consideration of a 10-gigabit-capable passive optical network as a generalized multi-protocol label switching controlled domain is valid and may advance end-to-end quality of service provisioning for passive optical network based customers.

  17. Including 10-Gigabit-capable Passive Optical Network under End-to-End Generalized Multi-Protocol Label Switching Provisioned Quality of Service

    DEFF Research Database (Denmark)

    Brewka, Lukasz Jerzy; Gavler, Anders; Wessing, Henrik


    of the network where quality of service signaling is bridged. This article proposes strategies for generalized multi-protocol label switching control over next emerging passive optical network standard, i.e., the 10-gigabit-capable passive optical network. Node management and resource allocation approaches...... are discussed, and possible issues are raised. The analysis shows that consideration of a 10-gigabit-capable passive optical network as a generalized multi-protocol label switching controlled domain is valid and may advance end-to-end quality of service provisioning for passive optical network based customers.......End-to-end quality of service provisioning is still a challenging task despite many years of research and development in this area. Considering a generalized multi-protocol label switching based core/metro network and resource reservation protocol capable home gateways, it is the access part...

  18. Spatial-spectral flexible optical networking: enabling switching solutions for a simplified and efficient SDM network platform (United States)

    Tomkos, I.; Zakynthinos, P.; Klonidis, D.; Marom, D.; Sygletos, S.; Ellis, A.; Salvadori, E.; Siracusa, D.; Angelou, M.; Papastergiou, G.; Psaila, N.; Ferran, J. F.; Ben-Ezra, S.; Jimenez, F.; Fernández-Palacios, J. P.


    The traffic carried by core optical networks grows at a steady but remarkable pace of 30-40% year-over-year. Optical transmissions and networking advancements continue to satisfy the traffic requirements by delivering the content over the network infrastructure in a cost and energy efficient manner. Such core optical networks serve the information traffic demands in a dynamic way, in response to requirements for shifting of traffics demands, both temporally (day/night) and spatially (business district/residential). However as we are approaching fundamental spectral efficiency limits of singlemode fibers, the scientific community is pursuing recently the development of an innovative, all-optical network architecture introducing the spatial degree of freedom when designing/operating future transport networks. Spacedivision- multiplexing through the use of bundled single mode fibers, and/or multi-core fibers and/or few-mode fibers can offer up to 100-fold capacity increase in future optical networks. The EU INSPACE project is working on the development of a complete spatial-spectral flexible optical networking solution, offering the network ultra-high capacity, flexibility and energy efficiency required to meet the challenges of delivering exponentially growing traffic demands in the internet over the next twenty years. In this paper we will present the motivation and main research activities of the INSPACE consortium towards the realization of the overall project solution.

  19. A tri-state optical switch for local area network communications (United States)

    Simms, Garfield


    This novel structure is a heterojunction phototransistor which can be used as an emitter-detector, and when placed in a quiescent mode, the device becomes a passive transmitter. By varying the voltage bias, this novel device will switch between all three modes of operation. Such a device has broad application in network environments with operation speeds of less than 50 MHz and distances of less than 1 km, e.g. automobiles, airplanes, and intra-instrumentation. During this period, the emission mode for this device was studied and mathematically modeled.

  20. All-optical signal processing for optical packet switching [Invited (United States)

    Geldenhuys, R.; Liu, Y.; Calabretta, N.; Hill, M. T.; Huijskens, F. M.; Khoe, G. D.; Dorren, H. J. S.


    We present three optical signal processing functional blocks that enable 1×N optical packet switching. An ultrafast asynchronous multioutput all-optical header processor is demonstrated with a terahertz optical asymmetric demultiplexer in combination with a header preprocessor. It is shown that self-induced polarization rotation can be used for both the header processor and the header preprocessor. The second functional block is optical buffering. This is shown with both a laser neural network and a recirculating buffer. Related to this is a three-state all-optical memory based on coupled lasers, which increases the number of possible output states of an optical packet switch.

  1. Experimental Demonstration of Optical Switching of Tbit/s Data Packets for High Capacity Short-Range Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Kamchevska, Valerija; Hu, Hao


    Record-high 1.28-Tbit/s optical data packets are experimentally switched in the optical domain using a LiNbO3 switch. An in-band notch-filter labeling scheme scalable to 65,536 labels is employed and a 3-km transmission distance is demonstrated.......Record-high 1.28-Tbit/s optical data packets are experimentally switched in the optical domain using a LiNbO3 switch. An in-band notch-filter labeling scheme scalable to 65,536 labels is employed and a 3-km transmission distance is demonstrated....

  2. Evaluation of QoS differentiation mechanisms in asynchronous bufferless optical packet-switched networks

    DEFF Research Database (Denmark)

    Overby, H.; Stol, N.; Nord, Martin


    Existing quality of service differentiation schemes for today's IP over point-to-point optical WDM networks take advantage of electronic RAM to implement traffic management algorithms in order to isolate the service classes. Since practical optical RAM is not available, these techniques...... the performance of the presented schemes and qualitatively discuss implementation issues, in order to evaluate the mechanisms. In particular, we present an evaluation framework, which quantifies the throughput reduction observed when migrating from a best effort scenario to a service-differentiated scenario. Our...... study shows that preemption-based schemes have the best performance, but also the highest implementation complexity....

  3. New Photonic System for Optical Packet Switching

    Directory of Open Access Journals (Sweden)

    F. Rudge Barbosa


    Full Text Available Fast optical switching (ms timebase is realized by using a RF frequency tone inserted in the optical packet that carries a digital payload. By using a highly selective RF filtering for optical packet header frequency recognition, we have obtained excellent performance in optical switching function.. The RF header is detected at optical node input, and signals the node switching control, which instantly directs the packet to a prescribed output. No electronic processing of the digital payload is performed. The optical circuit is noise-free, has very low crosstalk, and is extremely selective in header frequency detection. BER measurements for payload consistently yield figures as low as 10-12 . This system is applicable to optical metropolitan and access networks, and is fully compatible with DWDM systems.

  4. Optical network democratization. (United States)

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra


    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).

  5. Neuromorphic atomic switch networks.

    Directory of Open Access Journals (Sweden)

    Audrius V Avizienis

    Full Text Available Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.

  6. Burst-Switched Optical Networks Supporting Legacy and Future Service Types

    Directory of Open Access Journals (Sweden)

    Gerald Franzl


    Full Text Available Focusing on the principles and the paradigm of OBS an overview addressing expectable performance and application issues is presented. Proposals on OBS were published over a decade and the presented techniques spread into many directions. The paper comprises discussions of several challenges that OBS meets, in order to compile the big picture. The OBS principle is presented unrestricted to individual proposals and trends. Merits are openly discussed, considering basic teletraffic theory and common traffic characterisation. A more generic OBS paradigm than usual is impartially discussed and found capable to overcome shortcomings of recent proposals. In conclusion, an OBS that offers different connection types may support most client demands within a sole optical network layer.

  7. Combining optics and SDN to enable true hybrid integration of electronic and photonic switching solutions

    DEFF Research Database (Denmark)

    Guelbenzu, Gonzalo; Miao, Wang; Ben-Itzhak, Yaniv


    We present two hybrid fabrics integrating optical and electronic switches with SDN, and a novel approach improving the scaling of fast optical switches. C-Share reroute flows through optical switches increasing network performance. E-WDM exploits the optical switch transparency by emulating...

  8. Construction of large scale switch matrix by interconnecting integrated optical switch chips with EDFAs (United States)

    Liao, Mingle; Wu, Baojian; Hou, Jianhong; Qiu, Kun


    Large scale optical switches are essential components in optical communication network. We aim to build up a large scale optical switch matrix by the interconnection of silicon-based optical switch chips using 3-stage CLOS structure, where EDFAs are needed to compensate for the insertion loss of the chips. The optical signal-to-noise ratio (OSNR) performance of the resulting large scale optical switch matrix is investigated for TE-mode light and the experimental results are in agreement with the theoretical analysis. We build up a 64 ×64 switch matrix by use of 16 ×16 optical switch chips and the OSNR and receiver sensibility can respectively be improved by 0.6 dB and 0.2 dB by optimizing the gain configuration of the EDFAs.

  9. Design of optical switches by illusion optics

    International Nuclear Information System (INIS)

    Shoorian, H R; Abrishamian, M S


    In this paper, illusion optics theory is employed to form Bragg gratings in an optical waveguide in order to design an optical switch. By using an illusion device at a certain distance from the waveguide, the effective refractive index of the waveguide is remotely modulated, turning the waveguide into a distributed Bragg reflector (DBR) which blocks the waves at a stop band. By removing the illusion device, the waves propagate through the waveguide again. In addition, this method is used to remotely tune DBR optical properties such as resonant frequency and bandwidth in a wide range, which leads to a tunable filter for optical switching applications. Finally, using an illusion device at a distance, an optical cavity is created by inserting defects remotely in a DBR without any physical damage in the primary device. (paper)

  10. Design of optical switches by illusion optics (United States)

    Shoorian, H. R.; Abrishamian, M. S.


    In this paper, illusion optics theory is employed to form Bragg gratings in an optical waveguide in order to design an optical switch. By using an illusion device at a certain distance from the waveguide, the effective refractive index of the waveguide is remotely modulated, turning the waveguide into a distributed Bragg reflector (DBR) which blocks the waves at a stop band. By removing the illusion device, the waves propagate through the waveguide again. In addition, this method is used to remotely tune DBR optical properties such as resonant frequency and bandwidth in a wide range, which leads to a tunable filter for optical switching applications. Finally, using an illusion device at a distance, an optical cavity is created by inserting defects remotely in a DBR without any physical damage in the primary device.

  11. Zero Trust Cloud Networks using Transport Access Control and High Availability Optical Bypass Switching

    Directory of Open Access Journals (Sweden)

    Casimer DeCusatis


    Full Text Available Cyberinfrastructure is undergoing a radical transformation as traditional enterprise and cloud computing environments hosting dynamic, mobile workloads replace telecommunication data centers. Traditional data center security best practices involving network segmentation are not well suited to these new environments. We discuss a novel network architecture, which enables an explicit zero trust approach, based on a steganographic overlay, which embeds authentication tokens in the TCP packet request, and first-packet authentication. Experimental demonstration of this approach is provided in both an enterprise-class server and cloud computing data center environment.

  12. Large aperture optical switching devices

    International Nuclear Information System (INIS)

    Goldhar, J.; Henesian, M.A.


    We have developed a new approach to constructing large aperture optical switches for next generation inertial confinement fusion lasers. A transparent plasma electrode formed in low pressure ionized gas acts as a conductive coating to allow the uniform charging of the optical faces of an electro-optic material. In this manner large electric fields can be applied longitudinally to large aperture, high aspect ratio Pockels cells. We propose a four-electrode geometry to create the necessary high conductivity plasma sheets, and have demonstrated fast (less than 10 nsec) switching in a 5x5 cm aperture KD*P Pockels cell with such a design. Detaid modelling of Pockels cell performance with plasma electrodes has been carried out for 15 and 30 cm aperture designs

  13. Optical Switching and Bit Rates of 40 Gbit/s and above

    DEFF Research Database (Denmark)

    Ackaert, A.; Demester, P.; O'Mahony, M.


    Optical switching in WDM networks introduces additional aspects to the choice of single channel bit rates compared to WDM transmission systems. The mutual impact of optical switching and bit rates of 40 Gbps and above is discussed....

  14. Principles of broadband switching and networking

    CERN Document Server

    Liew, Soung C


    An authoritative introduction to the roles of switching and transmission in broadband integrated services networks Principles of Broadband Switching and Networking explains the design and analysis of switch architectures suitable for broadband integrated services networks, emphasizing packet-switched interconnection networks with distributed routing algorithms. The text examines the mathematical properties of these networks, rather than specific implementation technologies. Although the pedagogical explanations in this book are in the context of switches, many of the fundamenta

  15. National Transparent Optical Network Consortium (NTONC)

    National Research Council Canada - National Science Library

    Daspit, Paul


    ... (DWDM) transport, switching technologies and control strategies required to develop, deploy and operate the terabit per second optical networks needed to meet requirements of Next Generation Internet applications...

  16. Optical networks at cross roads (United States)

    Jaeger, Monika; Huelsermann, Ralf


    The paper addresses the migration path and trade-offs involved in the evolution towards intelligent optical networks that allow scalable and flexible transport of a range of client formats and services. Disruptive all-optical switching and ultra-long reach WDM transmission technologies enable all-optical networks without opto-electronic conversion along paths that can span thousands of kilometers. Optical transport networks coupled with advances in distributed routing and signaling mechanisms are enabling the deployment of Automatically Switched Optical Networks (ASON). The paper discusses in detail the network architecture, optical switching capability, and network management and control architecture involved in the migration from existing and widely deployed WDM optical point-to-point systems to ASONs. The paper reports the findings of the Global Seamless Network (GSN) demonstrator at Deutsche Telekom, in which the concepts of intelligent optical transport networks are being demonstrated and evaluated. Further, a special emphasis is devoted to the question of managing survivability in ASONs. Simulation results comparing different approaches are presented, which illustrate the trade-off between dimensioning and performance of resilience mechanisms. The multi-layer integration between optical and higher layers is addressed from both a control plane and survivability perspective. Scenarios with different clients of the optical layer such as SDH and IP/MPLS are analyzed.

  17. Optical packet switched networks

    DEFF Research Database (Denmark)

    Hansen, Peter Bukhave


    that there is a difference in the transmission properties for co- and counter propagation conversion, which is supported by transmission experiments. The combined use of SOA gates and interferometric wavelength converters illustrates the regenerative capability of the IWCs at 2.5, 10 and 20 Gbit/s by increasing the input...

  18. Wavelength conversion in optical packet switching

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Hansen, Peter Bukhave; Stubkjær, Kristian


    A detailed traffic analysis of optical packet switch design is performed. Special consideration is given to the complexity of the optical buffering and the overall switch block structure is considered in general. Wavelength converters are shown to improve the traffic performance of the switch...... blocks for both random and bursty traffic. Furthermore, the traffic performance of switch blocks with add-drop switches has been assessed in a Shufflenetwork showing the advantage of having converters at the inlets. Finally, the aspect of synchronization is discussed through a proposal to operate...... the packet switch block asynchronously, i.e. without packet alignment at the input...

  19. Switch-connected HyperX network

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dong; Heidelberger, Philip


    A network system includes a plurality of sub-network planes and global switches. The sub-network planes have a same network topology as each other. Each of the sub-network planes includes edge switches. Each of the edge switches has N ports. Each of the global switches is configured to connect a group of edge switches at a same location in the sub-network planes. In each of the sub-network planes, some of the N ports of each of the edge switches are connected to end nodes, and others of the N ports are connected to other edge switches in the same sub-network plane, other of the N ports are connected to at least one of the global switches.

  20. High speed all optical networks (United States)

    Chlamtac, Imrich; Ganz, Aura


    An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail.

  1. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du


    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  2. Synchronization in complex networks with switching topology

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Qing-guo


    This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.

  3. Huge capacity optical packet switching and buffering. (United States)

    Shinada, Satoshi; Furukawa, Hideaki; Wada, Naoya


    We demonstrate 2.56 Tbit/s/port dual-polarization DWDM/DQPSK variable-length optical packet (20 Gbit/s × 64 wavelengths × 2 polarizations) switching and buffering by using a 2×2 optical packet switch (OPS) system. The optical data plane of the OPS system was constructed of multi-connected electro-optical switches and fiber delay lines. The accumulated polarization dependent loss of each optical path in the data plane was less than 5 dB. This low-polarization-dependence OPS system enabled us to handle DWDM/DQPSK optical packets (1.28 Tbit/s/port) with time-varying polarization after transmission through 100 km fiber in the field. © 2011 Optical Society of America

  4. Experimental and theoretical investigation of semiconductor optical amplifier (SOA) based all-optical switches

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup


    optical networks. The factors governing the modulation bandwidth of SOAs are determined, and schemes for reducing detrimental patterning effects are discussed. Three types of SOA-based switches are investigated numerically: so-called standardmode and differential-mode switches, and the filtering assisted......This thesis analyzes semiconductor optical amplifier (SOA) based all-optical switches experimentally and through numerical simulations. These devices are candidates for optical signal processing functionalities such as wavelength conversion, regeneration, and logic processing in future transparent...... switch. Differential -mode switches are shown to eliminate one contribution to the patterning effects, referred to as the linear patterning. This enables operation at bitrates far beyond the limit set by the carrier lifetime, but ultimately a saturation-induced patterning effect, nonlinear patterning...


    NARCIS (Netherlands)

    Meijer, E.W.; Feringa, B.L.


    Chirality in molecular opto-electronics is limited sofar to the use of optically active liquid crystals and a number of optical phenomena are related to the helical macroscopic structure obtained by using one enantiomer, only. In this paper, the use of chirality in nonlinear optics and optical

  6. Optical waveguide switch through magnetic reflectance wall (United States)

    Fang, Yuntuan; Ni, Zhiyao; Yang, Lixia


    We propose a new design to achieve optical waveguide switch. We construct a photonic crystal waveguide with one yttrium iron garnet (YIG) rod array on the two sides of the waveguide. Through the mode analysis, we find in special frequency range a few YIG rods under magnetic field can form the magnetic reflectance wall that blocks the light flow. Removing the magnetic field will delete the reflection wall and let the blocked light to be switched on.

  7. Packetisation in Optical Packet Switch Fabrics using adaptive timeout values

    DEFF Research Database (Denmark)

    Mortensen, Brian Bach


    Hybrid electro-optical packet switches utilize optics in the backplane to switch optical packets from inputs to outputs on electronic line cards. The optical packets are traditionally considerably larger than minimum size IP packets. IP packets entering the switch must be formatted (segmented) an...

  8. Power requirements reducing of FBG based all-optical switching (United States)

    Scholtz, Ľubomír.; Solanská, Michaela; Ladányi, Libor; Müllerová, Jarmila


    Although Fiber Bragg gratings (FBGs) are well known devices, their using as all-optical switching elements has been still examined. Current research is focused on optimization of their properties for their using in future all-optical networks. The main problem are high switching intensities needed for achieving the changes of the transmission state. Over several years switching intensities have been reduced from hundreds of GW/cm2 to tens of MW/cm2 by selecting appropriate gratings and signal parameters or using suitable materials. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. Using of XPM the effect of modulation instability is reduced. Modulation instability which is the main SPM degradation mechanism. We focused on nonlinear FBGs based on chalcogenide glasses which are very often used in various applications. Thanks to high nonlinear parameters chalcogenide glasses are suitable candidates for reducing switching intensities of nonlinear FBGs.

  9. Optical Performance Monitoring and Signal Optimization in Optical Networks

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal


    The thesis studies performance monitoring for the next generation optical networks. The focus is on all-optical networks with bit-rates of 10 Gb/s or above. Next generation all-optical networks offer large challenges as the optical transmitted distance increases and the occurrence of electrical......-optical-electrical regeneration points decreases. This thesis evaluates the impact of signal degrading effects that are becoming of increasing concern in all-optical high-speed networks due to all-optical switching and higher bit-rates. Especially group-velocity-dispersion (GVD) and a number of nonlinear effects will require...... enhanced attention to avoid signal degradations. The requirements for optical performance monitoring features are discussed, and the thesis evaluates the advantages and necessity of increasing the level of performance monitoring parameters in the physical layer. In particular, methods for optical...

  10. Fiber Optic Tactical Local Network (FOTLAN) (United States)

    Bergman, L. A.; Hartmayer, R.; Wu, W. H.; Cassell, P.; Edgar, G.; Lambert, J.; Mancini, R.; Jeng, J.; Pardo, C.


    A 100 Mbit/s FDDI (fiber distributed data interface) network interface unit is described that supports real-time data, voice and video. Its high-speed interrupt-driven hardware architecture efficiently manages stream and packet data transfer to the FDDI network. Other enhancements include modular single-mode laser-diode fiber optic links to maximize node spacing, optic bypass switches for increased fault tolerance, and a hardware performance monitor to gather real-time network diagnostics.

  11. All-optical OXC transition strategy from WDM optical network to elastic optical network. (United States)

    Chen, Xin; Li, Juhao; Guo, Bingli; Zhu, Paikun; Tang, Ruizhi; Chen, Zhangyuan; He, Yongqi


    Elastic optical network (EON) has been proposed recently as a spectrum-efficient optical layer to adapt to rapidly-increasing traffic demands instead of current deployed wavelength-division-multiplexing (WDM) optical network. In contrast with conventional WDM optical cross-connect (OXCs) based on wavelength selective switches (WSSs), the EON OXCs are based on spectrum selective switches (SSSs) which are much more expensive than WSSs, especially for large-scale switching architectures. So the transition cost from WDM OXCs to EON OXCs is a major obstacle to realizing EON. In this paper, we propose and experimentally demonstrate a transition OXC (TOXC) structure based on 2-stage cascading switching architectures, which make full use of available WSSs in current deployed WDM OXCs to reduce number and port count of required SSSs. Moreover, we propose a contention-aware spectrum allocation (CASA) scheme for EON built with the proposed TOXCs. We show by simulation that the TOXCs reduce the network capital expenditure transiting from WDM optical network to EON about 50%, with a minor traffic blocking performance degradation and about 10% accommodated traffic number detriment compared with all-SSS EON OXC architectures.

  12. Investment in electricity networks with transmission switching

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Philpott, A.B.


    allows the solution of large problem instances. The methodology is illustrated by its application to a problem of determining the optimal investment in switching equipment and transmission capacity for an existing network. Computational tests on IEEE test networks with 73 nodes and 118 nodes confirm...

  13. Optimizing POF/PCF based optical switch for indoor LAN

    International Nuclear Information System (INIS)

    Bhuiyan, M M I; Rashid, M M; Ahmed, Sayem; Bhuiyan, M; Kajihara, M


    For indoor local area network (LAN) the Polymer optical fiber (POF) is mostly appropriate, because of its large core diameter and flexible material. A 1×2 optical switch for indoor LAN using POF and a shape memory alloy (SMA) coil actuator with magnetic latches was successfully fabricated and tested. To achieve switching by the movement of a POF, large displacement is necessary because the core diameter is large (e.g., 0.486mm). A SMA coil actuator is used for large displacement and a magnetic latching system is used for fixing the position of the shifted POF. The insertion loss is 0.40 to 0.50dB and crosstalk is more than 50dB without index-matching oil. Switching speed is less than 1s at a driving current of 80mA. A cycling test was performed 1.4 million times. Polymer clad fiber optical (PCF) switch also fabricated and tasted

  14. Quantum switching networks: Unicast and multicast (United States)

    Shukla, Manish Kumar

    Quantum switching networks are analogs of classical switching networks in which classical switches are replaced by quantum switches. These networks are used to switch quantum data among a set of quantum sources and receivers. They can also be used to efficiently switch classical data, and help overcome some limitations of classical switching networks by utilizing the unique properties of quantum information systems, such as superposition and parallelism. In this thesis, we design several such networks which can be broadly put in the following three categories: (1) Quantum unicast networks : We give the design of quantum Baseline network (QBN) which is a self-routing and unicast quantum packet switch that uses the Baseline topology. The classical version of the network blocks packets internally even when there are no output contentions and each input packet is addressed to a different output. The QBN uses the principles of quantum superposition and parallelism to overcome such blocking. Also, for assignments that have multiple input packets addressed to an output, this network creates a quantum superposition of all these packets on that output, ensuring that all packets have non-zero probabilities of being observed on that output. (2) Quantum concentrators : We introduce a new network called quantum concentrator, which is a key component of our quantum multicasting network design. This concentrator is also an n x n quantum switching network, to be denoted by n-QC, and which, for any m, 1 ≤ m ≤ n, routes arbitrary quantum states on any m of its inputs to its top m outputs. This network uses O( n log n) quantum gates, and has a gate level depth of O(log2 n). We also give several variations of this network, the main ones being orderpreserving and priority quantum concentrators. (3) Quantum multicast networks: We first design a quantum multicasting network, called a generalized quantum connector (GQC) which can be used to multicast quantum information from n input

  15. Cognitive Dynamic Optical Networks

    DEFF Research Database (Denmark)

    de Miguel, Ignacio; Duran, Ramon J.; Lorenzo, Ruben M.


    Cognitive networks are a promising solution for the control of heterogeneous optical networks. We review their fundamentals as well as a number of applications developed in the framework of the EU FP7 CHRON project.......Cognitive networks are a promising solution for the control of heterogeneous optical networks. We review their fundamentals as well as a number of applications developed in the framework of the EU FP7 CHRON project....

  16. A Lossless Switch for Data Acquisition Networks

    CERN Document Server

    Jereczek, Grzegorz Edmund; for the ATLAS collaboration


    The recent trends in software-defined networking (SDN) and network function virtualization (NFV) are boosting the advance of software-based packet processing and forwarding on commodity servers. Although performance has traditionally been the challenge of this approach, this situation changes with modern server platforms. High performance load balancers, proxies, virtual switches and other network functions can be now implemented in software and not limited to specialized commercial hardware, thus reducing cost and increasing the flexibility. In this paper we design a lossless software-based switch for high bandwidth data acquisition (DAQ) networks, using the ATLAS experiment at CERN as a case study. We prove that it can effectively solve the incast pathology arising from the many-to-one communication pattern present in DAQ networks by providing extremely high buffering capabilities. We evaluate this on a commodity server equipped with twelve 10 Gbps Ethernet interfaces providing a total bandwidth of 120 Gbps...

  17. All optical logic for optical pattern recognition and networking applications (United States)

    Khoury, Jed


    In this paper, we propose architectures for the implementation 16 Boolean optical gates from two inputs using externally pumped phase- conjugate Michelson interferometer. Depending on the gate to be implemented, some require single stage interferometer and others require two stages interferometer. The proposed optical gates can be used in several applications in optical networks including, but not limited to, all-optical packet routers switching, and all-optical error detection. The optical logic gates can also be used in recognition of noiseless rotation and scale invariant objects such as finger prints for home land security applications.

  18. High speed all-optical networks (United States)

    Chlamtac, Imrich


    An inherent problem of conventional point-to-point WAN architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. This report presents the first solution to WDM based WAN networks that overcomes this limitation. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs.

  19. Optical Interconnects for Future Data Center Networks

    CERN Document Server

    Bergman, Keren; Tomkos, Ioannis


    Optical Interconnects for Future Data Center Networks covers optical networks and how they can provide high bandwidth, energy efficient interconnects with increased communication bandwidth. This volume, with contributions from leading researchers in the field, presents an integrated view of the expected future requirements of data centers and serves as a reference for some of the most advanced and promising solutions proposed by researchers from leading universities, research labs, and companies. The work also includes several novel architectures, each demonstrating different technologies such as optical circuits, optical switching, MIMO optical OFDM, and others. Additionally, Optical Interconnects for Future Data Center Networks provides invaluable insights into the benefits and advantages of optical interconnects and how they can be a promising alternative for future data center networks.

  20. Wavelength switching in an optical klystron

    International Nuclear Information System (INIS)

    Berryman, K.W.; Smith, T.I.


    A symmetric optical klystron consists of two identical undulator sections separated a dispersive section. For a device of a given length, an optical klystron is capable of producing much more bunching, and therefore more gain, than a traditional undulator. Another consequence of introducing dispersion between two undulator sections is that the overall spontaneous radiation pattern results from the interference between the two undulator sections, and as such resembles a standard undulator radiation pattern modulated by a sinusoidal interference term. The presence of several wavelength peaks in the spontaneous lineshape implies an equal number of peaks in the gain spectrum. If the strength of the dispersion section is adjusted to provide nearly equal gain on the two largest of these peaks, then they will compete, and the FEL may switch wavelengths based on noise, cavity length, or other perturbations. We provide the first observations of this behavior, using the FIREFLY system at the Stanford Picosecond FEL Center. In FIREFLY, relative wavelength switching by more than 3%--more than twice the laser linewidth-has been observed by varying dispersion section strength, while at intermediate points stable switching has also been observed as a function of cavity length

  1. Wavelength switching in an optical klystron

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, K.W.; Smith, T.I. [Stanford Univ., CA (United States)


    A symmetric optical klystron consists of two identical undulator sections separated a dispersive section. For a device of a given length, an optical klystron is capable of producing much more bunching, and therefore more gain, than a traditional undulator. Another consequence of introducing dispersion between two undulator sections is that the overall spontaneous radiation pattern results from the interference between the two undulator sections, and as such resembles a standard undulator radiation pattern modulated by a sinusoidal interference term. The presence of several wavelength peaks in the spontaneous lineshape implies an equal number of peaks in the gain spectrum. If the strength of the dispersion section is adjusted to provide nearly equal gain on the two largest of these peaks, then they will compete, and the FEL may switch wavelengths based on noise, cavity length, or other perturbations. We provide the first observations of this behavior, using the FIREFLY system at the Stanford Picosecond FEL Center. In FIREFLY, relative wavelength switching by more than 3%--more than twice the laser linewidth-has been observed by varying dispersion section strength, while at intermediate points stable switching has also been observed as a function of cavity length.

  2. The European IST Project DAVID: A Viable Approach Toward Optical Packet Switching

    DEFF Research Database (Denmark)

    Dittmann, Lars; Develder, C.; Chioaroni, D.


    In this paper, promising technologies and a network architecture are presented for future optical packet switched networks. The overall network concept is presented and the major choices are highlighted and compared with alternative solutions. Both long and shorter term approaches are considered,...

  3. An investigation of semiconductor nanoparticles for application to all-optical switching (United States)

    Born, Brandon; Geoffroy-Gagnon, Simon; Holzman, Jonathan F.


    A practical all-optical switch is necessary to alleviate electronic bottlenecks in fibre optic networks. Thus, a new alloptical switch is introduced here—exhibiting femtojoule switching energies and femtosecond switching times. The alloptical switches use 40 μm dielectric spheres to direct high-intensity photonic nanojets into peripheral coatings of semiconductor nanoparticles. Semiconductor nanoparticle coatings of Si, CdTe, InP, and CuO are studied and found to yield switching energies of approximately 1 pJ, 500 fJ, 400 fJ, and 300 fJ with switching times of 2 ps, 2.3 ps, 900 fs, and 350 fs, respectively.

  4. Cognitive Dynamic Optical Networks

    DEFF Research Database (Denmark)

    de Miguel, Ignacio; Duran, Ramon J.; Jimenez, Tamara


    The use of cognition is a promising element for the control of heterogeneous optical networks. Not only are cognitive networks able to sense current network conditions and act according to them, but they also take into account the knowledge acquired through past experiences; that is, they include...... learning with the aim of improving performance. In this paper, we review the fundamentals of cognitive networks and focus on their application to the optical networking area. In particular, a number of cognitive network architectures proposed so far, as well as their associated supporting technologies......, are reviewed. Moreover, several applications, mainly developed in the framework of the EU FP7 Cognitive Heterogeneous Reconfigurable Optical Network (CHRON) project, are also described....

  5. All-optical devices for ultrafast packet switching

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; HerreraDorren, J.; Raz, O.


    We discuss integrated devices for all-optical packet switching. We focus on monolithically integrated all-optical flip-flops, ultra-fast semiconductor based wavelength converters and explain the operation principles. Finally, a 160 Gb/s all-optical packet switching experiment over 110 km of field...

  6. Migration of optical core network to next generation networks - Carrier Grade Ethernet Optical Transport Network (United States)

    Glamočanin, D.


    In order to maintain the continuity of the telecom operators’ network construction, while monitoring development needs, increasing customers’ demands and application of technological improvements, it is necessary to migrate optical transport core network to the next generation networks - Carrier Grade Ethernet Optical Transport Network (OTN CE). The primary objective of OTN CE is to realize an environment that is based solely on the switching in the optical domain, i.e. the realization of transparent optical networks and optical switching to the second layer of ISO / OSI model. The realization of such a network provides opportunities for further development of existing, but also technologically more demanding, new services. It is also a prerequisite to provide higher scalability, reliability, security and quality of QoS service, as well as prerequisites for the establishment of SLA (Service Level Agreement) for existing services, especially traffic in real time. This study aims to clarify the proposed model, which has the potential to be eventually adjusted in accordance with new scientific knowledge in this field as well as market requirements.

  7. Software-Controlled Next Generation Optical Circuit Switching for HPC and Cloud Computing Datacenters

    Directory of Open Access Journals (Sweden)

    Muhammad Imran


    Full Text Available In this paper, we consider the performance of optical circuit switching (OCS systems designed for data center networks by using network-level simulation. Recent proposals have used OCS in data center networks but the relatively slow switching times of OCS-MEMS switches (10–100 ms and the latencies of control planes in these approaches have limited their use to the largest data center networks with workloads that last several seconds. Herein, we extend the applicability and generality of these studies by considering dynamically changing short-lived circuits in software-controlled OCS switches, using the faster switching technologies that are now available. The modelled switch architecture features fast optical switches in a single hop topology with a centralized, software-defined optical control plane. We model different workloads with various traffic aggregation parameters to investigate the performance of such designs across usage patterns. Our results show that, with suitable choices for the OCS system parameters, delay performance comparable to that of electrical data center networks can be obtained.

  8. Optical Systems for Ultra-High-Speed TDM Networking

    Directory of Open Access Journals (Sweden)

    Michael Galili


    Full Text Available This paper discusses key results in the field of high speed optical networking with particular focus on packet-based systems. Schemes for optical packet labeling, packet switching and packet synchronization will be discussed, along with schemes for optical clock recovery, channel identification and detection of ultra-high-speed optical signals.

  9. Atomic switch networks as complex adaptive systems (United States)

    Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.


    Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.

  10. Architecture and evaluation of software-defined optical switching matrix for hybrid data centers

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso


    A software architecture is proposed for hybrid packet/optical data centers employing programmable NETCONF-enabled optical switching matrix, and a performance evaluation is presented comparing hybrid and electrical-only architectures for elephant flows under different traffic patterns. Network...

  11. Switched diversity approach for multireceiving optical wireless systems. (United States)

    Moradi, Hassan; Refai, Hazem H; Lopresti, Peter G


    A number of existing spatial diversity schemes have been shown to improve the performance of optical wireless communication systems in diversity-rich environments. Among all, switched diversity has low complexity and is simple to implement. In this paper, an innovative spatial diversity scheme based on switched diversity is proposed. The scheme, namely switch-to-dominant combining, contributes to a higher bit error rate (BER) performance when compared to conventional switched diversity schemes, including switch-and-stay and switch-and-examine diversity. The optical multireceiver wireless system operates in a spatially correlated and lognormally distributed fading channel. Analytical analyses are conducted to demonstrate BER and processing load performance offered by the new scheme and compare them to available schemes, i.e., conventional switched combining and selection combining. © 2011 Optical Society of America

  12. A Metropolitan Optical Network with support for multicasting in the optical domain

    NARCIS (Netherlands)

    Dey, D.; Koonen, A.M.J.; van Bochove, A.C.; Geuzebroek, D.H.; Salvador, M.R.; Thienpont, H.; Berghmans, F.; Danckaert, J.; Desmet, L.


    We present the FLAMINGO1 network architecture, an all-optical wavelength-and-timeslotted Metropolitan Optical Network based on a multiple-ring topology. A couple of important aspects of this architecture include all-optical packet switching at intermediate nodes on a ring and the ability to put IP

  13. Organization of the channel-switching process in parallel computer systems based on a matrix optical switch (United States)

    Golomidov, Y. V.; Li, S. K.; Popov, S. A.; Smolov, V. B.


    After a classification and analysis of electronic and optoelectronic switching devices, the design principles and structure of a matrix optical switch is described. The switching and pair-exclusion operations in this type of switch are examined, and a method for the optical switching of communication channels is elaborated. Finally, attention is given to the structural organization of a parallel computer system with a matrix optical switch.

  14. High Availability in Optical Networks (United States)

    Grover, Wayne D.; Wosinska, Lena; Fumagalli, Andrea


    concepts for survivability, or papers on availability analysis methods or results. Customer, vendor, and researcher viewpoints and priorities will all be given consideration. Especially valuable to the community would be papers that include or provide measured data on actual reliability and availability performance of optical networking components or systems. The scope of the papers includes, but is not limited to, the following topics: Reliability and availability measurement techniques specific to optical network devices or services. Data on SRLG statistics and frequency of different actual failure causes. Real-life accounts or data on failure and repair rates or projected values for use in availability analysis. Availability analysis methods, especially for survivable networks with reconfigurable or adaptive failure-specific responses. Availability analysis and comparisons of basic schemes for survivability. Differentiated availability schemes. Design for Multiple Quality of Protection. Different schemes for on-demand survivable service provisioning. Basic comparisons or proposals of new survivability mechanisms and architectures. Concepts yielding higher than 1+1 protection switching availability at less than 100% redundancy. Survivable service provisioning in domains of optical transparency: dealing with signal impairments. To submit to this special issue, follow the normal procedure for submission to JON, indicating "Feature Issue: Optical Network Availability" in the "Comments" field of the online submission form. For all other questions relating to this feature issue, please send an e-mail to, subject line "Feature Issue: Optical Network Availability." Additional information can be found on the JON website:

  15. Flexible optical network components based on densely integrated microring resonators

    NARCIS (Netherlands)

    Geuzebroek, D.H.


    This thesis addresses the design, realization and characterization of reconfigurable optical network components based on multiple microring resonators. Since thermally tunable microring resonators can be used as wavelength selective space switches, very compact devices with high complexity and

  16. A distributed optical grid network infrastructure for future easy-to-use innovative network services (United States)

    Xu, Sugang; Harai, Hiroaki; Wada, Naoya


    Extending the researches on wavelength switched optical networks (WSON), efficient integration of the novel optical packet switching network and wavelength switching-based optical circuit switching network technologies which offers both best-effort packet delivery and QoS guaranteed lightpath services has been being studied. In addition, researches on the optical-layer transparent data processing, such as all-optical wavelength multicasting, all-optical 3R regeneration, etc, are conducted simultaneously. It is believed that future innovative optical network services (INSes) would be built on these novel future-proof technologies, and foster colorful applications in the new generation networks. Before the wide applications of INS in different fields, there would be a foreseeable strong requirement for INS firstly posed by pioneer grid applications, e.g., e-science, e-government, and e-banking, etc, which would require the high-performance underlying networks. Our research here is motivated to glue the optical networks and grid applications by integrating lightpath, geographically distributed INS systems and grid resources (e.g., computers, storages, instruments, etc.), and finally offering an easy-to-use high performance networked grid computing environment-optical grid network (OGN) to user applications. In this paper, we introduce our research activities of a distributed optical grid network infrastructure (OGNI), and the creation of the future easy-to-use INS based on OGNI. The proposals have been validated through fieldtrial experiments over a developed WSON testbed.

  17. Performance Monitoring Techniques Supporting Cognitive Optical Networking

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Borkowski, Robert; Zibar, Darko


    High degree of heterogeneity of future optical networks, such as services with different quality-of-transmission requirements, modulation formats and switching techniques, will pose a challenge for the control and optimization of different parameters. Incorporation of cognitive techniques can help...... to solve this issue by realizing a network that can observe, act, learn and optimize its performance, taking into account end-to-end goals. In this letter we present the approach of cognition applied to heterogeneous optical networks developed in the framework of the EU project CHRON: Cognitive...... Heterogeneous Reconfigurable Optical Network. We focus on the approaches developed in the project for optical performance monitoring, which enable the feedback from the physical layer to the cognitive decision system by providing accurate description of the performance of the established lightpaths....

  18. A multi-ring optical packet and circuit integrated network with optical buffering. (United States)

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya


    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  19. Optical Network Testbeds Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Joe Mambretti


    This is the summary report of the third annual Optical Networking Testbed Workshop (ONT3), which brought together leading members of the international advanced research community to address major challenges in creating next generation communication services and technologies. Networking research and development (R&D) communities throughout the world continue to discover new methods and technologies that are enabling breakthroughs in advanced communications. These discoveries are keystones for building the foundation of the future economy, which requires the sophisticated management of extremely large qualities of digital information through high performance communications. This innovation is made possible by basic research and experiments within laboratories and on specialized testbeds. Initial network research and development initiatives are driven by diverse motives, including attempts to solve existing complex problems, the desire to create powerful new technologies that do not exist using traditional methods, and the need to create tools to address specific challenges, including those mandated by large scale science or government agency mission agendas. Many new discoveries related to communications technologies transition to wide-spread deployment through standards organizations and commercialization. These transition paths allow for new communications capabilities that drive many sectors of the digital economy. In the last few years, networking R&D has increasingly focused on advancing multiple new capabilities enabled by next generation optical networking. Both US Federal networking R&D and other national R&D initiatives, such as those organized by the National Institute of Information and Communications Technology (NICT) of Japan are creating optical networking technologies that allow for new, powerful communication services. Among the most promising services are those based on new types of multi-service or hybrid networks, which use new optical networking

  20. Optical storage networking (United States)

    Mohr, Ulrich


    For efficient business continuance and backup of mission- critical data an inter-site storage network is required. Where traditional telecommunications costs are prohibitive for all but the largest organizations, there is an opportunity for regional carries to deliver an innovative storage service. This session reveals how a combination of optical networking and protocol-aware SAN gateways can provide an extended storage networking platform with the lowest cost of ownership and the highest possible degree of reliability, security and availability. Companies of every size, with mainframe and open-systems environments, can afford to use this integrated service. Three mayor applications are explained; channel extension, Network Attached Storage (NAS), Storage Area Networks (SAN) and how optical networks address the specific requirements. One advantage of DWDM is the ability for protocols such as ESCON, Fibre Channel, ATM and Gigabit Ethernet, to be transported natively and simultaneously across a single fiber pair, and the ability to multiplex many individual fiber pairs over a single pair, thereby reducing fiber cost and recovering fiber pairs already in use. An optical storage network enables a new class of service providers, Storage Service Providers (SSP) aiming to deliver value to the enterprise by managing storage, backup, replication and restoration as an outsourced service.

  1. Software architecture for hybrid electrical/optical data center network

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso


    This paper presents hardware and software architecture based on Software-Defined Networking (SDN) paradigm and OpenFlow/NETCONF protocols for enabling topology management of hybrid electrical/optical switching data center networks. In particular, a development on top of SDN open-source controller...... OpenDaylight is presented to control an optical switching matrix based on Micro-Electro-Mechanical System (MEMS) technology....

  2. CO2 laser pulse switching by optically excited semiconductors

    International Nuclear Information System (INIS)

    Silva, V.L. da.


    The construction and the study of a semi-conductor optical switch used for generating short infrared pulses and to analyse the semiconductor characteristics, are presented. The switch response time depends on semiconductor and control laser characteristics. The results obtained using a Ge switch controlled by N 2 , NdYag and Dye lasers are presented. The response time was 50 ns limited by Ge recombination time. The reflectivity increased from 7% to 59% using N 2 laser to control the switch. A simple model for semiconductor optical properties that explain very well the experimental results, is also presented. (author) [pt

  3. Traffic allocation strategies in WSS-based dynamic optical networks


    Shakeri, Ali; Garrich, Miquel; Bravalheri, Anderson; Careglio, Davide; Solé Pareta, Josep; Fumagalli, Andrea


    Elastic optical networking (EON) is a viable solution to meet future dynamic capacity requirements of Internet service provider and inter-datacenter networks. At the core of EON, wavelength selective switches (WSSs) are applied to individually route optical circuits, while assigning an arbitrary bandwidth to each circuit. Critically, the WSS control scheme and configuration time may delay the creation time of each circuit in the network. In this paper, we first detail the WSS-based optical da...

  4. Development of optical packet and circuit integrated ring network testbed. (United States)

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya


    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  5. Optical Systems for Ultra-High-Speed TDM Networking

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Mulvad, Hans Christian Hansen


    This paper discusses key results in the field of high speed optical networking with particular focus on packet-based systems. Schemes for optical packet labeling, packet switching and packet synchronization will be discussed, along with schemes for optical clock recovery, channel identification...

  6. DLP technolgy: applications in optical networking (United States)

    Yoder, Lars A.; Duncan, Walter M.; Koontz, Elisabeth M.; So, John; Bartlett, Terry A.; Lee, Benjamin L.; Sawyers, Bryce D.; Powell, Donald; Rancuret, Paul


    For the past five years, Digital Light Processing (DLP) technology from Texas Instruments has made significant inroads in the projection display market. With products encompassing the world's smallest data & video projectors, HDTVs, and digital cinema, DLP is an extremely flexible technology. At the heart of these display solutions is Texas Instruments Digital Micromirror Device (DMD), a semiconductor-based light switch array of thousands of individually addressable, tiltable, mirror-pixels. With success of the DMD as a spatial light modulator in the visible regime, the use of DLP technology under the constraints of coherent, infrared light for optical networking applications is being explored. As a coherent light modulator, the DMD device can be used in Dense Wavelength Division Multiplexed (DWDM) optical networks to dynamically manipulate and shape optical signals. This paper will present the fundamentals of using DLP with coherent wavefronts, discuss inherent advantages of the technology, and present several applications for DLP in dynamic optical networks.

  7. On life assessment of high reliability high power optical switch (United States)

    Xu, Yuanjian; Chu, Peter


    High data rate and long range free space lasercom links require multi-watt optical transmitter power, which creates a need for high power redundancy switches to ensure high payload reliability. A high power optical switch (HPOS) with less than 0.15 dB loss and capable of switching more than 40 watts of optical power in a single mode fiber has been previously demonstrated in the Transformational Satellite Communication System program. Prototype switches, in either 1x2 or 2x2 configuration, have been subjected to pyro-shock test, vibration test, and vacuum operation. These switches showed no performance degradation as a result of these tests. Three prototypes went through 60,000 35-watt switching cycles and over 30 million low power switching cycles, and the switches showed no mechanical failure. The HPOS life is about 3.2 million switching cycles with a definition of 3-dB degradation in on/off extinction ratio, which is well suited for space applications.

  8. Optical network scaling: roles of spectral and spatial aggregation. (United States)

    Arık, Sercan Ö; Ho, Keang-Po; Kahn, Joseph M


    As the bit rates of routed data streams exceed the throughput of single wavelength-division multiplexing channels, spectral and spatial traffic aggregation become essential for optical network scaling. These aggregation techniques reduce network routing complexity by increasing spectral efficiency to decrease the number of fibers, and by increasing switching granularity to decrease the number of switching components. Spectral aggregation yields a modest decrease in the number of fibers but a substantial decrease in the number of switching components. Spatial aggregation yields a substantial decrease in both the number of fibers and the number of switching components. To quantify routing complexity reduction, we analyze the number of multi-cast and wavelength-selective switches required in a colorless, directionless and contentionless reconfigurable optical add-drop multiplexer architecture. Traffic aggregation has two potential drawbacks: reduced routing power and increased switching component size.

  9. Experimental demonstrations of all-optical networking functions for WDM optical networks (United States)

    Gurkan, Deniz

    The deployment of optical networks will enable high capacity links between users but will introduce the problems associated with transporting and managing more channels. Many network functions should be implemented in optical domain; main reasons are: to avoid electronic processing bottlenecks, to achieve data-format and data-rate independence, to provide reliable and cost efficient control and management information, to simultaneously process multiple wavelength channel operation for wavelength division multiplexed (WDM) optical networks. The following novel experimental demonstrations of network functions in the optical domain are presented: Variable-bit-rate recognition of the header information in a data packet. The technique is reconfigurable for different header sequences and uses optical correlators as look-up tables. The header is processed and a signal is sent to the switch for a series of incoming data packets at 155 Mb/s, 622 Mb/s, and 2.5 Gb/s in a reconfigurable network. Simultaneous optical time-slot-interchange and wavelength conversion of the bits in a 2.5-Gb/s data stream to achieve a reconfigurable time/wavelength switch. The technique uses difference-frequency-generation (DFG) for wavelength conversion and fiber Bragg gratings (FBG) as wavelength-dependent optical time buffers. The WDM header recognition module simultaneously recognizing two header bits on each of two 2.5-Gbit/s WDM packet streams. The module is tunable to enable reconfigurable look-up tables. Simultaneous and independent label swapping and wavelength conversion of two WDM channels for a multi-protocol label switching (MPLS) network. Demonstration of label swapping of distinct 8-bit-long labels for two WDM data channels is presented. Two-dimensional code conversion module for an optical code-division multiple-access (O-CDMA) local area network (LAN) system. Simultaneous wavelength conversion and time shifting is achieved to enable flexible code conversion and increase code re

  10. Optical network design and planning

    CERN Document Server

    Simmons, Jane M


    This book takes a pragmatic approach to designing state-of-the-art optical networks for backbone, regional, and metro-core networks.   Algorithms and methodologies related to routing, regeneration, wavelength assignment, subrate-traffic grooming, and protection are presented, with an emphasis on optical-bypass-enabled (or all-optical) networks. There are numerous case studies throughout the text to illustrate the concepts, using realistic networks and traffic sets. A full chapter of economic studies offers guidelines as to when and how optical-bypass technology should be deployed. There is also extensive coverage of recent research to provide insight into how optical networks are likely to evolve. The second edition includes new chapters on dynamic optical networking and flexible/elastic optical networks. There is expanded coverage of new physical-layer technology and its impact on network design, along with enhanced coverage of ROADM architectures, including the colorless, directionless, contentionless, a...

  11. Optimization of multicast optical networks with genetic algorithm (United States)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng


    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  12. Total reflection optical waveguide switching through dielectric chip motion. (United States)

    Terui, H; Kobayashi, M


    An optical waveguide switch has been realized utilizing the total reflection critical angle controlled by the motion of a dielectric chip set on a waveguide surface. By the contact-noncontact of a GGG chip with the SiO(2)-Ta(2)O(5) waveguide film having a built-in low refractive-index channel, a switching angle of 22.5x and extincion ratio of 12-16 dB were obtained for the TE(0) mode at 0.633-microm wavelength. A 1 x 3 switch that includes two switching positions driven by 6-V electromagnets is demonstrated.

  13. 160 Gb/s all-optical packet switching field experiment

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; Herrera, J.; Raz, O.


    We discus an all-optical packet switching experiment over 110 km of field installed optical fiber. The switching node is controlled by solely photonic control circuits.......We discus an all-optical packet switching experiment over 110 km of field installed optical fiber. The switching node is controlled by solely photonic control circuits....

  14. Enterasys Networks delivers 10-Gigabit ethernet for the enterprise with new matrix E1 switching family

    CERN Multimedia


    Enterasys Networks Inc., today announced its new Matrix E1 family of 10-Gigabit and Gigabit Ethernet switches. The Matrix E1 Optical Access Switch (OAS) enables organizations to deliver applications at 10-Gb speeds across a single fibre optic pair. Jacques Altaber, deputy leader of IT at CERN said "High-bandwith solutions are essential to leveraging more computing power, so 10-Gb Ethernet is the next logical step for us...The Matrix E1 allows us to provide the networking support that our scientists need and gives us a certain future for bandwidth and computing expansion".

  15. Optical cross-connect circuit using hitless wavelength selective switch. (United States)

    Goebuchi, Yuta; Hisada, Masahiko; Kato, Tomoyuki; Kokubun, Yasuo


    We have proposed and demonstrated the basic elements of a full matrix optical switching circuit (cross-connect circuit) using a hitless wavelength selective switch (WSS). The cross-connect circuits are made of a multi-wavelength channel selective switch consisting of cascaded hitless WSSs, and a multi-port switch. These switching elements are realized through the individual Thermo-Optic (TO) tuning of a series-coupled microring resonator, and can switch arbitrary wavelength channels without blocking other wavelength channels during tuning. We demonstrate a four wavelength selective switch using a parallel topology of double series coupled microring resonators and a three wavelength selective switch using a parallel topology of quadruple series coupled microring resonators. Since the spectrum shape of quadruple series coupled microring is much more box-like than the double series, a high extinction ratio of 39.0-46.6 dB and low switching cross talk of 19.3-24.5 dB were achieved.

  16. All-optical routing and switching for three-dimensional photonic circuitry (United States)

    Keil, Robert; Heinrich, Matthias; Dreisow, Felix; Pertsch, Thomas; Tünnermann, Andreas; Nolte, Stefan; Christodoulides, Demetrios N.; Szameit, Alexander


    The ability to efficiently transmit and rapidly process huge amounts of data has become almost indispensable to our daily lives. It turned out that all-optical networks provide a very promising platform to deal with this task. Within such networks opto-optical switches, where light is directed by light, are a crucial building block for an effective operation. In this article, we present an experimental analysis of the routing and switching behaviour of light in two-dimensional evanescently coupled waveguide arrays of Y- and T-junction geometries directly inscribed into fused silica using ultrashort laser pulses. These systems have the fundamental advantage of supporting three-dimensional network topologies, thereby breaking the limitations on complexity associated with planar structures while maintaining a high dirigibility of the light. Our results show how such arrays can be used to control the flow of optical signals within integrated photonic circuits. PMID:22355612

  17. Control Plane Strategies for Elastic Optical Networks

    DEFF Research Database (Denmark)

    Turus, Ioan

    (Generalized Multi-Protocol Label Switching)-based control framework in accordance with existing IETF standards and recommendations. The usual approach of extending capacity in transport networks by incrementally adding more optical resources results in a very inefficient usage and determines a high power...... Networks (EONs) concept is proposed as a solution to enable a more flexible handling of the optical capacity and allows an increase of available capacity over the existing optical infrastructure. One main requirement for enabling EONs is to have a flexible spectrum structure (i.e.Flex-Grid) which allows...... the spectrum to be used as an on-demand resource. Flex-Grid raises new challenges for controlling the dynamic spectrum slots environment. This thesis addresses, as part of the Celtic project “Elastic Optical Networks” (EONet), the control of Flex-Grid architectures by extending the capabilities of a GMPLS...

  18. Ultrafast optical switching in three-dimensional photonic crystals

    NARCIS (Netherlands)

    Mazurenko, D.A.


    The rapidly expanding research on photonic crystals is driven by potential applications in all-optical switches, optical computers, low-threshold lasers, and holographic data storage. The performance of such devices might surpass the speed of traditional electronics by several orders of magnitude

  19. Reconfigurable radio-over-fiber system based on optical switch and tunable filter (United States)

    Li, Xiao; Yin, Rui; Ji, Wei; Sun, Kai; Zhang, Shicheng


    As the best candidate for wireless-access networks, radio-over-fiber (RoF) technology can carry a variety of business. It is necessary to provide differentiated services for different users, so the network needs to produce signals with different modulation formats and different frequencies. A reconfigurable RoF system based on a switch and tunable optical filter that can realize modulation format conversion and multiple frequency signal switching functions is designed. It has a good performance in terms of bit error rate and an eye diagram. The design can help to use radio frequency resources efficiently and make dynamic bandwidth resources controllable.

  20. Ultralow power all-optical switch

    DEFF Research Database (Denmark)

    Nguyen, H.; Grange, T.; Reznychenko, B.


    Optical logic down to the single photon level holds the promise of data processing with a better energy efficiency than electronic devices [1]. In addition, preservation of quantum coherence in such logical components could lead to optical quantum logical gates [2--4]. Optical logic requires opti...

  1. Structural Controllability of Temporal Networks with a Single Switching Controller (United States)

    Yao, Peng; Hou, Bao-Yu; Pan, Yu-Jian; Li, Xiang


    Temporal network, whose topology evolves with time, is an important class of complex networks. Temporal trees of a temporal network describe the necessary edges sustaining the network as well as their active time points. By a switching controller which properly selects its location with time, temporal trees are used to improve the controllability of the network. Therefore, more nodes are controlled within the limited time. Several switching strategies to efficiently select the location of the controller are designed, which are verified with synthetic and empirical temporal networks to achieve better control performance. PMID:28107538

  2. Consideration for wavelength multiplexing versus time multiplexing in optical transport network

    DEFF Research Database (Denmark)

    Limal, Emmanuel; Stubkjær, Kristian Elmholdt


    We compare optical wavelength multiplexing and time multiplexing techniquesfor optical transport network by studying the space switch sizes of OXCs andtheir interfaces as a function of the fraction of add/drop traffic....

  3. Optical networking standards a comprehensive guide for professionals

    CERN Document Server


    Optical Networking Standards: A Comprehensive Guide for Professionals provides a single source reference of over a hundred standards and industry technical specifications for optical networks at all levels: from components to networking systems through global networks, as well as coverage of networks management and services. This book focuses on the recently approved, adopted and implemented standards that have fueled the development of versatile switches, routers and multi-service provisioning platforms. These networking elements have enabled the service-providers world-wide to offer flexible yet customized bundled-services based on IP, MPLS and Carrier-Grade Ethernet.

  4. Optical networks a practical perspective

    CERN Document Server

    Ramaswami, Rajiv


    This fully updated and expanded second edition of Optical Networks: A Practical Perspective succeeds the first as the authoritative source for information on optical networking technologies and techniques. Written by two of the field's most respected individuals, it covers componentry and transmission in detail but also emphasizes the practical networking issues that affect organizations as they evaluate, deploy, or develop optical solutions. This book captures all the hard-to-find information on architecture, control and management, and other communications topics that

  5. Optical performance monitoring in the MCI network [Invited (United States)

    Fee, John; Bencheck, Mike


    The next-generation integrated performance monitor (NGIOPM) will prove to be a necessary tool for MCI to monitor and maintain its optical transmission network. The functions and requirements described for NGIOPM are intended for incorporation into various transmission network elements such as add-drop multiplexers (ADMs), optical cross-connect switching, regenerators, and other optical components. The NGIOPM will (i) provide transmission integrity including guaranteed performance to customers service-level agreements (SLAs) as well as meeting company engineered transmission performance objectives; (ii) reduce costs by eliminating or decreasing labor intensive testing; and (iii) increase network reliability by reducing network downtime.

  6. On the fly all-optical packet switching based on hybrid WDM/OCDMA labeling scheme (United States)

    Brahmi, Houssem; Giannoulis, Giannis; Menif, Mourad; Katopodis, Vasilis; Kalavrouziotis, Dimitrios; Kouloumentas, Christos; Groumas, Panos; Kanakis, Giannis; Stamatiadis, Christos; Avramopoulos, Hercules; Erasme, Didier


    We introduce a novel design of an all-optical packet routing node that allows for the selection and forwarding of optical packets based on the routing information contained in hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) labels. A stripping paradigm of optical code-label is adopted. The router is built around an optical-code gate that consists in an optical flip-flop controlled by two fiber Bragg grating correlators and is combined with a Mach-Zehnder interferometer (MZI)-based forwarding gate. We experimentally verify the proof-of-principle operation of the proposed self-routing node under NRZ and OCDMA packet traffic conditions. The successful switching of elastic NRZ payload at 40 Gb/s controlled by DS-OCDMA coded labels and the forwarding operation of encoded data using EQC codes are presented. Proper auto-correlation functions are obtained with higher than 8.1 dB contrast ratio, suitable to efficiently trigger the latching device with a contrast ratio of 11.6 dB and switching times below 3.8 ns. Error-free operation is achieved with 1.5 dB penalty for 40 Gb/s NRZ data and with 2.1 dB penalty for DS-OCDMA packets. The scheme can further be applied to large-scale optical packet switching networks by exploiting efficient optical coders allocated at different WDM channels.

  7. Thermochromic materials research for optical switching

    International Nuclear Information System (INIS)

    Lee, J.C.; Jorgenson, G.V.; Lin, R.J.


    Reactive-ion-beam-sputtering (RIBS) is used to deposit doped vanadium dioxide (V/sub 1-x/M/sub x/O/sub 2/), where M is a dopant that lowers the transition temperature (T/sub t/) from that of stoichiometric VO/sub 2/. The objective is to synthesize a material that will passively switch between a heat-transmitting-and a heat-reflecting-state at specific design temperatures in the human comfort range. The films are deposited at elevated temperature (>700K) onto glass and sapphire substrates for spectrophotometric evaluation above and below T/sub t/. Then by analyzing the deposited films via EDAX, correlations between film composition and passive solar switching performance are made. Also concepts for synthesizing suitable crystallites of such materials are described. These crystallites could act as switchable pigments for throchromic solar paint

  8. Description of all-optical network test bed and applications (United States)

    Marquis, Douglas; Castagnozzi, Daniel M.; Hemenway, B. R.; Parikh, Salil A.; Stevens, Mark L.; Swanson, Eric A.; Thomas, Robert E.; Ozveren, C.; Kaminow, Ivan P.


    We describe an all-optical network testbed deployed in the Boston metropolitan area, and some of the experimental applications running over the network. The network was developed by a consortium of AT&T Bell Laboratories, Digital Equipment Corporation, and Massachusetts Institute of Technology under a grant from ARPA. The network is an optical WDM system organized as a hierarchy consisting of local, metropolitan, and wide area nodes that support optical broadcast and routing modes. Frequencies are shared and reused to enhance network scalability. Electronic access is provided through optical terminals that support multiple services having data rates between 10 Mbps/user and 10 Gbps/user. Novel components used to implement the network include fast-tuning 1.5 micrometers distributed Bragg reflector lasers, passive wavelength routers, and broadband optical frequency converters. An overlay control network implemented at 1.3 micrometers allows reliable out-of-band control and standardized network management of all network nodes. We have created interfaces between the AON and commercially available electronic circuit-switched and packet-switched networks. We will report on network applications that can dynamically allocate optical bandwidth between electronic packet-switches based on the offered load presented by users, without requiring interfaces between users and the AON control system. We will also describe video and telemedicine applications running over the network. We have demonstrated an audio/video codec that is directly interfaced to the optical network, and is capable of transmitting high-rate digitized video signals for broadcast or videoconferencing applications. We have also demonstrated a state-of-the-art radiological workstation that uses the AON to transport 2000 X 2000 X 16 bit images from a remote image server.

  9. Cognitive, Heterogeneous and Reconfigurable Optical Networks: The CHRON Project

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Borkowski, Robert; de Miguel, Ignacio


    . The incorporation of cognitive techniques can help to optimize a network by employing mechanisms that can observe, act, learn and improve network performance, taking into account end-to-end goals. The EU project CHRON: Cognitive Heterogeneous Reconfigurable Optical Network proposes a strategy to efficiently control......High degree of heterogeneity of future optical networks, stemming from provisioning of services with different quality-of-transmission requirements, and transmission links employing mixed modulation formats or switching techniques, will pose a challenge for the control and management of the network...

  10. Optical tristability and ultrafast Fano switching in nonlinear magnetoplasmonic nanoparticles (United States)

    Yu, Wenjing; Ma, Pujuan; Sun, Hua; Gao, Lei; Noskov, Roman E.


    We consider light scattering by a coated magnetoplasmonic nanoparticle with a Kerr-type nonlinear plasmonic shell and a magneto-optic core. Such a structure features two plasmon dipole modes, associated with electronic oscillations on the inner and outer surfaces of the shell. Driven in a nonlinear regime, each mode exhibits a bistable response. Bistability of an inner plasmon leads to switching between this state and a Fano resonance (Fano switching). Once the external light intensity exceeds a critical value, the bistability zones of both eigenmodes overlap, yielding optical tristability characterized by three stable steady states for a given wavelength and light intensity. We develop a dynamic theory of transitions between nonlinear steady states and estimate the characteristic switching time to be as short as 0.5 ps. We also show that the magneto-optical effect allows red and blue spectral shifts of the Fano profile for right and left circular polarizations of the external light, rendering Fano switching sensitive to light polarization. Specifically, one can reach Fano switching for the right circular polarization while cancelling it for the left circular polarization. The results point to a class of ultrafast Fano switchers tunable by a magnetic field for applications in nanophotonics.

  11. Development of laser marking system with electro-optic Q-switch

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Jeong Moog; Kim, Kwang Suk; Park, Seung Kyu; Baik, Sung Hoon


    We developed a high repetition electro-optic Q switch Nd:YAG laser and scan system for laser marking. We localized the scan mirrors and their mounts. We made the database for the optical properties of commercial flat-field lenses with our optics design software. We fabricated the detailed network between the galvanometer based beam scanning system and the laser generator. To accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation by company researchers from the early stage. (author). 8 refs., 6 tabs., 27 figs.

  12. Development of laser marking system with electro-optic Q-switch

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Jeong Moog; Kim, Kwang Suk; Park, Seung Kyu; Baik, Sung Hoon.


    We developed a high repetition electro-optic Q switch Nd:YAG laser and scan system for laser marking. We localized the scan mirrors and their mounts. We made the database for the optical properties of commercial flat-field lenses with our optics design software. We fabricated the detailed network between the galvanometer based beam scanning system and the laser generator. To accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation by company researchers from the early stage. (author). 8 refs., 6 tabs., 27 figs

  13. Optical protocols for terabit networks (United States)

    Chua, P. L.; Lambert, J. L.; Morookian, J. M.; Bergman, L. A.


    This paper describes a new fiber-optic local area network technology providing 100X improvement over current technology, has full crossbar funtionality, and inherent data security. Based on optical code-division multiple access (CDMA), using spectral phase encoding/decoding of optical pulses, networking protocols are implemented entirely in the optical domain and thus conventional networking bottlenecks are avoided. Component and system issues for a proof-of-concept demonstration are discussed, as well as issues for a more practical and commercially exploitable system. Possible terrestrial and aerospace applications of this technology, and its impact on other technologies are explored. Some initial results toward realization of this concept are also included.

  14. Developing a New HSR Switching Node (SwitchBox for Improving Traffic Performance in HSR Networks

    Directory of Open Access Journals (Sweden)

    Nguyen Xuan Tien


    Full Text Available High availability is crucial for industrial Ethernet networks as well as Ethernet-based control systems such as automation networks and substation automation systems (SAS. Since standard Ethernet does not support fault tolerance capability, the high availability of Ethernet networks can be increased by using redundancy protocols. Various redundancy protocols for Ethernet networks have been developed and standardized, such as rapid spanning tree protocol (RSTP, media redundancy protocol (MRP, parallel redundancy protocol (PRP, high-availability seamless redundancy (HSR and others. RSTP and MRP have switchover delay drawbacks. PRP provides zero recovery time, but requires a duplicate network infrastructure. HSR operation is similar to PRP, but HSR uses a single network. However, the standard HSR protocol is mainly applied to ring-based topologies and generates excessively unnecessary redundant traffic in the network. In this paper, we develop a new switching node for the HSR protocol, called SwitchBox, which is used in HSR networks in order to support any network topology and significantly reduce redundant network traffic, including unicast, multicast and broadcast traffic, compared with standard HSR. By using the SwitchBox, HSR not only provides seamless communications with zero switchover time in case of failure, but it is also easily applied to any network topology and significantly reduces unnecessary redundant traffic in HSR networks.

  15. The Robustness of Stochastic Switching Networks


    Loh, Po-Ling; Zhou, Hongchao; Bruck, Jehoshua


    Many natural systems, including chemical and biological systems, can be modeled using stochastic switching circuits. These circuits consist of stochastic switches, called pswitches, which operate with a fixed probability of being open or closed. We study the effect caused by introducing an error of size ∈ to each pswitch in a stochastic circuit. We analyze two constructions – simple series-parallel and general series-parallel circuits – and prove that simple series-parallel circuits are robus...

  16. Carbon nanotube network-silicon oxide non-volatile switches. (United States)

    Liao, Albert D; Araujo, Paulo T; Xu, Runjie; Dresselhaus, Mildred S


    The integration of carbon nanotubes with silicon is important for their incorporation into next-generation nano-electronics. Here we demonstrate a non-volatile switch that utilizes carbon nanotube networks to electrically contact a conductive nanocrystal silicon filament in silicon dioxide. We form this device by biasing a nanotube network until it physically breaks in vacuum, creating the conductive silicon filament connected across a small nano-gap. From Raman spectroscopy, we observe coalescence of nanotubes during breakdown, which stabilizes the system to form very small gaps in the network~15 nm. We report that carbon nanotubes themselves are involved in switching the device to a high resistive state. Calculations reveal that this switching event occurs at ~600 °C, the temperature associated with the oxidation of nanotubes. Therefore, we propose that, in switching to a resistive state, the nanotube oxidizes by extracting oxygen from the substrate.

  17. Interconnecting network for switching data packets and method for switching data packets (United States)

    Benner, Alan Frederic; Minkenberg, Cyriel Johan Agnes; Stunkel, Craig Brian


    The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).

  18. Fully reconfigurable 2x2 optical cross-connect using tunable wavelength switching modules

    DEFF Research Database (Denmark)

    Liu, Fenghai; Zheng, Xueyan; Pedersen, Rune Johan Skullerud


    A modular tunable wavelength switching module is proposed and used to construct 2x2 fully reconfigurable optical cross-connects. Large size optical switch is avoided in the OXC and it is easy to upgrade to more wavelength channels.......A modular tunable wavelength switching module is proposed and used to construct 2x2 fully reconfigurable optical cross-connects. Large size optical switch is avoided in the OXC and it is easy to upgrade to more wavelength channels....

  19. The Advent of WDM and the All-Optical Network: A Reality Check. (United States)

    Lutkowitz, Mark


    Discussion of the telecommunications industry focuses on WDM (wavelength division multiplexing) as a solution for dealing with capacity constraints. Highlights include fiber optic technology; cross-connecting and switching wavelengths; SONET (Synchronous Optical Network) and wavelength networking; and optical TDM (Time Division Multiplexing). (LRW)

  20. Stabilization Strategies of Supply Networks with Stochastic Switched Topology

    Directory of Open Access Journals (Sweden)

    Shukai Li


    Full Text Available In this paper, a dynamical supply networks model with stochastic switched topology is presented, in which the stochastic switched topology is dependent on a continuous time Markov process. The goal is to design the state-feedback control strategies to stabilize the dynamical supply networks. Based on Lyapunov stability theory, sufficient conditions for the existence of state feedback control strategies are given in terms of matrix inequalities, which ensure the robust stability of the supply networks at the stationary states and a prescribed H∞ disturbance attenuation level with respect to the uncertain demand. A numerical example is given to illustrate the effectiveness of the proposed method.

  1. Optical network control plane for multi-domain networking

    DEFF Research Database (Denmark)

    Manolova, Anna Vasileva

    process are not enough for efficient TE in mesh multi-domain networks. Enhancing the protocol with multi-path dissemination capability, combined with the employment of an end-to-end TE metric proves to be a highly efficient solution. Simulation results show good performance characteristics of the proposed...... that the applied routing protocol and the topology of the multi-domain nework have very strong influence on the efficiency of the applied restoration techniques. Finally, different challenges of the integration of the GMPLS control framework with the novel Optical Burst Switching technology are analyzed. Existing...

  2. Bipolar resistive switching behaviors of ITO nanowire networks

    Directory of Open Access Journals (Sweden)

    Qiang Li


    Full Text Available We have fabricated indium tin oxide (ITO nanowire (NW networks on aluminum electrodes using electron beam evaporation. The Ag/ITO-NW networks/Al capacitor exhibits bipolar resistive switching behavior. The resistive switching characteristics of ITO-NW networks are related to the morphology of NWs. The x-ray photoelectron spectroscopy was used to obtain the chemical nature from the NWs surface, investigating the oxygen vacancy state. A stable switching voltages and a clear memory window were observed in needle-shaped NWs. The ITO-NW networks can be used as a new two-dimensional metal oxide material for the fabrication of high-density memory devices.

  3. Network switching strategy for energy conservation in heterogeneous networks.

    Directory of Open Access Journals (Sweden)

    Yujae Song

    Full Text Available In heterogeneous networks (HetNets, the large-scale deployment of small base stations (BSs together with traditional macro BSs is an economical and efficient solution that is employed to address the exponential growth in mobile data traffic. In dense HetNets, network switching, i.e., handovers, plays a critical role in connecting a mobile terminal (MT to the best of all accessible networks. In the existing literature, a handover decision is made using various handover metrics such as the signal-to-noise ratio, data rate, and movement speed. However, there are few studies on handovers that focus on energy efficiency in HetNets. In this paper, we propose a handover strategy that helps to minimize energy consumption at BSs in HetNets without compromising the quality of service (QoS of each MT. The proposed handover strategy aims to capture the effect of the stochastic behavior of handover parameters and the expected energy consumption due to handover execution when making a handover decision. To identify the validity of the proposed handover strategy, we formulate a handover problem as a constrained Markov decision process (CMDP, by which the effects of the stochastic behaviors of handover parameters and consequential handover energy consumption can be accurately reflected when making a handover decision. In the CMDP, the aim is to minimize the energy consumption to service an MT over the lifetime of its connection, and the constraint is to guarantee the QoS requirements of the MT given in terms of the transmission delay and call-dropping probability. We find an optimal policy for the CMDP using a combination of the Lagrangian method and value iteration. Simulation results verify the validity of the proposed handover strategy.

  4. Complete achromatic and robustness electro-optic switch between two integrated optical waveguides (United States)

    Huang, Wei; Kyoseva, Elica


    In this paper, we present a novel design of electro-optic modulator and optical switching device, based on current integrated optics technique. The advantages of our optical switching device are broadband of input light wavelength, robustness against varying device length and operation voltages, with reference to previous design. Conforming to our results of previous paper [Huang et al, phys. lett. a, 90, 053837], the coupling of the waveguides has a hyperbolic-secant shape. while detuning has a sign flip at maximum coupling, we called it as with a sign flip of phase mismatch model. The a sign flip of phase mismatch model can produce complete robust population transfer. In this paper, we enhance this device to switch light intensity controllable, by tuning external electric field based on electro-optic effect.

  5. All-optical switching based on optical fibre long period gratings modified bacteriorhodopsin (United States)

    Korposh, S.; James, S.; Partridge, M.; Sichka, M.; Tatam, R.


    All-optical switching using an optical fibre long-period gating (LPG) modified with bacteriorhodopsin (bR) is demonstrated. The switching process is based on the photo-induced RI change of bR, which in turn changes the phase matching conditions of the mode coupling by the LPG, leading to modulation of the propagating light. The effect was studied with an LPG immersed into a bR solution and with LPGs coated with the bR films, deposited onto the LPGs using the layer-by-layer electrostatic self-assembly (LbL) method. The dependence of the all-optical switching efficiency upon the concentration of the bR solution and on the grating period of the LPG was also studied. In addition, an in-fibre Mach-Zehnder interferometer (MZI) composed of a cascaded LPG pair separated by 30 mm and modified with bR was used to enhance the wavelength range of all-optical switching. The switching wavelength is determined by the grating period of the LPG. Switching efficiencies of 16% and 35% were observed when an LPG and an MZI were immersed into bR solutions, respectively. The switching time for devices coated with bR-films was within 1 s, 10 times faster than that observed for devices immersed into bR solution.

  6. Thermal effect analysis of silicon microring optical switch for on-chip interconnect (United States)

    Fang, Xiongfeng; Yang, Lin


    The silicon microring resonator plays an important role in large-scale, high-integrability modern switching matrixes and optical networks, as silicon photonics enables ring resonators of an unprecedented compact size. But as the nature of resonators is their sensitivity to temperature, their performances are vulnerable to being affected by thermal effect. In this paper, we analyze the dominant thermal effects to the application of silicon microring optical switch. On the one hand we theoretically analyze and experimentally measure the thermal crosstalk among adjacent microring optical switches with different distances, and give possible solutions to minimize the affect of thermal crosstalk. On the other hand we analyze and measure the thermooptic dynamic response of microring switch; the experiment shows for the thermal-tuning that the rising edge is around 2 μs, and the falling edge is around 35 μs. We give the explanation of the asymmetric rise-time and fall-time. Project supported by the Natural National Science Foundation of China (Nos. 61235001, 61575187, 61535002).

  7. Scalable In-Band Optical Notch-Filter Labeling for Ultrahigh Bit Rate Optical Packet Switching

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo


    We propose a scalable in-band optical notch-filter labeling scheme for optical packet switching of high-bit-rate data packets. A detailed characterization of the notch-filter labeling scheme and its effect on the quality of the data packet is carried out in simulation and verified by experimental...

  8. Modeling of Semiconductor Optical Amplifier Gain Characteristics for Amplification and Switching (United States)

    Mahad, Farah Diana; Sahmah, Abu; Supa'at, M.; Idrus, Sevia Mahdaliza; Forsyth, David


    The Semiconductor Optical Amplifier (SOA) is presently commonly used as a booster or pre-amplifier in some communication networks. However, SOAs are also a strong candidate for utilization as multi-functional elements in future all-optical switching, regeneration and also wavelength conversion schemes. With this in mind, the purpose of this paper is to simulate the performance of the SOA for improved amplification and switching functions. The SOA is modeled and simulated using OptSim software. In order to verify the simulated results, a MATLAB mathematical model is also used to aid the design of the SOA. Using the model, the gain difference between simulated and mathematical results in the unsaturated region is <1dB. The mathematical analysis is in good agreement with the simulation result, with only a small offset due to inherent software limitations in matching the gain dynamics of the SOA.

  9. Tunable photonic bandgap fiber based devices for optical networks

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Rottwitt, Karsten


    In future all optical networks one of the enabling technologies is tunable elements including reconfigurable routers, switches etc. Thus, the development of a technology platform that allows construction of tuning components is critical. Lately, microstructured optical fibers, filled with liquid...... crystals, have proven to be a candidate for such a platform. Microstructured optical fibers offer unique wave-guiding properties that are strongly related to the design of the air holes in the cladding of the fiber. These wave-guiding properties may be altered by filling the air holes with a material......, for example a liquid crystal that changes optical properties when subjected to, for example, an optical or an electrical field. The utilization of these two basic properties allows design of tunable optical devices for optical networks. In this work, we focus on applications of such devices and discuss recent...

  10. SDN architecture for optical packet and circuit integrated networks (United States)

    Furukawa, Hideaki; Miyazawa, Takaya


    We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.

  11. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements. (United States)

    Vázquez, Carmen; Pérez-Prieto, Sandra; López-Cardona, Juan D; Tapetado, Alberto; Blanco, Enrique; Moreno-López, Jorge; Montero, David S; Lallana, Pedro C


    We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.

  12. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Carmen Vázquez


    Full Text Available We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.

  13. Communication Network Architectures Based on Ethernet Passive Optical Network for Offshore Wind Power Farms

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ahmed


    Full Text Available Nowadays, with large-scale offshore wind power farms (WPFs becoming a reality, more efforts are needed to maintain a reliable communication network for WPF monitoring. Deployment topologies, redundancy, and network availability are the main items to enhance the communication reliability between wind turbines (WTs and control centers. Traditional communication networks for monitoring and control (i.e., supervisory control and data acquisition (SCADA systems using switched gigabit Ethernet will not be sufficient for the huge amount of data passing through the network. In this paper, the optical power budget, optical path loss, reliability, and network cost of the proposed Ethernet Passive Optical Network (EPON-based communication network for small-size offshore WPFs have been evaluated for five different network architectures. The proposed network model consists of an optical network unit device (ONU deployed on the WT side for collecting data from different internal networks. All ONUs from different WTs are connected to a central optical line terminal (OLT, placed in the control center. There are no active electronic elements used between the ONUs and the OLT, which reduces the costs and complexity of maintenance and deployment. As fiber access networks without any protection are characterized by poor reliability, three different protection schemes have been configured, explained, and discussed. Considering the cost of network components, the total implementation expense of different architectures with, or without, protection have been calculated and compared. The proposed network model can significantly contribute to the communication network architecture for next generation WPFs.

  14. Trends in Optical Networks

    Indian Academy of Sciences (India)

    Integrated TDM/IP Service Network: Built using next-generation SDH · Case 2: ISP Backbone over SONET/SDH · Solution for the PoPs · Solution for the Gateway site · Case 3: Ethernet Leased Line Services over Existing Infrastructure · Transport for Mobile Voice/Data Networks · Functions needed for mapping Ethernet to ...

  15. Trends in Optical Networks

    Indian Academy of Sciences (India)

    Traditional Solution: Building an overlay network with SDH and IP elements · Integrated TDM/IP Service Network: Built using next-generation SDH · Case 2: ISP Backbone over SONET/SDH · Solution for the PoPs ... Bandwidth Allocation Link Capacity Adjustment Scheme (LCAS) · Cost-Reducing EoS: Partial Protection.

  16. Moving the boundary between wavelength resources in optical packet and circuit integrated ring network. (United States)

    Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki


    Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.

  17. Design issues of optical router for metropolitan optical network (MON) applications (United States)

    Wei, Wei; Zeng, QingJi


    The popularity of the Internet has caused the traffic on the Metro Area Network (MAN) to grow drastically every year. It is believed that Wavelength Division Multiplexing (WDM) has become a cornerstone technology in the MAN. Solutions to provide a MAN with high bandwidth, good scalability and easy management are being constantly searched from both IP and WDM. In this paper we firstly propose a metro optical network architecture based on GMPLS--a flexible, highly scalable IP over WDM optical network architecture for the delivery of public network IP services. Two kinds of node including Electronic Label Switching Router (E-LSR) and Optical Router (O-LSR) are involved in this metro optical network architecture. Secondly, we mainly focus on design issues of OR including multi-granularity electro-optical hybrid switching fabrics, intelligent OTU, contro l plane software and etc. And we also discuss some issues such as routing, forwarding and management of OR. Finally, we reach conclusions that OR based on GMPLS and hybrid-switching fabrics is suitable for current multi-services application environment of MON and optimistic for IP traffic transfer.

  18. Structural Optimization of a Laterally Driven Electromagnetic Micro Optical Switch

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Sam; Kwak, Byung Man [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Ko, Jong Soo [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of)


    This paper presents structural optimization for a micro optical switch based on the concept of a laterally driven electromagnetic microactuator (LaDEM). This utilizes a nonlinear behavior of a snap-through buckling occurring in two arch-shaped leaf springs of the switch, when actuated by a distributed Lorentz force induced along the leaf springs. An important objective in the design of the micro optical switch is to achieve a large displacement with low actuation force. For this purpose, a parametric study is first made. The most important parameters are found the initial rise and two sizes of the meander and chosen as design variables. The nonlinear displacement-load response is calculated by a modified Riks method in ABAQUS. Two formulations of structural optimization were studied. In the first formulation, the load needed for the micro mirror to reach a specific displacement is minimized subject to natural frequency and stress constraints. In the other optimization, the displacement was maximized for an applied load subject to the same constraints in the first approach. Nonlinear FE techniques and optimizations are found to be valuable tools for analysis and design of microactuators which utilize a complex nonlinear snap-through buckling behavior.

  19. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar, Phase I (United States)

    National Aeronautics and Space Administration — The proposed optical device is a fiber-based multi-channel switch to quickly switch a fiber-coupled laser among many possible output channels to create a fiber-based...

  20. Sequential multi-channel OCT in the retina using high-speed fiber optic switches (United States)

    Wartak, Andreas; Augustin, Marco; Beer, Florian; Haindl, Richard; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.


    A sequential multi-channel OCT prototype featuring high-speed fiber optical switches to enable inter A-scan (A-scan rate: 100 kHz) sample arm switching was developed and human retinal image data is presented.

  1. Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks (United States)

    Zhang, Chongfu; Qiu, Kun; Ma, Chunli


    In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.

  2. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar (United States)

    Suckow, Will; Roberts, Tony; Switzer, Gregg; Terwilliger, Chelle


    Current fiber switch technologies use mechanical means to redirect light beams, resulting in slow switch time, as well as poor reliability due to moving parts wearing out quickly at high speeds. A non-mechanical ability to switch laser output into one of multiple fibers within a fiber array can provide significant power, weight, and costs savings to an all-fiber system. This invention uses an array of crystals that act as miniature prisms to redirect light as an electric voltage changes the prism s properties. At the heart of the electro-optic fiber-optic switch is an electro- optic crystal patterned with tiny prisms that can deflect the beam from the input fiber into any one of the receiving fibers arranged in a linear array when a voltage is applied across the crystal. Prism boundaries are defined by a net dipole moment in the crystal lattice that has been poled opposite to the surrounding lattice fabricated using patterned, removable microelectrodes. When a voltage is applied across the crystal, the resulting electric field changes the index of refraction within the prism boundaries relative to the surrounding substrate, causing light to deflect slightly according to Snell s Law. There are several materials that can host the necessary monolithic poled pattern (including, but not limited to, SLT, KTP, LiNbO3, and Mg:LiNbO3). Be cause this is a solid-state system without moving parts, it is very fast, and does not wear down easily. This invention is applicable to all fiber networks, as well as industries that use such networks. The unit comes in a compact package, can handle both low and high voltages, and has a high reliability (100,000 hours without maintenance).

  3. 160 Gbit/s optical packet switching using a silicon chip

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael


    We have successfully demonstrated 160 Gbit/s all-optical packet switching based on cross-phase modulation using a silicon chip. Error free performance is achieved for the 4-to-1 switched 160 Gbit/s packet.......We have successfully demonstrated 160 Gbit/s all-optical packet switching based on cross-phase modulation using a silicon chip. Error free performance is achieved for the 4-to-1 switched 160 Gbit/s packet....

  4. 3-5 modulation and switching devices for optical systems applications (United States)

    Singh, Jasprit; Bhattacharya, Pallab


    The thrust for this three year program has been to develop novel devices and systems applications for multiple quantum well based devices. We have investigated architectures based upon the quantum confined Stark effect (QCSE), a means by which excitonic resonances in a quantum well are electric field tuned to shift the peaked absorption spectrum of the material. The devices based upon this concept have been used, in the past, to realize switching structures employing the characteristic negative differential resistance available in PIN-MQW diodes under illumination. We have focuses, primarily on three schemes based upon the QCSE, to extend the utility of quantum well based devices. Firstly, we have developed, tested and optimized a novel tunable optical filter for wavelength selective applications. Secondly, we have demonstrated an MQW based scheme for optical pattern recognition which we have applied towards header recognition in a packet switching network environment. Thirdly, we have extended previous MQW based switching schemes to implement an optical read only memory (ROM) which can store two bits of information on a single sight, read by two different probe wavelengths of light.

  5. Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks. (United States)

    Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo


    Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.

  6. Electro-optical switching of liquid crystals of graphene oxide (United States)

    Song, Jang-Kun

    Electric field effects on aqueous graphene-oxide (GO) dispersions are reviewed in this chapter. In isotropic and biphasic regimes of GO dispersions, in which the inter-particle friction is low, GO particles sensitively respond to the application of electric field, producing field-induced optical birefringence. The electro-optical sensitivity dramatically decreases as the phase transits to the nematic phase; the increasing inter-particle friction hinders the rotational switching of GO particles. The corresponding Kerr coefficient reaches the maximum near the isotropic to biphasic transition concentration, at which the Kerr coefficient is found be c.a. 1:8 · 10-5 mV-2, the highest value ever reported in all Kerr materials. The exceptionally large Kerr effect arises from the Maxwell- Wagner polarization of GO particles with an extremely large aspect ratio and a thick electrical double layer (EDL). The polarization sensitively depends on the ratio of surface and bulk conductivities in dispersions. As a result, low ion concentration in bulk solvent is highly required to achieve a quality electro-optical switching in GO dispersions. Spontaneous vinylogous carboxylic reaction in GO particles produces H+ ions, resulting in spontaneous degradation of electro-optical response with time, hence the removal of residual ions by using a centrifuge cleaning process significantly improves the electro-optical sensitivity. GO particle size is another important parameter for the Kerr coefficient and the response time. The best performance is observed in a GO dispersion with c.a. 0.5 μm mean size. Dielectrophoretic migration of GO particles can be also used to manipulate GO particles in solution. Using these unique features of GO dispersions, one can fabricate GO liquid crystal devices similar to conventional liquid crystal displays; the large Kerr effect allows fabricating a low power device working at extremely low electric fields.

  7. Robust network topologies for generating switch-like cellular responses.

    Directory of Open Access Journals (Sweden)

    Najaf A Shah


    Full Text Available Signaling networks that convert graded stimuli into binary, all-or-none cellular responses are critical in processes ranging from cell-cycle control to lineage commitment. To exhaustively enumerate topologies that exhibit this switch-like behavior, we simulated all possible two- and three-component networks on random parameter sets, and assessed the resulting response profiles for both steepness (ultrasensitivity and extent of memory (bistability. Simulations were used to study purely enzymatic networks, purely transcriptional networks, and hybrid enzymatic/transcriptional networks, and the topologies in each class were rank ordered by parametric robustness (i.e., the percentage of applied parameter sets exhibiting ultrasensitivity or bistability. Results reveal that the distribution of network robustness is highly skewed, with the most robust topologies clustering into a small number of motifs. Hybrid networks are the most robust in generating ultrasensitivity (up to 28% and bistability (up to 18%; strikingly, a purely transcriptional framework is the most fragile in generating either ultrasensitive (up to 3% or bistable (up to 1% responses. The disparity in robustness among the network classes is due in part to zero-order ultrasensitivity, an enzyme-specific phenomenon, which repeatedly emerges as a particularly robust mechanism for generating nonlinearity and can act as a building block for switch-like responses. We also highlight experimentally studied examples of topologies enabling switching behavior, in both native and synthetic systems, that rank highly in our simulations. This unbiased approach for identifying topologies capable of a given response may be useful in discovering new natural motifs and in designing robust synthetic gene networks.

  8. Reversible optical switching memristors with tunable STDP synaptic plasticity: a route to hierarchical control in artificial intelligent systems. (United States)

    Jaafar, Ayoub H; Gray, Robert J; Verrelli, Emanuele; O'Neill, Mary; Kelly, Stephen M; Kemp, Neil T


    Optical control of memristors opens the route to new applications in optoelectronic switching and neuromorphic computing. Motivated by the need for reversible and latched optical switching we report on the development of a memristor with electronic properties tunable and switchable by wavelength and polarization specific light. The device consists of an optically active azobenzene polymer, poly(disperse red 1 acrylate), overlaying a forest of vertically aligned ZnO nanorods. Illumination induces trans-cis isomerization of the azobenzene molecules, which expands or contracts the polymer layer and alters the resistance of the off/on states, their ratio and retention time. The reversible optical effect enables dynamic control of a memristor's learning properties including control of synaptic potentiation and depression, optical switching between short-term and long-term memory and optical modulation of the synaptic efficacy via spike timing dependent plasticity. The work opens the route to the dynamic patterning of memristor networks both spatially and temporally by light, thus allowing the development of new optically reconfigurable neural networks and adaptive electronic circuits.

  9. Fast and low power Michelson interferometer thermo-optical switch on SOI. (United States)

    Song, Junfeng; Fang, Q; Tao, S H; Liow, T Y; Yu, M B; Lo, G Q; Kwong, D L


    We designed and fabricated silicon-on-insulator based Michelson interferometer (MI) thermo-optical switches with deep etched trenches for heat-isolation. Switch power was reduced approximately 20% for the switch with deep etched trenches, and the MI saved approximately 50% power than that of the Mach-Zehnder interferometer. 10.6 mW switch power, approximately 42 micros switch time for the MI with deep trenches, 13.14 mW switch power and approximately 34 micros switch time for the MI without deep trenches were achieved.

  10. The Fragility of Interdependency: Coupled Networks Switching Phenomena (United States)

    Stanley, H. Eugene


    Recent disasters ranging from abrupt financial ``flash crashes'' and large-scale power outages to sudden death among the elderly dramatically exemplify the fact that the most dangerous vulnerability is hiding in the many interdependencies among different networks. In the past year, we have quantified failures in model of interconnected networks, and demonstrated the need to consider mutually dependent network properties in designing resilient systems. Specifically, we have uncovered new laws governing the nature of switching phenomena in coupled networks, and found that phenomena that are continuous ``second order'' phase transitions in isolated networks become discontinuous abrupt ``first order'' transitions in interdependent networks [S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, ``Catastrophic Cascade of Failures in Interdependent Networks,'' Nature 464, 1025 (2010); J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, ``Novel Behavior of Networks Formed from Interdependent Networks,'' Nature Physics 8, 40 (2012). We conclude by discussing the network basis for understanding sudden death in the elderly, and the possibility that financial ``flash crashes'' are not unlike the catastrophic first-order failure incidents occurring in coupled networks. Specifically, we study the coupled networks that are responsible for financial fluctuations. It appears that ``trend switching phenomena'' that we uncover are remarkably independent of the scale over which they are analyzed. For example, we find that the same laws governing the formation and bursting of the largest financial bubbles also govern the tiniest finance bubbles, over a factor of 1,000,000,000 in time scale [T. Preis, J. Schneider, and H. E. Stanley, ``Switching Processes in Financial Markets,'' Proc. Natl. Acad. Sci. USA 108, 7674 (2011); T. Preis and H. E. Stanley, ``Bubble Trouble: Can a Law Describe Bubbles and Crashes in Financial Markets?'' Physics World 24, No. 5, 29 (May 2011

  11. Optical networks and laboratory services

    International Nuclear Information System (INIS)

    Ciaffoni, O.; Ferrer, M.L.; Trasatti, L.


    Possible technical solutions to the problem of high speed data links between laboratories are presented. Long distance networks (WAN), ranging from tens to hundreds of kilometers, offer a variety of possibilities, from standard 64 Kbit/s connections to optical fiber links and radio or satellite Mbit channels. Short range (up to 2-3 km) communications are offered by many existing LAN (local area network) standards up to 10 Mbit/s. The medium distance range (around 10 km) can be covered by high performance fiber optic links and the now emerging MAN (metropolitan area network) protocols. A possible area of application is between the Gran Sasso Tunnel Laboratory, the outside installations and other Italien and foreign laboratories. (orig.)

  12. Study on the energy-efficient scheme based on the interconnection of optical-network-units for next generation optical access network (United States)

    Lv, Yunxin; Jiang, Ning; Qiu, Kun; Xue, Chenpeng


    An energy-efficient scheme based on the interconnection of optical network unit (ONU) is introduced, which can significantly reduce the energy consumption of the low-traffic operation. The energy consumption model for the ONU-interconnected optical access network (OAN) based on the electronic switch (ES) technology is established, and the energy efficiency of the proposed scheme is analyzed and compared with that of the OAN using optical switch (OS). The simulation results demonstrate that the ONU-interconnected scheme can efficiently reduce the energy consumption of OAN, and it shows a good energy consumption performance under daily traffic model.

  13. Optical interconnections and networks; Proceedings of the Meeting, The Hague, Netherlands, Mar. 14, 15, 1990 (United States)

    Bartelt, Hartmut (Editor)


    The conference presents papers on interconnections, clock distribution, neural networks, and components and materials. Particular attention is given to a comparison of optical and electrical data interconnections at the board and backplane levels, a wafer-level optical interconnection network layout, an analysis and simulation of photonic switch networks, and the integration of picosecond GaAs photoconductive devices with silicon circuits for optical clocking and interconnects. Consideration is also given to the optical implementation of neural networks, invariance in an optoelectronic implementation of neural networks, and the recording of reversible patterns in polymer lightguides.

  14. Optical Networks Solutions planning - performances - management

    DEFF Research Database (Denmark)

    Fenger, Christian


    are kept optical and not converted into the optical domain. The focus is on the scientific results achieved throughout the Ph.D. period. Five subjects – all increasing the understanding of optical networks – are studied. Static wavelength routed optical networks are studied. Management on terms...... of lightpath allocation and design is considered. By using statistical models (simultaneous analysis of many networks) the correspondence between parameters determining the network topology and the performance of the optical network is found. These dependencies are important knowledge in the process...... of designing a network. It is also seen (statistically) found that the effect of wavelength converters on the performance of static wavelength routed optical networks is negligible. Dynamic wavelength routed optical networks are simulated and analyzed. Manangement of dynamic networks is a more complex task...

  15. Filippov systems and quasi-synchronization control for switched networks. (United States)

    Liu, Xiaoyang; Cao, Jinde; Yu, Wenwu


    This paper is concerned with the quasi-synchronization issue of linearly coupled networks with discontinuous nonlinear functions in each isolated node. Under the framework of Filippov systems, the existence and boundedness of solutions for such complex networks can be guaranteed by the matrix measure approach. A design method is presented for the synchronization controllers of coupled networks with non-identical discontinuous systems. Moreover, a sufficient condition is derived to ensure the quasi-synchronization of switched coupled complex networks with discontinuous isolated nodes, which could be controlled by some designed linear controllers. The obtained results extend the previous work on the synchronization issue of coupled complex networks with Lipschitz continuous conditions. Numerical simulations on the coupled chaotic systems are given to demonstrate the effectiveness of the theoretical results.

  16. Evolution to 200G Passive Optical Network


    Diouf, Mamadou Diallo; Kora, Ahmed D.; Ringar, Octave; Aupetit-Berthelemot, C.


    New generation passive optical network aims at providing more than 100 Gb/s capacity. Thanks to recent progress enabling a variety of optical transceivers up to 40 Gb/s, many evolution possibilities to 200G PONs (passive optical network) could be investigated. This work proposes two directly deployable cases of evolution to 200G PON based on the combination of these improved optical transceivers and WDM (wavelength division multiplexing). The physical layer of the optical network has been sim...

  17. Protocol independent transmission method in software defined optical network (United States)

    Liu, Yuze; Li, Hui; Hou, Yanfang; Qiu, Yajun; Ji, Yuefeng


    With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.i., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). Using a proprietary protocol or encoding format is a way to improve information security. However, the flow, which carried by proprietary protocol or code, cannot go through the traditional IP network. In addition, ultra- high-definition video transmission service once again become a hot spot. Traditionally, in the IP network, the Serial Digital Interface (SDI) signal must be compressed. This approach offers additional advantages but also bring some disadvantages such as signal degradation and high latency. To some extent, HD-SDI can also be regard as a proprietary protocol, which need transparent transmission such as optical channel. However, traditional optical networks cannot support flexible traffics . In response to aforementioned challenges for future network, one immediate solution would be to use NFV technology to abstract the network infrastructure and provide an all-optical switching topology graph for the SDN control plane. This paper proposes a new service-based software defined optical network architecture, including an infrastructure layer, a virtualization layer, a service abstract layer and an application layer. We then dwell on the corresponding service providing method in order to implement the protocol-independent transport. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit the HD-SDI signal in the software-defined optical network.

  18. Price discrimination, entry, and switching costs in network competition

    Directory of Open Access Journals (Sweden)

    Trifunović Dejan


    Full Text Available This paper reviews theoretical models of network competition in telecommunications. We will discuss two alternative approaches. The first approach assumes Hoteling’s horizontal differentiation and the second approach is based on switching costs. We will first analyse spatial competition with linear prices and continue with price discrimination between on-net and off-net calls. Price discrimination can also be used to deter entry to the market. We will also deal with the regulator’s optimal choice of access price, which should be designed to induce entry of new firms. Furthermore, pricing of roaming services and the switching cost approach to network competition will be considered. Finally, we will illustrate the theoretical results with data from the Serbian mobile and fixed telephony market.

  19. High-speed packet switching network to link computers

    CERN Document Server

    Gerard, F M


    Virtually all of the experiments conducted at CERN use minicomputers today; some simply acquire data and store results on magnetic tape while others actually control experiments and help to process the resulting data. Currently there are more than two hundred minicomputers being used in the laboratory. In order to provide the minicomputer users with access to facilities available on mainframes and also to provide intercommunication between various experimental minicomputers, CERN opted for a packet switching network back in 1975. It was decided to use Modcomp II computers as switching nodes. The only software to be taken was a communications-oriented operating system called Maxcom. Today eight Modcomp II 16-bit computers plus six newer Classic minicomputers from Modular Computer Services have been purchased for the CERNET data communications networks. The current configuration comprises 11 nodes connecting more than 40 user machines to one another and to the laboratory's central computing facility. (0 refs).

  20. Maximizing the optical network capacity. (United States)

    Bayvel, Polina; Maher, Robert; Xu, Tianhua; Liga, Gabriele; Shevchenko, Nikita A; Lavery, Domaniç; Alvarado, Alex; Killey, Robert I


    Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity. © 2016 The Authors.

  1. Using Alloy to Formally Model and Reason About an OpenFlow Network Switch


    Mirzaei, Saber; Bahargam, Sanaz; Skowyra, Richard; Kfoury, Assaf; Bestavros, Azer


    Openflow provides a standard interface for separating a network into a data plane and a programmatic control plane. This enables easy network reconfiguration, but introduces the potential for programming bugs to cause network effects. To study OpenFlow switch behavior, we used Alloy to create a software abstraction describing the internal state of a network and its OpenFlow switches. This work is an attempt to model the static and dynamic behaviour a network built using OpenFlow switches.

  2. Dynamic Protection of Optical Networks

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée


    This thesis deals with making optical networks resilient to failures. The recovery performance of path, segment and span restoration is evaluated in a network with limited wavelength conversion capability using both standard and enhanced wavelength assignment schemes. The enhanced wavelength...... stubs at the failure adjacent nodes. Both modifcations have a positive influence on the recovery percentage. The recovery enhancements are applicable in both single and multi-domain network environments. Stub release, where the still working parts of a failure affected connection are released prior...... of the modularity of capacity units is investigated for resilient network design. Different span upgrading strategies and algorithms for finding restoration paths are evaluated. Furthermore, the capacity effciency of constraining restoration requests for the same destination node to the same restoration path...

  3. Threshold Switching Induced by Controllable Fragmentation in Silver Nanowire Networks. (United States)

    Wan, Tao; Pan, Ying; Du, Haiwei; Qu, Bo; Yi, Jiabao; Chu, Dewei


    Silver nanowire (Ag NW) networks have been widely studied because of a great potential in various electronic devices. However, nanowires usually undergo a fragmentation process at elevated temperatures due to the Rayleigh instability that is a result of reduction of surface/interface energy. In this case, the nanowires become completely insulating due to the formation of randomly distributed Ag particles with a large distance and further applications are hindered. Herein, we demonstrate a novel concept based on the combination of ultraviolet/ozone irradiation and a low-temperature annealing process to effectively utilize and control the fragmentation behavior to realize the resistive switching performances. In contrast to the conventional fragmentation, the designed Ag/AgO x interface facilitates a unique morphology of short nanorod-like segments or chains of tiny Ag nanoparticles with a very small spacing distance, providing conduction paths for achieving the tunneling process between the isolated fragments under the electric field. On the basis of this specific morphology, the Ag NW network has a tunable resistance and shows volatile threshold switching characteristics with a high selectivity, which is the ON/OFF current ratio in selector devices. Our concept exploits a new function of Ag NW network, i.e., resistive switching, which can be developed by designing a controllable fragmentation.

  4. Cavity switching : A novel resource for solid-state quantum optics

    NARCIS (Netherlands)

    Sattler, T.; Peinke, E.; Bleuse, J.; Claudon, J.; Vos, W. L.; Gerard, J.M.


    We present switching experiments performed on pillar microcavities containing a collection of quantum dots (QDs). Switching events are probed using QD luminescence, after ultrafast optical injection of free carriers. We observe large switching amplitudes (by as much as 20 linewidths), as well as

  5. Network simulations of optical illusions (United States)

    Shinbrot, Troy; Lazo, Miguel Vivar; Siu, Theo

    We examine a dynamical network model of visual processing that reproduces several aspects of a well-known optical illusion, including subtle dependencies on curvature and scale. The model uses a genetic algorithm to construct the percept of an image, and we show that this percept evolves dynamically so as to produce the illusions reported. We find that the perceived illusions are hardwired into the model architecture and we propose that this approach may serve as an archetype to distinguish behaviors that are due to nature (i.e. a fixed network architecture) from those subject to nurture (that can be plastically altered through learning).

  6. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar, Phase II (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II effort will develop a 1 x 10 prototype non-mechanical fiber optic switch for use with high power lasers. The proposed optical device is a...

  7. Spin star as a switch for quantum networks

    International Nuclear Information System (INIS)

    Yung, Man-Hong


    Quantum state transfer is an important task in quantum information processing. It is known that one can engineer the couplings of a one-dimensional spin chain to achieve the goal of perfect state transfer. To leverage the value of these spin chains, a spin star is potentially useful for connecting different parts of a quantum network. In this work, we extend the spin-chain engineering problem to the problems with a topology of a star network. We show that a permanently coupled spin star can function as a network switch for transferring quantum states selectively from one node to another by varying the local potentials only. Together with one-dimensional chains, this result allows applications of quantum state transfer to be applied to more general quantum networks.

  8. Optical switching property of a light-induced pinhole in antimony thin film (United States)

    Fukaya, Toshio; Tominaga, Junji; Nakano, Takashi; Atoda, Nobufumi


    Optical near-field recording, called a super-resolution near-field structure, records and retrieves small marks beyond the diffraction limit. A thin layer of an antimony (Sb) film, added to the usual phase-change optical disk, is the key material of this technique. Nonlinear optical properties of an Sb film, especially optical switching, were studied in the stationary state using a nanosecond pulse laser. Clear switching was observed under microscopic measurement.

  9. Magnetostrictive Micro Mirrors for an Optical Switch Matrix

    Directory of Open Access Journals (Sweden)

    Myeong-Woo Cho


    Full Text Available We have developed a wireless-controlled compact optical switch by siliconmicromachining techniques with DC magnetron sputtering. For the optical switchingoperation, micro mirror is designed as cantilever shape size of 5mm×800μm×50μm.TbDyFe film is sputter-deposited on the upper side of the mirror with the condition as: Argas pressure below 1.2×10-9 torr, DC input power of 180W and heating temperature of up to250°C for the wireless control of each component. Mirrors are actuated by externallyapplied magnetic fields for the micro application. Applied beam path can be changedaccording to the direction and the magnitude of applied magnetic field. Reflectivity changes,M-H curves and X-ray diffractions of sputtered mirrors are measured to determine magneto-optical, magneto-elastic properties with variation in sputtered film thickness. The deflectedangle-magnetic field characteristics of the fabricated mirror are measured.

  10. Underwater optical wireless communication network (United States)

    Arnon, Shlomi


    The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  11. Cascaded transformerless DC-DC voltage amplifier with optically isolated switching devices (United States)

    Sridharan, Govind (Inventor)


    A very high voltage amplifier is provided in which plural cascaded banks of capacitors are switched by optically isolated control switches so as to be charged in parallel from the preceding stage or capacitor bank and to discharge in series to the succeeding stage or capacitor bank in alternating control cycles. The optically isolated control switches are controlled by a logic controller whose power supply is virtually immune to interference from the very high voltage output of the amplifier by the optical isolation provided by the switches, so that a very high voltage amplification ratio may be attained using many capacitor banks in cascade.

  12. Compact Si-based asymmetric MZI waveguide on SOI as a thermo-optical switch (United States)

    Rizal, C. S.; Niraula, B.


    A compact low power consuming asymmetric MZI based optical modulator with fast response time has been proposed on SOI platform. The geometrical and performance characteristics were analyzed in depth and optimized using coupled mode analysis and FDTD simulation tools, respectively. It was tested with and without implementation of thermo-optic (TO) effect. The device showed good frequency modulating characteristics when tested without the implementation of the TO effect. The fabricated device showed quality factor, Q ≈ 10,000, and this value is comparable to the Q of the device simulated with 25% transmission loss, showing FSR of 0.195 nm, FWHM ≈ 0.16 nm, and ER of 13 dB. With TO effect, it showed temperature sensitivity of 0.01 nm/°C and FSR of 0.19 nm. With the heater length of 4.18 mm, the device required 0.26 mW per π shift power with a switching voltage of 0.309 V, response time of 10 μ, and figure-of-merit of 2.6 mW μs. All of these characteristics make this device highly attractive for use in integrated Si photonics network as optical switch and wavelength modulator.

  13. The handbook of optical communication networks

    CERN Document Server

    Ilyas, Mohammad


    The Handbook of Optical Communication Networks presents comprehensive, up-to-date technical information on integrated, state-of-the-art optical networks. Beginning with an in-depth intoduction to the field, top international authorities explore every major aspect of optical networks, from basic concepts to research grade material. Their discussions cover all of the essential topics, including protocols, resource management, routing and wavelength assignment in WDM networks, connection management, survivability, enabling technologies, and future trends.

  14. Architecture Design and Experimental Platform Demonstration of Optical Network based on OpenFlow Protocol (United States)

    Xing, Fangyuan; Wang, Honghuan; Yin, Hongxi; Li, Ming; Luo, Shenzi; Wu, Chenguang


    With the extensive application of cloud computing and data centres, as well as the constantly emerging services, the big data with the burst characteristic has brought huge challenges to optical networks. Consequently, the software defined optical network (SDON) that combines optical networks with software defined network (SDN), has attracted much attention. In this paper, an OpenFlow-enabled optical node employed in optical cross-connect (OXC) and reconfigurable optical add/drop multiplexer (ROADM), is proposed. An open source OpenFlow controller is extended on routing strategies. In addition, the experiment platform based on OpenFlow protocol for software defined optical network, is designed. The feasibility and availability of the OpenFlow-enabled optical nodes and the extended OpenFlow controller are validated by the connectivity test, protection switching and load balancing experiments in this test platform.

  15. Emergence of Slow-Switching Assemblies in Structured Neuronal Networks. (United States)

    Schaub, Michael T; Billeh, Yazan N; Anastassiou, Costas A; Koch, Christof; Barahona, Mauricio


    Unraveling the interplay between connectivity and spatio-temporal dynamics in neuronal networks is a key step to advance our understanding of neuronal information processing. Here we investigate how particular features of network connectivity underpin the propensity of neural networks to generate slow-switching assembly (SSA) dynamics, i.e., sustained epochs of increased firing within assemblies of neurons which transition slowly between different assemblies throughout the network. We show that the emergence of SSA activity is linked to spectral properties of the asymmetric synaptic weight matrix. In particular, the leading eigenvalues that dictate the slow dynamics exhibit a gap with respect to the bulk of the spectrum, and the associated Schur vectors exhibit a measure of block-localization on groups of neurons, thus resulting in coherent dynamical activity on those groups. Through simple rate models, we gain analytical understanding of the origin and importance of the spectral gap, and use these insights to develop new network topologies with alternative connectivity paradigms which also display SSA activity. Specifically, SSA dynamics involving excitatory and inhibitory neurons can be achieved by modifying the connectivity patterns between both types of neurons. We also show that SSA activity can occur at multiple timescales reflecting a hierarchy in the connectivity, and demonstrate the emergence of SSA in small-world like networks. Our work provides a step towards understanding how network structure (uncovered through advancements in neuroanatomy and connectomics) can impact on spatio-temporal neural activity and constrain the resulting dynamics.

  16. All-optical Data Vortex node using an MZI-SOA switch array

    DEFF Research Database (Denmark)

    Jung, H.D.; Tafur Monroy, Idelfonso; Koonen, A.M.J.


    We propose and demonstrate a new structure of a Data Vortex switch node for all-optical routing of wavelength-division-multiplexing (WDM) 10-Gb/s optical packets. The proposed node consists of two Mach-Zehnder interferometers with integrated semiconductor optical amplifier: an optical AND gate an...

  17. Developing A Generic Optical Avionic Network

    DEFF Research Database (Denmark)

    Zhang, Jiang; An, Yi; Berger, Michael Stübert


    We propose a generic optical network design for future avionic systems in order to reduce the weight and power consumption of current networks on board. A three-layered network structure over a ring optical network topology is suggested, as it can provide full reconfiguration flexibility and supp......We propose a generic optical network design for future avionic systems in order to reduce the weight and power consumption of current networks on board. A three-layered network structure over a ring optical network topology is suggested, as it can provide full reconfiguration flexibility...... and support a wide range of avionic applications. Segregation can be made on different hierarchies according to system criticality and security requirements. The structure of each layer is discussed in detail. Two network configurations are presented, focusing on how to support different network services...

  18. Field trial of 160 Gbit/s DWDM-based optical packet switching and transmission. (United States)

    Furukawa, Hideaki; Wada, Naoya; Awaji, Yoshinari; Miyazaki, Tetsuya; Kong, Eddie; Chan, Peter; Man, Ray; Cincotti, Gabriella; Kitayama, Ken-ichi


    We demonstrated, for the first time, a field trial of 160 (16 lambda x 10) Gbit/s, fine granularity, DWDM-based optical packet switching and transmission by newly-developed burst-mode EDFAs and an optical packet switch prototype with multiple all-optical label processors. We achieved 64 km field transmission and switching of 160 (16 lambda x 10) Gbit/s DWDM-based optical packets encapsulating almost 10 Gbit/s IP packets with error-free operation (IP-packet-loss-rate <10(-6) and bit-error-rate <10(-9)).

  19. Optimizing the next generation optical access networks

    DEFF Research Database (Denmark)

    Amaya Fernández, Ferney Orlando; Soto, Ana Cardenas; Tafur Monroy, Idelfonso


    Several issues in the design and optimization of the next generation optical access network (NG-OAN) are presented. The noise, the distortion and the fiber optic nonlinearities are considered to optimize the video distribution link in a passive optical network (PON). A discussion of the effect...

  20. SDN-Enabled Dynamic Feedback Control and Sensing in Agile Optical Networks (United States)

    Lin, Likun

    Fiber optic networks are no longer just pipelines for transporting data in the long haul backbone. Exponential growth in traffic in metro-regional areas has pushed higher capacity fiber toward the edge of the network, and highly dynamic patterns of heterogeneous traffic have emerged that are often bursty, severely stressing the historical "fat and dumb pipe" static optical network, which would need to be massively over-provisioned to deal with these loads. What is required is a more intelligent network with a span of control over the optical as well as electrical transport mechanisms which enables handling of service requests in a fast and efficient way that guarantees quality of service (QoS) while optimizing capacity efficiency. An "agile" optical network is a reconfigurable optical network comprised of high speed intelligent control system fed by real-time in situ network sensing. It provides fast response in the control and switching of optical signals in response to changing traffic demands and network conditions. This agile control of optical signals is enabled by pushing switching decisions downward in the network stack to the physical layer. Implementing such agility is challenging due to the response dynamics and interactions of signals in the physical layer. Control schemes must deal with issues such as dynamic power equalization, EDFA transients and cascaded noise effects, impairments due to self-phase modulation and dispersion, and channel-to-channel cross talk. If these issues are not properly predicted and mitigated, attempts at dynamic control can drive the optical network into an unstable state. In order to enable high speed actuation of signal modulators and switches, the network controller must be able to make decisions based on predictive models. In this thesis, we consider how to take advantage of Software Defined Networking (SDN) capabilities for network reconfiguration, combined with embedded models that access updates from deployed network

  1. Global Asymptotic Stability of Switched Neural Networks with Delays

    Directory of Open Access Journals (Sweden)

    Zhenyu Lu


    Full Text Available This paper investigates the global asymptotic stability of a class of switched neural networks with delays. Several new criteria ensuring global asymptotic stability in terms of linear matrix inequalities (LMIs are obtained via Lyapunov-Krasovskii functional. And here, we adopt the quadratic convex approach, which is different from the linear and reciprocal convex combinations that are extensively used in recent literature. In addition, the proposed results here are very easy to be verified and complemented. Finally, a numerical example is provided to illustrate the effectiveness of the results.

  2. Colorless DQPSK Receiver for Wavelength Routed Packet-Switched Networks

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Osadchiy, Alexey Vladimirovich; Tafur Monroy, Idelfonso


    We propose and demonstrate experimentally a scheme for the demodulation of 21.4-Gb/s return-to-zero differential quaternary phase-shift keying signals in packet-switched wavelength routed networks where packets at different wavelengths are arriving to the same demodulator. The idea is based...... on wavelength conversion, and in the demonstration, all channels were received error-free after wavelength conversion. In a packet arrival emulation, the ability of handling incoming packets at different wavelengths were successfully demonstrated....

  3. Injection optics for fast mass switching for accelerator mass spectrometry (United States)

    Weisser, D. C.; Fifield, L. K.; De Cesare, M.; Tims, S. G.; Lobanov, N. R.; Crook, G. G.; Tsifakis, D.; Tunningley, T. B.


    Accelerator Mass Spectrometry (AMS) measures the ratio of extremely small amounts of a radioactive isotope in the presence of ˜ 1015 times more stable ones. The isotopes are injected sequentially over a repeated period and observed at the exit of the accelerator. so any fluctuations in ion source output or transmission through the accelerator over a time comparable to the measurement time, will reduce the accuracy of such measurements. This compromise in accuracy can be lessened by reducing the switching time between isotopes from several seconds to a few milli-seconds. New AMS systems accomplish fast switching by modifying the beam energy though the 90 injection magnet by pulsing the voltage by several kV on the flight tube in the magnet. That requires that the flight tube be electrically insulated which competes with having the flight tube as large as possible. At the ANU, insulating the magnet flight tube would not only have reduced the acceptance of the injection system, but conflicted with a beam chopper attached to the flight tube, that would also have had to be insulated from the ground. This was not practical so the novel alternative of pulsing the voltage on the high voltage ion source deck is being implemented. Beam optics calculations have been performed and beam tests conducted that demonstrated that, in addition to pulsing the voltage on the 150 kV ion source deck, a pulsed Einzel lens in front of the following electrostatic quadrupole triplet lens is required to maintain isotope-independent transmission through the 14UD Pelletron accelerator. The high voltage rise time performance of the components of the system has been shown to be satisfactory.

  4. Investigations and Simulations of All optical Switches in linear state Based on Photonic Crystal Directional Coupler

    Directory of Open Access Journals (Sweden)

    S. Maktoobi


    Full Text Available Switching is a principle process in digital computers and signal processing systems. The growth of optical signal processing systems, draws particular attention to design of ultra-fast optical switches. In this paper, All Optical Switches in linear state Based On photonic crystal Directional coupler is analyzed and simulated. Among different methods, the finite difference time domain method (FDTD is a preferable method and is used. We have studied the application of photonic crystal lattices, the physics of optical switching and photonic crystal Directional coupler. In this paper, Electric field intensity and the power output that are two factors to improve the switching performance and the device efficiency are investigated and simulated. All simulations are performed by COMSOL software.

  5. Cognitive optical networks: architectures and techniques (United States)

    Grebeshkov, Alexander Y.


    This article analyzes architectures and techniques of the optical networks with taking into account the cognitive methodology based on continuous cycle "Observe-Orient-Plan-Decide-Act-Learn" and the ability of the cognitive systems adjust itself through an adaptive process by responding to new changes in the environment. Cognitive optical network architecture includes cognitive control layer with knowledge base for control of software-configurable devices as reconfigurable optical add-drop multiplexers, flexible optical transceivers, software-defined receivers. Some techniques for cognitive optical networks as flexible-grid technology, broker-oriented technique, machine learning are examined. Software defined optical network and integration of wireless and optical networks with radio over fiber technique and fiber-wireless technique in the context of cognitive technologies are discussed.

  6. Implementation of a digital cross-connect switch to a GSM network testing environment


    Haverinen, Perttu


    Purpose of this thesis was to implement a Nokia Digital Cross-Connect Switch for Time-Division Multiplexing (SXC T) device to a telecommunication testing laboratory. Thesis work was done in local Nokia Siemens Networks corporation site in Tampere, Finland. SXC T acts as a device that interconnects network elements and enables dynamic, software based switching and creation of circuits. Tasks of device are similar to a typical IP network packet switch, but with enhanced features. It provides th...

  7. A rapid protection switching method in carrier ethernet ring networks (United States)

    Yuan, Liang; Ji, Meng


    Abstract: Ethernet is the most important Local Area Network (LAN) technology since more than 90% data traffic in access layer is carried on Ethernet. From 10M to 10G, the improving Ethernet technology can be not only used in LAN, but also a good choice for MAN even WAN. MAN are always constructed in ring topology because the ring network could provide resilient path protection by using less resource (fibre or cable) than other network topologies. In layer 2 data networks, spanning tree protocol (STP) is always used to protect transmit link and preventing the formation of logic loop in networks. However, STP cannot guarantee the efficiency of service convergence when link fault happened. In fact, convergent time of networks with STP is about several minutes. Though Rapid Spanning Tree Protocol (RSTP) and Multi-Spanning Tree Protocol (MSTP) improve the STP technology, they still need a couple of seconds to achieve convergence, and can not provide sub-50ms protection switching. This paper presents a novel rapid ring protection method (RRPM) for carrier Ethernet. Unlike other link-fault detection method, it adopts distributed algorithm to detect link fault rapidly (sub-50ms). When networks restore from link fault, it can revert to the original working state. RRPM can provide single ring protection and interconnected ring protection without the formation of super loop. In normal operation, the master node blocks the secondary port for all non-RRPM Ethernet frames belonging to the given RRPM Ring, thereby avoiding a loop in the ring. When link fault happens, the node on which the failure happens moves from the "ring normal" state to the "ring fault" state. It also sends "link down" frame immediately to other nodes and blocks broken port and flushes its forwarding database. Those who receive "link down" frame will flush forwarding database and master node should unblock its secondary port. When the failure restores, the whole ring will revert to the normal state. That is

  8. Binary Modulation Formats in Optical Access Networks

    Directory of Open Access Journals (Sweden)

    Vladimir Tejkal


    Full Text Available In this paper the binary modulation formats and their application in passive optical networks have been discussed. Passive optical networks are characterized by dividing the optical signal between several end users by using passive splitters, which added a significant attenuation to the network. The performance of the selected modulation formats, depending on the transmitter power in order to verify that there is no signal distortion, has been examined in our simulations. A minimal error rate of the system for each modulation format has been also examined. Finding a suitable modulation, which would allow extension of the distance and splitting ration in current passive optical networks, has been the main aim.

  9. Enterasys Networks delivers standards-based 10-Gigabit ethernet modules for its Enterasys X-Pedition Routers and Enterasys Matrix Switches

    CERN Multimedia


    Enterasys Networks Inc. has announced new 10-Gigabit Ethernet modules for the Enterasys X-Pedition ER16 routers and Enterasys Matrix E1 OAS (Optical Access Switch). The addition of 10-Gigabit Ethernet technology enables the Enterasys X-Pedition ER16 enables real-time delivery of high-bandwidth, advanced applications across local area network (LAN), wide area network (WAN) and metropolitan area network (MAN) environments (1/2 page).

  10. Optical Time Division Switching Using Multiple Stages of Fiber Optic Delay Lines. (United States)

    Spanke, Ronald Anthony

    Optical Time Slot Interchanges (OTSIs) can be realized by guided wave LiNbO_3 optical switches performing space division switching of optical fiber delay lines. In this dissertation the problems of reducing the total length of fiber required and also of improving the SNR characteristics of this OTSI function are addressed. Several new OTSI architectures are proposed to reduce the total fiber length while still obtaining excellent SNR characteristics. These reduced fiber architectures include the Distributed Input Delay, Distributed Output Delay, the 2-Stage decomposition and the Distributed Input/Output Delay architectures. A Parallel Feedback (PFB) OTSI architecture is proposed that achieves the theoretical minimum number of delay fibers and the theoretical minimum total length of delay fiber for a given OTSI function. Broadcast OTSI architectures are proposed that enable the data in an incoming time slot to be broadcast to one or more outgoing time slots. These broadcast OTSI architectures include the Time-Dup-Time (TDT) system, Passive Splitter/Active Combiner (PS/AC) equivalents of the point -to-point reduced fiber architectures, and the broadcast PFB architecture. For each of the point-to-point and the broadcast OTSI architectures proposed, a detailed characterization of the architecture is performed including an analysis of number of fibers, total fiber length, number of optical switches and drivers, attenuation and SNR characteristics. This dissertation also proposes several new techniques for improving the system SNR and for calibration of the OTSI architectures. A cascaded noise reduction and a differential attenuation compensation technique are used to achieve a significantly higher system SNR at the output of the OTSI. In-situ calibration techniques are discussed to determine the optimum operating voltages for the LiNbO _3 switches when alternating between states every time slot. These techniques attempt to compensate for an output power drift problem

  11. CW all optical self switching in nonlinear chalcogenide nano plasmonic directional coupler (United States)

    Motamed-Jahromi, Leila; Hatami, Mohsen


    In this paper we obtain the coupling coefficient of plasmonic directional coupler (PDC) made up of two parallel monolayer waveguides filled with high nonlinear chalcogenide material for TM mode in continues wave (CW) regime. In addition, we assume each waveguides acts as a perturbation to other waveguide. Four nonlinear-coupled equations are derived. Transfer distances are numerically calculated and used for deriving length of all optical switch. The length of designed switch is in the range of 10-1000 μm, and the switching power is in the range of 1-100 W/m. Obtained values are suitable for designing all optical elements in the integrated optical circuits.

  12. Optical network security using unipolar Walsh code (United States)

    Sikder, Somali; Sarkar, Madhumita; Ghosh, Shila


    Optical code-division multiple-access (OCDMA) is considered as a good technique to provide optical layer security. Many research works have been published to enhance optical network security by using optical signal processing. The paper, demonstrates the design of the AWG (arrayed waveguide grating) router-based optical network for spectral-amplitude-coding (SAC) OCDMA networks with Walsh Code to design a reconfigurable network codec by changing signature codes to against eavesdropping. In this paper we proposed a code reconfiguration scheme to improve the network access confidentiality changing the signature codes by cyclic rotations, for OCDMA system. Each of the OCDMA network users is assigned a unique signature code to transmit the information and at the receiving end each receiver correlates its own signature pattern a(n) with the receiving pattern s(n). The signal arriving at proper destination leads to s(n)=a(n).

  13. Software Switching for High Throughput Data Acquisition Networks

    CERN Document Server

    AUTHOR|(CDS)2089787; Lehmann Miotto, Giovanna

    The bursty many-to-one communication pattern, typical for data acquisition systems, is particularly demanding for commodity TCP/IP and Ethernet technologies. The problem arising from this pattern is widely known in the literature as \\emph{incast} and can be observed as TCP throughput collapse. It is a result of overloading the switch buffers, when a specific node in a network requests data from multiple sources. This will become even more demanding for future upgrades of the experiments at the Large Hadron Collider at CERN. It is questionable whether commodity TCP/IP and Ethernet technologies in their current form will be still able to effectively adapt to bursty traffic without losing packets due to the scarcity of buffers in the networking hardware. This thesis provides an analysis of TCP/IP performance in data acquisition networks and presents a novel approach to incast congestion in these networks based on software-based packet forwarding. Our first contribution lies in confirming the strong analogies bet...

  14. Using the Network Description Language in Optical Networks

    NARCIS (Netherlands)

    van der Ham, J.J.; Grosso, P.; van der Pol, R.; Toonk, A.; de Laat, C.T.A.M.


    Current research networks allow end users to build their own application-specific connections (lightpaths) and Optical Private Networks (OPNs). This requires a clear communication between the requesting application and the network. The Network Description Language (NDL) is a vocabulary designed to

  15. Investigation of patterning effects in ultrafast SOA-based optical switches

    DEFF Research Database (Denmark)

    Xu, Jing; Zhang, Xinliang; Mørk, Jesper


    Ultrafast optical switching employing semiconductor optical amplifier (SOA) based optical switches has been demonstrated at bitrates up to 640 Gbit/s. However, patterning effects caused by relatively slow recovery processes in semiconductor structures remain as an important deteriorating factor...... that limits the ultimate speed at which SOA-based switches can be operated. In this paper, we investigate the patterning effects of SOA-based switches using a systematic approach. A simple condition for the lower bound limit of the bit pattern length that should be adopted in the performance evaluations...... of the switches is derived. It is shown that the minimum bit pattern length scales linearly with the bitrate and the recovery time of the SOA. To overcome the excessive computation time needed for numerical analysis at long pseudorandom binary sequence (PRBS) lengths, an effective method, i.e., periodic method...

  16. Engineering Silver Nanowire Networks: From Transparent Electrodes to Resistive Switching Devices. (United States)

    Du, Haiwei; Wan, Tao; Qu, Bo; Cao, Fuyang; Lin, Qianru; Chen, Nan; Lin, Xi; Chu, Dewei


    Metal nanowires (NWs) networks with high conductance have shown potential applications in modern electronic components, especially the transparent electrodes over the past decade. In metal NW networks, the electrical connectivity of nanoscale NW junction can be modulated for various applications. In this work, silver nanowire (Ag NW) networks were selected to achieve the desired functions. The Ag NWs were first synthesized by a classic polyol process, and spin-coated on glass to fabricate transparent electrodes. The as-fabricated electrode showed a sheet resistance of 7.158 Ω □ -1 with an optical transmittance of 79.19% at 550 nm, indicating a comparable figure of merit (FOM, or Φ TC ) (13.55 × 10 -3 Ω -1 ). Then, two different post-treatments were designed to tune the Ag NWs for not only transparent electrode but also for threshold resistive switching (RS) application. On the one hand, the Ag NW film was mechanically pressed to significantly improve the conductance by reducing the junction resistance. On the other hand, an Ag@AgO x core-shell structure was deliberately designed by partial oxidation of Ag NWs through simple ultraviolet (UV)-ozone treatment. The Ag core can act as metallic interconnect and the insulating AgO x shell acts as a switching medium to provide a conductive pathway for Ag filament migration. By fabricating Ag/Ag@AgO x /Ag planar structure, a volatile threshold switching characteristic was observed and an on/off ratio of ∼100 was achieved. This work showed that through different post-treatments, Ag NW network can be engineered for diverse functions, transforming from transparent electrodes to RS devices.

  17. Multichannel all–optical switch based on a thin slab of resonant two–level emitters

    Directory of Open Access Journals (Sweden)

    Malikov Ramil


    Full Text Available We discuss the possibility of using a thin layer of inhomogeneously broadened resonant emitters as a multichannel all–optical switch. Switching time from the lower stable branch of the system's bistable characteristics to the upper one and vice versa, which determines the speed of operation of a bistable device, is studied.

  18. Switching of light with light using cold atoms inside a hollow optical fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault


    We demonstrate a fiber-optical switch that operates with a few hundred photons per switching pulse. The light-light interaction is mediated by laser-cooled atoms. The required strong interaction between atoms and light is achieved by simultaneously confining photons and atoms inside the microscopic...

  19. Column Generation for Transmission Switching of Electricity Networks with Unit Commitment

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Philpott, Andy B.


    This paper presents the problem of finding the minimum cost dispatch and commitment of power generation units in a transmission network with active switching.We use the term active switching to denote the use of switches to optimize network topology in an operational context. We propose a Dantzig......-Wolfe reformulation and a novel column generation framework to solve the problem efficiently. Preliminary results are presented for the IEEE-118 bus network with 19 generator units. Active switching is shown to reduce total cost by up to 15 % for a particular 24-hour period. Furthermore, the need for generator...

  20. Advanced Functionalities for Highly Reliable Optical Networks

    DEFF Research Database (Denmark)

    An, Yi

    This thesis covers two research topics concerning optical solutions for networks e.g. avionic systems. One is to identify the applications for silicon photonic devices for cost-effective solutions in short-range optical networks. The other one is to realise advanced functionalities in order......) using two exclusive OR (XOR) gates realised by four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) is experimentally demonstrated and very low (~ 1 dB) total operation penalty is achieved....

  1. Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators. (United States)

    Jung, Hojoong; Fong, King Y; Xiong, Chi; Tang, Hong X


    Aluminum nitride (AlN) has been shown to possess both strong Kerr nonlinearity and electro-optic Pockels effect. By combining these two effects, here we demonstrate on-chip reversible on/off switching of the optical frequency comb generated by an AlN microring resonator. We optimize the design of gating electrodes and the underneath resonator structure to effectively apply an electric field without increasing the optical loss. The switching of the comb is monitored by measuring one of the frequency comb peaks while varying the electric field. The controlled comb electro-optic response is investigated for direct comparison with the transient thermal effect.

  2. Azo biphenyl polyurethane: Preparation, characterization and application for optical waveguide switch (United States)

    Jiang, Yan; Da, Zulin; Qiu, Fengxian; Yang, Dongya; Guan, Yijun; Cao, Guorong


    Azo waveguide polymers are of particular interest in the design of materials for applications in optical switch. The aim of this contribution was the synthesis and thermo-optic waveguide switch properties of azo biphenyl polyurethanes. A series of monomers and azo biphenyl polyurethanes (Azo BPU1 and Azo BPU2) were synthesized and characterized by FT-IR, UV-Vis spectroscopy and 1H NMR. The physical and mechanical properties of thin polymer films were measured. The refractive index and thermo-optic coefficient (dn/dT) of polymer films were investigated for TE (transversal electric) polarizations by ATR technique. The transmission loss of film was measured using the Charge Coupled Device digital imaging devices. The results showed the Azo BPU2 containing chiral azobenzene chromophore had higher dn/dT and lower transmission loss. Subsequently, a 1 × 2 Y-branch and 2 × 2 Mach-Zehnder optical switches based on the prepared polymers were designed and simulated. The results showed that the power consumption of all switches was less than 1.0 mW. Compared with 1 × 2 Y-branch optical switch, the 2 × 2 Mach-Zehnder optical switches based on the same polymer have the faster response time, which were about only 1.2 and 2.0 ms, respectively.

  3. Optical Subsystems for Next Generation Access Networks

    DEFF Research Database (Denmark)

    Lazaro, J.A; Polo, V.; Schrenk, B.


    Recent optical technologies are providing higher flexibility to next generation access networks: on the one hand, providing progressive FTTx and specifically FTTH deployment, progressively shortening the copper access network; on the other hand, also opening fixed-mobile convergence solutions...... in next generation PON architectures. It is provided an overview of the optical subsystems developed for the implementation of the proposed NG-Access Networks....

  4. Synchronization of Switched Neural Networks With Communication Delays via the Event-Triggered Control. (United States)

    Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen


    This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.

  5. Mach-Zehnder-based optical router design for photonic networks on chip (United States)

    Yaghoubi, Elham; Reshadi, Midia; Hosseinzadeh, Mehdi


    We design and simulate six- and seven-port optical routers based on Mach-Zehnder interferometer switches that are suitable for photonic networks-on-chip. The routers are composed of 12 and 22 switching elements as the possible 30 input/output and 42 input/output routing paths are verified at a data transmission rate of 20 Gbps for six- and seven-port optical routers, respectively. We use an OptiSystem simulator to evaluate the proposed optical routers from the aspects of insertion loss, Q-factor and minimum bit error ratio.

  6. Combining SDM-Based Circuit Switching with Packet Switching in a Router for On-Chip Networks

    Directory of Open Access Journals (Sweden)

    Angelo Kuti Lusala


    Full Text Available A Hybrid router architecture for Networks-on-Chip “NoC” is presented, it combines Spatial Division Multiplexing “SDM” based circuit switching and packet switching in order to efficiently and separately handle both streaming and best-effort traffic generated in real-time applications. Furthermore the SDM technique is combined with Time Division Multiplexing “TDM” technique in the circuit switching part in order to increase path diversity, thus improving throughput while sharing communication resources among multiple connections. Combining these two techniques allows mitigating the poor resource usage inherent to circuit switching. In this way Quality of Service “QoS” is easily provided for the streaming traffic through the circuit-switched sub-router while the packet-switched sub-router handles best-effort traffic. The proposed hybrid router architectures were synthesized, placed and routed on an FPGA. Results show that a practicable Network-on-Chip “NoC” can be built using the proposed router architectures. 7 × 7 mesh NoCs were simulated in SystemC. Simulation results show that the probability of establishing paths through the NoC increases with the number of sub-channels and has its highest value when combining SDM with TDM, thereby significantly reducing contention in the NoC.

  7. Optical RRH working in an all-optical fronthaul network (United States)

    Zakrzewski, Zbigniew


    The paper presents an example of an optical RRH (Remote Radio Head) design, which is equipped with photonic components for direct connection to an all-optical network. The features that can be fulfilled by an all-optical network are indicated to support future 5G mobile networks. The demand for optical bandwidth in fronthaul/midhaul distribution network links, working in D-RoF and A-RoF formats was performed. The increase in demand is due to the very large traffic generated by the Optical Massive-MIMO RRH/RRU will work in format of an Active-Distributed Antenna System (A-DAS). An exemplary next-generation mobile network that will utilize O-RRH and an all-optical backbone is presented. All components of presented network will work in the Centralized/Cloud Radio Access Network (C-RAN) architecture, which is achievable by control with the use of the OpenFlow (OF).

  8. Cognitive Optical Network Testbed: EU Project CHRON

    DEFF Research Database (Denmark)

    Borkowski, Robert; Duran, Ramon J.; Kachris, Christoforos


    The aim of cognition in optical networks is to introduce intelligence into the control plane that allows for autonomous end-to-end performance optimization and minimization of required human intervention, particularly targeted at heterogeneous network scenarios. A cognitive network observes, lear...

  9. Finding Elephant Flows for Optical Networks

    NARCIS (Netherlands)

    Fioreze, Tiago; Oude Wolbers, Mattijs; van de Meent, R.; Pras, Aiko


    Optical networks are fast and reliable networks that enable, amongst others, dedicated light paths to be established for elephant IP flows. Elephant IP flows are characterized by being small in number, but long in time and high in traffic volume. Moving these flows from the general IP network to

  10. Routing in Optical and Stochastic Networks

    NARCIS (Netherlands)

    Yang, S.


    In most types of networks (e.g., optical or transportation networks), finding one or more best paths from a source to a destination, is one of the biggest concerns of network users and providers. This process is known as routing. The routing problems differ accordingly depending on different

  11. Optical protocols for advanced spacecraft networks (United States)

    Bergman, Larry A.


    Most present day fiber optic networks are in fact extensions of copper wire networks. As a result, their speed is still limited by electronics even though optics is capable of running three orders of magnitude faster. Also, the fact that photons do not interact with one another (as electrons do) provides optical communication systems with some unique properties or new functionality that is not readily taken advantage of with conventional approaches. Some of the motivation for implementing network protocols in the optical domain, a few possible approaches including optical code-division multiple-access (CDMA), and how this class of networks can extend the technology life cycle of the Space Station Freedom (SSF) with increased performance and functionality are described.

  12. Optical protocols for advanced spacecraft networks (United States)

    Bergman, Larry A.


    Most present day fiber optic networks are in fact extensions of copper wire networks. As a result, their speed is still limited by electronics even though optics is capable of running three orders of magnitude faster. Also, the fact that photons do not interact with one another (as electrons do) provides optical communication systems with some unique properties or new functionality that is not readily taken advantage of with conventional approaches. Some of the motivation for implementing network protocols in the optical domain, a few possible approaches including optical code-division multiple-access (CDMA), and how this class of networks can extend the technology life cycle of the Space Station Freedom (SSF) with increased performance and functionality are described.

  13. Fault location in optical networks (United States)

    Stevens, Rick C [Apple Valley, MN; Kryzak, Charles J [Mendota Heights, MN; Keeler, Gordon A [Albuquerque, NM; Serkland, Darwin K [Albuquerque, NM; Geib, Kent M [Tijeras, NM; Kornrumpf, William P [Schenectady, NY


    One apparatus embodiment includes an optical emitter and a photodetector. At least a portion of the optical emitter extends a radial distance from a center point. The photodetector provided around at least a portion of the optical emitter and positioned outside the radial distance of the portion of the optical emitter.

  14. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    International Nuclear Information System (INIS)

    Rhodes, M.A.; Taylor, J.


    We discuss very large-aperture optical switches (greater than 30 x 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V x ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V x , the polarization of an incoming, linearly polarized, laser beam is rotated by 90 degree. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 x 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches

  15. Enabling Technologies for Cognitive Optical Networks

    DEFF Research Database (Denmark)

    Borkowski, Robert

    Cognition is a new paradigm for optical networking, in which the network has capabilities to observe, plan, decide, and act autonomously in order to optimize the end-to-end performance and minimize the need for human supervision. This PhD thesis expands the state of the art on cognitive optical......, and machine learning algorithms that make cognition possible. Secondly, advanced optical performance monitoring (OPM) capabilities performed via digital signal processing (DSP) that provide CONs with necessary feedback information allowing for autonomous network optimization. The research results presented...... in this thesis were carried out in the framework of the EU project Cognitive Heterogeneous Reconfigurable Optical Network (CHRON), whose aim was to develop an architecture and implement a testbed of a cognitive network able to self-configure and self-optimize to efficiently use available resources. In order...

  16. Platonic quantum networks as coherence-assisted switches in perfect and imperfect situations

    International Nuclear Information System (INIS)

    Javaherian, C; Twamley, J


    The concept of coherence switches with nanoparticle platonic networks is introduced and analysed. The platonic networks store an initially injected excitation for extremely long durations via the formation of dark states. Switching is achieved by the nano-mechanical arrangements of one site or some part of the network to remove the trapping thus leading to a highly efficient transfer to the target which is irreversibly connected to one site. We present coherence switches based on controlling a cubic network both in the absence and presence of environment and manufacturing/topological noise. (paper)

  17. Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services. (United States)

    Zervas, Georgios S; Triay, Joan; Amaya, Norberto; Qin, Yixuan; Cervelló-Pastor, Cristina; Simeonidou, Dimitra


    This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated. © 2011 Optical Society of America

  18. Optical networking in CESNET2 gigabit network

    Czech Academy of Sciences Publication Activity Database

    Radil, J.; Boháč, L.; Karásek, Miroslav


    Roč. 58, 11/12 (2003), s. 1/20-20/20 ISSN 0003-4347 R&D Projects: GA AV ČR IAA2067202 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibre amplifiers * wavelength division multiplexing * optical communication Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.239, year: 2003

  19. Wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback

    International Nuclear Information System (INIS)

    Osborne, S; Heinricht, P; Brandonisio, N; Amann, A; O’Brien, S


    The wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback are presented. These devices incorporate slotted regions etched into the laser ridge waveguide for tailoring the output spectrum. Experimental measurements are presented demonstrating that optical injection in one or both modes of these devices can induce wavelength bistability. Measured switching dynamics with modulated optical injection are shown to be in excellent agreement with numerical simulations based on a simple rate equation model. We also demonstrate experimentally that time-delayed optical feedback can induce wavelength bistability for short external cavity lengths. Numerical simulations indicate that this two-colour optical feedback system can provide fast optical memory functionality based on injected optical pulses without the need for an external holding beam. (paper)

  20. Ultra-Fast All-Optical Self-Aware Protection Switching Based on a Bistable Laser Diode

    DEFF Research Database (Denmark)

    An, Yi; Vukovic, Dragana; Lorences Riesgo, Abel


    We propose a novel concept of all-optical protection switching with link failure automatic awareness based on AOWFF. The scheme is experimentally demonstrated using a single MG-Y laser diode with a record switching time ~200 ps....

  1. Experimental demonstration of time- and mode-division multiplexed passive optical network (United States)

    Ren, Fang; Li, Juhao; Tang, Ruizhi; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin


    A time- and mode-division multiplexed passive optical network (TMDM-PON) architecture is proposed, in which each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing both different time slots and switched optical linearly polarized (LP) spatial modes. Combination of a mode multiplexer/demultiplexer (MUX/DEUX) and a simple N × 1 optical switch is employed to select the specific LP mode in each ONU. A mode-insensitive power splitter is used for signal broadcast/combination between OLT and ONUs. We theoretically propose a dynamic mode and time slot assignment scheme for TMDM-PON based on inter-ONU priority rating, in which the time delay and packet loss ratio's variation tendency are investigated by simulation. Moreover, we experimentally demonstrate 2-mode TMDM-PON transmission over 10 km FMF with 10-Gb/s on-off keying (OOK) signal and direct detection.

  2. Optical switching and photoluminescence in erbium-implanted vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Herianto, E-mail:; Stavrias, Nikolas; Johnson, Brett C.; McCallum, Jeffrey C. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Marvel, Robert E.; Haglund, Richard F. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States)


    Vanadium dioxide (VO{sub 2}) is under intensive consideration for optical switching due to its reversible phase transition, which features a drastic and rapid shift in infrared reflectivity. Classified as an insulator–to–metal transition, the phase transition in VO{sub 2} can be induced thermally, electrically, and optically. When induced optically, the transition can occur on sub-picosecond time scales. It is interesting to dope VO{sub 2} with erbium ions (Er{sup 3+}) and observe their combined properties. The first excited-state luminescence of Er{sup 3+} lies within the wavelength window of minimal transmission-loss in silicon and has been widely utilized for signal amplification and generation in silicon photonics. The incorporation of Er{sup 3+} into VO{sub 2} could therefore result in a novel photonic material capable of simultaneous optical switching and amplification. In this work, we investigate the optical switching and photoluminescence in Er-implanted VO{sub 2} thin films. Thermally driven optical switching is demonstrated in the Er-implanted VO{sub 2} by infrared reflectometry. Photoluminescence is observed in the thin films annealed at ∼800 °C or above. In addition, Raman spectroscopy and a statistical analysis of switching hysteresis are carried out to assess the effects of the ion implantation on the VO{sub 2} thin films. We conclude that Er-implanted VO{sub 2} can function as an optical switch and amplifier, but with reduced switching quality compared to pure VO{sub 2}.

  3. Epidemic Network Failures in Optical Transport Networks

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Katsikas, Dimitrios; Fagertun, Anna Manolova


    This paper presents a failure propagation model for transport networks which are affected by epidemic failures. The network is controlled using the GMPLS protocol suite. The Susceptible Infected Disabled (SID) epidemic model is investigated and new signaling functionality of GMPLS to support...

  4. Drive to miniaturization: integrated optical networks on mobile platforms (United States)

    Salour, Michael M.; Batayneh, Marwan; Figueroa, Luis


    With rapid growth of the Internet, bandwidth demand for data traffic is continuing to explode. In addition, emerging and future applications are becoming more and more network centric. With the proliferation of data communication platforms and data-intensive applications (e.g. cloud computing), high-bandwidth materials such as video clips dominating the Internet, and social networking tools, a networking technology is very desirable which can scale the Internet's capability (particularly its bandwidth) by two to three orders of magnitude. As the limits of Moore's law are approached, optical mesh networks based on wavelength-division multiplexing (WDM) have the ability to satisfy the large- and scalable-bandwidth requirements of our future backbone telecommunication networks. In addition, this trend is also affecting other special-purpose systems in applications such as mobile platforms, automobiles, aircraft, ships, tanks, and micro unmanned air vehicles (UAVs) which are becoming independent systems roaming the sky while sensing data, processing, making decisions, and even communicating and networking with other heterogeneous systems. Recently, WDM optical technologies have seen advances in its transmission speeds, switching technologies, routing protocols, and control systems. Such advances have made WDM optical technology an appealing choice for the design of future Internet architectures. Along these lines, scientists across the entire spectrum of the network architectures from physical layer to applications have been working on developing devices and communication protocols which can take full advantage of the rapid advances in WDM technology. Nevertheless, the focus has always been on large-scale telecommunication networks that span hundreds and even thousands of miles. Given these advances, we investigate the vision and applicability of integrating the traditionally large-scale WDM optical networks into miniaturized mobile platforms such as UAVs. We explain

  5. Performance improvements of MOEMS-based diffractive arrays: address isolation and optical switching (United States)

    Panaman, Ganesh; Madison, Seth; Sano, Michael; Castracane, James


    Micro-Opto-Electro-Mechanical Systems (MOEMS) have found a variety of applications in fields such as telecommunications, spectroscopy and display technology. MOEMS-based optical switching is currently under investigation for the increased flexibility that such devices provide for reconfiguration of the I/O network for inter-chip communication applications. This potential not only adds an additional degree of freedom for adjustment of transmitter/receiver links but also allows for fine alignment of individual channels in the network link. Further, this use of diffractive arrays for specific applications combines beam steering/adjustment capabilities with the inherent wavelength dependence of the diffractive approach for channel separation and de-multiplexing. Research and development has been concentrated on the progression from single MOEMS components to parallel arrays integrated with optical source arrays for a successful feasibility demonstration. Successful development of such an approach will have a major impact of the next generation communication protocols. This paper will focus on the current status of the MOEMS research program for Free Space Optical inter-chip communication at the College of NanoScale Science and Engineering, University at Albany-SUNY (CNSE). New versions of diffractive arrays stemming from the basic MEMS Compound Grating (MCG; patent #5,999,319) have been produced through various fabrication methods including the MUMPs process1. Most MEMS components relying on electrostatic actuation tend to require high actuation voltages (>20V) compared to the typical 5V levels prevalent in conventional integrated circuits. The specific goal is to yield improved performance while minimizing the power consumption of the components. Structural modifications through the variation in the ruling/electrode spacing distance and array wiring layout through individually addressable gratings have been studied to understand effects on the actuation voltage and

  6. NATO Advanced Research Workshop on Optical Switching in Low-Dimensional Systems

    CERN Document Server

    Bányai, L


    This book contains all the papers presented at the NATO workshop on "Optical Switching in Low Dimensional Systems" held in Marbella, Spain from October 6th to 8th, 1988. Optical switching is a basic function for optical data processing, which is of technological interest because of its potential parallelism and its potential speed. Semiconductors which exhibit resonance enhanced optical nonlinearities in the frequency range close to the band edge are the most intensively studied materials for optical bistability and fast gate operation. Modern crystal growth techniques, particularly molecular beam epitaxy, allow the manufacture of semiconductor microstructures such as quantum wells, quantum wires and quantum dots in which the electrons are only free to move in two, one or zero dimensions, of the optically excited electron-hole pairs in these low respectively. The spatial confinement dimensional structures gives rise to an enhancement of the excitonic nonlinearities. Furthermore, the variations of the microstr...

  7. Advancements in metro optical network architectures (United States)

    Paraschis, Loukas


    This paper discusses the innovation in network architectures, and optical transport, that enables metropolitan networks to cost-effectively scale to hundreds Gb/s of capacity, and to hundreds km of reach, and to also meet the diverse service needs of enterprise and residential applications. A converged metro network, where Ethernet/IP services, and traditional TDM traffic operate over an intelligent WDM transport layer is increasingly becoming the most attractive architecture addressing the primary need of network operators for significantly improved capital and operational network cost. At the same time, this converged network has to leverage advanced technology, and introduce intelligence in order to significantly improve the deployment and manageability of WDM transport. The most important system advancements and the associated technology innovations that enhance the cost-effectiveness of metropolitan optical networks are being reviewed.

  8. Global seamless network demonstrator: carrier grade automatic switched transport network implementation in realistic telecom field environment (United States)

    Foisel, Hans-Martin; Hanik, Norbert; Braun, Ralf-Peter; Lehr, Georg; Gladisch, Andreas


    The Global Seamless Network (GSN) Demonstrator is presented, a joint effort of system vendors and Deutsche Telekom Group R&D to demonstrate network functions and management integration and enable, for the first time, experiences with a carrier grade Automatically Switched Transport Network (ASTN) implementation and the envisaged main ASTN clients, IP and Ethernet. For end-to-end monitoring capability, integrating the view on the ASTN and Ethernet-MAN configuration, an UMS (Upper Monitoring System) is being developed. Furthermore broadband application were implemented to visualise the network functions. The ASTN backbone consists of four cross connects and an ULH-WDM system with 3x 10Gbit/s channels (OCh) between Berlin and Darmstadt, whereby each OCh is treated as a virtual fibre.

  9. Metropolitan Optical Networks 1996 Annual Report

    DEFF Research Database (Denmark)

    Kristensen, Martin; Jouanno, Jean-Marc; Malone, Kevin


    The report desribes the reasearch carried out in the ACTS-project METON (Metropolitan Optical Networks) in 1996. L.M. Ericsson is prime contractor and 12 partners are involved in the project including DTU, i.e. EMI and MIC.......The report desribes the reasearch carried out in the ACTS-project METON (Metropolitan Optical Networks) in 1996. L.M. Ericsson is prime contractor and 12 partners are involved in the project including DTU, i.e. EMI and MIC....

  10. Efficient all-optical switching using slow light within a hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko


    We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic......-crystal fiber and using quantum optical techniques for generating slow light propagation and large nonlinear interaction between light beams....

  11. Ultrafast all-optical switching using signal flow graph for PANDA resonator. (United States)

    Bahadoran, Mahdi; Ali, Jalil; Yupapin, Preecha P


    In this paper, the bifurcation behavior of light in the PANDA ring resonator is investigated using the signal flow graph (SFG) method, where the optical transfer function for the through and drop ports of the PANDA Vernier system are derived. The optical nonlinear phenomena, such as bistability, Ikeda instability, and dynamics of light in the silicon-on-insulator (SOI) PANDA ring resonator with four couplers are studied. The transmission curves for bistability and instability as a function of the resonant mode numbers and coupling coefficients for the coupler are derived by the SFG method and simulated. The proposed system has an advantage as no optical pumping component is required. Simulated results show that closed-loop bistable switching can be generated and achieved by varying mode resonant numbers in the SOI-PANDA Vernier resonator, where a smooth and closed-loop bistable switching with low relative output/input power can be obtained and realized. The minimum through-port switching time of 1.1 ps for resonant mode numbers of 5;4;4 and minimum drop port switching time of 1.96 ps for resonant mode numbers of 9;7;7 of the PANDA Vernier resonator are achieved, which makes the PANDA Vernier resonator an operative component for optical applications, such as optical signal processing and a fast switching key in photonics integrated circuits.

  12. RETRACTED — Preparation of helical biphenyl polyurethane and its low power consumption thermo-optic switch (United States)

    Wang, Qing; Qiu, Fengxian; Yang, Dongya; Cao, Guorong; Guan, Yijun; Shen, Qiang; Zhuang, Lin; Cao, Zhijuan; Ye, Feiyan


    Azo chromophore molecule (NDPD) and helical biphenyl polyurethane (HBPU) were prepared. The chemical structures of NDPD and HBPU were characterized by FTIR and UV-vis spectroscopy. The measurements of refractive index, thermo-optic coefficient (dn/dT), transmission loss, refractive index dispersions and Sellmeyer coefficients of HBPU were measured using ATR technique, CCD digital imaging devices and Sellmeyer equation. The results showed that HBPU would be useful for the design of high performance digital optical switch. The prepared HBPU was utilized as core material to propose a Y-branch thermo-optic switch, which was based on thermo-optic effect of HBPU at the infrared communication wavelength of 1.55 μm. With branching angle of 0.143° and the finite difference beam propagation method (FD-BPM), the polymeric thermo-optic switch was simulated. The simulation results indicated that the device has a low switching power of 1.68 mW and a switching response time of 7.0 ms.

  13. Programs for control of an analog-signal switching network

    International Nuclear Information System (INIS)

    D'Ottavio, T.; Enriquez, R.; Katz, R.; Skelly, J.


    A suite of programs has been developed to control the network of analog-signal switching multiplexers in the AGS complex. The software is driven by a relational database which describes the architecture of the multiplexer tree and the set of available analog signals. Signals are routed through a three-layer multiplexer tree, to be made available at four consoles each with three 4-trace oscilloscopes. A menu-structured operator interface program is available at each console, to accept requests to route any available analog signal to any of that console's 12 oscilloscope traces. A common routing-server program provides automatic routing-server program provides automatic routing of requested signals through the layers of multiplexers, maintaining a reservation database to denote free and in-use trunks. Expansion of the analog signal system is easily accommodated in software by adding new signals, trunks, multiplexers, or consoles to the database. Programmatic control of the triggering signals for each of the oscilloscopes is also provided. 3 refs., 4 figs., 3 tabs

  14. Thermal characterization of a new differential thermal expansion heat switch for space optical remote sensor

    International Nuclear Information System (INIS)

    Guo, Liang; Zhang, Xusheng; Huang, Yong; Hu, Richa; Liu, Chunlong


    Highlights: • It is a new passively actuated differential thermal expansion heat switch for CCD. • Automatic adjusting function decreases difficulty of manufacture and assembly. • Good operational stability and high ratio of effective thermal resistance. • A fairly good agreement between theoretical analysis and experiment results. - Abstract: Thermal control for Charge Converse Device (CCD) is a key issue in space optical remote sensor. Heat switch is appropriate for heat dissipation of CCD. This paper provides thermal characterization of a new passively actuated differential thermal expansion heat switch (DTE-HS) with automatic adjusting function for CCD thermal control in space optical remote sensor. The radiation thermal resistance is developed to study how the radiation parameters affect the thermal resistance of the heat switch. The heat conduction thermal resistance is developed to describe the thermal characterization of the DTE-HS. A prototype of the DTE-HS is manufactured and tested. The experimental results are consistent well with the theoretical results.

  15. Dynamic optical fiber delivery of Ka-band packet transmissions for wireless access networks

    DEFF Research Database (Denmark)

    Rodríguez Páez, Juan Sebastián; Madsen, Peter; Tafur Monroy, Idelfonso


    A Reconfigurable Radio Access Unit is presented and experimentally demonstrated. In the unit, an optical switching system is set to dynamically deliver different packets to different points in the network. The packets are transmitted wirelesslty on the Ka-band (26–40 GHz), achieving BER values...

  16. Cognition-Enabling Techniques in Heterogeneous and Flexgrid Optical Communication Networks

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Caballero Jambrina, Antonio; Saldaña Cercos, Silvia


    High degree of heterogeneity of future optical networks, such as services with different quality-of-transmission requirements, modulation formats and switching techniques, will pose a challenge for the control and optimization of different parameters. Incorporation of cognitive techniques can hel...

  17. Design and analysis of all-optical switches based on fiber parametric devices (United States)

    Ma, Jing; Jiang, Chun


    We propose a novel 2 × 2 wavelength-convertible optical switch based on dual-pump fiber parametric devices: one is driven by linearly parallel pumps, and the other one by perpendicular pumps. Theoretical analysis is made on the polarization effects on the switching performance of the two devices. The result predicts that two incident signals which are positioned symmetrically with respect to one pump can be switched independently, with judicious combinations of the relative pump-signal polarization states. Simulations performed in OptiSystem show that the scheme can achieve crosstalk-free packet switching with acceptable extinction ratios for both signals. Besides, future applications of this novel scheme in high-speed switching nodes are discussed.

  18. All-optical switching in a highly efficient parametric fiber mixer: design study. (United States)

    Pejkic, Ana; Nissim, Ron R; Myslivets, Evgeny; Wiberg, Andreas O J; Alic, Nikola; Radic, Stojan


    Ultrafast all-optical switching in a highly nonlinear fiber with a longitudinally varied zero-dispersion wavelength was investigated theoretically and experimentally. We describe fiber-matched methodology for construction of a fast, low energy photon switch. The design relies on static and dynamic models and allows performance target selection, under constraints of physical fiber characteristic. The new design methodology was used to construct one-pump switch in the highly efficient parametric mixer. We demonstrate that such a parametric gate can operate at 100 GHz rate, with 2 aJ control energy, while achieving better than 50% extinction ratio. Theoretical analysis and experimental measurements indicate that accurate mapping of the fiber local dispersion is critical in optimizing the bandwidth and control energy of the switch. Switching performance limits are discussed and means for impairment mitigation are described.

  19. Differential ultrafast all-optical switching of the resonances of a micropillar cavity

    Energy Technology Data Exchange (ETDEWEB)

    Thyrrestrup, Henri, E-mail:; Yüce, Emre; Ctistis, Georgios; Vos, Willem L. [Complex Photonic Systems (COPS), MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Claudon, Julien; Gérard, Jean-Michel, E-mail: [University Grenoble Alpes, INAC-SP2M, Nanophysics and Semiconductors Lab, F-38000 Grenoble (France); CEA, INAC-SP2M, Nanophysics and Semiconductors Lab, F-38000 Grenoble (France)


    We perform frequency- and time-resolved all-optical switching of a GaAs-AlAs micropillar cavity using an ultrafast pump-probe setup. The switching is achieved by two-photon excitation of free carriers. We track the cavity resonances in time with a high frequency resolution. The pillar modes exhibit simultaneous frequency shifts, albeit with markedly different maximum switching amplitudes and relaxation dynamics. These differences stem from the non-uniformity of the free carrier density in the micropillar, and are well understood by taking into account the spatial distribution of injected free carriers, their spatial diffusion and surface recombination at micropillar sidewalls.

  20. An optical switch of natural light guiding system based on cubic structure with fresnel surface (United States)

    Chou, Kao-Hsu; Chen, Yi-Yung; Whang, Allen Jong-Woei


    Recently, many researches focus on illumination with sunlight for saving energy and healthy lighting. A Natural Light Guiding System has collecting, transmitting, and lighting parts. In most systems, the paths on transmitting part are fixed so the collected sunlight of the Natural Light Guiding System can not be free managed and is sometime wasted. In this paper, we design an optical switch to change the path of the collected sunlight on the transmitting sunlight. The switch is cubic structure that includes a 45 degree mirror for reflecting sunlight. According to the structure of the optical switch, we can rotate the switch to manage the path of the collected sunlight. When the path is parallel with the mirror, the sunlight will pass through the switch; and when the included angle between the path and mirror is 45 degree, we can change the path of light. For coupling the exit beam into lightpipe, we design the surfaces of cubic structure to be aspheric surface with Fresnel surface. Finally, we simulate the efficiency of the optical switch when the path is changed by the mirror.

  1. Delay-Dependent Stability Criteria of Uncertain Periodic Switched Recurrent Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Xing Yin


    uncertain periodic switched recurrent neural networks with time-varying delays. When uncertain discrete-time recurrent neural network is a periodic system, it is expressed as switched neural network for the finite switching state. Based on the switched quadratic Lyapunov functional approach (SQLF and free-weighting matrix approach (FWM, some linear matrix inequality criteria are found to guarantee the delay-dependent asymptotical stability of these systems. Two examples illustrate the exactness of the proposed criteria.

  2. All-optical 2-bit header recognition and packet switching using polarization bistable VCSELs. (United States)

    Hayashi, Daisuke; Nakao, Kazuya; Katayama, Takeo; Kawaguchi, Hitoshi


    We propose and evaluate an all-optical 2-bit header recognition and packet switching method using two 1.55-µm polarization bistable vertical-cavity surface-emitting lasers (VCSELs) and three optical switches. Polarization bistable VCSELs acted as flip-flop devices by using AND-gate operations of the header and set pulses, together with the reset pulses. Optical packets including 40-Gb/s non-return-to-zero pseudo-random bit-sequence payloads were successfully sent to one of four ports according to the state of two bits in the headers with a 4-bit 500-Mb/s return-to-zero format. The input pulse powers were 17.2 to 31.8 dB lower than the VCSEL output power. We also examined an extension of this method to multi-bit header recognition and packet switching.

  3. Towards green high capacity optical networks (United States)

    Glesk, I.; Mohd Warip, M. N.; Idris, S. K.; Osadola, T. B.; Andonovic, I.


    The demand for fast, secure, energy efficient high capacity networks is growing. It is fuelled by transmission bandwidth needs which will support among other things the rapid penetration of multimedia applications empowering smart consumer electronics and E-businesses. All the above trigger unparallel needs for networking solutions which must offer not only high-speed low-cost "on demand" mobile connectivity but should be ecologically friendly and have low carbon footprint. The first answer to address the bandwidth needs was deployment of fibre optic technologies into transport networks. After this it became quickly obvious that the inferior electronic bandwidth (if compared to optical fiber) will further keep its upper hand on maximum implementable serial data rates. A new solution was found by introducing parallelism into data transport in the form of Wavelength Division Multiplexing (WDM) which has helped dramatically to improve aggregate throughput of optical networks. However with these advancements a new bottleneck has emerged at fibre endpoints where data routers must process the incoming and outgoing traffic. Here, even with the massive and power hungry electronic parallelism routers today (still relying upon bandwidth limiting electronics) do not offer needed processing speeds networks demands. In this paper we will discuss some novel unconventional approaches to address network scalability leading to energy savings via advance optical signal processing. We will also investigate energy savings based on advanced network management through nodes hibernation proposed for Optical IP networks. The hibernation reduces the network overall power consumption by forming virtual network reconfigurations through selective nodes groupings and by links segmentations and partitionings.

  4. Compact OXC architecture, design and prototype development for flexible waveband routing optical networks. (United States)

    Ishikawa, Tomohiro; Mori, Yojiro; Hasegawa, Hiroshi; Subramaniam, Suresh; Sato, Ken-Ichi; Moriwaki, Osamu


    A novel compact OXC node architecture that combines WSSs and arrays of small scale optical delivery-coupling type switches ("DCSWs") is proposed. Unlike conventional OXC nodes, the WSSs are only responsible for dynamic path bundling ("flexible waveband") while the small scale optical switches route bundled path groups. A network design algorithm that is aware of the routing scheme is also proposed, and numerical experiments elucidate that the necessary number of WSSs and amplifiers can be significantly reduced. A prototype of the proposed OXC is also developed using monolithic arrayed DCSWs. Transmission experiments on the prototype verify the proposal's technical feasibility.

  5. Stability analysis of switched stochastic neural networks with time-varying delays. (United States)

    Wu, Xiaotai; Tang, Yang; Zhang, Wenbing


    This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov function and the average dwell time approach. Secondly, by utilizing the extended comparison principle from impulsive systems, the stability of stochastic switched delayed neural networks with both stable and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the exponential mean square stability of switched delayed neural networks with stochastic disturbances. The effectiveness of the proposed results is illustrated by two simulation examples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Age differences of multivariate network expressions during task-switching and their associations with behavior (United States)

    Gazes, Yunglin; Rakitin, Brian C.; Habeck, Christian; Steffener, Jason; Stern, Yaakov


    The effect of aging on functional network activation associated with task-switching was examined in 24 young (age = 25.2 ± 2.73 years) and 23 older adults (age = 65.2 ± 2.65 years) using functional Magnetic Resonance Imaging (fMRI). The study goals were to (1) identify a network shared by both young and older adults, (2) identify additional networks in each age group, and (3) examine the relationship between the networks identified and behavioral performance in task-switching. Ordinal Trend Covariance Analysis was used to identify the networks, which takes advantage of increasing activation with greater task demand to isolate the network of regions recruited by task-switching. Two task-related networks were found: a shared network that was strongly expressed by both young and older adults and a second network identified in the young data that was residualized from the shared network. Both networks consisted of regions associated with task-switching in previous studies including the middle frontal gyrus, the precentral gyrus, the anterior cingulate, and the superior parietal lobule. Not only was pattern expression of the shared network associated with reaction time in both age groups, the difference in the pattern expression across task conditions (task-switch minus single-task) was also correlated with the difference in RT across task conditions. On the contrary, expression of the young residual network showed a large age effect such that older adults do not increase expression of the network with greater task demand as young adults do and correlation between expression and accuracy was significant only for young adults. Thus, while a network related to RT is preserved in older adults, a different network related to accuracy is disrupted. PMID:23022432

  7. Optical access: networks and components (overview) (United States)

    Mynbaev, Djafar K.


    The exponential gtowth of traffic delivered to an individual customer both for business and personal needs puts tremendous pressure on the telecommunications networks. Because the development of the long-haul and metro networks has advanced rapidly and their capacity much eceeds demand, tremendous pressure now falls in the local networks to provide customers with access to the global telecom infrastructure. Building a broadband access network enabling fast delivery of high-volume traffic is the current task of network operators. A brief review of broadband access networks brings us to the conclusion that only wired optical networks can serve as an immediate and future solution to the "last-mile" problem. After discussin goptical access network classification, we focus mainly on passive optical networks (PON) because PON is a major technology today. From the network standpoint, we discuss the principle of PON operation, architectures, topologies, protocols and standards, design issues, and network management and services. We also discuss the main problems with PON and the use of WDM technology. From the hardware standpoint, we consider both active and passive components. We analyze the structure and elements of these components, including their technical characteristics.

  8. All optical OFDM transmission for passive optical networks (United States)

    Kachare, Nitin; Ashik T., J.; Bai, K. Kalyani; Kumar, D. Sriram


    This paper demonstrates the idea of data transmission at a very higher rate (Tbits/s) through optical fibers in a passive optical network using the most efficient data transmission technique widely used in wireless communication that is orthogonal frequency division multiplexing. With an increase in internet users, data traffic has also increased significantly and the current dense wavelength division multiplexing (DWDM) systems may not support the next generation passive optical networks (PONs) requirements. The approach discussed in this paper allows to increase the downstream data rate per user and extend the standard single-mode fiber reach for future long-haul applications. All-optical OFDM is a promising solution for terabit per second capable single wavelength transmission, with high spectral efficiency and high tolerance to chromatic dispersion.

  9. Future optical communication networks beyond 160 Gbit/s based on OTDM (United States)

    Prati, Giancarlo; Bogoni, Antonella; Poti, Luca


    The virtually unlimited bandwidth of optical fibers has caused a great increase in data transmission speed over the past decade and, hence, stimulated high-demand multimedia services such as distance learning, video-conferencing and peer to peer applications. For this reason data traffic is exceeding telephony traffic, and this trend is driving the convergence of telecommunications and computer communications. In this scenario Internet Protocol (IP) is becoming the dominant protocol for any traffic, shifting the attention of the network designers from a circuit switching approach to a packet switching approach. A role of paramount importance in packet switching networks is played by the router that must implement the functionalities to set up and maintain the inter-nodal communications. The main functionalities a router must implement are routing, forwarding, switching, synchronization, contention resolution, and buffering. Nowadays, opto-electronic conversion is still required at each network node to process the incoming signal before routing that to the right output port. However, when the single channel bit rate increases beyond electronic speed limit, Optical Time Division Multiplexing (OTDM) becomes a forced choice, and all-optical processing must be performed to extract the information from the incoming packet. In this paper enabling techniques for ultra-fast all-optical network will be addressed. First a 160 Gbit/s complete transmission system will be considered. As enabling technique, an overview for all-optical logics will be discussed and experimental results will be presented using a particular reconfigurable NOLM based on Self-Phase-Modulation (SPM) or Cross-Phase-Modulation (XPM). Finally, a rough experiment on label extraction, all-optical switching and packet forwarding is shown.

  10. Ultrafast coherent dynamics of a photonic crystal all-optical switch

    DEFF Research Database (Denmark)

    Colman, Pierre; Hansen, Per Lunnemann; Yu, Yi


    We present pump-probe measurements of an all-optical photonic crystal switch based on a nanocavity, resolving fast coherent temporal dynamics. The measurements demonstrate the importance of coherent effects typically neglected when considering nanocavity dynamics. In particular, we report...... the observation of an idler pulse. The measurements are in good agreement with a theoretical model that allows us to ascribe the observation to oscillations of the free carrier population in the nanocavity. The effect opens perspectives for the realization of new all-optical photonic crystal switches...

  11. Resource on-demand reservation based on time-window in optical grid network (United States)

    Wu, Runze; Ji, Yuefeng


    On-demand reservation strategy is proposed for optical network resource scheduling. The proposed approach introduces time window reservation on grid integrated with wavelength-routed optical network, according to the application request with anticipant time range and rate. The time window deploys variable size, when time-window is not suitable for current application requirement, the resource scheduler can negotiate the next time window allocation with the switch. Time-window resource reservation approach loans dividing time multiplexing mechanism. Considering with multiple parallel lightpaths' monopolization, the proposed reservation approach improves network resource request service rate and makes the application having the QoS-aware ability.

  12. Modelling switching-time effects in high-frequency power conditioning networks (United States)

    Owen, H. A.; Sloane, T. H.; Rimer, B. H.; Wilson, T. G.


    Power transistor networks which switch large currents in highly inductive environments are beginning to find application in the hundred kilohertz switching frequency range. Recent developments in the fabrication of metal-oxide-semiconductor field-effect transistors in the power device category have enhanced the movement toward higher switching frequencies. Models for switching devices and of the circuits in which they are imbedded are required to properly characterize the mechanisms responsible for turning on and turning off effects. Easily interpreted results in the form of oscilloscope-like plots assist in understanding the effects of parametric studies using topology oriented computer-aided analysis methods.

  13. Multicast traffic grooming in flexible optical WDM networks (United States)

    Patel, Ankitkumar N.; Ji, Philip N.; Jue, Jason P.; Wang, Ting


    In Metropolitan Area Networks (MANs), point-to-multipoint applications, such as IPTV, video-on-demand, distance learning, and content distribution, can be efficiently supported through light-tree-based multicastcommunications instead of lightpath-based unicast-communications. The application of multicasting for such traffic is justified by its inherent benefits of reduced control and management overhead and elimination of redundant resource provisioning. Supporting such multicast traffic in Flexible optical WDM (FWDM) networks that can provision light-trees using optimum amount of spectrum within flexible channel spacing leads to higher wavelength and spectral efficiencies compared to the conventional ITU-T fixed grid networks. However, in spite of such flexibility, the residual channel capacity of stranded channels may not be utilized if the network does not offer channels with arbitrary line rates. Additionally, the spectrum allocated to guard bands used to isolate finer granularity channels remains unutilized. These limitations can be addressed by using traffic grooming in which low-rate multicast connections are aggregated and switched over high capacity light-trees. In this paper, we address the multicast traffic grooming problem in FWDM networks, and propose a novel auxiliary graph-based algorithm for the first time. The performance of multicast traffic grooming is evaluated in terms of spectral, cost, and energy efficiencies compared to lightpath-based transparent FWDM networks, lightpathbased traffic grooming-capable FWDM networks, multicast-enabled transparent FWDM networks, and multicast traffic grooming-capable fixed grid networks. Simulation results demonstrate that multicast traffic grooming in FWDM networks not only improves spectral efficiency, but also cost, and energy efficiencies compared to other multicast traffic provisioning approaches of FWDM and fixed grid networks.

  14. Mechanistic studies for optical switching materials for space environments (United States)

    Rayfield, George W.; Sarkar, Abhijit; Rahman, Salma; Godschalx, James P.; Taylor, Edward W.


    Optical power limiters (OPLs) are nonlinear optical (NLO) devices that limit the amount of energy transmitted in an optical system. At low incident optical power or pulse energy, the transmission of the system is high enough to allow nominal operation of the system. At high incident optical power or pulse energy, the transmission decreases to protect sensitive components such as optical receivers or transmitters. The interest OPLs for use in the space environment is due to the increasingly large number of space based missions and devices that require laser protection from laser beam is coming from, an enemy, misaligned laser in equipment, etc. Temperature and space radiation-induced effects in optical and electronic materials are well known and they can cause disruption in OPL functions, or in the worst case, failure of the sensor. Recently, certain hyperbranched polymer-based composites containing OPL chromophores have been developed that offer high OPL performance and have been shown to function in a simulated + space environment. One novel high performance polymer material containing carbon nanotubes (CNT) covalently attached to the polymer host is promising. Preliminary light scattering measurements suggest that nonlinear scattering is not the primary mechanism for OPL performance.

  15. Time Transfer in Optical Network (United States)


    adapter structure. It consists of two main components: the FPGA chip Virtex 5 and the SFP (Small Form-factor Pluggable) transceiver. The optical...signal arrives at the receiver part of the SFP , where it is converted into an electrical signal. The demodulator in the FPGA regenerates the carrier...inaccuracy, i.e. the noise in the transmission channel, SFP transceivers, signal modulator/demodulator, etc. We also compared the accuracy of our optical

  16. Transparent ceramic photo-optical semiconductor high power switches (United States)

    Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.


    A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.

  17. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad


    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  18. Optical networks, last mile access and applications (United States)

    Leitgeb, E.; Gebhart, M.; Birnbacher, U.

    Free Space Optical (FSO) links can be used to setup FSO communication networks or to supplement radio and optical fiber networks. Hence, it is the broadband wireless solution for closing the "last mile" connectivity gap throughout metropolitan networks. Optical wireless fits well into dense urban areas and is ideally suited for urban applications. This paper gives an overview of free-space laser communications. Different network architectures will be described and investigated regarding reliability. The usage of "Optical Repeaters", Point-to-Point and Point-to-Multipoint solutions will be explained for setting up different network architectures. After having explained the different networking topologies and technologies, FSO applications will be discussed in section 2, including terrestrial applications for short and long ranges, and space applications. Terrestrial applications for short ranges cover the links between buildings on campus or different buildings of a company, which can be established with low-cost technology. For using FSO for long-range applications, more sophisticated systems have to be used. Hence, different techniques regarding emitted optical power, beam divergence, number of beams and tracking will be examined. Space applications have to be divided into FSO links through the troposphere, for example up- and downlinks between the Earth and satellites, and FSO links above the troposphere (e.g., optical inter-satellite links). The difference is that links through the troposphere are mainly influenced by weather conditions similar but not equal to terrestrial FSO links. Satellite orbits are above the atmosphere and therefore, optical inter-satellite links are not influenced by weather conditions. In section 3 the use of optical wireless for the last mile will be investigated and described in more detail. Therefore important design criteria for connecting the user to the "backbone" by FSO techniques will be covered, e.g., line of sight, network

  19. Network architecture in a converged optical + IP network (United States)

    Wakim, Walid; Zottmann, Harald


    As demands on Provider Networks continue to grow at exponential rates, providers are forced to evaluate how to continue to grow the network while increasing service velocity, enhancing resiliency while decreasing the total cost of ownership (TCO). The bandwidth growth that networks are experiencing is in the form packet based multimedia services such as video, video conferencing, gaming, etc... mixed with Over the Top (OTT) content providers such as Netflix, and the customer's expectations that best effort is not enough you end up with a situation that forces the provider to analyze how to gain more out of the network with less cost. In this paper we will discuss changes in the network that are driving us to a tighter integration between packet and optical layers and how to improve on today's multi - layer inefficiencies to drive down network TCO and provide for a fully integrated and dynamic network that will decrease time to revenue.

  20. Electrostatic actuated optical Fabry-Perot switches in passive matrix displays (United States)

    Knieling, Thomas; Panitz, Meik; Benecke, Wolfgang


    In this paper a new approach for the realisation of a passive matrix image projection display consisting of electrostatic actuated Fabry-Perot filters for digital wavelength switching is presented. The switches either may be working by illumination with polychromatic or with monochromatic light, e.g. by a laser. In the first case the output light has to be filtered at the desired wavelength. In order to define the interferometric properties of the dielectric layers and thus the switching wavelength optical parameters like thickness and refractive index have to be adjusted carefully. The display switches can be adapted either to reflection or transmission mode, depending on whether silicon or quartz is used as substrate material. Especially hexagonal shaped pixel membranes for working either in reflection at a wavelength of 536 nm or in transmission for 500 nm are described. The assembly is arranged matrix-like in rows and columns, where at each intersection point a pixel is located. The switching of a pixel into the 'on'-state is achieved by applying a voltage on the corresponding row and column contact lines of the display. The resulting intersection potential deflects the addressed pixel membrane whereas adjacent pixels are nearly not affected. Actual measurements allow high switching frequencies of about 2 kHz at voltages in the range of 2 - 60 V, depending on the pixel design. The switching contrast maximum is aobut 80%, the contrast beteeen addressed and non-addressed adjacent pixels is 75%.

  1. Spatially resolved investigation of all optical magnetization switching in TbFe alloys. (United States)

    Arora, Ashima; Mawass, Mohamad-Assaad; Sandig, Oliver; Luo, Chen; Ünal, Ahmet A; Radu, Florin; Valencia, Sergio; Kronast, Florian


    Optical control of magnetization using femtosecond laser without applying any external magnetic field offers the advantage of switching magnetic states at ultrashort time scales. Recently, all-optical helicity-dependent switching (AO-HDS) has drawn a significant attention for potential information and data storage device applications. In this work, we employ element and magnetization sensitive photoemission electron microscopy (PEEM) to investigate the role of heating in AO-HDS for thin films of the rare-earth transition-metal alloy TbFe. Spatially resolved measurements in a 3-5 μm sized stationary laser spot demonstrate that AO-HDS is a local phenomenon in the vicinity of thermal demagnetization in a 'ring' shaped region. The efficiency of AO-HDS further depends on a local temperature profile around the demagnetized region and thermally activated domain wall motion. We also demonstrate that the thickness of the film determines the preferential switching direction for a particular helicity.

  2. Optical switching of electric charge transfer pathways in porphyrin: a light-controlled nanoscale current router. (United States)

    Thanopulos, Ioannis; Paspalakis, Emmanuel; Yannopapas, Vassilios


    We introduce a novel molecular junction based on a thiol-functionalized porphyrin derivative with two almost energetically degenerate equilibrium configurations. We show that each equilibrium structure defines a pathway of maximal electric charge transfer through the molecular junction and that these two conduction pathways are spatially orthogonal. We further demonstrate computationally how to switch between the two equilibrium structures of the compound by coherent light. The optical switching mechanism is presented in the relevant configuration subspace of the compound, and the corresponding potential and electric dipole surfaces are obtained by ab initio methods. The laser-induced isomerization takes place in two steps in tandem, while each step is induced by a two-photon process. The effect of metallic electrodes on the electromagnetic irradiation driving the optical switching is also investigated. Our study demonstrates the potential for using thiol-functionalized porphyrin derivatives for the development of a light-controlled nanoscale current router.

  3. Lidar Electro-Optic Beam Switch with a Liquid Crystal Variable Retarder (United States)

    Baer, James


    A document discusses a liquid crystal variable retarder, an electro-optic element that changes the polarization of an optical beam in response to a low-voltage electronic signal. This device can be fabricated so that the element creates, among other states, a half-wave of retardance that can be reduced to a very small retardance. When aligned to a polarized source, this can act to rotate the polarization by 90 in one state, but generate no rotation in the other state. If the beam is then incident on a polarization beam splitter, it will efficiently switch from one path to the other when the voltage is applied. The laser beam switching system has no moving parts, improving reliability over mechanical switching. It is low cost, tolerant of high laser power density, and needs only simple drive electronics, minimizing the required system resources.

  4. Investigations into the performance of a distributed routing protocol for packet switching networks.


    Lengerich, Anthony W.


    Approved for public release; distribution is unlimited Packet switching communication networks employ routing protocols to determine the path traversed by each packet as it passes through the network. Routing protocols which are adaptive and can restructure the packet paths in response to localized network congestion ace called "dynamic" routing protocols. Dynamic routing protocols seek to optimize the routing (provide the shortest path) for each packet in the network....

  5. On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities

    Directory of Open Access Journals (Sweden)

    Masaya Notomi


    Full Text Available We review our recent studies on all-optical switching and memory operations based on thermo-optic and carrier-plasma nonlinearities both induced by two-photon absorption in silicon photonic crystal nanocavities. Owing to high-Q and small volume of these photonic crystal cavities, we have demonstrated that the switching power can be largely reduced. In addition, we demonstrate that the switching time is also reduced in nanocavity devices because of their short diffusion time. These features are important for all-optical nonlinear processing in silicon photonics technologies, since silicon is not an efficient optical nonlinear material. We discuss the effect of the carrier diffusion process in our devices, and demonstrate improvement in terms of the response speed by employing ion-implantation process. Finally, we show that coupled bistable devices lead to all-optical logic, such as flip-flop operation. These results indicate that a nanocavity-based photonic crystal platform on a silicon chip may be a promising candidate for future on-chip all-optical information processing in a largely integrated fashion.

  6. Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator (United States)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza


    In this paper, an all-optical plasmonic switch based on metal-insulator-metal (MIM) nanoplasmonic waveguide with a Kerr nonlinear ring resonator is introduced and studied. Two-dimensional simulations utilizing the finite-difference time-domain algorithm are used to demonstrate an apparent optical bistability and significant switching mechanisms (in enabled-low condition: T(ON/OFF) =21.9 and in enabled-high condition: T(ON/OFF) =24.9) of the signal light arisen by altering the pump-light intensity. The proposed all-optical switching demonstrates femtosecond-scale feedback time (90 fs) and then ultra-fast switching can be achieved. The offered all-optical switch may recognize potential significant applications in integrated optical circuits.

  7. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays (United States)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.


    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  8. Photonic crystal Fano resonances for realizing optical switches, lasers and non-reciprocal elements

    DEFF Research Database (Denmark)

    Bekele, Dagmawi Alemayehu; Yu, Yi; Hu, Hao


    We present our work on photonic crystal membrane devices exploiting Fano resonance between a line-defect waveguide and a side coupled nanocavity. Experimental demonstration of fast and compact all-optical switches for wavelength-conversion is reported. It is shown how the use of an asymmetric str...

  9. Research on optical access network remote management technology (United States)

    Wang, Wayne; Zou, Chen; Luo, Wenyi


    This paper goal is to provide a framework for the remote configuration and management of services for PON (Passive Optical Network) access and fiber access. Also it defines how Auto-Configuration Servers (ACS) in the network can remotely configure, troubleshoot and manage a Passive Optical Network (PON) optical network termination (ONT) with layer 3 capabilities using the CPE WAN management protocol, TR-069.

  10. Physical impairment aware transparent optical networks (United States)

    Antona, Jean-Christophe; Morea, Annalisa; Zami, Thierry; Leplingard, Florence


    As illustrated by optical fiber and optical amplification, optical telecommunications have appeared for the last ten years as one of the most promising candidates to increase the transmission capacities. More recently, the concept of optical transparency has been investigated and introduced: it consists of the optical routing of Wavelength Division Multiplexed (WDM) channels without systematic optoelectronic processing at nodes, as long as propagation impairments remain acceptable [1]. This allows achieving less power-consuming, more scalable and flexible networks, and today partial optical transparency has become a reality in deployed systems. However, because of the evolution of traffic features, optical networks are facing new challenges such as demand for higher transmitted capacity, further upgradeability, and more automation. Making all these evolutions compliant on the same current network infrastructure with a minimum of upgrades is one of the main issues for equipment vendors and operators. Hence, an automatic and efficient management of the network needs a control plan aware of the expected Quality of Transmission (QoT) of the connections to set-up with respect to numerous parameters such as: the services demanded by the customers in terms of protection/restoration; the modulation rate and format of the connection under test and also of its adjacent WDM channels; the engineering rules of the network elements traversed with an accurate knowledge of the associated physical impairments. Whatever the method and/or the technology used to collect this information, the issue about its accuracy is one of the main concerns of the network system vendors, because an inaccurate knowledge could yield a sub-optimal dimensioning and so additional costs when installing the network in the field. Previous studies [1], [2] illustrated the impact of this knowledge accuracy on the ability to predict the connection feasibility. After describing usual methods to build

  11. On the topology of optical transport networks

    International Nuclear Information System (INIS)

    Cardenas, J P; Santiago, A; Losada, J C; Benito, R M; Mouronte, M L


    Synchronous Digital Hierarchy (SDH) is the standard technology for information transmission in broadband optical networks. Unlike systems with unplanned growth, such as those of natural origin or the Internet network, the SDH systems are strictly planned as rings, meshes, stars or tree-branches structures designed to connect different equipments. In spite of that, we have found that the SDH network operated by Telefonica in Spain shares remarkable topological properties with other real complex networks as a product of its evolution since 1992. In fact, we have found power-law scaling in the degree distribution (N·P(k) = k -γ ) and small-world networks properties. The complexity found in SDH systems was reproduced by two models of complex networks, one of them considers real planning directives that take into account geographical and technological variables and the other one is based in the compatibility among SDH equipments.

  12. Optical Network Technologies for Future Digital Cinema

    Directory of Open Access Journals (Sweden)

    Sajid Nazir


    Full Text Available Digital technology has transformed the information flow and support infrastructure for numerous application domains, such as cellular communications. Cinematography, traditionally, a film based medium, has embraced digital technology leading to innovative transformations in its work flow. Digital cinema supports transmission of high resolution content enabled by the latest advancements in optical communications and video compression. In this paper we provide a survey of the optical network technologies for supporting this bandwidth intensive traffic class. We also highlight the significance and benefits of the state of the art in optical technologies that support the digital cinema work flow.

  13. Optical Switching Impact on TCP Throughput Limited by TCP Buffers

    NARCIS (Netherlands)

    Moreira Moura, Giovane; Fioreze, Tiago; de Boer, Pieter-Tjerk; Pras, Aiko; Nunzi, G.; Scoglio, C.; Li, X.


    In this paper, we observe the performance of TCP throughput when self-management is employed to automatically move flows from the IP level to established connections at the optical level. This move can result in many packets arriving out of order at the receiver and even being discarded, since some

  14. VO{sub 2}-like thermo-optical switching effect in one-dimensional nonlinear defective photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Juan, E-mail:, E-mail:; Zhang, Rongjun [Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai 200072 (China); Wang, Yang, E-mail:, E-mail: [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)


    A new approach to achieve VO{sub 2}-like thermo-optical switching in a one-dimensional photonic crystal by the combination of thermo-optical and optical Kerr effects was proposed and numerically demonstrated in this study. The switching temperature and the hysteresis width can be tuned in a wide temperature range. Steep transition, high optical contrast, and low pumping power can be achieved at the same time. This kind of one-dimensional photonic crystal-based bistable switch will be low-cost, easy-to-fabricate, and versatile in practical applications compared with traditional VO{sub 2}-type one.

  15. Extreme nonlinear terahertz electro-optics in diamond for ultrafast pulse switching

    Directory of Open Access Journals (Sweden)

    Mostafa Shalaby


    Full Text Available Polarization switching of picosecond laser pulses is a fundamental concept in signal processing [C. Chen and G. Liu, Annu. Rev. Mater. Sci. 16, 203 (1986; V. R. Almeida et al., Nature 431, 1081 (2004; and A. A. P. Pohl et al., Photonics Sens. 3, 1 (2013]. Conventional switching devices rely on the electro-optical Pockels effect and work at radio frequencies. The ensuing gating time of several nanoseconds is a bottleneck for faster switches which is set by the performance of state-of-the-art high-voltage electronics. Here we show that by substituting the electric field of several kV/cm provided by modern electronics by the MV/cm field of a single-cycle THz laser pulse, the electro-optical gating process can be driven orders of magnitude faster, at THz frequencies. In this context, we introduce diamond as an exceptional electro-optical material and demonstrate a pulse gating time as fast as 100 fs using sub-cycle THz-induced Kerr nonlinearity. We show that THz-induced switching in the insulator diamond is fully governed by the THz pulse shape. The presented THz-based electro-optical approach overcomes the bandwidth and switching speed limits of conventional MHz/GHz electronics and establishes the ultrafast electro-optical gating technology for the first time in the THz frequency range. We finally show that the presented THz polarization gating technique is applicable for advanced beam diagnostics. As a first example, we demonstrate tomographic reconstruction of a THz pulse in three dimensions.

  16. Extreme nonlinear terahertz electro-optics in diamond for ultrafast pulse switching (United States)

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P.


    Polarization switching of picosecond laser pulses is a fundamental concept in signal processing [C. Chen and G. Liu, Annu. Rev. Mater. Sci. 16, 203 (1986); V. R. Almeida et al., Nature 431, 1081 (2004); and A. A. P. Pohl et al., Photonics Sens. 3, 1 (2013)]. Conventional switching devices rely on the electro-optical Pockels effect and work at radio frequencies. The ensuing gating time of several nanoseconds is a bottleneck for faster switches which is set by the performance of state-of-the-art high-voltage electronics. Here we show that by substituting the electric field of several kV/cm provided by modern electronics by the MV/cm field of a single-cycle THz laser pulse, the electro-optical gating process can be driven orders of magnitude faster, at THz frequencies. In this context, we introduce diamond as an exceptional electro-optical material and demonstrate a pulse gating time as fast as 100 fs using sub-cycle THz-induced Kerr nonlinearity. We show that THz-induced switching in the insulator diamond is fully governed by the THz pulse shape. The presented THz-based electro-optical approach overcomes the bandwidth and switching speed limits of conventional MHz/GHz electronics and establishes the ultrafast electro-optical gating technology for the first time in the THz frequency range. We finally show that the presented THz polarization gating technique is applicable for advanced beam diagnostics. As a first example, we demonstrate tomographic reconstruction of a THz pulse in three dimensions.

  17. Optical networks for wideband sensor array (United States)

    Sheng, Lin Horng


    This thesis presents the realization of novel systems for optical sensing networks with an array of long-period grating (LPG) sensors. As a launching point of the thesis, the motivation to implement optical sensing network in precisely catering LPG sensors is presented. It highlights the flexibility of the sensing network to act as the foundation in order to boost the application of the various LPG sensor design in biological and chemical sensing. After the thorough study on the various optical sensing networks, sub-carrier multiplexing (SCM) and optical time division multiplexing (OTDM) schemes are adopted in conjunction with tunable laser source (TLS) to facilitate simultaneous interrogation of the LPG sensors array. In fact, these systems are distinct to have the capability to accommodate wideband optical sensors. Specifically, the LPG sensors which is in 20nm bandwidth are identified to operate in these systems. The working principles of the systems are comprehensively elucidated in this thesis. It highlights the mathematical approach to quantify the experimental setup of the optical sensing network. Additionally, the system components of the designs are identified and methodically characterized so that the components well operate in the designed environment. A mockup has been setup to demonstrate the application in sensing of various liquid indices and analyse the response of the LPG sensors in order to evaluate the performance of the systems. Eventually, the resemblance of the demultiplexed spectral response to the pristine spectral response are quantified to have excellent agreement. Finally, the promising result consistency of the systems is verified through repeatability test.

  18. Polarization encoded all-optical quaternary successor with the help of SOA assisted Sagnac switch (United States)

    Chattopadhyay, Tanay; Roy, Jitendra Nath


    The application of multi-valued (non-binary) signals can provide a considerable relief in transmission, storage and processing of large amount of information in digital signal processing. Optical multi-valued logical operation is an interesting challenge for future optical signal processing where we can expect much innovation. A novel all-optical quaternary successor (QSUC) circuit with the help of semiconductor optical amplifier (SOA)-assisted Sagnac switch is proposed and described. This circuit exploits the polarization properties of light. Different logical states are represented by different polarization state of light. Simulation result confirming described method is given in this paper. Proposed all-optical successor circuit can take an important and significant role in designing of all-optical quaternary universal inverter and modulo arithmetic unit (addition and multiplication).

  19. On-Chip SDM Switching for Unicast, Multicast and Traffic Grooming in Data Center Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Ding, Yunhong; Dalgaard, Kjeld


    This paper reports on the use of a novel photonic integrated circuit that facilitates multicast and grooming in an optical data center architecture. The circuit allows for on-chip spatial multiplexing and demultiplexing as well as fiber core switching. Using this device, we experimentally verify...... that multicast and/or grooming can be successfully performed along the full range of output ports, for different group size and different power ratio. Moreover, we experimentally demonstrate SDM transmission and 5 Tbit/s switching using the on-chip fiber switch with integrated fan-in/fan-out devices and achieve...

  20. Scalable Optical-Fiber Communication Networks (United States)

    Chow, Edward T.; Peterson, John C.


    Scalable arbitrary fiber extension network (SAFEnet) is conceptual fiber-optic communication network passing digital signals among variety of computers and input/output devices at rates from 200 Mb/s to more than 100 Gb/s. Intended for use with very-high-speed computers and other data-processing and communication systems in which message-passing delays must be kept short. Inherent flexibility makes it possible to match performance of network to computers by optimizing configuration of interconnections. In addition, interconnections made redundant to provide tolerance to faults.

  1. Performance evaluation of 10GBASE optical transceivers for Cisco 10-gigabit Ethernet switching architecture (United States)

    Zhang, Xiaojing; Cain, Jeff C.


    This paper presents the process and methodology employed to perform evaluation and analyses for the optical interface that delivers and receives 10Gb/s Ethernet traffic on Cisco's industrial leading switching architecture. Especially, we examined in detail the optical properties for commercially available 10GBASE-LR transceiver modules, with respect to IEEE 802.3ae specifications. The sampled results under room temperature are listed for comparison. Eye diagrams were recorded as a function of transmission distance, as well as temperature variation. System stability issues are also studied following a brief introduction to Cisco standard ODVT (Optical Design Verification Test) procedure.

  2. Load balancing in integrated optical wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars; Wong, S-W.


    In this paper, we tackle the load balancing problem in Integrated Optical Wireless Networks, where cell breathing technique is used to solve congestion by changing the coverage area of a fully loaded cell tower. Our objective is to design a load balancing mechanism which works closely with the in...

  3. Fault discovery protocol for passive optical networks (United States)

    Hajduczenia, Marek; Fonseca, Daniel; da Silva, Henrique J. A.; Monteiro, Paulo P.


    All existing flavors of passive optical networks (PONs) provide an attractive alternative to legacy copper-based access lines deployed between a central office (CO) of the service provider (SP) and a customer site. One of the most challenging tasks for PON network planners is the reduction of the overall cost of employing protection schemes for the optical fiber plant while maintaining a reasonable level of survivability and reducing the downtime, thus ensuring acceptable levels of quality of service (QoS) for end subscribers. The recently growing volume of Ethernet PONs deployment [Kramer, IEEE 802.3, CFI (2006)], connected with low-cost electronic and optical components used in the optical network unit (ONU) modules, results in the situation where remote detection of faulty/active subscriber modules becomes indispensable for proper operation of an EPON system. The problem of the remote detection of faulty ONUs in the system is addressed where the upstream channel is flooded with the cw transmission from one or more damaged ONUs and standard communication is severed, providing a solution that is applicable in any type of PON network, regardless of the operating protocol, physical structure, and data rate.

  4. Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle (United States)

    Lian, Kun; Heng, Khee-Hang


    This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.

  5. Data Transparent and Polarization Insensitive All-Optical Switch based on Fibers with Enhanced Nonlinearity

    Directory of Open Access Journals (Sweden)

    M. Komanec


    Full Text Available We have developed a data transparent optical packet switch prototype employing wavelength conversion based on four-wave mixing. The switch is composed of an electro-optical control unit and an all-optical switching segment. To achieve higher switching efficiencies, Ge-doped silica suspended-core and chalcogenide arsenicselenide single-mode fibers were experimentally evaluated and compared to conventional highly-nonlinear fiber. Improved connectorization technology has been developed for Ge-doped suspended-core fiber, where we achieved connection losses of 0.9 dB. For the arsenic-selenide fiber we present a novel solid joint technology, with connection losses of only 0.25 dB, which is the lowest value presented up-to-date. Conversion efficiency of -13.7 dB was obtained for the highly-nonlinear fiber, which is in perfect correlation with previously published results and thus verifies the functionality of the prototype. Conversion efficiency of -16.1 dB was obtained with arsenic-selenide fiber length reduced to five meters within simulations, based on measurement results with a 26 m long component. Employment of such a short arsenic-selenide fiber segment allows significant broadening of the wavelength conversion spectral range due to possible neglection of dispersion.

  6. Fiber optic configurations for local area networks (United States)

    Nassehi, M. M.; Tobagi, F. A.; Marhic, M. E.


    A number of fiber optic configurations for a new class of demand assignment multiple-access local area networks requiring a physical ordering among stations are proposed. In such networks, the data transmission and linear-ordering functions may be distinguished and be provided by separate data and control subnetworks. The configurations proposed for the data subnetwork are based on the linear, star, and tree topologies. To provide the linear-ordering function, the control subnetwork must always have a linear unidirectional bus structure. Due to the reciprocity and excess loss of optical couplers, the number of stations that can be accommodated on a linear fiber optic bus is severely limited. Two techniques are proposed to overcome this limitation. For each of the data and control subnetwork configurations, the maximum number of stations as a function of the power margin, for both reciprocal and nonreciprocal couplers, is computed.

  7. Quantitative design space exploration of routing-switches for Network-on-Chip

    Directory of Open Access Journals (Sweden)

    M. C. Neuenhahn


    Full Text Available Future Systems-on-Chip (SoC will consist of many embedded functional units like e.g. embedded processor cores, memories or FPGA like structures. These SoCs will have huge communication demands, which can not be fulfilled by bus-based communication systems. Possible solutions to this problem are so called Networks-on-Chip (NoC.

    These NoCs basically consist of network-interfaces which integrate functional units into the NoC and routing-switches which connect the network-interfaces. Here, VLSI-based routing-switch implementations are presented. The characteristics of these NoCs like performance and costs (e.g. silicon area respectively logic elements, power dissipation depend on a variety of parameters. As a routing-switch is a key component of a NoC, the costs and performance of routing-switches are compared for different parameter combinations. Evaluated parameters are for example data word length, architecture of the routing-switch (parallel vs. centralized implementation and routing-algorithm.

    The performance and costs of routing-switches were evaluated using an FPGA-based NoC-emulator. In addition different routing-switches were implemented using a 90 nm standard-cell library to determine the maximum clock frequency, power-dissipation and area of a VLSI-implementation. The power consumption was determined by simulating the extracted layout of the routing-switches. Finally, these results are benchmarked to other routing-switch implementations like Aetheral and xpipes.

  8. Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals

    DEFF Research Database (Denmark)

    Albert, Magnus; Dantan, Aurelien Romain; Drewsen, Michael


    The control of one light field by another, ultimately at the single photon level1, 2, 3, 4, 5, 6, 7, is a challenging task that has numerous interesting applications within nonlinear optics4, 5 and quantum information science6, 7, 8. This type of control can only be achieved through highly...... transmission to full absorption of a single photon probe field are achieved within unprecedentedly narrow EIT windows of a few tens of kilohertz. By applying a weak switching field, this allows us to demonstrate nearly perfect switching of the transmission of the probe field. The results represent important...

  9. De-optical-line-terminal hybrid access-aggregation optical network for time-sensitive services based on software-defined networking orchestration (United States)

    Bai, Wei; Yang, Hui; Xiao, Hongyun; Yu, Ao; He, Linkuan; Zhang, Jie; Li, Zhen; Du, Yi


    With the increase in varieties of services in network, time-sensitive services (TSSs) appear and bring forward an impending need for delay performance. Ultralow-latency communication has become one of the important development goals for many scenarios in the coming 5G era (e.g., robotics and driverless cars). However, the conventional methods, which decrease delay by promoting the available resources and the network transmission speed, have limited effect; a new breakthrough for ultralow-latency communication is necessary. We propose a de-optical-line-terminal (De-OLT) hybrid access-aggregation optical network (DAON) for TSS based on software-defined networking (SDN) orchestration. In this network, low-latency all-optical communication based on optical burst switching can be achieved by removing OLT. For supporting this network and guaranteeing the quality of service for TSSs, we design SDN-driven control method and service provision method. Numerical results demonstrate the proposed DAON promotes network service efficiency and avoids traffic congestion.

  10. On-light: optical social network (United States)

    Dionísio, Rogério P.


    Social networks are a recent phenomenon of communication, with a high prevalence of young users. This concept serves as a motto for a multidisciplinary project, which aims to create a simple communication network, using light as the transmission medium. Mixed team, composed by students from secondary and higher education schools, are partners on the development of an optical transceiver. A LED lamp array and a small photodiode are the optical transmitter and receiver, respectively. Using several transceivers aligned with each other, this configuration creates a ring communication network, enabling the exchange of messages between users. Through this project, some concepts addressed in physics classes from secondary schools (e.g. photoelectric phenomena and the properties of light) are experimentally verified and used to communicate, in a classroom or a laboratory.

  11. Reduction of nonlinear patterning effects in SOA-based All-optical Switches using Optical filtering

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Mørk, Jesper; Skaguchi, J.


    We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches.......We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches....

  12. Optimised Design and Analysis of All-Optical Networks

    DEFF Research Database (Denmark)

    Glenstrup, Arne John


    is developed, based on shortest-path algorithms and a comparatively new metaheuristic called simulated allocation. It is able to handle design of all-optical mesh networks with optical cross-connects, considers duct as well as fibre and node costs, and can also design protected networks. The method is assessed...... model for optical ring network design is presented. Manually designed real world ring networks are studied and it is found that the model can lead to cheaper network design. Moreover, ring and mesh network architectures are compared using real world costs, and it is found that optical cross......This PhD thesis presents a suite of methods for optimising design and for analysing blocking probabilities of all-optical networks. It thus contributes methodical knowledge to the field of computer assisted planning of optical networks. A two-stage greenfield optical network design optimiser...

  13. Adaptive Asymptotical Synchronization for Stochastic Complex Networks with Time-Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Xueling Jiang


    Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.

  14. Adaptive approach to global synchronization of directed networks with fast switching topologies

    International Nuclear Information System (INIS)

    Qin Buzhi; Lu Xinbiao


    Global synchronization of directed networks with switching topologies is investigated. It is found that if there exists at least one directed spanning tree in the network with the fixed time-average topology and the time-average topology is achieved sufficiently fast, the network will reach global synchronization for appreciate coupling strength. Furthermore, this appreciate coupling strength may be obtained by local adaptive approach. A sufficient condition about the global synchronization is given. Numerical simulations verify the effectiveness of the adaptive strategy.

  15. Fiber-Optic Terahertz Data-Communication Networks (United States)

    Chua, Peter L.; Lambert, James L.; Morookian, John M.; Bergman, Larry A.


    Network protocols implemented in optical domain. Fiber-optic data-communication networks utilize fully available bandwidth of single-mode optical fibers. Two key features of method: use of subpicosecond laser pulses as carrier signals and spectral phase modulation of pulses for optical implementation of code-division multiple access as multiplexing network protocol. Local-area network designed according to concept offers full crossbar functionality, security of data in transit through network, and capacity about 100 times that of typical fiber-optic local-area network in current use.

  16. Connection Management and Recovery Strategies under Epidemic Network Failures in Optical Transport Networks

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Ruepp, Sarah Renée


    The current trend in deploying automatic control plane solutions for increased flexibility in the optical transport layer leads to numerous advantages for both the operators and the customers, but also pose challenges related to the stability of the network and its ability to operate in a robust ...... of their transport infrastructures. Applying proactive methods for avoiding areas where epidemic failures spread results in 50% less connections requiring recovery, which translates in improved quality of service to customers....... manner under attacks. This work proposes four policies for failure handling in a connection-oriented optical transport network, under Generalized MultiProtocol Label Switching control plane, and evaluates their performance under multiple correlated large-scale failures. We employ the Susceptible......-Infected-Disabled epidemic failure spreading model and look into possible tradeoffs between resiliency and resource efficiency. Via extensive simulations we show that there exist a clear tradeoff between policy performance and network resource consumption, which must be addressed by network operators for improved robustness...

  17. Multicasting based optical inverse multiplexing in elastic optical network. (United States)

    Guo, Bingli; Xu, Yingying; Zhu, Paikun; Zhong, Yucheng; Chen, Yuanxiang; Li, Juhao; Chen, Zhangyuan; He, Yongqi


    Optical multicasting based inverse multiplexing (IM) is introduced in spectrum allocation of elastic optical network to resolve the spectrum fragmentation problem, where superchannels could be split and fit into several discrete spectrum blocks in the intermediate node. We experimentally demonstrate it with a 1-to-7 optical superchannel multicasting module and selecting/coupling components. Also, simulation results show that, comparing with several emerging spectrum defragmentation solutions (e.g., spectrum conversion, split spectrum), IM could reduce blocking performance significantly but without adding too much system complexity as split spectrum. On the other hand, service fairness for traffic with different granularity of these schemes is investigated for the first time and it shows that IM performs better than spectrum conversion and almost as well as split spectrum, especially for smaller size traffic under light traffic intensity.

  18. Green provisioning of the traffic partition grooming in robust, reconfigurable and heterogeneous optical networks (United States)

    Hou, Weigang; Yu, Yao; Song, Qingyang; Gong, Xiaoxue


    In recent years, various high-speed network architectures have been widespread deployed. Dense Wavelength Division Multiplexing (DWDM) has gained favor as a terabit solution. The optical circuit switching has also been provided for "sub-rate" aggregation. Such that, the granular types of demands tend to be diverse and must be evaluated. However, current dedicated optical networks do not offer sufficient flexibility to satisfy the requirements of demands with such wide range of granularities. The traffic grooming becomes a power-efficient one only when it does not utilize the aggregation of Coarse-Granularity (CG) demands. The waveband switching merely provides port-cost-effective connections for CG demands regardless of fine-granularity ones. Consequently, in this paper, we devise a heterogeneous grooming method called traffic partition grooming. It combines the power efficiency advantage of the traffic grooming under fine-granularity environment and the port savings advantage of the waveband switching under coarse-granularity environment to provide green provisioning. In addition, the optical virtual topology self-reconfigures along with various optimization objectives variation and has the robustness to determine the pre-unknown information. This paper is also the first work on investigating the issue of Robust, Reconfigurable and Heterogeneous Optical Networking (R2HON). The effective green provisioning and OPEX savings of our R2HON have been demonstrated by numerical simulations.

  19. SNL evaluation of Gigabit Passive Optical Networks (GPON).

    Energy Technology Data Exchange (ETDEWEB)

    Heckart, David G.; Roybal, Glen B.; Walker, Betty R.; Pratt, Thomas Joseph; Gossage, Steven Allen; Trujillo, Sandra M.; Fischer, Bob; Brenkosh, Joseph Peter; Rudolfo, Gerald F.; Dirks, David H.; Schutt, James Alan


    Gigabit Passive Optical Networks (GPON) is a networking technology which offers the potential to provide significant cost savings to Sandia National Laboratories in the area of network operations. However, a large scale GPON deployment requires a significant investment in equipment and infrastructure. Before a large scale GPON system was acquired and built, a small GPON system manufactured by Motorola was acquired and tested. The testing performed was to determine the suitability of GPON for use at SNL. This report documents that testing. This report presents test results of GPON system consisting of Motorola and Juniper equipment. The GPON system was tested in areas of data throughput, video conferencing, VOIP, security, and operations and management. The GPON system performed well in almost all areas. GPON will not meet the needs of the low percentage of users requiring a true 1-10 Gbps network connection. GPON will also most likely not meet the need of some servers requiring dedicated throughput of 1-10 Gbps. Because of that, there will be some legacy network connections that must remain. If these legacy network connections can not be reduced to a bare minimum and possibly consolidated to a few locations, any cost savings gained by switching to GPON will be negated by maintaining two networks. A contract has been recently awarded for new GPON equipment with larger buffers. This equipment should improve performance and further reduce the need for legacy network connections. Because GPON has fewer components than a typical hierarchical network, it should be easier to manage. For the system tested, the management was performed by using the AXSVison client. Access to the client must be tightly controlled, because if client/server communications are compromised, security will be an issue. As with any network, the reliability of individual components will determine overall system reliability. There were no failures with the routers, OLT, or Sun Workstation Management

  20. Novel Ethernet Based Optical Local Area Networks for Computer Interconnection

    NARCIS (Netherlands)

    Radovanovic, Igor; van Etten, Wim; Taniman, R.O.; Kleinkiskamp, Ronny


    In this paper we present new optical local area networks for fiber-to-the-desk application. Presented networks are expected to bring a solution for having optical fibers all the way to computers. To bring the overall implementation costs down we have based our networks on short-wavelength optical

  1. Optical packet networks - conclusions from the IST DAVID project

    DEFF Research Database (Denmark)

    Dittmann, Lars


    This work outlines the result from the European research project DAVID working with optical packet switch solutions for both WAN and MAN. The project started July 2000 and has been completed successfully by the end of 2003.......This work outlines the result from the European research project DAVID working with optical packet switch solutions for both WAN and MAN. The project started July 2000 and has been completed successfully by the end of 2003....

  2. Software-defined optical network for metro-scale geographically distributed data centers. (United States)

    Samadi, Payman; Wen, Ke; Xu, Junjie; Bergman, Keren


    The emergence of cloud computing and big data has rapidly increased the deployment of small and mid-sized data centers. Enterprises and cloud providers require an agile network among these data centers to empower application reliability and flexible scalability. We present a software-defined inter data center network to enable on-demand scale out of data centers on a metro-scale optical network. The architecture consists of a combined space/wavelength switching platform and a Software-Defined Networking (SDN) control plane equipped with a wavelength and routing assignment module. It enables establishing transparent and bandwidth-selective connections from L2/L3 switches, on-demand. The architecture is evaluated in a testbed consisting of 3 data centers, 5-25 km apart. We successfully demonstrated end-to-end bulk data transfer and Virtual Machine (VM) migrations across data centers with less than 100 ms connection setup time and close to full link capacity utilization.

  3. Dynamic Optical Networks for Future Internet Environments (United States)

    Matera, Francesco


    This article reports an overview on the evolution of the optical network scenario taking into account the exponential growth of connected devices, big data, and cloud computing that is driving a concrete transformation impacting the information and communication technology world. This hyper-connected scenario is deeply affecting relationships between individuals, enterprises, citizens, and public administrations, fostering innovative use cases in practically any environment and market, and introducing new opportunities and new challenges. The successful realization of this hyper-connected scenario depends on different elements of the ecosystem. In particular, it builds on connectivity and functionalities allowed by converged next-generation networks and their capacity to support and integrate with the Internet of Things, machine-to-machine, and cloud computing. This article aims at providing some hints of this scenario to contribute to analyze impacts on optical system and network issues and requirements. In particular, the role of the software-defined network is investigated by taking into account all scenarios regarding data centers, cloud computing, and machine-to-machine and trying to illustrate all the advantages that could be introduced by advanced optical communications.

  4. Default mode network abnormalities during state switching in attention deficit hyperactivity disorder. (United States)

    Sidlauskaite, J; Sonuga-Barke, E; Roeyers, H; Wiersema, J R


    Individuals with attention deficit hyperactivity disorder (ADHD) display excess levels of default mode network (DMN) activity during goal-directed tasks, which are associated with attentional disturbances and performance decrements. One hypothesis is that this is due to attenuated down-regulation of this network during rest-to-task switching. A second related hypothesis is that it may be associated with right anterior insula (rAI) dysfunction - a region thought to control the actual state-switching process. These hypotheses were tested in the current fMRI study in which 19 adults with ADHD and 21 typically developing controls undertook a novel state-to-state switching paradigm. Advance cues signalled upcoming switches between rest and task periods and switch-related anticipatory modulation of DMN and rAI was measured. To examine whether rest-to-task switching impairments may be a specific example of a more general state regulation deficit, activity upon task-to-rest cues was also analysed. Against our hypotheses, we found that the process of down-regulating the DMN when preparing to switch from rest to task was unimpaired in ADHD and that there was no switch-specific deficit in rAI modulation. However, individuals with ADHD showed difficulties up-regulating the DMN when switching from task to rest. Rest-to-task DMN attenuation seems to be intact in adults with ADHD and thus appears unrelated to excess DMN activity observed during tasks. Instead, individuals with ADHD exhibit attenuated up-regulation of the DMN, hence suggesting disturbed re-initiation of a rest state.

  5. Efficiency gain from elastic optical networks (United States)

    Morea, Annalisa; Rival, Olivier


    We compare the cost-efficiency of optical networks based on mixed datarates (10, 40, 100Gb/s) and datarateelastic technologies. A European backbone network is examined under various traffic assumptions (volume of transported data per demand and total number of demands) to better understand the impact of traffic characteristics on cost-efficiency. Network dimensioning is performed for static and restorable networks (resilient to one-link failure). In this paper we will investigate the trade-offs between price of interfaces, reach and reconfigurability, showing that elastic solutions can be more cost-efficient than mixed-rate solutions because of the better compatibility between different datarates, increased reach of channels and simplified wavelength allocation.

  6. Optical processing for future computer networks (United States)

    Husain, A.; Haugen, P. R.; Hutcheson, L. D.; Warrior, J.; Murray, N.; Beatty, M.


    In the development of future data management systems, such as the NASA Space Station, a major problem represents the design and implementation of a high performance communication network which is self-correcting and repairing, flexible, and evolvable. To obtain the goal of designing such a network, it will be essential to incorporate distributed adaptive network control techniques. The present paper provides an outline of the functional and communication network requirements for the Space Station data management system. Attention is given to the mathematical representation of the operations being carried out to provide the required functionality at each layer of communication protocol on the model. The possible implementation of specific communication functions in optics is also considered.

  7. Survivable integrated grooming in multi-granularity optical networks (United States)

    Wu, Jingjing; Guo, Lei; Wei, Xuetao; Liu, Yejun


    Survivability is an important issue to ensure the service continuity in optical network. At the same time, with the granularity of traffic demands ranging from sub-wavelength-level to wavelength-level, traffic demands need to be aggregated and carried over the network in order to utilize resources effectively. Therefore, multi-granularity grooming is proposed to save the cost and reduce the number of switching ports in Optical-Cross Connects (OXCs). However, current works mostly addressed the survivable wavelength or waveband grooming. Therefore, in this paper, we propose three heuristic algorithms called Multi-granularity Dedicated Protection Grooming (MDPG), Multi-granularity Shared Protection Grooming (MSPG) and Multi-granularity Mixed Protection Grooming (MMPG), respectively. All of them are performed based on the Survivable Multi-granularity Integrated Auxiliary Graph (SMIAG) that includes one Wavelength Integrated Auxiliary Graph (WIAG) for wavelength protection and one waveBand Integrated Auxiliary Graph (BIAG) for waveband protection. Numerical results show that MMPG has the lowest average port-cost, the best resource utilization ratio and the lowest blocking probability among these three algorithms. Compared with MDPG, MSPG has lower average port-cost, better resource utilization ratio and lower blocking probability.

  8. Optical fiber telecommunications systems and networks

    CERN Document Server

    Kaminow, Ivan; Willner, Alan E


    Optical Fiber Telecommunications VI (A&B) is the sixth in a series that has chronicled the progress in the R&D of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition brings a fresh look to many essential topics, including devices, subsystems, systems and networks. A central theme is the enabling of high-bandwidth communications in a cost-effective manner for the development of customer applications. These volumes are an ideal reference for R&D engineers and managers, optical systems implementers, university researchers and s

  9. Active high-power RF pulse compression using optically switched resonant delay lines

    International Nuclear Information System (INIS)

    Tantawi, S.G.; Ruth, R.D.; Vlieks, A.E.


    The authors present the design and a proof of principle experimental results of an optically controlled high power rf pulse compression system. The design should, in principle, handle few hundreds of Megawatts of power at X-band. The system is based on the switched resonant delay line theory. It employs resonant delay lines as a means of storing rf energy. The coupling to the lines is optimized for maximum energy storage during the charging phase. To discharge the lines, a high power microwave switch increases the coupling to the lines just before the start of the output pulse. The high power microwave switch, required for this system, is realized using optical excitation of an electron-hole plasma layer on the surface of a pure silicon wafer. The switch is designed to operate in the TE 01 mode in a circular waveguide to avoid the edge effects present at the interface between the silicon wafer and the supporting waveguide; thus, enhancing its power handling capability

  10. High-density, fail-in-place switches for computer and data networks

    Energy Technology Data Exchange (ETDEWEB)

    Coteus, Paul W.; Doany, Fuad E.; Hall, Shawn A.; Schultz, Mark D.; Takken, Todd E.; Tian, Shurong


    A structure for a network switch. The network switch may include a plurality of spine chips arranged on a plurality of spine cards, where one or more spine chips are located on each spine card; and a plurality of leaf chips arranged on a plurality of leaf cards, wherein one or more leaf chips are located on each leaf card, where each spine card is connected to every leaf chip and the plurality of spine chips are surrounded on at least two sides by leaf cards.


    Directory of Open Access Journals (Sweden)



    Full Text Available Optical packet switching (OPS is a very promising technology for the next generation data transfer due to the very large bandwidth of the optical fiber. The success of the OPS relies heavily on design of the node architecture which supports comparatively larger buffering capacity without detiorating signal quality too much and it should provide very low packet loss probability with reasonably low average delay. In this paper, a design analysis of low complexity OPS node architecture is discussed along-with its advantages. The presented architecture support both fixed and variable length packets. The packets are stored in a single piece of fiber using the WDM technology. Physical layer analysis presented in this paper is to obtain the Q function (Bit Error Rate. Finally, the Monte Carlo simulation is done to obtain the packet loss. The average delay performance of the switch and effect of Q values on packet loss rates are discussed.

  12. Towards energy aware optical networks and interconnects (United States)

    Glesk, Ivan; Osadola, Tolulope; Idris, Siti


    In a today's world, information technology has been identified as one of the major factors driving economic prosperity. Datacenters businesses have been growing significantly in the past few years. The equipments in these datacenters need to be efficiently connected to each other and also to the outside world in order to enable effective exchange of information. This is why there is need for highly scalable, energy savvy and reliable network connectivity infrastructure that is capable of accommodating the large volume of data being exchanged at any time within the datacenter network and the outside network in general. These devices that can ensure such effective connectivity currently require large amount of energy in order to meet up with these increasing demands. In this paper, an overview of works being done towards realizing energy aware optical networks and interconnects for datacenters is presented. Also an OCDMA approach is discussed as potential multiple access technique for future optical network interconnections. We also presented some challenges that might inhibit effective implementation of the OCDMA multiplexing scheme.

  13. Simulation and optimization of a polymer directional coupler electro-optic switch with push pull electrodes (United States)

    Zheng, Chuan-Tao; Ma, Chun-Sheng; Yan, Xin; Wang, Xian-Yin; Zhang, Da-Ming


    Structural model and design technique are proposed for a polymer directional coupler electro-optic switch with rib waveguides and push-pull electrodes, of which the electric field distribution is analyzed by the conformal transforming method and image method. In order to get the minimum mode loss and the minimum switching voltage, the parameters of the waveguide and electrode are optimized, such as the core with, core thickness, buffer layer between the core and the electrode, coupling gap between the waveguides, electrode thickness, electrode width and electrode gap. Switching Characteristics are analyzed, which include the output power, insertion loss, and crosstalk. To realize normal switching function, the fabrication error, spectrum shift, and coupling loss between a single mode fiber (SMF) and the waveguide are discussed. Simulation results show that the coupling length is 3082 μm, push-pull switching voltage is 2.14 V, insertion loss is less than 1.17 dB, and crosstalk is less than -30 dB for the designed device.

  14. Green Network Planning Model for Optical Backbones

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Jensen, Michael


    Communication networks are becoming more essential for our daily lives and critically important for industry and governments. The intense growth in the backbone traffic implies an increment of the power demands of the transmission systems. This power usage might have a significant negative effect...... on the environment in general. In network planning there are existing planning models focused on QoS provisioning, investment minimization or combinations of both and other parameters. But there is a lack of a model for designing green optical backbones. This paper presents novel ideas to be able to define...... an analytical model to consider environmental aspects in the planning stage of backbones design....

  15. Optical label switching in telecommunication using semiconductor lasers, amplifiers and electro-absorption modulators

    DEFF Research Database (Denmark)

    Chi, Nan; Christiansen, Lotte Jin; Jeppesen, Palle


    We demonstrate all-optical label encoding and updating for an orthogonally labeled signal in combined IM/FSK modulation format utilizing semiconductor lasers, semiconductor optical amplifiers and electro-absorption modulators. Complete functionality of a network node including two-hop transmissio...

  16. Evolutionary prisoner's dilemma games on the network with punishment and opportunistic partner switching (United States)

    Takesue, H.


    Punishment and partner switching are two well-studied mechanisms that support the evolution of cooperation. Observation of human behaviour suggests that the extent to which punishment is adopted depends on the usage of alternative mechanisms, including partner switching. In this study, we investigate the combined effect of punishment and partner switching in evolutionary prisoner's dilemma games conducted on a network. In the model, agents are located on the network and participate in the prisoner's dilemma games with punishment. In addition, they can opportunistically switch interaction partners to improve their payoff. Our Monte Carlo simulation showed that a large frequency of punishers is required to suppress defectors when the frequency of partner switching is low. In contrast, cooperation is the most abundant strategy when the frequency of partner switching is high regardless of the strength of punishment. Interestingly, cooperators become abundant not because they avoid the cost of inflicting punishment and earn a larger average payoff per game but rather because they have more numerous opportunities to be referred to as a role agent by defectors. Our results imply that the fluidity of social relationships has a profound effect on the adopted strategy in maintaining cooperation.

  17. Free space optical networks for ultra-broad band services

    CERN Document Server

    Kartalopoulos, Stamatios V


    "Free Space Optical Network is a next generation communication network which uses optical waves instead of microwaves, potentially offering faster communication with ultra band width, meaning more complex communication services can be simultaneously offered. This book describes the network concepts in simple language starting with point-to-point free space optics basics and discusses networking, interoperability with existing communication network, and security. An ideal resource for communication professionals just entering the free space optical communication field and graduate students majoring in optical communications"--Provided by publisher.

  18. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel (United States)

    Badran, Hussain Ali

    In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  19. An Optical WDM Network Concept for Tanzania


    S. Pazi; C. Chatwin; R. Young; P. Birch


    Tanzania is a developing country, which significantly lags behind the rest of the world in information communications technology (ICT), especially for the Internet. Internet connectivity to the rest of the world is via expensive satellite links, thus leaving the majority of the population unable to access the Internet due to the high cost. This paper introduces the concept of an optical WDM network for Internet infrastructure in Tanzania, so as to reduce Internet connection costs, and provide...

  20. Fault location algorithms for optical networks


    Mas Machuca, Carmen; Thiran, Patrick


    Today, there is no doubt that optical networks are the solution to the explosion of Internet traffic that two decades ago we only dreamed about. They offer high capacity with the use of Wavelength Division Multiplexing (WDM) techniques among others. However, this increase of available capacity can be betrayed by the high quantity of information that can be lost when a failure occurs because not only one, but several channels will then be interrupted. Efficient fault detection and location mec...

  1. Optical Multiple Access Network (OMAN) for advanced processing satellite applications (United States)

    Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.


    An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.

  2. Dual branch transmit switch-and-stay diversity for underlay cognitive networks

    KAUST Repository

    Sayed, Mostafa M.


    In this paper, we study applying dual branch transmit switch-and-stay combining (SSC) technique for underlay cognitive radio (UCR) networks. In UCR, the secondary user is allowed to share the spectrum with the primary (licensed) user under the condition that interference at the primary receiver is below a predetermined threshold. Assuming binary phaseshift keying (BPSK) modulation and Rayleigh fading channels, we develop a closed form expression for the average bit error rate (BER) of the secondary link as a function of the switching threshold. We then find a closed form expression for the optimal switching threshold in the sense of minimizing the average BER. For the sake of comparison we derive an expression for the average BER of the dual branch transmit selection combining (SC) technique. We finally investigate the effect of correlation between secondary and interference channels on the average BER and the associated optimal switching threshold. © 2011 IEEE.

  3. An underwater optical wireless communication network (United States)

    Arnon, Shlomi


    The growing need for underwater observation and sub-sea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, bio-geochemical, evolutionary and ecological changes in the sea, ocean and lake environments and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. We present models of three kinds of optical wireless communication links a) a line-of-sight link, b) a modulating retro-reflector link and c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered lighted it was possible to mitigate this decrease in some cases. We conclude from the analysis that a high data rate underwater optical wireless network is a feasible solution for emerging applications such as UUV to UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  4. CERNET - A high-speed packet-switching network

    International Nuclear Information System (INIS)

    Gerard, J.M.


    A general mesh-structured high-speed computer network has been designed and built. This network provides communication between any pair of connected user computers over distances of upto 6 km and at line speeds of 1 to 5 Mbit/second. The network is composed of a communication subnet providing a datagram service, complemented by tasks in the connected machines to implement an end-to-end logical link protocol. Details are given of the overall structure as well as the specific modules of which the system is composed. (orig.)

  5. Delay Specific Investigations on QoS Scheduling Schemes for Real-Time Traffic in Packet Switched Networks


    P.S.Prakash; S.Selvan


    Packet switched data network like Internet, which has traditionally supported throughput sensitive applications such as email and file transfer, is increasingly supporting delay-sensitive multimedia applications such as interactive video. These delaysensitive applications would often rather sacrifice some throughput for better delay. Unfortunately, the current packet switched network does not offer choices, but instead provides monolithic best-effort service to all applic...

  6. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.

    Directory of Open Access Journals (Sweden)

    Huan Chen

    Full Text Available This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN. Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.

  7. Controllability of switched singular mix-valued logical control networks with constraints (United States)

    Deng, Lei; Gong, Mengmeng; Zhu, Peiyong


    The present paper investigates the controllability problem of switched singular mix-valued logical control networks (SSMLCNs) with constraints on states and controls. First, using the semi-tenser product (STP) of matrices, the SSMLCN is expressed in an algebraic form, based on which a necessary and sufficient condition is given for the uniqueness of solution of SSMLCNs. Second, a necessary and sufficient criteria is derived for the controllability of constrained SSMLCNs, by converting a constrained SSMLCN into a parallel constrained switched mix-valued logical control network. Third, an algorithm is presented to design a proper switching sequence and a control scheme which force a state to a reachable state. Finally, a numerical example is given to demonstrate the efficiency of the results obtained in this paper.

  8. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks. (United States)

    Tse, Margaret J; Chu, Brian K; Roy, Mahua; Read, Elizabeth L


    Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. High-power subnanosecond operation of a bistable optically controlled semiconductor switch (BOSS)

    International Nuclear Information System (INIS)

    Stoudt, D.C.; Richardson, M.A.; Demske, D.L.; Roush, R.A.; Eure, K.W.


    Recent high-power, subnanosecond-switching results of the Bistable Optically controlled Semiconductor Switch (BOSS) are presented. The process of persistent photoconductivity followed by photo-quenching have been demonstrated at megawatt power levels in copper-compensated, silicon-doped, semi-insulating gallium arsenide. These processes allow a switch to be developed that can be closed by the application of one laser pulse and opened by the application of a second laser pulse with a wavelength equal to twice that of the first laser. Switch closure is primarily achieved by elevating electrons from a deep copper center which has been diffused into the material. The opening phase is a two-step process which relies initially on the absorption of the 2-μm laser causing electrons to be elevated from the valance band back into the copper center, and finally on the recombination of electrons in the conduction band with boles in the valance band. The second step requires a sufficient concentration of recombination centers (RC) in the material for opening to occur in the subnanosecond regime. These RC's are generated in the bulk GaAs material by fast-neutron irradiation (∼ 1 MeV) at a fluence of about 3 x 10 15 cm -2 . High-power switching results which demonstrate that the BOSS switch can be opened in the subnanosecond regime are presented for the first time. Neutron-irradiated BOSS devices have been opened against a rising electric field of about 20 kV/cm (10 kV) in a time less than one nanosecond. Kilovolt electrical pulses have been generated with a FWHM of roughly 250 picoseconds

  10. The rearrangement process in a two-stage broadcast switching network

    DEFF Research Database (Denmark)

    Jacobsen, Søren B.


    The rearrangement process in the two-stage broadcast switching network presented by F.K. Hwang and G.W. Richards (ibid., vol.COM-33, no.10, p.1025-1035, Oct. 1985) is considered. By defining a certain function it is possible to calculate an upper bound on the number of connections to be moved...

  11. Argonne National Lab deploys Force10 networks' massively dense ethernet switch for supercomputing cluster

    CERN Multimedia


    "Force10 Networks, Inc. today announced that Argonne National Laboratory (Argonne, IL) has successfully deployed Force10 E-Series switch/routers to connect to the TeraGrid, the world's largest supercomputing grid, sponsored by the National Science Foundation (NSF)" (1/2 page).

  12. Global Robust Stability of Switched Interval Neural Networks with Discrete and Distributed Time-Varying Delays of Neural Type

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu


    Full Text Available By combing the theories of the switched systems and the interval neural networks, the mathematics model of the switched interval neural networks with discrete and distributed time-varying delays of neural type is presented. A set of the interval parameter uncertainty neural networks with discrete and distributed time-varying delays of neural type are used as the individual subsystem, and an arbitrary switching rule is assumed to coordinate the switching between these networks. By applying the augmented Lyapunov-Krasovskii functional approach and linear matrix inequality (LMI techniques, a delay-dependent criterion is achieved to ensure to such switched interval neural networks to be globally asymptotically robustly stable in terms of LMIs. The unknown gain matrix is determined by solving this delay-dependent LMIs. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.

  13. Strategies for optical transport network recovery under epidemic network failures

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova; Kosteas, Vasileios


    are evaluated under multiple correlated large-scale failures. We employ the Susceptible–Infected– Disabled epidemic failure spreading model and look into possible trade-offs between resiliency and resource effi- ciency. Via extensive simulations, we show that source rerouting outperforms on-site rerouting......The current trend in deploying automatic control plane solutions for increased flexibility in the optical transport layer leads to numerous advantages for both the operators and the customers, but also pose challenges related to the stability of the network and its ability to operate in a robust......, and that there exist a clear trade-off between policy performance and network resource consumption, which must be addressed by network operators for improved robustness of their transport infrastructures. Applying proactive methods for avoiding areas where epidemic failures spread results in 50% less connections...

  14. All-optical bypass-exchange switch based on two types of photorefractive hologram Valve optique pour commutations basée sur deux types d'hologramme photoréfractifs (United States)

    Yan, Xiaona; Liu, Liren; Wang, Feng


    We demonstrate a scheme of using two types of recorded photorefractive hologram - a photovoltaic hologram and a standard photorefractive hologram - to implement an all-optical bypass-exchange switch. A programmable polarization analyser array is used to select the desired operation. Issues about the elimination of noise are discussed with the help of previous calculations by Yeh and Gu et al. As the system can be implemented in one single-block photorefractive crystal, it has the properties of compactness and miniaturization. Moreover, as the input and output signals propagate in a direction normal to the switching array the switch is extremely suitable for a multistage interconnected network.

  15. Giant quadratic electro-optical effect during polarization switching in ultrathin ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L. M., E-mail:; Lazarev, V. V.; Palto, S. P.; Yudin, S. G. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)


    The low-frequency quadratic electro-optical effect with a maximum electro-optical coefficient of g = 8 Multiplication-Sign 10{sup -19} m{sup 2}/V{sup 2} (i.e., four orders of magnitude greater than the standard high-frequency value) has been studied in thin films of ferroelectric polymer PVDF(70%)-TrFE(30%). The observed effect is related to the process of spontaneous polarization switching, during which the electron oscillators of C-F and C-H dipole groups rotate to become parallel to the applied field. As a result, the ellipsoid of the refractive index exhibits narrowing in the direction perpendicular to the field. The field dependence of the electro-optical coefficient g correlates with that of the apparent dielectric permittivity, which can be introduced under the condition of ferroelectric polarization switching. The observed electro-optical effect strongly decreases when the frequency increases up to several hundred hertz. The temperature dependence of the effect exhibits clearly pronounced hysteresis in the region of the ferroelectric phase transition.

  16. Bottom-Up Abstract Modelling of Optical Networks-on-Chip: From Physical to Architectural Layer

    Directory of Open Access Journals (Sweden)

    Alberto Parini


    Full Text Available This work presents a bottom-up abstraction procedure based on the design-flow FDTD + SystemC suitable for the modelling of optical Networks-on-Chip. In this procedure, a complex network is decomposed into elementary switching elements whose input-output behavior is described by means of scattering parameters models. The parameters of each elementary block are then determined through 2D-FDTD simulation, and the resulting analytical models are exported within functional blocks in SystemC environment. The inherent modularity and scalability of the S-matrix formalism are preserved inside SystemC, thus allowing the incremental composition and successive characterization of complex topologies typically out of reach for full-vectorial electromagnetic simulators. The consistency of the outlined approach is verified, in the first instance, by performing a SystemC analysis of a four-input, four-output ports switch and making a comparison with the results of 2D-FDTD simulations of the same device. Finally, a further complex network encompassing 160 microrings is investigated, the losses over each routing path are calculated, and the minimum amount of power needed to guarantee an assigned BER is determined. This work is a basic step in the direction of an automatic technology-aware network-level simulation framework capable of assembling complex optical switching fabrics, while at the same time assessing the practical feasibility and effectiveness at the physical/technological level.

  17. Burst switched optical networks supporting legacy and future service types

    DEFF Research Database (Denmark)

    Franzl, Gerald; Hayat, Faisal; Holynski, Tomasz


    Focusing on the principles and the paradigm of OBS an overview addressing expectable performance and application issues is presented. Proposals on OBS were published over a decade and the presented techniques spread into many directions. The paper comprises discussions of several challenges that ...

  18. Traffic analysis and signal processing in optical packet switched networks

    DEFF Research Database (Denmark)

    Fjelde, Tina


    for interferometric wavelength conversion are discussed and the performance of the IWC is analysed experimentally based on the all-active Mach Zehnder and Michelson interferometer. Wavelength independence over the entire C-band is verified and wavelength conversion at up to 40 Gbit/s using the differential control...

  19. Designing ultra-compact high efficiency electro-optical plasmonic switches by using of nanocavity reflectors (United States)

    Shahamat, Yadollah; Vahedi, Mohammad


    An ultra-compact plasmonic electro-optical (EO) switch based on a silver-insulator-silver bus waveguide coupled to two nanocavity reflectors and two drop cavities is introduced. All cavities are filled with 4-dimethylamino- N-methyl-4-stilbazolium tosylate as an EO material. Finite difference time domain (FDTD) method and coupled-mode-theory (CMT) approaches are used to numerically and theoretically investigate the properties of the device. Results reveal that the proposed device can work properly as 1 × 1 and 1 × 2 switches. By inserting nanocavity reflectors, one can improve the performance of the switches. Results are shown for switches with single and double nanocavity reflectors operating at 984 nm and 1560 nm, respectively. A transmission of 0.83 (0.77) and modulation depth of 31.41 dB (17.72 dB) at the wavelength of 1560 nm (984 nm) could be obtained. The proposed device has potential nanophotonic applications due to simple geometry and compactness.

  20. Phase-controlled all-optical switching based on coherent population oscillation in a two-level system

    International Nuclear Information System (INIS)

    Liao, Ping; Yu, Song; Luo, Bin; Shen, Jing; Gu, Wanyi; Guo, Hong


    We theoretically propose a scheme of phase-controlled all-optical switching due to the effect of degenerate four-wave mixing (FWM) and coherent population oscillation (CPO) in a two-level system driven by a strong coupling field and two weak symmetrically detuned fields. The results show that the phase of the FWM field can be utilized to switch between constructive and destructive interference, which can lead to the transmission or attenuation of the probe field and thus switch the field on or off. We also find the intensity of the coupling field and the propagation distance have great influence on the performance of the switching. In our scheme, due to the quick response in semiconductor systems, a fast all-optical switching can be realized at low light level. -- Highlights: ► We study a new all-optical switching based on coherent population oscillation. ► The phase of the FWM field can be utilized to switch the probe field on or off. ► A fast and low-light-level switching can be realized in semiconductors.

  1. Design of energy efficient optical networks with software enabled integrated control plane

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Yan, Ying; Dittmann, Lars


    methods and the control over quality of service (QoS). The structure is defined as an overlay generalised multi-protocol label switching (GMPLS) control model. With the defined structure, the integrated control plane is able to gather information from different domains (i.e. optical core network...... energy consumption by proposing a new integrated control plane structure utilising Software Defined Networking technologies. The integrated control plane increases the efficiencies of exchanging control information across different network domains, while introducing new possibilities to the routing...... and the access networks), and enable energy efficiency networking over a wider area. In the case presented, the integrated control plane collects the network energy related information and the QoS requirements of different types of traffic. This information is used to define the specific group of traffic's (flow...

  2. Simulation and Evaluation of Ethernet Passive Optical Network

    Directory of Open Access Journals (Sweden)

    Salah A. Jaro Alabady


    Full Text Available      This paper studies simulation and evaluation of Ethernet Passive Optical Network (EPON system, IEEE802.3ah based OPTISM 3.6 simulation program. The simulation program is used in this paper to build a typical ethernet passive optical network, and to evaluate the network performance when using the (1580, 1625 nm wavelength instead of (1310, 1490 nm that used in Optical Line Terminal (OLT and Optical Network Units (ONU's in system architecture of Ethernet passive optical network at different bit rate and different fiber optic length. The results showed enhancement in network performance by increase the number of nodes (subscribers connected to the network, increase the transmission distance, reduces the received power and reduces the Bit Error Rate (BER.   

  3. All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating. (United States)

    Zang, Zhigang


    A configuration of all-optical switching based on a Signac loop mirror that incorporates an ytterbium-doped fiber and uniform fiber Bragg grating (FBG) is proposed in this paper. It is found that the transmission spectrum of this structure is the narrow splitting of the reflection spectrum of the FBG. The shift of this ultranarrow transmission spectrum is very sensitive to the intensity of the pump power. Thus, the threshold switching power can be greatly reduced by shifting such narrow transmission spectrum. Compared with the single FBG, the threshold switching power of this configuration is reduced by 4 orders of magnitude. In addition, the results indicate that this optical switching has a high extinction ratio of 20 dB and a ultrafast response time of 3 ns. The operation regime and switching performance under the cross-phase modulation cases are also investigated.

  4. Robust control of uncertain nonlinear switched genetic regulatory networks with time delays: A redesign approach. (United States)

    Moradi, Hojjatullah; Majd, Vahid Johari


    In this paper, the problem of robust stability of nonlinear genetic regulatory networks (GRNs) is investigated. The developed method is an integral sliding mode control based redesign for a class of perturbed dissipative switched GRNs with time delays. The control law is redesigned by modifying the dissipativity-based control law that was designed for the unperturbed GRNs with time delays. The switched GRNs are switched from one mode to another based on time, state, etc. Although, the active subsystem is known in any instance, but the switching law and the transition probabilities are not known. The model for each mode is considered affine with matched and unmatched perturbations. The redesigned control law forces the GRN to always remain on the sliding surface and the dissipativity is maintained from the initial time in the presence of the norm-bounded perturbations. The global stability of the perturbed GRNs is maintained if the unperturbed model is globally dissipative. The designed control law for the perturbed GRNs guarantees robust exponential or asymptotic stability of the closed-loop network depending on the type of stability of the unperturbed model. The results are applied to a nonlinear switched GRN, and its convergence to the origin is verified by simulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. SONEP: A Software-Defined Optical Network Emulation Platform

    DEFF Research Database (Denmark)

    Azodolmolky, Siamak; Petersen, Martin Nordal; Fagertun, Anna Manolova


    Network emulation has been one of the tools of choice for conducting experiments on commodity hardware. In the absence of an easy to use optical network test-bed, researchers can significantly benefit from the availability of a flexible/programmable optical network emulation platform. Exploiting......, this is for the first time that an SDN-based emulation platform is proposed for modeling and performance evaluation of optical networks. Coupled with recent trend of extension of SDN towards transport (optical) networks, the presented tool can facilitate the evaluation of innovative idea before actual implementations...

  6. CATO: a CAD tool for intelligent design of optical networks and interconnects (United States)

    Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse


    Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.

  7. Survivable resource orchestration for optically interconnected data center networks. (United States)

    Zhang, Qiong; She, Qingya; Zhu, Yi; Wang, Xi; Palacharla, Paparao; Sekiya, Motoyoshi


    We propose resource orchestration schemes in overlay networks enabled by optical network virtualization. Based on the information from underlying optical networks, our proposed schemes provision the fewest data centers to guarantee K-connect survivability, thus maintaining resource availability for cloud applications under any failure.

  8. PCBM : P3HT polymer composites for photonic crystal all-optical switching applications

    International Nuclear Information System (INIS)

    Li Zhiqiang; Hu Xiaoyong; Zhang Jiaxiang; Yang Hong; Gong Qihuang


    An all-optical switching with an operating pump intensity of 1 MW cm -2 is realized in a one-dimensional nonlinear organic photonic crystal made of poly(3-hexylthiophene) doped with 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)C 61 , fabricated by focused ion-beam etching. The femtosecond pump and probe method is adopted to measure the transmittance changes of the probe laser based on the photonic bandgap shift induced by the pump laser. Under resonant excitation, a large nonlinear refractive index of the order of 10 -9 cm 2 W -1 is obtained for the polymer composite. A switching time of 58.9 ps is maintained due to intermolecular charge transfer and exciton-exciton annihilation.

  9. PCBM : P3HT polymer composites for photonic crystal all-optical switching applications

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhiqiang; Hu Xiaoyong; Zhang Jiaxiang; Yang Hong; Gong Qihuang, E-mail:, E-mail: [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China)


    An all-optical switching with an operating pump intensity of 1 MW cm{sup -2} is realized in a one-dimensional nonlinear organic photonic crystal made of poly(3-hexylthiophene) doped with 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)C{sub 61}, fabricated by focused ion-beam etching. The femtosecond pump and probe method is adopted to measure the transmittance changes of the probe laser based on the photonic bandgap shift induced by the pump laser. Under resonant excitation, a large nonlinear refractive index of the order of 10{sup -9} cm{sup 2} W{sup -1} is obtained for the polymer composite. A switching time of 58.9 ps is maintained due to intermolecular charge transfer and exciton-exciton annihilation.


    Directory of Open Access Journals (Sweden)



    Full Text Available Optical burst switching (OBS is a circuit switching paradigm that provides very high throughput with reasonable delay. In OBS, the data burst size is not uniform and can be of any length. As the size of the data burst cannot be estimated in advance, several burst assembly techniques have been proposed. In this work, an estimation of data burst is done in advance which enable us to store the data burst. In this process, buffering of the data burst reduces average latency as well as it helps to improve the burst loss probability (BLP. Finally, the investigation indicates that the deflection routing along-with buffering of contending bursts provide an effective solution by decreasing the loss probability nearly 100 times.

  11. Traffic-aware Elastic Optical Networks to leverage Energy Savings

    DEFF Research Database (Denmark)

    Turus, Ioan; Fagertun, Anna Manolova; Dittmann, Lars


    Because of the static nature of the deployed optical networks, large energy wastage is experienced today in production networks such as Telecom networks . With power-adaptive optical interfaces and suitable grooming procedures, we propose the design of more energy efficient transport networks......-Europea n COST37 network, for both symbol-rate and modulation format adaptations significant savings are obtained . Mixed adaptation (jointly performing symbol-rate and modulation format adaptations) used together with optical grooming allows up to 4 4 % and 4 7 % power savings in DT17 and COST37 networks...

  12. Securing optical code-division multiple-access networks with a postswitching coding scheme of signature reconfiguration (United States)

    Huang, Jen-Fa; Meng, Sheng-Hui; Lin, Ying-Chen


    The optical code-division multiple-access (OCDMA) technique is considered a good candidate for providing optical layer security. An enhanced OCDMA network security mechanism with a pseudonoise (PN) random digital signals type of maximal-length sequence (M-sequence) code switching to protect against eavesdropping is presented. Signature codes unique to individual OCDMA-network users are reconfigured according to the register state of the controlling electrical shift registers. Examples of signature reconfiguration following state switching of the controlling shift register for both the network user and the eavesdropper are numerically illustrated. Dynamically changing the PN state of the shift register to reconfigure the user signature sequence is shown; this hinders eavesdroppers' efforts to decode correct data sequences. The proposed scheme increases the probability of eavesdroppers committing errors in decoding and thereby substantially enhances the degree of an OCDMA network's confidentiality.

  13. All-optical integrated logic operations based on chemical communication between molecular switches. (United States)

    Silvi, Serena; Constable, Edwin C; Housecroft, Catherine E; Beves, Jonathon E; Dunphy, Emma L; Tomasulo, Massimiliano; Raymo, Françisco M; Credi, Alberto


    Molecular logic gates process physical or chemical "inputs" to generate "outputs" based on a set of logical operators. We report the design and operation of a chemical ensemble in solution that behaves as integrated AND, OR, and XNOR gates with optical input and output signals. The ensemble is composed of a reversible merocyanine-type photoacid and a ruthenium polypyridine complex that functions as a pH-controlled three-state luminescent switch. The light-triggered release of protons from the photoacid is used to control the state of the transition-metal complex. Therefore, the two molecular switching devices communicate with one another through the exchange of ionic signals. By means of such a double (optical-chemical-optical) signal-transduction mechanism, inputs of violet light modulate a luminescence output in the red/far-red region of the visible spectrum. Nondestructive reading is guaranteed because the green light used for excitation in the photoluminescence experiments does not affect the state of the gate. The reset is thermally driven and, thus, does not involve the addition of chemicals and accumulation of byproducts. Owing to its reversibility and stability, this molecular device can afford many cycles of digital operation.

  14. A liquid lens switching-based motionless variable fiber-optic delay line (United States)

    Khwaja, Tariq Shamim; Reza, Syed Azer; Sheikh, Mumtaz


    We present a Variable Fiber-Optic Delay Line (VFODL) module capable of imparting long variable delays by switching an input optical/RF signal between Single Mode Fiber (SMF) patch cords of different lengths through a pair of Electronically Controlled Tunable Lenses (ECTLs) resulting in a polarization-independent operation. Depending on intended application, the lengths of the SMFs can be chosen accordingly to achieve the desired VFODL operation dynamic range. If so desired, the state of the input signal polarization can be preserved with the use of commercially available polarization-independent ECTLs along with polarization-maintaining SMFs (PM-SMFs), resulting in an output polarization that is identical to the input. An ECTL-based design also improves power consumption and repeatability. The delay switching mechanism is electronically-controlled, involves no bulk moving parts, and can be fully-automated. The VFODL module is compact due to the use of small optical components and SMFs that can be packaged compactly.

  15. Small-tilt micromirror-device-based multiwavelength three-dimensional 2X2 fiber optic switch structures (United States)

    Riza, Nabeel A.; Sumriddetchkajorn, Sarun


    Small-tilt micromirror-based 2 X 2 fiber optic switch array structures are proposed using fixed mirrors and fiber interconnections. A multiwavelength 2 X 2 fiber optic switch based on this small-tilt micromirror is experimentally demonstrated. The key innovation in this architecture is the use of a specially located fixed mirror to form a symmetric 2 X 2 retrorefractive switching structure. These 2 X 2 fiber optic switch structures can also provide a fault-tolerant design using a macropixel approach. A 2D digital micromirror device (2D-DMD) from Texas Instruments (TI) designed to operate in the visible band is used to represent the small-tilt micromirrors in our experimental demonstration. Multiwavelength switch operation is characterized by changing the operating wavelength of the tunable laser. The measured average optical coherent crosstalk is -22 dB with +/- 0.9 dB fluctuation over 40 nm, limited by the on-off ratio of the 2D-DMD. The measured average optical loss is 14.8 dB at a 1.55-micrometers operating wavelength, limited by the visible wavelength design TI 2D- DMD, three-port optical circulators, fiber adapters, and free-space-to-fiber coupling efficiency.

  16. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch. (United States)

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang


    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

  17. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch

    Directory of Open Access Journals (Sweden)

    Tao Huang


    Full Text Available Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

  18. Electro- and magneto-optical switching of defect modes in one- dimensional photonic crystals

    International Nuclear Information System (INIS)

    Arkhipkin, V. G.; Gunyakov, V. A.; Myslivets, S. A.; Zyryanov, V. Ya.; Shabanov, V. F.; Lee Wei


    The transmission spectra of polarized light waves in a photonic crystal/liquid crystal (PC/LC) cell placed between crossed polarizers and controlled by an electric or magnetic field have been studied experimentally and theoretically. Electro- and magneto-optical switching based on the interference of polarized defect modes has been demonstrated. The transmission spectra of the PC/LC cell have been calculated as a function of the voltage applied to the LC layer and the magnetic field strength. The results of the calculations agree well with the experimental data.

  19. 160 Gb/s all-optical AND gate using bulk SOA turbo-switched Mach-Zehnder interferometer (United States)

    Rendón-Salgado, I.; Gutiérrez-Castrejón, R.


    A novel architecture to implement an all-optical AND gate that relies on the use of a bulk semiconductor optical amplifier-based active Mach-Zehnder interferometer and the turbo-switch effect is presented. Its performance is analyzed in terms of relevant physical parameters and its power consumption calculated. Error-free operation at 160 Gb/s is numerically demonstrated, thus becoming the fastest AND gate of its kind. Accurate simulations using a well-tested design suite predict a 2.7 dB improvement in terms of quality factor when compared to a conventional scheme. The performance advantages of the proposed architecture remain when combined with a turbo-switched XOR gate: the resulting all-optical half-adder also operates error-free at 160 Gb/s. Our research work boosts the potential of interferometric turbo-switched photonic structures as ultra-fast all-optical processing elements.

  20. Testing and Modeling Ethernet Switches and Networks for Use in ATLAS High-level Triggers

    CERN Document Server

    Dobinson, Robert W; Korcyl, K; Le Vine, M J; Lokier, J; Martin, B; Meirosu, C; Saka, F; Vella, K


    The ATLAS second level trigger will use a multi-layered LAN network to transfer 5 Gbyte/s detector data from ~1500 buffers to a few hundred processors. A model of the network has been constructed to evaluate its performance. A key component of the network model is a model of an individual switch, reproducing the behavior measured in real devices. A small number of measurable parameters are used to model a variety of commercial Ethernet switches. Using parameters measured on real devices, the impact on the overall network performance is modeled. In the Atlas context, both 100 Mbit and Gigabit Ethernet links are required. A system is described which is capable of characterizing the behavior of commercial switches with the required number of nodes under traffic conditions resembling those to be encountered in the Atlas experiment. Fast Ethernet traffic is provided by a high density, custom built tester based on FPGAs, programmed in Handel-C and VHDL, while the Gigabit Ethernet traffic is generated using Alteon N...

  1. New value added to network services through software-defined optical core networking (United States)

    Yamada, Akiko; Nakatsugawa, Keiichi; Yamashita, Shinji; Soumiya, Toshio


    If an optical core network can be handled flexibly, it can be used not only as network infrastructure but also as a temporary broadband resource when customers have to transfer a large volume of data quickly, which will in turn lead to new WAN services. We propose "software-defined optical core networking", which achieves flexible optical network control, meaning it virtualizes optical transport network/wavelength-division multiplexing resources and controls them with resources from other layers, such as Ether/MPLS. We developed a testbed system and verified that users could request broadband resources easily, and our controller could quickly set up an optical channel data unit path for the request.

  2. Multicasting for all-optical multifiber networks (United States)

    Kã¶Ksal, Fatih; Ersoy, Cem


    All-optical wavelength-routed WDM WANs can support the high bandwidth and the long session duration requirements of the application scenarios such as interactive distance learning or on-line diagnosis of patients simultaneously in different hospitals. However, multifiber and limited sparse light splitting and wavelength conversion capabilities of switches result in a difficult optimization problem. We attack this problem using a layered graph model. The problem is defined as a k-edge-disjoint degree-constrained Steiner tree problem for routing and fiber and wavelength assignment of k multicasts. A mixed integer linear programming formulation for the problem is given, and a solution using CPLEX is provided. However, the complexity of the problem grows quickly with respect to the number of edges in the layered graph, which depends on the number of nodes, fibers, wavelengths, and multicast sessions. Hence, we propose two heuristics layered all-optical multicast algorithm [(LAMA) and conservative fiber and wavelength assignment (C-FWA)] to compare with CPLEX, existing work, and unicasting. Extensive computational experiments show that LAMA's performance is very close to CPLEX, and it is significantly better than existing work and C-FWA for nearly all metrics, since LAMA jointly optimizes routing and fiber-wavelength assignment phases compared with the other candidates, which attack the problem by decomposing two phases. Experiments also show that important metrics (e.g., session and group blocking probability, transmitter wavelength, and fiber conversion resources) are adversely affected by the separation of two phases. Finally, the fiber-wavelength assignment strategy of C-FWA (Ex-Fit) uses wavelength and fiber conversion resources more effectively than the First Fit.

  3. Optical technologies in extended-reach access networks

    DEFF Research Database (Denmark)

    Wong, Elaine; Amaya Fernández, Ferney Orlando; Tafur Monroy, Idelfonso


    The merging of access and metro networks has been proposed as a solution to lower the unit cost of customer bandwidth. This paper reviews some of the recent advances and challenges in extended-reach optical access networks....

  4. Fast Restoration Based on Alternative Wavelength Paths in a Wide Area Optical IP Network (United States)

    Matera, Francesco; Rea, Luca; Venezia, Matteo; Capanna, Lorenzo; Del Prete, Giuseppe

    In this article we describe an experimental investigation of IP network restoration based on wavelength recovery. We propose a procedure for metro and wide area gigabit Ethernet networks that allows us to route the wavelength in case of link failure to another existing link by exploiting wavelength division multiplexing in the fiber. Such a procedure is obtained by means of an optical switch that is managed by a loss-of-light signal that is generated by a router in case of link failure. Such a method has been tested in an IP network consisting of three core routers with optical gigabit Ethernet interfaces connected by means of 50-km-long single-mode fibers between Rome and Pomezia. Compared with other conventional restoration techniques, such as OSPF and MPLS, our method -in very fast (20 ms) and is compatible with real-time TV services and low-cost chips.

  5. Software-Programmed Optical Networking with Integrated NFV Service Provisioning

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Wang, Xi; Basu, Shrutarshi


    We showcase demonstrations of “program & compile” styled optical networking as well as open platforms & standards based NFV service provisioning using a proof-of-concept implementation of the Software-Programmed Networking Operating System (SPN OS).......We showcase demonstrations of “program & compile” styled optical networking as well as open platforms & standards based NFV service provisioning using a proof-of-concept implementation of the Software-Programmed Networking Operating System (SPN OS)....

  6. Polarisation-insensitive strip-loaded waveguide for electro-optic modulators and switches (United States)

    Sun, Jie; Chen, Changming; Gao, Lei; Sun, Xiaoqiang; Gao, Weinan; Ma, Chunsheng; Zhang, Daming


    A polarisation-insensitive electro-optic (EO) waveguide consisting of a dye-doped TiO2/SiO2 slab and a SU-8 strip-loaded rib is designed and fabricated. By optimizing the refractive index and size of waveguide, a trade-off between polarisation-insensitive condition and large EO efficiency (optical field interaction with the EO material) is obtained. The average transmission loss of the waveguide is less than 2.0 dB/cm. A Mach-Zehnder (M-Z) interferometer intensity modulator based on this waveguide with excellent poling stability is fabricated and measured, exhibiting 7 V half-wave voltage with 1.8 cm EO interaction length and 2.7 cm total length. This strip-loaded structure is proved to be a valuable application in EO modulators and switches.

  7. Optical nonlinearity, limiting and switching characteristics of novel ruthenium metal-organic complex (United States)

    Manjunatha, K. B.; Rajarao, Ravindra; Umesh, G.; Ramachandra Bhat, B.; Poornesh, P.


    We report the nonlinear optical properties of Ruthenium metal complex a promising organic material for use in scientific and technological applications. The thin films of newly synthesized ruthenium metal-organic complex were fabricated using spin coating technique. Z-scan and degenerate four wave mixing (DFWM) techniques used to extract the third-order nonlinear optical (NLO) parameters. The data reveals the investigated material exhibited relatively large NLO properties. The pump-probe experiments shows that the switch-on and off times of the material were in the order of μs at different pump intensities and the energy dependent transmission studies reveal good limiting property of the material in nanosecond regime.

  8. Switching behavior of droplets crossing nodes on a fiber network. (United States)

    Weyer, F; Duchesne, A; Vandewalle, N


    Lately, curious structures have been erected in arid regions: they are large nets able to catch water from fog. Tiny droplets condense on the mesh and are collected on the bottom of it. This innovative technology is crucial to obtain drinkable water in these inhospitable areas. Many studies aim to understand the behavior of droplets trapped on this entanglement of fibers. However, the motion of a droplet sliding on a network of inclined fibers and encountering several crossings when going down remains an open question. Here, we look at the path chosen by such a drop and, especially, we analyze its behavior at the different nodes of the array. We show that droplets may change from one fiber to another one depending on the slope and the diameter of these fibers. We prove that we can force a droplet to follow a specific path simply by carefully designing the fiber mesh. These findings are expected to provide a very convenient way to manipulate small droplets in applications from microfluidics to fog harvesting.

  9. Fault Detection for Wireless Networked Control Systems with Stochastic Switching Topology and Time Delay

    Directory of Open Access Journals (Sweden)

    Pengfei Guo


    Full Text Available This paper deals with the fault detection problem for a class of discrete-time wireless networked control systems described by switching topology with uncertainties and disturbances. System states of each individual node are affected not only by its own measurements, but also by other nodes’ measurements according to a certain network topology. As the topology of system can be switched in a stochastic way, we aim to design H∞ fault detection observers for nodes in the dynamic time-delay systems. By using the Lyapunov method and stochastic analysis techniques, sufficient conditions are acquired to guarantee the existence of the filters satisfying the H∞ performance constraint, and observer gains are derived by solving linear matrix inequalities. Finally, an illustrated example is provided to verify the effectiveness of the theoretical results.

  10. Observer design for switched recurrent neural networks: an average dwell time approach. (United States)

    Lian, Jie; Feng, Zhi; Shi, Peng


    This paper is concerned with the problem of observer design for switched recurrent neural networks with time-varying delay. The attention is focused on designing the full-order observers that guarantee the global exponential stability of the error dynamic system. Based on the average dwell time approach and the free-weighting matrix technique, delay-dependent sufficient conditions are developed for the solvability of such problem and formulated as linear matrix inequalities. The error-state decay estimate is also given. Then, the stability analysis problem for the switched recurrent neural networks can be covered as a special case of our results. Finally, four illustrative examples are provided to demonstrate the effectiveness and the superiority of the proposed methods. © 2011 IEEE

  11. Power Electronic Systems for Switched Reluctance Generator based Wind Farms and DC Networks

    DEFF Research Database (Denmark)

    Park, Kiwoo

    . Under these circumstances, research on dc network connection with a novel wind power generator system is presented in this thesis, which mainly consists of two major parts: control of a Switched Reluctance Generator (SRG) system and development of dc-dc converters for a dc network system in a wind farm...... for generators in wind turbine systems. However, despite all these advantageous features, the SRG has not been widely employed in wind energy applications. The most renowned technical disadvantages of the SRG are its nonlinearity and high torque ripples, which should be overcome to promote the application...... are presented to verify the feasibility and operational principles of the proposed converters. Finally, modelling and control of a dc-grid wind farm using one of the proposed dc-dc converters are presented. An average model provides insight into the overall performance of the system. Meanwhile, a switching...

  12. A Time-Varied Probabilistic ON/OFF Switching Algorithm for Cellular Networks

    KAUST Repository

    Rached, Nadhir B.


    In this letter, we develop a time-varied probabilistic on/off switching planning method for cellular networks to reduce their energy consumption. It consists in a risk-aware optimization approach that takes into consideration the randomness of the user profile associated with each base station (BS). The proposed approach jointly determines (i) the instants of time at which the current active BS configuration must be updated due to an increase or decrease of the network traffic load, and (ii) the set of minimum BSs to be activated to serve the networks’ subscribers. Probabilistic metrics modeling the traffic profile variation are developed to trigger this dynamic on/off switching operation. Selected simulation results are then performed to validate the proposed algorithm for different system parameters.

  13. Stability Analysis of Recurrent Neural Networks with Random Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Enwen Zhu


    Full Text Available In this paper, the exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs with random delay and Markovian switching. The evolution of the delay is modeled by a continuous-time homogeneous Markov process with a finite number of states. The main purpose of this paper is to establish easily verifiable conditions under which the random delayed recurrent neural network with Markovian switching is exponentially stable. The analysis is based on the Lyapunov-Krasovskii functional and stochastic analysis approach, and the conditions are expressed in terms of linear matrix inequalities, which can be readily checked by using some standard numerical packages such as the Matlab LMI Toolbox. A numerical example is exploited to show the usefulness of the derived LMI-based stability conditions.

  14. High-temperature optically activated GaAs power switching for aircraft digital electronic control (United States)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.


    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  15. 20 kA PFN capacitor bank with solid-state switching. [pulse forming network for plasma studies (United States)

    Posta, S. J.; Michels, C. J.


    A compact high-current pulse-forming network capacitor bank using paralleled silicon controlled rectifiers as switches is described. The maximum charging voltage of the bank is 1kV and maximum load current is 20 kA. The necessary switch equalization criteria and performance with dummy load and an arc plasma generator are described.

  16. Performance evaluation of a high-speed switched network for PACS (United States)

    Zhang, Randy H.; Tao, Wenchao; Huang, Lu J.; Valentino, Daniel J.


    We have replaced our shared-media Ethernet and FDDI network with a multi-tiered, switched network using OC-12 (622 Mbps) ATM for the network backbone, OC3 (155 Mbps) connections to high-end servers and display workstations, and switched 100/10 Mbps Ethernet for workstations and desktop computers. The purpose of this research was to help PACS designers and implementers understand key performance factors in a high- speed switched network by characterizing and evaluating its image delivery performance, specifically, the performance of socket-based TCP (Transmission Control Protocol) and DICOM 3.0 communications. A test network within the UCLA Clinical RIS/PACS was constructed using Sun UltraSPARC-II machines with ATM, Fast Ethernet, and Ethernet network interfaces. To identify performance bottlenecks, we evaluated network throughput for memory to memory, memory to disk, disk to memory, and disk to disk transfers. To evaluate the effect of file size, tests involving disks were further divided using sizes of small (514 KB), medium (8 MB), and large (16 MB) files. The observed maximum throughput for various network configurations using the TCP protocol was 117 Mbps for memory to memory and 88 MBPS for memory to disk. For disk to memory, the peak throughput was 98 Mbps using small files, 114 Mbps using medium files, and 116 Mbps using large files. The peak throughput for disk to disk became 64 Mbps using small files and 96 Mbps using medium and large files. The peak throughput using the DICOM 3.0 protocol was substantially lower in all categories. The measured throughput varied significantly among the tests when TCP socket buffer was raised above the default value. The optimal buffer size was approximately 16 KB or the TCP protocol and around 256 KB for the DICOM protocol. The application message size also displayed distinctive effects on network throughput when the TCP socket buffer size was varied. The throughput results for Fast Ethernet and Ethernet were expectedly

  17. Optical solutions for unbundled access network (United States)

    Bacîş Vasile, Irina Bristena


    The unbundling technique requires finding solutions to guarantee the economic and technical performances imposed by the nature of the services that can be offered. One of the possible solutions is the optic one; choosing this solution is justified for the following reasons: it optimizes the use of the access network, which is the most expensive part of a network (about 50% of the total investment in telecommunications networks) while also being the least used (telephone traffic on the lines has a low cost); it increases the distance between the master station/central and the terminal of the subscriber; the development of the services offered to the subscribers is conditioned by the subscriber network. For broadband services there is a need for support for the introduction of high-speed transport. A proper identification of the factors that must be satisfied and a comprehensive financial evaluation of all resources involved, both the resources that are in the process of being bought as well as extensions are the main conditions that would lead to a correct choice. As there is no single optimal technology for all development scenarios, which can take into account all access systems, a successful implementation is always done by individual/particularized scenarios. The method used today for the selection of an optimal solution is based on statistics and analysis of the various, already implemented, solutions, and on the experience that was already gained; the main evaluation criterion and the most unbiased one is the ratio between the cost of the investment and the quality of service, while serving an as large as possible number of customers.

  18. A note on the consensus finding problem in communication networks with switching topologies

    KAUST Repository

    Haskovec, Jan


    In this note, we discuss the problem of consensus finding in communication networks of agents with dynamically switching topologies. In particular, we consider the case of directed networks with unbalanced matrices of communication rates. We formulate sufficient conditions for consensus finding in terms of strong connectivity of the underlying directed graphs and prove that, given these conditions, consensus is found asymptotically. Moreover, we show that this consensus is an emergent property of the system, being encoded in its dynamics and not just an invariant of its initial configuration. © 2014 © 2014 Taylor & Francis.

  19. Survivable architectures for time and wavelength division multiplexed passive optical networks (United States)

    Wong, Elaine


    The increased network reach and customer base of next-generation time and wavelength division multiplexed PON (TWDM-PONs) have necessitated rapid fault detection and subsequent restoration of services to its users. However, direct application of existing solutions for conventional PONs to TWDM-PONs is unsuitable as these schemes rely on the loss of signal (LOS) of upstream transmissions to trigger protection switching. As TWDM-PONs are required to potentially use sleep/doze mode optical network units (ONU), the loss of upstream transmission from a sleeping or dozing ONU could erroneously trigger protection switching. Further, TWDM-PONs require its monitoring modules for fiber/device fault detection to be more sensitive than those typically deployed in conventional PONs. To address the above issues, three survivable architectures that are compliant with TWDM-PON specifications are presented in this work. These architectures combine rapid detection and protection switching against multipoint failure, and most importantly do not rely on upstream transmissions for LOS activation. Survivability analyses as well as evaluations of the additional costs incurred to achieve survivability are performed and compared to the unprotected TWDM-PON. Network parameters that impact the maximum achievable network reach, maximum split ratio, connection availability, fault impact, and the incremental reliability costs for each proposed survivable architecture are highlighted.

  20. Nonlinear optical switching behavior in the solid state: A theoretical investigation on anils

    KAUST Repository

    Ségerie, Audrey


    The linear (π(1)) and second-order nonlinear (π(2)) optical properties of two anil crystals, [N-(4-hydroxy)-salicylidene-amino-4-(methylbenzoate) and N-(3,5-di-tert- butylsalicylidene)-4-aminopyridine, denoted 4A and 4P, respectively], as well as the optical contrasts upon switching between their enol (E) and keto (K) forms, have been investigated by combining the molecular responses calculated using quantum chemistry methods and an electrostatic interaction scheme to account for the local field effects. It is found that intermolecular interactions impact differently the K/E optical contrasts in the two systems, which illustrates the importance of the supramolecular organization on the macroscopic responses. In 4A, the surrounding effects on the (hyper)polarizabilities are similar in the enol and keto forms, leading to optical contrasts very close to those of the isolated molecule. In contrast, an enhancement of the second-order susceptibility is observed in the keto form of 4P, leading to a large π(2)(K)/π(2)(E) contrast. Moreover, the π(2)(4A)/π(2)(4P) ratio for the most stable enol forms is obtained to be in good agreement with previous experimental investigations, which supports the reliability of the computational procedure. © 2011 American Chemical Society.

  1. The switch from relative to absolute phase centre variation model and its impact on coordinate estimates within local engineering networks (United States)

    Shi, Junbo; Guo, Jiming


    The IGS announced the switch from a relative to an absolute phase centre variation model on 5 October 2006 after detailed discussions concerning how the model switch would benefit global and regional networks, as well as the IGS products. However, there was no dedicated study on the major concern of this paper - the influence of the model switch on local engineering networks, especially on coordinate estimates, which are key factors in engineering constructions. The data set considered in this paper is a bridge control network with baselines ranging in length from 200 to 7000 metres, utilising different GPS antenna types. In addition, high correlations between coordinate estimates, antenna phase centre variations and troposphere parameters are also considered. The results demonstrate that the antenna model switch does not produce significant differences to coordinate estimates within local engineering networks.

  2. All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Chai, Zhen; Hu, Xiaoyong; Gong, Qihuang


    A low-power all-optical switching is presented based on the all-optical tunable Fano-like resonance in a two-dimensional nonlinear ferroelectric photonic crystal made of polycrystalline lithium niobate. An asymmetric Fano-like line shape is achieved in the transmission spectrum by using two cascaded and uncoupled photonic crystal microcavities. The physical mechanism underlying the all-optical switching is attributed to the dynamic shift of the Fano-like resonance peak caused by variations in the dispersion relations of the photonic crystal structure induced by pump light. A large switching efficiency of 61% is reached under excitation of a weak pump light with an intensity as low as 1 MW cm −2 . (paper)

  3. Technologies for all-optical wavelength conversion in DWDM networks

    DEFF Research Database (Denmark)

    Wolfson, David; Fjelde, Tina; Kloch, Allan


    Different techniques for all-optical wavelength conversion are reviewed and the advantages and disadvantages seen from a system perspective are highlighted. All-optical wavelength conversion will play a major role in making cost-effective network nodes in future high-speed WDM networks, where fun...

  4. Satellite-matrix-switched, time-division-multiple-access network simulator (United States)

    Ivancic, William D.; Andro, Monty; Nagy, Lawrence A.; Budinger, James M.; Shalkhauser, Mary Jo

    A versatile experimental Ka-band network simulator has been implemented at the NASA Lewis Research Center to demonstrate and evaluate a satellite-matrix-switched, time-division-multiple-access (SMS-TDMA) network and to evaluate future digital ground terminals and radiofrequency (RF) components. The simulator was implemented by using proof-of-concept RF components developed under NASA contracts and digital ground terminal and link simulation hardware developed at Lewis. This simulator provides many unique capabilities such as satellite range delay and variation simulation and rain fade simulation. All network parameters (e.g., signal-to-noise ratio, satellite range variation rate, burst density, and rain fade) are controlled and monitored by a central computer. The simulator is presently configured as a three-ground-terminal SMS-TDMA network.

  5. Stochastic Spiking Neural Networks Enabled by Magnetic Tunnel Junctions: From Nontelegraphic to Telegraphic Switching Regimes (United States)

    Liyanagedera, Chamika M.; Sengupta, Abhronil; Jaiswal, Akhilesh; Roy, Kaushik


    Stochastic spiking neural networks based on nanoelectronic spin devices can be a possible pathway to achieving "brainlike" compact and energy-efficient cognitive intelligence. The computational model attempt to exploit the intrinsic device stochasticity of nanoelectronic synaptic or neural components to perform learning or inference. However, there has been limited analysis on the scaling effect of stochastic spin devices and its impact on the operation of such stochastic networks at the system level. This work attempts to explore the design space and analyze the performance of nanomagnet-based stochastic neuromorphic computing architectures for magnets with different barrier heights. We illustrate how the underlying network architecture must be modified to account for the random telegraphic switching behavior displayed by magnets with low barrier heights as they are scaled into the superparamagnetic regime. We perform a device-to-system-level analysis on a deep neural-network architecture for a digit-recognition problem on the MNIST data set.

  6. All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS2) deposited tapered fiber. (United States)

    Wu, Kan; Guo, Chaoshi; Wang, Hao; Zhang, Xiaoyan; Wang, Jun; Chen, Jianping


    All-optical phase shifters and switches play an important role for various all-optical applications including all-optical signal processing, sensing and communication. In this paper, we demonstrate a fiber all-optical phase shifter using few-layer 2D material tungsten disulfide (WS 2 ) deposited on a tapered fiber. WS 2 absorbs injected 980 nm pump (control light) and generates heat, which changes the refractive index of both WS 2 and tapered fiber due to thermo-optic effect and achieves a maximum phase shift of 6.1π near 1550 nm. The device has a loss of 3.7 dB. By constructing a Mach-Zehnder interferometer with WS 2 based phase shifter in one arm, an all-optical switch is also obtained with an extinction ratio of 15 dB and a rise time of 7.3 ms. This all fiber low-cost and compact optical phase shifter and switch demonstrates the potential of 2D transition metal dichalcogenides for all-optical signal processing devices.

  7. SONEP: A Software-Defined Optical Network Emulation Platform

    DEFF Research Database (Denmark)

    Azodolmolky, Siamak; Petersen, Martin Nordal; Fagertun, Anna Manolova


    the lightweight system virtualization, which is recently supported in modern operating systems, in this work we present the architecture of a Software-Defined Network (SDN) emulation platform for transport optical networks and investigate its usage in a use-case scenario. To the best of our knowledge......, this is for the first time that an SDN-based emulation platform is proposed for modeling and performance evaluation of optical networks. Coupled with recent trend of extension of SDN towards transport (optical) networks, the presented tool can facilitate the evaluation of innovative idea before actual implementations...

  8. Next Generation Flexible and Cognitive Heterogeneous Optical Networks

    DEFF Research Database (Denmark)

    Tomkos, Ioannis; Angelou, Marianna; Barroso, Ramón J. Durán


    Optical networking is the cornerstone of the Future Internet as it provides the physical infrastructure of the core backbone networks. Recent developments have enabled much better quality of service/experience for the end users, enabled through the much higher capacities that can be supported...... the capabilities of the Future Internet. In this book chapter, we highlight the latest activities of the optical networking community and in particular what has been the focus of EU funded research. The concepts of flexible and cognitive optical networks are introduced and their key expected benefits...

  9. Optical-Correlator Neural Network Based On Neocognitron (United States)

    Chao, Tien-Hsin; Stoner, William W.


    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  10. Physical-layer network coding in coherent optical OFDM systems. (United States)

    Guan, Xun; Chan, Chun-Kit


    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  11. Experimental validation of efficient methods for the prediction of patterning effects in SOA-based optical switches

    DEFF Research Database (Denmark)

    Xu, Jing; Ding, Yunhong; Xue, Weiqi


    We experimentally investigate and verify simple and efficient methods for characterizing the patterning effects (PE) of SOA-based optical switches. The onset of PE saturation is well predicted by the theory. an experimental method to capture the maximum PE is developed.......We experimentally investigate and verify simple and efficient methods for characterizing the patterning effects (PE) of SOA-based optical switches. The onset of PE saturation is well predicted by the theory. an experimental method to capture the maximum PE is developed....

  12. Adaptive Neural Networks Prescribed Performance Control Design for Switched Interconnected Uncertain Nonlinear Systems. (United States)

    Li, Yongming; Tong, Shaocheng


    In this paper, an adaptive neural networks (NNs)-based decentralized control scheme with the prescribed performance is proposed for uncertain switched nonstrict-feedback interconnected nonlinear systems. It is assumed that nonlinear interconnected terms and nonlinear functions of the concerned systems are unknown, and also the switching signals are unknown and arbitrary. A linear state estimator is constructed to solve the problem of unmeasured states. The NNs are employed to approximate unknown interconnected terms and nonlinear functions. A new output feedback decentralized control scheme is developed by using the adaptive backstepping design technique. The control design problem of nonlinear interconnected switched systems with unknown switching signals can be solved by the proposed scheme, and only a tuning parameter is needed for each subsystem. The proposed scheme can ensure that all variables of the control systems are semi-globally uniformly ultimately bounded and the tracking errors converge to a small residual set with the prescribed performance bound. The effectiveness of the proposed control approach is verified by some simulation results.

  13. Controlling Depth of Cellular Quiescence by an Rb-E2F Network Switch

    Directory of Open Access Journals (Sweden)

    Jungeun Sarah Kwon


    Full Text Available Quiescence is a non-proliferative cellular state that is critical to tissue repair and regeneration. Although often described as the G0 phase, quiescence is not a single homogeneous state. As cells remain quiescent for longer durations, they move progressively deeper and display a reduced sensitivity to growth signals. Deep quiescent cells, unlike senescent cells, can still re-enter the cell cycle under physiological conditions. Mechanisms controlling quiescence depth are poorly understood, representing a currently underappreciated layer of complexity in growth control. Here, we show that the activation threshold of a Retinoblastoma (Rb-E2F network switch controls quiescence depth. Particularly, deeper quiescent cells feature a higher E2F-switching threshold and exhibit a delayed traverse through the restriction point (R-point. We further show that different components of the Rb-E2F network can be experimentally perturbed, following computer model predictions, to coarse- or fine-tune the E2F-switching threshold and drive cells into varying quiescence depths.

  14. Consensus in networks of multiagents with cooperation and competition via stochastically switching topologies. (United States)

    Liu, Bo; Chen, Tianping


    In this brief, we provide some theoretical analysis of the consensus for networks of agents via stochastically switching topologies. We consider both discrete-time case and continuous-time case. The main contribution of this brief is that the underlying graph topology is more general in both cases than those appeared in previous papers. The weight matrix of the coupling graph is not assumed to be nonnegative or Metzler. That is, in the model discussed here, the off-diagonal entries of the weight matrix of the coupling graph may be negative. This means that sometimes, the coupling may not benefit, but may prevent the consensus of the coupled agents. In the continuous-time case, the switching time intervals also take a more general form of random variables than those appeared in previous works. We focus our study on such networks and give sufficient conditions that ensure almost sure consensus in both discrete-time case and continuous-time case. As applications, we give several corollaries under more specific assumptions, i.e., the switching can be some independent and identically distributed (i.i.d.) random variable series or a Markov chain. Numerical examples are also provided in both discrete-time and continuous-time cases to demonstrate the validity of our theoretical results.

  15. Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy (United States)

    Sun, Ran; Wang, Jihe; Zhang, Dexin; Shao, Xiaowei


    This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.

  16. Design of frequency-encoded data-based optical master-slave-JK flip-flop using polarization switch (United States)

    Mandal, Sumana; Mandal, Dhoumendra; Mandal, Mrinal Kanti; Garai, Sisir Kumar


    An optical data processing and communication system provides enormous potential bandwidth and a very high processing speed, and it can fulfill the demands of the present generation. For an optical computing system, several data processing units that work in the optical domain are essential. Memory elements are undoubtedly essential to storing any information. Optical flip-flops can store one bit of optical information. From these flip-flop registers, counters can be developed. Here, the authors proposed an optical master-slave (MS)-JK flip-flop with the help of two-input and three-input optical NAND gates. Optical NAND gates have been developed using semiconductor optical amplifiers (SOAs). The nonlinear polarization switching property of an SOA has been exploited here, and it acts as a polarization switch in the proposed scheme. A frequency encoding technique is adopted for representing data. A specific frequency of an optical signal represents a binary data bit. This technique of data representation is helpful because frequency is the fundamental property of a signal, and it remains unaltered during reflection, refraction, absorption, etc. throughout the data propagation. The simulated results enhance the admissibility of the scheme.

  17. Stability analysis in a ROADM-based multi-channel quasi-ring optical network (United States)

    Tsai, Jimmy; Wang, Zheng; Pan, Yan; Kilper, Daniel C.; Pavel, Lacra


    Future networks require dynamic physical layer capabilities to enable rapid and on-demand reconfiguration, while ensuring stability. This paper addresses stability analysis of a ROADM-based quasi-ring optical network. A ROADM-based quasi-ring is the simplest configuration in which channel power excursions can self-propagate indefinitely and be unstable. This network configuration is composed of two reconfigurable optical add-drop multiplexers (ROADMs) each equipped with a constant gain optical amplifier and a wavelength selective switch. Over the amplified spans, two sets of lightpaths (added/dropped by opposite ROADMs) are transmitted in mirror image of each other and form an overlapping ring. Sufficient stability conditions for the quasi-ring as well as an L2 bound for the channel power excursions are derived based on Lyapunov analysis and the small gain theorem. These conditions are functions of the amplifier gain coupling quantified by its Lipschitz constant. Numerical results that verify and compare the theoretical results are provided. The platform used is Bell Lab's A Transparent Optical Mesh (ATOM) simulator, set up for dynamic network loading and input channel disturbance scenarios.

  18. On the Design of Energy Efficient Optical Networks with Software Defined Networking Control Across Core and Access Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Yan, Ying; Dittmann, Lars


    This paper presents a Software Defined Networking (SDN) control plane based on an overlay GMPLS control model. The SDN control platform manages optical core networks (WDM/DWDM networks) and the associated access networks (GPON networks), which makes it possible to gather global information...

  19. All-optical virtual private network and ONUs communication in optical OFDM-based PON system. (United States)

    Zhang, Chongfu; Huang, Jian; Chen, Chen; Qiu, Kun


    We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible. © 2011 Optical Society of America

  20. Energy-Efficient Distributed Filtering in Sensor Networks: A Unified Switched System Approach. (United States)

    Zhang, Dan; Shi, Peng; Zhang, Wen-An; Yu, Li


    This paper is concerned with the energy-efficient distributed filtering in sensor networks, and a unified switched system approach is proposed to achieve this goal. For the system under study, the measurement is first sampled under nonuniform sampling periods, then the local measurement elements are selected and quantized for transmission. Then, the transmission rate is further reduced to save constrained power in sensors. Based on the switched system approach, a unified model is presented to capture the nonuniform sampling, the measurement size reduction, the transmission rate reduction, the signal quantization, and the measurement missing phenomena. Sufficient conditions are obtained such that the filtering error system is exponentially stable in the mean-square sense with a prescribed H∞ performance level. Both simulation and experiment studies are given to show the effectiveness of the proposed new design technique.

  1. Transient Evolutional Dynamics of Quantum-Dot Molecular Phase Coherence for Sensitive Optical Switching (United States)

    Shen, Jian Qi; Gu, Jing


    Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.

  2. Relative multiplexing for minimising switching in linear-optical quantum computing (United States)

    Gimeno-Segovia, Mercedes; Cable, Hugo; Mendoza, Gabriel J.; Shadbolt, Pete; Silverstone, Joshua W.; Carolan, Jacques; Thompson, Mark G.; O'Brien, Jeremy L.; Rudolph, Terry


    Many existing schemes for linear-optical quantum computing (LOQC) depend on multiplexing (MUX), which uses dynamic routing to enable near-deterministic gates and sources to be constructed using heralded, probabilistic primitives. MUXing accounts for the overwhelming majority of active switching demands in current LOQC architectures. In this manuscript we introduce relative multiplexing (RMUX), a general-purpose optimisation which can dramatically reduce the active switching requirements for MUX in LOQC, and thereby reduce hardware complexity and energy consumption, as well as relaxing demands on performance for various photonic components. We discuss the application of RMUX to the generation of entangled states from probabilistic single-photon sources, and argue that an order of magnitude improvement in the rate of generation of Bell states can be achieved. In addition, we apply RMUX to the proposal for percolation of a 3D cluster state by Gimeno-Segovia et al (2015 Phys. Rev. Lett. 115 020502), and we find that RMUX allows an 2.4× increase in loss tolerance for this architecture.

  3. Mechanical Switching of Aromaticity and Homoaromaticity in Molecular Optical Force Sensors for Polymers. (United States)

    Stauch, Tim


    The sensing of mechanical stress in polymers is indispensable for investigating the origin and propagation of cracks that lead to material failure and for designing mechanically responsive polymers. Here the unique approaches of using the force-induced switching of aromaticity and homoaromaticity in molecular optical force sensors for the real time measurement of mechanical forces acting in stretched polymers are suggested. The mechanical switching of aromaticity in Dewar benzene is an irreversible event, whereas the degree of pi-orbital overlap in homoaromatic compounds like homotropylium can be adjusted progressively over a wide range of forces. Using computational methods, it is demonstrated that both approaches lead to significant changes in the visible part of the UV/VIS spectra of the force sensors upon application of weak forces (pN-nN). Polymers that incorporate such molecular force sensors therefore change their color well before material failure occurs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. OCDMA PON supporting ONU inter-networking based on gain-switched Fabry-Pérot lasers with external dual-wavelength injection. (United States)

    Liu, Jie; Zeng, Duoduo; Guo, Changjian; Xu, Lei; He, Sailing


    We propose and demonstrate an OCDMA-PON scheme with optical network unit (ONU) internetworking capability, which utilizes low-cost gain-switched Fabry-Pérot (GS-FP) lasers with external dual-wavelength injection as the pulse sources on the ONU side. The injection-generated optical pulses in two wavelengths from the same GS-FP laser are used separately for the PON uplink transmission and ONU internetworking. Experimental results based on a two-user OCDMA system confirm the feasibility of the proposed scheme. With OCDMA technologies, separate ONU-internetworking groups can be established using different optical codes. We also give experiment results to analyze the performance of the ONU-ONU transmission at different power of interference signals when two ONU-internetworking groups are present in the OCDMA-PON.

  5. Photonics in switching: enabling technologies and subsystem design

    DEFF Research Database (Denmark)

    Vlachos, K.; Raffaelli, C.; Aleksic, S.


    This paper describes recent research activities and results in the area of photonic switching carried out within the framework of the EU-funded e-Photon/ONe + network of excellence, Virtual Department on Optical Switching. Technology aspects of photonics in switching and, in particular, recent...... advances in wavelength conversion, ring resonators, and packet switching and processing subsystems are presented as the building blocks for the implementation of a high-performance router for the next-generation Internet....

  6. Experimental Results of Network-Assisted Interference Suppression Scheme Using Adaptive Beam-Tilt Switching

    Directory of Open Access Journals (Sweden)

    Tomoki Murakami


    Full Text Available This paper introduces a network-assisted interference suppression scheme using beam-tilt switching per frame for wireless local area network systems and its effectiveness in an actual indoor environment. In the proposed scheme, two access points simultaneously transmit to their own desired station by adjusting angle of beam-tilt including transmit power assisted from network server for the improvement of system throughput. In the conventional researches, it is widely known that beam-tilt is effective for ICI suppression in the outdoor scenario. However, the indoor effectiveness of beam-tilt for ICI suppression has not yet been indicated from the experimental evaluation. Thus, this paper indicates the effectiveness of the proposed scheme by analyzing multiple-input multiple-output channel matrices from experimental measurements in an office environment. The experimental results clearly show that the proposed scheme offers higher system throughput than the conventional scheme using just transmit power control.

  7. Cosine bend-linear waveguide digital optical switch with parabolic heater (United States)

    Yulianti, Ian; Supa'at, Abu Sahmah Mohd.; Idrus, Sevia M.; Al-hetar, Abdulaziz M.


    A new digital optical switch (DOS) with large branching angle and short device length that exhibits low crosstalk and low power consumption is demonstrated. The Y-branch shape was optimized by introducing constant effective refractive index difference between branches (Δ N eff) along the propagation direction through beam propagation method (BPM) scheme. To provide decreasing local branching angle that results in the improvement of the crosstalk, two modified cosine bend was introduced to form the Y-branch. The modified cosine branch was then connected to a linear branch. The heater electrode was optimized so that the temperature fields induce a constant Δ N eff to satisfy initial assumption in designing the Y-branch shape. With branching angle of 0.299° and device length of only 5 mm, the simulation shows that the device could exhibits crosstalk of -33 dB at calculated required power of only 26 mW.

  8. Voltage-controlled optical switch in planar nematic liquid crystal film (United States)

    Shih, Chia-Chi; Chen, Yu-Jen; Wu, Sean; Tsai, Cheng-Che; Jiang, I.-Min


    This study presents an integrated device that consists of a directional coupler and an electro-optic switch. The device is designed to include a nematic liquid crystal cell, comprising a grating-like electrode. Applying the appropriate voltage to the cell yields a periodically distributed refractive index. An incident polarized beam will couple to an adjacent channel if it is parallel to the channel. The coupling efficiency is controlled by applied voltage. An obliquely injected polarized beam will be reflected and refracted in the channel, and propagated along a curved path. The route of the beam can be controlled by applying the voltage. A multiport routing was achieved for voltage modulation. In addition, the distribution of refractive index is also investigated by employing conoscopic technique experimentally and numerically.

  9. Fast frequency hopping codes applied to SAC optical CDMA network (United States)

    Tseng, Shin-Pin


    This study designed a fast frequency hopping (FFH) code family suitable for application in spectral-amplitude-coding (SAC) optical code-division multiple-access (CDMA) networks. The FFH code family can effectively suppress the effects of multiuser interference and had its origin in the frequency hopping code family. Additional codes were developed as secure codewords for enhancing the security of the network. In considering the system cost and flexibility, simple optical encoders/decoders using fiber Bragg gratings (FBGs) and a set of optical securers using two arrayed-waveguide grating (AWG) demultiplexers (DeMUXs) were also constructed. Based on a Gaussian approximation, expressions for evaluating the bit error rate (BER) and spectral efficiency (SE) of SAC optical CDMA networks are presented. The results indicated that the proposed SAC optical CDMA network exhibited favorable performance.

  10. Simulation and measurement of optical access network with different types of optical-fiber amplifiers (United States)

    Latal, Jan; Vogl, Jan; Koudelka, Petr; Vitasek, Jan; Siska, Petr; Liner, Andrej; Papes, Martin; Vasinek, Vladimir


    The optical access networks are nowadays swiftly developing in the telecommunications field. These networks can provide higher data transfer rates, and have great potential to the future in terms of transmission possibilities. Many local internet providers responded to these facts and began gradually installing optical access networks into their originally built networks, mostly based on wireless communication. This allowed enlargement of possibilities for end-users in terms of high data rates and also new services such as Triple play, IPTV (Internet Protocol television) etc. However, with this expansion and building-up is also related the potential of reach in case of these networks. Big cities, such as Prague, Brno, Ostrava or Olomouc cannot be simply covered, because of their sizes and also because of their internal regulations given by various organizations in each city. Standard logical and also physical reach of EPON (IEEE 802.3ah - Ethernet Passive Optical Network) optical access network is about 20 km. However, for networks based on Wavelength Division Multiplex the reach can be up to 80 km, if the optical-fiber amplifier is inserted into the network. This article deals with simulation of different types of amplifiers for WDM-PON (Wavelength Division Multiplexing-Passive Optical Network) network in software application Optiwave OptiSystem and than are the values from the application and from real measurement compared.

  11. Highly Reliable PON Optical Splitters for Optical Access Networks in Outside Environments (United States)

    Watanabe, Hiroshi; Araki, Noriyuki; Fujimoto, Hisashi

    Broadband optical access services are spreading throughout the world, and the number of fiber to the home (FTTH) subscribers is increasing rapidly. Telecom operators are constructing passive optical networks (PONs) to provide optical access services. Externally installed optical splitters for PONs are very important passive devices in optical access networks, and they must provide satisfactory performance as outdoor plant over long periods. Therefore, we calculate the failure rate of optical access networks and assign a failure rate to the optical splitters in optical access networks. The maximum cumulative failure rate of 1 × 8 optical splitters was calculated as 0.025 for an optical access fiber length of 2.1km and a 20-year operating lifetime. We examined planar lightwave circuit (PLC) type optical splitters for use as outside plant in terms of their optical characteristics and environmental reliability. We confirmed that PLC type optical splitters have sufficient optical performance for a PON splitter and sufficient reliability as outside plant in accordance with ITU-T standard values. We estimated the lifetimes of three kinds of PLC type optical splitters by using accelerated aging tests. The estimated failure rate of these splitters installed in optical access networks was below the target value for the cumulative failure rate, and we confirmed that they have sufficient reliability to maintain the quality of the network service. We developed 1 × 8 optical splitter modules with plug and socket type optical connectors and optical fiber cords for optical aerial closures designed for use as outside plant. These technologies make it easy to install optical splitters in an aerial optical closure. The optical splitter modules have sufficient optical performance levels for PONs because the insertion loss at the commercially used wavelengths of 1.31 and 1.55µm is less than the criterion established by ITU-T Recommendation G.671 for optical splitters. We performed a

  12. Effect of temperature on the performance of a bipolar transistor carrier-injected optical waveguide modulator/switch. (United States)

    Okada, Y


    The effect of ambient temperature on the performance of a GaAs/AlGaAs heterojunction bipolar transistor waveguide structure carrier-injected optical intensity modulator/switch is discussed. An increase in the temperature increases the achievable optical modulation ratio at the expense of increased absorption loss, and vice versa. Analysis also shows that for practical use a tolerable temperature change should be no more than approximately 10 degrees C.

  13. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network. (United States)

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei


    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.

  14. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb. (United States)

    Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu


    A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

  15. Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection. (United States)

    Kwack, Myung-Joon; Tanemura, Takuo; Higo, Akio; Nakano, Yoshiaki


    A strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection is realized on InP by using the phased-array scheme for the first time. The matrix switch architecture consists of over 200 functional devices such as star couplers, phase-shifters and so on without any waveguide cross-section. We demonstrate ultra-broad optical bandwidth covering the entire C-band through several Input/Output ports combination with extinction ratio performance of more than 20dB. Also, nanoseconds reconfiguration time was successfully achieved by dynamic switching experiment. Error-free transmission was verified for 40-Gbps (10-Gbps × 4ch) WDM signal.

  16. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. (United States)

    Zhang, Qihang; Zhang, Yifei; Li, Junying; Soref, Richard; Gu, Tian; Hu, Juejun


    In this Letter, we propose a broadband, nonvolatile on-chip switch design in the telecommunication C-band with record low loss and crosstalk. The unprecedented device performance builds on: 1) a new optical phase change material (O-PCM) Ge 2 Sb 2 Se 4 Te 1 (GSST), which exhibits significantly reduced optical attenuation compared to traditional O-PCMs, and 2) a nonperturbative design that enables low-loss device operation beyond the classical figure-of-merit (FOM) limit. We further demonstrate that the 1-by-2 and 2-by-2 switches can serve as basic building blocks to construct nonblocking and nonvolatile on-chip switching fabric supporting arbitrary numbers of input and output ports.

  17. Emergence of switch-like behavior in a large family of simple biochemical networks.

    Directory of Open Access Journals (Sweden)

    Dan Siegal-Gaskins


    Full Text Available Bistability plays a central role in the gene regulatory networks (GRNs controlling many essential biological functions, including cellular differentiation and cell cycle control. However, establishing the network topologies that can exhibit bistability remains a challenge, in part due to the exceedingly large variety of GRNs that exist for even a small number of components. We begin to address this problem by employing chemical reaction network theory in a comprehensive in silico survey to determine the capacity for bistability of more than 40,000 simple networks that can be formed by two transcription factor-coding genes and their associated proteins (assuming only the most elementary biochemical processes. We find that there exist reaction rate constants leading to bistability in ∼90% of these GRN models, including several circuits that do not contain any of the TF cooperativity commonly associated with bistable systems, and the majority of which could only be identified as bistable through an original subnetwork-based analysis. A topological sorting of the two-gene family of networks based on the presence or absence of biochemical reactions reveals eleven minimal bistable networks (i.e., bistable networks that do not contain within them a smaller bistable subnetwork. The large number of previously unknown bistable network topologies suggests that the capacity for switch-like behavior in GRNs arises with relative ease and is not easily lost through network evolution. To highlight the relevance of the systematic application of CRNT to bistable network identification in real biological systems, we integrated publicly available protein-protein interaction, protein-DNA interaction, and gene expression data from Saccharomyces cerevisiae, and identified several GRNs predicted to behave in a bistable fashion.

  18. Hybrid Spectral Unmixing: Using Artificial Neural Networks for Linear/Non-Linear Switching

    Directory of Open Access Journals (Sweden)

    Asmau M. Ahmed


    Full Text Available Spectral unmixing is a key process in identifying spectral signature of materials and quantifying their spatial distribution over an image. The linear model is expected to provide acceptable results when two assumptions are satisfied: (1 The mixing process should occur at macroscopic level and (2 Photons must interact with single material before reaching the sensor. However, these assumptions do not always hold and more complex nonlinear models are required. This study proposes a new hybrid method for switching between linear and nonlinear spectral unmixing of hyperspectral data based on artificial neural networks. The neural networks was trained with parameters within a window of the pixel under consideration. These parameters are computed to represent the diversity of the neighboring pixels and are based on the Spectral Angular Distance, Covariance and a non linearity parameter. The endmembers were extracted using Vertex Component Analysis while the abundances were estimated using the method identified by the neural networks (Vertex Component Analysis, Fully Constraint Least Square Method, Polynomial Post Nonlinear Mixing Model or Generalized Bilinear Model. Results show that the hybrid method performs better than each of the individual techniques with high overall accuracy, while the abundance estimation error is significantly lower than that obtained using the individual methods. Experiments on both synthetic dataset and real hyperspectral images demonstrated that the proposed hybrid switch method is efficient for solving spectral unmixing of hyperspectral images as compared to individual algorithms.

  19. An intelligent switch with back-propagation neural network based hybrid power system (United States)

    Perdana, R. H. Y.; Fibriana, F.


    The consumption of conventional energy such as fossil fuels plays the critical role in the global warming issues. The carbon dioxide, methane, nitrous oxide, etc. could lead the greenhouse effects and change the climate pattern. In fact, 77% of the electrical energy is generated from fossil fuels combustion. Therefore, it is necessary to use the renewable energy sources for reducing the conventional energy consumption regarding electricity generation. This paper presents an intelligent switch to combine both energy resources, i.e., the solar panels as the renewable energy with the conventional energy from the State Electricity Enterprise (PLN). The artificial intelligence technology with the back-propagation neural network was designed to control the flow of energy that is distributed dynamically based on renewable energy generation. By the continuous monitoring on each load and source, the dynamic pattern of the intelligent switch was better than the conventional switching method. The first experimental results for 60 W solar panels showed the standard deviation of the trial at 0.7 and standard deviation of the experiment at 0.28. The second operation for a 900 W of solar panel obtained the standard deviation of the trial at 0.05 and 0.18 for the standard deviation of the experiment. Moreover, the accuracy reached 83% using this method. By the combination of the back-propagation neural network with the observation of energy usage of the load using wireless sensor network, each load can be evenly distributed and will impact on the reduction of conventional energy usage.

  20. Molecular transport network security using multi-wavelength optical spins. (United States)

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P


    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established.

  1. A sweep algorithm for massively parallel simulation of circuit-switched networks (United States)

    Gaujal, Bruno; Greenberg, Albert G.; Nicol, David M.


    A new massively parallel algorithm is presented for simulating large asymmetric circuit-switched networks, controlled by a randomized-routing policy that includes trunk-reservation. A single instruction multiple data (SIMD) implementation is described, and corresponding experiments on a 16384 processor MasPar parallel computer are reported. A multiple instruction multiple data (MIMD) implementation is also described, and corresponding experiments on an Intel IPSC/860 parallel computer, using 16 processors, are reported. By exploiting parallelism, our algorithm increases the possible execution rate of such complex simulations by as much as an order of magnitude.

  2. A plasma switch synchronous closing operations in high-voltage networks

    International Nuclear Information System (INIS)

    Mourente, P.


    Overvoltages and overcurrent arising in energizing or in fast reclosing operations are a concerning problem in high-voltage networks. Reduction of overvoltages and overcurrents is possible using the synchronous closing technique. Some attempts have been done to perform the synchronous closing with conventional circuit-breakers. But since the requirements to synchronous closing and to current interruption are very contradictory this technique is not yet a common practice. Three simple cases may be used as examples to show the benefits of synchronous closing; energizaton of grounded star capacitor bank; back-to-back switching of large capacitor banks; and fast reclosing on transmission lines

  3. Network coding based joint signaling and dynamic bandwidth allocation scheme for inter optical network unit communication in passive optical networks (United States)

    Wei, Pei; Gu, Rentao; Ji, Yuefeng


    As an innovative and promising technology, network coding has been introduced to passive optical networks (PON) in recent years to support inter optical network unit (ONU) communication, yet the signaling process and dynamic bandwidth allocation (DBA) in PON with network coding (NC-PON) still need further study. Thus, we propose a joint signaling and DBA scheme for efficiently supporting differentiated services of inter ONU communication in NC-PON. In the proposed joint scheme, the signaling process lays the foundation to fulfill network coding in PON, and it can not only avoid the potential threat to downstream security in previous schemes but also be suitable for the proposed hybrid dynamic bandwidth allocation (HDBA) scheme. In HDBA, a DBA cycle is divided into two sub-cycles for applying different coding, scheduling and bandwidth allocation strategies to differentiated classes of services. Besides, as network traffic load varies, the entire upstream transmission window for all REPORT messages slides accordingly, leaving the transmission time of one or two sub-cycles to overlap with the bandwidth allocation calculation time at the optical line terminal (the OLT), so that the upstream idle time can be efficiently eliminated. Performance evaluation results validate that compared with the existing two DBA algorithms deployed in NC-PON, HDBA demonstrates the best quality of service (QoS) support in terms of delay for all classes of services, especially guarantees the end-to-end delay bound of high class services. Specifically, HDBA can eliminate queuing delay and scheduling delay of high class services, reduce those of lower class services by at least 20%, and reduce the average end-to-end delay of all services over 50%. Moreover, HDBA also achieves the maximum delay fairness between coded and uncoded lower class services, and medium delay fairness for high class services.

  4. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    International Nuclear Information System (INIS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.


    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  5. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    Energy Technology Data Exchange (ETDEWEB)

    Tartan, Chloe C., E-mail:, E-mail:; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J., E-mail:, E-mail: [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)


    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  6. "Cul-de-sac" microstrip resonators for high-speed integrated optical commutator switches (United States)

    Jaeger, Nicolas A.; Chen, Mingche


    A novel microstrip resonator structure for use with integrated Y-branch optical modulators fabricated in Ti:LiNbO3 is proposed. The legs of the structure are intended to act as the electrodes of the modulator, with light being directed into each of the output waveguides of the Y-branch on alternate half-cycles of the standing wave excited in the resonator; forming an optical commutator switch. Such resonators having Al2O3 substrates were designed, fabricated, and tested. Measurements on one such resonator, operating at 7.12 GHz and having an unloaded quality factor of 123, indicating that 50 V should develop across the ends of its legs for 35 mW dissipated power; the corresponding values, from the model used to design the resonator, were 179, 50 V,and 24 mW, respectively. Using the model it is shown that a similar resonator fabricated on LiNbO3 should be able to develop about 50 V for 100 mW dissipated power at 15 GHz.

  7. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media (United States)

    Woodruff, Steven D.; Mcintyre, Dustin L.


    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  8. OSPF-TE Extensions for Green Routing in Optical Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Ricciardi, S.; Fagertun, Anna Manolova


    This paper proposes extensions to the OSPF-TE protocol to enable green routing in GMPLS-controlled optical networks. Simulation results show a remarkable reduction in CO2 emissions by preferring network elements powered by green energy sources in the connection routing.......This paper proposes extensions to the OSPF-TE protocol to enable green routing in GMPLS-controlled optical networks. Simulation results show a remarkable reduction in CO2 emissions by preferring network elements powered by green energy sources in the connection routing....

  9. Energy efficiency in elastic-bandwidth optical networks

    DEFF Research Database (Denmark)

    Vizcaino, Jorge Lopez; Ye, Yabin; Tafur Monroy, Idelfonso


    The forecasted growth in the Internet traffic has made the operators and industry to be concerned about the power consumption of the networks, and to become interested in alternatives to plan and operate the networks in a more energy efficient manner. The introduction of OFDM, and its property...... of elastic bandwidth allocation, opens new horizons in the operation of optical networks. In this paper, we compare the network planning problem in an elastic bandwidth CO-OFDM-based network and a fixed-grid WDM network. We highlight the benefits that bandwidth elasticity and the selection of different...

  10. An Esprit Project: A Local Integrated Optical Network (United States)

    Rey, J.-C.; Luvison, A.; Maaloe, J.; Toft, Fl.


    The paper describes a fibreoptical wideband local area network, (LION) which is being developed under the European ESPRIT (European Strategic Programme for Research and Development in Information Technology) programme. The consortium consists of Thomson-TITN, CSELT and NKT Elektronik. The network will carry both real-time voice and compressed video traffic, and it will also offer a Transport Service for packet-switched data transmission. The network is composed by a number of subnets operating on 140 Mbit/s and an interconnecting backbone network operating on 565 Mbit/s. In large organisations the total network may span more than 10 miles and it can handle more than 10,000 users. The network will have gateways to ISDN and other public services, and interfaces to host computers and other common resources.

  11. Photonic MEMS switch applications (United States)

    Husain, Anis


    As carriers and service providers continue their quest for profitable network solutions, they have shifted their focus from raw bandwidth to rapid provisioning, delivery and management of revenue generating services. Inherently transparent to data rate the transmission wavelength and data format, MEMS add scalability, reliability, low power and compact size providing flexible solutions to the management and/or fiber channels in long haul, metro, and access networks. MEMS based photonic switches have gone from the lab to commercial availability and are now currently in carrier trials and volume production. 2D MEMS switches offer low up-front deployment costs while remaining scalable to large arrays. They allow for transparent, native protocol transmission. 2D switches enable rapid service turn-up and management for many existing and emerging revenue rich services such as storage connectivity, optical Ethernet, wavelength leasing and optical VPN. As the network services evolve, the larger 3D MEMS switches, which provide greater scalability and flexibility, will become economically viable to serve the ever-increasing needs.

  12. Q-switching of an all-fiber ring laser based on in-fiber acousto-optic bandpass modulator (United States)

    Ramírez-Meléndez, G.; Bello-Jiménez, M.; Pottiez, O.; Escalante-Zarate, L.; López-Estopier, R.; Ibarra-Escamilla, B.; Durán-Sánchez, M.; Kuzin, E. A.; Andrés, M. V.


    Active Q-switching of an all-fiber ring laser utilizing a novel in-fiber acousto-optic tunable bandpass filter (AOTBF) is reported. The transmission characteristics of the AOTBF are controlled by amplitude modulation of the acoustic wave; the device exhibits a 3-dB power insertion loss, 0.91-nm optical bandwidth, and 28-dB nonresonant light suppression. Cavity loss modulation is achieved by full acousto-optic mode re-coupling cycle induced by traveling flexural acoustic waves. When the acoustical signal is switched on, cavity losses are reduced, and then, laser emission is generated. In addition, by varying the acoustic wave frequency, a wide wavelength tuning range of 30.7 nm is achieved from 1542 to 1572.7 nm. The best Q-switched pulses were obtained at 1.1-kHz repetition rate, with a pump power of 242 mW, at the optical wavelength of 1569.4 nm. A maximum pulse energy of 8.3 μJ at an average output power of 9.3 mW was achieved, corresponding to optical pulses of 7.8-W peak power and 1-μs temporal width.

  13. Heuristic approach to the passive optical network with fibre duct ...

    African Journals Online (AJOL)

    PON) planning problem necessitates the search for a subset of deployed facilities (splitters) and their allocated demand points (optical network units) to minimise the overall deployment cost. A mixed integer linear programming formulation ...

  14. Sub-microradian pointing for deep space optical telecommunications network (United States)

    Ortiz, G.; Lee, S.; Alexander, J.


    This presentation will cover innovative hardware, algorithms, architectures, techniques and recent laboratory results that are applicable to all deep space optical communication links, such as the Mars Telecommunication Network to future interstellar missions.

  15. Network Performance Improvement under Epidemic Failures in Optical Transport Networks

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Ruepp, Sarah Renée


    In this paper we investigate epidemic failure spreading in large- scale GMPLS-controlled transport networks. By evaluating the effect of the epidemic failure spreading on the network, we design several strategies for cost-effective network performance improvement via differentiated repair times....... First we identify the most vulnerable and the most strategic nodes in the network. Then, via extensive simulations we show that strategic placement of resources for improved failure recovery has better performance than randomly assigning lower repair times among the network nodes. Our OPNET simulation...... model can be used during the network planning process for facilitating cost- effective network survivability design....

  16. A Simple Approach to Dynamic Optimisation of Flexible Optical Networks with Practical Application

    Directory of Open Access Journals (Sweden)

    Vic Grout


    Full Text Available This paper provides an initial introduction to, and definition of, the ‘Dynamically Powered Relays for a Flexible Optical Network’ (DPR-FON problem for opto-electro-optical (OEO regenerators used in optical networks. In such networks, optical transmission parameters can be varied dynamically as traffic patterns change. This will provide different bandwidths, but also change the regeneration limits as a result. To support this flexibility, OEOs (‘relays’ may be switched on and off as required, thus saving power. DPR-FON is shown to be NP-complete; consequently, solving such a dynamic problem in real-time requires a fast heuristic capable of delivering an acceptable approximation to the optimal configuration with low complexity. In this paper, just such an algorithm is developed, implemented, and evaluated against more computationally-demanding alternatives for two known cases. A number of real-world extensions are considered as the paper develops, combining to produce the ‘Generalised Dynamically Powered Relays for a Flexible Optical Network’ (GDPR-FON problem. This, too, is analysed and an associated fast heuristic proposed, along with an exploration of the further research that is required.

  17. Optical production systems using neural networks and symbolic substitution (United States)

    Botha, Elizabeth; Casasent, David; Barnard, Etienne


    Two optical implementations of production systems are advanced. The production systems operate on a knowledge base where facts and rules are encoded as formulas in propositional calculus. The first implementation is a binary neural network. An analog neural network is used to include reasoning with uncertainties. The second implementation uses a new optical symbolic substitution correlator. This implementation is useful when a set of similar situations has to be handled in parallel on one processor.

  18. Evaluation of the potential of optical switching materials for overheating protection of thermal solar collectors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huot, G.; Roecker, Ch.; Schueler, A.


    Providing renewable energy for domestic hot water production and space heating, thermal solar collectors are more and more widespread, and users' expectations with respect to performance and service lifetime are rising continuously. The durability of solar collector materials is a critical point as the collector lifetime should be at least 25 years. Overheating and the resulting stagnation of the collector is a common problem with solar thermal systems. During stagnation high temperatures lead to water evaporation, glycol degradation, and stresses in the collector with increasing pressure. Special precautions are necessary to release this pressure; only mechanical solutions exist nowadays. Additionally, the occurring elevated temperatures lead to degradation of the materials that compose collectors: seals, insulation materials, and also the selective coating which is the most important part of the collector. A promising way to achieve active cooling of collectors without any mechanical device for pressure release or collector emptying is to produce a selective coating which is able to switch its optical properties at a critical temperature Tc. An optical switch allows changing the selective coating efficiency; the goal is to obtain a coating with a poor selectivity above Tc (decreasing of absorptance, increasing of emittance). Obtaining self-cooling collectors will allow increasing collector surfaces on facades and roofs in order to get high efficiency and hot water production during winter without inconvenient overheating during summer. Optical switching of materials can be obtained by many ways. Inorganic and organic thermochromic compounds, and organic thermotropic coatings are the main types of switching coatings that have been studied at EPFL-LESO-PB. Aging studies of organic thermochromic paints fabricated at EPFL suggest that the durability of organic compounds might not be sufficient for glazed metallic collectors. First samples of inorganic coatings

  19. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials. (United States)

    Savaliya, Priten B; Thomas, Arun; Dua, Rishi; Dhawan, Anuj


    We propose the design of switchable plasmonic nanoantennas (SPNs) that can be employed for optical switching in the near-infrared regime. The proposed SPNs consist of nanoantenna structures made up of a plasmonic metal (gold) such that these nanoantennas are filled with a switchable material (vanadium dioxide). We compare the results of these SPNs with inverted SPN structures that consist of gold nanoantenna structures surrounded by a layer of vanadium dioxide (VO 2 ) on their outer surface. These nanoantennas demonstrate switching of electric-field intensity enhancement (EFIE) between two states (On and Off states), which can be induced thermally, optically or electrically. The On and Off states of the nanoantennas correspond to the metallic and semiconductor states, respectively of the VO 2 film inside or around the nanoantennas, as the VO 2 film exhibits phase transition from its semiconductor state to the metallic state upon application of thermal, optical, or electrical energy. We employ finite-difference time-domain (FDTD) simulations to demonstrate switching in the EFIE for four different SPN geometries - nanorod-dipole, bowtie, planar trapezoidal toothed log-periodic, and rod-disk - and compare their near-field distributions for the On and Off states of the SPNs. We also demonstrate that the resonance wavelength of the EFIE spectra gets substantially modified when these SPNs switch between the two states.

  20. Networks of coupled circuits: From a versatile toggle switch to collective coherent behavior (United States)

    Labavić, Darka; Meyer-Ortmanns, Hildegard


    We study the versatile performance of networks of coupled circuits. Each of these circuits is composed of a positive and a negative feedback loop in a motif that is frequently found in genetic and neural networks. When two of these circuits are coupled with mutual repression, the system can function as a toggle switch. The variety of its states can be controlled by two parameters as we demonstrate by a detailed bifurcation analysis. In the bistable regimes, switches between the coexisting attractors can be induced by noise. When we couple larger sets of these units, we numerically observe collective coherent modes of individual fixed-point and limit-cycle behavior. It is there that the monotonic change of a single bifurcation parameter allows one to control the onset and arrest of the synchronized oscillations. This mechanism may play a role in biological applications, in particular, in connection with the segmentation clock. While tuning the bifurcation parameter, also a variety of transient patterns emerges upon approaching the stationary states, in particular, a self-organized pacemaker in a completely uniformly equipped ensemble, so that the symmetry breaking happens dynamically.

  1. Switched-based interference reduction scheme for open-access overlaid cellular networks

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh


    Femtocells have been proposed to enhance the spatial coverage and system capacity of existing cellular networks. However, this technology may result in significant performance loss due to the increase in co-channel interference, particularly when coordination between access points is infeasible. This paper targets interference management in such overlaid networks. It is assumed that the femtocells employ the open-access strategy to reduce cross-tier interference, and can share resources concurrently. It is also assumed that each end user (EU) can access one channel at a time, and transfer limited feedback. To reduce the effect of co-tier interference in the absence of the desired EU channel state information (CSI) at the serving access point as well as coordination between active access points, a switched scheme based on the interference levels associated with available channels is proposed. Through the analysis, the scheme modes of operation in under-loaded and over-loaded channels are studied, from which the statistics of the resulting interference power are quantified. The impact of the proposed scheme on the received desired power is thoroughly discussed. In addition, the effect of the switching threshold on the achieved performance of the desired EU is investigated. The results clarify that the proposed scheme can improve the performance while reducing the number of examined channels and feedback load. © 2012 IEEE.

  2. An Adaptive Damping Network Designed for Strapdown Fiber Optic Gyrocompass System for Ships

    Directory of Open Access Journals (Sweden)

    Jin Sun


    Full Text Available The strapdown fiber optic gyrocompass (strapdown FOGC system for ships primarily works on external horizontal damping and undamping statuses. When there are large sea condition changes, the system will switch frequently between the external horizontal damping status and the undamping status. This means that the system is always in an adjustment status and influences the dynamic accuracy of the system. Aiming at the limitations of the conventional damping method, a new design idea is proposed, where the adaptive control method is used to design the horizontal damping network of the strapdown FOGC system. According to the size of acceleration, the parameters of the damping network are changed to make the system error caused by the ship’s maneuvering to a minimum. Furthermore, the jump in damping coefficient was transformed into gradual change to make a smooth system status switch. The adaptive damping network was applied for strapdown FOGC under the static and dynamic condition, and its performance was compared with the conventional damping, and undamping means. Experimental results showed that the adaptive damping network was effective in improving the dynamic performance of the strapdown FOGC.

  3. The Control of Fluxes of Electric Power in Networks by Means of Phase-switching Booster Transformers

    Directory of Open Access Journals (Sweden)

    Govorov F.P.


    Full Text Available roblems of increasing the efficiency of the operation of electrical networks based on the utilization of booster transformers (BT with electronic control, applied on the base of active elements in smart electric grids of power systems and giving the function of automatic correction of the parameters of the network, assuring the conditions of optimal common operation are studied in the paper. The mathematic model of the processes in the electric networks with booster transformer has been developed; the opportunity of control by means of the phase-switching BT for power fluxes in the networks has been established. It has been shown that for the groups of switching the windings 1-5 of BT occurs additional consumption of power from the supply network, but for the groups 7-11 its recuperation to the load network. Respectively, switching the windings of BT to the group 1-5 assures the shift of load current to the direction of lag, but in the case of switching to the group 7-11 – towards the outrunning. Wherein, for the groups of switching 10-11 and 1-2 one can observe the increasing of the voltage at the output of BT, but for the groups 7-8 and 4-5 it is decreasing. Based on the analysis of the results of research the diagram and constructive models of the transformer have been proposed. The quasi-stationary and transient regimes were investigated and the conditions of reliable operation at these the regimes have been determined. The ways for increasing the efficient common operation for the transformer and network in the case of switching the thyristors into the circuit of the primary winding of the transformer have been proposed.

  4. Investigation of patterning effect in ultrafast SOA-based optical switches

    DEFF Research Database (Denmark)

    Xu, Jing; Zhang, Xinliang; Mørk, Jesper


    A lower bound of PRBS length is derived considering patterning effects in ultrafast SOA-based switches. An effective method for simulating patterning effects is proposed, validated and applied to characterize the switches in large parameter regions.......A lower bound of PRBS length is derived considering patterning effects in ultrafast SOA-based switches. An effective method for simulating patterning effects is proposed, validated and applied to characterize the switches in large parameter regions....

  5. IP- -: A Reduced Internet Protocol for Optical Packet Networking (United States)

    Ohta, Masataka; Fujikawa, Kenji

    IP- - is proposed as an Internet Protocol suitable for optical packet networking. As optical routers require much faster control than electric ones and lack of optical buffers other than those by fiber delay lines requires fixed time control, Internet Protocols must be at least as simple as IPv4 and much simpler than IPv6. IP- - also addresses issues of IP address space exhaustion and IP routing table explosion.

  6. Towards transparent all-optical label-swapped networks: 40 Gbit/s ultra-fast dynamic wavelength routing using integrated devices

    DEFF Research Database (Denmark)

    Seoane, Jorge; Holm-Nielsen, Pablo Villanueva; Jeppesen, Palle


    All-optical routing of 40 Gbit/s 1.6 ns packets is demonstrated employing integrated devices based on SOA-MZIs. The scheme allows wavelength transparent operation and sub-nanosecond dynamic wavelength selection for future packet/label switched networks....

  7. Magnetic switching

    International Nuclear Information System (INIS)

    Kirbie, H.C.


    Magnetic switching is a pulse compression technique that uses a saturable inductor (reactor) to pass pulses of energy between two capacitors. A high degree of pulse compression can be achieved in a network when several of these simple, magnetically switched circuits are connected in series. Individual inductors are designed to saturate in cascade as a pulse moves along the network. The technique is particularly useful when a single-pulse network must be very reliable or when a multi-pulse network must operate at a high pulse repetition frequency (PRF). Today, magnetic switches trigger spark gaps, sharpen the risetimes of high energy pulses, power large lasers, and drive high PRF linear induction accelerators. This paper will describe the technique of magnetic pulse compression using simple networks and design equations. A brief review of modern magnetic materials and of their role in magnetic switch design will be presented. 12 refs., 8 figs

  8. An Optical Multicast Routing with Minimal Network Coding Operations in WDM Networks

    Directory of Open Access Journals (Sweden)

    Huanlin Liu


    Full Text Available Network coding can improve the optical multicast routing performance in terms of network throughput, bandwidth utilization, and traffic load balance. But network coding needs high encoding operations costs in all-optical WDM networks due to shortage of optical RAM. In the paper, the network coding operation is defined to evaluate the number of network coding operation cost in the paper. An optical multicast routing algorithm based on minimal number of network coding operations is proposed to improve the multicast capacity. Two heuristic criteria are designed to establish the multicast routing with low network coding cost and high multicast capacity. One is to select one path from the former K shortest paths with the least probability of dropping the multicast maximal capacity. The other is to select the path with lowest potential coding operations with the highest link shared degree among the multiple wavelength disjoint paths cluster from source to each destination. Comparing with the other multicast routing based on network coding, simulation results show that the proposed multicast routing algorithm can effectively reduce the times of network coding operations, can improve the probability of reaching multicast maximal capacity, and can keep the less multicast routing link cost for optical WDM networks.

  9. Robust and Flexible Wavelength Division Multiplexed Optical Access Networks

    DEFF Research Database (Denmark)

    Wagner, Christoph; Eiselt, Michael; Grobe, Klaus

    Future wavelength division multiplexed (WDM) access networks should be as flexible as possible. One flexibility is port wavelength-agnosticism at the optical network unit (ONU) interface, achieved via tunable laser. At the same time such systems needs to be robust against crosstalk impairments...

  10. Topologies for optical interconnection networks based on the optical transpose interconnection system. (United States)

    Coudert, D; Ferreira, A; Muñoz, X


    Many results exist in the literature describing technological and theoretical advances in optical network topologies and design. However, an essential effort has yet to be made in linking those results together. We propose a step in this direction by giving optical layouts for several graph-theoretical topologies studied in the literature, using the optical transpose interconnection system (OTIS) architecture. These topologies include the family of partitioned optical passive star (POPS) and stack-Kautz networks as well as a generalization of the Kautz and the de Bruijn digraphs.

  11. Multiobjective planning of distribution networks incorporating switches and protective devices using a memetic optimization

    International Nuclear Information System (INIS)

    Pombo, A. Vieira; Murta-Pina, João; Pires, V. Fernão


    A multi-objective planning approach for the reliability of electric distribution networks using a memetic optimization is presented. In this reliability optimization, the type of the equipment (switches or reclosers) and their location are optimized. The multiple objectives considered to find the optimal values for these planning variables are the minimization of the total equipment cost and at the same time the minimization of two distribution network reliability indexes. The reliability indexes are the system average interruption frequency index (SAIFI) and system average interruption duration index (SAIDI). To solve this problem a memetic evolutionary algorithm is proposed, which combines the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) with a local search algorithm. The obtained Pareto-optimal front contains solutions of different trade-offs with respect to the three objectives. A real distribution network is used to test the proposed algorithm. The obtained results show that this approach allows the utility to obtain the optimal type and location of the equipments to achieve the best reliability with the lower cost. - Highlights: • Reliability indexes SAIFI and SAIDI and Equipment Cost are optimized. • Optimization of equipment type, number and location on a MV network. • Memetic evolutionary algorithm with a local search algorithm is proposed. • Pareto optimal front solutions with respect to the three objective functions

  12. Optimal design of mixed-media packet-switching networks - Routing and capacity assignment (United States)

    Huynh, D.; Kuo, F. F.; Kobayashi, H.


    This paper considers a mixed-media packet-switched computer communication network which consists of a low-delay terrestrial store-and-forward subnet combined with a low-cost high-bandwidth satellite subnet. We show how to route traffic via ground and/or satellite links by means of static, deterministic procedures and assign capacities to channels subject to a given linear cost such that the network average delay is minimized. Two operational schemes for this network model are investigated: one is a scheme in which the satellite channel is used as a slotted ALOHA channel; the other is a new multiaccess scheme we propose in which whenever a channel collision occurs, retransmission of the involved packets will route through ground links to their destinations. The performance of both schemes is evaluated and compared in terms of cost and average packet delay tradeoffs for some examples. The results offer guidelines for the design and optimal utilization of mixed-media networks.

  13. Integrated resource management for Hybrid Optical Wireless (HOW) networks

    DEFF Research Database (Denmark)

    Yan, Ying; Yu, Hao; Wessing, Henrik


    resource sharing scheme and an integrated admission control scheme for the hybrid optical wireless networks. It provides QoS guarantees for connections through both optical and wireless domain. Simulation results show that our proposed scheme improves QoS performances in terms of high throughput and low......Efficient utilization of available bandwidth over hybrid optical wireless networks is a critical issue, especially for multimedia applications with high data rates and stringent Quality of Service (QoS) requirements. In this paper, we propose an integrated resource management including an enhanced...

  14. Congestion estimation technique in the optical network unit registration process. (United States)

    Kim, Geunyong; Yoo, Hark; Lee, Dongsoo; Kim, Youngsun; Lim, Hyuk


    We present a congestion estimation technique (CET) to estimate the optical network unit (ONU) registration success ratio for the ONU registration process in passive optical networks. An optical line terminal (OLT) estimates the number of collided ONUs via the proposed scheme during the serial number state. The OLT can obtain congestion level among ONUs to be registered such that this information may be exploited to change the size of a quiet window to decrease the collision probability. We verified the efficiency of the proposed method through simulation and experimental results.

  15. Performance improvement of long-range surface plasmon structure for use in an all-optical switch (United States)

    Jandaghian, Ali; Lotfalian, Ali; Kouhkan, Mohsen; Mohajerani, Ezeddin


    This paper presents important parameters in performance of long-range surface plasmon (LRSP) structure (SF4/PVA/silver/PMMA-DR1) that are improved. We select poly(vinyl alcohol) (PVA) as the first dielectric layer due to its water solubility and good optical properties. The thickness of PVA and silver layers is optimized by transfer matrix method based on Fresnel equations. Surface morphologies of PVA and silver surfaces are analyzed by AFM imaging due to their important role in the performance of an LRSP structure. Furthermore, the sensitivity of an all-optical switch based on plasmon is investigated. In order to compare the sensitivity of LRSP and conventional surface plasmon (SP) structures in switching mode, full wide of half maximum, resonance angles, and pump powers of both structures are measured by a custom-made optical setup based on angular interrogation with a precision of 0.01 deg. Finally, we conclude that for creating equal signal levels in both samples, the required pump power for LRSP structure was about three times less than that for conventional SP; thus, these results led to power savings in optical switches.

  16. Study of all optical switching behaviour in semiconductor microresonator with nano-active layer

    International Nuclear Information System (INIS)

    Kheradmand, R; Aryan, H


    In this paper the behaviour of carriers in spontaneous patterns formation and patterns switching has been studied. Results demonstrate that with increasing length of cavity the range of required input field amplitude for patterns formation increased slightly and also the minimum perturbation coefficient for switching decreased greatly. Increasing nonradiative recombination rate of carriers about ten percent appeared that required input field amplitude for patterns formation raised more than before, albeit the minimum perturbation coefficient for switching and switching and switching time dose not vary considerably.

  17. Study of all optical switching behaviour in semiconductor microresonator with nano-active layer

    Energy Technology Data Exchange (ETDEWEB)

    Kheradmand, R; Aryan, H, E-mail:, E-mail: [Photonics Group, Research Institute for Applied Physics and Astronomy, Tabriz University, Tabriz (Iran, Islamic Republic of)


    In this paper the behaviour of carriers in spontaneous patterns formation and patterns switching has been studied. Results demonstrate that with increasing length of cavity the range of required input field amplitude for patterns formation increased slightly and also the minimum perturbation coefficient for switching decreased greatly. Increasing nonradiative recombination rate of carriers about ten percent appeared that required input field amplitude for patterns formation raised more than before, albeit the minimum perturbation coefficient for switching and switching and switching time dose not vary considerably.

  18. Optically controlled reconfigurable antenna for 5G future broadband cellular communication networks

    DEFF Research Database (Denmark)

    Costa, I.F. da; Spadoti, D. H.; Cerqueira Sodre Jr., Arismar


    This paper presents an optically controlled reconfigurable antenna for millimetre-wave frequency range. Silicon switches are used to control the optical reconfiguration, modifying the frequency response and radiation pattern of the antenna design. Therefore, the system can switch between the ligh...

  19. On the impact of fiber-delay-lines (FDL) in an all-optical network (AON) bottleneck without wavelength conversion (United States)

    Argibay-Losada, Pablo Jesus; Sahin, Gokhan


    Random access memories (RAM) are fundamental in conventional electronic switches and routers to manage short-term congestion and to decrease data loss probabilities. Switches in all-optical networks (AONs), however, do not have access to optical RAM, and therefore are prone to much higher loss levels than their electronic counterparts. Fiber-delay-lines (FDLs), able to delay an optical data packet a fixed amount of time, have been proposed in the literature as a means to alleviate those high loss levels. However, they are extremely bulky to manage, so their usage introduces a trade-off between practicality and performance in the design and operation of the AON. In this paper we study the influence that FDLs have in the performance of flows crossing an all-optical switch that acts as their bottleneck. We show how extremely low numbers of FDLs (e.g., 1 or 2) can help in reducing losses by several orders of magnitude in several illustrative scenarios with high aggregation levels. Our results therefore suggest that FDLs can be a practical means of dealing with congestion in AONs in the absence of optical RAM buffers or of suitable data interchange protocols specifically designed for AONs.

  20. Service-oriented Software Defined Optical Networks for Cloud Computing (United States)

    Liu, Yuze; Li, Hui; Ji, Yuefeng


    With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.g., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). This paper proposes a new service-oriented software defined optical network architecture, including a resource layer, a service abstract layer, a control layer and an application layer. We then dwell on the corresponding service providing method. Different service ID is used to identify the service a device can offer. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit different services based on the service ID in the service-oriented software defined optical network.