WorldWideScience

Sample records for swiss nuclear power

  1. Safety in Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Cederqvist, H.

    1992-01-01

    Safety-related facilities and equipment are continuously backfitted in Swiss nuclear power plants. In the Beznau-1 and -2 nuclear generating units, the measures taken under the heading of 'Backfitting of Emergency Systems' included provisions to enhance the protection against earthquakes, airplane crash, and fire; in addition, the emergency power system was upgraded. In Muehleberg, the stack exhaust air monitoring system was optimized. The containment pressure suppression system of the plant has been designed to withstand a hypothetical accident exceeding the design basis. The BKM-Crud computer simulation model simulates steps taken to reduce radiation exposure. The power of Swiss nuclear power stations will be raised by 4% to 15% within the 'Energy 2000' action program. (orig.) [de

  2. Summary of operating experience in Swiss nuclear power plants 1993

    International Nuclear Information System (INIS)

    1994-07-01

    In 1993 the Swiss nuclear power plants produced their third highest combined annual output. The contribution to the total electricity generation in the country was close to 37%. Replacement of the steam generators in Beznau Unit 1 resulted in a longer than usual annual outage. For the other four units the availability figures were close to, or exceeded, those of previous years. The energy utilization was, however, lowered due to load reduction in autumn resulting from unusually high production by the hydro-electric power plants. The steam generator replacement at Beznau enabled an increase in electrical power of about 2% without increase in reactor power. With the approval of the Swiss government in December 1992, the output of the Muehleberg power plant was increased in two stages by a total of 10%. The application for an unlimited operating license for Beznau Unit 2, and for a power uprate at the Leibstadt power plant, are still pending. The average number of scrams at the Swiss plants remained stable, at less than one scram per reactor year. As a result of experience in the Swedish nuclear power plant at Barsebaeck, the suction strainers of the emergency core cooling systems of the boiling water reactors at Muehleberg and Leibstadt were replaced by strainers with larger surface areas. The re-inspection of crack indications previously detected in the core shroud of the Muehleberg reactor and the penetration tubes in the reactor pressure vessel closure head of Beznau revealed no growth during the intervening operating periods. Following the completion of installation activities during the annual outages at Beznau Unit 1, Goesgen and Leibstadt, all Swiss nuclear power plants are now equipped with filtered containment venting systems. (author) figs., tabs

  3. Uranium supply of the Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Clausen, A.

    1991-01-01

    Securing the supply to Swiss nuclear power stations takes into account the fact that finished fuel elements must be introduced. The situation is, however, relieved by the fact there are excess capacities both in the amount of natural uranium available as well as in all processing stages. As further security, each nuclear power station keeps a reload of fuel elements in stock, so that if supplies are disrupted, continued operation is guaranteed for 1-2 years. Political influences should be taken into account, as should any repercussions that fuel disposal may have on fuel supply. 3 figs

  4. The Swiss ''CANUPIS'' study on childhood cancer in the vicinity of nuclear power stations

    International Nuclear Information System (INIS)

    Voelkle, Hansruedi

    2011-01-01

    A nationwide cohort study on leukaemia and any other childhood cancer in the vicinity of Swiss nuclear power stations (CANUPIS) was supported by the Krebsliga Schweiz and the Swiss Federal Office of Public Health. The results, covering the years 1985 to 2009 and including some 21 million person years, was published in July 2011. Three zones around nuclear installations were investigated: 0 to 5 km, 5 to 10 km and 10 to 15 km distance. The CANUPIS study found no evidence for a statistically significant increased cancer risk among 0 to 15 year old children living near Swiss nuclear power stations, compared to children living in other regions of the country. (orig.)

  5. Summary of operating experience in Swiss nuclear power plants 1994

    International Nuclear Information System (INIS)

    1995-05-01

    In 1994 the Swiss nuclear power plants produced their highest-ever combined annual output. Their contribution to total electricity generation in the country was 36%. At Muehleberg the power uprate, undertaken in 1993, was effective for the first time for an entire year. The larger capacity of the new steam generators installed in 1993 in unit 1 of the Beznau NPP allows for an electric output of 103% of nominal power. The plant efficiency of the Goesgen and Leibstadt units was increased by replacing the low pressure turbines by the new ones with a modern design. The application for a power uprate of the Leibstadt reactor is still pending. For the first time in Switzerland, one of the reactor units, Beznau 2, operated on an extended cycle of one and a half years, with no refuelling outage in 1994. In spite of the replacements of two of its three low pressure turbines, Goesgen had the shortest refuelling shutdown since the start of commercial operation. The average number of reactor scrams at the Swiss plants remained stable, at less than one scram per reactor year. Re-inspection of crack indications detected in 1990 in the core shroud of the Muehleberg reactor revealed no significant changes. A crack indication was found in one of the other welds inspected. The Swiss government issued a limited operating licence for Beznau 2 for the next ten years, i.e. until the end of 2004. The only other unit with a limited operating licence (until 2003) is Muehleberg. The remaining three reactor units, have no time limits on their operating licences, in accordance with the Atomic Law. Goesgen is the first Swiss nuclear power plant having now produced more than 100 billion kWh. As from January 1, 1995, the nominal net power of the largest Swiss reactor unit, Leibstadt, has been fixed at 1030 MW; that of the Goesgen NPP has been increased by 25 MW to 965 MW. (author) figs., tabs

  6. Summary of operating experience in Swiss nuclear power plants 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    In 1994 the Swiss nuclear power plants produced their highest-ever combined annual output. Their contribution to total electricity generation in the country was 36%. At Muehleberg the power uprate, undertaken in 1993, was effective for the first time for an entire year. The larger capacity of the new steam generators installed in 1993 in unit 1 of the Beznau NPP allows for an electric output of 103% of nominal power. The plant efficiency of the Goesgen and Leibstadt units was increased by replacing the low pressure turbines by the new ones with a modern design. The application for a power uprate of the Leibstadt reactor is still pending. For the first time in Switzerland, one of the reactor units, Beznau 2, operated on an extended cycle of one and a half years, with no refuelling outage in 1994. In spite of the replacements of two of its three low pressure turbines, Goesgen had the shortest refuelling shutdown since the start of commercial operation. The average number of reactor scrams at the Swiss plants remained stable, at less than one scram per reactor year. Re-inspection of crack indications detected in 1990 in the core shroud of the Muehleberg reactor revealed no significant changes. A crack indication was found in one of the other welds inspected. The Swiss government issued a limited operating licence for Beznau 2 for the next ten years, i.e. until the end of 2004. The only other unit with a limited operating licence (until 2003) is Muehleberg. The remaining three reactor units, have no time limits on their operating licences, in accordance with the Atomic Law. Goesgen is the first Swiss nuclear power plant having now produced more than 100 billion kWh. As from January 1, 1995, the nominal net power of the largest Swiss reactor unit, Leibstadt, has been fixed at 1030 MW; that of the Goesgen NPP has been increased by 25 MW to 965 MW. (author) figs., tabs.

  7. Regulatory oversight report 2008 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2009-04-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (ENSI) reports on the work carried out by the Inspectorate in 2008. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions, personnel and provides an assessment of operations from the safety point of view. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management, earthquake damage analysis and agreements on nuclear safety. The underground disposal of highly-radioactive nuclear wastes and work done in the rock laboratories are discussed, as are proposals for additional nuclear power stations

  8. Survey of Swiss nuclear's cost study 2016

    International Nuclear Information System (INIS)

    Alt, Stefan; Ustohalova, Veronika

    2017-01-01

    The report discusses the Swiss nuclear cost study 2016 concerning the following issues: evaluation of the aspects of the cost study: cost structure, cost classification and risk provision, additional payment liability, option of lifetime extension for Swiss nuclear power plants; specific indications on the report ''cost study 2016 (KS16) - estimation of the decommissioning cost of Swiss nuclear power plants'': decommissioning costs in Germany, France and the USA, indexing the Swiss cost estimation for decommissioning cost, impact factors on the decommissioning costs; specific indications on the report ''cost study 2016 (KS16) - estimation of the disposal cost - interim storage, transport, containers and reprocessing''; specific indications on the report ''cost studies (KS16) - estimation of disposal costs - geological deep disposal'': time scale and costs incurred, political/social risks, retrievability, comparison with other mining costs.

  9. nuclea'10. Third industry meeting of the Swiss nuclear forum. Framework conditions for the renaissance of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The Swiss government and the Swiss power industry agree: Switzerland will have to renew its nuclear power plant park in a foreseeable time frame so as to prevent a threatenting gap in electricity supply. At the same time, the present lowest-CO 2 electricity mix in any industrialized country ensured by hydroelectric power and nuclear power must be safeguarded. The power industry is meeting these challenges by actively planning the replacement of existing nuclear power plants and the construction of new ones. Three framework applications for permits have been filed, and the first tenders connected to the new construction projects have been invited. This raises the question not only whether Switzerland is willing to embark on this project of a century, but also whether the country is able to do so. What are the factors helping nuclear power to achieve a breakthrough in Switzerland and its neighboring countries, provided there is public acceptance? Besides providing the necessary technical and economic resources it is the need for political and economic acceptance of nuclear power which constitutes an ongoing task for nuclear industry. nuclea is considered the meeting point of the nuclear industry in Switzerland. nuclea'10, held on November 11, 2010, served for exchanges of information between the nuclear industry and other stakeholders in nuclear power. More than 200 participants from public authorities, politics, the power industry, research and development, and vendors and service providers attended the informative and always interesting event accompanied by an industrial exhibition. (orig.)

  10. Steam explosions-induced containment failure studies for Swiss nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Zuchuat, O.; Schmocker, U. [Swiss Federal Nuclear Safety Inspectorate, Villigen (Switzerland); Esmaili, H.; Khatib-Rahbar, M.

    1998-01-01

    The assessment of the consequences of both in-vessel and ex-vessel energetic fuel-coolant interaction for Beznau (a Westinghouse pressurized water reactor with a large, dry containment), Goesgen (a Siemens/KWU pressurized water reactor with a large, dry containment) and Leibstadt (a General Electric boiling water reactor-6 with a free standing steel, MARK-III containment) nuclear power plants is presented in this paper. The Conditional Containment Failure Probability of the steel containment of these Swiss nuclear power plants is determined based on different probabilistic approaches. (author)

  11. Summary of Operating Experience in Swiss Nuclear Power Plants 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-15

    The five Swiss nuclear power units produced a net total of 23.6 TWh of electricity in 1999 - not as high as the all-time record (24.45 TWh in 1998), but nonetheless a solid operational performance. The nuclear share in overall electricity production was 35.3%, again lower than the previous year's 40%. In general, plant operation in 1999 was practically as undisturbed and as reliable as in 1998, reflecting the ongoing tradition of careful maintenance that contributes so much to keeping the plants in excellent condition. However, due to exceptional outage activities at Beznau 2 (steam generator replacement) and an unplanned shut-down at Goesgen to replace a hydrogen seal on the main generator, 1999 nuclear production could not match that of the previous year. Also, record hydro power production caused the nuclear share in total electricity production to drop. With the exception of Beznau 2, all refueling and maintenance outages were once again short. The Leibstadt outage lasted 26 days, Goesgen 33 days, Beznau 1 lasted 29 days, Beznau 2 89 days and Muehleberg 27 days. At Goesgen, MOX fuel was loaded for the third time in 1999. Of the 44 freshly-loaded fuel elements, 20 were MOX elements. Non-electrical energy supplies from the Beznau and Goesgen nuclear power plants functioned flawlessly. Beznau fed 143.6 GWh of heat energy into the Refuna district heating system, while Goesgen supplied 169 GWh of process heat to the neighboring Niedergoesgen cardboard factory. At the end of 1999 and the beginning of 2000 all Swiss nuclear units continued to operate flawlessly - notwithstanding the challenges posed by the 'Lothar' storm that hit Western Europe in late December and the so-called Y2K computer bug that threatened to hit shortly afterwards, during the 'millennial' change-over. (authors)

  12. Summary of Operating Experience in Swiss Nuclear Power Plants 1999

    International Nuclear Information System (INIS)

    2000-05-01

    The five Swiss nuclear power units produced a net total of 23.6 TWh of electricity in 1999 - not as high as the all-time record (24.45 TWh in 1998), but nonetheless a solid operational performance. The nuclear share in overall electricity production was 35.3%, again lower than the previous year's 40%. In general, plant operation in 1999 was practically as undisturbed and as reliable as in 1998, reflecting the ongoing tradition of careful maintenance that contributes so much to keeping the plants in excellent condition. However, due to exceptional outage activities at Beznau 2 (steam generator replacement) and an unplanned shut-down at Goesgen to replace a hydrogen seal on the main generator, 1999 nuclear production could not match that of the previous year. Also, record hydro power production caused the nuclear share in total electricity production to drop. With the exception of Beznau 2, all refueling and maintenance outages were once again short. The Leibstadt outage lasted 26 days, Goesgen 33 days, Beznau 1 lasted 29 days, Beznau 2 89 days and Muehleberg 27 days. At Goesgen, MOX fuel was loaded for the third time in 1999. Of the 44 freshly-loaded fuel elements, 20 were MOX elements. Non-electrical energy supplies from the Beznau and Goesgen nuclear power plants functioned flawlessly. Beznau fed 143.6 GWh of heat energy into the Refuna district heating system, while Goesgen supplied 169 GWh of process heat to the neighboring Niedergoesgen cardboard factory. At the end of 1999 and the beginning of 2000 all Swiss nuclear units continued to operate flawlessly - notwithstanding the challenges posed by the 'Lothar' storm that hit Western Europe in late December and the so-called Y2K computer bug that threatened to hit shortly afterwards, during the 'millennial' change-over. (authors)

  13. The Swiss nuclear installations annual report 1992

    International Nuclear Information System (INIS)

    1993-06-01

    This report concerns the safety of the Swiss nuclear installations in the period of 1992. Surveillance of these installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). In Switzerland five nuclear power plants are operational: Beznau I and II, Muehleberg, Goesgen and Leibstadt. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basle. Further subject to HSK's supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut down experimental reactor of Lucens, the exploration in Switzerland of final disposal facilities for radwaste and the interim radwaste storage facilities. The present report first deals with the nuclear power plants and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK (chapters 1-4). In chapter 5, the corresponding information is given for the research installations. Chapter 6 on radwaste disposal is dedicated to the waste treatment, waste from reprocessing, interim storage and exploration by the NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants' vicinity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into some general questions relating to the safety of nuclear installations, and in particular covers important events in nuclear installations abroad. In all, the operation of the Swiss nuclear installations in the period of 1992 is rated safe by HSK. (author) 7 figs., 13 tabs

  14. Regulatory oversight report 2007 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2008-04-01

    This annual report issued by the Swiss Federal Nuclear Inspectorate (HSK) reports on the work carried out by the Inspectorate in 2007. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions and personnel and provides an assessment of operations from the point of view of safety. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management. Finally, the disposal of nuclear wastes and work done in the rock laboratories in Switzerland is commented on

  15. The Swiss nuclear installations. Annual report 1993

    International Nuclear Information System (INIS)

    1994-08-01

    Surveillance of the Swiss nuclear installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). Five nuclear power plants are operational in Switzerland: the three units Beznau I and II and Muehleberg with electrical capacities in the range of 300 to 400 MWe, and the two units Goesgen and Leibstadt with capacities between 900 and 1200 MWe. These are light water reactors; at Beznau and Goesgen of the PWR type, and at Muehleberg and Leibstadt of the BWR type. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basel. Further subject to HSK's supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut-down experimental reactor of Lucens, the exploration of final disposal facilities for radwaste and the interim radwaste storage facilities in Switzerland. The report first deals with the nuclear power and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK. In chapter 5, the corresponding information is given for research installations. Chapter 6, on radwaste disposal, is dedicated to the treatment of waste, waste from reprocessing, interim storage and exploration by NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants' proximity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into general questions relating to the safety of nuclear installations. All in all, the safety of operation of the Swiss nuclear installations, in the period of 1993, is judged as good by HSK. (author) 10 figs., 11 tabs

  16. The Swiss nuclear installations. Annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Surveillance of the Swiss nuclear installations with regard to nuclear safety, including radiation protection, is among the tasks of the Swiss Federal Nuclear Safety Inspectorate (HSK). Five nuclear power plants are operational in Switzerland: the three units Beznau I and II and Muehleberg with electrical capacities in the range of 300 to 400 MWe, and the two units Goesgen and Leibstadt with capacities between 900 and 1200 MWe. These are light water reactors; at Beznau and Goesgen of the PWR type, and at Muehleberg and Leibstadt of the BWR type. Research reactors of thermal capacities below 10 MWth are operational at the Paul Scherrer Institute (PSI), at the Swiss Federal Institute of Technology Lausanne and at the University of Basel. Further subject to HSK`s supervision are all activities at PSI involving nuclear fuel or ionizing radiation, the shut-down experimental reactor of Lucens, the exploration, in Switzerland, of final disposal facilities for radwaste and the interim radwaste storage facilities. The report first deals with the nuclear power and covers, in individual sections, the aspects of installation safety, radiation protection as well as personnel and organization, and the resulting overall impression from the point of view of HSK. In chapter 5, the corresponding information is given for research installations. Chapter 6, on radwaste disposal, is dedicated to the treatment of waste, waste from reprocessing, interim storage and exploration by NAGRA. In chapter 7, the status of emergency planning in the nuclear power plants` proximity is reported. Certificates issued for the transport of radioactive materials are dealt with in chapter 8. Finally chapter 9 goes into general questions relating to the safety of nuclear installations. All in all, the safety of operation of the Swiss nuclear installations, in the period of 1994, is judged as good by HSK. (author) 11 figs., 13 tabs.

  17. Decision of the Swiss Federal Council of 22 August 1979 (nuclear power station Leibstadt)

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    On the occasion of an appeal in administrative matters, launched by private persons domiciled in the Federal Republic of Germany against two part-construction permits for the Leibstadt nuclear power plant, the Swiss Bundesrat decided that these private persons do have the right to launch an appeal, in accordance with section 48 a of the Rules of administrative proceedings. The appeal may, however, only be based on infringement of rights protected by Swiss national law. (HP) [de

  18. The Swiss electrical power industry: energy policy problems and prospects

    International Nuclear Information System (INIS)

    Tognola, F.

    1986-01-01

    The emotive consequences of the Chernobyl accident have had a devastating effect on Swiss public opinion and endanger the serious effort by the Swiss electrical power industry over many years at making possible a power supply capable of meeting increasing demand at minimum cost, compatible with security of supply and protection of the environment. It is considered that two new nuclear power stations will be required, one in 1995 and the other in 2000. The serious consequences if these are not built and, particularly, if it were decided to shut down all existing Swiss nuclear stations are stressed. (P.G.R.)

  19. Nuclear Energy In Switzerland: It's going ahead. Challenges For The Swiss Nuclear Society Young Generation Group

    International Nuclear Information System (INIS)

    Streit, Marco; Bichsel, Thomas; Fassbender, Andre; Horvath, Matthias

    2008-01-01

    Swiss energy policy is focused on generating domestic electric power without combusting fossil fuels for already four decades. Roughly 60% of the electricity is generated in hydroelectric plants, which is possible due to the country's favourable topography; the remaining 40% are produced by the country's five nuclear power plants (NPPs). As in any other country nuclear power has its enemies in Switzerland. Due to the direct democracy system in Switzerland the nuclear opposition has a lot of possibilities to disturb the energy policy. Since 1969, when the first Swiss nuclear power plant went online, four plebiscites were held on the issue of civil use of nuclear energy. Four times Swiss citizens voted in favour of further operation of the existing plants also in the latest battle for nuclear energy, which was won in 2003. In 2005 and 2006 several Swiss studies about the future energy situation, especially the electricity situation, have been published. All off them show clearly that there will be a big gab around the year 2020 when the oldest three nuclear power plants will fade out. A public debate was started, how to solve the problem. Beside others, building new nuclear power plants was mentioned and discussed rationally. In 2007 the energy police of the Swiss government changed into a more nuclear friendly position and at the end of the same year some electricity companies lunched a new build program. Hosting the International Youth Nuclear Congress 2008 (IYNC 2008) in Switzerland seems to be just the right moment for the nuclear industry in our country. The slightly changed surroundings effected the organization of Swiss Nuclear Society (SNS) and SNS Young Generation Group (SNSYG) and enlarged the fields of activities for SNSYG. Those activities mentioned in the previous chapters will be developed in the future. The discussion about new builds in Switzerland has started and because of that more nuclear activities in Switzerland will occur. And surely there will

  20. Nuclear Energy In Switzerland: It's going ahead. Challenges For The Swiss Nuclear Society Young Generation Group

    Energy Technology Data Exchange (ETDEWEB)

    Streit, Marco [Aare-Tessin Ltd for Electricity, Bahnhofquai 12, CH-4601 Olten (Switzerland); Bichsel, Thomas [BKW FMB Energie AG, NPP Muehleberg, CH-3203 Muehleberg (Switzerland); Fassbender, Andre [NPP Goesgen-Daeniken AG, CH-4658 Daeniken (Switzerland); Horvath, Matthias [National Emergency Operations Centre, CH-8044 Zurich (Switzerland)

    2008-07-01

    Swiss energy policy is focused on generating domestic electric power without combusting fossil fuels for already four decades. Roughly 60% of the electricity is generated in hydroelectric plants, which is possible due to the country's favourable topography; the remaining 40% are produced by the country's five nuclear power plants (NPPs). As in any other country nuclear power has its enemies in Switzerland. Due to the direct democracy system in Switzerland the nuclear opposition has a lot of possibilities to disturb the energy policy. Since 1969, when the first Swiss nuclear power plant went online, four plebiscites were held on the issue of civil use of nuclear energy. Four times Swiss citizens voted in favour of further operation of the existing plants also in the latest battle for nuclear energy, which was won in 2003. In 2005 and 2006 several Swiss studies about the future energy situation, especially the electricity situation, have been published. All off them show clearly that there will be a big gab around the year 2020 when the oldest three nuclear power plants will fade out. A public debate was started, how to solve the problem. Beside others, building new nuclear power plants was mentioned and discussed rationally. In 2007 the energy police of the Swiss government changed into a more nuclear friendly position and at the end of the same year some electricity companies lunched a new build program. Hosting the International Youth Nuclear Congress 2008 (IYNC 2008) in Switzerland seems to be just the right moment for the nuclear industry in our country. The slightly changed surroundings effected the organization of Swiss Nuclear Society (SNS) and SNS Young Generation Group (SNSYG) and enlarged the fields of activities for SNSYG. Those activities mentioned in the previous chapters will be developed in the future. The discussion about new builds in Switzerland has started and because of that more nuclear activities in Switzerland will occur. And surely

  1. International Nuclear Safety Experts Conclude IAEA Peer Review of Swiss Regulatory Framework

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international nuclear safety experts today completed a two-week International Atomic Energy Agency (IAEA) review of the regulatory framework for nuclear safety in Switzerland. The Integrated Regulatory Review Service (IRRS) mission noted good practices in the Swiss system and also made recommendations for the nation's nuclear regulatory authority, the Swiss Federal Nuclear Safety Inspectorate (ENSI). ''Our team developed a good impression of the independent Swiss regulator - ENSI - and the team considered that ENSI deserves particular credit for its actions to improve Swiss safety capability following this year's nuclear accident in Japan,'' said IRRS Team Leader Jean-Christophe Niel of France. The mission's scope covered the Swiss nuclear regulatory framework for all types of nuclear-related activities regulated by ENSI. The mission was conducted from 20 November to 2 December, mainly at ENSI headquarters in Brugg. The team held extensive discussions with ENSI staff and visited many Swiss nuclear facilities. IRRS missions are peer reviews, not inspections or audits, and are conducted at the request of host nations. For the Swiss review, the IAEA assembled a team of 19 international experts from 14 countries. The experts came from Belgium, Brazil, the Czech Republic, Finland, France, Germany, Italy, the Republic of Korea, Norway, Russia, Slovakia, Sweden, the United Kingdom, and the United States. ''The findings of the IRRS mission will help us to further improve our work. That is part of our safety culture,'' said ENSI Director General Hans Wanner. ''As Switzerland argued at international nuclear safety meetings this year for a strengthening of the international monitoring of nuclear power, we will take action to fulfil the recommendations.'' The IRRS team highlighted several good practices of the Swiss regulatory system, including the following: ENSI requires Swiss nuclear operators to back-fit their facilities by continuously upgrading

  2. Annual Report 1998 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland.

  3. Annual Report 1998 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    1999-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland

  4. Annual Report 1999 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    2000-08-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland

  5. Annual Report 1999 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-15

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland.

  6. Annual report 1996 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland. figs., tabs., refs.

  7. Annual report 1996 concerning the nuclear safety and radiological protection in the Swiss nuclear installations

    International Nuclear Information System (INIS)

    1997-05-01

    The report presents detailed information about the nuclear safety and radiological protection in the Swiss nuclear power plants, the central interim storage at Wuerenlingen, the Paul Scherrer Institute (PSI) and other nuclear installations in Switzerland. figs., tabs., refs

  8. Partner of nuclear power plants

    International Nuclear Information System (INIS)

    Gribi, M.; Lauer, F.; Pauli, W.; Ruzek, W.

    1992-01-01

    Sulzer, the Swiss technology group, is a supplier of components and systems for nuclear power plants. Important parts of Swiss nuclear power stations, such as containments, reactor pressure vessels, primary pipings, are made in Winterthur. Sulzer Thermtec AG and some divisions of Sulzer Innotec focus their activities on servicing and backfitting nuclear power plants. The European market enjoys priority. New types of valves or systems are developed as economic solutions meeting more stringent criteria imposed by public authorities or arising from operating conditions. (orig.) [de

  9. Regulatory oversight report 2008 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2008 ueber die nukleare Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-04-15

    This annual report issued by the Swiss Federal Nuclear Inspectorate (ENSI) reports on the work carried out by the Inspectorate in 2008. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions, personnel and provides an assessment of operations from the safety point of view. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management, earthquake damage analysis and agreements on nuclear safety. The underground disposal of highly-radioactive nuclear wastes and work done in the rock laboratories are discussed, as are proposals for additional nuclear power stations.

  10. Analysis of human factors in incidents reported by Swiss nuclear power plants to the inspectorate

    International Nuclear Information System (INIS)

    Alder, H.P.; Hausmann, W.

    1997-01-01

    197 reported incidents in Swiss Nuclear Power Plants were analyzed by a team of the Swiss Federal Nuclear Safety Inspectorate (HSK) using the OECD/NEA Incident Reporting System. The following conclusions could be drawn from this exercise. While the observed cause reported by the plant was ''technical failure'' in about 90% of the incidents, the HSK-Team identified for more than 60% of the incidents ''human factors'' as the root cause. When analyzing this root cause further it was shown that only a smaller contribution came from the side of the operators and the more important shares were caused by plant maintenance, vendors/constructors and plant management with procedural and organizational deficiencies. These findings demonstrate that root cause analysis of incidents by the IRS-Code is a most useful tool to analyze incidents and to find weak points in plant performance. (author). 5 tabs

  11. Study on the possible consequences of a severe accident in a Swiss nuclear power plant on the drinking water supply

    International Nuclear Information System (INIS)

    Ustohalova, Veronika; Kueppers, Christian; Claus, Manuel

    2014-01-01

    The study on the possible consequences of a severe accident in a Swiss nuclear power plant on the drinking water supply covers the following issues: estimation of possible source terms and radioactive materials release rates, airborne water contamination, water contamination by direct pollution, consequences for the drinking water supply, emergency measures in case of a drinking water contamination, routine surveillance of surface and ground water and improvement possibilities in nuclear power plants.

  12. Aging management and PLEX in Swiss nuclear power plants and prioritization of safety class 2 and 3 components

    International Nuclear Information System (INIS)

    Fuchs, R.; Stejskal, J.

    2000-01-01

    In this presentation ageing management of systems and components important to safety of the Swiss nuclear power plants are presented. Status of electrical components, status of mechanical components as well as status of civil structures are reviewed. The scheme of the high pressure core spray system is included

  13. Survey of Swiss nuclear's cost study 2016; Pruefung der Kostenstudie 2016 von swissnuclear

    Energy Technology Data Exchange (ETDEWEB)

    Alt, Stefan; Ustohalova, Veronika [Oeko-Institut e.V. - Institut fuer Angewandte Oekologie, Freiburg im Breisgau (Germany)

    2017-04-26

    The report discusses the Swiss nuclear cost study 2016 concerning the following issues: evaluation of the aspects of the cost study: cost structure, cost classification and risk provision, additional payment liability, option of lifetime extension for Swiss nuclear power plants; specific indications on the report ''cost study 2016 (KS16) - estimation of the decommissioning cost of Swiss nuclear power plants'': decommissioning costs in Germany, France and the USA, indexing the Swiss cost estimation for decommissioning cost, impact factors on the decommissioning costs; specific indications on the report ''cost study 2016 (KS16) - estimation of the disposal cost - interim storage, transport, containers and reprocessing''; specific indications on the report ''cost studies (KS16) - estimation of disposal costs - geological deep disposal'': time scale and costs incurred, political/social risks, retrievability, comparison with other mining costs.

  14. Regulatory oversight report 2007 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2007 ueber die nukleare Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-15

    This annual report issued by the Swiss Federal Nuclear Inspectorate (HSK) reports on the work carried out by the Inspectorate in 2007. This report reviews the regulatory activities in the four Swiss nuclear power stations and in four further nuclear installations in various Swiss research facilities. It deals with topics such as operational details, technologies in use, radiation protection, radioactive wastes, emergency dispositions and personnel and provides an assessment of operations from the point of view of safety. Also, the transportation of nuclear materials - both nuclear fuels and nuclear wastes - is reported on. General topics discussed include probabilistic safety analyses and accident management. Finally, the disposal of nuclear wastes and work done in the rock laboratories in Switzerland is commented on.

  15. Implementation of the obligations of the Convention on Nuclear Safety. The first Swiss report in accordance with Article 5

    International Nuclear Information System (INIS)

    1998-09-01

    This report is issued according to Article 5 of the International Convention on Nuclear Safety. It has been produced by the Swiss Federal Nuclear Safety Inspectorate. Before submission to the Federal Department of Environment, Transport, Energy and Communication, the report has been commented by the Federal Office of Energy (BFE/OFEN), the Swiss Federal Nuclear Safety Commission (KSA/CSA), and the Swiss nuclear power plants of Beznau, Leibstadt and Muehleberg. The Goesgen nuclear power plant has chosen not to comment on the report. The introduction to the report provides general information about Switzerland, a brief political history of nuclear power and an overview of the nuclear facilities in Switzerland. In the subsequent sections, numbered after the Articles 6 to 19 of the Convention on Nuclear Safety, key aspects are commented on in such a way as to give a clear indication on how the various duties imposed by the Convention are fulfilled in Switzerland

  16. Implementation of the obligations of the Convention on Nuclear Safety. The first Swiss report in accordance with Article 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report is issued according to Article 5 of the International Convention on Nuclear Safety. It has been produced by the Swiss Federal Nuclear Safety Inspectorate. Before submission to the Federal Department of Environment, Transport, Energy and Communication, the report has been commented by the Federal Office of Energy (BFE/OFEN), the Swiss Federal Nuclear Safety Commission (KSA/CSA), and the Swiss nuclear power plants of Beznau, Leibstadt and Muehleberg. The Goesgen nuclear power plant has chosen not to comment on the report. The introduction to the report provides general information about Switzerland, a brief political history of nuclear power and an overview of the nuclear facilities in Switzerland. In the subsequent sections, numbered after the Articles 6 to 19 of the Convention on Nuclear Safety, key aspects are commented on in such a way as to give a clear indication on how the various duties imposed by the Convention are fulfilled in Switzerland.

  17. Regulatory oversight report 2016 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2017-06-01

    ENSI, the Swiss Federal Nuclear Safety Inspectorate, assesses and monitors safety in the Swiss nuclear facilities. These include the five nuclear power plants: Beznau Units 1 and 2 (KKB1 and KKB2), Muehleberg (KKM), Goesgen (KKG) and Leibstadt (KKL), the interim storage facilities based at each plant, the Central Interim Storage Facility (Zwilag) in Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI), the University of Basel (UniB) and the Federal Institute of Technology in Lausanne (EPFL). Using a combination of inspections, regulatory meetings, checks, analyses and the reporting of the operators of individual facilities, ENSI obtains the required overview of nuclear safety in these facilities. It ensures that they operate as required by law. ENSI's regulatory responsibilities also include the transport of radioactive materials from and to nuclear facilities and preparations for a deep geological repository for radioactive waste. ENSI maintains its own emergency organisation, which is an integral part of the national emergency structure that would be activated in the event of a serious incident at a nuclear facility in Switzerland. ENSI reports periodically on its supervisory activities. It informs the public about special events and findings in the nuclear installations. All five nuclear power plants in Switzerland operated safely during the past year. Nuclear safety at all plants in operation was rated as good or satisfactory. In 2016, there were 31 reportable events at the nuclear power plants. 30 events were rated Level 0 (event of no or low safety significance) on the International Nuclear and Radiological Event Scale (INES) and one was rated Level 1 (anomaly) at KKL. Zwilag consists of several interim storage buildings, a conditioning plant and a plasma plant (incineration/melting plant). At the end of 2016, the cask storage hall contained 56 transport/storage casks with spent fuel assemblies and vitrified residue

  18. Regulatory oversight report 2010 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2011-06-01

    Acting as the regulatory body of the Swiss Confederation, the Swiss Federal Nuclear Safety Inspectorate, ENSI, assesses and monitors nuclear facilities in Switzerland. This includes the five nuclear power plants (NPPs), the plant-based interim storage facilities, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen, the nuclear facilities at the Paul Scherrer Institute (PSI), the two universities of Basel and Lausanne, the transport of radioactive materials from and to nuclear facilities and the preparation for a deep geologic repository for radioactive waste. Using inspections, surveillance meetings, reviews and analyses as well as reports from plant licensees, ENSI obtains the required overview of the safety of the nuclear facilities. It maintains its own emergency organisation, which is an integral part of the national emergency structure. The legislative framework at the basis of the activity of ENSI specifies the criteria by which it evaluates the activities and plans of the operators of nuclear facilities. ENSI provides the public with information on particular events and observations relating to nuclear facilities. The five nuclear power plants in Switzerland (Beznau Units 1 und 2, Muehleberg, Goesgen and Leibstadt) were all operated safely in 2010. Last year, there were 39 notifiable events in Switzerland: 4 events affected both Beznau Units, 10 events the Goesgen NPP, 6 the Leibstadt NPP and 13 the Muehleberg NPP and 6 in other facilities. Based on the International Nuclear Event Scale (INES) of 0-7, ENSI rated 38 events as Level 0, and as INES Level 2 the event on 31 August 2010 during maintenance work at the Leibstadt NPP, where a diver was exposed to radiation in excess of the maximum annual exposure rate of 20 mSv. The ZWILAG at Wuerenlingen consists of several interim storage halls, a conditioning plant and the plasma plant (incineration/melting plant). At the end of 2010, the cask storage hall contained 34 transport/storage casks with spent

  19. Regulatory oversight report 2012 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2013-04-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) assesses and monitors nuclear facilities in Switzerland. These include the five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) and the nuclear facilities at the Paul Scherrer Institute (PSI), at the Federal Institute of Technology in Lausanne (EPFL) and at the University of Basel. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety in the relevant facilities. It ensures that the facilities comply with the regulations and operate as required by law. Its regulatory responsibilities also include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation. It formulates and updates its own guidelines which stipulate the criteria for evaluating the current activities and future plans of the operators of nuclear facilities. ENSI produces regular reports on its regulatory activities and nuclear safety in Swiss nuclear facilities. It fulfils its statutory obligation to provide the public with information on particular events and findings in nuclear facilities. In 2012, the five nuclear power plants in Switzerland were all operated safely. 34 events were reported; on the international INES scale of 0 to 7, ENSI rated 33 events as Level 0 and 1 as Level 1. ENSI evaluates the safety of each nuclear power plant as part of a systematic safety evaluation taking account of both reportable events and other findings, in particular the results of more than 400 inspections conducted by ENSI during 2012. ZWILAG consists of several interim storage halls, a conditioning plant and an incineration/melting plant. At the end of 2012, the cask storage hall contained 40 transport/storage casks

  20. Wind energy and Swiss hydro power

    International Nuclear Information System (INIS)

    Ott, W.; Baur, M.; Fritz, W.; Zimmer, Ch.; Feldmann, J.; Haubrich, H.-J.; Dany, G.; Schmoeller, H.; Hartmann, T.

    2004-01-01

    This report for the Swiss Federal Office of Energy (SFOE) examines the possibilities of using Switzerland's hydropower generation facilities as a means of control and as a capacity-reserve for a European power system that includes a considerable amount of wind-generated electricity. The aims of the study - the analysis of possible changes in power availability and of the relative importance of peak load compensation, economic optimisation potential for the use of Swiss hydropower and organisational aspects - are presented. Various methods for organising production timetables and trading are looked at, as are future developments in the European power market. Methods of assessment of the value of Swiss hydropower installations are discussed in detail and possibilities of increasing capacity are discussed. The report is concluded with recommendations on the participation of Swiss hydropower in the market for regulation energy and the development of associated strategies. Also, environmental aspects are examined and the influence of national wind-energy concepts are discussed

  1. Regulatory overview report 2014 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2015-06-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI), acting as the regulatory body of the Swiss Federation, assesses and monitors nuclear facilities in Switzerland: the five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI), the University of Basel (UniB) and the Federal Institute of Technology in Lausanne (EPFL). Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety. It ensures that they comply with regulations. Its regulatory responsibilities include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation, an integral part of the national emergency structure. It provides the public with information on particular events in nuclear facilities. This Surveillance Report describes the operational experience, systems technology, radiological protection and management in all nuclear facilities. Generic issues relevant to all facilities such as probabilistic safety analyses are described. In 2014, all five nuclear power plants in Switzerland (Beznau Units I and 2, Muehleberg, Goesgen and Leibstadt) were operated safely. The nuclear safety at all plants was rated as good. 38 events were reported. There was one reactor scram at the Leibstadt nuclear power plant. On the International Event Scale (INES), ranging from 0--7, 37 events were rated as Level 0; one event was rated as INES 1: drill holes had penetrated the steel wall of the containment to secure two hand-held fire extinguishers. ZWILAG consists of several interim storage halls, a conditioning plant and a plasma plant. At the end of 2014, the cask storage hall contained 42

  2. Reinforcement course. Future nuclear power systems. A way to achieve more acceptance?

    International Nuclear Information System (INIS)

    Rey, Matthias

    2013-01-01

    The 2012 Reinforcement Course organized by the Swiss Nuclear Forum was devoted to the question in what way nuclear reactors of the third generation and more recent concepts provide more safety, and whether this is a way to achieve more societal acceptance. Besides presentations by speakers from industry and science, also theological, psychological, political and sociological views about nuclear power were expressed. Dr. Urs Weidmann, President of the Committee on Education of the Swiss Nuclear Forum, Head of the Beznau Nuclear Power Plant, Axpo AG, opened the course to approximately 120 participants by introducing the first six presentations, which dealt with societal aspects of nuclear power. The second group of three papers were introduced by Dr. Philipp Haenggi, Head of the Swiss nuclear office. The subject was 'Future Concepts - Design Regulations and Safety Considerations.' The agenda of the second day featured 'Third-generation Reactors in the Light of Fukushima' and 'Sideviews' of subjects and future technologies discussed by society in a similarly controversial way. Dr. Johannis Noeggerath, Head of Nuclear Safety, Leibstadt Nuclear Power Plant, guided the participants through the eight papers. The next reinforcement course will again be held in Olten on November 19 and 20, 2013, and will be devoted to lifetime management of nuclear power plants. (orig.)

  3. Regulatory overview report 2013 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2014-06-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) acting as the regulatory body of the Swiss Federation assesses and monitors nuclear facilities in Switzerland: these include five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI) and the two universities of Basel and Lausanne. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the overview required concerning nuclear safety. It ensures that the facilities comply with regulations. Its regulatory responsibilities include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation, an integral part of the national emergency structure. It provides the public with information on particular events in nuclear facilities. This Surveillance Report describes operational experience, systems technology, radiological protection and management in all the nuclear facilities. Generic issues relevant to all facilities such as probabilistic safety analyses are described. In 2013, the five nuclear power plants in Switzerland (Beznau Units 1 and 2, Muehleberg, Goesgen and Leibstadt) were all operated safely and had complied with their approved operating conditions. The nuclear safety at all plants was rated as being good. 34 events were reported. During operation, no reactor scrams were recorded. On the INES scale, ranging from 0-7, ENSI rated all reportable events as Level 0. The ENSI safety evaluation reflects both reportable events and the results of the approximately 460 inspections conducted during 2013. ZWILAG consists of several storage halls, a conditioning plant and a plasma plant. At the end of 2013, the cask storage hall

  4. Simulators in the training program for nuclear power plants

    International Nuclear Information System (INIS)

    Grimm, E.

    1988-01-01

    The principle simulator of the reactor school of the Paul Scherrer Institute is described. A compact simulator at the nuclear power plant Beznau is used for beginners as well as for refresher courses. Full simulator training cannot be taken in Switzerland. The Swiss nuclear power plants take advantage of the services of foreign nuclear power plants or training centers. The role of the instructor is discussed

  5. Operational experience, availability and reliability of nuclear power plants

    International Nuclear Information System (INIS)

    Kueffer, K.

    1981-01-01

    This lecture presents a survey on nuclear power production and plant performance in the Western World covering all reactor types and light-water reactors in particular and discusses key parameters such as load factors and non-availability analysis, outlines the main reasons for the reliable performance of Swiss nuclear power plants and explains the management function as applied at the Beznau Nuclear Power Station to ensure high power productivity and reliability. (orig./RW)

  6. Cost effectiveness at Beznau and other Swiss nuclear stations

    International Nuclear Information System (INIS)

    Wenger, H.E.

    1996-01-01

    Switzerland, with 7 million inhabitants, has the sixth highest per-capita electricity consumption in the world. At present, 40% of electric power is nuclear. The four Swiss nuclear plants have an average capacity factor well above 80%. Total cost per kw.h ranges from 5.4 US-cents for Beznau to 7.1 for Leibstadt. Staffing levels are lower than in other countries, due to the stable and highly skilled work force. The maintenance practice has been one of preventive maintenance. Both steam generators in Beznau-1 were replaced in 1993, and Beznau-2 is scheduled for 2000. Some maintenance is done by contractors. There is practically no technical support from headquarters. Retrofitting mandated by the regulatory authority is a matter of concern, because of its effect on production costs. Possible deregulation of the market for electricity in Europe powers the drive to become more efficient. 3 tabs

  7. Swiss Solutions for Providing Electrical Power in Cases of Long-Term Black-Out of the Grid

    International Nuclear Information System (INIS)

    Altkind, Franz; Schmid, Daniel

    2015-01-01

    A better understanding of nuclear power plant electrical system robustness and defence-in-depth may be derived from comparing design and operating practices in member countries. In pursuing this goal, the current paper will focus on Switzerland. It will present in general the protective measures implemented in the Swiss nuclear power plants to ensure power supply, which comply with the 'Defence-in-depth' principle by means of several layers of protection. In particular it will present the measures taken in case of a total station blackout. The different layers supplying electricity may be summed up as follows. The first layer consists of the external main grid, which the plant generators feed into. The second layer is the auxiliary power supply when the power plant is in island mode in case of a failure of the main grid. A third layer is provided by the external reserve grid in case of both a failure of the external main grid and of the auxiliary power supply in island mode. As a fourth layer there exists an emergency electrical power supply. This is supplied either from an emergency diesel generator or a direct feed from a hydroelectric power plant. In the fifth layer, the special emergency electrical power supply from bunkered emergency diesel generators power the special emergency safety system and is activated upon the loss of all external feeds. A sixth layer consists of accident management equipment. Since the Fukushima event, the sixth layer has been reinforced and a seventh layer with off-site accident management equipment has been newly added. The Swiss nuclear safety regulator has analysed the accident. It reviewed the Swiss plants' protection against earthquakes as well as flooding and demanded increased precautionary measures from the Swiss operators in the hypothetical case of a total station blackout, when all the first five layers of supply would fail. In the immediate, a centralized storage with severe accident management equipment

  8. Management for nuclear power plants for safe operation

    International Nuclear Information System (INIS)

    Kueffer, K.

    1981-01-01

    This lecture covers management aspects which have an immediate bearing on safety and identifies the objectives and tasks of management which are required for safe operation of a nuclear power plant and is based on the Codes of Practice and Safety Guides of the IAEA as well as arrangements in use at the Swiss Nuclear Power Station Beznau. (orig./RW)

  9. Nuclear energy and nuclear technology in Switzerland

    International Nuclear Information System (INIS)

    Graf, P.

    1975-01-01

    The energy crisis, high fuel costs and slow progress in the development of alternative energy sources, e.g. solar energy have given further impetus to nuclear power generation. The Swiss nuclear energy programme is discussed and details are given of nuclear station in operation, under construction, in the project stage and of Swiss participation in foreign nuclear stations. Reference is made to the difficulties, delays and resulting cost increases caused by local and regional opposition to nuclear power stations. The significant contributions made by Swiss industry and Swiss consulting engineers are discussed. (P.G.R.)

  10. Plant life management (PLIM) in Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Stejskal, Jan; Steudler, Daniel; Thoma, Kurt; Fuchs, Reinhard

    2002-01-01

    Full text: The Swiss Utility Working group for ageing Management (AM) presented their programme for the first time at the PLIM/PLEX 93. In the meantime the key guideline documents have been prepared and the most so called S teckbrief - files for Safety Class 1 (SC1) are issued. The 'Steckbrief' file is a summary of the component history and includes the results of the Reviews performed and measures taken or planned to counteract ageing mechanisms. The scope of these activities does not only serve the important aspect of reliable plant service but also facilitates component and plant life extension feasibility. The older plants have been operated now for up to 30 years, so PLEX will become a more important topic for Swiss NPP. It is very encouraging, that there is an official memorandum of the Swiss authority with the clear statement, that they could not identify any technical reason, why the older plants should not extend their design life of 40 years for at least 10 and the younger for 20 years. The result of this is that a well established Ageing Management Programme (AMP) provide a good basis for Plant Life Extension (PLEX), e.g. the Swiss AMP has to be seen as a PLIM. (author)

  11. Fracture mechanics investigations within the swiss surveillance programme for the pressure vessel of modern nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, G; Krompholz, K [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1994-12-31

    In the frame of surveillance programmes of Swiss nuclear power plants, irradiation tests have been performed on tensile, impact and wedge opening load specimens as well as on three point bend-type specimens (for J-integral investigations) and pre-cracked Charpy impact specimens (for dynamical stress intensities K{sub ID}). An experimental method (potential drop technique) is used together with a mathematical procedure which allow for the determination of the stress intensity K{sub IC} for small CT-samples instead of large ones: agreement of these both methods is found excellent, and the mapping of both methods to fatigue pre-cracked small specimens (3 PB and Charpy) is possible. The application of the analysis method to dynamical tests is also possible. 15 refs., 9 figs., 1 tab.

  12. Concept for the Emergency Protection in the Vicinity of Nuclear Power Plants

    International Nuclear Information System (INIS)

    1998-03-01

    In 1991, the Swiss Federal Nuclear Safety Inspectorate (HSK) issued a concept of the regulations for the cloud phase 1 of an nuclear power plant accident in Switzerland valid at that time in co-operation with the Federal Commission for AC Protection (KOMAC) and the Swiss Federal Nuclear Safety Commission (KSA). This concept replaced the version of 1977, which then formed the basis for emergency preparedness in Switzerland. Legal changes, such as the civil protection legislation and the ordinance on the distribution of iodine tablets to the population, as well as experience gained from the emergency exercises necessitated a revision of the existing concept. The present concept is issued by the Federal Commission for AC Protection (KOMAC) and deals with all phases of an accident sequence in a Swiss nuclear power plant focussing on the pre- and cloud phase. It also gives an overview of responsibilities and alert procedures for accidents at foreign nuclear power plants and other nuclear installations, as well as of accidents in connection with transportation of radioactive materials. The concept is designed to help the federal and cantonal authorities in the vicinity of nuclear power plants in charge of emergency protection in preparing their emergency procedure specifications, and in the realisation of the readiness for emergencies. Furthermore, it shall serve the cantons as a guideline for the preparation of emergency specifications for the communities. The concept is based on the assumption that the executive bodies and emergency forces provided for the general civil protection are employed in case of an accident at a nuclear power plant. (authors)

  13. Swiss regulatory use of databanks for nuclear power plant life management, surveillance and safety analyses

    International Nuclear Information System (INIS)

    Tipping, Ph.; Beutler, R.; Schoen, G.; Noeggerath, J.

    2002-01-01

    Full text: As operational time is accumulated, the overall safety and performance of nuclear power plants (NPPs) will tend to be characterised by those areas in which structures, systems and components (SSCs) have not performed as well, or as reliably, as expected. The reasons for non-availability of equipment in NPPs due to SSC material malfunction or unsatisfactory performance, leading to events or even accidents, are varied and they must be analysed in order to obtain the root causes. Once the root causes are identified, corresponding measures can be applied in order to improve reliability and therefore safety. The root cause information obtained, if brought into user-friendly databanks (DBs), can be used to follow NPP performance trends, to check whether a repair or replacement has been effective, to focus regulatory attention and NPP surveillance on known weak-spots and to serve as an advance indicator where potential problems may arise. Using the DBs, similar occurrences of failures or problems in other NPPs can be identified and generic issues recognised early on and preventative action taken. The following describes the Swiss Federal Nuclear Safety Inspectorate's (HSK) DB concepts for keeping track of NPP safety and lifetime management issues. Typical sources of data for the Inspectorate's DBs are, for example, the IAEA/NEA Incident Reporting System (IRS) reports, US-NRC Generic Letters, the Swiss NPP's own reports (monthly, annual and normal outage) and, more importantly, the document that these NPPs must issue to the Inspectorate whenever a reportable event takes place. Specifically, the reporting of events in the NPPs is laid down in the Inspectorate's Guideline (R-15 'Reporting Guideline Concerning The Operation of Nuclear Power Plants'). In this Guideline, reportable events are defined and the criteria for assessing the degree of importance or impact on nuclear safety are given. In this manner, a standard and consistent approach to data collection is

  14. Safety culture in nuclear power plants. Proceedings

    International Nuclear Information System (INIS)

    1994-12-01

    As a consequence of the INSAG-4 report on 'safety culture', published by the IAEA in 1991, the Federal Commission for the Safety of Nuclear Power Plants (KSA) decided to hold a one-day seminar as a first step in this field. The KSA is an advisory body of the Federal Government and the Federal Department of Transport and Energy (EVED). It comments on applications for licenses, observes the operation of nuclear power plants, assists with the preparation of regulations, monitors the progress of research in the field of nuclear safety, and makes proposals for research tasks. The objective of this seminar was to familiarise the participants with the principles of 'safety culture', with the experiences made in Switzerland and abroad with existing concepts, as well as to eliminate existing prejudices. The main points dealt with at this seminar were: - safety culture from the point of view of operators, - safety culture from the point of view of the authorities, - safety culture: collaboration between power plants, the authorities and research organisations, - trends and developments in the field of safety culture. Invitations to attend this seminar were extended to the management boards of companies operating Swiss nuclear power plants, and to representatives of the Swiss authorities responsible for the safety of nuclear power plants. All these organisations were represented by a large number of executive and specialist staff. We would like to express our sincerest thanks to the Head of the Federal Department of Transport and Energy for his kind patronage of this seminar. (author) figs., tabs., refs

  15. Reactor physics teaching and research in the Swiss nuclear engineering master

    International Nuclear Information System (INIS)

    Chawla, R.

    2012-01-01

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  16. Dose assessment following an overexposure of a worker at a Swiss nuclear power plant.

    Science.gov (United States)

    Bailat, Claude J; Laedermann, Jean-Pascal; Baechler, Sébastien; Desorgher, Laurent; Aroua, Abbas; Bochud, François O

    2017-12-01

    The aim of this work was to assess the doses received by a diver exposed to a radiation source during maintenance work in the fuel transfer pool at a Swiss nuclear power plant, and to define whether the statutory limit was breached or not. Onsite measurements were carried out and different scenarios were simulated using the MicroShield Software and the MCNPX Monte Carlo radiation transport code to estimate the activity of the irradiating object as well as the doses to the limbs and the effective dose delivered to the operator. The activity of the object was estimated to 1.8 TBq. From the various dose estimations, a conservative value of 7.5 Sv was proposed for the equivalent dose to the skin on the hands and an effective dose of 28 mSv. The use of different experimental and calculation methods allowed us to accurately estimate the activity of the object and the dose delivered to the diver, useful information for making a decision on the most appropriate scheme of follow up for the patient.

  17. New Swiss legislation on nuclear third party liability

    International Nuclear Information System (INIS)

    Fischer, U.

    1981-10-01

    Following a description of the Paris Convention and Brussels Supplementary Convention system for nuclear third party liability and that prevailing until now in Switzerland, the paper reviews the new Swiss nuclear third party liability Bill prepared after a popular consultation. The new provisions are analysed and in particular, that providing for unlimited liability. (NEA) [fr

  18. Wind energy and Swiss hydro power; Windenergie und schweizerischer Wasserkraftpark

    Energy Technology Data Exchange (ETDEWEB)

    Ott, W.; Baur, M. [Econcept AG, Zuerich (Switzerland); Fritz, W.; Zimmer, Ch.; Feldmann, J. [Consentec, Consulting fuer Energiewirtschaft und -technik GmbH, Aachen (Germany); Haubrich, H.-J.; Dany, G.; Schmoeller, H.; Hartmann, T. [Institut fuer Elektrische Anlagen und Energiewirtschaft (IAEW), RWTH, Aachen (Germany)

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) examines the possibilities of using Switzerland's hydropower generation facilities as a means of control and as a capacity-reserve for a European power system that includes a considerable amount of wind-generated electricity. The aims of the study - the analysis of possible changes in power availability and of the relative importance of peak load compensation, economic optimisation potential for the use of Swiss hydropower and organisational aspects - are presented. Various methods for organising production timetables and trading are looked at, as are future developments in the European power market. Methods of assessment of the value of Swiss hydropower installations are discussed in detail and possibilities of increasing capacity are discussed. The report is concluded with recommendations on the participation of Swiss hydropower in the market for regulation energy and the development of associated strategies. Also, environmental aspects are examined and the influence of national wind-energy concepts are discussed.

  19. Regulatory oversight report 2011 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2012-06-01

    The Swiss Federal Nuclear Safety Inspectorate ENSI, acting as the regulatory body of the Swiss Confederation, assesses and monitors nuclear facilities in Switzerland. These include five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI) and the two universities of Basel and Lausanne. ENSI ensures that the facilities comply with regulations and operate according to the law. Its regulatory responsibilities also include the transport of radioactive materials to and from nuclear facilities and the preparations for a deep geologic repository for nuclear waste. It maintains its own emergency organisation, which is an integral part of a national emergency structure. Building on the legislative framework, ENSI also formulates and updates its own guidelines. It provides the public with information on particular events and findings in nuclear facilities. In 2011, all five nuclear power reactors in Switzerland (Beznau Units 1 and 2, Muehleberg, Goesgen and Leibstadt) were operated safely and ENSI concluded that they had complied with their approved operating conditions. There were 27 reportable events in the nuclear power plants in Switzerland: 7 at Beznau, 5 at Goesgen, 11 at Leibstadt und 4 at Muehleberg. On the international INES scale of 0 to 7, ENSI rated 26 events as Level 0. One event, at the Muehleberg nuclear power plant, was rated as INES Level 1. This related to a potential blockage of the emergency water intake system in the event of extreme flooding. The operator BKW shut down the Muehleberg plant ahead of the scheduled maintenance date and upgraded the system. ZWILAG consists of several interim storage halls, a conditioning plant and a plasma plant (incineration/melting plant). At the end of 2011, the cask storage hall contained 34 transport/storage casks with fuel assemblies and vitrified residue packages

  20. Radiation protection in Swiss nuclear installations; Strahlenschutz in Schweizer Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, J.; Brunell, M. [Eidgenoessisches Nuklearsicherheitsinspektorat ENSI, Brugg (Switzerland)

    2015-07-01

    Well developed measures on operational radiation protection within Swiss nuclear installations will be presented. The focus lays on competent authority actions. Results of the last ten years, including events on radiation issues, will be discussed. Finally a view on challenges for radiation protection personnel with respect to a renewed Swiss radiation protection legislation based on recent ICRP recommendations will be given.

  1. Wind energy and Swiss hydroelectric power; Windenergie und schweizerischer Wasserkraftpark

    Energy Technology Data Exchange (ETDEWEB)

    Ott, W.; Baur, M. [Econcept AG, Zuerich (Switzerland); Fritz, W.; Zimmer, Ch.; Feldmann, J. [Consentec GmbH, Aachen (Germany); Haubrich, H.-J.; Dany, G.; Schmoeller, H.; Hartmann, T. [Institut fuer Elektrische Anlagen und Energiewirtschaft RWTH Aachen (IAEW), Aachen (Germany)

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made to analyse the possible changes in the European electricity supply system, in particular with reference to the increasing amount of wind-generated electricity. Also, the role of peak-power and the optimisation potential for Swiss hydropower was examined. The part to be played by Swiss wind power in the future and the government's sustainability strategy is also looked at. The report looks at electricity dealing in the European context and introduces a method of assessment for Swiss hydropower. The report's conclusions and recommendations cover the increasing importance of energy storage in hydropower schemes, the question if grid capacity is sufficient under the new conditions, the market liberalisation question and possible ecological problems that may be encountered.

  2. Regulatory oversight report 2016 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2016 zur nuklearen Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-06-15

    ENSI, the Swiss Federal Nuclear Safety Inspectorate, assesses and monitors safety in the Swiss nuclear facilities. These include the five nuclear power plants: Beznau Units 1 and 2 (KKB1 and KKB2), Muehleberg (KKM), Goesgen (KKG) and Leibstadt (KKL), the interim storage facilities based at each plant, the Central Interim Storage Facility (Zwilag) in Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI), the University of Basel (UniB) and the Federal Institute of Technology in Lausanne (EPFL). Using a combination of inspections, regulatory meetings, checks, analyses and the reporting of the operators of individual facilities, ENSI obtains the required overview of nuclear safety in these facilities. It ensures that they operate as required by law. ENSI's regulatory responsibilities also include the transport of radioactive materials from and to nuclear facilities and preparations for a deep geological repository for radioactive waste. ENSI maintains its own emergency organisation, which is an integral part of the national emergency structure that would be activated in the event of a serious incident at a nuclear facility in Switzerland. ENSI reports periodically on its supervisory activities. It informs the public about special events and findings in the nuclear installations. All five nuclear power plants in Switzerland operated safely during the past year. Nuclear safety at all plants in operation was rated as good or satisfactory. In 2016, there were 31 reportable events at the nuclear power plants. 30 events were rated Level 0 (event of no or low safety significance) on the International Nuclear and Radiological Event Scale (INES) and one was rated Level 1 (anomaly) at KKL. Zwilag consists of several interim storage buildings, a conditioning plant and a plasma plant (incineration/melting plant). At the end of 2016, the cask storage hall contained 56 transport/storage casks with spent fuel assemblies and vitrified residue

  3. Regulatory oversight report 2015 concerning nuclear safety in Swiss nuclear installations

    International Nuclear Information System (INIS)

    2016-06-01

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) assesses and monitors nuclear facilities in Switzerland. These include the five nuclear power plants (Beznau Units 1 and 2, Muehleberg, Goesgen and Leibstadt), the interim storage facilities based at each plant, the Central Interim Storage Facility (Zwilag) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI), the University of Basel and the Federal Institute of Technology in Lausanne (EPFL), as well as the transport of radioactive materials and the preparatory work for a deep geological repository for nuclear waste. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety in these facilities. ENSI maintains its own emergency organization. It provides the public with information on particular events and findings in nuclear facilities. ENSI publishes an annual Radiological Protection Report and a Research and Experience Report. Chapters 1 to 4 of this Surveillance Report deal with operational experience, systems technology, radiological protection and management of the 5 Swiss nuclear power plants. Chapter 5 deals with Zwilag. Chapters 6 and 7 are devoted to the nuclear facilities at PSI and the research reactor at EPFL as well as the decommissioned University of Basel’s research reactor. Chapter 8 covers the transport of radioactive materials. The subject of Chapter 9 is the deep geological storage of radioactive waste including work within the framework of the Sectoral Plan. Finally, Chapter 10 deals with generic issues relevant to all facilities such as probabilistic safety analyses. In 2015, all five nuclear power plants in Switzerland were safely operated and ENSI concluded that each had adhered to its approved operating conditions. There were 34 reportable events at the nuclear power plants; 32 events were rated at Level 0 on

  4. Association of Swiss Electrical Utilities

    International Nuclear Information System (INIS)

    1987-01-01

    The report, reproduced in full, discusses Swiss energy policy in 1986, paying particular attention to the fall in confidence with nuclear power following the Chernobyl accident. Statistical data on primary and secondary energy consumption and power generation are presented. Other sections include imports/exports, construction of power stations, transmission/distribution links, finance, constitution of council, committees and public relations. (G.T.H.)

  5. Operational experience, availability and reliability of nuclear power plants

    International Nuclear Information System (INIS)

    Kueffer, K.

    1980-01-01

    This lecture - presents a survey on nuclear power production and plant performance in the Western World covering all reactor types and light-water reactors in particular and discusses key parameters such as load factors and non-availability analysis. - outlines the main reasons for the reliable performance of Swiss nuclear power plants - quality equipment - operator qualification and training - engineering know how on site - maintenance philosophy and outage planning - information system and feedback of experience - explains the management functions as applied at the Beznau Nuclear Power Station to ensure high power productivity and reliability - improvement - a feedback control system - analysis of production losses - optimization in shut-down planning - minimizing disturbances during plant operation - optimizing personnel qualification and efficiency. (orig.)

  6. Regulatory oversight report 2010 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2010 zur nuklearen Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    Acting as the regulatory body of the Swiss Confederation, the Swiss Federal Nuclear Safety Inspectorate, ENSI, assesses and monitors nuclear facilities in Switzerland. This includes the five nuclear power plants (NPPs), the plant-based interim storage facilities, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen, the nuclear facilities at the Paul Scherrer Institute (PSI), the two universities of Basel and Lausanne, the transport of radioactive materials from and to nuclear facilities and the preparation for a deep geologic repository for radioactive waste. Using inspections, surveillance meetings, reviews and analyses as well as reports from plant licensees, ENSI obtains the required overview of the safety of the nuclear facilities. It maintains its own emergency organisation, which is an integral part of the national emergency structure. The legislative framework at the basis of the activity of ENSI specifies the criteria by which it evaluates the activities and plans of the operators of nuclear facilities. ENSI provides the public with information on particular events and observations relating to nuclear facilities. The five nuclear power plants in Switzerland (Beznau Units 1 und 2, Muehleberg, Goesgen and Leibstadt) were all operated safely in 2010. Last year, there were 39 notifiable events in Switzerland: 4 events affected both Beznau Units, 10 events the Goesgen NPP, 6 the Leibstadt NPP and 13 the Muehleberg NPP and 6 in other facilities. Based on the International Nuclear Event Scale (INES) of 0-7, ENSI rated 38 events as Level 0, and as INES Level 2 the event on 31 August 2010 during maintenance work at the Leibstadt NPP, where a diver was exposed to radiation in excess of the maximum annual exposure rate of 20 mSv. The ZWILAG at Wuerenlingen consists of several interim storage halls, a conditioning plant and the plasma plant (incineration/melting plant). At the end of 2010, the cask storage hall contained 34 transport/storage casks with spent

  7. Regulatory oversight report 2012 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2012 zur nuklearen Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) assesses and monitors nuclear facilities in Switzerland. These include the five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) and the nuclear facilities at the Paul Scherrer Institute (PSI), at the Federal Institute of Technology in Lausanne (EPFL) and at the University of Basel. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety in the relevant facilities. It ensures that the facilities comply with the regulations and operate as required by law. Its regulatory responsibilities also include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation. It formulates and updates its own guidelines which stipulate the criteria for evaluating the current activities and future plans of the operators of nuclear facilities. ENSI produces regular reports on its regulatory activities and nuclear safety in Swiss nuclear facilities. It fulfils its statutory obligation to provide the public with information on particular events and findings in nuclear facilities. In 2012, the five nuclear power plants in Switzerland were all operated safely. 34 events were reported; on the international INES scale of 0 to 7, ENSI rated 33 events as Level 0 and 1 as Level 1. ENSI evaluates the safety of each nuclear power plant as part of a systematic safety evaluation taking account of both reportable events and other findings, in particular the results of more than 400 inspections conducted by ENSI during 2012. ZWILAG consists of several interim storage halls, a conditioning plant and an incineration/melting plant. At the end of 2012, the cask storage hall contained 40 transport/storage casks

  8. Modelling the Economics of a New Nuclear Power Plant in Switzerland

    International Nuclear Information System (INIS)

    Winkler, Thomas; Streit, Marco

    2008-01-01

    Financing a new nuclear power plant is challenging right from the beginning and the problem of very high capital costs during the construction phase is not the only one. Long planning periods with high risk capital as well as many political influences during a long decision and planning process are the factors that are complicating the economic modelling. Nevertheless, the Net Present Value (NPV) and the Internal Rate of Return (IRR) which are calculated by discounting forecasted future cash flows are important numbers for decision makers. But these numbers strongly depend on the scenarios and input data used during the calculations. This study offers an overview of present Swiss electricity situation and the economics of the existing Swiss Nuclear Power Plants. Furthermore, a modelling tool will be introduced which allows comparing different scenarios for the whole life cycle of a nuclear power plant (planning, licensing, construction, commercial operation, decommissioning). In the third part, this study will show on a calculation example both the range of results and the different influences of escalation rates or higher costs by means of a calculation example. (authors)

  9. Modelling the Economics of a New Nuclear Power Plant in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Thomas [University of Applied Sciences Ansbach, Residenzstrasse 8, 91522 Ansbach (Germany); Aare-Tessin Ltd for Electricity, Bahnhofquai 12, 4601 Olten (Switzerland); Streit, Marco [Aare-Tessin Ltd for Electricity, Bahnhofquai 12, 4601 Olten (Switzerland)

    2008-07-01

    Financing a new nuclear power plant is challenging right from the beginning and the problem of very high capital costs during the construction phase is not the only one. Long planning periods with high risk capital as well as many political influences during a long decision and planning process are the factors that are complicating the economic modelling. Nevertheless, the Net Present Value (NPV) and the Internal Rate of Return (IRR) which are calculated by discounting forecasted future cash flows are important numbers for decision makers. But these numbers strongly depend on the scenarios and input data used during the calculations. This study offers an overview of present Swiss electricity situation and the economics of the existing Swiss Nuclear Power Plants. Furthermore, a modelling tool will be introduced which allows comparing different scenarios for the whole life cycle of a nuclear power plant (planning, licensing, construction, commercial operation, decommissioning). In the third part, this study will show on a calculation example both the range of results and the different influences of escalation rates or higher costs by means of a calculation example. (authors)

  10. Picket engineer concept in Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Steffen, W.

    1982-01-01

    Switzerland has four plants already in operation, three of the 300 MW Class and one of 1000 MW, with a further 1000 MW plant under construction. Nuclear energy is of vital importance to the country, in 1980 it accounted for almost 30% of the year's total electricity production. Great economic and political importance is attached to the safety and availability of the nuclear power plants. For safety reasons neither the plant owners nor the Authority were willing to dispense with having a qualified engineer in permanent attendance at the plant, particularly during incidents, accidents or emergencies. For this reason the concept of picket engineer was introduced in 1972, through the initiative of the plant owners and with the approval of the Authority

  11. Swiss operating experience: availability and post-Chernobyl upgrading

    International Nuclear Information System (INIS)

    Wenger, H.

    1988-01-01

    Switzerland started its era of nuclear power with the foundation stone for the country's first nuclear power unit (Beznau-1) onSeptember 6, 1965. Up to that date, Switzerland was the classic country for hydropower, negligible amounts of electricity being produced by fossil-fuelled plants. Today, nuclear accounts for close to 40 % of Swiss total electricity generation. Whwn credits for lifetime capacity factors of each individual plant are combined, Switzerland tops the world list for light water reactor performance over many years. The Chernobyl reactor type RBMK-1000 has very little in common with the light water reactors operating in Switzerland, so one would certainly not expect any direct influence on Swiss plant design, operation or maintenance as an immediate consequence of the accident. Some important safety measures against severe accidents are currently being implemented. These measures were not a direct outcome of the Chernobyl accident and were already in discussion quite some time before. With this action, the proper position of nuclear power to meet the ever increasing demand for electricity in Switzerland will hopefully again find greater public acceptance. 1 tab

  12. Regulatory overview report 2014 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2014 zur nuklearen Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The Swiss Federal Nuclear Safety Inspectorate (ENSI), acting as the regulatory body of the Swiss Federation, assesses and monitors nuclear facilities in Switzerland: the five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI), the University of Basel (UniB) and the Federal Institute of Technology in Lausanne (EPFL). Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety. It ensures that they comply with regulations. Its regulatory responsibilities include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation, an integral part of the national emergency structure. It provides the public with information on particular events in nuclear facilities. This Surveillance Report describes the operational experience, systems technology, radiological protection and management in all nuclear facilities. Generic issues relevant to all facilities such as probabilistic safety analyses are described. In 2014, all five nuclear power plants in Switzerland (Beznau Units I and 2, Muehleberg, Goesgen and Leibstadt) were operated safely. The nuclear safety at all plants was rated as good. 38 events were reported. There was one reactor scram at the Leibstadt nuclear power plant. On the International Event Scale (INES), ranging from 0--7, 37 events were rated as Level 0; one event was rated as INES 1: drill holes had penetrated the steel wall of the containment to secure two hand-held fire extinguishers. ZWILAG consists of several interim storage halls, a conditioning plant and a plasma plant. At the end of 2014, the cask storage hall contained 42

  13. Future electricity supplies must be secured - Swiss outlook for 2035 / 2050

    International Nuclear Information System (INIS)

    2009-01-01

    This comprehensive article reviews an update made in 2009 by the Swiss Association of Electricity Enterprises VSE on their paper 'Outlook 2006 on Swiss electricity supply for the period up to 2035 / 2050'. The association is of the opinion that the paper can still form the basis for issue-related public discussion on energy-related questions. The Swiss 'four-pillar' strategy - energy efficiency, renewable energy, large power stations and international energy policy - is noted and supported. The special role played by electricity in the Swiss energy mix is discussed and the issue of security of supply is examined. Possible shortages that could occur in the future are discussed, as is the question of carbon dioxide emissions. Economic viability and power prices are discussed. Energy efficiency and power production options are also examined. Combined heat and power, hydropower and nuclear power are examined and, finally, import and export options reviewed

  14. Statement on safety requirements concerning the long-term operation of the Muehleberg nuclear power station

    International Nuclear Information System (INIS)

    2012-12-01

    This report published by the Swiss Federal Nuclear Safety Inspectorate ENSI investigates the safety requirements with respect to the long-term operation of the Muehleberg nuclear power station in Switzerland. Relevant international requirements and Swiss legal stipulations concerning the long-term operation of the power station are stated. The management of aging processes is looked at. The regular verification of the integrity of various plant components such as containments, piping, steam generation system, etc. is looked at in detail. The state-of-the-art concerning deterministic accident analyses and refitting technology are discussed, as are automated safety systems. The applicable laws, decrees and guidelines are listed in appendices

  15. Scenarios for the popular initiatives 'Strom ohne Atom' (Electricity without nuclear power) and 'Moratorium Plus'

    International Nuclear Information System (INIS)

    Eckerle, K.; Haker, K.; Hofer, P.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on the possible effects of two Swiss Popular Initiatives which called for the shutdown of nuclear power stations in Switzerland ('Strom ohne Atom'), the restriction of their operating life and the abstention from building new atomic power stations ('Moratorium Plus'). The report examines the energetic and financial consequences of the initiatives. The approaches used for the analysis are described and the energy policy actions required to avoid gaps in the supply of power after the possible closure of the power stations are discussed. Apart from a reference scenario (long-term utilisation of nuclear energy), scenarios for power generation using co-generation are presented. The problems posed by the resulting CO 2 and NO x emissions are discussed. Further scenarios review the contribution to be made by renewable sources of energy and increasing energy-conservation efforts. The costs of the shutdown of nuclear power stations are discussed and the results of a sensitivity analysis are presented

  16. From nuclear phase-out to renewable energies in the Swiss electricity market

    International Nuclear Information System (INIS)

    Osorio, Sebastian; Ackere, Ann van

    2016-01-01

    Liberalisation and the ever larger share of variable renewable energies (VRES), e.g. photovoltaic (PV) and wind energy, affect security of supply (SoS). We develop a system dynamics model to analyse the impact of VRES on the investment decision process and to understand how SoS is affected. We focus on the Swiss electricity market, which is currently undergoing a liberalisation process, and simultaneously faces the encouragement of VRES and a nuclear phase out. Our results show that nuclear production is replaced mainly by PV and imports; the country becomes a net importer. This evolution points to a problem of capacity adequacy. The resulting price rise, together with the subsidies needed to support VRES, lead to a rise in tariffs. In the presence of a high share of hydro, the de-rated margin may give a misleading picture of the capacity adequacy. We thus propose a new metric, the annual energy margin, which considers the energy available from all sources, while acknowledging that hydro-storage can function as a battery. This measure shows a much less reassuring picture of the country’s capacity adequacy. - Highlights: •We model the long-term dynamics of the Swiss electricity market. •Nuclear power is expected to be partially replaced by PV and imports. •These changes in the energy mix and exchange patterns cause prices to rise. •Import dependency and price rise are symptoms of a decreasing capacity adequacy. •The annual energy margin shows a less reassuring picture than the de-rated margin.

  17. Civil nuclear and responsibilities related to radioactive wastes. The 'cumbersome' wastes of the civil nuclear; The Parliament and the management of wastes from the civil nuclear; The Swiss legal framework related to the shutting down of nuclear power stations and to the management of radioactive wastes; Economic theory and management of radioactive wastes: to dare the conflict

    International Nuclear Information System (INIS)

    Rambour, Muriel; Pauvert, Bertrand; Zuber-Roy, Celine; Thireau, Veronique

    2015-01-01

    This publication presents the contributions to a research seminar organised by the European Centre of research on Risk, Collective Accident and Disasters Law (CERDACC) on the following theme: civil nuclear and responsibilities related to radioactive wastes. Three main thematic issues have been addressed: the French legal framework for waste processing, the comparison with the Swiss case, and the controversy about the exposure of societies to waste-induced risks. The first contribution addressed the cumbersome wastes of the civil nuclear industry: characterization and management solutions, the hypothesis of reversibility of the storage of radioactive wastes. The second one comments the commitment of the French Parliament in the management of wastes of the civil nuclear industry: role of Parliamentary Office of assessment of scientific and technological choices (OPECST) to guide law elaboration, assessment by the Parliament of the management of nuclear wastes (history and evolution of legal arrangements). The next contribution describes the Swiss legal framework for the shutting down of nuclear power stations (decision and decommissioning) and for the management of radioactive wastes (removal, financing). The last contribution discusses the risk related to nuclear waste management for citizen and comments how economists address this issue

  18. Safety culture in nuclear power plants. Proceedings; Sicherheitskultur im Kernkraftwerk. Seminarbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    As a consequence of the INSAG-4 report on `safety culture`, published by the IAEA in 1991, the Federal Commission for the Safety of Nuclear Power Plants (KSA) decided to hold a one-day seminar as a first step in this field. The KSA is an advisory body of the Federal Government and the Federal Department of Transport and Energy (EVED). It comments on applications for licenses, observes the operation of nuclear power plants, assists with the preparation of regulations, monitors the progress of research in the field of nuclear safety, and makes proposals for research tasks. The objective of this seminar was to familiarise the participants with the principles of `safety culture`, with the experiences made in Switzerland and abroad with existing concepts, as well as to eliminate existing prejudices. The main points dealt with at this seminar were: - safety culture from the point of view of operators, - safety culture from the point of view of the authorities, - safety culture: collaboration between power plants, the authorities and research organisations, - trends and developments in the field of safety culture. Invitations to attend this seminar were extended to the management boards of companies operating Swiss nuclear power plants, and to representatives of the Swiss authorities responsible for the safety of nuclear power plants. All these organisations were represented by a large number of executive and specialist staff. We would like to express our sincerest thanks to the Head of the Federal Department of Transport and Energy for his kind patronage of this seminar. (author) figs., tabs., refs.

  19. Affective imagery and acceptance of replacing nuclear power plants.

    Science.gov (United States)

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed. © 2011 Society for Risk Analysis.

  20. The Swiss Institute for Nuclear Research SIN

    CERN Document Server

    Pritzker, Andreas

    2014-01-01

    This book tells the story of the Swiss Institute for Nuclear Research (SIN). The institute was founded in 1968 and became part of the Paul Scherrer Institute (PSI) in 1988. Its founding occurred at a time when physics was generally considered the key discipline for technological and social development. This step was unusual for a small country like Switzerland and showed courage and foresight. Equally unusual were the accomplishments of SIN, compared with similar institutes in the rest of the world, as well as its influence on Swiss, and partially also on international politics of science. That this story is now available in a widely understandable form is due to the efforts of some physicists, who took the initiative as long as contemporary witnesses could still be questioned. As is usually the case, official documents always show just an excerpt of what really happened. An intimate portrayal of people who contributed to success requires personal memories. This text relies on both sources. In addition, the e...

  1. Implementation of the obligations of the convention on nuclear safety. Fifth Swiss report in accordance with Article 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    Switzerland signed the Convention on Nuclear Safety (CNS). In accordance with Article 5 of CNS, Switzerland has submitted 4 country reports for Review Meetings of Contracting Parties. This 5{sup th} report by the Swiss Federal Nuclear Safety Inspectorate (ENSI) provides an update on compliance with CNS obligations. The report attempts to give appropriate consideration to issues that aroused particular interest at the 4{sup th} Review Meeting. It starts with general political information on Switzerland, a brief history of nuclear power and an overview of Swiss nuclear facilities. This is followed by a comprehensive overview of the status of nuclear safety in Switzerland (as of July 2010) which indicates how Switzerland complies with the key obligations of the Convention. ENSI updated a substantial proportion of its guidelines which are harmonised with the safety requirements of the Western European Nuclear Regulators Association (WENRA) based on IAEA Safety Standards. On 1{sup st} January 2009, ENSI became formally independent of the Swiss Federal Office of Energy. It is now a stand-alone organisation controlled by its own management board. Switzerland recently started a process to select a site for the disposal of radioactive waste in deep geological formations. The first generation of NPPs in Switzerland has been the subject of progressive back-fitting. The second generation of NPPs incorporated various safety and operating improvements in their initial design. All Swiss NPPs have undergone the safety review process required under the Convention and have incorporated the improvements identified in the respective safety review reports. The Swiss policy of continuous improvements to NPPs ensures a high level of safety. The legislation and regulatory framework for nuclear installations is well established. It provides the formal basis for the supervision and the continuous improvement of nuclear installations. The Nuclear Energy Act and its ordinance came into force

  2. Implementation of the obligations of the convention on nuclear safety. Fifth Swiss report in accordance with Article 5

    International Nuclear Information System (INIS)

    2010-07-01

    Switzerland signed the Convention on Nuclear Safety (CNS). In accordance with Article 5 of CNS, Switzerland has submitted 4 country reports for Review Meetings of Contracting Parties. This 5 th report by the Swiss Federal Nuclear Safety Inspectorate (ENSI) provides an update on compliance with CNS obligations. The report attempts to give appropriate consideration to issues that aroused particular interest at the 4 th Review Meeting. It starts with general political information on Switzerland, a brief history of nuclear power and an overview of Swiss nuclear facilities. This is followed by a comprehensive overview of the status of nuclear safety in Switzerland (as of July 2010) which indicates how Switzerland complies with the key obligations of the Convention. ENSI updated a substantial proportion of its guidelines which are harmonised with the safety requirements of the Western European Nuclear Regulators Association (WENRA) based on IAEA Safety Standards. On 1 st January 2009, ENSI became formally independent of the Swiss Federal Office of Energy. It is now a stand-alone organisation controlled by its own management board. Switzerland recently started a process to select a site for the disposal of radioactive waste in deep geological formations. The first generation of NPPs in Switzerland has been the subject of progressive back-fitting. The second generation of NPPs incorporated various safety and operating improvements in their initial design. All Swiss NPPs have undergone the safety review process required under the Convention and have incorporated the improvements identified in the respective safety review reports. The Swiss policy of continuous improvements to NPPs ensures a high level of safety. The legislation and regulatory framework for nuclear installations is well established. It provides the formal basis for the supervision and the continuous improvement of nuclear installations. The Nuclear Energy Act and its ordinance came into force in 2005

  3. Financing the management of wastes generated by the Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Baumgartner, K.; Enderli, P.

    1996-01-01

    Since the beginning of nuclear power production in Switzerland, expenditure on managing operational waste and spent fuel has represented a fixed component of the kilowatt hour production costs which is calculated on the basis of careful estimates of waste management costs. For making these estimates, the operators of the nuclear power plants at Beznau, Muehleberg, Goesgen and Leibstadt rely on calculations performed by recognised nuclear fuel specialists and on data and empirical values from domestic and foreign waste management organisations. The calculations are subject to periodic review and, where necessary, take into account new information. The last review was concluded at the beginning of 1996. (author) 1 fig

  4. Swiss solar power statistics 2007 - Significant expansion

    International Nuclear Information System (INIS)

    Hostettler, T.

    2008-01-01

    This article presents and discusses the 2007 statistics for solar power in Switzerland. A significant number of new installations is noted as is the high production figures from newer installations. The basics behind the compilation of the Swiss solar power statistics are briefly reviewed and an overview for the period 1989 to 2007 is presented which includes figures on the number of photovoltaic plant in service and installed peak power. Typical production figures in kilowatt-hours (kWh) per installed kilowatt-peak power (kWp) are presented and discussed for installations of various sizes. Increased production after inverter replacement in older installations is noted. Finally, the general political situation in Switzerland as far as solar power is concerned are briefly discussed as are international developments.

  5. The influence of climate-warming on the power production of Swiss hydroelectric power stations

    International Nuclear Information System (INIS)

    Schaeppi, A.

    2006-01-01

    This article summarises an interview with Michael Piot of the Swiss Federal Office of Energy (SFOE) on a study commissioned by the office that takes a look at the influence of a possible climate warming on water flow in the Swiss alpine area. In particular, the influence of such possible changes on the Swiss power generation industry are looked at. Prognoses for climate change are reviewed, as are the results of a study made by the SFOE on energy perspectives for the period up to the year 2035. Possible changes in the alpine climate are discussed and their influence on the water household of the region is examined. Possible further and more drastic changes in the period up to 2099 are briefly commented on

  6. Regulatory overview report 2013 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2013 zur nuklearen Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-15

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) acting as the regulatory body of the Swiss Federation assesses and monitors nuclear facilities in Switzerland: these include five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI) and the two universities of Basel and Lausanne. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the overview required concerning nuclear safety. It ensures that the facilities comply with regulations. Its regulatory responsibilities include the transport of radioactive materials from and to nuclear facilities and the preparations for a deep geological repository for nuclear waste. ENSI maintains its own emergency organisation, an integral part of the national emergency structure. It provides the public with information on particular events in nuclear facilities. This Surveillance Report describes operational experience, systems technology, radiological protection and management in all the nuclear facilities. Generic issues relevant to all facilities such as probabilistic safety analyses are described. In 2013, the five nuclear power plants in Switzerland (Beznau Units 1 and 2, Muehleberg, Goesgen and Leibstadt) were all operated safely and had complied with their approved operating conditions. The nuclear safety at all plants was rated as being good. 34 events were reported. During operation, no reactor scrams were recorded. On the INES scale, ranging from 0-7, ENSI rated all reportable events as Level 0. The ENSI safety evaluation reflects both reportable events and the results of the approximately 460 inspections conducted during 2013. ZWILAG consists of several storage halls, a conditioning plant and a plasma plant. At the end of 2013, the cask storage hall

  7. Modelling the energy future of Switzerland after the phase out of nuclear power plants

    Science.gov (United States)

    Diaz, Paula; Van Vliet, Oscar

    2015-04-01

    In September 2013, the Swiss Federal Office of Energy (SFOE) published the final report of the proposed measures in the context of the Energy Strategy 2050 (ES2050). The ES2050 draws an energy scenario where the nuclear must be substituted by alternative sources. This implies a fundamental change in the energy system that has already been questioned by experts, e.g. [Piot, 2014]. Therefore, we must analyse in depth the technical implications of change in the Swiss energy mix from a robust baseload power such as nuclear, to an electricity mix where intermittent sources account for higher rates. Accomplishing the ES2050 imply difficult challenges, since nowadays nuclear power is the second most consumed energy source in Switzerland. According to the SFOE, nuclear accounts for a 23.3% of the gross production, only surpassed by crude oil products (43.3%). Hydropower is the third source more consumed, representing approximately the half of the nuclear (12.2%). Considering that Switzerland has almost reached the maximum of its hydropower capacity, renewables are more likely to be the alternative when the nuclear phase out takes place. Hence, solar and wind power will play an important role in the future Swiss energy mix, even though currently new renewables account for only 1.9% of the gross energy consumption. In this study we look for realistic and efficient combinations of energy resources to substitute nuclear power. Energy modelling is a powerful tool to design an energy system with high energy security that avoids problems of intermittency [Mathiesen & Lund, 2009]. In Switzerland, energy modelling has been used by the government [Abt et. al., 2012] and also has significant relevance in academia [Mathys, 2012]. Nevertheless, we detected a gap in the study of the security in energy scenarios [Busser, 2013]. This study examines the future electricity production of Switzerland using Calliope, a multi-scale energy systems model, developed at Imperial College, London and

  8. The importance of nuclear power to energy supply in Switzerland

    International Nuclear Information System (INIS)

    Kiener, E.

    2001-01-01

    The use of nuclear power is a matter of dispute also in Switzerland. The first opposition to plans for the Kaiseraugst nuclear power station near Basel sprang up in the seventies. In Switzerland, referenda are a popular expression of political disputes. On a federal level, a total of six referenda have been conducted about nuclear power since 1979. As a rule, antinuclear projects were rejected by a slim majority, except for the 1990 moratorium initiative. As a consequence, there was a ten-year ban on the construction of new nuclear power plants. Despite efforts by many parties it was not possible to develop a general consensus on an energy supply strategy. Because of the considerable importance to the power economy, and the economy at large, of nuclear power in Switzerland, where the five nuclear power plants in operation generate approx. 38% of the country's electricity, while 58% is produced in hydroelectric plants, a new Nuclear Power Act was adopted by Parliament in late February 2001. It constitutes the framework for the continued safe operation of nuclear power plants, keeps the nuclear option open for future planning, and handles spent fuel and waste management, final storage, and decommissioning. Also possible international solutions of final storage outside of Switzerland are taken into account. In this way, the Swiss government and parliament have advocated the continued use of nuclear power as one element of energy supply. (orig.) [de

  9. The Reference Scenarios for the Swiss Emergency Planning

    International Nuclear Information System (INIS)

    Hanspeter Isaak; Navert, Stephan B.; Ralph Schulz

    2006-01-01

    For the purpose of emergency planning and preparedness, realistic reference scenarios and corresponding accident source terms have been defined on the basis of common plant features. Three types of representative reference scenarios encompass the accident sequences expected to be the most probable. Accident source terms are assumed to be identical for all Swiss nuclear power plants, although the plants differ in reactor type and power. Plant-specific probabilistic safety analyses were used to justify the reference scenarios and the postulated accident source terms. From the full spectrum of release categories available, those categories were selected which would be covered by the releases and time frames assumed in the reference scenarios. For each nuclear power plant, the cumulative frequency of accident sequences not covered by the reference scenarios was determined. It was found that the cumulative frequency for such accident sequences does not exceed about 1 x 10 -6 per year. The Swiss Federal Nuclear Safety Inspectorate concludes that the postulated accident source terms for the reference scenarios are consistent with the current international approach in emergency planning, where one should concentrate on the most probable accident sequences. (N.C.)

  10. Reinforcement course 2013. Challenges at the operation end of nuclear power plants

    International Nuclear Information System (INIS)

    Rey, Matthias

    2014-01-01

    The reinforcement course 2013 of the Nuclear Forum in Switzerland dedicated itself to the question, of which challenges are implicated by decommissioning and dismantling nuclear power plants. The course has been divided into 4 blocks, discussing concepts regarding decommissioning, special points such as organisational or psychological aspects as well as juridical and practical questions. Around 140 persons accepted the invitation of the committee for educational questions under the patronage of Urs Weidmann, head of the nuclear power plant Beznau. Altogether 17 presentations dealt with the following topics: 'Strategies and Steps of Decommissioning' by Roger Lundmark, 'Decommissioning from the Perspective of the Swiss Regulatory Authority' by Hannes Haenggi, 'Operating Period Management Using the Example of the Nuclear Power Plant Leibstadt' by Johannis Noeggerath, 'Questions and Concepts from the Perspective of a Nuclear Power Plant Operator' by Roland Schmidiger, 'Decommissioning of nuclear facilities in the UK' by Andrew Munro, 'Practical experiences of transferring nuclear power plants from operating to out of operation' by Gerd Reinstrom, 'Dismantling of Nuclear Facilities: From the Pilot Scheme to Industrialized Disassembling' by Anke Traichel and Thomas Seipolt, 'Organisational challenges: From Decommissioning Strategy to Decommissioning Targets' by Michael Kruse, Anton von Gunten, Julia Heizinger, Joerg Sokoll, 'Knowing That and Knowing How - Motivational Aspects of Safety-Related Knowledge Management for the Post-Operational phase and dismantling' by Frank Ritz, 'The Juridical Frame of Decommissioning' by Peter Koch, 'The Path to the Decommissioning Order and its Guidelines Ensi-G17' by Torsten Krietsch, 'Requirements for a Safe and Economical Decommissioning From the Perspective of the Operator' by Anton Von Gunten, Michael Kruse, Thomas Herren, Erwin Neukaeter, Mario Radke and Anton Schegg, 'Evaluation of Activation Distribution in a Nuclear Power Plant

  11. Investigation of radiological consequences of a serious accident in Swiss nuclear power plants on the drinking water supply and preventive measures in waterworks for securing drinking water quality and supply; Untersuchungen zu radiologischen Folgen schwerer Unfaelle in schweizerischen Kernkraftwerken auf die Trinkwasserversorgung und vorbeugende Massnahmen im Wasserwerk zur Absicherung der Trinkwasserqualitaet und -versorgung

    Energy Technology Data Exchange (ETDEWEB)

    Ustohalova, V.; Kueppers, C.; Claus, M. [Oeko-Institut e.V., Darmstadt (Germany)

    2016-07-01

    The radiological consequences of a serious accident in Swiss nuclear power plants on the drinking water supply was studied, preventive measures for securing the drinking water quality were elaborated. Based on the scaling of thermal power and burnup of the used nuclear fuel the fission product release in case of a severe accident was estimated for airborne and waterborne migration paths. In cities that use the rivers for their water drinking water supplies have to stop the water abstraction. The Swiss tolerance and limiting values for radionuclides in drinking water would be exceeded shortly after the accident and the hazardous situation would last for more than 90 days.

  12. Implementation of the obligations of the convention on nuclear safety. Fourth Swiss report in accordance with Article 5

    International Nuclear Information System (INIS)

    2007-07-01

    Switzerland has signed the Convention on Nuclear Safety. Most of the requirements of the articles of the Convention were already standard practice in Switzerland. In the last years, all Swiss nuclear power plants (NPPs) as well as the Swiss Federal Nuclear Safety Inspectorate (HSK) built up documented quality management systems. The independence of HSK from licensing authorities is fulfilled on a technical level. In 2005, a new Nuclear Energy Act came into force requiring formal independence of the supervisory authorities from the licensing authorities. A separate act to legally settle the Inspectorate's fully independent status was adopted by Parliament. HSK participates in international projects and is represented in numerous nuclear safety working groups in order to ensure the exchange of scientific, technical and regulatory know-how. The regulatory processes applied to the licensing and safety surveillance of nuclear installations and their operation are up to date with the current state of science and technology. Deterministic and probabilistic safety evaluations guide and prioritise inspections and provide the basis for a graded approach to safety review and assessment. The surveillance of the NPPs' operating, control and safety systems, their component performance and integrity, their organisational and human aspects as well as the management, conditioning and interim storage of radioactive waste are permanent features of the supervisory authority's activities. Within the frame of a new integrated oversight process there is an annual systematic assessment of nuclear safety for each NPP based on the analysis of events, inspection results and operator licensing reviews. The assurance of low radiation doses to both NPP workers and the general public is an additional goal that is directly associated with the safe operation of NPPs. In case of an accident in a nuclear installation, contingency plans are in place and are continually updated. Emergency drills are

  13. Implementation of the obligations of the convention on nuclear safety. Fourth Swiss report in accordance with Article 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-15

    Switzerland has signed the Convention on Nuclear Safety. Most of the requirements of the articles of the Convention were already standard practice in Switzerland. In the last years, all Swiss nuclear power plants (NPPs) as well as the Swiss Federal Nuclear Safety Inspectorate (HSK) built up documented quality management systems. The independence of HSK from licensing authorities is fulfilled on a technical level. In 2005, a new Nuclear Energy Act came into force requiring formal independence of the supervisory authorities from the licensing authorities. A separate act to legally settle the Inspectorate's fully independent status was adopted by Parliament. HSK participates in international projects and is represented in numerous nuclear safety working groups in order to ensure the exchange of scientific, technical and regulatory know-how. The regulatory processes applied to the licensing and safety surveillance of nuclear installations and their operation are up to date with the current state of science and technology. Deterministic and probabilistic safety evaluations guide and prioritise inspections and provide the basis for a graded approach to safety review and assessment. The surveillance of the NPPs' operating, control and safety systems, their component performance and integrity, their organisational and human aspects as well as the management, conditioning and interim storage of radioactive waste are permanent features of the supervisory authority's activities. Within the frame of a new integrated oversight process there is an annual systematic assessment of nuclear safety for each NPP based on the analysis of events, inspection results and operator licensing reviews. The assurance of low radiation doses to both NPP workers and the general public is an additional goal that is directly associated with the safe operation of NPPs. In case of an accident in a nuclear installation, contingency plans are in place and are continually updated

  14. Research for nuclear power. A Swiss perspective

    International Nuclear Information System (INIS)

    Foskolos, K.; Yadigaroglu, G.; Chawla, R.; Paul Scherrer Inst., Villigen

    1996-01-01

    Nuclear energy research in Switzerland is concentrated in the Department for Nuclear Energy and Safety Research of the Paul Scherrer Institute (PSI). Nuclear research at PSI is structured around three main poles: safety and related operational issues for existing NPPs, nuclear waste management, and safety characteristics of future reactor concepts. Further, global aspects of energy systems are examined with regard to safety, economics and environmental impact. Presently, a total effort of about 200 py/a is invested in the nuclear research. Government funding of nuclear research was relatively stable during recent years, reaching about 35 MCHF/a. External funding of about 15 MCHF/a is expected to remain stable. (R.P.)

  15. Nuclear Liability and Insurance for nuclear Damage in Switzerland

    International Nuclear Information System (INIS)

    Reitsma, S. M. S.

    1998-01-01

    With nuclear power generating 43% of its total electricity production, Switzerland is amongst the states, employing the highest percentage of nuclear electricity. Although, the country has not ratified any of the international Nuclear Liability Conventions, its Nuclear Third Party Liability Act reflects all the principles, underlying those Conventions. The statutory liability of the operator of a Swiss nuclear installation itself being unlimited, the total insurance limit of CHF 770 m. provides the highest private insurance protection worldwide. With the support of its foreign Reinsurance Pools, the capacity for this insurance guarantee has, over more than 40 years, been built up by the Swiss Nuclear Insurance Pool. Apart from Third Party Liability cover, the Pool also provides Property insurance to Swiss nuclear installation operators and reinsurance cover to other nuclear insurers worldwide. (author)

  16. Copula-based modeling of stochastic wind power in Europe and implications for the Swiss power grid

    International Nuclear Information System (INIS)

    Hagspiel, Simeon; Papaemannouil, Antonis; Schmid, Matthias; Andersson, Göran

    2012-01-01

    Highlights: ► We model stochastic wind power using copula theory. ► Stochastic wind power is integrated in a European system adequacy evaluation. ► The Swiss power grid is put at risk by further integrating wind power in Europe. ► System elements located at or close to Swiss borders are affected the most. ► A criticality indicator allows prioritizing expansion plans on a probabilistic basis. -- Abstract: Large scale integration of wind energy poses new challenges to the European power system due to its stochastic nature and often remote location. In this paper a multivariate uncertainty analysis problem is formulated for the integration of stochastic wind energy in the European grid. By applying copula theory a synthetic set of data is generated from scarce wind speed reanalysis data in order to achieve the increased sample size for the subsequent Monte Carlo simulation. In the presented case study, European wind power samples are generated from the modeled stochastic process. Under the precondition of a modeled perfect market environment, wind power impacts dispatch decisions and therefore leads to alterations in power balances. Stochastic power balances are implemented in a detailed model of the European electricity network, based on the generated samples. Finally, a Monte Carlo method is used to determine power flows and contingencies in the system. An indicator is elaborated in order to analyze risk of overloading and to prioritize necessary grid reinforcements. Implications for the Swiss power grid are investigated in detail, revealing that the current system is significantly put at risk in certain areas by the further integration of wind power in Europe. It is the first time that the results of a probabilistic model for wind energy are further deployed within a power system analysis of the interconnected European grid. The method presented in this paper allows to account for stochastic wind energy in a load flow analysis and to evaluate

  17. Cancellation of the Kaiseraugst nuclear power plant project

    International Nuclear Information System (INIS)

    Blocher, C.; Schoenenberger, J.; Stucky, G.

    1988-01-01

    The nuclear power plant project at Kaiseraugst has been worked on for over 20 years. In 1985 the Swiss Parliament decided to license the plant. The cost of the work to date is about 1.2 x10 6 Swiss Franks. Continuation of the project is only sensible if it can be realized within a foreseeable space of time. It is probable that the discussions concerning future energy, environment and safety will continue for a long time. If this is clear that the Kaiseraugst project will not be realized during the next five to ten years for social, civic and political reasons. A continuation of the project is not justifiable. Kernkraftwerk Kaiseraugst AG must be adequately compensated. A motion has been presented to Parliament which charges the Government to negotiate with Kernkraftwerk Kaiseraugst AG for cancellation of the project

  18. Swiss Energy research 2007 - Overview from the Heads of the Programs; Energie-Forschung 2007. Ueberblicksberichte der Programmleiter

    Energy Technology Data Exchange (ETDEWEB)

    Calisesi, Y

    2008-04-15

    This comprehensive document issued by the Swiss Federal Office of Energy (SFOE) presents the overview reports elaborated by the heads of the various Swiss energy research programmes. Topics covered include the efficient use of energy, with reports covering energy in buildings, traffic and accumulators, electrical technologies, applications and grids, ambient heat, combined heat and power, cooling, combustion, the 'power station 2000', fuel cells and hydrogen and process engineering. Renewable energy topics reported on include solar heat, photovoltaics, industrial solar energy, biomass and wood energy, hydropower, geothermal heat and wind energy. Nuclear energy topics include safety, regulatory safety research and nuclear fusion. Finally, energy economics basics are reviewed. The report is completed with annexes on the Swiss Energy Research Commission, energy research organisations and a list of important addresses.

  19. Swiss Energy research 2007 - Overview from the Heads of the Programs; Energie-Forschung 2007. Ueberblicksberichte der Programmleiter

    Energy Technology Data Exchange (ETDEWEB)

    Calisesi, Y.

    2008-04-15

    This comprehensive document issued by the Swiss Federal Office of Energy (SFOE) presents the overview reports elaborated by the heads of the various Swiss energy research programmes. Topics covered include the efficient use of energy, with reports covering energy in buildings, traffic and accumulators, electrical technologies, applications and grids, ambient heat, combined heat and power, cooling, combustion, the 'power station 2000', fuel cells and hydrogen and process engineering. Renewable energy topics reported on include solar heat, photovoltaics, industrial solar energy, biomass and wood energy, hydropower, geothermal heat and wind energy. Nuclear energy topics include safety, regulatory safety research and nuclear fusion. Finally, energy economics basics are reviewed. The report is completed with annexes on the Swiss Energy Research Commission, energy research organisations and a list of important addresses.

  20. Initial experience gained with the balance-group system of the Swiss power supply legislation

    International Nuclear Information System (INIS)

    Waldner, M.; Rechsteiner, S.

    2010-01-01

    This article takes a look at the initial experience gained with the Swiss balance-group system. This system was introduced within the framework of Swiss power supply legislation (StromVG - Stromversorgungsgesetz). The balance-group system was considered to be an essential precondition for the implementation of an energy trading business in a liberalised power market. The associated rights and responsibilities and the economic risks involved are discussed in detail. The partners and structures involved in such a balance-group are looked at and basic models for the associated contracts are examined. The relationship between balance-groups and the national power grid Swissgrid are discussed

  1. Swiss electrical power association

    International Nuclear Information System (INIS)

    1983-01-01

    Milestones of electrical power development in Switzerland during 1982 are quoted. An energy balance is shown for the utilisation of 864,630 terajoules of primary energy. This is related to global data on per capita power consumption. In the electricity generation section, annual load factors are given for the four nuclear stations. A brief review is made of hydro potential and monthly export/import figures for power to other countries (mostly export, especially in summer). Total electrical power output grew about 1.3% in the last year. Recent transmission line developments are noted, mostly 2x380kV, and including a link with Austria. In the financial section, consumer price indices are quoted for liquid and solid fuel, gas and electricity since 1966. Under administration, details are listed of the main and about 18 supporting Committees and working groups with special functions (e.g. tariffs, electrical vehicles). Public relations have included nuclear power press conferences, a mobile video unit, information leaflets for the media and a teaching seminar. (G.C.)

  2. Human performance tools in nuclear power plants. Introduction, implementation and experiences

    International Nuclear Information System (INIS)

    Dexheimer, Kai; Bassing, Gerd; Kreuzer, Peter

    2015-01-01

    The basis of safe nuclear power plant operation (NPP) and a strong safety culture is the professional application of Human Performance Optimisation Tools (HPO). HPO trainings have been carried out by German NPPs for a number of years and recently also by Swiss NPPs. This article describes the origination, the bases, experiences and thereby the special features of the HPO training programme applied by German NPP operators. Moreover, this article provides an outlook on future developments - in particular when considering the requirements of the ongoing phase out of nuclear energy in Germany.

  3. Swiss hydropower in competition - an analysis with reference to the future European power supply system

    International Nuclear Information System (INIS)

    Balmer, M.; Spreng, D.; Moest, D.

    2006-01-01

    This article takes a look at a number of questions in relation to the future use of Swiss hydropower that are neither clear nor unchallenged. Questions concerning the replacement or refurbishment of hydropower schemes that will have to be renewed in the next few years are asked. Also, developments in the European power market are looked at. The future influence of wind power, trading with CO 2 certificates, increases in the price of gas etc. are examined. An analysis of the competitiveness of Swiss hydropower with reference to the European power supply system that was made by the Centre for Energy Policy and Economics CEPE at the Swiss Federal Institute of Technology ETH is described. The 'Perseus'-model developed by CEPE and the Industrial Technology Institute at the University of Karlsruhe in Germany is used to analyse possible developments over the period up to 2030. The results are presented in graphical form and commented on

  4. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1987-01-01

    Nuclear technology offers the chance to make an extremely long term contribution to the energy supply of the earth. The use of nuclear energy is ethically justifiable, provided that several fundamental rules are obeyed during the technical design of nuclear installations. Such fundamental rules were unequivocally violated in the nuclear power plant Chernobyl. They are, however, fulfilled in the existing Swiss nuclear power plants. Improvements are possible in new nuclear power plants. Compared to other usable energy systems nuclear energy is second only to natural gas in minimal risk per generated energy unit. The question of ethical justification also may rightly be asked of the non-use of nuclear energy. The socially weakest members of the Swiss population would suffer most under a renunciation of nuclear energy. Future prospects for the developing countries would deteriorate considerably with a renunciation by industrial nations of nuclear energy. The widely spread fear concerning the nuclear energy in the population is a consequence of non-objective discussion. 8 refs., 2 figs

  5. Nuclear energy: the cost of opting-out

    International Nuclear Information System (INIS)

    Mueller, U.

    2003-01-01

    This article discusses the results of a study made on the financial and ecological costs that would be incurred if Switzerland opted out of the use of nuclear energy. Figures are quoted for the costs if two Swiss popular initiatives on the subject of opting out of nuclear energy were accepted in voting. The disadvantages offered by the alternatives such as combined gas and steam-turbine power plant, photovoltaics and wind power are quoted. Possible negative effects of opting out on the Swiss economy are looked at and the political aspects of renewing operational permits for nuclear power stations are discussed

  6. Ground-based remote sensing profiling and numerical weather prediction model to manage nuclear power plants meteorological surveillance in Switzerland

    Directory of Open Access Journals (Sweden)

    B. Calpini

    2011-08-01

    Full Text Available The meteorological surveillance of the four nuclear power plants in Switzerland is of first importance in a densely populated area such as the Swiss Plateau. The project "Centrales Nucléaires et Météorologie" CN-MET aimed at providing a new security tool based on one hand on the development of a high resolution numerical weather prediction (NWP model. The latter is providing essential nowcasting information in case of a radioactive release from a nuclear power plant in Switzerland. On the other hand, the model input over the Swiss Plateau is generated by a dedicated network of surface and upper air observations including remote sensing instruments (wind profilers and temperature/humidity passive microwave radiometers. This network is built upon three main sites ideally located for measuring the inflow/outflow and central conditions of the main wind field in the planetary boundary layer over the Swiss Plateau, as well as a number of surface automatic weather stations (AWS. The network data are assimilated in real-time into the fine grid NWP model using a rapid update cycle of eight runs per day (one forecast every three hours. This high resolution NWP model has replaced the former security tool based on in situ observations (in particular one meteorological mast at each of the power plants and a local dispersion model. It is used to forecast the dynamics of the atmosphere in the planetary boundary layer (typically the first 4 km above ground layer and over a time scale of 24 h. This tool provides at any time (e.g. starting at the initial time of a nuclear power plant release the best picture of the 24-h evolution of the air mass over the Swiss Plateau and furthermore generates the input data (in the form of simulated values substituting in situ observations required for the local dispersion model used at each of the nuclear power plants locations. This paper is presenting the concept and two validation studies as well as the results of an

  7. Improving automated load flexibility of nuclear power plants with ALFC

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Andreas [AREVA GmbH, Karlstein (Germany). Plant Control/Training; Klaus, Peter [E.ON NPP Isar 2, Essenbach (Germany). Plant Operation/Production Engineering

    2016-07-01

    In several German and Swiss Nuclear Power Plants with Pressurized Water Reactor (PWR) the control of the reactor power was and will be improved in order to be able to support the energy transition with increasing volatile renewable energy in the grid by flexible load operation according to the need of the load dispatcher (power system stability). Especially regarding the mentioned German NPPs with a nominal electric power of approx. 1,500 MW, the general objectives are the main automated grid relevant operation modes. The new possibilities of digital I and C (as TELEPERM {sup registered} XS) enable the automation of the operating modes provided that manual support is no longer necessary. These possibilities were and will be implemented by AREVA within the ALFC-projects. Manifold adaption algorithms to the reactor physical variations during the nuclear load cycle enable a precise control of the axial power density distribution and of the reactivity management in the reactor core. Finally this is the basis for a highly automated load flexibility with the parallel respect and surveillance of the operational limits of a PWR.

  8. Improving automated load flexibility of nuclear power plants with ALFC

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Andreas [AREVA GmbH, Karlstein (Germany). Section Manager Training; Klaus, Peter [Preussenelektra NPP, Essenbach (Germany). Production Engineering

    2017-03-15

    In several German and Swiss Nuclear Power Plants with Pressurized Water Reactor (PWR) the control of the reactor power was and will be improved in order to be able to support the energy transition with increasing volatile renewable energy in the grid by flexible load operation according to the need of the load dispatcher (power system stability). Especially regarding the mentioned German NPPs with a nominal electric power of approx. 1500 MW, the general objectives are several automated grid relevant operation modes. The new possibilities of digital I and C (as TELEPERM {sup registered} XS) enable the automation of this operating modes provided that manual support is no longer necessary. These possibilities were and will be implemented by AREVA within the ALFC-projects. Manifold adaption algorithms to the reactor physical variations during the nuclear load cycle enable a precise control of the axial power density distribution and of the reactivity manage - ment in the reactor core. Finally this is the basis for a highly automated load flexibility with the parallel respect and surveillance of the operational limits of a PWR.

  9. Regulatory oversight report 2011 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2011 zur nuklearen Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The Swiss Federal Nuclear Safety Inspectorate ENSI, acting as the regulatory body of the Swiss Confederation, assesses and monitors nuclear facilities in Switzerland. These include five nuclear power plants, the interim storage facilities based at each plant, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI) and the two universities of Basel and Lausanne. ENSI ensures that the facilities comply with regulations and operate according to the law. Its regulatory responsibilities also include the transport of radioactive materials to and from nuclear facilities and the preparations for a deep geologic repository for nuclear waste. It maintains its own emergency organisation, which is an integral part of a national emergency structure. Building on the legislative framework, ENSI also formulates and updates its own guidelines. It provides the public with information on particular events and findings in nuclear facilities. In 2011, all five nuclear power reactors in Switzerland (Beznau Units 1 and 2, Muehleberg, Goesgen and Leibstadt) were operated safely and ENSI concluded that they had complied with their approved operating conditions. There were 27 reportable events in the nuclear power plants in Switzerland: 7 at Beznau, 5 at Goesgen, 11 at Leibstadt und 4 at Muehleberg. On the international INES scale of 0 to 7, ENSI rated 26 events as Level 0. One event, at the Muehleberg nuclear power plant, was rated as INES Level 1. This related to a potential blockage of the emergency water intake system in the event of extreme flooding. The operator BKW shut down the Muehleberg plant ahead of the scheduled maintenance date and upgraded the system. ZWILAG consists of several interim storage halls, a conditioning plant and a plasma plant (incineration/melting plant). At the end of 2011, the cask storage hall contained 34 transport/storage casks with fuel assemblies and vitrified residue packages

  10. Energy Perspectives In Switzerland: The Potential Of Nuclear Power

    International Nuclear Information System (INIS)

    Foskolos, K.; Hardegger, P.

    2005-01-01

    In 2004, discussions were started in Switzerland concerning future of energy supply, including domestic electricity generation. On behalf of the Federal Office of Energy, PSI undertook a study to evaluate the potential of future nuclear technologies, covering electricity demand, with a time horizon up to 2050. It has been shown that nuclear power plants (NPPs) of the Third Generation, similar to the ones currently under construction in several other countries, built on the existing nuclear sites in Switzerland, have the potential to replace, at competitive costs, the existing nuclear plants, and even to cover (postulated) increases in electricity demand. Because of their late maturity (expected at the earliest around 2030), NPPs of the Fourth Generation, which are currently under development, cannot play a major role in Switzerland, since, with the exception of the Leibstadt NPP, all decisions regarding replacement of the current Swiss NPPs have to be taken before 2030. (author)

  11. Energy Perspectives In Switzerland: The Potential Of Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Foskolos, K.; Hardegger, P

    2005-03-01

    In 2004, discussions were started in Switzerland concerning future of energy supply, including domestic electricity generation. On behalf of the Federal Office of Energy, PSI undertook a study to evaluate the potential of future nuclear technologies, covering electricity demand, with a time horizon up to 2050. It has been shown that nuclear power plants (NPPs) of the Third Generation, similar to the ones currently under construction in several other countries, built on the existing nuclear sites in Switzerland, have the potential to replace, at competitive costs, the existing nuclear plants, and even to cover (postulated) increases in electricity demand. Because of their late maturity (expected at the earliest around 2030), NPPs of the Fourth Generation, which are currently under development, cannot play a major role in Switzerland, since, with the exception of the Leibstadt NPP, all decisions regarding replacement of the current Swiss NPPs have to be taken before 2030. (author)

  12. An important year for Swiss Electricity Politics - President's speech at the shareholder's meeting of the Swiss Association of Electricity Enterprises

    International Nuclear Information System (INIS)

    Steiner, R.

    2004-01-01

    This article presents the speech made by Rudolf Steiner, president of the Swiss Association of Electricity Enterprises, in Bad Ragaz in September 2004. Steiner comments on 2004 as being an important year with respect to energy politics in Switzerland. A public vote turned down the idea of opting out of nuclear energy, the Federal Court decided that the Restricted Trade Practices act was also applicable to the Swiss electricity supply industry and the EU parliament passed guidelines on the opening of the European power market. The effects of large-scale blackouts in America and Europe on the public's perception of secure supplies are commented on. The importance of the Association as a provider of services for its members and as a partner for the government is stressed

  13. Communication promotes the peaceful use of nuclear power

    International Nuclear Information System (INIS)

    Edel, H.P.

    1992-01-01

    Personalities from industry and science, in agreement with the national government, early on recognized the extraordinary importance of keeping the public well informed about nuclear questions. As a result of the initiative of farsighted persons, the Swiss Association for Atomic Energy (Schweizerische Vereinigung fuer Atomenergie, SVA) was founded in 1958 as a grouping of all those who were convinced that the country needed nuclear power for a continuous, secure supply of electricity and for the protection of the environment. 'Atomic energy' as used in the Association's name is meant in a comprehensive sense, as the interests and activities of SVA from the outset were not restricted to the generation of energy from nuclear reactions for purposes of electricity and district heat production but also included such areas as the applications of ionizing radiation and radioactive substances in research, medicine, industry, technology, agriculture, and environmental protection, and the field of radiation protection. (orig.) [de

  14. Regulatory oversight report 2015 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2015 zur nuklearen Sicherheit in den schweizerischen Kernanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    The Swiss Federal Nuclear Safety Inspectorate (ENSI) assesses and monitors nuclear facilities in Switzerland. These include the five nuclear power plants (Beznau Units 1 and 2, Muehleberg, Goesgen and Leibstadt), the interim storage facilities based at each plant, the Central Interim Storage Facility (Zwilag) at Wuerenlingen together with the nuclear facilities at the Paul Scherrer Institute (PSI), the University of Basel and the Federal Institute of Technology in Lausanne (EPFL), as well as the transport of radioactive materials and the preparatory work for a deep geological repository for nuclear waste. Using a combination of inspections, regulatory meetings, examinations and analyses together with reports from the licensees of individual facilities, ENSI obtains the required overview of nuclear safety in these facilities. ENSI maintains its own emergency organization. It provides the public with information on particular events and findings in nuclear facilities. ENSI publishes an annual Radiological Protection Report and a Research and Experience Report. Chapters 1 to 4 of this Surveillance Report deal with operational experience, systems technology, radiological protection and management of the 5 Swiss nuclear power plants. Chapter 5 deals with Zwilag. Chapters 6 and 7 are devoted to the nuclear facilities at PSI and the research reactor at EPFL as well as the decommissioned University of Basel’s research reactor. Chapter 8 covers the transport of radioactive materials. The subject of Chapter 9 is the deep geological storage of radioactive waste including work within the framework of the Sectoral Plan. Finally, Chapter 10 deals with generic issues relevant to all facilities such as probabilistic safety analyses. In 2015, all five nuclear power plants in Switzerland were safely operated and ENSI concluded that each had adhered to its approved operating conditions. There were 34 reportable events at the nuclear power plants; 32 events were rated at Level 0 on

  15. ENET News July 2004 - Information on Swiss energy research; ENET News, Juli 2004, Nr. 58 deutsch

    Energy Technology Data Exchange (ETDEWEB)

    Wellstein, J.

    2004-07-01

    This edition of the Swiss Federal Office of Energy's Magazine (SFOE) with information on Swiss energy research presents a large selection of articles on various energy-relevant topics. These include research strategies, a discussion on oil reserves, technology transfer and innovation, Swiss biomass activities, winning power from the drinking water mains and the use of ambient heat. Further articles cover the topics of energy-efficiency and lighting in buildings, the use of batteries in vehicles, the increasing decentralisation of power generation and the use of supra-conducting current-limiters. Also, research on improved fuel use in nuclear plant and models for batch-processes in the processing industry are looked at. Further articles cover the wood fuels, photovoltaics and wind-energy areas as well as heat storage using geothermal techniques.

  16. Regulatory oversight report 2009 concerning nuclear safety in Swiss nuclear installations; Aufsichtsbericht 2009 zur nuklearen Sicherheit in den schweizerischen Kernanlagen/Rapport de surveillance 2009 sur la securite nucleaire dans les installations nucleaires en Suisse/Regulatory oversight report 2009 concerning nuclear safety in Swiss nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-04-15

    ENSI, the regulatory body of the Swiss Confederation, assesses and monitors the nuclear safety of nuclear facilities in Switzerland. These include the five nuclear power plants (NPPs), the plant-based interim storage facilities, the Central Interim Storage Facility (ZWILAG) at Wuerenlingen, as well as the nuclear facilities at the Paul Scherrer Institute (PSI) and the two universities of Basel and Lausanne (EPFL). Its regulatory obligations also include the transport of radioactive materials from and to nuclear facilities and the preparation of a deep geological repository for radioactive waste. ENSI maintains its own emergency organisation that would be activated in case of a serious incident at a nuclear facility in Switzerland. The legislative framework for ENSI's regulatory functions are the Nuclear Energy Act (KEG), the Nuclear Energy Ordinance (KEV), the Radiological Protection Act (StSG), the Radiological Protection Ordinance (StSV), as well as other ordinances and regulations related to reactor safety, the training of operating personnel, the organisation of the emergency response to increases in radioactivity, the transport of radioactive materials, and the deep geological repository. ENSI formulates and updates guidelines that stipulate the criteria by which it evaluates the activities and plans put forward by the operators of nuclear facilities. It regularly publishes reports and provides the public with information on events and findings at nuclear facilities. Chapters 1 to 4 of this Surveillance Report are devoted to the five Swiss NPPs. For each plant, the ENSI evaluation concludes with a safety ranking: high, good, satisfactory and unsatisfactory. Chapter 5 deals with ZWILAG for the processing and interim storage of radioactive waste from Swiss nuclear facilities. Chapters 6 and 7 deal with the nuclear facilities at PSI and with the research reactors at Basel and at EPFL. Chapter 8 deals with the transport of radioactive materials from and to

  17. Swiss energy research in 2008; Energie-Forschung 2008 - Ueberblicksberichte der Programmleiter / Recherche energetique 2008 - Rapports de synthese des chefs de programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    This comprehensive document published by the Swiss Federal Office of Energy (SFOE) reports on Swiss energy research in the year 2008. The overview reports made by the programme leaders are presented. In the area of efficient energy use, programme reports are presented for the following areas: Energy in buildings, traffic, electricity technologies and their usage, networks, heat-pumps and combined heat and power, combustion technologies, power station 2020 and carbon capture and storage, fuel cells and hydrogen as well as process engineering. In the renewables sector, work in the following areas is reported on: Solar thermal energy and storage, photovoltaics, industrial use of solar energy, biomass and wood energy, hydropower, geothermal energy and wind energy. Research in the area of nuclear energy and nuclear safety is reported on, as is research in the areas of regulatory safety, fusion and nuclear wastes. Finally, a report on energy-economics research is presented. The report is completed with a list of projects and an appendix containing details on the Swiss Energy Research Commission CORE and a list of those responsible for the various research programmes.

  18. Leibstadt nuclear power station (KKL): The Future after twenty years of operation

    International Nuclear Information System (INIS)

    Schoenenberger, M.

    2005-01-01

    Switzerland's largest power plant, KKL (1 165 MW BWR), is situated on the Swiss side of the Rhine River, not far from the entry of the Aare River. In 2003, the plant generated some 17% of the electricity consumed in the country. In line with the importance of the plant, it shareholders are all major Swiss power utilities. KKL was connected to the power grid in December 1984. Its construction cost amounted to approx. euro 3 200 million. After some backfitting measures at an expense of approx. euro 200 million, the plant is now in excellent technical shape. Generating costs, which were very high in the beginning, have been greatly reduced in the meantime. This was helped by a decrease of borrowed capital, the favorable development of interest rates and, above all, the rise in annual production. This, in turn, was achieved in various programs increasing plant power, and by shortening the annual revision outages. From the coming year onward, costs could be below Eurocent 3.3/kWh. Also the organization and the staff of te plant are prepared for the future. They have demonstrated their fitness in various national and international reviews. Also the political environment is favorable, by and large. In 2003, the Swiss voting population so clearly rejected the two opt-out initiatives that there has been a lasting positive change in the policy of continuing the operation of existing plants. Also for KKL, the waste management problem is still unsolved. This is due primarily to political reasons. The envisaged repository for low-level waste was rejected in a referendum in 2003. Technically and in its organization, the Leibstadt Nuclear Power Station is ready for the future. The electricity generated at Leibstadt is desired and accepted politically. (orig.)

  19. The epic of the Swiss electric utilities: the entry into a new era of the Swiss history

    International Nuclear Information System (INIS)

    Remondeulaz, J.

    2010-01-01

    Until the 19 th century the only resources of Switzerland were wood and hydraulic energy. Their exploitation was adequate to produce heat and useful mechanical energy. The electrification of the country was introduced in the second half of the 19 th century in the form of hydropower in DC. The potential is very important, with a gigantic buffer constituted by the glaciers, estimated to be 50 TWh a year. Today, it is used at around 65-85% (for the time being, annual hydropower generation varies from 42.3 TWh in 2001 to only 32.6 in 2006). The standardization of power distribution in AC was realized during World War I: public and private lighting, space heating and hot water, mechanical power, drive propulsion system in replacement of gas, coal and vapour, e.g. with the electrification of the national railway network. Between 1875 and 1914 more than 1000 electric utilities have been established. The first law concerning hydropower was decided in 1916. During World War II the restrictions on fossil fuel import were an incentive for the development of new hydropower plants: it was the epic of the dams. The high voltage network (220 kV) was developed in order to enable interconnection with the neighbour countries France, Germany and Italy. Since 1958 this interconnection is established on the whole European level. Switzerland was entrusted with the frequency adjustment of the European network and the controlling of the exchanges in the framework of a special European agreement on electricity. From the Swiss point of view the international trade of electricity is very profitable: thanks to its accumulation lakes Switzerland can sell expensive peak load energy to whole Europe. Since the mid 50ies it was clear that the exploitation of all economically available hydropower would not be enough to cover the increasing demand of the country. A first experimental nuclear power plant was decided in 1961, built from 1962 on and turned into operation in 1968 (30 MW th and 6 MW el

  20. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  1. Nuclear power. Volume 2. Nuclear power project management

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 2 contains the following chapters: (1) review of nuclear power plants; (2) licensing procedures; (3) safety analysis; (4) project professional services; (5) quality assurance and project organization; (6) construction, scheduling, and operation; (7) nuclear fuel handling and fuel management; (8) plant cost management; and (9) conclusion

  2. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  3. Nuclear energy discussion in Switzerland

    International Nuclear Information System (INIS)

    Brupbacher, F.

    1989-01-01

    As regards the subject of nuclear power, Switzerland is no better off than Germany or the Benelux nations. In particular, Swiss people do not have superior insight or more general agreement in their views as to nuclear energy use. With reference to the whole nation, advocates and opponents of nuclear power currently are about equal in number; hence decisions are blocked the same as elsewhere. (orig.) [de

  4. Management of nuclear power plants for safe operation

    International Nuclear Information System (INIS)

    Kueffer, K.

    1980-01-01

    This lecture covers management aspects which have an immediate bearing on safety and identifies the objectives and tasks of management which are required for safe operation of a nuclear power plant and is based on the Codes of Practice and Safety Guides of the IAEA as well as arrangements in use at the Swiss Nuclear Power Station Beznau. This lecture - discusses the factors to be considered in structuring the operating organization, the support to be provided to plant management, the services and facilities needed and the management system for assuring the safety tasks are performed - describes the responsibilities of plant management and operating organization - outlines the requirements for recruitment, training and retraining as well as qualification and authorization of personnel - describes the programmes for maintenance, testing, examination, inspection, radiological protection, quality assurance, waste management, fuel management, emergency arrangement and security - describes the development of plant operating procedures including procedures to protect the personnel - outlines the requirements for initial and subsequent operation - describes the importance for evaluation and feedback of operating experience - describes the procedures for changes in hardware, procedures and set points - outlines the information flow and the requirements in reference to records and reports. (orig./RW)

  5. Safety technical considerations on the 2012 periodic safety verification of the Beznau nuclear power plant

    International Nuclear Information System (INIS)

    2016-12-01

    According to nuclear legislation, the owner of an operational license for a nuclear power plant has to provide a periodic safety verification (PSU) every 10 years. The 'North Eastern Power Plants' company (NOK), today AXPO Power AG already performed such a PSU for the Beznau-2 nuclear reactor block (KKB2) in 2002. The Beznau-1 nuclear reactor block (KKB1) received its definitive operational license in October 1970, after test operation during 7 months. After the license for test operation received on July 16 th , 1971, the operational license of KKB2 was renewed several times, each time for a certain period of validity. In 1991, NOK requested a definitive operational license for KKB2, but in 1994 the Swiss Federal Council lengthened the license for only 10 years. Moreover, it laid down that NOK has to periodically report on the safety of the facility. With its letter of August 23 rd , 1998, the Federal Office of Energy defined the documents to be produced for the PSU. The extent of the PSU was defined in such a way that many documents concern the whole power plant, i.e. both nuclear reactor blocks. On December 3 rd , 2004, the Swiss Federal Council granted KKB2 an operational license of limited validity. The present report reviews the 2012 PSU, which covers the time interval from January 1 st , 2002, to December 31 st , 2011, from the point of view of safety. It contains documents for the evaluation of both reactor blocks at KKB. The Beznau interim storage pool was also taken into consideration; it is situated on the KKB site, but, according to a decision of the Swiss Federal Council of May 23 rd , 1991, it has an independent operational license. The evaluation of ageing surveillance takes the whole operational period of the facility into account, i.e. the ageing mechanisms acting as from the beginning of the operation. Moreover, important developments that occurred after the surveillance time interval have been taken into account, especially the status

  6. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  7. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  8. EU stress test: Swiss national report. ENSI review of the operators' reports

    International Nuclear Information System (INIS)

    2011-12-01

    The earthquake on 11 March 2011 and the resultant tsunami led to severe accidents with core melt in three nuclear power plants (NPP) units at the Fukushima Dai-ichi site. These events were classified by the Japanese authorities as 'major accident' (INES 7). The EU stress test is part of the review process which Switzerland initiated immediately after the reactor accident. The Swiss Nuclear Safety Authority (ENSI) required from the operators of the Swiss NPPs to implement immediate measures and to conduct additional re-assessments. The immediate measures comprised the establishment of an external emergency storage facility for the Swiss NPPs, including the necessary plant specific connections, and back-fittings to provide external injection into the spent fuel pools. The additional re-assessments, which were to be carried out immediately, focused on the design of the Swiss NPPs against earthquakes, external flooding and a combination thereof, as well as investigations on the coolant supply for the safety systems and the spent fuel pool cooling. ENSI carried out an analysis of the events at Fukushima and published the results providing detailed descriptions of the causes, consequences and radiological impacts of the accident. The purpose of the EU stress test is to examine the robustness of the NPPs in case of impacts beyond the design basis due to earthquakes, external flooding and extreme weather conditions, loss of power supply and heat sink, and severe accident management. As the first step, it was necessary to present the hazard assumptions and design bases for the NPPs, and to assess their adequacy. In the second step, the objective was to identify and evaluate the protective measures implemented and their safety margins as compared to the design. Improvement measures were to be derived. The review by ENSI confirmed that the Swiss NPPs display a very high level of protection against the impacts of earthquakes, flooding and other natural hazards, as well as loss

  9. Reinforcement course 2013. Challenges at the operation end of nuclear power plants; Vertiefungskurs 2013. Herausforderungen am Betriebsende von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Rey, Matthias [Nuklearforum Schweiz/Forum nucleaire suisse, Bern (Switzerland)

    2014-03-15

    The reinforcement course 2013 of the Nuclear Forum in Switzerland dedicated itself to the question, of which challenges are implicated by decommissioning and dismantling nuclear power plants. The course has been divided into 4 blocks, discussing concepts regarding decommissioning, special points such as organisational or psychological aspects as well as juridical and practical questions. Around 140 persons accepted the invitation of the committee for educational questions under the patronage of Urs Weidmann, head of the nuclear power plant Beznau. Altogether 17 presentations dealt with the following topics: 'Strategies and Steps of Decommissioning' by Roger Lundmark, 'Decommissioning from the Perspective of the Swiss Regulatory Authority' by Hannes Haenggi, 'Operating Period Management Using the Example of the Nuclear Power Plant Leibstadt' by Johannis Noeggerath, 'Questions and Concepts from the Perspective of a Nuclear Power Plant Operator' by Roland Schmidiger, 'Decommissioning of nuclear facilities in the UK' by Andrew Munro, 'Practical experiences of transferring nuclear power plants from operating to out of operation' by Gerd Reinstrom, 'Dismantling of Nuclear Facilities: From the Pilot Scheme to Industrialized Disassembling' by Anke Traichel and Thomas Seipolt, 'Organisational challenges: From Decommissioning Strategy to Decommissioning Targets' by Michael Kruse, Anton von Gunten, Julia Heizinger, Joerg Sokoll, 'Knowing That and Knowing How - Motivational Aspects of Safety-Related Knowledge Management for the Post-Operational phase and dismantling' by Frank Ritz, 'The Juridical Frame of Decommissioning' by Peter Koch, 'The Path to the Decommissioning Order and its Guidelines Ensi-G17' by Torsten Krietsch, 'Requirements for a Safe and Economical Decommissioning From the Perspective of the Operator' by Anton Von Gunten, Michael Kruse, Thomas

  10. A decision for security of supply and climate friendly power production

    International Nuclear Information System (INIS)

    Bigler, Hans-Ulrich

    2017-01-01

    On 27 November 2016, the Swiss people voted on the 2016 nuclear phase-out referendum. The majority of the voters were, as in the case of previous anti-nuclear movements, pragmatic and nuclear- friendly. The clear rejection of the demanded overhasty nuclear phase-out is also a vote of confidence by the Swiss voters in the nuclear power plants and their operators. After the vote, the focus now is on the basic conditions and future for the domestic electricity production.

  11. Swiss Federal Energy Research Concept 2008 - 2011

    International Nuclear Information System (INIS)

    2007-04-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the plan for the activities of the Swiss Federal Commission on Energy Research CORE during the period 2008 - 2011. The motivation behind the state promotion of energy research is discussed. The visions, aims and strategies of the energy research programme are discussed. The main areas of research to be addressed during the period are presented. These include the efficient use of energy in buildings and traffic - batteries and supercaps, electrical technologies, combustion systems, fuel cells and power generation are discussed. Research to be done in the area of renewable sources of energy are listed. Here, solar-thermal, photovoltaics, hydrogen, biomass, geothermal energy, wind energy and ambient heat are among the areas to be examined. Research on nuclear energy and safety aspects are mentioned. Finally, work on the basics of energy economy are looked at and the allocation of funding during the period 2008 - 2011 is looked at

  12. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  13. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  14. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  15. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  16. Strategy of nuclear power in Korea, non-nuclear-weapon state and peaceful use of nuclear power

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2005-01-01

    The nuclear power plant started at Kori in Korea in April, 1978. Korea has carried out development of nuclear power as a national policy. The present capacity of nuclear power plants takes the sixes place in the world. It supplies 42% total power generation. The present state of nuclear power plant, nuclear fuel cycle facility, strategy of domestic production of nuclear power generation, development of next generation reactor and SMART, strategy of export in corporation with industry, government and research organization, export of nuclear power generation in Japan, nuclear power improvement project with Japan, Korea and Asia, development of nuclear power system with nuclear diffusion resistance, Hybrid Power Extraction Reactor System, radioactive waste management and construction of joint management and treatment system of spent fuel in Asia are stated. (S.Y.)

  17. Electricity and nuclear energy

    International Nuclear Information System (INIS)

    Krafft, P.

    1987-01-01

    Consequences of getting out from nuclear energy are discussed. It is concluded that the Chernobyl accident is no reason to withdraw confidence from Swiss nuclear power plants. There are no sufficient economizing potential and other energies at disposal to substitute nuclear energy. Switching to coal, oil and gas would increase environmental damages. Economic and social cost of getting out would be too high

  18. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  19. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  20. Swiss electricity production into the future

    International Nuclear Information System (INIS)

    Steinmann, Walter

    2008-01-01

    In January 2007 the Swiss Federal Office of Energy's work on energy perspectives up until 2035 were concluded and presented. The results form the basis for political debate on the future direction of Switzerland's energy and climate policies. The energy perspectives point to an increase in demand for electricity in Switzerland by 2035 of around 20% and a deficit of roughly 17 billion kWh if no extra measures are taken. This corresponds to twice the annual production of a Swiss nuclear power station. This development and the unharnessed potential in the areas of efficiency and renewable energies prompted Switzerland's Federal Council to decide on a reorientation of its energy policy in 2007. This is based on four pillars: 1. Improved energy efficiency; 2. Promotion of renewable energy; 3. Targeted extension and construction of large-scale power stations; 4. Intensification of foreign energy policy, particularly in terms of cooperation with the EU. 2008 has got off to a strong start in terms of energy policy - the CO 2 tax on fuels has been introduced and the first package of the new Energy Supply Act (StromVG) has entered into force. The new Electricity Supply Act creates the necessary conditions for a progressive opening of Switzerland's electricity market. From 2009 some 50,000 large customers with an annual electricity consumption of over 100 megawatt hours will be able to benefit from this partial opening and be free to choose their power suppliers. But all other power consumers will benefit right from the start too because their electricity suppliers will also be able to buy in their electricity from the free market and pass on any price savings to their customers. Furthermore, the Electricity Supply Act delivers a clear legal framework for cross-border trade in electricity. In actual fact the opening of the electricity market is already well advanced around Switzerland. Liberalisation also results in cost transparency: As the opening of the electricity market

  1. Nuclear power controversy

    International Nuclear Information System (INIS)

    Murphy, A.W.

    1976-01-01

    Arthur W. Murphy in the introductory chapter cites the issues, pro and con, concerning nuclear power. In assessing the present stance, he first looks back to the last American Assembly on nuclear power, held October 1957 and notes its accomplishments. He summarizes the six papers of this book, which focus on nuclear power to the end of this century. Chapter I, Safety Aspects of Nuclear Energy, by David Bodansky and Fred Schmidt, deals with the technical aspects of reactor safety as well as waste storage and plutonium diversion. Chapter 2, The Economics of Electric Power Generation--1975-2000, by R. Michael Murray, Jr., focuses specifically on coal-fired and nuclear plants. Chapter 3, How Can We Get the Nuclear Job Done, by Fritz Heimann, identifies actions that must take place to develop nuclear power in the U.S. and who should build the reprocessing plants. Chapter 4, by Arthur Murphy, Nuclear Power Plant Regulation, discusses the USNRC operation and the Price-Anderson Act specifically. Chapter 5, Nuclear Exports and Nonproliferation Strategy, by John G. Palfrey, treats the international aspects of the problem with primary emphasis upon the situation of the U.S. as an exporter of technology. Chapter 6, by George Kistiakowsky, Nuclear Power: How Much Is Too Much, expresses doubt about the nuclear effort, at least in the short run

  2. An important year for Swiss Electricity Politics - President's speech at the shareholder's meeting of the Swiss Association of Electricity Enterprises; Strompolitisch relevantes Jahr

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, R

    2004-07-01

    This article presents the speech made by Rudolf Steiner, president of the Swiss Association of Electricity Enterprises, in Bad Ragaz in September 2004. Steiner comments on 2004 as being an important year with respect to energy politics in Switzerland. A public vote turned down the idea of opting out of nuclear energy, the Federal Court decided that the Restricted Trade Practices act was also applicable to the Swiss electricity supply industry and the EU parliament passed guidelines on the opening of the European power market. The effects of large-scale blackouts in America and Europe on the public's perception of secure supplies are commented on. The importance of the Association as a provider of services for its members and as a partner for the government is stressed.

  3. Financing nuclear power

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2009-01-01

    Global energy security and climate change concerns sparked by escalating oil prices, high population growth and the rapid pace of industrialization are fueling the current interest and investments in nuclear power. Globally, a significant number policy makers and energy industry leaders have identified nuclear power as a favorable alternative energy option, and are presently evaluating either a new or an expanded role for nuclear power. The International Atomic Energy Agency (IAEA) has reported that as of October 2008, 14 countries have plans to construct 38 new nuclear reactors and about 100 more nuclear power plants have been written into the development plans of governments for the next three decades. Hence as new build is expected to escalate, issues of financing will become increasingly significant. Energy supply, including nuclear power, considered as a premium by government from the socio-economic and strategic perspective has traditionally been a sector financed and owned by the government. In the case for nuclear power, the conventional methods of financing include financing by the government or energy entity (utility or oil company) providing part of the funds from its own resources with support from the government. As national financing is, as in many cases, insufficient to fully finance the nuclear power plants, additional financing is sourced from international sources of financing including, amongst others, Export Credit Agencies (ECAs) and Multilateral Development Institutions. However, arising from the changing dynamics of economics, financing and business model as well as increasing concerns regarding environmental degradation , transformations in methods of financing this energy sector has been observed. This paper aims to briefly present on financing aspects of nuclear power as well as offer some examples of the changing dynamics of financing nuclear power which is reflected by the evolution of ownership and management of nuclear power plants

  4. Nuclear power debate

    International Nuclear Information System (INIS)

    Hunwick, Richard

    2005-01-01

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  5. Nuclear power prospects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  6. Swiss electricity statistics 1996

    International Nuclear Information System (INIS)

    1997-01-01

    This detailed article discusses the following subjects: Survey of electricity supply in Switzerland in 1996; The Swiss electricity balance; Electric power generation; Electric power consumption; Generation, consumption and loads on selected days; Energy trade with other countries; Expansion capacities until 2003; Financial situation and appendix. (orig./RHM) [de

  7. Swiss electricity statistics 2001

    International Nuclear Information System (INIS)

    2002-01-01

    This publication by the Association of Swiss Electricity Enterprises for the Swiss Federal Office of Energy (SFOE) provides statistical information on electricity production, trading and consumption in Switzerland in 2001. Apart from a general overview of the Swiss electricity supply that includes details on power generation, energy transfer with neighbouring countries and data on prices, average consumption and capital investment, the publication also includes graphical representations of electrical energy flows in and out of Switzerland. Tables of data give information on electricity production, import and export for the years 1950 to 2001, the data being supplied for each hydrological year and the summer and winter seasons respectively. The production of power in Switzerland is examined in detail. Details are given on the development of production capacities and the various means of production together with their respective shares of total production. Further tables and diagrams provide information on power production in various geographical regions and on the management of pumped storage hydro-electricity schemes. A further chapter deals in detail with the consumption of electricity, its growth between 1984 and 2001 and its use in various sectors. A fifth chapter examines electricity consumption, generation, import and export on single, typical days, presenting data in tables and diagrams. The next chapter examines energy transfer with foreign countries and the trading structures involved. The final two chapters cover new and future power generation capacities and the economic considerations involved in the supply of electricity chapters cover new and future power generation capacities and the economic considerations involved in the supply of electricity

  8. Swiss electricity statistics 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This comprehensive report made by the Swiss Federal Office of Energy (SFOE) presents the statistics for 2005 on electricity production and usage in Switzerland for the year 2005. First of all, an overview of Switzerland's electricity supply in 2005 is presented. Details are noted of the proportions generated by different sources including nuclear, hydro-power, storage schemes and thermal power stations as well as energy transfer with neighbouring countries. A second chapter takes a look at the balance of imports and exports with illustrative flow diagrams along with tables for total figures from 1950 through to 2005. For the summer and winter periods, figures from 1995 to 2005 are presented. The third chapter examines the production of electricity in the various types of power stations and the developments over the years 1950 to 2005, whereby, for example, statistics on regional generation and power station type are looked at. The fourth chapter looks at electricity consumption in various sectors from 1983 to 2005 and compares the figures with international data. The fifth chapter looks at generation, consumption and loading on particular days and chapter six considers energy exchange with Switzerland's neighbours. Chapter seven takes a look at possibilities for extending generation facilities in the period up to 2012

  9. Swiss electricity statistics 2008

    International Nuclear Information System (INIS)

    2009-06-01

    This comprehensive report made by the Swiss Federal Office of Energy (SFOE) presents the statistics for 2008 on electricity production and usage in Switzerland for the year 2008. First of all, an overview of Switzerland's electricity supply in 2008 is presented. Details are noted of the proportions generated by different sources including nuclear, hydro-power, storage schemes and thermal power stations as well as energy transfer with neighbouring countries. A second chapter takes a look at the balance of imports and exports with illustrative flow diagrams along with tables for total figures from 1950 through to 2008. For the summer and winter periods, figures from 1995 to 2008 are presented. The third chapter examines the production of electricity in the various types of power stations and the developments over the years 1950 to 2008, whereby, for example, statistics on regional generation and power station type are looked at. The fourth chapter looks at electricity consumption in various sectors from 1984 to 2008 and compares the figures with international data. The fifth chapter looks at generation, consumption and loading on particular days and chapter six considers energy exchange with Switzerland's neighbours. Chapter seven takes a look at possibilities for extending generation facilities in the period up to 2015

  10. Swiss electricity statistics 2006

    International Nuclear Information System (INIS)

    2007-01-01

    This comprehensive report made by the Swiss Federal Office of Energy (SFOE) presents the statistics on electricity production and usage in Switzerland for the year 2006. First of all, an overview of Switzerland's electricity supply in 2006 is presented. Details are noted of the amounts generated by different sources including nuclear, hydro-power, storage schemes and thermal power stations as well as energy transfer with neighbouring countries. A second chapter takes a look at the balance of imports and exports with illustrative flow diagrams along with tables for total figures from 1950 through to 2006. For the summer and winter periods, figures from 1995 to 2006 are presented. The third chapter examines the production of electricity in the various types of power stations and the developments over the years 1950 to 2006, whereby, for example, statistics on regional generation and power station type are looked at. The fourth chapter looks at electricity consumption in various sectors from 1983 to 2006 and compares the figures with international data. The fifth chapter looks at generation, consumption and loading on particular, selected days and chapter six considers energy exchange with Switzerland's neighbours. Chapter seven takes a look at possibilities for extending generation facilities in the period up to 2013

  11. Swiss electricity statistics 2000

    International Nuclear Information System (INIS)

    2001-01-01

    This publication by the Association of Swiss Electricity Enterprises for the Swiss Federal Office of Energy (SFOE) provides statistical information on electricity production, trading and consumption in Switzerland in 2000. Apart from a general overview of the Swiss electricity supply that includes details on power generation, energy transfer with neighbouring countries and data on prices, average consumption and capital investment, the publication also includes graphical representations of electrical energy flows in and out of Switzerland. Tables of data give information on electricity production, import and export for the years 1950 to 2000, the data being supplied for each hydrological year and the summer and winter seasons respectively. The production of power in Switzerland is examined in detail. Details are given on the development of production capacities and the various means of production together with their respective shares of total production. Further tables and diagrams provide information on power production in various geographical regions and on the management of pumped storage hydro-electricity schemes. A further chapter deals in detail with the consumption of electricity, its growth between 1984 and 2000 and its use in various sectors. A fifth chapter examines electricity consumption, generation, import and export on single, typical days, presenting data in tables and diagrams. The next chapter examines energy transfer with foreign countries and the trading structures involved. The final two chapters cover new and future power generation capacities and the economic considerations involved in the supply of electricity

  12. Nuclear power in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Ronald E.

    1998-08-01

    Contains Executive Summary and Chapters on: Nuclear Energy in the Asian context; Types of nuclear power reactors used in Asia; A survey of nuclear power by country; The economics of nuclear power; Fuels, fuel cycles and reprocessing; Environmental issues and waste disposal; The weapons issues and nuclear power; Conclusions. (Author)

  13. Nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.

    1991-01-01

    Is a nuclear power renaissance likely to occur in the United States? This paper investigates the many driving forces that will determine the answer to that question. This analysis reveals some frequently overlooked truths about the current state of nuclear technology: An examination of the issues also produces some noteworthy insights concerning government regulations and related technologies. Public opinion will play a major role in the unfolding story of the nuclear power renaissance. Some observers are betting that psychological, sociological, and political considerations will hod sway over public attitudes. Others wager that economic and technical concerns will prevail. The implications for the nuclear power renaissance are striking

  14. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Addinall, E.; Ellington, H.

    1982-01-01

    The subject is covered in chapters: (the nature of nuclear power) the atomic nucleus - a potential source of energy; how nuclear reactors work; the nuclear fuel cycle; radioactivity - its nature and biological effects; (why we need nuclear power) use of energy in the non-communist world -the changing pattern since 1950; use of energy - possible future scenarios; how our future energy needs might be met; (a possible long term nuclear strategy) the history of nuclear power; a possible nuclear power strategy for the Western World; (social and environmental considerations) the hazards to workers in the nuclear power industry; the hazards to the general public (nuclear power industry; reactor operation; transport of radioactive materials; fuel reprocessing; radioactive waste disposal; genetic hazards); the threat to democratic freedom and world peace. (U.K.)

  15. Seventh report of the ten on the Swiss electrical economy: endangered supply in the next 20 years

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The seventh report of the ten major companies in the Swiss electric industry is discussed. The report predicts that, even with the addition of the Kaiseraugst nuclear power station, there will be a deficit in the supply of electricity compared with demand of some 4 milliards kWh by the winter of 2004/2005

  16. Optimization in the scale of nuclear power generation and the economy of nuclear power

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    1983-01-01

    In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)

  17. A decision for security of supply and climate friendly power production; Ein Entschied fuer Versorgungssicherheit und Klimafreundlichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Bigler, Hans-Ulrich [Nuklearforum Schweiz, Olten (Switzerland)

    2017-01-15

    On 27 November 2016, the Swiss people voted on the 2016 nuclear phase-out referendum. The majority of the voters were, as in the case of previous anti-nuclear movements, pragmatic and nuclear- friendly. The clear rejection of the demanded overhasty nuclear phase-out is also a vote of confidence by the Swiss voters in the nuclear power plants and their operators. After the vote, the focus now is on the basic conditions and future for the domestic electricity production.

  18. Carbon dioxide in electricity delivered to Swiss end-users. Final report

    International Nuclear Information System (INIS)

    Jakob, M.; Volkart, K.; Widmer, D.

    2009-07-01

    In this comprehensive final report, made by TEP Energy GmbH - Technology Economics Policy - Research and Advice - a spin-off company of ETH Zuerich for the Swiss gas and oil industries, the effective CO 2 intensities involved in Swiss electricity consumption are calculated and discussed. The authors present details on how CO 2 emissions should be calculated on the basis of figures both on Swiss power generation and, also, on electricity imports and exports in a European context. Daily and seasonal export-import balances are discussed. In particular the authors note that the actual production-mix for electricity in Switzerland should not be used as a basis for judging actual consumption. Three methods for viewing Swiss electricity consumption involving net and gross power export and import are introduced and discussed. The determination of the CO 2 intensity of Swiss power is discussed, as are power demand profiles and international agreements. The results obtained using the three methods used are presented and discussed. Future developments are also examined. The report is completed with an appendix

  19. Human performance tools in nuclear power plants. Introduction, implementation and experiences; Human Performance Tools in Kernkraftwerken. Einfuehrung, Umsetzung und Erfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Dexheimer, Kai; Bassing, Gerd [Dexcon Consulting GmbH, Neuhausen (Switzerland); Kreuzer, Peter [E.ON Kernkraft GmbH, Essenbach (Germany). Kernkraftwerk Isar

    2015-06-01

    The basis of safe nuclear power plant operation (NPP) and a strong safety culture is the professional application of Human Performance Optimisation Tools (HPO). HPO trainings have been carried out by German NPPs for a number of years and recently also by Swiss NPPs. This article describes the origination, the bases, experiences and thereby the special features of the HPO training programme applied by German NPP operators. Moreover, this article provides an outlook on future developments - in particular when considering the requirements of the ongoing phase out of nuclear energy in Germany.

  20. Implementation of the obligations of the Convention on Nuclear Safety CNS - Switzerland’s seventh national report to the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2016-07-01

    In the aftermath of the Fukushima Daiichi accident in 2011, the Swiss government decided to phase out nuclear energy. Existing plants will continue to operate as long as they are considered safe by the Swiss Federal Nuclear Safety Inspectorate (ENSI) and as long as they fulfil all legal and regulatory requirements in this respect. In Switzerland, on-going activities regarding safety assessment of the different stages in the lifetime of nuclear installations consist of periodic assessments and assessments of long-term operation for existing Swiss nuclear power plants (NPPs). Assessments of long-term operation have been performed for two Swiss NPPs (Beznau and Muehleberg) which have been in commercial operation for over 40 years. A detailed examination demonstrated that the conditions for taking a NPP out of service have not yet been reached and will not be reached by these two plants within the next 10 years. Nevertheless, it is mandatory to continue with the scheduled ageing management, maintenance and backfitting activities. In late 2013, BKW Energy Ltd announced that Muehleberg NPP will be decommissioned at the end of 2019. The plant will shut down on December 20 th , 2019.The single 373 MWe boiling water reactor began operating in 1972. It will be the first Swiss nuclear power plant to be decommissioned. The preparatory work for decommissioning is well under way. In April 2015, a follow-up mission was conducted by the Integrated Regulatory Review Service in Switzerland. The Swiss government should give ENSI the ability to issue legally binding technical safety requirements and license conditions concerning nuclear safety, nuclear security and radiation safety. A follow-up mission by the Operational Safety Review Team on the Muehleberg NPP was completed in June 2014. Switzerland participated in the European Stress Test and its follow-up activities. During 2014, the necessary measures to achieve continuous improvement in the supervisory culture were defined. The

  1. Implementation of the obligations of the Convention on Nuclear Safety CNS - Switzerland’s seventh national report to the Convention on Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-15

    In the aftermath of the Fukushima Daiichi accident in 2011, the Swiss government decided to phase out nuclear energy. Existing plants will continue to operate as long as they are considered safe by the Swiss Federal Nuclear Safety Inspectorate (ENSI) and as long as they fulfil all legal and regulatory requirements in this respect. In Switzerland, on-going activities regarding safety assessment of the different stages in the lifetime of nuclear installations consist of periodic assessments and assessments of long-term operation for existing Swiss nuclear power plants (NPPs). Assessments of long-term operation have been performed for two Swiss NPPs (Beznau and Muehleberg) which have been in commercial operation for over 40 years. A detailed examination demonstrated that the conditions for taking a NPP out of service have not yet been reached and will not be reached by these two plants within the next 10 years. Nevertheless, it is mandatory to continue with the scheduled ageing management, maintenance and backfitting activities. In late 2013, BKW Energy Ltd announced that Muehleberg NPP will be decommissioned at the end of 2019. The plant will shut down on December 20{sup th}, 2019.The single 373 MWe boiling water reactor began operating in 1972. It will be the first Swiss nuclear power plant to be decommissioned. The preparatory work for decommissioning is well under way. In April 2015, a follow-up mission was conducted by the Integrated Regulatory Review Service in Switzerland. The Swiss government should give ENSI the ability to issue legally binding technical safety requirements and license conditions concerning nuclear safety, nuclear security and radiation safety. A follow-up mission by the Operational Safety Review Team on the Muehleberg NPP was completed in June 2014. Switzerland participated in the European Stress Test and its follow-up activities. During 2014, the necessary measures to achieve continuous improvement in the supervisory culture were defined

  2. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  3. Important aspects for consideration in minimizing plant outage times. Swiss experience in achieving high availability

    International Nuclear Information System (INIS)

    Malcotsis, G.

    1984-01-01

    Operation of Swiss nuclear power plants has not been entirely free of trouble. They have experienced defective fuel elements, steam generator tube damage, excessive vibration of the core components, leakages in the recirculation pump seals and excessive corrosion and erosion in the steam-feedwater plant. Despite these technical problems in the early life of the plants, on overall balance the plants can be considered to have performed exceedingly well. The safety records from more than 40 reactor-years of operation are excellent and, individually and collectively, the capacity factors obtained are among the highest in the world. The problems mentioned have been solved and the plants continue operation with high availabilities. This success can be attributed to the good practices of the utilities with regard to the choice of special design criteria, plant organization, plant operation and plant maintenance, and also to the pragmatic approach of the licensing authorities and their consultants to quality assurance and quality control. The early technical problems encountered, the corresponding solutions adopted and the factors that contributed towards achieving high availabilities in Swiss nuclear power plants are briefly described. (author)

  4. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  5. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.

    2009-06-01

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  6. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  7. Nuclear power revisited

    International Nuclear Information System (INIS)

    Grear, B.

    2008-01-01

    Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues - high capital costs, the risks posed by nuclear wastes and accidents, and the proliferation of nuclear weaponry - that until recently hindered the expansion of nuclear power.

  8. Nuclear phase-out in Switzerland. Rationality first

    International Nuclear Information System (INIS)

    Leidinger, Tobias

    2017-01-01

    Just a few months ago, the Swiss voters have rejected the initiative of the Green Party to accelerate the nuclear phase-out in Switzerland with an impressive majority. Once again, it becomes clear that in Switzerland on issues of energy policy rationality and not ideology is leading. With their vote against an accelerated nuclear phase-out, the Swiss citizens underlined that they have no sympathy for radical, ideologically proposals for solutions, which on closer inspection are expensive, risky and immature. The majority has understood that the extensive expansion of renewable energies and power grids is burdened with numerous risks and uncertainties.

  9. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    Cao Ruiding; Chen Guorong; Chen Xianfeng; Zhang Yishu

    1996-01-01

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  10. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2007-04-01

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  11. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    2005-03-01

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  12. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampman, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2006-03-01

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  13. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Choi, Chang Tong

    1996-01-01

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  14. The politics of nuclear power

    International Nuclear Information System (INIS)

    Elliott, D.

    1978-01-01

    The contents of the book are: introduction; (part 1, the economy of nuclear power) nuclear power and the growth of state corporatism, ownership and control - the power of the multi-nationals, economic and political goals - profit or control, trade union policy and nuclear power; (part 2, nuclear power and employment) nuclear power and workers' health and safety, employment and trade union rights, jobs, energy and industrial strategy, the alternative energy option; (part 3, political strategies) the anti-nuclear movement, trade unions and nuclear power; further reading; UK organisations. (U.K.)

  15. The reality of nuclear power

    International Nuclear Information System (INIS)

    Murphy, D.

    1979-01-01

    The following matters are discussed in relation to the nuclear power programmes in USA and elsewhere: siting of nuclear power plants in relation to a major geological fault; public attitudes to nuclear power; plutonium, radioactive wastes and transfrontier contamination; radiation and other hazards; economics of nuclear power; uranium supply; fast breeder reactors; insurance of nuclear facilities; diversion of nuclear materials and weapons proliferation; possibility of manufacture of nuclear weapons by developing countries; possibility of accidents on nuclear power plants in developing countries; radiation hazards from use of uranium ore tailings; sociological alternative to use of nuclear power. (U.K.)

  16. ENET News November 2004 - Information on Swiss energy research; ENET News, November 2004, Nr. 59 deutsch

    Energy Technology Data Exchange (ETDEWEB)

    Wellstein, J.

    2004-07-01

    This last edition of the Swiss Federal Office of Energy (SFOE)'s magazine with information on Swiss energy research presents a large selection of articles on various energy-relevant topics. These include a review of energy research in Switzerland in general and the work of the Swiss Federal Energy Research Commission CORE in particular and a look at the basis for energy-economical perspectives in Switzerland. Further articles take a look at activities in the solar-chemical area, biomass and small-hydro projects, wind and geothermal energy as well as solar heating, photovoltaics and the use of ambient heat. Energy-efficiency in the buildings and traffic areas and combustion and combined heat and power are further topics covered. Nuclear energy and process engineering, fuel cells and activities in the international sector are examined. The publication is completed with a list of recent publications in the energy area.

  17. Similarities and differences between conventional power and nuclear power

    International Nuclear Information System (INIS)

    Wang Yingrong

    2011-01-01

    As the implementation of the national guideline of 'proactively promoting nuclear power development', especially after China decided in 2006 to introduce Westinghouse's AP1000 technology, some of the power groups specialized in conventional power generation, have been participating in the preliminary work and construction of nuclear power projects in certain degrees. Meanwhile, such traditional nuclear power corporations as China National Nuclear Corporation (CNNC) and China Guangdong Nuclear Power Corporation (CGNPC) have also employed some employees with conventional power generation experience. How can these employees who have long been engaged in conventional power generation successfully adapt to the new work pattern, ideology, knowledge, thinking mode and proficiency of nuclear power, so that they can fit in with the work requirements of nuclear power and become qualified as soon as possible? By analyzing the technological, managerial and cultural features of nuclear power, as well as some issues to be kept in mind when engaged in nuclear power, this paper intends to make some contribution to the nuclear power development in the specific period. (author)

  18. Nuclear power in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Rim, C S [Radioactive Waste Management Centre, Korea Atomic Energy Research Institute, Taejon, Choong-Nam (Korea, Republic of)

    1990-07-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea.

  19. Nuclear power in Korea

    International Nuclear Information System (INIS)

    Rim, C.S.

    1990-01-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea

  20. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  1. Nuclear Power in Korea

    International Nuclear Information System (INIS)

    Ha, Duk-Sang

    2009-01-01

    Full text: Korea's nuclear power program has been promoted by step-by-step approach; the first stage was 1970's when it depended on the foreign contractors' technology and the second was 1980's when it accumulated lots of technology and experience by jointly implementing the project. Lastly in the third stage in 1990's, Korea successfully achieved the nuclear power technological self-reliance and developed its standard nuclear power plant, so-called Optimized Power Reactor 1000 (OPR 1000). Following the development of OPR 1000, Korea has continued to upgrade the design, known as the Advanced Power Reactor 1400 (APR 1400) and APR+. Korea is one of the countries which continuously developed the nuclear power plant projects during the last 30 years while the other advanced countries ceased the project, and therefore, significant reduction of project cost and construction schedule were possible which benefits from the repetition of construction project. And now, its nuclear industry infrastructure possesses the strong competitiveness in this field.The electricity produced from the nuclear power is 150,958 MWh in 2008, which covers approximately 36% of the total electricity demand in Korea, while the installed capacity of nuclear power is 17,716 MW which is 24% of the total installed capacity. We are currently operating 20 units of nuclear power plants in Korea, and also are constructing 8 additional units (9,600 MW). Korea's nuclear power plants have displayed their excellent operating performance; the average plant capacity factor was 93.4% in 2008, which are about 15% higher than the world average of 77.8%. Moreover, the number of unplanned trips per unit was only 0.35 in 2008, which is the world top class performance. Also currently we are operating four CANDU nuclear units in Korea which are the same reactor type and capacity as the Cernavoda Units. They have been showing the excellent operating performance, of which capacity in 2008 is 92.8%. All the Korean

  2. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Royen, J.

    1981-01-01

    Worldwide nuclear power (WNP) is a companion volume to UPDATE. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of the Assistant Secretary for Nuclear Energy from reports obtained from foreign Embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data

  3. 7th annual congress of the Swiss Society of Nuclear Medicine (SGNM/SSMN). Main topic: imaging in oncology. Abstracts

    International Nuclear Information System (INIS)

    2006-01-01

    Program chart and compiled abstracts of the 7th annual congress of the Swiss Society of Nuclear Medicine (SGNM/SSMN). Session headers are: imaging in oncology: PET-CT; oncology: therapy; imaging in oncology: treatment response; oncology: peptides; oncology: basic scinence; imaging in oncology: bone and soft tissue tumors; instrumentation; oncology: imaging. (uke)

  4. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  5. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  6. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  7. IAEA Leads Operational Safety Mission to Muehleberg Nuclear Power Plant

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of nuclear safety experts led by the International Atomic Energy Agency today concluded a review of the safety practices at the Muehleberg Nuclear Power Plant (NPP) near Bern in Switzerland. The team noted a series of good practices and made recommendations and suggestions to reinforce them. The IAEA assembled the Operational Safety Review Team at the request of the Swiss government. The team, led by the IAEA's Division of Nuclear Installation Safety, performed an in-depth operational safety review from 8 to 25 October 2012. The team comprised experts from Belgium, the Czech Republic, Finland, Germany, Hungary, Slovakia, Sweden, the United Kingdom and the United States as well as experts from the IAEA. The team conducted an in-depth review of the aspects essential to the safe operation of the Muehleberg NPP. The conclusions of the review are based on the IAEA's Safety Standards and proven good international practices. The review covered the areas of Management, Organization and Administration; Training; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; Chemistry, Emergency Planning and Preparedness, Severe Accident Management and Long-Term Operation. The OSART team made 10 recommendations and 11 suggestions related to areas where operations of Muehleberg NPP could be further improved, for example: - Plant management could improve the operating experience program and methods throughout the plant to ensure corrective actions are taken in a timely manner; - In the area of Long-Term Operation, the ageing management review for some systems and components is not complete and the environmental qualification of originally installed safety cables has not yet been revalidated for long-term operation; and - The plant provisions for the protection of persons on the site during an emergency with radioactive release can be improved to minimize health risks to plant personnel. The team also identified 10 good

  8. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  9. Economics of nuclear power projects

    International Nuclear Information System (INIS)

    Chu, I.H.

    1985-01-01

    Nuclear power development in Taiwan was initiated in 1956. Now Taipower has five nuclear units in smooth operation, one unit under construction, two units under planning. The relatively short construction period, low construction costs and twin unit approach had led to the significant economical advantage of our nuclear power generation. Moreover betterment programmes have further improved the availability and reliability factors of our nuclear power plants. In Taipower, the generation cost of nuclear power was even less than half of that of oil-fired thermal power in the past years ever since the nuclear power was commissioned. This made Taipower have more earnings and power rates was even dropped down in March 1983. As Taiwan is short of energy sources and nuclear power is so well-demonstrated nuclear power will be logically the best choice for Taipower future projects

  10. EU-stress test: Swiss national action plan. Follow-up of peer review 2012 year-end status report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    The European Union (EU) stress test is part of the review process which Switzerland initiated immediately after the reactor accident in Japan. As a direct consequence of the accident, the Swiss Federal Nuclear Safety Inspectorate (ENSI) issued three formal orders in which the operators of the Swiss nuclear power plants (NPPs) were required to implement immediate measures and to conduct additional reassessments. The immediate measures comprised the establishment of an external emergency storage facility for the Swiss NPPs, including the necessary plant-specific connections, and back-fittings to provide external injection into the spent fuel pools. The additional reassessments focused on the design of the Swiss NPPs against earthquakes, external flooding and a combination thereof. Investigations on the coolant supply for the safety systems and the spent fuel pool cooling were also requested. ENSI carried out an analysis of the events at Fukushima providing detailed descriptions of the causes, consequences and radiological impacts of the accident. The reports analyse the contributory human and organisational factors, and specify lessons that can be derived from this information. ENSI instructed the Swiss operators to take part in the EU stress test. There was to be particular examination of the robustness of the NPPs in case of impacts beyond the design basis due to earthquakes, external flooding and extreme weather conditions, with consequential loss of power supply and heat sink, and the need for severe accident management actions. ENSI requested further clarification on plant specific issues and produced the National Report which was delivered to the EU Commission. A Country Peer Review Draft Report was drawn up for each country, including a list of issues (open points) for further follow-up by the review team. Eight new open points were identified to further improve the safety of the Swiss NPPs. These open points together with the issues identified in the analysis

  11. EU-stress test: Swiss national action plan. Follow-up of peer review 2012 year-end status report

    International Nuclear Information System (INIS)

    2012-12-01

    The European Union (EU) stress test is part of the review process which Switzerland initiated immediately after the reactor accident in Japan. As a direct consequence of the accident, the Swiss Federal Nuclear Safety Inspectorate (ENSI) issued three formal orders in which the operators of the Swiss nuclear power plants (NPPs) were required to implement immediate measures and to conduct additional reassessments. The immediate measures comprised the establishment of an external emergency storage facility for the Swiss NPPs, including the necessary plant-specific connections, and back-fittings to provide external injection into the spent fuel pools. The additional reassessments focused on the design of the Swiss NPPs against earthquakes, external flooding and a combination thereof. Investigations on the coolant supply for the safety systems and the spent fuel pool cooling were also requested. ENSI carried out an analysis of the events at Fukushima providing detailed descriptions of the causes, consequences and radiological impacts of the accident. The reports analyse the contributory human and organisational factors, and specify lessons that can be derived from this information. ENSI instructed the Swiss operators to take part in the EU stress test. There was to be particular examination of the robustness of the NPPs in case of impacts beyond the design basis due to earthquakes, external flooding and extreme weather conditions, with consequential loss of power supply and heat sink, and the need for severe accident management actions. ENSI requested further clarification on plant specific issues and produced the National Report which was delivered to the EU Commission. A Country Peer Review Draft Report was drawn up for each country, including a list of issues (open points) for further follow-up by the review team. Eight new open points were identified to further improve the safety of the Swiss NPPs. These open points together with the issues identified in the analysis

  12. Swiss electricity statistics 2003

    International Nuclear Information System (INIS)

    2004-01-01

    This publication by the Swiss Federal Office of Energy (SFOE) for the Swiss Federal Office of Energy (SFOE) provides statistical information on electricity supply, production, trading and consumption in Switzerland in 2003. Apart from a general overview of the Swiss electricity supply that includes details on power generation, energy transfer with neighbouring countries and data on prices, average consumption and capital investment, the publication also includes graphical representations of electrical energy flows in and out of Switzerland. Tables of data give information on electricity production, import and export for the years 1950 to 2003, the data being supplied for each hydrological year and the summer and winter seasons respectively. The structure of power production in Switzerland is examined in detail and compared with that of foreign countries. Details are given on the development of production capacities and the various means of production together with their respective shares of total production. Further tables and diagrams provide information on power production in various geographical regions and on the management of pumped storage hydro-electricity schemes. A further chapter deals in detail with the consumption of electricity, its growth between 1984 and 2003 and its use in various sectors. A fifth chapter examines electricity consumption, generation, import and export on single, typical days, presenting data in tables and diagrams. The next chapter examines energy transfer with foreign countries and the trading structures involved. The next two chapters cover the future developments in energy exchange and trading with foreign countries and the possibilities of augmenting power generation capacities up to 2010. The final chapter looks at economic considerations involved in the supply of electricity. An annex provides detailed tables of data

  13. Swiss electricity statistics 2002

    International Nuclear Information System (INIS)

    2003-01-01

    This publication by the Swiss Federal Office of Energy (SFOE) for the Swiss Federal Office of Energy (SFOE) provides statistical information on electricity supply, production, trading and consumption in Switzerland in 2002. Apart from a general overview of the Swiss electricity supply that includes details on power generation, energy transfer with neighbouring countries and data on prices, average consumption and capital investment, the publication also includes graphical representations of electrical energy flows in and out of Switzerland. Tables of data give information on electricity production, import and export for the years 1950 to 2002, the data being supplied for each hydrological year and the summer and winter seasons respectively. The structure of power production in Switzerland is examined in detail and compared with that of foreign countries. Details are given on the development of production capacities and the various means of production together with their respective shares of total production. Further tables and diagrams provide information on power production in various geographical regions and on the management of pumped storage hydro-electricity schemes. A further chapter deals in detail with the consumption of electricity, its growth between 1984 and 2002 and its use in various sectors. A fifth chapter examines electricity consumption, generation, import and export on single, typical days, presenting data in tables and diagrams. The next chapter examines energy transfer with foreign countries and the trading structures involved. The next two chapters cover the future developments in energy exchange and trading with foreign countries and the possibilities of augmenting power generation capacities up to 2009. The final chapter looks at economic considerations involved in the supply of electricity. An annex provides detailed tables of data

  14. Swiss electricity statistics 2004

    International Nuclear Information System (INIS)

    2005-01-01

    This publication by the Swiss Federal Office of Energy (SFOE) for the Swiss Federal Office of Energy (SFOE) provides statistical information on electricity supply, production, trading and consumption in Switzerland in 2004. Apart from a general overview of the Swiss electricity supply that includes details on power generation, energy transfer with neighbouring countries and data on prices, average consumption and capital investment, the publication also includes graphical representations of electrical energy flows in and out of Switzerland. Tables of data give information on electricity production, import and export for the years 1950 to 2004, the data being supplied for each hydrological year and the summer and winter seasons respectively. The structure of power production in Switzerland is examined in detail and compared with that of foreign countries. Details are given on the development of production capacities and the various means of production together with their respective shares of total production. Further tables and diagrams provide information on power production in various geographical regions and on the management of pumped storage hydro-electricity schemes. A further chapter deals in detail with the consumption of electricity, its growth between 1984 and 2004 and its use in various sectors. A fifth chapter examines electricity consumption, generation, import and export on single, typical days, presenting data in tables and diagrams. The next chapter examines energy transfer with foreign countries and the trading structures involved. The next two chapters cover the future developments in energy exchange and trading with foreign countries and the possibilities of augmenting power generation capacities up to 2010. The final chapter looks at economic considerations involved in the supply of electricity. An annex provides detailed tables of data

  15. Accelerating nuclear power standards development and promoting sound nuclear power development in China

    International Nuclear Information System (INIS)

    Yang Changli

    2008-01-01

    The paper expounds the importance of quickening establishment and perfection of nuclear power standard system in China, analyzes achievements made and problems existed during the development of nuclear power standards, put forward proposals to actively promote the work in this regard, and indicates that CNNC will further strengthen the standardization work, enhance coordination with those trades related to nuclear power standards, and jointly promote the development of nuclear power standards. (authors)

  16. Nuclear Power Today and Tomorrow

    International Nuclear Information System (INIS)

    Bychkov, Alexander

    2013-01-01

    Worldwide, with 437 nuclear power reactors in operation and 68 new reactors under construction, nuclear power's global generating capacity reached 372.5 GW(e) at the end of 2012. Despite public scepticism, and in some cases fear, which arose following the March 2011 Fukushima Daiichi nuclear accident, two years later the demand for nuclear power continues to grow steadily, albeit at a slower pace. A significant number of countries are pressing ahead with plans to implement or expand their nuclear power programmes because the drivers toward nuclear power that were present before Fukushima have not changed. These drivers include climate change, limited fossil fuel supply, and concerns about energy security. Globally, nuclear power looks set to continue to grow steadily, although more slowly than was expected before the Fukushima Daiichi nuclear accident. The IAEA's latest projections show a steady rise in the number of nuclear power plants in the world in the next 20 years. They project a growth in nuclear power capacity by 23% by 2030 in the low projection and by 100% in the high projection. Most new nuclear power reactors planned or under construction are in Asia. In 2012 construction began on seven nuclear power plants: Fuqing 4, Shidaowan 1, Tianwan 3 and Yangjiang 4 in China; Shin Ulchin 1 in Korea; Baltiisk 1 in Russia; and Barakah 1 in the United Arab Emirates. This increase from the previous year's figures indicates an on-going interest and commitment to nuclear power and demonstrates that nuclear power is resilient. Countries are demanding new, innovative reactor designs from vendors to meet strict requirements for safety, national grid capacity, size and construction time, which is a sign that nuclear power is set to keep growing over the next few decades.

  17. The growing need for nuclear energy in Switzerland

    International Nuclear Information System (INIS)

    Krafft, P.

    1975-01-01

    The structure of the Swiss Electrical Industry and the activities of the government in relation to energy are described. Production and consumption of electric power and the introduction of nuclear power into the sytem are discussed. Some guidelines are suggested for future development of the industry. (U.K.)

  18. Nuclear power and other energy

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    A comparison is made between nuclear power plants, gas-fuelled thermal power plants and oil-fired thermal power plants with respect to health factors, economy, environment and resource exploitation, with special reference to the choice of power source to supplement Norwegian hydroelectric power. Resource considerations point clearly to nuclear power, but, while nuclear power has an overall economic advantage, the present economic situation makes its heavy capital investment a disadvantage. It is maintained that nuclear power represents a smaller environmental threat than oil or gas power. Finally, statistics are given showing that nuclear power involves smaller fatality risks for the population than many other hazards accepted without question. (JIW)

  19. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  20. Nuclear power costs

    International Nuclear Information System (INIS)

    1963-01-01

    A report prepared by the IAEA Secretariat and presented to the seventh session of the Agency's General Conference says that information on nuclear power costs is now rapidly moving from the domain of uncertain estimates to that of tested factual data. As more and more nuclear power stations are being built and put into operation, more information on the actual costs incurred is becoming available. This is the fourth report on nuclear power costs to be submitted to the IAEA General Conference. The report last year gave cost information on 38 nuclear power projects, 17 of which have already gone into operation. Certain significant changes in the data given last year are included-in the present report; besides, information is given on seven new plants. The report is divided into two parts, the first on recent developments and current trends in nuclear power costs and the second on the use of the cost data for economic comparisons. Both stress the fact that the margin of uncertainty in the basic data has lately been drastically reduced. At the same time, it is pointed out, some degree of uncertainty is inherent in the assumptions made in arriving at over-all generating cost figures, especially when - as is usually the case - a nuclear plant is part of an integrated power system

  1. Nuclear power experience

    International Nuclear Information System (INIS)

    1983-01-01

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  2. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Worldwide Nuclear Power (WNP) is a companion volume to Update. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government. Facts about the status of nuclear activities abroad should be available to those who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of Nuclear Energy from reports obtained from foreign embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. It consists of two types of information, tabular and narrative. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data. In general, complete U.S. information will be found in Update

  3. Nuclear power in Canada

    International Nuclear Information System (INIS)

    1980-01-01

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  4. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  5. Development of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  6. Development of nuclear power

    International Nuclear Information System (INIS)

    1962-01-01

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  7. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  8. Development of nuclear power

    International Nuclear Information System (INIS)

    1960-01-01

    The discussion on the development of nuclear power took place on 28 September 1960 in Vienna. In his opening remarks, Director General Cole referred to the widespread opinion that 'the prospect of cheap electricity derived from nuclear energy offers the most exciting prospect for improving the lot of mankind of all of the opportunities for uses of atomic energy'. He then introduced the four speakers and the moderator of the discussion, Mr. H. de Laboulaye, IAEA Deputy Director General for Technical Operations. n the first part of the discussion the experts addressed themselves in turn to four topics put forward by the moderator. These were: the present technical status of nuclear power, the present costs of nuclear power, prospects for future reductions in the cost of nuclear power, and applications of nuclear power in less-developed areas

  9. Nuclear power: European report

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In 2004, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 206 power reactors with a gross power of 181,941 MWe and a net power of 172,699 MWe were in operation at the end of the year. In 2004, one nuclear power plant was commissioned in Russia (Kalinin 3), two (Kmelnitzki 2 and Rowno 4) in Ukraine. Five nuclear power plants were decommissioned in Europe in the course of 2004. As announced in 2000, the Chapelcross 1 to Chapelcross 4 plants in Britain were shut down for economic reasons. In Lithuania, the Ignalina 1 unit was disconnected from the power grid, as had been demanded by the EU Commission within the framework of the negotiations about the country's accession to the EU. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.5 GW. In late 2004, four nuclear generating units were under construction in Finland (1), Romania (1), and Russia (2). 150 nuclear power plants were operated in thirteen states of the European Union (EU-25), which is sixteen more than the year before as a consequence of the accession of new countries. They had an aggregate gross power of 137,943 MWe and a net power of 131,267 MWe, generating approx. 983 billion gross kWh of electricity in 2003, thus again contributing some 32% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in Lithuania (80%), followed by 78% in France, 57% in the Slovak Republic, 56% in Belgium, and 46% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as

  10. Documentation on the development of the Swiss TIMES Electricity Model (STEM-E)

    International Nuclear Information System (INIS)

    Kannan, R.; Turton, H.

    2011-10-01

    This comprehensive report by the Paul Scherrer Institute PSI in Switzerland documents the development of the Swiss TIMES Electricity Model (STEM-E). This is a flexible model which explicitly depicts plausible pathways for the development of the Swiss electricity sector, while dealing with inter-temporal variations in demand and supply. TIMES is quoted as having the capability to portray the entire energy system from resource supply, through fuel processing, representation of infrastructures, conversion to secondary energy carriers, end-use technologies and energy service demands at end-use sectors. The background of the model's development and a reference energy system are described. Also, electricity end-use sectors and generating systems are examined, including hydropower, nuclear power, thermal generation and renewables. Environmental factors and the calibration of the model are discussed, as is the application of the model. The document is completed with an outlook, references and six appendices

  11. The future of nuclear power

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1987-01-01

    Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs

  12. Reviewing nuclear power

    International Nuclear Information System (INIS)

    Robinson, Colin

    1990-01-01

    The UK government has proposed a review of the prospects for nuclear power as the Sizewell B pressurized water reactor project nears completion in 1994. However, a delay in the completion of Sizewell B or a change of government could put off the review for some years beyond the mid 1990s. Anticipating, though, that such a review will eventually take place, issues which it should consider are addressed. Three broad categories of possible benefit claimed for nuclear power are examined. These are that nuclear power contributes to the security of energy supply, that it provides protection against long run fossil fuel price increases and that it is a means of mitigating the greenhouse effect. Arguments are presented which cost doubt over the reality of these benefits. Even if these benefits could be demonstrated, they would have to be set against the financial, health and accident costs attendant on nuclear power. It is concluded that the case may be made that nuclear power imposes net costs on society that are not justified by the net benefits conferred. Some comments are made on how a government review, if and when it takes place, should be conducted. (UK)

  13. Nuclear power and modern society

    International Nuclear Information System (INIS)

    Komarek, A.

    1999-01-01

    A treatise consisting of the following sections: Development of modern society (Origin of modern society; Industrial society; The year 1968; Post-industrial society; Worldwide civic society); Historic breaks in the development of the stationary power sector (Stationary thermal power; Historic breaks in the development of nuclear power); Czech nuclear power engineering in the globalization era (Major causes of success of Czech nuclear power engineering; Future of Czech nuclear power engineering). (P.A.)

  14. Study of the long-range effects of radioactive effluents from nuclear power plants in the Rhine river using 58Co and 60Co as tracers

    International Nuclear Information System (INIS)

    Mundschenk, H.

    1992-01-01

    58 Co and 60 Co were used to trace the long-range effects of nuclear power plants in the aquatic environment of the Rhine river basin. 60 Co, preferentially originating from Swiss installations, could be detected in suspended matter along the river over several hundreds of kilometres, even to the Lower Rhine. This nuclide was transferred to the bottom layer by sedimentation along the whole stretch, especially in high-sedimentation zones, which must be considered to be the so-called 'critical impact areas' for estimation of the radiological effects of the nuclear power plants in the aquatic environment. 58 Co, mainly discharged by French and Swiss installations, could be measured in suspended matter. In sediment samples, however, this nuclide could not, or only occasionally, be detected because transfer to the sediment layer proceeded at a rather low rate relative to the decay rate of 58 Co. From these findings, it follows that impact control of these nuclear power plants should not be restricted to their immediate aquatic environments but should be extended to the whole river. Estimation of the resulting radiation exposure, based on the measured concentrations of 60 Co and 58 Co in sediment assuming standard conditions, showed that the dose rates generated by the most sensitive pathway, and indeed by other nuclides and different pathways, were far below the dose limit defined in German legal regulations and therefore were negligible. (author)

  15. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  16. The design, development and operation of a compact nuclear power plant simulator

    International Nuclear Information System (INIS)

    Lynch, M.F.

    1987-01-01

    This paper discusses the philosophy and technological considerations necessary for constructing and utilizing a plant specific compact nuclear power plant simulator, how it compares to full scope replica simulators, engineering simulators, part task simulators and basic principles training simulators. Included in this discussion are the design process, scope of simulation, the manufacturing process, test programs and experiences with operator training. Items addressed include the applicability and use of a compact simulator, how well it reproduces the actual reference plant, how well the transferral of knowledge is accomplished and what financial considerations need to be evaluated. This paper tries to provide the details on just how this type of machine was designed and developed by Westinghouse for the Swiss Utility, Nordostschweizerische Kraftwerke (NOK) AG

  17. Role of nuclear power

    International Nuclear Information System (INIS)

    Eklund, S.

    1982-01-01

    A survey of world nuclear installations, the operating experiences of power reactors, and estimates of future nuclear growth leads to the conclusion that nuclear power's share of world electric power supply will grow slowly, but steadily during this decade. This growth will lead advanced countries to use the commercial breeder by the end of the century. Nuclear power is economically viable for most industrialized and many developing countries if public acceptance problems can be resolved. A restructuring of operational safety and regulations must occur first, as well as a resolution of the safeguards and technology transfer issue. 7 figures, 7 tables

  18. Role and position of Nuclear Power Plants Research Institute in nuclear power industry

    International Nuclear Information System (INIS)

    Metke, E.

    1984-01-01

    The Nuclear Power Plants Research Institute carries out applied and experimental research of the operating states of nuclear power plants, of new methods of surveillance and diagnosis of technical equipment, it prepares training of personnel, carries out tests, engineering and technical consultancy and the research of automated control systems. The main research programme of the Institute is the rationalization of raising the safety and operating reliability of WWER nuclear power plants. The Institute is also concerned with quality assurance of selected equipment of nuclear power plants and assembly works, with radioactive waste disposal and the decommissioning of nuclear power plants as well as with the preparation and implementation of the nuclear power plant start-up. The Research Institute is developing various types of equipment, such as equipment for the decontamination of the primary part of the steam generator, a continuous analyzer of chloride levels in water, a gas monitoring instrument, etc. The prospects are listed of the Research Institute and its cooperation with other CMEA member countries. (M.D.)

  19. Renewable energy sources and nuclear installations

    International Nuclear Information System (INIS)

    Hirschberg, S.; Bauer, Ch.; Burgherr, P.; Stucki, S.; Vogel, F.; Biollaz, S.; Schulz, T.; Durisch, W.; Hardegger, P.; Foskolos, K.; Meier, A.; Schenler, W.

    2005-02-01

    This comprehensive work report for the Swiss Federal Office of Energy (SFOE) made by the Paul Scherrer Institute PSI takes a look at work done in connection with the updating of the office's Energy Perspectives. In particular, the topic of electricity is reviewed in the light of pending important decisions in the area of nuclear energy and the newer renewable sources of energy. The report makes an attempt to estimate the effect on Swiss power production that the new renewables and new nuclear installations could have in the next 30-40 years and to what costs this could be done and which obstacles would have to overcome. The renewable energy sources include small hydro, wind, photovoltaics, solar thermal power plants, biogas, geothermal energy, wave-power and solar chemistry. The methods used include literature study and contacts with internal PSI experts on the various areas involved. The most important system characteristics were noted and learning curves for the various technologies were taken into account. Ecological and social factors were also considered

  20. Banning nuclear power at sea

    International Nuclear Information System (INIS)

    Handler, J.

    1993-01-01

    This article argues that now that the East-West conflict is over, nuclear-powered vessels should be retired. Nuclear-powered ships and submarines lack military missions, are expensive to build and operate, generate large amounts of long-lived deadly nuclear waste from their normal operations and when they are decommissioned, and are subject to accidents or deliberate attack which can result in the sinking of nuclear reactors and the release of radiation. With the costs of nuclear-powered vessels mounting, the time has come to ban nuclear power at sea. (author)

  1. The need for nuclear power

    International Nuclear Information System (INIS)

    1977-12-01

    This leaflet examines our energy future and concludes that nuclear power is an essential part of it. The leaflet also discusses relative costs, but it does not deal with social and environmental implications of nuclear power in any detail, since these are covered by other British Nuclear Forum publications. Headings are: present consumption; how will this change in future; primary energy resources (fossil fuels; renewable resources; nuclear); energy savings; availability of fossil fuels; availability of renewable energy resources; the contribution of thermal nuclear power; electricity; costs for nuclear power. (U.K.)

  2. Nuclear power statistics 1985

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1986-06-01

    In this report an attempt is made to collect literature data on nuclear power production and to present it on graphical form. Data is given not only for 1985, but for a number of years so that the trends in the development of nuclear power can be seen. The global capacity of nuclear power plants in operation and those in operation, under construction, or on order is considered. Further the average capacity factor for nuclear plants of a specific type and for various geographical areas is given. The contribution of nuclear power to the total electricity production is considered for a number of countries and areas. Finally, the accumulated years of commercial operation for the various reactor types up to the end of 1985 is presented. (author)

  3. Nuclear power economics

    International Nuclear Information System (INIS)

    Moynet, G.

    1987-01-01

    The economical comparison of nuclear power plants with coal-fired plants in some countries or areas are analyzed. It is not difficult to show that nuclear power will have a significant and expanding role to play in providing economic electricity in the coming decades. (Liu)

  4. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  5. The Future of Nuclear Power in the Light of European Energy Policy

    International Nuclear Information System (INIS)

    Schweickardt, Hans E.

    2014-01-01

    1. Energy policy post-Fukushima: • Following the initial shock: differentiated development, no cohesive European policy; • EU: Nuclear Power (NP) remains important in the context of climate policy; • Bulk of European countries: Keep or even expand share of NP (UK, Eastern Europe); • Germany and Switzerland (CH): Exit from NP, in Germany based on previously fixed shutdown deadlines for every facility, in CH based on exclusion of new builds. 2. Switzerland's focus: • Current CH electricity supply: twin pillars of NP + hydro power; high sustainability. • Federal Council's new energy strategy and its consequences: Strain on economy and companies due to market distortion and high renovation costs; plus growing environmental stress, dependency on imports and social inequality due to artificially high electricity prices. 3. Future of nuclear power in Switzerland: Conceivable possibilities: • Short-term: Relatively rapid ban on nuclear power (but poss. with back-door research/no ban on thinking about the technology); • Medium-term: Ban on new facilities but old plants continue to operate; • Long-term: Re-entry/new start, poss. even sanctioned by politicians, on the following grounds: rather new facilities than old, good for the climate, costeffectiveness, energy security. 4. A new look for nuclear power? HTR technology of particular interest due to the following benefits: • Disposal (less waste, recycling); • Technical controllability, core meltdown impossible; • Manageable dimensions (particularly important in CH); • Financial feasibility. Whether NP will remain on the agenda, and which technology wins through also depends heavily on external factors: climate policy, cost-effectiveness/financial feasibility, readiness for market, change in value, trends in other energy sources. 5. Summary: Future of NP difficult to predict. If technology is mature and launched on the market within a reasonable time frame, the potential is there. Opportunities

  6. The ethical justification of nuclear power

    International Nuclear Information System (INIS)

    Van Wyk, J.H.

    1985-01-01

    This study pamphlet deals with the questions of ethics, nuclear power and the ethical justification of nuclear power. Nuclear power is not only used for warfare but also in a peaceful way. Ethical questions deal with the use of nuclear weapons. Firstly, a broad discussion of the different types of ethics is given. Secondly, the peaceful uses of nuclear power, such as nuclear power plants, are discussed. In the last place the application of nuclear power in warfare and its disadvantages are discussed. The author came to the conclusion that the use of nuclear power in warfare is in contrary with all Christian ethics

  7. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-06-01

    The actualized version (June 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  8. Italian nuclear power industry after nuclear power moratorium: Current state and future prospects

    International Nuclear Information System (INIS)

    Adinolfi, R.; Previti, G.

    1992-01-01

    Following Italy's nuclear power referendum results and their interpretation, all construction and operation activities in the field of nuclear power were suspended by a political decision with consequent heavy impacts on Italian industry. Nevertheless, a 'nuclear presidium' has been maintained, thanks to the fundamental contribution of activities abroad, succeeding in retaining national know-how and developing the new technologies called for the new generation of nuclear power plants equipped with intrinsic and/or passive reactor safety systems

  9. Nuclear power in Pakistan

    International Nuclear Information System (INIS)

    Siddiqui, Z.H.; Qureshi, I.H.

    2005-01-01

    Pakistan started its nuclear power program by installing a 137 M We Canadian Deuterium Reactor (Candu) at Karachi in 1971 which became operational in 1972. The post-contract technical support for the Karachi Nuclear Power Plant (KANUPP) was withdrawn by Canada in 196 as a consequence of Indian nuclear device test in 1974. In spite of various difficulties PAEC resolved to continue to operate KANUPP and started a process for the indigenous fabrication of spare parts and nuclear fuel. The first fuel bundle fabricated in Pakistan was loaded in the core in 1980. Since then KANUPP has been operating on the indigenously fabricated fuel. The plant computer systems and the most critical instrumentation and Control system were also replaced with up-to date technology. In 2002 KANUPP completed its original design life of 30 year. A program for the life extension of the plant had already been started. The second nuclear power plant of 300 M We pressurized water reactor purchased from China was installed in Chashma in 1997, which started commercial operations in 2001. Another unit of 300 M We will be installed at Chashma in near future. These nuclear power plants have been operating under IAEA safeguards agreements. PAEC through the long-term performance of the two power plants has demonstrated its competence to safely and successfully operate and maintain nuclear power plants. Pakistan foresees an increasingly important and significant share of nuclear power in the energy sector. The Government has recently allocated a share of 8000 MWe for nuclear energy in the total energy scenario of Pakistan by the year 2025. (author)

  10. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1988-06-01

    The percentage of electricity generated by nuclear energy in each of the 26 countries that operated nuclear power plants in 1987 is given. The current policy and programs of some of these countries is described. News concerning uranium mining, enrichment, reprocessing and waste management is also included. Data in the form of a generalized status summary for all power reactors (> 30 MWEN) prepared from the nuclear power reactor data files of ANSTO is shown

  11. Without nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    The arguments put forward by the SPD point to the following: Backing out of nuclear power is a must, because of the awful quality of the hazards involved; because there can be no real separation guaranteed between civil and military utilisation of nuclear energy; for reasons of international responsibility; because we must not pass the buck on to the next generation; because social compatibility must be achieved; because the story of the 'cheap' nuclear generation of electricity is a fairy tale; because nuclear power pushes back coal as an energy source; because current ecological conditions call for abandonment of nuclear power, and economic arguments do not really contradict them. A reform of our energy system has to fulfill four requirements: Conserve energy; reduce and avoid environmental pollution; use renewable energy sources as the main sources; leave to the next generation the chance of choosing their own way of life. (HSCH) [de

  12. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  13. Nuclear power in Asia

    International Nuclear Information System (INIS)

    2007-01-01

    The Australian Uranium Association reports that Asia is the only region in the world where electricity generating capacity and specifically nuclear power is growing significantly. In East and South Asia, there are over 109 nuclear power reactors in operation, 18 under construction and plans to build about a further 100. The greatest growth in nuclear generation is expected in China, Japan, South Korea and India. As a member of the SE Asian community, Australia cannot afford to ignore the existence and growth of nuclear power generation on its door step, even if it has not, up to now, needed to utilise this power source

  14. Re-insurance in the Swiss health insurance market: Fit, power, and balance.

    Science.gov (United States)

    Schmid, Christian P R; Beck, Konstantin

    2016-07-01

    Risk equalization mechanisms mitigate insurers' incentives to practice risk selection. On the other hand, incentives to limit healthcare spending can be distorted by risk equalization, particularly when risk equalization payments depend on realized costs instead of expected costs. In addition, cost based risk equalization mechanisms may incentivize health insurers to distort the allocation of resources among different services. The incentives to practice risk selection, to limit healthcare spending, and to distort the allocation of resources can be measured by fit, power, and balance, respectively. We apply these three measures to evaluate the risk adjustment mechanism in Switzerland. Our results suggest that it performs very well in terms of power but rather poorly in terms of fit. The latter indicates that risk selection might be a severe problem. We show that re-insurance can reduce this problem while power remains on a high level. In addition, we provide evidence that the Swiss risk equalization mechanism does not lead to imbalances across different services. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    ''Nuclear Power'' describes how a reactor works and examines the different designs including Magnox, AGR, RBMK and PWR. It charts the growth of nuclear generation in the world and its contributions to world energy resources. (author)

  16. Competitiveness of nuclear power generation

    International Nuclear Information System (INIS)

    Sumi, Yoshihiko

    1998-01-01

    In view of the various merits of nuclear power generation, Japanese electric utilities will continue to promote nuclear power generation. At the same time, however, it is essential to further enhance cost performance. Japanese electric utilities plan to reduce the cost of nuclear power generation, such as increasing the capacity factor, reducing operation and maintenance costs, and reducing construction costs. In Asia, nuclear power will also play an important role as a stable source of energy in the future. For those countries planning to newly introduce nuclear power, safety is the highest priority, and cost competitiveness is important. Moreover, financing will be an essential issue to be resolved. Japan is willing to support the establishment of nuclear power generation in Asia, through its experience and achievements. In doing this, support should not only be bilateral, but should include all nuclear nations around the Pacific rim in a multilateral support network. (author)

  17. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  18. Nuclear power 2005: European report

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In 2005, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 204 power reactors with a gross power of 181,030 MWe and a net power of 171,8479 MWe were in operation at the end of the year. In 2005, no nuclear power plant was commissioned. Two nuclear power plants were decommissioned in Europe in the course of 2005. In Germany the Obrigheim NPP and in Sweden the Barsebaeck 2 NPP have been permanently shut down due to political decisions. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.6 GW. In late 2005, five nuclear generating units were under construction in Finland (1), Romania (1), and Russia (3). 148 nuclear power plants were operated in thirteen states of the European Union (EU-25). They had an aggregate gross power of 137,023 MWe and a net power of 130,415 MWe, generating approx. 970 billion gross kWh of electricity in 2005, thus again contributing some 31% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in France (80%), followed by 72% in Lithuania, 55% in the Slovak Republic, 55% in Belgium, and 51% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as a result of electricity imports. (All statistical data in the country report apply to 2004 unless indicated otherwise. This is the year for which sound preliminary data are currently available for the states listed.) (orig.)

  19. Nuclear power development

    International Nuclear Information System (INIS)

    Povolny, M.

    1980-01-01

    The development and uses of nuclear power in Czechoslovakia and other countries are briefly outlined. In the first stage, the Czechoslovak nuclear programme was oriented to the WWER 440 type reactor while the second stage of the nuclear power plant construction is oriented to the WWER 10O0 type reactor. It is envisaged that 12 WWER 440 type reactors and four to five WWER 1000 type reactors will be commissioned till 1990. (J.P.)

  20. Nuclear power experience

    International Nuclear Information System (INIS)

    Daglish, J.

    1982-01-01

    A report is given of a recent international conference convened by the IAEA to consider the technical and economic experience acquired by the nuclear industry during the past 30 years. Quotations are given from a number of contributors. Most authors shared the opinion that nuclear power should play a major role in meeting future energy needs and it was considered that the conference had contributed to make nuclear power more viable. (U.K.)

  1. Nuclear power and nuclear safety 2011

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Aage, H.K.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2012-07-01

    The report is the ninth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2011 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the Fukushima accident. (LN)

  2. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Nystrup, P.E.; Thorlaksen, B.

    2010-05-01

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  3. The problem of nuclear power

    International Nuclear Information System (INIS)

    Heimbrecht, J.; Kade, G.; Krusewitz, K.; Moldenhauer, B.; Steinhaus, K.; Weish, P.

    1977-01-01

    The battle over the problems of nuclear power has gone on in the Federal Republic for several years. The Buergerinitiativen, which used to be small and largely unpolitical, have become a major social force during this time. Subjects: 1) Dangers of nuclear power - can the risk be justified; 2)The necessity of nuclear power; 3) The enforcement of nuclear power - political and economic background; 4) Limits of power generation - limits of growth or limits of the system. (orig./HP) [de

  4. Nuclear power renaissance or demise?

    Energy Technology Data Exchange (ETDEWEB)

    Dossani, Umair

    2010-09-15

    Nuclear power is going through a renaissance or demise is widely debated around the world keeping in mind the facts that there are risks related to nuclear technology and at the same time that is it environmentally friendly. My part of the argument is that there is no better alternative than Nuclear power. Firstly Nuclear Power in comparison to all other alternative fuels is environmentally sustainable. Second Nuclear power at present is at the dawn of a new era with new designs and technologies. Third part of the debate is renovation in the nuclear fuel production, reprocessing and disposal.

  5. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  6. Nuclear power. Volume 2: nuclear power project management

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The following topics are discussed: review of nuclear power plants; licensing procedures; safety analysis; project professional services; quality assurance and project organization; construction, scheduling and operation; construction, scheduling and operation; nuclear fuel handling and fuel management; and plant cost management. 116 references, 115 figures, 33 tables

  7. Development of Czechoslovak nuclear power complex

    International Nuclear Information System (INIS)

    Rajci, T.

    1986-01-01

    The research project ''Development of the Czechoslovak nuclear power complex'' was undertaken by several Czechoslovak institutions and was coordinated by the Research Institute of the Fuel and Power Complex in Bratislava. Involved in the project was a staff of 170 people. 274 reports were pulished and the cost approached 70 mill. Czechoslovak crowns. The results are characterized of all six partial tasks. Basic information was prepared for the forecast of the solution of fuel and power problems in Czechoslovakia up to the year 2000 and their prospects up to the year 2020. Program MORNAP was written for the development of nuclear power, which models the operation of a power generation and transmission system with a selectable number of nuclear power plants. Another partial task related to the fuel cycle of nuclear power plants with respect to long-term provision and management of nuclear fuel. Nuclear safety was split into three problem groups, viz.: system safety of nuclear power plant operation; radiation problems of nuclear power plant safety; quality assurance of nuclear power plant components. The two remaining tasks were devoted to nuclear power engineering and to civil engineering. (Z.M.). 3 tabs., 1 refs

  8. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  9. The abuse of nuclear power

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    Different aspects of possible abuse of nuclear power by countries or individuals are discussed. Special attention is paid to the advantage of nuclear power, despite the risk of weapon proliferation or terrorism. The concepts of some nuclear power critics, concerning health risks in the nuclear sector are rejected as untrue and abusive

  10. The nuclear power decisions

    International Nuclear Information System (INIS)

    Williams, R.

    1980-01-01

    Nuclear power has now become highly controversial and there is violent disagreement about how far this technology can and should contribute to the Western energy economy. More so than any other energy resource, nuclear power has the capacity to provide much of our energy needs but the risk is now seen to be very large indeed. This book discusses the major British decisions in the civil nuclear field, and the way they were made, between 1953 and 1978. That is, it spans the period between the decision to construct Calder Hall - claimed as the world's first nuclear power station - and the Windscale Inquiry - claimed as the world's most thorough study of a nuclear project. For the period up to 1974 this involves a study of the internal processes of British central government - what the author terms 'private' politics to distinguish them from the very 'public' or open politics which have characterised the period since 1974. The private issues include the technical selection of nuclear reactors, the economic arguments about nuclear power and the political clashes between institutions and individuals. The public issues concern nuclear safety and the environment and the rights and opportunities for individuals and groups to protest about nuclear development. The book demonstrates that British civil nuclear power decision making has had many shortcomings and concludes that it was hampered by outdated political and administrative attitudes and machinery and that some of the central issues in the nuclear debate were misunderstood by the decision makers themselves. (author)

  11. Governance of nuclear power

    International Nuclear Information System (INIS)

    Allison, G.; Carnesale, A.; Zigman, P.; DeRosa, F.

    1981-01-01

    Utility decisions on whether to invest in nuclear power plants are complicated by uncertainties over future power demand, regulatory changes, public perceptions of nuclear power, and capital costs. A review of the issues and obstacles confronting nuclear power also covers the factors affecting national policies, focusing on three institutional questions: regulating the industry, regulating the regulators, and regulatory procedures. The specific recommendations made to improve safety, cost, and public acceptance will still not eliminate uncertainties unless the suggested fundamental changes are made. 29 references

  12. Nuclear power flies high

    International Nuclear Information System (INIS)

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  13. China and nuclear power

    International Nuclear Information System (INIS)

    Fouquoire-Brillet, E.

    1999-01-01

    This book presents the history of nuclear power development in China from the first research works started in the 1950's for the manufacturing of nuclear weapons to the recent development of nuclear power plants. This study tries to answer the main questions raised by the attitude of China with respect to the civil and military nuclear programs. (J.S.)

  14. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  15. Nuclear power falling to pieces

    International Nuclear Information System (INIS)

    Moberg, Aa.

    1985-01-01

    The international development during the 80s is reviewed. It is stated that the construction of plants has come to a standstill. The forecasting of nuclear power as a simple and cheap source of energy has been erroneous because of cracks and leakage, unsolved waste problems and incidents. Nuclear power companies go into liquidation and reactors are for sale. Sweden has become the country with most nuclear power per capita mainly due to its controlled decommissioning. The civilian nuclear power makes the proliferation of nuclear weapons possible. With 324 reactors all over the world, a conventional war may cause disasters like Hiroshima. It is stated that the nuclear power is a dangerous and expensive source of energy and impossible to manage. (G.B.)

  16. Torness: proposed nuclear power station

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The need for and desirability of nuclear power, and in particular the proposed nuclear power station at Torness in Scotland, are questioned. Questions are asked, and answered, on the following topics: position, appearance and cost of the proposed Torness plant, and whether necessary; present availability of electricity, and forecast of future needs, in Scotland; energy conservation and alternative energy sources; radiation hazards from nuclear power stations (outside, inside, and in case of an accident); transport of spent fuel from Torness to Windscale; radioactive waste management; possibility of terrorists making a bomb with radioactive fuel from a nuclear power station; cost of electricity from nuclear power; how to stop Torness. (U.K.)

  17. Perspectives of nuclear power plants

    International Nuclear Information System (INIS)

    Vajda, Gy.

    2001-01-01

    In several countries the construction of nuclear power plants has been stopped, and in some counties several plants have been decommissioned or are planned to. Therefore, the question arises: have nuclear power plants any future? According to the author, the question should be reformulated: can mankind survive without nuclear power? To examine this challenge, the global power demand and its trends are analyzed. According to the results, traditional energy sources cannot be adequate to supply power. Therefore, a reconsideration of nuclear power should be imminent. The economic, environmental attractions are discussed as opposite to the lack of social support. (R.P.)

  18. Ecological problems of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Babaev, N S; Demin, V F; Kuz' min, I I; Stepanchikov, V I [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii

    1978-10-01

    Modern power sources including nuclear one are characterized. Basic information on radiation protection of man and biosphere is presented. Problems of radiation effect of nuclear fuel cycle enterprises on population and environment are discussed. Comparative evaluation of nuclear and thermal power effect on biosphere is made. It is shown that nuclear power is the safest power source at the present development state. The conclusion is drawn that the use of nuclear energy controlled and limited by scientifically founded norms does not present radiation hazard for population and environment.

  19. Nuclear power and the UK

    International Nuclear Information System (INIS)

    Murphy, St.

    2009-01-01

    This series of slides describes the policy of the UK government concerning nuclear power. In January 2008 the UK Government published the White Paper on the Future of Nuclear Power. The White Paper concluded that new nuclear power stations should have a role to play in this country's future energy mix. The role of the Government is neither to build nuclear power plants nor to finance them. The White Paper set out the facilitative actions the Government planned to take to reduce regulatory and planning risks associated with investing in new nuclear power stations. The White Paper followed a lengthy period of consultation where the UK Government sought a wide variety of views from stakeholders and the public across the country on the future of nuclear power. In total energy companies will need to invest in around 30-35 GW of new electricity generating capacity over the next two decades. This is equivalent to about one-third of our existing capacity. The first plants are expected to enter into service by 2018 or sooner. The Office for Nuclear Development (OND) has been created to facilitate new nuclear investment in the UK while the Nuclear Development Forum (NDF) has been established to lock in momentum to secure the long-term future of nuclear power generation in the UK. (A.C.)

  20. Nuclear power development: History and outlook

    International Nuclear Information System (INIS)

    Char, N.L.; Csik, B.J.

    1987-01-01

    The history of nuclear power development is briefly described (including the boosts from oil price shocks to the promotion of nuclear energy). The role of public opinion in relation to nuclear power is mentioned too, in particular in connection with accidents in nuclear plants. The recent trends in nuclear power development are described and the role of nuclear power is foreseen. Estimates of total and nuclear electrical generating capacity are made

  1. Nuclear power and nuclear safety 2012

    International Nuclear Information System (INIS)

    Lauritzen, B.; Nonboel, E.; Israelson, C.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2013-11-01

    The report is the tenth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is prepared in collaboration between DTU Nutech and the Danish Emergency Management Agency. The report for 2012 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the results of the EU stress test. (LN)

  2. Nuclear power perspective in China

    International Nuclear Information System (INIS)

    Liu Xinrong; Xu Changhua

    2003-01-01

    China started developing nuclear technology for power generation in the 1970s. A substantial step toward building nuclear power plants was taken as the beginning of 1980 s. The successful constructions and operations of Qinshan - 1 NPP, which was an indigenous PWR design with the capacity of 300 MWe, and Daya Bay NPP, which was an imported twin-unit PWR plant from France with the capacity of 900 MWe each, give impetus to further Chinese nuclear power development. Now there are 8 units with the total capacity of 6100 MWe in operation and 3 units with the total capacity of 2600 MWe under construction. For the sake of meeting the increasing demand for electricity for the sustainable economic development, changing the energy mix and mitigating the environment pollution impact caused by fossil fuel power plant, a near and middle term electrical power development program will be established soon. It is preliminarily predicted that the total power installation capacity will be 750-800GWe by the year 2020. The nuclear share will account for at least 4.0-4.5 percent of the total. This situation leaves the Chinese nuclear power industry with a good opportunity but also a great challenge. A practical nuclear power program and a consistent policy and strategy for future nuclear power development will be carefully prepared and implemented so as to maintain the nuclear power industry to be healthfully developed. (author)

  3. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  4. Short-term impacts of air pollutants in Switzerland: Preliminary scenario calculations for selected Swiss energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Andreani-Aksoyoglu, S; Keller, J [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In the frame of the comprehensive assessment of Swiss energy systems, air quality simulations were performed by using a 3-dimensional photo-chemical dispersion model. The objective is to investigate the impacts of pollutants in Switzerland for future options of Swiss energy systems. Four scenarios were investigated: Base Case: simulations with the projected emissions for the year 2030, Scenario 1) all nuclear power plants were replaced by oil-driven combined cycle plants (CCP), Scenarios 2 to 4) traffic emissions were reduced in whole Switzerland as well as in the cities and on the highways separately. Changes in the pollutant concentrations and depositions, and the possible short-term impacts are discussed on the basis of exceedences of critical levels for plants and limits given to protect the public health. (author) 2 figs., 7 refs.

  5. On PA of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Present state of things relating to the nuclear power generation are described first, focusing on the Chernobyl accident, power control test, old-wave and new-wave antinuclear movements, move toward elimination of nuclear power plants, and trend in government-level argument concerning nuclear power generation. Then the importance of public relations activities for nuclear power generation is emphasized. It is stressed that information should be supplied positively to the public to obtain public understanding and confidence. Various activities currently made to promote public relations for nuclear power generation are also outlined, focusing on the improvement in the nuclear power public relations system and practical plans for these activities. Activities for improvement in the public relations system include the organization of public relations groups, establishment and effective implementation of an overall public relations plan, training of core workers for public relations, and management of the public relations system. Other practical activities include the encouragement of the public to come and see the power generation facilities and distribution of pamphlets, and use of the media. (N.K.)

  6. Agreement between the Government of Australia and the Government of the Swiss Confederation Concerning the peaceful uses of nuclear energy

    International Nuclear Information System (INIS)

    1986-01-01

    This Agreement regulates the safeguards arrangements necessary for initiating cooperation between Swiss and Australian undertakings in the field of the peaceful uses of nuclear energy. The Agreement, which contains no obligations for supplies and purchases, covers all fields of peaceful nuclear cooperation and concerns transfers between both countries of nuclear and non-nuclear materials, as well as equipment and technology. Guarantees of the peaceful uses of the above-mentioned items are its main objects. They include, in particular, the commitment of both Parties to use the items transferred for exclusively peaceful, non-explosive purposes, to have uses verified by the IAEA, and to re-export such items to a third country only in compliance with specific conditions and to secure their safety (NEA) [fr

  7. Recent results of μCF experiments at SIN [Swiss Institute For Nuclear Research

    International Nuclear Information System (INIS)

    Breunlich, W.H.; Cargnelli, M.; Bistirlich, J.

    1986-09-01

    Important topics concerning Muon Catalyzed Fusion were investigated in experiments at the Swiss Institute for Nuclear Research (SIN), including transient and steady state rates for the main dμt cycle as well as detailed information about the competing dμd and tμt fusion branches. The basic kinetic parameters were determined and striking features of the resonant dμt formation process were revealed (density effect, epithermal behavior). DT sticking was measured with independent techniques, i.e., detection of fusion neutrons as well as μHe x-rays after fusion. Fusion yields per muon of 113 +- 10 were observed at liquid conditions, yields exceeding 200 are anticipated for optimal conditions from our results. 43 refs., 8 figs., 3 tabs

  8. The future of nuclear power

    International Nuclear Information System (INIS)

    Corak, Z.

    2004-01-01

    Energy production and use will contribute to global warming through greenhouse gas emissions in the next 50 years. Although nuclear power is faced with a lot of problems to be accepted by the public, it is still a significant option for the world to meet future needs without emitting carbon dioxide (CO 2 ) and other atmospheric pollutants. In 2002, nuclear power provided approximately 17% of world energy consumption. There is belief that worldwide electricity consumption will increase in the next few years, especially in the developing countries followed by economic growth and social progress. Official forecasts shows that there will be a mere increase of 5% in nuclear electricity worldwide by 2020. There are also predictions that electricity use may increase at 75%. These predictions require a necessity for construction of new nuclear power plants. There are only a few realistic options for reducing carbon dioxide emissions from electricity generation: Increase efficiency in electricity generation and use; Expand use of renewable energy sources such as wind, solar, biomass and geothermal; Capture carbon dioxide emissions at fossil-fuelled electric generating plants and permanently sequester the carbon; Increase use of nuclear power. In spite of the advantages that nuclear power has, it is faced with stagnation and decline today. Nuclear power is faced with four critical problems that must be successfully defeat for the large expansion of nuclear power to succeed. Those problems are cost, safety, waste and proliferation. Disapproval of nuclear power is strengthened by accidents that occurred at Three Mile Island in 1979, at Chernobyl in 1986 and by accidents at fuel cycle facilities in Japan, Russia and in the United States of America. There is also great concern about the safety and security of transportation of nuclear materials and the security of nuclear facilities from terrorist attack. The paper will provide summarized review regarding cost, safety, waste and

  9. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  10. Conflict nuclear power. Theses for current supply with and without nuclear power

    International Nuclear Information System (INIS)

    Schwarz, E.

    2007-01-01

    In the context of a lecture at the 2nd Internationally Renewable Energy Storage Conference at 19th to 21st November, 2007, in Bonn (Federal Republic of Germany), the author of the contribution under consideration reports on theses for current supply with and without nuclear power. (1) Theses for current supply with nuclear energy: Due to a relative amount of 17 % of nuclear energy in the world-wide energy production and due to the present reactor technology, the supplies of uranium amount nearly 50 to 70 years. The security of the nuclear power stations is controversially judged in the public and policy. In a catastrophic accident in a nuclear power station, an amount of nearly 2.5 billion Euro is available for adjustment of damages (cover note). The disposal of radioactive wastes is not solved anywhere in the world. The politically demanded separation between military and civilian use of the nuclear energy technology is not possible. The exit from the nuclear energy is fixed in the atomic law. By any means, the Federal Republic of Germany is not insulated in the European Union according to its politics of nuclear exit. After legal adjustment of the exit from the nuclear energy the Federal Republic of Germany should unfold appropriate activities for the re-orientation of Euratom, Nuclear Energy Agency and the International Atomic Energy Agency. The consideration of the use of nuclear energy in relation to the risks has to result that its current kind of use is not acceptable and to be terminated as fast as possible. (2) Theses for current supply without nuclear energy: The scenario technology enables a transparency of energy future being deliverable for political decisions. In accordance with this scenario, the initial extra costs of the development of the renewable energies and the combined heat and power generation amount approximately 4 billion Euro per year. The conversion of the power generation to renewable energies and combined heat and power generation

  11. Economic benefits of the nuclear power

    International Nuclear Information System (INIS)

    Sutherland, R.J.

    1985-01-01

    The historical and projected benefits of nuclear power are estimated as the cost differential between nuclear power and an alternative baseload generating source times the quantity of electricity generated. From 1976 through 1981 coal and nuclear power were close competitors in most regions, with nuclear power holding a small cost advantage overall in 1976 and 1977 that subsequently eroded. When nuclear power costs are contrasted to coal power costs, national benefits from nuclear power are estimated to be $336 million from 1976 to 1981, with an additional $1.8 billion for the present value of existing plants. Fuel oil has been the dominant source of baseload generation in California, Florida, and New England. When nuclear power costs are contrasted to those of fuel oil, the benefits of nuclear power in these three regions are estimated to be $8.3 billion and $28.1 billion in terms of present value. The present value of benefits of future nuclear plants is estimated to be $8.2 billion under a midcase scenario and $43 billion under an optimistic scenario. 18 references, 10 tables

  12. The nuclear power alternative

    International Nuclear Information System (INIS)

    Blix, H.

    1989-04-01

    The Director General of the IAEA stressed the need for energy policies and other measures which would help to slow and eventually halt the present build-up of carbon dioxide, methane and other so-called greenhouse gases, which are held to cause global warming. He urged that nuclear power and various other sources of energy, none of which contribute to global warming, should not be seen as alternatives, but should all be used to counteract the greenhouse effect. He pointed out that the commercially used renewable energies, apart from hydropower, currently represent only 0.3% of the world's energy consumption and, by contrast, the 5% of the world's energy consumption coming from nuclear power is not insignificant. Dr. Blix noted that opposition for nuclear power stems from fear of accidents and concern about the nuclear wastes. But no generation of electricity, whether by coal, hydro, gas or nuclear power, is without some risk. He emphasized that safety can never be a static concept, and that many new measures are being taken by governments and by the IAEA to further strengthen the safety of nuclear power

  13. Reasons for the nuclear power option

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Mauna, T.

    1994-01-01

    Technical, economical and social reasons, strongly supporting the nuclear power option are reviewed. The history of Romanian nuclear power program is outlined with a particular focus on the Cernavoda Nuclear Power Plant project. Finally the prospective of nuclear power in Romania are assessed

  14. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  15. Nuclear power publications

    International Nuclear Information System (INIS)

    1982-01-01

    This booklet lists 69 publications on nuclear energy available free from some of the main organisations concerned with its development and operation in the UK. Headings are: general information; the need for nuclear energy; the nuclear industry; nuclear power stations; fuel cycle; safety; waste management. (U.K.)

  16. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-04-01

    The actualized version (April 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear facilities, and radiation protection.

  17. Beznau II nuclear power plant: Expertise on NOK's request for the removal of the time limitation for the operation licence

    International Nuclear Information System (INIS)

    2004-03-01

    The Federal Agency for the Safety of Nuclear Installations (HSK) is the Swiss authority responsible for nuclear safety and protection against radioactivity in nuclear power plants. It has to examine the request of the North-East Swiss Power Corporation (NOK) concerning the removal of the operational time limitation for the Beznau-II reactor (KKB-II). In the present report HSK reviews the enterprise management and the safety of KKB-II on the basis of the results of the Periodic Safety Review. The Beznau nuclear power plant exhibits a very high degree of technical and organisational safety. During the past 10 years the plant has been operated in a safe manner. At the same time the plant has been improved and this guarantees that the mechanisms of ageing degradation are systematically identified and that measures can be taken that are possibly necessary. Under such conditions, the safety of KKB-II can be guarantied at all times. As a result of the management of quality, environmental and working safety conditions, the correct application and the continuous improvement of all processes important to safety are ensured. With these measures KKB has shown that safety is given priority over and against all other working goals. The examination by HSK of the Periodic Safety Review has shown that, in the past, KKB has applied modernisation measures independent of the licensing situation of the two reactor blocks. These modernisation measures largely contribute to the fact that the HSK examination did not reveal any significant safety deficiencies. Other improvement measures allow risk reduction or can bee seen as an adaptation to experience gained and to the state of the technological art. In conclusion, HSK states that no safety-relevant facts have been found which could prevent the removal of the time limitation on the operational licence for KKB-II. From the point of view of HSK, KKB-II fulfils the conditions for the safe continuation of operation

  18. Nuclear power in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S. (Sussex Univ., Brighton (UK). Science Policy Research Unit)

    1991-01-01

    The main aim of this article is that of illustrating the experience of the use of nuclear power in Eastern Europe in order to estimate the degree of adequacy or inadequacy of COMECON's nuclear technology. The author examines four areas of interest concerning: the feasibility of new orders for nuclear plants in Eastern Europe; the pros and cons of completing half-built nuclear power plants; current policy towards existing nuclear power plants; and a review of the available evidence on the operating performance of plants in Eastern Europe. The common belief that the nuclear power experience had by old COMECON countries is uniformly bad does not seem to be fully supported by the limited evidence available. In the author's opinion, the prospects for a successful nuclear power industry in these countries depends on a series on interdependent factors among which, human skills hold a prominent position.

  19. Local society and nuclear power stations

    International Nuclear Information System (INIS)

    1984-02-01

    This report was made by the expert committee on region investigation, Japan Atomic Industrial Forum Inc., in fiscal years 1981 and 1982 in order to grasp the social economic influence exerted on regions by the location of nuclear power stations and the actual state of the change due to it, and to search for the way the promotion of local community should be. The influence and the effect were measured in the regions around the Fukushima No. 1 Nuclear Power Station of Tokyo Electric Power Co., Inc., the Mihama Power Station of Kansai Electric Power Co., Inc., and the Genkai Nuclear Power Station of Kyushu Electric Power Co., Inc. The fundamental recognition in this discussion, the policy of locating nuclear power stations and the management of regions, the viewpoint and way of thinking in the investigation of the regions where nuclear power stations are located, the actual state of social economic impact due to the location of nuclear power stations, the connected mechanism accompanying the location of nuclear power stations, and the location of nuclear power stations and the acceleration of planning for regional promotion are reported. In order to economically generate electric power, the rationalization in the location of nuclear power stations is necessary, and the concrete concept of building up local community must be decided. (Kako, I.)

  20. Consideration of nuclear power

    International Nuclear Information System (INIS)

    Smart, I.

    1982-01-01

    Mr. Smart notes that the optimistic promise of nuclear energy for developing countries has not been met, but feels that nuclear power can still provide a growing share of energy during the transition from oil dependence. He observes that cost-benefit analyses vary for each country, but good planning and management can give nuclear power a positive future for those developing countries which can establish a need for it; have access to the economic, technological, and human resources necessary to develop and operate it; and can make nuclear power compatible with the social, economic, and cultural structure. 11 references

  1. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  2. Towards sustainable nuclear power development

    International Nuclear Information System (INIS)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S.

    2014-01-01

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  3. Towards sustainable nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhl, Obninsk, Kaluga Region (Russian Federation)

    2014-05-15

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  4. New approaches to nuclear power

    KAUST Repository

    Dewan, Leslie

    2018-01-21

    The world needs a cheap, carbon-free alternative to fossil fuels to feed its growing electricity demand. Nuclear power can be a good solution to the problem, but is hindered by issues of safety, waste, proliferation, and cost. But what if we could try a new approach to nuclear power, one that solves these problems? In this lecture, the CEO of Transatomic Power will talk about how their company is advancing the design of a compact molten salt reactor to support the future of carbon-free energy production. Can the designs of new reactor push the boundaries of nuclear technology to allow for a safe, clean, and affordable answer to humanityメs energy needs? Nuclear power involves capturing the energy produced in nuclear fission reactions, which emerges as heat. This heat is most frequently used to boil water into steam, which then drives a turbine to produce electricity in a nuclear power plant. Worldwide, there is a renaissance of new nuclear technology development -- a new generation of young engineers are racing to develop more advanced nuclear reactors for a better form of power generation. Transatomic Power, specifically, is advancing the design of an easily contained and controlled, atmospheric pressure, high power density molten salt reactor that can be built at low cost. The road to commercialization is long, and poses many challenges, but the benefits are enormous. These new reactors push the boundaries of technology to allow for better, safer ways to power the world.

  5. Nuclear power: Europa report

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Last year, 2003, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union (EU-15) nuclear power plants have been operation. In 7 of the 13 EU Candidate Countries (incl. Turkey) nuclear energy was used for power production. A total of 208 plants with an aggregate net capacity of 171 031 MWe and an aggregate gross capacity of 180 263 MWe were in operation at the end of 2003. No unit reached first criticality in 2003 or was connected to the grid. The unit Calder Hall 1 to Calder Hall 4 have been permanently shut down in Great Britain due to economical reasons and an earlier decision. In Germany the NPP Stade was closed. The utility E.ON has decided to shut down the plant due to the efforts of the liberalisation of the electricity markets. Last year, 8 plants were under construction in Romania (1), Russia (3), Slovakia (2 - suspended), and the Ukraine (2), that is only in East European Countries. The Finnish parliament approved plans for the construction of the country's fifth nuclear power reactor by a majority of 107 votes to 92. The consortium led by Framatome ANP was awarded the contract to build the new nuclear power plant (EPR, 1 600 MW) in Olkiluoto. In eight countries of the European Union 136 nuclear power plants have been operated with an aggregate gross capacity of 127 708 MWe and an aggregate net capacity of 121 709 MWe. Net electricity production in 2003 in the EU amounts to approx. 905 TWh gross, which means a share of about 33 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. They reach 80% in Lithuania, 78% in France, 57% in the Slovak Republic, 57% in Belgium, and 46% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. (orig.)

  6. Canadian attitudes to nuclear power

    International Nuclear Information System (INIS)

    Davies, J.E.O.

    1977-01-01

    In the past ten years, public interest in nuclear power and its relationship to the environment has grown. Although most Canadians have accepted nuclear power as a means of generating electricity, there is significant opposition to its use. This opposition has effectively forced the Canadian nuclear industry to modify its behaviour to the public in the face of growing concern over the safety of nuclear power and related matters. The paper reviews Canadian experience concerning public acceptance of nuclear power, with special reference to the public information activities of the Canadian nuclear industry. Experience has shown the need for scientific social data that will permit the nuclear industry to involve the public in a rational examination of its concern about nuclear power. The Canadian Nuclear Association sponsored such studies in 1976 and the findings are discussed. They consisted of a national assessment of public attitudes, two regional studies and a study of Canadian policy-makers' views on nuclear energy. The social data obtained were of a base-line nature describing Canadian perceptions of and attitudes to nuclear power at that time. This research established that Canadian levels of knowledge about nuclear power are very low and that there are marked regional differences. Only 56% of the population have the minimum knowledge required to indicate that they know that nuclear power can be used to generate electricity. Nevertheless, 21% of informed Canadians oppose nuclear power primarily on the grounds that it is not safe. Radiation and waste management are seen to be major disadvantages. In perspective, Canadians are more concerned with inflation than with the energy supply. About half of all Canadians see the question of energy supplies as a future problem (within five years), not a present one. A more important aspect of energy is seen by the majority of Canadians to be some form of energy independence. The use of data from these studies is no easy

  7. Progress of China's nuclear power programme

    International Nuclear Information System (INIS)

    Cai Jianping

    1997-01-01

    From a long-term point of view, nuclear power is the only solution for the shortage of energy resource. Nuclear power development strategy has been specified in China according to national condition: The electricity development of nuclear power optimizes the national energy structure and ensure the power supply, particularly in east China. China's first self-designed and self-constructed nuclear power plant--Qinshan Nuclear Power Plant (300MWe PWR) is now well under commercial operation. China is willing to cooperate with IAEA, other countries and regions in the field of nuclear energy for peaceful use on basis of mutual benefit. (author)

  8. Country nuclear power profiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA`s programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA`s programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ``profiles``, to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future. Refs, figs, tabs.

  9. Country nuclear power profiles

    International Nuclear Information System (INIS)

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA's programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA's programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ''profiles'', to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future

  10. Nuclear power in Europe

    International Nuclear Information System (INIS)

    Perera, J.

    2000-01-01

    Currently nuclear power accounts for more than 25% of total electricity production in Europe (including Eastern Europe and the former Soviet Union) However, significant new construction is planned in Central and Eastern Europe only, apart from some in France and, possibly in Finland. Many countries in Western Europe have put nuclear construction plans on hold and several have cancelled their nuclear programs. This report looks at the history of nuclear power and its current status in both Eastern and Western Europe. It provides an outline of nuclear fuel cycle facilities, from uranium procurement to final waste disposal. Economic and environmental issues are discussed, as well as the prospect of increased East-West trade and cooperation in the new poso-cold war world. Detailed profiles are provided of all the countries in Western Europe with significant nuclear power programs, as well as profiles of major energy and nuclear companies

  11. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Mishiro, M.

    2000-01-01

    This article describes the advantages of nuclear energy for Japan. In 1997 the composition of the total primary energy supply (TPES) was oil 52.7%, coal 16.5%, nuclear 16.1% and natural gas 10.7%. Nuclear power has a significant role to play in contributing to 3 national interests: i) energy security, ii) economic growth and iii) environmental protection. Energy security is assured because a stable supply of uranium fuel can be reasonably expected in spite of dependence on import from abroad. Economic growth implies the reduction of energy costs. As nuclear power is capital intensive, the power generation cost is less affected by the fuel cost, therefore nuclear power can realize low cost by favoring high capacity utilization factor. Fossil fuels have substantial impacts on environment such as global warming and acid rain by releasing massive quantities of CO 2 , so nuclear power is a major option for meeting the Kyoto limitations. In Japan, in 2010 nuclear power is expected to reach 17% of TPES and 45% of electricity generated. (A.C.)

  12. Ethical aspects of nuclear power

    International Nuclear Information System (INIS)

    Streithofen, H.B.

    1989-01-01

    The nuclear controversy comprises many ethical aspects, e.g. the waste disposal problem. Nuclear opponents should not neglect the environmental protection aspect; for example, the use of nuclear power alone brought about an 8% reduction of the CO 2 burden in 1987. Our responsibility towards nature and humans in the Third World leaves us no alternative to nuclear power. On the other hand, the nuclear power debate should not become a matter of religious beliefs. (DG) [de

  13. Alternative off-site power supply improves nuclear power plant safety

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Volkanovski, Andrija; Kančev, Duško; Čepin, Marko

    2014-01-01

    Highlights: • Additional power supply for mitigation of the station blackout event in NPP is used. • A hydro power plant is considered as an off-site alternative power supply. • An upgrade of the probabilistic safety assessment from its traditional use is made. • The obtained results show improvement of nuclear power plant safety. - Abstract: A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source

  14. Nuclear power economics

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, Ian; Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-04-15

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  15. Nuclear power economics

    International Nuclear Information System (INIS)

    Emsley, Ian; Cobb, Jonathan

    2017-01-01

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  16. International nuclear power status 2001

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2002-04-01

    This report is the eighth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2001, the report contains: 1) General trends in the development of nuclear power; 2) Nuclear terrorism; 3) Statistical information on nuclear power production (in 2000); 4) An overview of safety-relevant incidents in 2001; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  17. Nuclear power - the Hydra's head

    Energy Technology Data Exchange (ETDEWEB)

    Bunyard, P

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead.

  18. Ordinance of 30 November 1981 on cover for civil liability resulting from nuclear power plant operation - RS 732.44

    International Nuclear Information System (INIS)

    1981-01-01

    Until the end of 1981, the amount of insurance for third party liability resulting from operating a nuclear electricity generating plant was limited to 200 million Swiss francs. This ordinance provides that, as from 1 january 1982, this amount is raised to 300 million Swiss francs. (NEA) [fr

  19. Nuclear power for tomorrow

    International Nuclear Information System (INIS)

    Csik, B.J.; Konstantinov, L.V.; Dastidar, P.

    1989-09-01

    The evolution of nuclear power has established this energy source as a viable mature technology, producing at comparative costs more than 16% of the electricity generated world-wide. After outlining the current status of nuclear power, extreme future scenarios are presented, corresponding respectively to maximum penetration limited by technical-economic characteristics, and nuclear phase-out at medium term. The situation is complex and country specific. The relative perception of the importance of different factors and the compensation of advantages vs. disadvantages, or risk vs. benefits, has predominant influence. In order to proceed with an objective and realistic estimate of the future role of nuclear power worldwide, the fundamental factors indicated below pro nuclear power and against are assessed, including expected trends regarding their evolution: Nuclear safety risk; reduction to levels of high improbability but not zero risk. Reliable source of energy; improvements towards uniform standards of excellence. Economic competitiveness vs. alternatives; stabilization and possible reduction of costs. Financing needs and constraints; availability according to requirements. Environmental effects; comparative analysis with alternatives. Public and political acceptance; emphasis on reason and facts over emotions. Conservation of fossil energy resources; gradual deterioration but no dramatic crisis. Energy supply assurance; continuing concerns. Infrastructure requirements and availability; improvements in many countries due to overall development. Non-proliferation in military uses; separation of issues from nuclear power. IAEA forecasts to the year 2005 are based on current projects, national plans and policies and on prevailing trends. Nuclear electricity generation is expected to reach about 18% of total worldwide electricity generation, with 500 to 580 GW(e) installed capacity. On a longer term, to 2030, a stabilized role and place among available viable

  20. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  1. Nuclear power status 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives statistical information on nuclear power plants status in the world in 1999, including the number of reactors in operation or under construction, the electricity supplied by nuclear power reactors and the respective percentage of electricity produced by nuclear energy in 1999, and the total operating experience to 31 December 1999, by country

  2. The UK nuclear power industry

    International Nuclear Information System (INIS)

    Collier, J. G.

    1995-01-01

    In the United Kingdom, nuclear power plants are operated by three companies: Nuclear Electric (NE), Scottish Nuclear (SN), and British Nuclear Fuels plc (BNFL). The state-operated power industry was privatized in 1989 with the exception of nuclear power generation activities, which were made part of the newly founded (state-owned) NE and SN. At the same time, a moratorium on the construction of new nuclear power plants was agreed. Only Sizewell B, the first plant in the UK to be equipped with a pressurized water reactor, was to be completed. That unit was first synchronized with the power grid on February 14, 1995. Another decision in 1989 provided for a review to be conducted in 1994 of the future of the peaceful uses of nuclear power in the country. The results of the review were presented by the government in a white paper on May 9, 1995. Accordingly, NE and SN will be merged and privatized in 1996; the headquarters of the new holding company will be in Scotland. The review does not foresee the construction of more nuclear power plants. However, NE hopes to gain a competitive edge over other sources of primary energy as a result of this privatization, and advocates construction of a dual-unit plant identical with Sizewell B so as to avoid recurrent design and development costs. Outside the UK, the company plans to act jointly with the reactor vendor, Westinghouse, especially in the Pacific region; a bid submitted by the consortium has been shortisted by the future operator of the Lungmen nuclear power plant project in Taiwan. In upgrading the safety of nuclear power plants in Eastern Europe, the new company will be able to work through existing contacts of SN. (orig.) [de

  3. Nuclear power in India

    International Nuclear Information System (INIS)

    Bose, D.K.

    1980-01-01

    India has now nine years of experience with her in nuclear power generation. The system has been acclaimed on various grounds by the authority concerned with its organization in the country. The present paper intends to examine critically the claim for economic superiority of the nuclear power over the thermal power which is asserted often by the spokesmen for the former. Information about the cost of nuclear power that is available to researchers in India is very meagre. Whatever appears in official publications is hardly adequate for working out reasonable estimates for scrutiny. One is therefore left to depend on the public statements made by dignitaries from time to time to form an idea about the economics of nuclear power. Due to gaps in information we are constrained to rely on the foreign literature and make careful guesses about possible costs applicable to India

  4. No to nuclear power

    International Nuclear Information System (INIS)

    2006-01-01

    Kim Beazley has again stated a Labor Government would not pursue nuclear power because the economics 'simply don't stack up'. 'We have significant gas, coal and renewable energy reserves and do not have a solution for the disposal of low-level nuclear waste, let alone waste from nuclear power stations.' The Opposition Leader said developing nuclear power now would have ramifications for Australia's security. 'Such a move could result in our regional neighbours fearing we will use it militarily.' Instead, Labor would focus on the practical measures that 'deliver economic and environmental stability while protecting our national security'. Mr Beazley's comments on nuclear power came in the same week as Prime Minister John Howard declined the request of Indian Prime Minister Manmohan Singh for uranium exports, although seemingly not ruling out a policy change at some stage. The Prime Ministers held talks in New Delhi over whether Australia would sell uranium to India without it signing the Nuclear Non-Proliferation Treaty. An agreement reached during a visit by US President George W. Bush gives India access to long-denied nuclear technology and guaranteed fuel in exchange for allowing international inspection of some civilian nuclear facilities. Copyright (2006) Crown Content Pty Ltd

  5. Canada's nuclear power programme

    International Nuclear Information System (INIS)

    Peden, W.

    1976-01-01

    Although Canada has developed the CANDU type reactor, and has an ambitious programme of nuclear power plant construction, there has been virtually no nuclear controversy. This progress was seen as a means to bring Canada out of the 'resource cow' era, and onto a more equal footing with technologically elite nations. However the Indian nuclear explosion test, waste storage problems, contamination problems arising from use of uranium ore processing waste as land fill and subsidised sale of nuclear power plants to Argentina and South Korea have initiated public and parliamentary interest. Some economists have also maintained that Canada is approaching over-supply of nuclear power and over-investment in plant. Canada has no official overall energy production plan and alternative sources have not been evaluated. (JIW)

  6. Nuclear power for environmental protection

    International Nuclear Information System (INIS)

    Souza Marques de, J.A.; Bennett, L.L.

    1989-09-01

    Nuclear power does not produce CO 2 or other greenhouse gases, and also does not produce any SO 2 , NO x or other gases which contribute to acid rain. These characteristics of nuclear power are especially important in comparison to coal-fired generation of electricity. As an example, in comparison with a coal-fired power plant of the same size, with abatement systems, a 1300 MW(e) nuclear power plant eliminates annually emissions to the air of about: 2000 t of particulates; 8.5 million t of CO 2 : 12,000 t of SO 2 ; and 6,000 t of NO x , the precise quantities being dependent on coal quality, power plant design and thermal efficiency, and on the effectiveness of the abatement systems. Opponents of nuclear power concede these facts, but argue that nuclear power is such a small part of the world energy balance that it is insignificant to the big issue of CO 2 . This is hardly correct. Today, 16% of the world's electricity (and 5% of the world's total primary energy) is generated using nuclear power. If this electricity were to have been generated using coal, it would have resulted in about 1600 million tons of CO 2 annually. This is 8% of the 20,000 million tons of CO 2 now emitted annually from the burning of fossil fuels, an amount which the Toronto Conference proposed should be cut by 20% up to the year 2005. A further major difference in the two energy systems is that the relatively smaller amount of nuclear wastes is fully isolated from the environment. In addition to discussing the global contributions of nuclear power to environmental improvement, the paper presents actual results achieved in a number of countries, demonstrating the positive contribution which nuclear power has made to reducing the environmental impacts of electricity production. 7 figs, 12 tabs

  7. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    1979-01-01

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO [de

  8. Non-power application as an entry point to nuclear power program

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    2009-01-01

    Nuclear power is usually viewed as the flagship of nuclear technology. A nuclear power plant complex, visible and prominence, is iconic of the technology. That image makes its presence common knowledge to the extent that nuclear technology is equated almost totally with nuclear power by the general public. The downside of this visibility is that it becomes easy target in public misinformation programs. The non-power applications however are not visible, and devoid of icon. The non-power applications, therefore, can grow quite smoothly, attracting only little attention in the negative and in the positive senses. According to a study conducted in the USA in 2000 and in Japan in 2002, the socio-economic impact of non-power and power applications of nuclear technology are comparable. Involvement in non-power applications can be a good grounding for moving into power applications. This paper discusses the non-power nuclear technology applications and in what manner it can serve to prepare the introduction of nuclear power program. (Author)

  9. Current status of nuclear power development

    International Nuclear Information System (INIS)

    Dias, P.M.

    1994-01-01

    Nuclear power is not a viable energy source for Sri Lanka at present because of a number of reasons, the main reason being the non-availability of small and economically viable nuclear power plants. However several suppliers of nuclear power plants are in the process of developing small and medium power plants (SMPRs) which could be economically competitive with coal. The paper deals with past and future trends of nuclear power plants, their economics and safety. It also deals with environmental effects and public acceptance of nuclear power plants

  10. The former experimental nuclear power station in Lucens

    International Nuclear Information System (INIS)

    Meichle, A.

    1989-01-01

    In June 1989 in the Swiss canton of Vaud, a majority vote was reached for the discharge from federal responsibility and control of the experimental reactor in Lucens, which was shut down following an accident twenty years ago. As the topic 'Lucens' will remain current interest for some time, a brief history as well as future prospects are presented. The report begins with Switzerland's immediate post-war recognition of the importance of nuclear energy. This was initially characterized by the formation of Reactor Ltd., and three commercial groups. The submission of projects by the latter to parliament in the 1950's for the construction of a test nuclear reactor with the request for federal support met with a positive echo and a subsidy of 50% of the costs. The NGA (a national society for the promotion of industrial nuclear technology) was founded with the aim to consolidate projects into a national plan. The NGA's first step was to plan and install an experimental, heavy water moderated, gas-cooled reactor in Lucens. An engineering group (AGL) was delegated by the NGA to plan, construct and commission the reactor. The construction began in July 1962. The location, type of reactor, fuel used, cooling system and the placement in 3 cavities in a hill are briefly described. In 1966 the reactor first went critical and 2 years later 30 MW thermal power was attained. The construction engineers and the operating management were completely satisfied with reactor operation prior to the accident. 1 fig

  11. Nuclear safeguards control in nuclear power stations

    International Nuclear Information System (INIS)

    Boedege, R.; Braatz, U.; Heger, H.

    1976-01-01

    The execution of the Non-Proliferation Treaty (NPT) has initiated a third phase in the efforts taken to ensure peace by limiting the number of atomic powers. In this phase it is important, above all, to turn into workable systems the conditions imposed upon technology by the different provisions of the Verification Agreement of the NPT. This is achieved mainly by elaborating annexes to the Agreement specifically geared to certain model plants, typical representatives selected for LWR power stations being the plants at Garigliano, Italy (BWR), and Stade, Federal Republic of Germany (PWR). The surveillance measures taken to prevent any diversion of special nuclear material for purposes of nuclear weapons manufacture must be effective in achieving their specific objective and must not impede the circumspect management of operations of the plants concerned. A VDEW working party has studied the technical details of the planned surveillance measures in nuclear power stations in the Federal Republic of Germany and now presents a concept of material balancing by units which meets the conditions imposed by the inspection authority and could also be accepted by the operators of nuclear power stations. The concept provides for uninterrupted control of the material balance areas of the nuclear power stations concerned, allows continuous control of the whole nuclear fuel cycle, is based exclusively on existing methods and facilities, and can be implemented at low cost. (orig.) [de

  12. Nuclear power in British politics

    International Nuclear Information System (INIS)

    Pocock, R.F.

    1987-01-01

    The paper concerns the subject of nuclear power in British politics in 1986. The policies of the major political parties towards nuclear power are briefly outlined, along with public attitudes to nuclear energy, Chernobyl, and the rise of the anti-nuclear campaigners. (UK)

  13. Nuclear power in western society

    International Nuclear Information System (INIS)

    Franklin, N.L.

    1977-01-01

    The degree to which problems of public acceptance have contributed to the slowdown in progress of nuclear power in Western European countries and the USA is discussed. Some of the effects on the nuclear power industry, i.e. the electrical utilities, the power station suppliers, and the fuel cycle contractors are described. The problem of the lack of public acceptance is examined by consideration of four areas: the position of the employee working in nuclear installations, opposition from the local community, the question of terrorism and its impact on nuclear policy, and finally, what is felt to constitute the greatest anxiety concerning nuclear power, that of proliferation. (U.K.)

  14. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  15. The future of nuclear power

    International Nuclear Information System (INIS)

    Burtak, F.

    1993-01-01

    Nuclear power in Germany at present is confronting two challenges: On the one hand, technical innovations are required in order to meet the expectations of nuclear proponents while, on the other hand, a public stand must be taken vis-a-vis the demand to opt out of nuclear power. This means that nuclear engineers not only must perform their technical functions, but increasingly also engage themselves socially. Neglecting just one of these two challenges is likely to impair severely the future of nuclear power in Germany. In the absence of a swing in public opinion it will not be possible to build a new nuclear plant, and nuclear power will be doomed to extinction, at least in a number of countries, within a matter of decades. In the absence of technical innovation, today's LWR technology will cause the fissile uranium available naturally to be consumed, thus killing nuclear power for lack of future fissile material. In responding to the two challenges, nuclear technology must safeguard its future by not retreating into an ivory tower of pure technology; on the other hand, technical innovation is a prerequisite for its continued existence. (orig.) [de

  16. Crunch time for nuclear power

    International Nuclear Information System (INIS)

    Edwards, Rob.

    1994-01-01

    The Federal Republic of Germany, one of the most advanced nations, technically has a thriving nuclear power industry. However there is stiff opposition to nuclear power from political parties and environmental groups. General elections due to be held in mid October hold the future of the nuclear industry in the balance. If the present opposition party comes to power, it is committed to a policy of phasing out nuclear power completely. At the centre of the political uproar is the Gorleben ''interim store'' which is intended to house Germany's spent fuel for at least the next forty years. The nuclear industry must resolve the issue of nuclear waste disposal to the voters' satisfaction if it is to have a viable future. (UK)

  17. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  18. Nuclear power ecology: comparative analysis

    International Nuclear Information System (INIS)

    Trofimenko, A.P.; Lips'ka, A.Yi.; Pisanko, Zh.Yi.

    2005-01-01

    Ecological effects of different energy sources are compared. Main actions for further nuclear power development - safety increase and waste management, are noted. Reasons of restrained public position to nuclear power and role of social and political factors in it are analyzed. An attempt is undertaken to separate real difficulties of nuclear power from imaginary ones that appear in some mass media. International actions of environment protection are noted. Risk factors at different energy source using are compared. The results of analysis indicate that ecological influence and risk for nuclear power are of minimum

  19. Nuclear power - the Hydra's head

    International Nuclear Information System (INIS)

    Bunyard, Peter.

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead. (UK)

  20. International nuclear power status 2002

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2003-03-01

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  1. Nuclear power - a reliable future

    International Nuclear Information System (INIS)

    Valeca, Serban

    2002-01-01

    The Ministry of Education and Research - Department of Research has implemented a national Research and Development program taking into consideration the following: - the requirements of the European Union on research as a factor of development of the knowledge-based society; - the commitments to the assimilation and enforcement of the recommendations of the European Union on nuclear power prompted by the negotiations of the sections 'Science and Research' and ' Energy' of the aquis communautaire; - the major lines of interest in Romania in the nuclear power field established by National Framework Program of Cooperation with IAEA, signed on April 2001; - the short and medium term nuclear options of the Romanian Government; - the objectives of the National Nuclear Plan. The major elements of the nuclear research and development program MENER (Environment, Energy, Resources) supported by the Department of Research of the Ministry of Education and Research are the following: - reactor physics and nuclear fuel management; - operation safety of the Power Unit 1 of Cernavoda Nuclear Electric Power Station; - improved nuclear technological solutions at the Cernavoda NPP; - development of technologies for nuclear fuel cycle; - operation safety of the other nuclear plants in Romania; - assessment of nuclear risks and estimation of the radiological impact on the environment; - behavior of materials under the reactor service conditions and environmental conditions; - design of nuclear systems and equipment for the nuclear power stations and nuclear facilities; - radiological safety; - application of nuclear techniques and technologies in industry, agriculture, medicine and other fields of social life. Research to develop high performance methods and equipment for monitoring nuclear impact on environment are conducted to endorse the measures for radiation protection. Also mentioned are the research on implementing a new type of nuclear fuel cycle in CANDU reactors as well as

  2. 2006 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    At the turn of 2006/2007, 437 nuclear power plants were available for energy supply, or were being commissioned, in 31 countries of the world. This is seven plants less than at the turn of 2005/2006. The aggregate gross power of the plants amounted to approx. 389.5 GWe, the aggregate net power, to 370.5 GWe. This indicates a slight decrease of gross power by some 0.15 GWe compared to the level the year before, while the available net power increased, also slightly, by approx. 0.2 GWe. The Tarapur 3 nuclear generating unit in India, a D 2 O PWR of 540 MWe gross power, was newly commissioned. In 2006, 8 nuclear power plants in Europe (4 in the United Kingdom, 2 in Bulgaria, 1 each in the Slovak Republic and in Spain) discontinued power operation for good. 29 nuclear generating units, i.e. 6 plants more than at the end of 2005, were under construction in late 2006 in 9 countries with an aggregate gross power of approx. 25.5 GWe. Worldwide, some 40 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases, contracts have already been signed. Net electricity generation in nuclear power plants worldwide in 2006 achieved another top ranking level of approx. 2,660 billion kWh (2005: approx. 2,750 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-1 fast breeder (USA) on December 20, 1951, cumulated gross production has reached approx. 56,875 billion kWh, and operating experience has grown to some 12,399 reactor years. (orig.)

  3. Nuclear power in the EC

    International Nuclear Information System (INIS)

    Charrault, J.C.

    1991-01-01

    Nuclear power accounts for some 35% of electricity production in the European Community (EC). Using a mathematical analysis, based on different scenarios, i.e. low/high electricity demand and nuclear moratorium/revival, various demand forecasts are made. A pragmatic approach, considering conventional power generation pollution problems, forecasts a revival of nuclear power

  4. The influence nuclear power has on corporate image and the effect of offering merit information of nuclear power

    International Nuclear Information System (INIS)

    Oiso, Shinichi

    2006-01-01

    Many electric power companies in Japan, irrespective of their nuclear power generation ratio's difference, have nuclear power plants. These days, corporate brand image is becoming more and more important. Therefore, a survey was carried out to study the effect that nuclear power (including comparison with the other type of industry besides electric power) has on the corporate image of an electric power company. Further more, the survey includes a research about the effect on people's attitude change towards nuclear power before and after discovering the merits or benefits of nuclear power. The possibility of enhancing the corporate brand image of electric power companies by providing merit information of nuclear power was studied. (author)

  5. History on foundation of Korea nuclear power

    International Nuclear Information System (INIS)

    Park, Ik Su

    1999-12-01

    This reports the history on foundation of Korea nuclear power from 1955 to 1980, which is divided ten chapters. The contents of this book are domestic and foreign affairs before foundation of nuclear power center, establishment of nuclear power and research center, early activity and internal conflict about nuclear power center, study for nuclear power business and commercialization of the studying ordeal over nuclear power administration and new phase, dispute for jurisdiction on nuclear power business and the process, permission for nuclear reactor, regulation and local administration, the process of deliberation and decision of reactor 3. 4 in Yonggwang, introduction of nuclear reprocessing facilities and activities for social organization.

  6. Some power uprate issues in nuclear power plants

    International Nuclear Information System (INIS)

    Tipping, Philip

    2008-01-01

    Issues and themes concerned with nuclear power plant uprating are examined. Attention is brought to the fact that many candidate nuclear power plants for uprating have anyway been operated below their rated power for a significant part of their operating life. The key issues remain safety and reliability in operation at all times, irrespective of the nuclear power plant's chronological or design age or power rating. The effects of power uprates are discussed in terms of material aspects and expected demands on the systems, structures and components. The impact on operation and maintenance methods is indicated in terms of changes to the ageing surveillance programmes. Attention is brought to the necessity checking or revising operator actions after power up-rating has been implemented

  7. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  8. Economic consequences of the Swiss 'Strom ohne Atom' and 'Moratorium Plus' popular initiatives - Analysis using a balanced model

    International Nuclear Information System (INIS)

    Mueller, A.; Wickart, M.; Van Nieuwkoop, R.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made to assess the economic consequences of two models for the opting out of nuclear energy in Switzerland, as proposed in two popular initiatives. The 'Strom ohne Atom' (electricity without atomic power) initiative calls for the shutting down of the existing nuclear power stations and the 'Moratorium Plus' initiative calls for a stop on the building of new atomic power stations for 10 years. The method used for assessing the costs and benefits resulting if the initiatives were accepted in a public vote is described. Basic assumptions made on further factors concerning the electricity and energy markets are discussed. Results of analyses made for various scenarios with respect to CO 2 emissions are presented and include discussions on risk costs, effects on employment and welfare aspects

  9. 4. Nuclear power plant component failures

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear power plant component failures are dealt with in relation to reliability in nuclear power engineering. The topics treated include classification of failures, analysis of their causes and impacts, nuclear power plant failure data acquisition and processing, interdependent failures, and human factor reliability in nuclear power engineering. (P.A.). 8 figs., 7 tabs., 23 refs

  10. French lessons in nuclear power

    International Nuclear Information System (INIS)

    Valenti, M.

    1991-01-01

    In stark contrast to the American atomic power experience is that of the French. Even the disaster at Chernobyl in 1986, which chilled nuclear programs throughout Western Europe, did not slow the pace of the nuclear program of the state-owned Electricite de France (EDF), based in Paris. Another five units are under construction and are scheduled to be connected to the French national power grid before the end of 1993. In 1989, the EDF's 58 nuclear reactors supplied 73 percent of French electrical needs, a higher percentage than any other country. In the United States, for example, only about 18 percent of electrical power is derived from the atom. Underpinning the success of nuclear energy in France is its use of standardized plant design and technology. This has been an imperative for the French nuclear power industry since 1974, when an intensive program of nuclear power plant construction began. It was then, in the aftermath of the first oil embargo, that the French government decided to reduce its dependence on imported oil by substituting atomic power sources for hydrocarbons. Other pillars supporting French nuclear success include retrofitting older plants with technological or design advances, intensive training of personnel, using robotic and computer aids to reduce downtime, controlling the entire nuclear fuel cycle, and maintaining a comprehensive public information effort about the nuclear program

  11. Thai Nuclear Power Program

    International Nuclear Information System (INIS)

    Namwong, Ratanachai

    2011-01-01

    The Electricity Generating Authority of Thailand (EGAT), the main power producer in Thailand, was first interested in nuclear power as an electricity option in 1967 when the electricity demand increased considerably for the first time as a result of the economic and industrial growth. Its viability had been assessed several times during the early seventies in relation to the changing factors. Finally in the late 1970s, the proceeding with nuclear option was suspended for a variety of reasons, for instance, public opposition, economic repercussion and the uncovering of the indigenous petroleum resources. Nonetheless, EGAT continued to maintain a core of nuclear expertise. During 1980s, faced with dwindling indigenous fossil fuel resources and restrictions on the use of further hydro as an energy source, EGAT had essentially reconsidered introducing nuclear power plants to provide a significant fraction to the long term future electricity demand. The studies on feasibility, siting and environmental impacts were conducted. However, the project was never implemented due to economics crisis in 1999 and strong opposition by environmentalists and activists groups. The 1986 Chernobyl disaster was an important cause. After a long dormant period, the nuclear power is now reviewed as one part of the solution for future energy supply in the country. Thailand currently relies on natural gas for 70 percent of its electricity, with the rest coming from oil, coal and hydro-power. One-third of the natural gas consumed in Thailand is imported, mainly from neighbouring Myanmar. According to Power Development Plan (PDP) 2007 rev.2, the total installed electricity capacity will increase from 28,530.3 MW in 2007 to 44,281 MW by the end of plan in 2021. Significantly increasing energy demand, concerns over climate change and dependence on overseas supplies of fossil fuels, all turn out in a favor of nuclear power. Under the current PDP (as revised in 2009), two 1,000- megawatt nuclear

  12. Steps to nuclear power

    International Nuclear Information System (INIS)

    1975-01-01

    The recent increase in oil prices will undoubtedly cause the pace at which nuclear power is introduced in developing countries to quicken in the next decade, with many new countries beginning to plan nuclear power programmes. The guidebook is intended for senior government officials, policy makers, economic and power planners, educationalists and economists. It assumes that the reader has relatively little knowledge of nuclear power systems or of nuclear physics but does have a general technical or management background. Nuclear power is described functionally from the point of view of an alternative energy source in power system expansion. The guidebook is based on an idealized approach. Variations on it are naturally possible and will doubtless be necessary in view of the different organizational structures that already exist in different countries. In particular, some countries may prefer an approach with a stronger involvement of their Atomic Energy Commission or Authority, for which this guidebook has foreseen mainly a regulatory and licensing role. It is intended to update this booklet as more experience becomes available. Supplementary guidebooks will be prepared on certain major topics, such as contracting for fuel supply and fuel cycle requirements, which the present book does not go into very deeply

  13. The separation of nuclear power from nuclear proliferation

    International Nuclear Information System (INIS)

    Starr, C.

    1979-01-01

    There exists world wide a strong common desire to limit nuclear weapons proliferation so as to inhibit or remove the threat of nuclear warfare. While this is a primary international political objective, there has also developed a secondary objective to limit any potential contribution to such nuclear weapons proliferation which might arise by the diversion of weapons material from the civilian nuclear power fuel cycle. This secondary objective is the basis of the present US government policy to defer the reprocessing of nuclear fuels anywhere. This policy has been generally recognized as a temporary expedient to provide time for international reexamination of the problems of weapons proliferation associated with nuclear power. A successful development of the proposed combination of the Fast Breeder Reactor and the Civex fuel reprocessing facility would provide an economical nuclear power source for many centuries which inherently separates nuclear power from the issue of weapons material diversion and proliferation. Further, by so doing, it permits great flexibility in international and national planning for nuclear power, as the issues of fuel dependence and terrorist and subnational diversions disappear. In addition, the expansion of the FBR/Civex system would eat into the LWR spent fuel stockpile, diminishing steadily this relatively accessible plutonium source. And finally, a rapid development of the FBR/Civex for the above reasons would substantially reduce the worldwide concern as to the adequacy of uranium ore supply. (Auth.)

  14. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1980-01-01

    A few of the essential issues which arise when we consider nuclear power and development together in the context of energy policy are discussed. Ethical concerns must ultimately be expressed through policies and their impact on people. There are ethical issues associated with nuclear power in the developing countries which deserve our attention. Four aspects of the question of nuclear power in developing countries are considered: their energy situation; the characteristics of nuclear power which are relevant to them; whether developing countries will undertake nuclear power programmes; and finally the ethical implications of such programmes. It is concluded that what happens in developing countries will depend more on the ethical nature of major political decisions and actions than on the particular technology they use to generate their electricity. (LL)

  15. Comprehensive assessment of energy systems: approach and current results of the Swiss activities

    International Nuclear Information System (INIS)

    Hirschberg, S.; Dones, R.; Kypreos, S.

    1994-01-01

    This paper provides an overview of the approaches used and results obtained to this date within the Swiss Project GaBE on ''Comprehensive Assessment of Energy Systems''. Based on the ''cradle to grave'' approach detailed environmental inventories for major fuel cycles have been generated. In comparison to earlier studies a very broad spectrum of resources and air and water pollutants has been covered. Also non-energetic resources such as land depreciation have been considered. Numerous examples of evaluations are provided in the paper, including comparisons of greenhouse gas emissions, land use, radiation and wastes, and illustrating the impact of consideration of full energy chains. In the part concerning severe accidents some evaluations based on the database established as the Paul Scherrer Institute are presented as well as the estimated contribution of hypothetical severe accidents to the external costs associated with a specific Swiss nuclear power plant. Results of applications of the large scale energy-economy model MARKAL to the Swiss energy system and greenhouse gas scenarios are described. This includes cost-optimal contributions of different technologies to reduce CO 2 emissions, and trade-offs on the national and international level. Finally, the content of other GaBE activities either being in progress or planned is provided. (orig.)

  16. The nuclear power generation

    International Nuclear Information System (INIS)

    Serres, R.

    1999-01-01

    The French nuclear generating industry is highly competitive. The installations have an average age of fifteen years and are half way through their expected life. Nuclear power accounts for 70% of the profits of the French generating company, EDF. Nuclear generation has a minimal effect on the atmosphere and France has a level of CO 2 emissions, thought to be the main cause of the greenhouse effect, half that of Europe as a whole. The air in France is purer than in neighbouring countries, mainly because 75% of all electrical power is generated in nuclear plants and 15% in hydroelectric stations. The operations and maintenance of French nuclear power plants in the service and distribution companies out of a total of 100 000 employees in all, 90 % of whom are based in mainland France. (authors)

  17. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  18. Nuclear power plants in post-war thought

    International Nuclear Information System (INIS)

    Toya, Hiroshi

    2015-01-01

    This paper overviews how nuclear power plants have been talked about in the post-war thought. Science and technology sometimes significantly change the thinking way of humans, and nuclear power generation is an extreme technology. This paper overviews how nuclear power plants and humans are correlated. The following three points are discussed as the major issues of contemporary thought over nuclear power plants. First, on the danger of nuclear power plants, the risk of destructive power that nuclear energy has, and the danger of unreasoning development in science and technology civilization are discussed. Second, on the ethics issues surrounding nuclear power plants, the ethics that are based on unbalanced power relations, and democratic responsibility ethics based on discussion ethics are discussed. Third, on the issues of nuclear power plants and imagination, the limitations of democratic discussion surrounding nuclear power plants, the formation of imagination commensurate with the destructive power of nuclear power plants, and the formation of imagination that can represent the distant future are discussed. (A.O.)

  19. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Lane, J.A.; Covarrubias, A.J.; Csik, B.J.; Fattah, A.; Woite, G.

    1977-01-01

    This paper is intended to be a companion to similar papers by OECD/NEA and CMEA and will summarize the nuclear power system plans of developing Member States most likely to have nuclear programmes before the year 2000. The information that is presented is derived from various sources such as the Agency 1974 study of the market for nuclear power in developing countries, the annual publication, ''Power Reactors in Member States - 1976 Edition'', various nuclear power planning studies carried out by the Agency during the period 1975 and 1976, direct correspondence with selected Member States and published information in the open literature. A preliminary survey of the prospects for nuclear power in Member States not belonging to the OECD or having centrally planned economies indicates that about 27 of these countries may have operating nuclear power plants by the end of the century. In the 1974 Edition of the ''Market Survey'' it was estimated that the installed nuclear capacity in these countries might reach 24 GW by 1980, 157 GW by 1190 and 490 GW by the year 2000. It now appears that these figures are too high for a number of reasons. These include 1) the diminished growth in electrical demand which has occurred in many Member States during the last several years, 2) the extremely high cost of nuclear plant construction which has placed financial burdens on countries with existing nuclear programmes, 3) the present lack of commercially available small and medium power reactors which many of the smaller Member States would need in order to expand their electric power systems and 4) the growing awareness of Member States that more attention should be paid to exploitation of indigenous energy sources such as hydroelectric power, coal and lignite

  20. CMB seen through random Swiss Cheese

    Energy Technology Data Exchange (ETDEWEB)

    Lavinto, Mikko; Räsänen, Syksy, E-mail: mikko.lavinto@helsinki.fi, E-mail: syksy.rasanen@iki.fi [Physics Department, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FIN-00014, University of Helsinki (Finland)

    2015-10-01

    We consider a Swiss Cheese model with a random arrangement of Lemaȋtre-Tolman-Bondi holes in ΛCDM cheese. We study two kinds of holes with radius r{sub b}=50 h{sup −1} Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB . We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude below the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% limit |Δ D{sub A}/ D-bar {sub A}|∼< 10{sup −4}. We consider the argument that areas of spherical surfaces are nearly unaffected by perturbations, which is often invoked in light propagation calculations. The closed case is consistent with this at 1σ, whereas in the open case the probability is only 1.4%.

  1. Nuclear power. Europe report

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Last year, 2001, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union nuclear power plants have been in operation. In 7 of the 13 EU Candidate Countries nuclear energy was used for power production. A total of 216 plants with an aggregate net capacity of 171 802 MWe and an aggregate gross capacity of 181 212 MWe were in operation. One unit, i.e. Volgodonsk-1 in Russia went critical for the first time and started test operation after having been connected to the grid. Volgodonsk-1 adds about 1 000 MWe (gross) nd 953 MWe (net) to the electricity production capacity. The operator of the Muehlheim-Kaerlich NPP field an application to decommission and dismantle the plant; this plant was only 13 months in operation and has been shut down since 1988 for legal reasons. Last year, 10 plants were under construction in Romania (1), Russia (4), Slovakia (2), the Czech Republic (1) and the Ukraine (2), that is only in East European Countries. In eight countries of the European Union 143 nuclear power plants have been operated with an aggregate gross capacity of 128 758 MWe and an aggregate net capacity of 122 601 MWe. Net electricity production in 2001 in the EU amounts to approx. 880.3 TWh gross, which means a share of 33,1 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 75.6% in France, 74.2% in Lithuania, 58.2% in Belgium, 53.2% in the Slovak Republic, and 47.4% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. On May 24th, 2002 the Finnish Parliament voted for the decision in principle to build a fifth nuclear power plant in the country. This launches the next stage in the nuclear power plant project. The electric output of the plant unit will be 1000-1600 MW

  2. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Beckurts, K.H.

    1985-01-01

    On the occasion of the retirement of the Editor-in-chief of 'atomwirtschaft', the author gave a keynote speech on the development of nuclear power in the Federal Republic of Germany at the headquarters of the Handelsblatt Verlag in Duesseldorf on October 30, 1984. He subdivided the period under discussion into five phases, the first of which comprises the 'founding years' of 1955 to 1960. This was the time when activities in nuclear research and nuclear technology in Germany, which were permitted again in mid-1955, began with the establishment of the national research centers, the first Atomic Power Program, the promulgation of the Atomic Energy Act, the foundation of government organizations, including the Federal Ministry for Atomic Energy, etc. In the second phase, between 1960 and 1970, a solid foundation was laid for the industrial peaceful uses of nuclear power in the construction of the first LWR experimental nuclear power stations, the first successful export contracts, the beginnings of the first nuclear fuel cycle plants, such as the WAK reprocessing plant, the Asse experimental repository, the Almelo agreement on centrifuge enrichment. The third phase, between 1970 and 1975, was a period of euphoria, full of programs and forecasts of a tremendous boom in nuclear generating capacities, which were further enhanced by the 1973 oil squeeze. In 1973 and 1974, construction permits for ten nuclear power plants were applied for. The fourth phase, between 1975 and 1980, became a period of crisis. The fifth phase, the eighties, give rise to hope for a return to reason. (orig./UA) [de

  3. Nuclear power and sustainable development

    International Nuclear Information System (INIS)

    Sandklef, S.

    2000-01-01

    Nuclear Power is a new, innovative technology for energy production, seen in the longer historic perspective. Nuclear technology has a large potential for further development and use in new applications. To achieve this potential the industry needs to develop the arguments to convince policy makers and the general public that nuclear power is a real alternative as part of a sustainable energy system. This paper examines the basic concept of sustainable development and gives a quality review of the most important factors and requirements, which have to be met to quality nuclear power as sustainable. This paper intends to demonstrate that it is not only in minimising greenhouse gas emissions that nuclear power is a sustainable technology, also with respect to land use, fuel availability waste disposal, recycling and use of limited economic resources arguments can be developed in favour of nuclear power as a long term sustainable technology. It is demonstrated that nuclear power is in all aspects a sustainable technology, which could serve in the long term with minimal environmental effects and at minimum costs to the society. And the challenge can be met. But to achieve need political leadership is needed, to support and develop the institutional and legal framework that is the basis for a stable and long-term energy policy. Industry leaders are needed as well to stand up for nuclear power, to create a new industry culture of openness and communication with the public that is necessary to get the public acceptance that we have failed to do so far. The basic facts are all in favour of nuclear power and they should be used

  4. Nuclear power: achievement and prospects

    International Nuclear Information System (INIS)

    Roberts, L.E.J.

    1993-01-01

    History of nuclear power generation from the time it was a technological curiosity to the time when it developed into a mature, sizeable international industry is outlined. Nuclear power now accounts for 17% of the world's total electricity generated. However, it is noted that the presently installed capacity of nuclear power generation falls short of early expectations and nuclear power is not as cheap as it was hoped earlier. There is opposition to nuclear power from environmentalists and the public due to fear of radiation and the spread of radioactivity during accidents, even though nuclear reactors by and large have a good safety record. Taking into account the fact that electricity consumption is growing at the rate of 2-3% in the industrialized world and at over 5% in the rest of world and pollution levels are increasing due to burning of fossil fuels and subsequent greenhouse effect, the demand for power will have to be be met by increasing use of non-fossil fuels. One of the most promising non-fossil fuels is the nuclear fuel. In the next 30 years, the nuclear power generation capacity can be increased two to three times the present capacity by: (1) managing economics, (2) extending uranium resources by reprocessing spent fuel and recycling the recovered uranium and plutonium and by using fast reactor technology (3) getting public acceptance of and support for nuclear power by allaying the fear of radiation and the fear of large scale accidents through quantitative risk analysis and (4) establishing public confidence in waste disposal methods. (M.G.B.). 18 refs., 2 tabs

  5. The development of Chinese power industry and its nuclear power

    International Nuclear Information System (INIS)

    Zhou Dabin

    2002-01-01

    The achievements and disparity of Chinese power industry development is introduced. The position and function of nuclear power in Chinese power industry is described. Nuclear power will play a role in ensuring the reliable and safe supply of primary energy in a long-term and economic way. The development prospects of power source construction in Chinese power industry is presented. Challenge and opportunity in developing nuclear power in China are discussed

  6. Nuclear power infrastructure and planning

    International Nuclear Information System (INIS)

    2005-01-01

    There are several stages in the process of introducing nuclear power in a country. These include feasibility studies; technology evaluation; request for proposals and proposal evaluation; project and contracts development and financing; supply, construction, and commissioning; and finally operation. The IAEA is developing guidance directed to provide criteria for assessing the minimum infrastructure necessary for: a) a host country to consider when engaging in the implementation of nuclear power, or b) a supplier country to consider when assessing that the recipient country would be in an acceptable condition to begin the implementation of nuclear power. There are Member States that may be denied the benefits of nuclear energy if the infrastructure requirements are too large or onerous for the national economy. However if co-operation could be achieved, the infrastructure burden could be shared and economic benefits gained by several countries acting jointly. The IAEA is developing guidance on the potential for sharing of nuclear power infrastructure among countries adopting or extending nuclear power programme

  7. Nuclear power: the turning tide

    International Nuclear Information System (INIS)

    Riley, P.J.; Warren, D.S.

    1981-01-01

    During 1980 and 1981, opposition to the expansion of the nuclear power generation programme grew from about 45% of the population to approximately 53%. Women, young people and labour voters are the most strongly opposed to nuclear power but among no section of the population is there a clear majority in favour of building more nuclear power stations. (author)

  8. Overview paper on nuclear power

    International Nuclear Information System (INIS)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power

  9. Nuclear power and other thermal power

    International Nuclear Information System (INIS)

    Bakke, J.

    1978-01-01

    Some philosophical aspects of mortality statistics are first briefly mentioued, then the environmental problems of, first, nuclear power plants, then fossil fuelled power plants are summarised. The effects of releases of carbon dioxide, sulphur dioxide and nitrogen oxides are briefly discussed. The possible health effects of radiation from nuclear power plants and those of gaseous and particulate effluents from fossil fuel plants are also discussed. It is pointed out that in choosing between alternative evils the worst course is to make no choice at all, that is, failure to install thermal power plants will lead to isolated domestic burning of fossil fuels which is clearly the worst situation regarding pollution. (JIW)

  10. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  11. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  12. Public perception process of nuclear power risk and some enlightenment to public education for nuclear power acceptance

    International Nuclear Information System (INIS)

    Yang Bo

    2013-01-01

    This paper, based on the international research literatures on perception of risks, designs a conceptual model of public perception of nuclear power risk. In this model, it is considered that the public perception of nuclear power risk is a dynamic, complicate and closed system and is a process from subjective perception to objective risk. Based on the features of the public perception of nuclear power risk and multi-faceted dimension influences as discussed, suggestions for the public education for nuclear power acceptance are given in five aspects with indication that the public education for nuclear power acceptance plays an important role in maintaining the public perception of nuclear power risk system. (author)

  13. Nuclear power in competitive electricity markets

    International Nuclear Information System (INIS)

    2000-01-01

    Economic deregulation in the power sector raises new challenges for the prospects of nuclear power. A key issue is to assess whether nuclear power can be competitive in a de-regulated electricity market. Other important considerations include safety, nuclear liability and insurance, the nuclear power infrastructure, and health and environmental protection. This study, conducted by a group of experts from twelve OECD Member countries and three international organisations, provides a review and analysis of these issues, as related to both existing and future nuclear power plants. It will be of particular interest to energy analysts, as well as to policy makers in the nuclear and government sectors. (author)

  14. Abuse of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J [UKAEA

    1976-09-01

    This paper reproduces an address by Sir John Hill, Chairman of the United Kingdom Atomic Energy Authority, at a conference in London organised by the Financial Times in July 1976. Actions that, in the author's view, could be regarded as constituting abuse of nuclear power are first summarised, and the various aspects of the use and abuse of nuclear power are discussed. The author considers that achieving the maximum degree of acceptance of the Non-Proliferation Treaty is the most important political objective in nuclear power, but considers that nuclear terrorism would be abortive and that, so far as the UK is concerned, the present precautions are adequate and will remain so. It is considered that much abuse of nuclear power arises from the prevalence of its critics, particularly with reference to Pu hazards, the health of nuclear employees, and possible damage to the health of the public. The Pu problem is considered to be far more emotive than rational. The possibility of lung cancer and leukaemia is discussed. It is concluded that atomic energy is one of the best of industries in which to work, both from the health and interest points of view.

  15. Nuclear power strategy: requirements for technology

    International Nuclear Information System (INIS)

    Orlov, V.V.; Rachkov, V.I.

    2001-01-01

    The possible role of nuclear power in sustainable development demands answers to at least three questions: Is large-scale nuclear power essential to future development? - Is it feasible to have modern nuclear power transformed for large-scale deployment? - When will large-scale nuclear power be practically needed? The questions are analysed with the requirements to be fulfilled concerning present-day technologies

  16. The economics of nuclear power

    International Nuclear Information System (INIS)

    Monto, Geethanjali

    2011-01-01

    Nuclear power is seen by some as a partial solution to climate change. The obvious supporters include nuclear establishments, but the 'surprising' supporters comprise some environmentalists like James Lovelock. One of the 15 strategies proposed by Stephen Pacala and Robert Socolow as part of their wedge model is to substitute nuclear power for coal power. The addition of 700 GW of nuclear power, i.e. roughly twice the current global capacity, would constitute one wedge and could reduce one billion tonnes of carbon by mid-century. (The other 14 strategies include: efficient vehicles; reduced use of vehicles; efficient buildings; efficient baseload coal plants; gas baseload power for coal baseload power capture CO 2 at baseload power plant capture CO 2 at H 2 plant; capture CO 2 at coal-to-synfuels plant and geological storage; wind power for coal power; PV power for coal power; wind H 2 in fuel-cell car for gasoline in hybrid car; biomass fuel for fossil fuel; reduced deforestation, plus reforestation, afforestation, and new plantations, and conservation tillage

  17. Development of Czechoslovak nuclear power engineering

    International Nuclear Information System (INIS)

    Keher, J.

    1985-01-01

    The output of Czechoslovak nuclear power plants is envisaged at 2200 MW by 1985, 4400 MW by 1990 and 10,280 MW by the year 2000. The operation so far is assessed of Bohunice V-1 and Bohunice V-2 power plants as is the construction of the Dukovany nuclear power plant. International cooperation in the fulfilment of the nuclear power programme is based on the General Agreement on Cooperation in the Prospective Development and Interlinkage of CMEA Power Systems to the year 1990, the Agreement on Multilateral International Specialization and Cooperation of Production and on Mutual Deliveries of Nuclear Power Plant Equipment. The most important factor in international cooperation is the Programme of Cooperation between the CSSR and the USSR. The primary target in the coming period is the Temelin nuclear power plant project and the establishment of unified control of the nuclear power complex. (M.D.)

  18. Nuclear power complexes and economic-ecological problems of nuclear power development

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Bobolovich, V.N.; Emel'yanov, I.Ya.

    1977-01-01

    The effect of constructing NPP's at separate sites in densely populated areas on economic efficiency of nuclear power and its ecological implications has been investigated. Locating NPP's and nuclear fuel cycle plants at different sites results in large scale shipments of fresh and spent nuclear fuels and radioactive wastes. The fact increases the risk of a detrimental environmental impact, duration of the external fuel cycle, and worsens, in the end, nuclear power economics. The prudence of creating nuclear parks is discussed. The parks may be especially efficient if the program of developing NPP's with fast breeder reactors is a success. Comparative evaluations show that from economic standpoint deployment of nuclear parks in the European part of the USSR has no disadvantage before construction of separate NPP's and supporting fuel cycle facilities of equivalent capacity, even if the construction of nuclear parks runs dearer by 30% than assumed. The possibility for nuclear parks to meet a part of demand for ''off-peak'' energy production, district heating and process heat production is also shortly discussed

  19. SwissFEL injector conceptual design report. Accelerator test facility for SwissFEL

    International Nuclear Information System (INIS)

    Pedrozzi, M.

    2010-07-01

    This comprehensive report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility - in particular concerning the conceptual design of the injector system. The SwissFEL X-ray FEL project at PSI, involves the development of an injector complex that enables operation of a FEL system operating at 0.1 - 7 nm with permanent-magnet undulator technology and minimum beam energy. The injector pre-project was motivated by the challenging electron beam requirements necessary to drive the SwissFEL accelerator facility. The report takes a look at the mission of the test facility and its performance goals. The accelerator layout and the electron source are described, as are the low-level radio-frequency power systems and the synchronisation concept. The general strategy for beam diagnostics is introduced. Low energy electron beam diagnostics, the linear accelerator (Linac) and bunch compressor diagnostics are discussed, as are high-energy electron beam diagnostics. Wavelength selection for the laser system and UV pulse shaping are discussed. The laser room for the SwissFEL Injector and constructional concepts such as the girder system and alignment concepts involved are looked at. A further chapter deals with beam dynamics, simulated performance and injector optimisation. The facility's commissioning and operation program is examined, as are operating regimes, software applications and data storage. The control system structure and architecture is discussed and special subsystems are described. Radiation safety, protection systems and shielding calculations are presented and the lateral shielding of the silo roof examined

  20. Nuclear security - New challenge to the safety of nuclear power plants

    International Nuclear Information System (INIS)

    Li Ganjie

    2008-01-01

    The safety of nuclear power plants involves two aspects: one is to prevent nuclear accidents resulted from systems and equipments failure or human errors; the other is to refrain nuclear accidents from external intended attack. From this point of view, nuclear security is an organic part of the nuclear safety of power plants since they have basically the same goals and concrete measures with each other. In order to prevent malicious attacks; the concept of physical protection of nuclear facilities has been put forward. In many years, a series of codes and regulations as well as technical standard systems on physical protection had been developed at international level. The United Nations passed No. 1540 resolution as well as 'Convention on the Suppression of Acts of Nuclear terrorism', and revised 'Convention on Physical Protection of Nuclear Materials', which has enhanced a higher level capacity of preparedness by international community to deal with security issues of nuclear facilities. In China, in order to improve the capability of nuclear power plants on preventing and suppressing the external attacks, the Chinese government consecutively developed the related codes and standards as well as technical documents based on the existing laws and regulations, including 'Guide for the Nuclear Security of Nuclear Power Plants' and 'Guide for the Physical Protection of Nuclear Materials', so as to upgrade the legislative requirements for nuclear security in power plants. The government also made greater efforts to support the scientific research and staff training on physical protection, and satisfying the physical protection standards for newly-built nuclear facilities such as large scale nuclear power plants to meet requirement at international level. At the same time old facilities were renovated and the Chinese government established a nuclear emergency preparedness coordination mechanism, developed corresponding emergency preparedness plans, intensified the

  1. Nuclear power in crisis

    International Nuclear Information System (INIS)

    Blowers, Andrew.; Pepper, David.

    1987-01-01

    Six themes run through this book: nuclear decision making and democratic accountability, nuclear bias and a narrow-based energy policy, scientific discredit and popular expertise, fusing science with social values, managerial competence and the geography of nuclear power. These are covered in thirteen chapters (all indexed separately) grouped into four parts -the political and planning context, nuclear waste, risk and impact - the social dimension and the future of nuclear power. It considers aspects in France, the United States and the United Kingdom with particular references to the Sizewell-B inquiry and the Sellafield reprocessing plant. (UK)

  2. Nuclear power for beginners

    International Nuclear Information System (INIS)

    Croall, S.; Sempler, K.

    1979-01-01

    Witty, critically, and with expert knowledge, 'Atomic power for beginners' describes the development of nuclear power for military purposes and its 'peaceful uses' against the will of the population. Atomic power, the civil baby of the bomb is not only a danger to our lives - it is enemy to all life as all hard technologies are on which economic systems preoccupied with growth put their hopes. Therefore, 'Atomic power for beginners' does not stop at nuclear engineering but proceeds to investigate its consequences, nationally and with a view to the Third World. And since the consequences are so fatal and it is not enough to say no to nuclear power, it gives some thoughts to a better future - with soft technology and alternative production. (orig.) 891 HP/orig. 892 MKO [de

  3. Nuclear power and the environment

    International Nuclear Information System (INIS)

    Blix, H.

    1989-11-01

    The IAEA Director General pointed out that continued and expanded use of nuclear power must be one among several measures to restrain the use of fossil fuels and thereby limit the emissions of greenhouse gases. With regards to future trends in world electricity demands, the Director General emphasized the existing gap between the frequent claims as to what conservation can achieve and actual energy plans. The objections to nuclear power which are related to safety, waste disposal and the risk of proliferation of nuclear weapons are also discussed. His conclusion is that nuclear power can help significantly to meet growing needs of electricity without contributing to global warming, acid rains or dying forests, responsible management and disposal of nuclear wastes is entirely feasible, and the safety of nuclear power must be continuously strengthened through technological improvement and methods of operation

  4. Nuclear power in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V A

    1981-04-01

    This article examines the role of nuclear power in the USSR. Since the beginning of development of power reactors in the Soviet Union in the 1950s, their contribution had grown to 6% of all electric power by 1980. Reactor development has proceeded rapidly, with a number of reactor designs in use. Fast-breeder reactors and designs for specialized applications are under development. It is anticipated that the contribution of nuclear power will continue to grow. The status of nuclear power stations at 20 locations is summarized in a table.

  5. How nuclear power began

    International Nuclear Information System (INIS)

    Gowing, M.

    1987-01-01

    Many of the features of the story of nuclear power, both in nuclear weapons and nuclear power stations, derive from their timing. Usually, in the history of science the precise timing of discovery does not make much difference, but in the case of nuclear fission there was the coincidence that crucial discoveries were made and openly published in the same year, 1939, as the outbreak of the Second World War. It is these events of the 1930s and the early post-war era that are mainly discussed. However, the story began a lot earlier and even in the early 1900s the potential power within the atom had been foreseen by Soddy and Rutherford. In the 1930s Enrico Fermi and his team saw the technological importance of their discoveries and took out a patent on their process to produce artificial radioactivity from slow neutron beams. The need for secrecy because of the war, and the personal trusts and mistrusts run through the story of nuclear power. (UK)

  6. On nuclear power plant uprating

    International Nuclear Information System (INIS)

    Ho, S. Allen; Bailey, James V.; Maginnis, Stephen T.

    2004-01-01

    Power uprating for commercial nuclear power plants has become increasingly attractive because of pragmatic reasons. It provides quick return on investment and competitive financial benefits, while involving low risks regarding plant safety and public objection. This paper briefly discussed nuclear plant uprating guidelines, scope for design basis analysis and engineering evaluation, and presented the Salem nuclear power plant uprating study for illustration purposes. A cost and benefit evaluation of the Salem power uprating was also included. (author)

  7. Nuclear power in Japan

    International Nuclear Information System (INIS)

    Kishida, J.

    1990-01-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations

  8. Nuclear power in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, J [Japan Research Institute, Ltd., Tokyo (Japan)

    1990-07-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations.

  9. Nuclear power: 2004 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    Last year, 2004, 441 nuclear power plants were available for power supply in 31 countries of the world. Nuclear generating capacity attained its highest level so far at an aggregate gross power of 385,854 MWe and an aggregate net power of 366,682 MWe, respectively. Nine different reactor lines are operated in commercial nuclear power plants. Light water reactors (PWR and BWR) again are in the lead with 362 plants. At year's end, 22 nuclear power plants with an aggregate gross power of 18,553 MWe and an aggregate net power, respectively, of 17,591 MWe were under construction in nine countries. Of these, twelve are light water reactors, nine are CANDU-type reactors, and one is a fast breeder reactor. So far, 104 commercial reactors with powers in excess of 5 MWe have been decommissioned in eighteen countries, most of them low-power prototype plants. 228 nuclear power plants of those in operation, i.e. slightly more than half, were commissioned in the 1980es. Nuclear power plant availabilities in terms of capacity and time again reached record levels. Capacity availability was 84.30%, availability in terms of time, 85.60%. The four nuclear power plants in Finland continue to be world champions in this respect with a cumulated average capacity availability of 90.30%. (orig.)

  10. Country Nuclear Power Profiles - 2009 Edition

    International Nuclear Information System (INIS)

    2009-08-01

    The Country Nuclear Power Profiles compiles background information on the status and development of nuclear power programs in Member States. It consists of organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country, and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. The preparation of Country Nuclear Power Profiles (CNPP) was initiated in 1990s. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. This is the 2009 edition issued on CD-ROM and Web pages. It updates the country information for 44 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 30 countries that have operating nuclear power plants, as well as 14 countries having past or planned nuclear power programmes (Bangladesh, Egypt, Ghana, Indonesia, the Islamic Republic of Iran, Italy, Kazakhstan, Nigeria, Philippines, Poland, Thailand, Tunisia, Turkey and Vietnam). For the 2009 edition, 26 countries provided updated or new profiles. For the other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases

  11. Country Nuclear Power Profiles - 2011 Edition

    International Nuclear Information System (INIS)

    2011-08-01

    The Country Nuclear Power Profiles compiles background information on the status and development of nuclear power programs in Member States. It consists of organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country, and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. The preparation of Country Nuclear Power Profiles (CNPP) was initiated in 1990s. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. This is the 2011 edition issued on CD-ROM and Web pages. It updates the country information for 50 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 29 countries that have operating nuclear power plants, as well as 21 countries having past or planned nuclear power programmes (Bangladesh, Belarus, Chile, Egypt, Ghana, Indonesia, the Islamic Republic of Iran, Italy, Jordan, Kazakhstan, Kuwait, Lithuania, Morocco, Nigeria, Philippines, Poland, Syrian Arab Republic, Thailand, Tunisia, Turkey and Vietnam). For the 2011 edition, 23 countries provided updated or new profiles. For the other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases.

  12. Nuclear power: Pt. 3

    International Nuclear Information System (INIS)

    Van Wyk, A.

    1985-01-01

    The use of nuclear power in warfare is viewed from the point of use usefullness, essentiality and demolition. The effects of a H-bomb explosion are discussed as well as the use of nuclear power in warfare, with a Christian ethical background

  13. Nuclear power and public opinion

    International Nuclear Information System (INIS)

    Kazanikov, I.A.; Klykov, S.A.

    2000-01-01

    The public opinion on Nuclear Power is not favorable. A purposeful work with public perception is necessary. One way to create a positive image of the nuclear industry is to improve public radiological education. This challenge can be resolved in the close cooperation with state school and preschool education. The formation about nuclear power should be simple and symbolical. Our society can be divided into 4 parts which can be called as target groups: First group - People from the nuclear industry with special education working at nuclear facilities or related to the industry. Second group - People working in the fields connected with nuclear power. Third group - People not related to nuclear power or even with negative impression to the industry. This group is the largest and the work required is the most difficult. Fourth group - The number of this group's members is the least, but it has strong influence on public opinion. 'Greens' and a broad spectrum of ecological organizations can be included in this group. (Authors)

  14. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    Science.gov (United States)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact

  15. Nuclear power and weapons proliferation

    International Nuclear Information System (INIS)

    Greenwood, T.; Rathjens, C.W.; Ruina, J.

    1977-01-01

    The relationship between nuclear weapons development and nuclear electric power is examined. A brief description of nuclear weapons design is first given. This is then followed by a discussion of various aspects of nuclear power technology and of how they affect a nuclear weapon programme. These include fuel cycles, chemical reprocessing of spent fuel, uranium enrichment, and the control of dissemination of nuclear technology. In conclusion there is a discussion of possible political and institutional controls for limiting nuclear proliferation. (U.K.)

  16. Country Nuclear Power Profiles - 2012 Edition

    International Nuclear Information System (INIS)

    2012-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The CNPP's main objectives are to consolidate information about the nuclear power infrastructures in participating countries, and to present factors related to the effective planning, decision making and implementation of nuclear power programmes that together lead to safe and economical operations of nuclear power plants. The CNPP summarizes organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. Topics such as reactor safety, nuclear fuel cycle, radioactive waste management and research programmes are for the most part not discussed in detail. Statistical data about nuclear plant operations, population, energy and electricity use are drawn from the PRIS, EEDB, World Development Indicators (WDI) of the World Bank and the national contributions. This publication is updated and the scope of coverage expanded annually. This is the 2012 edition, issued on CD-ROM and Web pages. It contains updated country information for 51 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 29 countries that have operating nuclear power plants, as well as 22 countries with past or planned nuclear power. Each of the 51 profiles in this publication is self-standing, and contains information officially provided by the respective national authorities. For the 2012 edition, 20 countries provided updated or new profiles. These are Argentina, Armenia, Bangladesh, Chile, Germany, Ghana

  17. Country Nuclear Power Profiles. 2016 Edition

    International Nuclear Information System (INIS)

    2016-12-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The publication summarizes organizational and industrial aspects of nuclear power programmes and provides information about the relevant legislative, regulatory and international framework in each State. Its descriptive and statistical overview of the overall economic, energy and electricity situation in each State and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programmes throughout the world. This 2016 edition, issued on CD-ROM, contains updated country information for 51 States.

  18. Country Nuclear Power Profiles - 2015 Edition

    International Nuclear Information System (INIS)

    2015-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The publication summarizes organizational and industrial aspects of nuclear power programmes and provides information about the relevant legislative, regulatory and international framework in each State. Its descriptive and statistical overview of the overall economic, energy and electricity situation in each State and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programmes throughout the world. This 2015 edition, issued on CD-ROM, contains updated country information for 51 States

  19. Country Nuclear Power Profiles - 2013 Edition

    International Nuclear Information System (INIS)

    2013-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The CNPP summarizes organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. This 2013 edition, issued on CD-ROM and Web pages, contains updated country information for 51 countries

  20. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In eight of the fifteen member countries of the European Union nuclear power plants have been in operation. A total of 218 plants with an aggregate net capacity of 181,120 MWe and an aggregate gross capacity of 171,802 MWe were in operation. Two units, i.e. Civaux 2 in France and Mochovce-2 in Slovakia went critical for the first time and started commercial operation after having been connected to the grid. Three further units in France, Chooz 1 and 2 and Civaux 1, started commercial operation in 1999 after the completion of technical measures in the primary circuit. Last year, 13 plants were under construction in Romania, Russia, Slovakia and the Czech Republic, that is only in East European countries. In eight countries of the European Union 146 nuclear power plants have been operated with an aggregate gross capacity of 129.772 MWe and an aggregate net capacity of 123.668 MWe. Net electricity production in 1999 in the EU amounts to approx. 840.2 TWh, which means a share of 35 per cent of the total production. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, 58 per cent in Belgium and 47 per cent in Bulgaria, Sweden and Slovakia. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal and Austria. (orig.) [de

  1. Nuclear power in the United States

    International Nuclear Information System (INIS)

    Johnston, J.B.

    1985-01-01

    All over the world except in the United States, nuclear energy is a low cost, secure, environmentally acceptable form of energy. In the United States, civilian nuclear power is dead. 112 nuclear power plants have been abandoned or cancelled in the last decade, and there has been no new order for nuclear plants since 1978. It will be fortunate to have 125 operating nuclear plants in the United States in the year 2000. There are almost 90 completed nuclear power plants and about 45 under construction in the United States, but several of those under construction will eventually be abandoned. About 20 % of the electricity in the United States will be generated by nuclear plants in 2000 as compared with 13 % supplied in the last year. Under the present regulatory and institutional arrangement, American electric utilities would not consider to order a new nuclear power plant. Post-TMI nuclear plants became very expensive, and there is also ideological opposition to nuclear power. Coal-firing plants are also in the similar situation. The uncertainty about electric power demand, the cost of money, the inflation of construction cost and regulation caused the situation. (Kako, I.)

  2. Nuclear power generation and nuclear non-proliferation

    International Nuclear Information System (INIS)

    Rathjens, G.

    1979-01-01

    The main points existing between nuclear energy development and nuclear non-proliferation policy are reviewed. The solar energy and other energy will replace for nuclear fission energy in the twenty first century, but it may not occur in the first half, and the structure has to be established to continue the development of nuclear fission technology, including breeder reactor technology. In the near future, it should be encouraged to use advanced thermal reactors if they are economic and operated with safety. Miserable results may be created in the worldwide scale, if a serious accident occurs anywhere or nuclear power reactors are utilized for military object. It is estimated to be possible to develop the ability of manufacturing nuclear weapons within two or three years in the countries where the industry is highly developed so as to generate nuclear power. It is also difficult to take measures so that nuclear power generation does not increase nuclear proliferation problems, and it is necessary to mitigate the motive and to establish the international organization. Concensus exists that as the minimum security action, the storage and transportation of materials, which can be directly utilized for nuclear weapons, should be decided by the international system. The most portions of sensitive nuclear fuel cycle should be put under the international management, as far as possible. This problem is discussed in INFCE. Related to the nuclear nonproliferation, the difference of policy in fuel cycle problems between USA and the other countries, the enrichment of nuclear fuel material, especially the reasons to inhibit the construction of additional enrichment facilities, nuclear fuel reprocessing problems, radioactive waste disposal, plutonium stock and plutonium recycle problems are reviewed. (Nakai, Y.)

  3. Nuclear power in rock. Principal report

    International Nuclear Information System (INIS)

    1977-06-01

    In September 1975 the Swedish Government directed the Swedish State Power Board to study the question of rock-siting nuclear power plants. The study accounted for in this report aims at clarifying the advantages and disadvantages of siting a nuclear power plant in rock, compared to siting on ground level, considering reactor safety, war protection and sabotage. The need for nuclear power production during war situations and the closing down of nuclear power plants after terminated operation are also dealt with. (author)

  4. Nuclear power in space

    International Nuclear Information System (INIS)

    Aftergood, S.; Hafemeister, D.W.; Prilutsky, O.F.; Rodionov, S.N.; Primack, J.R.

    1991-01-01

    Nuclear reactors have provided energy for satellites-with nearly disastrous results. Now the US government is proposing to build nuclear-powered boosters to launch Star Wars defenses. These authors represent scientific groups that are opposed to the use of nuclear power in near space. The authors feel that the best course for space-borne reactors is to ban them from Earth orbit and use them in deep space

  5. Indicators for Nuclear Power Development

    International Nuclear Information System (INIS)

    2015-01-01

    Considering the scale of nuclear power aspirations, the number of planned nuclear new builds and the prospects of a number of countries constructing their first nuclear power plants, there is a need to assess the broader context of nuclear energy programmes in areas of macro-and socioeconomic conditions, energy systems and nuclear power, and the environment. It is important to assess the degree to which introduction or expansion of nuclear power is beneficial under these specific circumstances. This publication provides a set of indicators for nuclear power development that can serve as a tool to help explore these issues. The indicators are meant to provide a first order assessment of the situation and identify the issues that present the benefits and challenges in a balanced and objective manner and thereby help guide more detailed evaluations in the next stage of planning and preparations. Methodology sheets are provided to help users in data collection, quantification and interpretation of the indicators. The application of the indicators set is flexible. Users can select a subset of indicators that are most relevant for the questions they wish to explore in a given study or decision making process

  6. Public attitudes to nuclear power

    International Nuclear Information System (INIS)

    Margerison, T.A.

    1988-01-01

    The British public is very poorly informed about nuclear power. 55 % express concern about it, but few can explain why. Some of the reasons given are extraordinary: 37 % of the public think nuclear power causes acid rain which pollutes lakes and kills trees; 47 % think coal is a safer fuel for making electricity than nuclear; a quarter think natural radiation is less harmful than that from nuclear stations. And a very large number of people have greatly exaggerated views of the amount of radiation released from power stations and the harm that it is doing people. Also, a quarter of everyone asked thought that nuclear power stations make bombs as well as electricity. Most of these concerns come from the media, and in particular from television which has broadcast many programmes which are strongly anti-nuclear, often inaccurate, and usually sensational. Fortunately, the effect of these stories is less damaging than one might think. At present about 42 % of the adult British population are not in favour of nuclear power, so there is still a majority who are not against. About 44 % are positively in favour, and the remainder are not sure or have no view

  7. Assessing distorted trading incentives of balance responsible parties based on the example of the Swiss power system

    International Nuclear Information System (INIS)

    Scherer, Marc; Haubensak, Oliver; Staake, Thorsten

    2015-01-01

    Power systems require a continuous balance of supply and demand. In Europe, this task is shared between Balance Responsible Parties (BRPs) and Transmission System Operators (TSOs). For this purpose, the European electricity sector consists of several markets. Objective of this paper is to investigate distorted incentives that stem from loopholes in the market design which BRPs can use to undermine electricity balancing principles in favour of gaming opportunities between the domestic imbalance energy pricing and international wholesale markets. These incentives are evaluated using historical data from the Swiss power system which features a typical European imbalance pricing mechanism. The results imply that little effort would have been needed to make a good profit at the expense of system security. The major loophole arises from the interdependence between cross-border trading and national imbalance energy pricing. Bearing in mind the European Union's Third Energy Package, the importance of national balancing mechanisms will increase strongly. In this context, national remedies to cope with distorted incentives are outlined and the importance of harmonising balancing markets on an international level is elaborated. - Highlights: • We investigate distorted incentives that stem from loopholes in the market design. • Cross-border trading that undermines electricity balancing principles is evaluated. • Little effort is necessary to make a good profit at the expense of system security. • We examine historical data from the Swiss power system. • We outline remedies to limit the possibilities of profiting from potential loopholes.

  8. Projected role of nuclear power in Egypt and problems encountered in implementing the first nuclear power plant

    International Nuclear Information System (INIS)

    Effat, K.E.A.; Sirry, H.; El-Sharkawy, E.

    1977-01-01

    The increasing rise in fossil-fuel prices has favourably affected the economics of nuclear power generation bringing down the economically competitive size of nuclear units closer to small sizes compatible with grid capacities in developing countries. This encouraged Egypt to turn to nuclear power to fulfil its future power needs. In implementing its first nuclear power plant, Egypt is facing various problems. The capacity of the national electric power system and its inherent characteristics pose certain restrictions on the size and design of the nuclear plant required. The availability of sufficient local qualified management, engineering and technical personnel to participate in both precontractual and construction phases of the plant is quite a major problem. Lack of local developed industry to back up the construction phase implies the dependence to a large extent on imported equipment, materials and technology. The paper reviews the present and projected power demands in Egypt and the factors behind the decision to introduce a nuclear power generation programme. Various problems encountered and anticipated in introducing the first nuclear power plant are also discussed. (author)

  9. World status - nuclear power

    International Nuclear Information System (INIS)

    Holmes, A.

    1984-01-01

    The problems of nuclear power are not so much anti-nuclear public opinion, but more the decrease of electricity consumption growth rate and the high cost of building reactors. Because of these factors, forecasts of world nuclear capacity have had to be reduced considerably over the last three years. The performance of reactors is considered. The CANDU reactor remains the world's best performer and overall tends to out-perform larger reactors. The nuclear plant due to come on line in 1984 are listed by country; this shows that nuclear capacity will increase substantially over a short period. At a time of stagnant demand this will make nuclear energy an important factor in the world energy balance. Nuclear power stations in operation and under construction in 1983 are listed and major developments in commercial nuclear power in 1983 are taken country by country. In most, the report is the same; national reactor ordering cut back because the expected increase in energy demand has not happened. Also the cost-benefit of nuclear over other forms of energy is no longer as favourable. The export opportunities have also declined as many of the less developed countries are unable to afford reactors. (U.K.)

  10. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  11. Nuclear power news no 38

    International Nuclear Information System (INIS)

    1986-01-01

    The following matters are treated: What happened at the Chernobyl accident? - The Russian graphite reactor - a comparison with light water reactors. - The Soviet program for nuclear power. - Serious organizational unsatisfactory state of things at the nuclear power plants of Soviet. - Graphite reactors of the nuclear power program of the world. - The radioactive fallout in Sweden after Chernobyl. - The risks involved in radioactive radiation - an experts conception

  12. The Prospective of Nuclear Power in China

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2018-06-01

    Full Text Available From scratch to current stage, China’s nuclear power technology has experienced rapid development, and now China has begun to export nuclear power technology. As a kind of highly efficient and clean energy source, nuclear energy is also a priority option to solve energy crisis, replace traditional fossil fuels and reduce air pollution. By analyzing the short-term and long-term development trend of nuclear power in China, the paper has reached the following conclusions: (1 Under the current situation of excess supply, due to high investment cost of first-kind reactors, the decline of utilization hours and the additional cost of ancillary service obligations, the levelized cost of energy (LCOE of the third generation nuclear power will significantly increase, and the internal rate of return (IRR will significantly fall. In the short term, market competitiveness of nuclear power will be a major problem, which affects investment enthusiasm. (2 With technology learning of third generation technology, the LCOE of nuclear power will be competitive with that of coal power in 2030. (3 The CO2 emissions reduction potential of nuclear power is greater than coal power with CCS and the avoided CO2 costs of nuclear power is much lower. Therefore, nuclear power is an important option for China’s long-term low-carbon energy system transition. The paper proposes to subsidize the technical learning costs of new technology through clean technology fund at the early commercialization stage. When designing power market rules, the technical characteristics of nuclear power should be fully considered to ensure efficient operation of nuclear power.

  13. Nuclear power development in the Far East

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, W C [Pacific Enegineers and Constructors Ltd., Taipei, Taiwan (China)

    1990-06-01

    The nuclear power development of selected Far Eastern countries is presented in this paper. This paper consists of three sections. Section 1 describes the current power/nuclear power status of Japan, South Korea, Taiwan and China. The first three countries already have operating nuclear power units, while mainland China will have a nuclear power commissioned this year according to their schedule. The power development plan for these countries is also presented. All of them have included nuclear power as part of their energy sources for the future. Section 2 briefly describes the nuclear power industry in these countries which basically covers design, manufacturing and R and D activities. Public Acceptance programs (PAPs) will play a significant role in the future of nuclear power. Section 3 discusses the PAPs of these countries. (author)

  14. Nuclear power development in the Far East

    International Nuclear Information System (INIS)

    Hsu, W.C.

    1990-01-01

    The nuclear power development of selected Far Eastern countries is presented in this paper. This paper consists of three sections. Section 1 describes the current power/nuclear power status of Japan, South Korea, Taiwan and China. The first three countries already have operating nuclear power units, while mainland China will have a nuclear power commissioned this year according to their schedule. The power development plan for these countries is also presented. All of them have included nuclear power as part of their energy sources for the future. Section 2 briefly describes the nuclear power industry in these countries which basically covers design, manufacturing and R and D activities. Public Acceptance programs (PAPs) will play a significant role in the future of nuclear power. Section 3 discusses the PAPs of these countries. (author)

  15. Nuclear Power after Fukushima

    International Nuclear Information System (INIS)

    Bigot, B.

    2011-01-01

    On 11 March 2011 Japan suffered an earthquake of very high magnitude, followed by a tsunami that left thousands dead in the Sendai region, the main consequence of which was a major nuclear disaster at the Fukushima power station. The accident ranked at the highest level of severity on the international scale of nuclear events, making it the biggest since Chernobyl in 1986. It is still impossible to gauge the precise scope of the consequences of the disaster, but it has clearly given rise to the most intense renewed debates on the nuclear issue. Futuribles echoes this in the 'Forum' feature of this summer issue which is entirely devoted to energy questions. Bernard Bigot, chief executive officer of the technological research organization CEA, looks back on the Fukushima disaster and what it changes (or does not change) so far as the use of nuclear power is concerned, particularly in France. After recalling the lessons of earlier nuclear disasters, which led to the development of the third generation of power stations, he reminds us of the currently uncontested need to free ourselves from dependence on fossil fuels, which admittedly involves increased use of renewables, but can scarcely be envisaged without nuclear power. Lastly, where the Fukushima disaster is concerned, Bernard Bigot shows how it was, in his view, predominantly the product of a management error, from which lessons must be drawn to improve the safety conditions of existing or projected power stations and enable the staff responsible to deliver the right response as quickly as possible when an accident occurs. In this context and given France's high level of dependence on nuclear power, the level of use of this energy source ought not to be reduced on account of the events of March 2011. (author)

  16. Nuclear power: the fifth horseman

    International Nuclear Information System (INIS)

    Hayes, D.

    1976-01-01

    ''Nuclear Power: The Fifth Horseman,'' is published in an attempt to identify and analyze emerging global trends and problems. This paper evaluates the future of nuclear power, subjecting it to several tests--those of economics, safety, adequacy of fuel supplies, environmental impact, and both national and international security. If the world is to ''go nuclear,'' adopting nuclear power as the principal source of energy, each of these criteria should be satisfied. In fact, none may be satisfied. Nuclear power is being re-examined in many quarters. Local communities throughout the world are concerned over reactor safety. Environmentalists and others are deeply concerned about the lack, or even the prospect, of satisfactory techniques for disposing of radioactive waste. Foreign policy analysts express grave concern over the weapons-proliferation implications of the spread of nuclear power, recognizing that sooner or later an unstable political leader or terrorist group will acquire this awesome weaponry. And, in 1975, the corporate executives who head electrical utilities in the United States cancelled or deferred 25 times as many new reactors as they ordered

  17. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    1998-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  18. Nuclear power supply (Japan Nuclear Safety Institute)

    International Nuclear Information System (INIS)

    Kameyama, Masashi

    2013-01-01

    After experienced nuclear disaster occurred on March 11, 2011, role of nuclear power in future energy share in Japan became uncertain because most public seemed to prefer nuclear power phase out to energy security or costs. Whether nuclear power plants were safe shutdown or operational, technologies were requisite for maintaining their equipment by refurbishment, partly replacement or pressure proof function recovery works, all of which were basically performed by welding. Nuclear power plants consisted of tanks, piping and pumps, and considered as giant welded structures welding was mostly used. Reactor pressure vessel subject to high temperature and high pressure was around 200mm thick and made of low-alloy steels (A533B), stainless steels (308, 316) and nickel base alloys (Alloy 600, 690). Kinds of welding at site were mostly shielded-metal arc welding and TIG welding, and sometimes laser welding. Radiation effects on welding of materials were limited although radiation protection was needed for welding works under radiation environment. New welding technologies had been applied after their technical validation by experiments applicable to required regulation standards. Latest developed welding technologies were seal welding to prevent SCC propagation and temper-bead welding for cladding after removal of cracks. Detailed procedures of repair welding of Alloy 600 at the reactor outlet pipe at Oi Nuclear Power Plants unit 3 due to PWSCC were described as an example of crack removal and water jet peening, and then overlay by temper-bead welding using Alloy 600 and clad welding using Alloy 690. (T. Tanaka)

  19. Human resources in nuclear power program

    International Nuclear Information System (INIS)

    Machi, Sueo

    2008-01-01

    Nuclear power utilization within 2020 horizon is expanding in Asia, particularly in Japan, China, India, Republic of Korea, Vietnam and Indonesia. The nuclear energy policy iof Japan sees the increase of nuclear power contribution for energy security and to control CO 2 emission with the contribution ratio through the 21 st century kept at the current level of 30-40% or even higher. Japan expects its first reprocessing plant to be operational in 2007 and its first commercial fast breeder reactor operational in 2050. Starting with her experience with the operation of its first research reactor in 1957, a power demonstration reactor from USA in 1963; the first commercial 166 MW power plant from UK in 1966 and then its first commercial 375 MW light water reactor from USA in 1970, Japan developed her own nuclear reactor technology. Today, Japan has 55 operating nuclear power plants (NPPs) totaling 49 GW which supply 30% of its electricity needs. There are two NPPs under construction and 11 additional NPPs to be completed by 2017. Japan's experience showed that engineers in the nuclear, mechanical, electrical, material and chemical fields are needed to man their nuclear power plant. For the period 1958 to about 1970, there was a rapid increase in the number of students enrolled for their bachelor of science majoring in nuclear science and technology but this number of enrollees leveled off beyond 1970 up to 2002. For those pursuing their masters of science degree in this field, there was a steady but moderate rise in the number of students from 1958 to 2002. The population of students in the Ph.D program in nuclear science and technology had the lowest number of enrollees and lowest level of increase from 1958 to 2002. The courses offered at the university for nuclear power are nuclear reactor physics and engineering, nuclear reactor safety engineering and radiation safety. Prior to graduation, the students undergo training at a nuclear research institute, nuclear power

  20. LDC nuclear power: Brazil

    International Nuclear Information System (INIS)

    Johnson, V.

    1982-01-01

    Brazil has been expanding its nuclear power since 1975, following the Bonn-Brasilia sales agreement and the 1974 denial of US enriched uranium, in an effort to develop an energy mix that will reduce dependence and vulnerability to a single energy source or supplier. An overview of the nuclear program goes on to describe domestic non-nuclear alternatives, none of which has an adequate base. The country's need for transfers of capital, technology, and raw materials raises questions about the advisability of an aggressive nuclear program in pursuit of great power status. 33 references

  1. Nuclear power for developing countries

    International Nuclear Information System (INIS)

    Hirschmann, H.; Vennemann, J.

    1980-01-01

    The paper describes the energy policy quandary of developing countries and explains why nuclear power plants of a suitable size - the KKW 200 MW BWR nuclear power plant for electric power and/or process steam generation is briefly presented here - have an economic advantage over fossil-fuelled power plants. (HP) [de

  2. Nuclear phase-out in Switzerland. Rationality first; Atomausstieg in der Schweiz. Vernunft hat Vorfahrt

    Energy Technology Data Exchange (ETDEWEB)

    Leidinger, Tobias [Luther Rechtsanwaltsgesellschaft, Duesseldorf (Germany).

    2017-05-15

    Just a few months ago, the Swiss voters have rejected the initiative of the Green Party to accelerate the nuclear phase-out in Switzerland with an impressive majority. Once again, it becomes clear that in Switzerland on issues of energy policy rationality and not ideology is leading. With their vote against an accelerated nuclear phase-out, the Swiss citizens underlined that they have no sympathy for radical, ideologically proposals for solutions, which on closer inspection are expensive, risky and immature. The majority has understood that the extensive expansion of renewable energies and power grids is burdened with numerous risks and uncertainties.

  3. Climate change and nuclear power

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  4. Nuclear power newsletter. Vol. 1, no. 1

    International Nuclear Information System (INIS)

    2004-09-01

    This first issue of newsletter describes the Nuclear Power Division of the Department of Nuclear Energy responsible for implementation of the IAEA programme on Nuclear Power. The mission of the Division is to increase the capability of interested Member States to implement and maintain competitive and sustainable nuclear power programmes and to develop and apply advanced nuclear technologies. The topics covered in this publication are: Engineering and Management Support for Competitive Nuclear Power; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; The International Conference on 'Fifty Years of Nuclear Power - the Next Fifty Years'. A list of documents published recently by the Nuclear Power Division in enclosed

  5. China's nuclear energy demand and CGNPC's nuclear power development

    International Nuclear Information System (INIS)

    Rugang, Sh.

    2007-01-01

    By importation, assimilation and innovation from French nuclear power technology and experience, the China Guangdong Nuclear Power Plant Holding Company (CGNPC) has developed the capabilities of indigenous construction and operation of 1000 MW-class nuclear power plants. Through the industrial development over the past 20 years, four 1000 MW-class reactors have been built and put into commercial operation in China. CGNPC is negotiating with AREVA on the transfer of the EPR technology and the application of this technology for the Yangjang nuclear power plant depends on the negotiation results. Since China became a member of the 4. Generation International Forum, CGNPC as a large state-owned enterprise, will take an active part in the 4. generation nuclear power technology developments under the leadership of China Atomic Energy Authority, particularly it will contribute to the research work on the high-temperature gas-cooled reactor and on the super-critical water reactor

  6. Nuclear power in a changing world

    International Nuclear Information System (INIS)

    Taylor, J.

    1996-01-01

    Nuclear power has a future that will only be fully realised if it is shown to be a solution to some of the world's most pressing energy, and associated environmental, problems. This can only be done if nuclear power itself ceases to be perceived as a problem by the public, interest groups, governments and financial institutions. In public relations terms, this means removing the persistent distortions and misconceptions about the nuclear industry. Environmentally, it involves showing that nuclear power is the only alternative energy source which does not contribute to climate change, preserves rare minerals and recycles its raw materials. Governments must be persuaded to see that nuclear power is the only economic answer to the growing energy demand arising from increased industrialisation and population growth. Financiers need convincing that nuclear power is the investment of the future and generators that it is the lowest cost economic and environmental option. The future of nuclear power depends on meeting these challenges. (UK)

  7. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  8. Aspect of nuclear power

    International Nuclear Information System (INIS)

    Haghighi Oskoei, R.; Raeis Hosseiny, N.

    2004-01-01

    Over the next 50 years, unless patterns change dramatically, energy production and use will contribute to global warming through large-scale greenhouse gas emissions-hundreds of billions of tonnes of carbon in the form of carbon dioxide. Nuclear power would be one option for reducing carbon emissions. At present, however, this is unlikely: nuclear power faces stagnation and decline. We decided to study the future of nuclear power because we believe this technology , despite the changes it faces, is an important option for the world to meet future energy needs without emitting carbon dioxide and other atmospheric pollutants. Other options include increased efficiency, renewable and sequestration. We believe that all options should be preserved as nations develop strategies at provide energy while meeting important environmental challenges. The nuclear power option will only be exercised, however if the technology demonstrates better economics, improved safety, successful waste management, and low proliferation risk, and if public policies place a significant value on electricity production that does not produce carbon dioxide

  9. Nuclear power training courses

    International Nuclear Information System (INIS)

    1977-01-01

    The training of technical manpower for nuclear power projects in developing countries is now a significant part of the IAEA Technical Assistance Programme. Two basic courses are the cornerstones of the Agency's training programme for nuclear power: a course in planning and implementation, and a course in construction and operation management. These two courses are independent of each other. They are designed to train personnel for two distinct phases of project implementation. The nuclear power project training programme has proven to be successful. A considerable number of highly qualified professionals from developing countries have been given the opportunity to learn through direct contact with experts who have had first-hand experience. It is recognized that the courses are not a substitute for on-the-job training, but their purpose is achieved if they have resulted in the transfer of practical, reliable information and have helped developing countries to prepare themselves for the planning, construction and operation management of nuclear power stations

  10. Nuclear power - facts, trends, problems

    International Nuclear Information System (INIS)

    Spickermann, W.

    1981-01-01

    An attempt has been made to describe the state-of-the-art of nuclear power utilization, particularly for energy production. On the basis of information obtained from study tours through the USSR a rather comprehensive review of nuclear power plants and research establishments in the Soviet Union, of desalination reactors, ship propulsion reactors and fast breeder reactors is given, including nuclear facilities of other countries, e.g. France, USA, GDR. Heat generation, radiation-induced chemical processes and aspects associated with nuclear energy uses, such as risks, environmental protection or radioactive wastes, are also considered. Moreover, the author attempts to outline the social relevance of nuclear power

  11. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437...

  12. Current status of nuclear power

    International Nuclear Information System (INIS)

    Behnke, W.B.

    1984-01-01

    The decision to devote the 1984 conference to nuclear power is timely and appropriate. Illinois has a long, and distinguished history in the development of civilian nuclear power. The concept was born at the University of Chicago, developed at Argonne National Laboratory and demonstrated on the Commonwealth Edison system at our pioneer Dresden Nuclear Station. Today, Illinois ranks number one in the nation in nuclear generation. With over a quarter century of commercial operating experience, nuclear power has proven its worth and become a significant and growing component of electric power supply domestically and throughout the world. Despite its initial acceptance, however, the nuclear power industry in the U.S. is now in the midst of a difficult period of readjustment stemming largely from the economic and regulatory problems of the past decade. As a result, the costs of plants under construction have increased dramatically, causing serious financial difficulties for several projects and their owners. At the same time, the U.S. is facing hard choices concerning its future energy supplies. Conferences such as this have an important role in clarifying the issues and helping to find solutions to today's pressing energy problems. This paper summarizes the status of nuclear power both here and abroad, discussing the implications of current events in the context of national energy policy and economic development here in Illinois

  13. Construction work management for nuclear power stations

    International Nuclear Information System (INIS)

    Yoshikawa, Yuichiro

    1982-01-01

    Nuclear power generation is positioned as the nucleus of petroleum substitution. In the Kansai Electric Power Co., efforts have been made constantly to operate its nuclear power plants in high stability and safety. At present, Kansai Electric Power Co. is constructing Units 3 and 4 in the Takahama Nuclear Power Station in Fukui Prefecture. Under the application of the management of construction works described here, both the nuclear power plants will start operation in 1985. The activities of Kansai Electric Power Co. in the area of this management are described: an outline of the construction works for nuclear power stations, the management of the construction works in nuclear power stations (the stages of design, manufacturing, installation and test operation, respectively), quality assurance activities for the construction works of nuclear power plants, important points in the construction work management (including the aspects of quality control). (J.P.N.)

  14. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  15. The Nuclear Review: the Institution of Nuclear Engineers' response to the Review of Nuclear Power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The United Kingdom Government's Nuclear Review currently underway, addresses whether and in what form nuclear power should continue to be part of the country's power generation capability. This article sets out the response of the Institution of Nuclear Engineers to the Nuclear Review. This pro-nuclear group emphasises the benefits to be gained from diversity of generation in the energy supply industry. The environmentally benign nature of nuclear power is emphasised, in terms of gaseous emissions. The industry's excellent safety record also argues in favour of nuclear power. Finally, as power demand increases globally, a health U.K. nuclear industry could generate British wealth through power exports and via the construction industry. The Institution's view on radioactive waste management is also set out. (UK)

  16. QA programs in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1976-01-01

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  17. Nuclear power in the Soviet Union

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.

    1989-01-01

    The pros and cons of nuclear power are similar in many countries, but the following pro factors are specific to the Soviet Union: the major sources of conventional fuel are in one area of the country, but energy consumption is concentrated in another; and a large portion of energy is generated using oil and gas. The arguments against nuclear power are as follows: safety requirements and expectations have been increased; and public opinion is negative. A program of nuclear power generation has been developed. New techniques are being implemented to increase safety and enhance operations of different types of nuclear power plants. Its should be obvious in the future that a nuclear power plant has better economic and environmental parameters than existing methods of power generation

  18. Economic competitiveness of nuclear power in China

    International Nuclear Information System (INIS)

    Hu Chuanwen

    2005-01-01

    Development of nuclear power in China has made a good progress. Currently, economic competitiveness of nuclear power compared to fossil-fuelled power plants is one of the major problems which hamper its development. This article presents the economic competitiveness of nuclear power in China with two-level analyses. First, levelized lifetime cost method is adopted for electricity generation cost comparisons. Important factors influencing economic competitiveness of nuclear power are described. Furthermore, a broad economic evaluation of the full fuel chain of nuclear power and fossil-fuelled plants is discussed concerning macro social-economic issues, environmental and health impacts. The comprehensive comparative assessment would be carried out for decision making to implement nuclear power programme. In consideration of external costs and carbon value, the economic competitiveness of nuclear power would be further improved. Facing swift economic growth, huge energy demand and heavy environmental burden, nuclear power could play a significant role in sustainable development in China. (authors)

  19. 1999 Nuclear power world report

    International Nuclear Information System (INIS)

    Wesselmann, C.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply and under construction, respectively, in 33 countries. A total of 436 nuclear power plants with an aggregate net power of 350.228 MWe and an aggregate gross power of 366.988 MWe were in operation in 31 countries. Four units with an aggregate of 2.900 MWe, i.e. Civaux 2 in France, Kaiga 2 and Rajasthan 3 in India, and Wolsung-4 in the Republic of Korea, went critical for the first time or started commercial operation after having been synchronized with the power grid. After 26 years of operation, the BN 350 sodium cooled fast breeder was permanently decommissioned in Kazakhstan. The plant not only generated electricity (its capacity was 135 MWe) but also supplied process heat to a seawater desalination plant. In 1999, however, it did not contribute to the supply of electricity. In Sweden, unit 1 of the Barsebaeck nuclear power station (600 Mwe net) was decommissioned because of political decisions. This step entails financial compensation payments and substitute electricity generating capacity made available to the power plant operators. Net electricity generation in 1999 amounts to approx. 2.395 Twh, which marks a 100 TWh increase over the preceding year. Since the first generation of electricity from nuclear power in 1951, the cumulated world generation amounts to nearly 37.200 TWh of electricity, and experience in the operation of nuclear power plants has increased to 9414 years. Last year, 38 plants were under construction. This slight increase is due to the start of construction of a total of seven projects: Two each in Japan, the Republic of Korea and Taiwan, and one in China. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, and 58 per cent in Belgium. With a share of approx. 20 per cent and more than 720 TWh, the US is the largest producer worldwide of electricity from nuclear power. As far as the aggregate

  20. Swiss energy statistics 2006

    International Nuclear Information System (INIS)

    2007-01-01

    This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2006. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2006 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons

  1. Swiss energy statistics 2004

    International Nuclear Information System (INIS)

    2005-01-01

    This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2004. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2004 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons

  2. Swiss energy statistics 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2005. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2005 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons

  3. Swiss energy statistics 2003

    International Nuclear Information System (INIS)

    2004-01-01

    This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2003. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2003 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons

  4. Swiss energy statistics 2002

    International Nuclear Information System (INIS)

    2003-01-01

    This comprehensive report by the Swiss Federal Office of Energy (SFOE) presents statistics on energy production and consumption in Switzerland in 2002. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The report also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2002 and energy use in various sectors are presented. Also, the Swiss energy balance with reference to the use of renewable forms of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power. The third chapter provides data on the individual energy carriers and the final chapter looks at economical and ecological aspects. An appendix provides information on the methodology used in collecting the statistics and on data available in the Swiss cantons

  5. Recent activities at the zero-power teaching reactor CROCUS

    International Nuclear Information System (INIS)

    Girardin, G.; Chawla, R.

    2011-01-01

    CROCUS is a zero-power critical facility used mainly for educational purposes at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland. It is a low-enriched-uranium fuelled, light-water moderated reactor, with the fission power limited to 100 W. The presentation will discuss the crucial role of CROCUS in teaching -- both as framework for reactor practicals offered to physics students at EPFL and as key educational tool in the recently established Swiss Master of Science in Nuclear Engineering. Regular development work is needed for the various instruments and components associated with the facility. As illustration, the recently completed refurbishment of the control rod system and the related calibration experiments will also be discussed.

  6. Nuclear power industry, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    The intent of this publication is to provide a single volume of resource material that offers a timely, comprehensive view of the nuclear option. Chapter 1 discusses the development of commercial nuclear power from a historical perspective, reviewing the factors and events that have and will influence its progress. Chapters 2 through 5 discuss in detail the nuclear powerplant and its supporting fuel cycle, including various aspects of each element from fuel supply to waste management. Additional dimension is brought to the discussion by Chapters 6 and 7, which cover the Federal regulation of nuclear power and the nuclear export industry. This vast body of thoroughly documented information offers the reader a useful tool in evaluating the record and potential of nuclear energy in the United States

  7. Virginia power nuclear power station engineer training program

    International Nuclear Information System (INIS)

    Williams, T.M.; Haberstroh-Timpano, S.

    1987-01-01

    In response to the Institute of Nuclear Power Operations (INPO) accreditation requirements for technical staff and manager, Virginia Power developed the Nuclear Power Station Engineer Training Programs (NPSETP). The NPSETP is directed toward enhancing the specific knowledge and skills of company engineers, especially newly hired engineers. The specific goals of the program are to promote safe and reliable plant operation by providing engineers and appropriate engineering technicians with (1) station-specific basic skills; (2) station-specific specialized skills in the areas of surveillance and test, plant engineering, nuclear safety, and in-service inspection. The training is designed to develop, maintain, and document through demonstration the required knowledge and skills of the engineers in the identified groups at North Anna and Surry Power Stations. The program responds to American National Standards Institute, INPO, and US Nuclear Regulatory Commission standards

  8. Nuclear power: An evolving scenario

    International Nuclear Information System (INIS)

    ElBaradei, Mohamed

    2004-01-01

    The past two years have found the IAEA often in the spotlight - primarily because of our role as the world's 'nuclear watchdog', as we are sometimes referred to on the evening news. The most visible, and often controversial, peaceful nuclear application is the generation of electricity, the focus of this article largely from a European perspective. At the end of last year there were 440 nuclear power units operating worldwide. Together, they supply about 16% of the world's electricity. That percentage has remained relatively steady for almost 20 years. Expansion and growth prospects for nuclear power are centred in Asia. Of the 31 units under construction worldwide, 18 are located in India, Japan, South Korea and China, including Taiwan. Twenty of the last 29 reactors to be connected to the grid are also in the Far East and South Asia. That is probably more active construction than most Europeans would guess, given how little recent growth has occurred in the West. For Western Europe and North America, nuclear construction has been a frozen playing field - the last plant to be completed being Civaux-2 in France in 1999. That should raise a question: with little to no new construction, how has nuclear power been able to keep up with other energy sources, to maintain its share of electricity generation? Interestingly enough, the answer is tied directly to efforts to improve safety performance. The accident at Chernobyl in 1986 prompted the creation of the World Association of Nuclear Operators (WANO), and revolutionized the IAEA approach to nuclear power plant safety. Some analysts believe the case for new nuclear construction in Europe is gaining new ground, for a number of reasons: efforts to limit greenhouse gas emissions and reduce the risk of climate change; security of energy supply; Comparative Public Health Risk; different set of variables when choosing Each country's and region energy strategy. Looking to the future, certain key challenges are, of direct

  9. Nuclear power in the competitive environment

    International Nuclear Information System (INIS)

    Schlissel, D.A.

    1995-01-01

    Nuclear power was originally promoted as being able to produce electricity that would be open-quotes too cheap to meter.close quotes However, large construction cost overruns and rapidly rising operating costs caused many nuclear power plants instead to be very expensive sources of electricity. As a result, many nuclear utilities will face increasing cost pressures in the future competitive environment from lower-cost producers. In fact, the threat to nuclear utilities is so severe that many industry analysts are projecting that more that $70 billion of the utilities' remaining investments in nuclear plants will be open-quotes stranded,close quotes i.e., unrecoverable in the competitive environment. Others in the industry have speculated that many of the 150 major U.S. electric utilities, a large number of which are nuclear, could be swept away by competition, leaving fewer than fifty utilities. This paper will examine how utilities are attempting to improve the cost competitiveness of operating today's nuclear power plants. It will also identify some of the potential consequences of competition for nuclear power and the regulatory role of the U.S. Nuclear Regulatory Commission (NRC). Finally, this paper will address how the changing power markets will affect the prospects for the next generation of nuclear power plants

  10. Nuclear power in Japan and the USA

    International Nuclear Information System (INIS)

    Titterton, E.

    1979-06-01

    The development of the nuclear power industry in Japan and the USA is discussed. The author lists the number of nuclear power plants operating, under construction and planned and considers the contribution made by nuclear power stations to the total electricity generated. The advantages of nuclear power to both countries are outlined and forecasts are made of the role to be played by nuclear power in future years

  11. Bibliography: books and articles on nuclear waste, nuclear power and power supply during the years 1971-1987

    International Nuclear Information System (INIS)

    Djerf, M.; Hedberg, P.

    1988-06-01

    The bibliography provides a list of the supply published Swedish books and articles in periodicals on nuclear waste and nuclear power. Regarding book publication the bibliography comprises publications on questions of nuclear power and nuclear waste on the whole, whereas the bibliography on the periodical articles solely comprises nuclear waste questions. The book bibliography consists of a selective choice of publications, identified by a mapping of the total supply of information on energy- and nuclear power issues in articles and other publications in Sweden. The literature inventory as a whole is part of a grater research project aiming at a study of the role of mass media in forming public opinion about the nuclear power waste question. (O.S.)

  12. World warms to nuclear power

    International Nuclear Information System (INIS)

    Mortimer, N.

    1989-01-01

    The greenhouse effect and global warming is a major environmental issue. The nuclear industry has taken this opportunity to promote itself as providing clean energy without implication in either the greenhouse effect or acid rain. However, it is acknowledged that nuclear power does have its own environment concerns. Two questions are posed -does nuclear power contribute to carbon dioxide emissions and can nuclear power provide a realistic long-term solution to global warming? Although nuclear power stations do not emit carbon dioxide, emissions occur during the manufacture of reactor components, the operation of the nuclear fuel cycle and especially, during the mining and processing of the uranium ore. It is estimated that the supply of high grade ores will last only 23 years, beyond that the carbon dioxide emitted during the processing is estimated to be as great as the carbon dioxide emitted from an coal-fired reactor. Fast breeder reactors are dismissed as unable to provide an answer, so it is concluded that nuclear technology has only a very limited role to play in countering global warming.(UK)

  13. One recommendation of nuclear power export. GDP model application to the countries which expressed nuclear power introduction and consideration

    International Nuclear Information System (INIS)

    Iida, Tekehiko

    2010-01-01

    South Korea has been excited in nuclear business after the success in the contract to build nuclear power plants in UAE. Since more than 60 countries expressed nuclear power introduction and new countries were on the rise with exporting reactor technology accumulated, new era over nuclear renaissance seems to begin. This article at first classified countries, which expressed nuclear power introduction, with an economic level of GDP per capita. Then each classified country's requirements of nuclear power introduction were taken into consideration such as economic development, consumption pattern and technology attitude. As a result recommendation of nuclear power export was proposed. Different approach to each country targeted was suggested as shown in 'nuclear power GDP model'. (T. Tanaka)

  14. Real issue with nuclear power

    International Nuclear Information System (INIS)

    Simpson, J.W.

    1976-01-01

    The voter referendums on nuclear power planned in some states can affect the energy supply and economic health of the public at large more than it affects the industry that provides nuclear power, the author states. He makes the point that those responsible for energy supplies in the U. S.--the President and all relevant Federal agencies, the majority of Congress, the national utility industry, major laboratories, universities and consulting firms, and other energy industries--all favor nuclear power. The complex U.S. energy situation is reviewed, and the hope of alternative energy sources, practice of energy conservation, and benefits of nuclear power are summarized. Specifically, the California Initiative and its three conditions which it says should dictate the future of nuclear power are reviewed. The author does not believe that the reasons that are usually given in opposing nuclear power are the real reasons. He states that ''it seems clear that the principal philosophy behind the initiatives is one of halting economic growth by striking at the energy source that would make that growth possible.'' Attention is called to the morality of nuclear power by asking where is the morality: in leaving future generations an insufficient amount of energy, limiting their abilities to solve the economic and employment problems; in squandering our finite supply of fossil fuels while ignoring nuclear fuels; in forcing the nation into further dependence on unpredictable foreign nations for its energy supply; in expecting other states to provide California with the energy that it does not want to generate itself; and in allowing an arbitrary limit on growth to be set by groups of political activists

  15. Dictionary of nuclear power. upd. ed.

    International Nuclear Information System (INIS)

    Koelzer, W.

    2011-10-01

    The updated dictionary on nuclear power contains definitions and explanations on nuclear physics, nuclear engineering, nuclear power, radiation effects and radiation protection in alphabetic order. Attachments on units, their conversion and physical constants are included.

  16. Cooperation of nuclear, thermal and hydroelectric power plants in the power system

    International Nuclear Information System (INIS)

    1984-01-01

    The conference heard 36 papers of which 23 were incorporated in INIS. The subjects discussed were: the development of power industry in Czechoslovakia, methods of statistical analysis of data regarding nuclear power plant operation, the incorporation of WWER nuclear power plants in the power supply system, the standardization of nuclear power plants, the service life of components, use of nuclear energy sources, performance of the reactor accident protection system, the use of nuclear power and heating plants in Hungary, risk analysis, optimization of nuclear power plants, accidents caused by leakage of the primary and secondary circuit. (J.P.)

  17. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Schaefer, A.

    1990-01-01

    I want to give some ideas on the situation of public and utility acceptance of nuclear power in the Federal Republic of Germany and perhaps a little bit on Europe. Let me start with public perception. I think in Germany we have a general trend in the public perception of technology during the last decade that has been investigated in a systematic manner in a recent study. It is clear that the general acceptance of technology decreased substantially during the last twenty years. We can also observe during this time that aspects of the benefits of technology are much less reported in the media, that most reporting by the media now is related to the consequences of technologies, such as negative environmental consequences. hat development has led to a general opposition against new technological projects, in particular unusual and large. That trend is related not only to nuclear power, we see it also for new airports, trains, coal-fired plants. here is almost no new technological project in Germany where there is not very strong opposition against it, at least locally. What is the current public opinion concerning nuclear power? Nuclear power certainly received a big shock after Chernobyl, but actually, about two thirds of the German population wants to keep the operating plants running. Some people want to phase the plants out as they reach the end-of-life, some want to substitute newer nuclear technology, and a smaller part want to increase the use of nuclear power. But only a minority of the German public would really like to abandon nuclear energy

  18. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2000-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1999 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1999; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; grid connection forecasts; world electric power market; electronuclear owners and share holders in EU, capacity and load factor; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; 1999 gross load factor by operator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  19. Country Nuclear Power Profiles - 2010 Edition

    International Nuclear Information System (INIS)

    2010-08-01

    The Country Nuclear Power Profiles compiles background information on the status and development of nuclear power programs in Member States. It consists of organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country, and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. The preparation of Country Nuclear Power Profiles (CNPP) was initiated in 1990s. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. This is the 2010 edition issued on CD-ROM and Web pages. It updates the country information for 48 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 29 countries that have operating nuclear power plants, as well as 19 countries having past or planned nuclear power programmes (Bangladesh, Belarus, Chile, Egypt, Ghana, Indonesia, the Islamic Republic of Iran, Italy, Jordan, Kazakhstan, Lithuania, Morocco, Nigeria, Philippines, Poland, Thailand, Tunisia, Turkey and Vietnam). For the 2010 edition, 24 countries provided updated or new profiles. For the other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases. The CNPP reports have been prepared by each Member State in accordance with the IAEA format. The IAEA is not responsible for the content of these reports

  20. Nuclear power 1984: Progressive normalisation

    International Nuclear Information System (INIS)

    Popp, M.

    1984-01-01

    The peaceful use of nuclear power is being integrated into the overall concept of a safe long-term power supply in West Germany. The progress of normalisation is shown particularly in the takeover of all stations of the nuclear fuel circuit by the economy, with the exception of the final storage of radioactive waste, which is the responsibility of the West German Government. Normalisation also means the withdrawal of the state from financing projects after completion of the two prototypes SNR-300 and THTR-300 and the German uranium enrichment plant. The state will, however, support future research and development projects in the nuclear field. The expansion of nuclear power capacity is at present being slowed down by the state of the economy, i.e. only nuclear power projects being built are proceeding. (orig./HP) [de

  1. The economics of nuclear power

    International Nuclear Information System (INIS)

    Hunt, H.; Betteridge, G.

    1978-01-01

    It is stated that nuclear power stations throughout the world are now providing consumers with substantially the cheapest electricity, except in areas with extensive hydro-power or cheap, clean, local coal. Thermal nuclear power stations will continue to provide economic electricity until the cost of uranium rises to several times the present level; fast reactors have the potential to continue to stabilise the cost of electricity and by moderating demand for other fuels will keep down their cost also. Headings of this paper include -The historical perspective; methods of comparing nuclear and fossil generating costs; historical comparisons of UK nuclear and fossil generating costs; waste storage and decommissioning; future changes in costs; criteria for future investment in nuclear power; alternative methods of comparison; total system cost analysis; the economics of fast reactors; and the ultimate role of fast reactors. 13 references. (author)

  2. Public acceptance of nuclear power in Taiwan

    International Nuclear Information System (INIS)

    Liao, T.T.L.

    1992-01-01

    It is necessary to reach the public acceptance for nuclear power development program. During the process of the application for the approval from the government to implement the Fourth Nuclear Power Plant program in Taiwan, we initialized a series of communication program in the last two years and are expecting to convince the public that to develops nuclear power is essential to the country from a viewpoint of energy diversified. The basic strategies of the communication program not only emphasized the new nuclear power project, but also for the long term public acceptance on nuclear power. The strategies include: (1) Preview and implement the promotion program for the performance of the existing nuclear power plants. (2) Designate and communicate with the major communication target groups: elected delegates, journalists, local residents, scholars and experts. (3) Edit and incorporate the basic nuclear knowledge into the preliminary school educational materials. (4) Subsidize the adjacent communities of nuclear power plants for the public well-being construction. In order to implement the mentioned strategies, Taipower has reorganized the public service department and the existing nuclear power plants, setup the nuclear exhibition center, conducted fullscale emergency drill biannually for each of nuclear power plant, and prepared the seminars for the teacher

  3. Canada's steps towards nuclear power

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1958-09-01

    This paper describes the policy development of nuclear power in Canada. Canada has a natural abundance of coal, oil, natural gas, water power and uranium. It was recognized that the demand for nuclear power would only materialize if it met an economically competitive range.

  4. Nuclear power: 2006 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Last year, 2006, 437 nuclear power plants were available for power supply in 31 countries, 7 plants less than in 2005. One unit was commissioned for the first time, 8 nuclear power plants were decommissioned for good in 2006. At a cumulated gross power of 389,488 MWe and a cumulated net power of 370,441 MWe, respectively, worldwide nuclear generating capacity has reached a high level so far. Nine different reactor lines are operated in commercial plants: PWR, PWR-VVER, BWR, CANDU, D 2 O PWR, GCR, AGR, LWGR, and LMFBR. Light water reactors (PWR and BWR) continue to top the list with 358 plants. By the end of the year, 10 countries operated 29 nuclear power plants with an aggregate gross power of 25,367 MWe and an aggregate net power of 23,953 MWe, respectively. Of these, 21 are light water reactors, 5 are CANDU-type reactors, 2 are fast breeder and 1 a LWGR. 123 commercial reactors with an aggregate power in excess of 5 MWe have so far been decommissioned in 19 countries. Most of them are prototype plants of low power. About 70% of the nuclear power plants in operation, namely 304 plants, were commissioned in the eighties and nineties. The energy availability and operating availability factors of the nuclear power plants again reached peak levels: 82% for energy availability, and 83% for operating availability. The 4 nuclear power plants in Finland continue to be in the lead worldwide with a cumulated average operating capacity factor of 94%. (orig.)

  5. Nuclear power. 2008 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In 2008, 438 nuclear power plants were available for power supply in 31 countries, 1 plant less than in 2007. No unit was commissioned for the first time, 1 nuclear power plant was decommissioned for good in 2008. At a cumulated gross power of 392,597 MWe and a cumulated net power of 372,170 MWe, respectively, worldwide nuclear generating capacity has reached a high level. Nine different reactor lines are operated in commercial plants: PWR, PWR-VVER, BWR, CANDU, D2O PWR, GCR, AGR, LWGR, and LMFBR. Light water reactors (PWR and BWR) continue to top the list with 358 plants. By the end of 2008, in 14 countries 43 nuclear power plants with an aggregate gross power of 39,211 MWe and an aggregate net power of 36,953 MWe were under construction. Of these, 37 are light water reactors, 3 are CANDU-type reactors, 2 are fast breeder and 1 D2O-PWR. 124 commercial reactors with an aggregate power in excess of 5 MWe have so far been decommissioned in 19 countries. Most of them are prototype plants of low power. About 70% of the nuclear power plants in operation, namely 304 plants, were commissioned in the eighties and nineties. The energy availability and operating availability factors of the nuclear power plants reached good levels: 80.80% for operating availability and 80,00% for energy availability. The four nuclear power plants in Finland continuecontinue to be in the lead worldwide with a cumulated average operating capacity factor of 91,60%. (orig.)

  6. Benefits and hazards of nuclear power

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.; Wolters, J.

    1979-09-01

    Compilation of a seminar at the KFA Juelich on topical problems of nuclear power. Subjects: Energy demand, its expected development and possibilities of coverage; physical fundamentals and technical realisation of power generation by nuclear fission; fuel cycle problems and solutions; effects of radioactive radiation; safety of nuclear power plants and the nuclear hazard as compared with other hazards. (orig./RW) [de

  7. Energy situation and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, M R [Reactor and Neutron physics Department Nuclear Research Center A.E., Cairo (Egypt)

    1997-12-31

    A brief general review is given concerning the requirements of power throughout history with an indication to the world capital reserves of energy. The energy released from the conversion of mass in chemical and nuclear processes is also discussed with comparative analysis between conventional fuel fired plant and nuclear power plant having the same energy output. The advantages and disadvantages arising from having a nuclear power programme are also discussed. 1 fig.

  8. Nuclear power in Spain

    International Nuclear Information System (INIS)

    1979-01-01

    the plans of the Spanish Government to reduce their dependence on oil over the next ten years by a considerable increase in nuclear generating capacity are outlined. Data on the type, generating power, location and commissioning data of a number of nuclear power stations in Spain are tabulated. The use of foreign companies for the design and construction of the nuclear stations and the national organisations responsible for different aspects of the programme are considered. (UK)

  9. The nuclear power station

    International Nuclear Information System (INIS)

    Plettner, B.

    1987-04-01

    The processes taking place in a nuclear power plant and the dangers arising from a nuclear power station are described. The means and methods of controlling, monitoring, and protecting the plant and things that can go wrong are presented. There is also a short discourse on the research carried out in the USA and Germany, aimed at assessing the risks of utilising nuclear energy by means of the incident tree analysis and probability calculations. (DG) [de

  10. Climate change and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  11. Renewable and nuclear power: A common future?

    International Nuclear Information System (INIS)

    Verbruggen, Aviel

    2008-01-01

    Nuclear power and renewable energy are the main options to bring down the carbon intensity of commercial energy supply. What technology is unlimited backstop supply depends on its performance on the sustainability criteria: democratic decided, globally accessible, environmental benign, low risk, affordable. Renewable power meets all criteria, with affordability under debate. Maximizing energy efficiency as prerequisite, the affordable sustainable option in fact is the twin efficiency/renewable power. Nuclear power falls short on the sustainability criteria and its public acceptance is low. Nuclear proponents now propose nuclear and renewable energy as a suitable couple to address the climate change challenge. The two antagonists however are mutually exclusive on the five major directions of future power systems. First, nuclear power has been architect of the expansive 'business-as-usual' energy economy since the 1950s. Second, add-on by fossil-fuelled power plants is bulky and expansive for nuclear power, but is distributed, flexible and contracting over time for renewable power. Third, power grids for spreading bulky nuclear outputs are other than the interconnection between millions of distributed power sources requires. Fourth, risks and externalities and the proper technology itself of nuclear power limit its development perspectives, while efficiency/renewable power are still in their infancy. Fifth, their stalemate for R and D resources and for production capacities will intensify. Nuclear power and renewable power have no common future in safeguarding 'Our Common Future'

  12. Nuclear power plants in populated areas

    International Nuclear Information System (INIS)

    Wachsmann, F.

    1973-01-01

    The article first deals with the permanently increasing demand for electical power. Considering the ever growing energy demand which can no longer be covered by conventional power plants, it has become necessary to set up nuclear power plants of larger range. The author presents in a survey the basic function of nuclear power plants as well as the resulting risks and safety measures. The author concludes that according to present knowledge there is no more need to erect nuclear power plants outside densely populated urban areas but there is now the possibility of erecting nuclear power plants in densely populated areas. (orig./LH) [de

  13. Manuscripts on foundation of Korea nuclear power

    International Nuclear Information System (INIS)

    Park, Ik Su

    1999-12-01

    It is comprised of the manuscripts and recollections on foundation of Korea nuclear power, which includes conversation with Yoon, Se Won, conversation with Choe, Paeng Seop, conversation with Lee, Dong Jip, conversation with Lee, Sang Su, conversation with Kim, Jong Ju, conversation with Lee, Jong Hun, conversation with Youn, Yong Ryeok, conversation with Han, Pil Sun, recollection of my nuclear power by Lee, Chang Gun, recollection of safety regulation in early nuclear power by An, Yeong Ju, recollection of nuclear business in early nuclear power by Lee, Min Ha, recollection of non destructive examination by Je, Hauk, extra story related nuclear power in early period by Heo, Nam and nuclear power and I by Park,Ik Su.

  14. Nuclear power in Japan in 1987

    International Nuclear Information System (INIS)

    Molodtsov, S.D.

    1989-01-01

    Data on the development level of nuclear power in Japan as of 1988 beginning are presented. Total registed electric power of 36 nuclear power units under operation constituted 28046 MW. 13 power units with 12268 MW total power are under construction. In 1987 188.4 TWH electric power was generated at the Japanese NPPs, it constituted 31.7% of total electric power generation. About 360 bil. yens were assigned from the state budget to further development of nuclear power engineering. Efforts to create the improved BWR type reactor, as well as, scientific and research efforts on the development of fast breeder reactors, improvement of uranium enrichment and radioactive waste storage are carried out. It is expected that share of nuclear power in electric power generation in Japan will reach 40% to the beginning of the 21-th century

  15. Operation and maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Ackermann, G.

    1987-01-01

    This textbook gives a systematic introduction into the operational and maintenance activities in nuclear power plants with pressurized water reactors. Subjects: (1) Setup and operational behaviour of power reactors, (2) setup of nuclear power plants, (3) radiation protection and nuclear safety, (4) nuclear fuel, (5) constructional layout of nuclear power plants, (6) management, and (7) maintenance. 158 figs., 56 tabs

  16. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Sugawara, A.

    1994-01-01

    The energy situation in Japan is briefly outlined. Vulnerability in energy structure of the country is shown by a comparison of primary energy supply patterns of Japan and Western countries. Japan's energy policy consists in reducing dependence on oil, promoting efficient use of energy and increasing use of non-fossil fuels. Nuclear power is a core of alternative energy for petroleum because of stable supply of nuclear fuel, low detrimental emissions and less dependence on the fuel. A short historical review of nuclear power development in Japan is presented. Some future issues as development of entire nuclear fuel cycle, social acceptance, reactor safety and nuclear power economics are also discussed. 6 figs. (R.T.)

  17. Investor perceptions of nuclear power

    International Nuclear Information System (INIS)

    Hewlett, J.G.

    1984-05-01

    Evidence is provided that investor concerns about nuclear power have recently been reflected in the common stock returns of all utilities with such facilities and have resulted in a risk premium. In particular, over the 1978-1982 period, three nuclear-related events occurred at the same time as, and therefore appear to have caused, significant drops in the market values of nuclear utilities relative to their non-nuclear counterparts. The three events were as follows: the accident at TMI, which occurred in March 1979; the realization in the summer of 1980 that an accident of the magnitude of TMI could result in cleanup costs of over $1 billion, which are not completely insurable and could therefore result in substantial losses; and the summer 1982 decision by the Tennessee Valley Authority (TVA) to cancel some if its nuclear power plant construction projects, and the Nuclear Regulatory Commission (NRC) decision to stop work on the construction of the Zimmer reactor, followed by a warning that it might close the Indian Point 2 and 3 reactors. If an individual had invested $100 in an average nuclear utility on the day before the TMI accident and reinvested all dividends, the value of this investment would have fallen by 10% relative to an identical investment in the average non-nuclear utility. The risk of investments in nuclear power versus conventional generating technologies shows nuclear power to be a relatively risky investment. However, relative to all investments, nuclear power was less risky in terms of the type of risk that would cause investors to require a premium before purchasing their securities. 6 figures, 6 tables

  18. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  19. Nuclear power: obstacles and solutions

    International Nuclear Information System (INIS)

    Hart, R.S.

    2002-01-01

    Nuclear power has a history extending over more than 50 years; it has been pursued both for military power applications (primarily aircraft carrier and submarine propulsion) and for commercial power applications. Nuclear power has benefited from many hundreds of billions of dollars in research, development, design, construction, and operations expenditures, and has received substantial attention and support world-wide, having being implemented by most developed countries, including all of the G-7 countries, and several developing countries (for example, India, China, and Republic of Korea). In spite of this long history, massive development effort, and unprecedented financial commitment, nuclear power has failed to achieve commercial success, having captured less than 5% of the world's primary energy supply market. There are many factors contributing to the stagnation/decline of the commercial nuclear power business. These factors include: non competitive economics, lengthy construction schedules, large and demanding human resource requirements, safety concerns, proliferation concerns, waste management concerns, the high degree of government financial and political involvement necessary, and the incompatibility of the available nuclear power plant designs with most process heat applications due to their temperature limitations and/or large heat output. An examination of the obstacles to deployment of nuclear power plants of current design suggest a set of requirements for new nuclear power plants, which may overcome or circumvent these obstacles. These requirements include: inherent characteristics that will achieve reactor shutdown under any postulated accident condition; the removal of decay heat by natural and passive means; no safety dependence on operator actions and tolerant to operator error, and malicious or incompetent operator action; and, economic viability in relatively small unit sizes. Many innovative reactor technologies and concepts are under

  20. Nuclear power: obstacles and solutions

    International Nuclear Information System (INIS)

    Hart, R.S.

    2001-01-01

    Nuclear power has a history extending over more than 50 years; it has been pursued both for military power applications (primarily aircraft carrier and submarine propulsion) and for commercial power applications. Nuclear power has benefited from many hundreds of billions of dollars in research, development, design, construction, and operations expenditures, and has received substantial attention and support world-wide, having being implemented by most developed countries, including all of the G-7 countries, and several developing countries (for example, India, China, and Republic of Korea). In spite of this long history, massive development effort, and unprecedented financial commitment, nuclear power has failed to achieve commercial success, having captured less than 5% of the world's primary energy supply market. There are many factors contributing to the stagnation/decline of the commercial nuclear power business. These factors include: non competitive economics, lengthy construction schedules, large and demanding human resource requirements, safety concerns, proliferation concerns, waste management concerns, the high degree of government financial and political involvement necessary, and the incompatibility of the available nuclear power plant designs with most process heat applications due to their temperature limitations and/or large heat output. An examination of the obstacles to deployment of nuclear power plants of current design suggest a set of requirements for new nuclear power plants, which may overcome or circumvent these obstacles. These requirements include: inherent characteristics that will achieve reactor shutdown under any postulated accident condition; the removal of decay heat by natural and passive means; no safety dependence on operator actions and tolerant to operator error, and malicious or incompetent operator action; and, economic viability in relatively small unit sizes. Many innovative reactor technologies and concepts are under

  1. Swiss energy statistics 2007

    International Nuclear Information System (INIS)

    2008-01-01

    This comprehensive report presents the Swiss Federal Office of Energy's statistics on energy production and consumption in Switzerland in 2007. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The article also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2007 and energy use in various sectors are presented. Finally, the Swiss energy balance with reference to the use of renewable sources of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power

  2. Swiss energy statistics 2000

    International Nuclear Information System (INIS)

    2001-01-01

    This comprehensive report presents the Swiss Federal Office of Energy's statistics on energy production and consumption in Switzerland in 2000. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The article also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2000 and energy use in various sectors are presented. Finally, the Swiss energy balance with reference to the use of renewable sources of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power

  3. Swiss energy statistics 2001

    International Nuclear Information System (INIS)

    2002-01-01

    This comprehensive report presents the Swiss Federal Office of Energy's statistics on energy production and consumption in Switzerland in 2001. Facts and figures are presented in tables and diagrams. First of all, a general overview of Swiss energy consumption is presented that includes details on the shares taken by the various energy carriers involved and their development during the period reviewed. The article also includes graphical representations of energy usage in various sectors such as households, trade and industry, transport and the services sector. Also, economic data on energy consumption is presented. A second chapter takes a look at energy flows from producers to consumers and presents an energy balance for Switzerland in the form of tables and an energy-flow diagram. The individual energy sources and the import, export and storage of energy carriers are discussed as is the conversion between various forms and categories of energy. Details on the consumption of energy, its growth over the years up to 2001 and energy use in various sectors are presented. Finally, the Swiss energy balance with reference to the use of renewable sources of energy such as solar energy, biomass, wastes and ambient heat is discussed and figures are presented on the contribution of renewables to heating and the generation of electrical power

  4. Nuclear power and the private sector

    International Nuclear Information System (INIS)

    Miller, D.J.

    1989-01-01

    The world scene is sketched in which nuclear power already contributes 600 Mtce/year to world energy but where public attitudes in the developed world have become largely hostile. This is despite the proven technology of nuclear power, its safety record (Chernobyl notwithstanding) and its environmentally benign aspects. The United Kingdom government's determination to ensure a continuing role for nuclear power in a privatized electricity supply industry is seen against this background. The structure of the British nuclear power industry undoubtedly presents difficulties for privatization but solutions are available and precedents for private sector nuclear power exist in other countries. Private sector operators will be required to meet the exacting standards set by the independent licensing authority but in view of the public concern redoubled efforts and new approaches will be necessary in public persuasion. Waste disposal is another issue which may have implications for the acceptability of nuclear power in the public sector. Finally, the prospects for investment in new nuclear plant by private generation companies are examined. (U.K.)

  5. Public opinion factors regarding nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-12-31

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry`s practices are aligned with public opinion, a more favorable regulatory climate is possible.

  6. Public opinion factors regarding nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-01-01

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible.

  7. Public opinion factors regarding nuclear power

    International Nuclear Information System (INIS)

    Benson, B.

    1991-01-01

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible

  8. Balakovo nuclear power station

    International Nuclear Information System (INIS)

    1996-01-01

    A key means of improving the safety and reliability of nuclear power plants is through effective training of plant personnel. The goal of this paper is to show the progress of the training at the Balakovo Nuclear Power Plant, and the important role that international cooperation programs have played in that progress

  9. The Economics of Nuclear Power: Is Nuclear Power a Cost-Effective Way to Tackle Climate Change

    International Nuclear Information System (INIS)

    Thomas, S.

    2009-01-01

    The role nuclear power can play in combating climate change is limited by the fact that nuclear can have little role in the transport sector, one of the two major emitters of greenhouse gases. However, nuclear power is often portrayed as the most important potential measure to reduce emissions in the other major emitter of greenhouse gases, the power generation sector. For nearly a decade, there has been talk of a 'nuclear renaissance'. Under this, a new generation of nuclear power plants, so called generation III+ designs, would revitalize ordering in markets, especially Europe and North America, that had seen no orders since the 1980s or earlier. This renaissance and the potential role of nuclear power in combating climate change raise a number of issues, including: 1) Is nuclear power the most cost-effective way to replace fossil fuel power generation? 2) Can the issues that nuclear power brings with it, including environmental impact, safety, waste disposal and weapons proliferation be dealt with effectively enough that they will not be a barrier to the use of nuclear power? 3) Are uranium resources sufficient to allow deployment of nuclear power on the scale necessary to have a significant impact on greenhouse gas emissions with existing technologies or would unproven and even more controversial technologies that use natural uranium more sparingly, such as fast reactors, be required? This paper focuses on the first question and in particular, it examines whether economic factors are behind the failure of the long-forecast 'nuclear renaissance' to materialize in Europe and North America. It examines factors such as the construction cost escalation, difficulties of finance and the cost of capital, the financial crisis of 2008/09, the delays in getting regulatory approval for the new designs, and skills and equipment shortages. It concludes that the main factors behind the delays in new orders are: 1) Poor construction experience with the only two new orders

  10. International nuclear power status 2000

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2001-03-01

    This report is the seventh in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2000, the report contains: 1. General trends in the development of nuclear power. 2. Deposition of low-level radioactive waste. 3. Statistical information on nuclear power production (in 1999). 4. An overview of safety-relevant incidents in 2000. 5. The development in Sweden. 6. The development in Eastern Europe. 7. The development in the rest of the world. 8. Trends in the development of reactor types. 9. Trends in the development of the nuclear fuel cycle. (au)

  11. The nuclear power development policy of Taipower

    International Nuclear Information System (INIS)

    Chen, J.H.

    1987-01-01

    Taipower began its nuclear power epoch in 1978 when the first unit of its First Nuclear Power Station was synchronized to the system on November 1977. At present, Taipower has six units installed in three nuclear power plants, totalling 5144 MW in operation. These units are the mainstay of the 16,600 MW system and have played a significant role in the energy supply of Taiwan. This paper will firstly give a brief overview of Taipower's system, then introduce Taipower's nuclear power policies within the frame of issues on nuclear power economy, nuclear fuel cycle management, nuclear safety and environmental concerns, radioactive waste management, public communications and personnel training. At last, this paper will present the prospect for future nuclear power development in Taiwan with reference to the above discussion. (author)

  12. 2002 Nuclear Power World Report - Evaluation

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    Last year, in 2002, 441 nuclear power plants were available for power supply in 31 countries in the world. With an aggregate gross power of 377,359 MWe, and an aggregate net power of 359,429 MWe, respectively, the nuclear generating capacity reached its highest level so far. Nine different reactor lines are used in commercial facilities. Light water reactors (PWR and BWR) contribute 355 plants, which makes them the most common reactor line. In twelve countries, 32 nuclear power plants with an aggregate gross power of 26,842 MWe and an aggregate net power of 25,546 MWe, respectively, are under construction. Of these, 25 units are light water reactors while eight are CANDU-type plants. In eighteen countries, 94 commercial reactors with more than 5 MWe power have been decommissioned so far. Most of these plants are prototypes with low powers. 228 of the nuclear power plants currently in operation, i.e. slightly more than half of them, were commissioned in the eighties. The oldest commercial nuclear power plant, Calder Hall unit 1, supplied power into the public grid in its 47th year of operation in 2002. The availability in terms of time and capacity of nuclear power plants rose from 74.23% in 1991 to 83.40% in 2001. A continued rise to approx. 85% is expected for 2002. In the same way, the non-availability in terms of time (unscheduled) dropped from 6.90% to 3.48%. The four nuclear power plants in Finland are the world's leaders with a cumulated average capacity availability of 90.00%. (orig.) [de

  13. Nuclear Power in the 21st Century

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2013-01-01

    The International Atomic Energy Agency helps its Member States to use nuclear technology for a broad range of peaceful purposes, one of the most important of which is generating electricity. The accident at the Fukushima Daiichi nuclear power plant in Japan in March 2011 caused anxiety about nuclear safety throughout the world and raised questions about the future of nuclear power. Two years on, it is clear that the use of nuclear power will continue to grow in the coming decades, although growth will be slower than was anticipated before the accident. Many countries with existing nuclear power programmes plan to expand them. Many new countries, both developed and developing, plan to introduce nuclear power. The factors contributing to this growing interest include increasing global demand for energy, as well as concerns about climate change, volatile fossil fuel prices, and security of energy supply. It will be difficult for the world to achieve the twin goals of ensuring sustainable energy supplies and curbing greenhouse gases without nuclear power. The IAEA helps countries that opt for nuclear power to use it safely and securely. Countries that have decided to phase out nuclear power will have to deal with issues such as plant decommissioning, remediation, and waste management for decades to come. The IAEA also assists in these areas. I am grateful to the Russian Federation for hosting the 2013 International Ministerial Conference on Nuclear Power in the 21st Century in St Petersburg in June. This timely conference provides a valuable opportunity to take stock of nuclear power in the wake of the Fukushima Daiichi accident. A high level of public confidence in the safety of nuclear power is essential for the future of the sector. Much valuable work has been done in the past two years to improve safety. But much remains to be done. It is vitally important that the momentum is maintained and that everything is done to ensure that nuclear power is as safe as humanly

  14. Country nuclear power profiles. 2000 ed

    International Nuclear Information System (INIS)

    2001-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA programme on assessment and feedback of nuclear power plant performance. It responded to a need for a database and a technical document containing a description of the economic situation, the energy and the electricity sector and the primary organizations involved in nuclear power in IAEA Member States. In 1998, the first edition of the Country Nuclear Power Profiles was published focusing on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. The compilation was made based on of 29 Member States with operating nuclear power plants by the end of 1995 and incorporated the 'Fact Sheets' on international, multilateral and bilateral agreements as collected by EXPO. In May 1999, an Advisory Group Meeting was organized with the purpose of updating the information in the Country Nuclear Power Profiles of each country, to reflect the new approaches and conditions of the national nuclear power programmes. The impact of the open electricity market, privatization and deregulation on the nuclear sector was an important aspect recommended by the experts to be taken in consideration. It was also recommended to periodically review the status and trends of nuclear industries in IAEA Member States and exchange information among experts of the lessons learned from the countries engaged in nuclear programmes, with a view to update the profiles at two year intervals. This second edition covers the changes in the new environment in the electricity as well as in the nuclear sector, be it that the situation differs from country to country. In general, the information is updated to 1999. For the preparation of this second edition, the IAEA received contributions from all 31 countries with operating power plants by the end of 1999, as well as Italy and the Islamic Republic of Iran. A database has been

  15. Nuclear accidents and safety measures of domestic nuclear power plants

    International Nuclear Information System (INIS)

    Song Zurong; Che Shuwei; Pan Xiang

    2012-01-01

    Based on the design standards for the safety of nuclear and radiation in nuclear power plants, the three accidents in the history of nuclear power are analyzed. And the main factors for these accidents are found out, that is, human factors and unpredicted natural calamity. By combining the design and operation parameters of domestic nuclear plants, the same accidents are studied and some necessary preventive schemes are put forward. In the security operation technology of domestic nuclear power plants nowadays, accidents caused by human factors can by prevented completely. But the safety standards have to be reconsidered for the unpredicted neutral disasters. How to reduce the hazard of nuclear radiation and leakage to the level that can be accepted by the government and public when accidents occur under extreme conditions during construction and operation of nuclear power plants must be considered adequately. (authors)

  16. Voices of nuclear power monitors in fiscal 1982

    International Nuclear Information System (INIS)

    1984-01-01

    The system of nuclear power monitors was set up to hear candid opinions, etc. from general people on nuclear power development and utilization, and reflect them to nuclear power administration. As the monitors, 416 persons were selected across the country. The results in fiscal 1982 are described. (1) Questionnaire survey: Of the 416, 314 persons answered the questionnaire conducted in March, 1983, on future energy, nuclear power development, nuclear power safety administration, and nuclear power P.R. activities. (2) Occasional voices of monitors: Of the total 74 opinions, etc. from the monitors in fiscal 1982, 31 concerned the nuclear power P.R. activities, followed by 16 on nuclear power development and utilization, and 12 on nuclear power administration. (Mori, K.)

  17. Guidebook on the introduction of nuclear power

    International Nuclear Information System (INIS)

    1982-01-01

    This ''Guidebook on the Introduction of Nuclear Power'' has been structured into three parts. The first part contains a survey of nuclear power, with the objective of providing general background information to the reader on the present status and future prospects of nuclear power and on the technical and economic aspects of available power reactor types and nuclear fuel cycles. In the second part of the Guidebook, the special aspects and considerations relevant to the introduction of nuclear power in a country are discussed. The subject is subdivided into three main headings: the technical aspects and national requirements; the safety and environmental considerations; and the international aspects of nuclear power. Emphasis is placed on the tasks to be performed within the country introducing nuclear power, on responsibilities that cannot be delegated and on the need for adequate national infrastructures and long-term commitments. Finally, the third part of the Guidebook contains more detailed information and guidance on the planning and preparatory stages of launching a first nuclear power project, including in particular: nuclear power programme planning, siting, feasibility studies, bidding and contracting. Design, construction and operation are covered in a brief overview for the sake of completeness

  18. Safety technical considerations on the 2012 periodic safety verification of the Beznau nuclear power plant; Sicherheitstechnische Stellungnahme zur Periodischen Sicherheitsüberprüfung 2012 des Kernkraftwerks Beznau

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-12-15

    According to nuclear legislation, the owner of an operational license for a nuclear power plant has to provide a periodic safety verification (PSU) every 10 years. The 'North Eastern Power Plants' company (NOK), today AXPO Power AG already performed such a PSU for the Beznau-2 nuclear reactor block (KKB2) in 2002. The Beznau-1 nuclear reactor block (KKB1) received its definitive operational license in October 1970, after test operation during 7 months. After the license for test operation received on July 16{sup th}, 1971, the operational license of KKB2 was renewed several times, each time for a certain period of validity. In 1991, NOK requested a definitive operational license for KKB2, but in 1994 the Swiss Federal Council lengthened the license for only 10 years. Moreover, it laid down that NOK has to periodically report on the safety of the facility. With its letter of August 23{sup rd}, 1998, the Federal Office of Energy defined the documents to be produced for the PSU. The extent of the PSU was defined in such a way that many documents concern the whole power plant, i.e. both nuclear reactor blocks. On December 3{sup rd}, 2004, the Swiss Federal Council granted KKB2 an operational license of limited validity. The present report reviews the 2012 PSU, which covers the time interval from January 1{sup st}, 2002, to December 31{sup st}, 2011, from the point of view of safety. It contains documents for the evaluation of both reactor blocks at KKB. The Beznau interim storage pool was also taken into consideration; it is situated on the KKB site, but, according to a decision of the Swiss Federal Council of May 23{sup rd}, 1991, it has an independent operational license. The evaluation of ageing surveillance takes the whole operational period of the facility into account, i.e. the ageing mechanisms acting as from the beginning of the operation. Moreover, important developments that occurred after the surveillance time interval have been taken into account

  19. Physics and nuclear power

    International Nuclear Information System (INIS)

    Buttery, N E

    2008-01-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors

  20. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Taniguchi, Haruto; Ueda, Kiyotaka

    1980-01-01

    HVDC transmission directly from a nuclear power plant is expected as one of the bulk power transmission systems from distant power generating area. Successively from the analysis of HVDC transmission from BWR-type nuclear power plant, this report discusses dynamic response characteristics of HVDC transmission (double poles, two circuits) from PWR type nuclear power plant due to dc-line faults (DC-1LG, 2LG) and ac-line faults (3LG) near inverter station. (author)

  1. Nuclear material control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1975-06-01

    Paragraph 70.51(c) of 10 CFR Part 70 requires each licensee who is authorized to possess at any one time special nuclear material in a quantity exceeding one effective kilogram to establish, maintain, and follow written material control and accounting procedures that are sufficient to enable the licensee to account for the special nuclear material in his possession under license. While other paragraphs and sections of Part 70 provide specific requirements for nuclear material control systems for fuel cycle plants, such detailed requirements are not included for nuclear power reactors. This guide identifies elements acceptable to the NRC staff for a nuclear material control system for nuclear power reactors. (U.S.)

  2. Manpower development for nuclear power

    International Nuclear Information System (INIS)

    1980-01-01

    This Guidebook provides policy-makers and managers of nuclear power programmes with information and guidance on the role, requirements, planning and implementation of manpower development programmes. It presents and discusses the manpower requirements associated with the activities of a nuclear power programme, the technical qualifications of this manpower and the manpower development corresponding to these requirements and qualifications. The Guidebook also discusses the purpose and conditions of national participation in the activities of a nuclear power programme

  3. Is nuclear power and alternative?

    International Nuclear Information System (INIS)

    Lejon, E.

    1996-01-01

    In this chapter of the book author deals with the historical background for the nuclear energy power. Some statistical data about nuclear power stations as well as on radioactive wastes are given. The Chernobyl catastrophe is described. Author thinks that nuclear energy is not safe and it has no perspective in future

  4. Operating experience feedback on lose of offsite power supply for nuclear power plant

    International Nuclear Information System (INIS)

    Jiao Feng; Hou Qinmai; Che Shuwei

    2013-01-01

    The function of the service power system of a nuclear power plant is to provide safe and reliable power supply for the nuclear power plant facilities. The safety of nuclear power plant power supply is essential for nuclear safety. The serious accident of Fukushima Daiichi nuclear power plant occurred due to loss of service power and the ultimate heat sink. The service power system has two independent offsite power supplies as working power and auxiliary power. This article collected events of loss of offsite power supply in operating nuclear power plants at home and abroad, and analyzed the plant status and cause of loss of offsite power supply events, and proposed improvement measures for dealing with loss of offsite power supply. (authors)

  5. 2009 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    At the end of 2009, 437 nuclear power plants were available for energy supply in 30 countries of the world. This is 1 plant less than at the end of 2008. The aggregate gross power of the plants amounted to approx. 391.5 GWe, the aggregate net power, to 371.3 GWe. This capacity numbers are a little bit less than one year before (gross: 392.6 GWe, net: 372.2 GWe). Two units were commissioned in 2009; 1 unit in India (Rajasthan 5) and 1 unit in Japan (Tomari 3). Three nuclear power plant were shut down permanently in 2009 in Japan (Hamaoka 1 and Hamaoka 2) and in Lithuania (Ignalina 2). 52 nuclear generating units, i.e. 9 plants more than at the end of 2008, were under construction in late 2009 in 14 countries with an aggregate gross power of approx. 51.2 GWe. Worldwide, some 80 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 130 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2009 achieved another reasonable ranking level of approx. 2,558 billion kWh (2008: approx. 2,628 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 60,500 billion kWh, and operating experience has grown to some 13,950 reactor years. (orig.)

  6. Swiss association for atomic energy (SVA/ASPEA)

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    A report of the general assembly of the Swiss association for atomic energy held on 4th June 1985. The president, Alain Colomb, called for a 'second electrification' of the country to free Switzerland from a dependence on petroleum. Nuclear energy is necessary to combat air pollution. An invited speaker, Manuel Poyatos of the 'Electricite de France', recounted the French experience of restructuring their electric production system; particular the increasing contribution of nuclear energy and the beneficial effects on the environment. (G.T.H.)

  7. Modern nuclear power-green power of the millennium

    International Nuclear Information System (INIS)

    Biswas, R.N.

    2003-01-01

    In India, as well as many developing countries, the demand for power continues to race ahead of the supply position. Our present generating capacity of about 1,08,000 MW needs to be increased by another 1 lac MW during 10th and 11th 5-year plans. Whereas more friendly renewable energy may reach about 10-12%, the rest has to come from conventional thermal, hydel or nuclear energy. Thermal energy actually needs low investment per MW but it is the least eco-friendly. Hydel power is green and clean power but the actual energy generated depends on the water quantity available, hence not fully dependable. Therefore in short, nuclear energy available in abundance, has no option for meeting the increasing base demand, as has been proved in Britain, USA, France, Japan and other countries. This paper gives the latest improvements in nuclear power plant design and construction for improved efficiency, operating safety and safe waste storage facilities and explains that nuclear power is affordable and indispensable

  8. Nuclear power in East Asia

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1996-01-01

    This editorial discusses the shifting dominance in the nuclear reactor technology from the USA to new leadership in East Asia. With the expanding economies and electricity demand, Design, construction and operation of a large number of nuclear power plants in east Asia will support nuclear engineers, technologist, manufacturing facilities, and potential weapons experts. In contrast, the cessation of construction of power reactors in the US is leading to deminished nuclear capabilities

  9. Developing Infrastructure for New Nuclear Power Programmes

    International Nuclear Information System (INIS)

    2011-09-01

    Many countries are interested in introducing or expanding nuclear energy programmes because they regard nuclear power as a clean and stable source of electricity that can help to mitigate the impact of climate change. However, the March 2011 accident at the Fukushima Daiichi nuclear power plant in Japan - caused by an earthquake and tsunami of unprecedented proportions - demonstrated that there is a constant need to improve global nuclear safety, despite the great progress made in the previous 25 years. A 'safety first' approach needs to become fully entrenched among nuclear power plant operators, governments and regulators everywhere. Safety first must also be the watchword for Member States considering the introduction of nuclear power. I believe that all IAEA Member States should have access to nuclear power if they wish to add it their energy mix. While it is up to each country to decide whether or not to opt for nuclear power, the IAEA has a key role to play in ensuring that the development of nuclear power programmes takes place in a safe, efficient, responsible and sustainable manner. The IAEA has developed guidelines and milestones to help countries work in a systematic way towards the introduction of nuclear power. Use of the 'Milestones' approach can increase transparency both within a country introducing nuclear power, and between it and other States. This brochure summarizes the services which the IAEA offers to Member States considering introducing nuclear power. These include advice on proper planning, building the required human resources and infrastructure, establishing legal and regulatory frameworks, and ensuring the highest standards of safety and security, without increasing proliferation risks. The IAEA offers independent know-how on the construction, commissioning, startup and operation of nuclear reactors. Through the Technical Cooperation programme, we provide targeted support to 'newcomer' countries in response to national development needs

  10. Nuclear power in the Philippines

    International Nuclear Information System (INIS)

    1965-01-01

    The first United Nations project of its kind, where the prospects of using nuclear power in a developing country are being analysed, is being carried out in the Philippines. It is entitled, 'Pre-Investment Study on Power, including Nuclear Power, in Luzon'; it is a United Nations Special Fund project, for which the International Atomic Energy Agency is acting as the executing body. Although directed specifically at the situation of the Luzon grid, the approach and the methods evolved should be useful in other countries also. The project was initiated in early 1964 and is expected to be completed by the end of 1965. The Philippines have substantial reserves of hydro capacity, but very little of fossil fuels. The country has been interested for quite some time in the possibility of using nuclear power. In 1956 a study was made of a small nuclear power plant for the Manila area, but such a plant would not have been able to compete with the fossil fuel-fired station. The Philippine Government had in mind the development of Luzon Island, which is the largest and most industrialized part of the Philippines, accounting for 50 per cent of the population and 80 per cent of the power demand. In 1960, the Government invited an Agency mission, whose report entitled, 'The Prospects of Nuclear Power for the Philippines', indicated that the possibilities of using a reasonably large nuclear plant in the Luzon grid deserved serious consideration

  11. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  12. Benefits and risks of nuclear power

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.

    1977-03-01

    Discussion, in a popular form, of issues of interest for an unemotional information of the public on problems of nuclear power: 1) Energy consumption, its assumed growth, and possible ways of supply; 2) the physical fundamental and technical realisation of power generation by nuclear fission; 3) problems of the fuel cycle and possible solutions; 4) the effects of radioactive radiation; 5) the safety of nuclear power plants and the risks of nuclear power as compared to other technical and natural risks. (orig./HP) [de

  13. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2000-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Developmental trends on nuclear power plants in the world'. In this report, some data at the end of 1999 was made up on bases of answers on questionnaires from 72 electric companies in 31 nations and regions in the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; location of the plants; the plants in the world; and so forth. And, it also has some survey results on the 'Liberalization of electric power markets and nuclear power generation' such as some 70% of respondents in nuclear power for future option, gas-thermal power seen as power source with most to gain from liberalization, merits on nuclear power generation (environmental considerations and supply stability), most commonly voiced concern about new plant orders in poor economy, and so forth. (G.K.)

  14. Present state of nuclear power business in China

    International Nuclear Information System (INIS)

    Morokuzu, Muneo

    2011-01-01

    This article presented present state of nuclear power business in China based on latest information obtained at visit at nuclear power related facilities in December 2010. China Atomic Energy Authority (CAEA) promoted nuclear power, while National Nuclear Safety Administration (NNSA) was an independent regulatory body of nuclear power. Construction of nuclear power was promoted by three national nuclear engineering development corporations: China National Nuclear Corporation (CNNC), China Guangdon Nuclear Power Corporation (CGNPC) and State Nuclear Power Technology Corporation (SNPTC). In China, 13 nuclear power reactors were in operation and 27 under construction. Shortage of nuclear engineers became evident with rapid growth of nuclear power, which forced delay of nuclear power construction schedule. Future strategies of reactor type varied domestic, French and US ones respectively dependent on CNNC, CGNPC and SNPTC, CNNC seemed to change from third generation reactor (CNP 1000) to second one (CP 1000) due to regulatory licensing difficulty of NNSA. As for advanced reactor development, large scale PWR project, HTR project and FBR development project were proceeding. As HTR project was selected as high-priority project, an experimental reactor (HTR-10) was critical in 2000 and construction of demonstration reactor started in 2009. (T. Tanaka)

  15. Country nuclear power profiles. 2003 ed

    International Nuclear Information System (INIS)

    2004-03-01

    The preparation of Country Nuclear Power Profiles (CNPP) was initiated within the framework of the IAEA's programme on assessment and feedback of nuclear power plant performance. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. The CNPP covers background information on the status and development of nuclear power programmes in countries having nuclear plants in operation and/or plants under construction. It reviews the organizational and industrial aspects of nuclear power programmes in participating countries, and provides information about the relevant legislative, regulatory and international frameworks in each country. The CNPP compiles the current issues in the new environment within which the electricity and nuclear sector operates, i.e. energy policy, and privatization and deregulation in these sectors, the role of government, nuclear energy and climate change, and safety and waste management, which differ from country to country

  16. Country nuclear power profiles. 2003 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    The preparation of Country Nuclear Power Profiles (CNPP) was initiated within the framework of the IAEA's programme on assessment and feedback of nuclear power plant performance. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. The CNPP covers background information on the status and development of nuclear power programmes in countries having nuclear plants in operation and/or plants under construction. It reviews the organizational and industrial aspects of nuclear power programmes in participating countries, and provides information about the relevant legislative, regulatory and international frameworks in each country. The CNPP compiles the current issues in the new environment within which the electricity and nuclear sector operates, i.e. energy policy, and privatization and deregulation in these sectors, the role of government, nuclear energy and climate change, and safety and waste management, which differ from country to country.

  17. Country nuclear power profiles. 2004 ed

    International Nuclear Information System (INIS)

    2005-12-01

    The preparation of Country Nuclear Power Profiles (CNPP) was initiated within the framework of the IAEA's programme on assessment and feedback of nuclear power plant performance. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. The CNPP covers background information on the status and development of nuclear power programmes in countries having nuclear plants in operation and/or plants under construction. It reviews the organizational and industrial aspects of nuclear power programmes in participating countries, and provides information about the relevant legislative, regulatory and international frameworks in each country. The CNPP compiles the current issues in the new environment within which the electricity and nuclear sector operates, i.e. energy policy, and privatization and deregulation in these sectors, the role of government, nuclear energy and climate change, and safety and waste management, which differ from country to country

  18. Commercial nuclear power 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs

  19. Commercial nuclear power 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  20. Swiss Federal Energy Research Concept 2008 - 2011; Konzept der Energieforschung des Bundes 2008 bis 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    This report for the Swiss Federal Office of Energy (SFOE) presents the plan for the activities of the Swiss Federal Commission on Energy Research CORE during the period 2008 - 2011. The motivation behind the state promotion of energy research is discussed. The visions, aims and strategies of the energy research programme are discussed. The main areas of research to be addressed during the period are presented. These include the efficient use of energy in buildings and traffic - batteries and supercaps, electrical technologies, combustion systems, fuel cells and power generation are discussed. Research to be done in the area of renewable sources of energy are listed. Here, solar-thermal, photovoltaics, hydrogen, biomass, geothermal energy, wind energy and ambient heat are among the areas to be examined. Research on nuclear energy and safety aspects are mentioned. Finally, work on the basics of energy economy are looked at and the allocation of funding during the period 2008 - 2011 is looked at.