WorldWideScience

Sample records for swiprosin-1 regulates cytokine

  1. EFhd2/swiprosin-1 regulates LPS-induced macrophage recruitment via enhancing actin polymerization and cell migration.

    Science.gov (United States)

    Tu, Ye; Zhang, Lichao; Tong, Lingchang; Wang, Yue; Zhang, Su; Wang, Rongmei; Li, Ling; Wang, Zhibin

    2018-02-01

    Macrophage motility is vital in innate immunity, which contributes strategically to the defensive inflammation process. During bacterial infection, lipopolysaccharide (LPS) potently activates the migration of macrophages via the NF-κB/iNOS/c-Src signaling pathway. However, the downstream region of c-Src that participates in macrophage migration is unclear. EFhd2, a novel actin bundling protein, was evaluated for its role in LPS-stimulated macrophage migration in this study. We found that LPS stimulated the up-regulation, tyrosine phosphorylation and membrane translocation of EFhd2 in macrophages. The absence of EFhd2 inhibited the recruitment of macrophages in the lungs of LPS-induced septic mice. LPS-induced macrophage migration was neutralized by the deletion of EFhd2. EFhd2-mediated up-regulation of NFPs (including Rac1/Cdc42, N-WASP/WAVE2 and Arp2/3 complex) induced by LPS could be used to explain the role of EFhd2 in promoting actin polymerization. Furthermore, the purified EFhd2 could directly promote actin polymerization in vitro. Dasatinib, a c-Src specific inhibitor, inhibited the up-regulation of EFhd2 stimulated by LPS. Therefore, our study demonstrated that EFhd2 might be involved in LPS-stimulated macrophage migration, which provides a potential target for LPS-activated c-Src during macrophage mobilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cytokine regulation of immune tolerance

    OpenAIRE

    Wu, Jie; Xie, Aini; Chen, Wenhao

    2014-01-01

    The immune system provides defenses against invading pathogens while maintaining immune tolerance to self-antigens. This immune homeostasis is harmonized by the direct interactions between immune cells and the cytokine environment in which immune cells develop and function. Herein, we discuss three non-redundant paradigms by which cytokines maintain or break immune tolerance. We firstly describe how anti-inflammatory cytokines exert direct inhibitory effects on immune cells to enforce immune ...

  3. Inflammasome-independent regulation of IL-1-family cytokines

    NARCIS (Netherlands)

    Netea, M.G.; Veerdonk, F.L. van de; Meer, J.W.M. van der; Dinarello, C.A.; Joosten, L.A.B.

    2015-01-01

    Induction, production, and release of proinflammatory cytokines are essential steps to establish an effective host defense. Cytokines of the interleukin-1 (IL-1) family induce inflammation and regulate T lymphocyte responses while also displaying homeostatic and metabolic activities. With the

  4. Regulation of cytokines by small RNAs during skin inflammation

    Directory of Open Access Journals (Sweden)

    Mikkelsen Jacob G

    2010-07-01

    Full Text Available Abstract Intercellular signaling by cytokines is a vital feature of the innate immune system. In skin, an inflammatory response is mediated by cytokines and an entwined network of cellular communication between T-cells and epidermal keratinocytes. Dysregulated cytokine production, orchestrated by activated T-cells homing to the skin, is believed to be the main cause of psoriasis, a common inflammatory skin disorder. Cytokines are heavily regulated at the transcriptional level, but emerging evidence suggests that regulatory mechanisms that operate after transcription play a key role in balancing the production of cytokines. Herein, we review the nature of cytokine signaling in psoriasis with particular emphasis on regulation by mRNA destabilizing elements and the potential targeting of cytokine-encoding mRNAs by miRNAs. The proposed linkage between mRNA decay mediated by AU-rich elements and miRNA association is described and discussed as a possible general feature of cytokine regulation in skin. Moreover, we describe the latest attempts to therapeutically target cytokines at the RNA level in psoriasis by exploiting the cellular RNA interference machinery. The applicability of cytokine-encoding mRNAs as future clinical drug targets is evaluated, and advances and obstacles related to topical administration of RNA-based drugs targeting the cytokine circuit in psoriasis are described.

  5. Regulation of human cytokines by Cordyceps militaris.

    Science.gov (United States)

    Sun, Yong; Shao, Yani; Zhang, Zhiguo; Wang, Lianfen; Mariga, Alfred M; Pang, Guangchang; Geng, Chaoyu; Ho, Chi-Tang; Hu, Qiuhui; Zhao, Liyan

    2014-12-01

    Cordyceps (Cordyceps militaris) exhibits many biological activities including antioxidant, inhibition of inflammation, cancer prevention, hypoglycemic, and antiaging properties, etc. However, a majority of studies involving C. militaris have focused only on in vitro and animal models, and there is a lack of direct translation and application of study results to clinical practice (e.g., health benefits). In this study, we investigated the regulatory effects of C. militaris micron powder (3 doses) on the human immune system. The study results showed that administration of C. militaris at various dosages reduced the activity of cytokines such as eotaxin, fibroblast growth factor-2, GRO, and monocyte chemoattractant protein-1. In addition, there was a significant decrease in the activity of various cytokines, including GRO, sCD40L, and tumor necrosis factor-α, and a significant downregulation of interleukin-12(p70), interferon-γ inducible protein 10, and macrophage inflammatory protein-1β activities, indicating that C. militaris at all three dosages downregulated the activity of cytokines, especially inflammatory cytokines and chemokines. Different dosages of C. militaris produced different changes in cytokines. Copyright © 2014. Published by Elsevier B.V.

  6. Regulation of human cytokines by Cordyceps militaris

    Directory of Open Access Journals (Sweden)

    Yong Sun

    2014-12-01

    Full Text Available Cordyceps (Cordyceps militaris exhibits many biological activities including antioxidant, inhibition of inflammation, cancer prevention, hypoglycemic, and antiaging properties, etc. However, a majority of studies involving C. militaris have focused only on in vitro and animal models, and there is a lack of direct translation and application of study results to clinical practice (e.g., health benefits. In this study, we investigated the regulatory effects of C. militaris micron powder (3 doses on the human immune system. The study results showed that administration of C. militaris at various dosages reduced the activity of cytokines such as eotaxin, fibroblast growth factor-2, GRO, and monocyte chemoattractant protein-1. In addition, there was a significant decrease in the activity of various cytokines, including GRO, sCD40L, and tumor necrosis factor-α, and a significant downregulation of interleukin-12(p70, interferon-γ inducible protein 10, and macrophage inflammatory protein-1β activities, indicating that C. militaris at all three dosages downregulated the activity of cytokines, especially inflammatory cytokines and chemokines. Different dosages of C. militaris produced different changes in cytokines.

  7. Proinflammatory Cytokines as Regulators of Vaginal Microbiota.

    Science.gov (United States)

    Kremleva, E A; Sgibnev, A V

    2016-11-01

    It was shown that IL-1β, IL-8, and IL-6 in concentrations similar to those in the vagina of healthy women stimulated the growth of normal microflora (Lactobacillus spp.) and suppressed the growth and biofilm production by S. aureus and E. coli. On the contrary, these cytokines in higher concentrations typical of vaginal dysbiosis suppressed normal microflora and stimulated the growth of opportunistic microorganisms. TGF-β1 in both doses produced a stimulating effects on study vaginal microsymbionts. It is hypothesized that pro-inflammatory cytokines serve as the molecules of interspecies communication coordinating the interactions of all components of the vaginal symbiotic system.

  8. Temporal Regulation of Cytokines by the Circadian Clock

    Directory of Open Access Journals (Sweden)

    Atsuhito Nakao

    2014-01-01

    Full Text Available Several parameters of the immune system exhibit oscillations with a period of approximately 24 hours that refers to “circadian rhythms.” Such daily variations in host immune system status might evolve to maximize immune reactions at times when encounters with pathogens are most likely to occur. However, the mechanisms behind circadian immunity have not been fully understood. Recent studies reveal that the internal time keeping system “circadian clock” plays a key role in driving the daily rhythms evident in the immune system. Importantly, several studies unveil molecular mechanisms of how certain clock proteins (e.g., BMAL1 and CLOCK temporally regulate expression of cytokines. Since cytokines are crucial mediators for shaping immune responses, this review mainly summarizes the new knowledge that highlights an emerging role of the circadian clock as a novel regulator of cytokines. A greater understanding of circadian regulation of cytokines will be important to exploit new strategies to protect host against infection by efficient cytokine induction or to treat autoimmunity and allergy by ameliorating excessive activity of cytokines.

  9. Inflammasome-independent regulation of IL-1-family cytokines.

    Science.gov (United States)

    Netea, Mihai G; van de Veerdonk, Frank L; van der Meer, Jos W M; Dinarello, Charles A; Joosten, Leo A B

    2015-01-01

    Induction, production, and release of proinflammatory cytokines are essential steps to establish an effective host defense. Cytokines of the interleukin-1 (IL-1) family induce inflammation and regulate T lymphocyte responses while also displaying homeostatic and metabolic activities. With the exception of the IL-1 receptor antagonist, all IL-1 family cytokines lack a signal peptide and require proteolytic processing into an active molecule. One such unique protease is caspase-1, which is activated by protein platforms called the inflammasomes. However, increasing evidence suggests that inflammasomes and caspase-1 are not the only mechanism for processing IL-1 cytokines. IL-1 cytokines are often released as precursors and require extracellular processing for activity. Here we review the inflammasome-independent enzymatic processes that are able to activate IL-1 cytokines, paying special attention to neutrophil-derived serine proteases, which subsequently induce inflammation and modulate host defense. The inflammasome-independent processing of IL-1 cytokines has important consequences for understanding inflammatory diseases, and it impacts the design of IL-1-based modulatory therapies.

  10. Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease

    Science.gov (United States)

    Foster, Meika; Samman, Samir

    2012-01-01

    In atherosclerosis and diabetes mellitus, the concomitant presence of low-grade systemic inflammation and mild zinc deficiency highlights a role for zinc nutrition in the management of chronic disease. This review aims to evaluate the literature that reports on the interactions of zinc and cytokines. In humans, inflammatory cytokines have been shown both to up- and down-regulate the expression of specific cellular zinc transporters in response to an increased demand for zinc in inflammatory conditions. The acute phase response includes a rapid decline in the plasma zinc concentration as a result of the redistribution of zinc into cellular compartments. Zinc deficiency influences the generation of cytokines, including IL-1β, IL-2, IL-6, and TNF-α, and in response to zinc supplementation plasma cytokines exhibit a dose-dependent response. The mechanism of action may reflect the ability of zinc to either induce or inhibit the activation of NF-κB. Confounders in understanding the zinc-cytokine relationship on the basis of in vitro experimentation include methodological issues such as the cell type and the means of activating cells in culture. Impaired zinc homeostasis and chronic inflammation feature prominently in a number of cardiometabolic diseases. Given the high prevalence of zinc deficiency and chronic disease globally, the interplay of zinc and inflammation warrants further examination. PMID:22852057

  11. DMPD: Regulation of cytokine signaling by SOCS family molecules. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14644140 Regulation of cytokine signaling by SOCS family molecules. Fujimoto M, Nak...a T. Trends Immunol. 2003 Dec;24(12):659-66. (.png) (.svg) (.html) (.csml) Show Regulation of cytokine signaling by SOCS family... molecules. PubmedID 14644140 Title Regulation of cytokine signaling by SOCS family molec

  12. Temporal Regulation by Innate Type 2 Cytokines in Food Allergies.

    Science.gov (United States)

    Graham, Michelle T; Andorf, Sandra; Spergel, Jonathan M; Chatila, Talal A; Nadeau, Kari C

    2016-10-01

    Food allergies (FAs) are a growing epidemic in western countries with poorly defined etiology. Defined as an adverse immune response to common food allergens, FAs present heterogeneously as a single- or multi-organ response that ranges in severity from localized hives and angioedema to systemic anaphylaxis. Current research focusing on epithelial-derived cytokines contends that temporal regulation by these factors impact initial sensitization and persistence of FA responses upon repeated food allergen exposure. Mechanistic understanding of FA draws insight from a myriad of atopic conditions studied in humans and modeled in mice. In this review, we will highlight how epithelial-derived cytokines initiate and then potentiate FAs. We will also review existing evidence of the contribution of other atopic diseases to FA pathogenesis and whether FA symptoms overlap with other atopic diseases.

  13. Cross-regulation of cytokine signalling: pro-inflammatory cytokines restrict IL-6 signalling through receptor internalisation and degradation.

    Science.gov (United States)

    Radtke, Simone; Wüller, Stefan; Yang, Xiang-ping; Lippok, Barbara E; Mütze, Barbara; Mais, Christine; de Leur, Hildegard Schmitz-Van; Bode, Johannes G; Gaestel, Matthias; Heinrich, Peter C; Behrmann, Iris; Schaper, Fred; Hermanns, Heike M

    2010-03-15

    The inflammatory response involves a complex interplay of different cytokines which act in an auto- or paracrine manner to induce the so-called acute phase response. Cytokines are known to crosstalk on multiple levels, for instance by regulating the mRNA stability of targeted cytokines through activation of the p38-MAPK pathway. In our study we discovered a new mechanism that answers the long-standing question how pro-inflammatory cytokines and environmental stress restrict immediate signalling of interleukin (IL)-6-type cytokines. We show that p38, activated by IL-1beta, TNFalpha or environmental stress, impairs IL-6-induced JAK/STAT signalling through phosphorylation of the common cytokine receptor subunit gp130 and its subsequent internalisation and degradation. We identify MK2 as the kinase that phosphorylates serine 782 in the cytoplasmic part of gp130. Consequently, inhibition of p38 or MK2, deletion of MK2 or mutation of crucial amino acids within the MK2 target site or the di-leucine internalisation motif blocks receptor depletion and restores IL-6-dependent STAT activation as well as gene induction. Hence, a novel negative crosstalk mechanism for cytokine signalling is described, where cytokine receptor turnover is regulated in trans by pro-inflammatory cytokines and stress stimuli to coordinate the inflammatory response.

  14. Cytokine Regulation of Microenvironmental Cells in Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Gregor Hoermann

    2015-01-01

    Full Text Available The term myeloproliferative neoplasms (MPN refers to a heterogeneous group of diseases including not only polycythemia vera (PV, essential thrombocythemia (ET, and primary myelofibrosis (PMF, but also chronic myeloid leukemia (CML, and systemic mastocytosis (SM. Despite the clinical and biological differences between these diseases, common pathophysiological mechanisms have been identified in MPN. First, aberrant tyrosine kinase signaling due to somatic mutations in certain driver genes is common to these MPN. Second, alterations of the bone marrow microenvironment are found in all MPN types and have been implicated in the pathogenesis of the diseases. Finally, elevated levels of proinflammatory and microenvironment-regulating cytokines are commonly found in all MPN-variants. In this paper, we review the effects of MPN-related oncogenes on cytokine expression and release and describe common as well as distinct pathogenetic mechanisms underlying microenvironmental changes in various MPN. Furthermore, targeting of the microenvironment in MPN is discussed. Such novel therapies may enhance the efficacy and may overcome resistance to established tyrosine kinase inhibitor treatment in these patients. Nevertheless, additional basic studies on the complex interplay of neoplastic and stromal cells are required in order to optimize targeting strategies and to translate these concepts into clinical application.

  15. ROG, repressor of GATA, regulates the expression of cytokine genes.

    Science.gov (United States)

    Miaw, S C; Choi, A; Yu, E; Kishikawa, H; Ho, I C

    2000-03-01

    GATA-3 is a T cell-specific transcription factor and is essential for the development of the T cell lineage. Recently, it was shown that the expression of GATA-3 is further induced in CD4+ helper T cells upon differentiation into type 2 but not type 1 effector cells. Here, we report the molecular cloning of a GATA-3 interacting protein, repressor of GATA (ROG). ROG is a lymphoid-specific gene and is rapidly induced in Th cells upon stimulation with anti-CD3. In in vitro assays, ROG represses the GATA-3-induced transactivation. Furthermore, overexpression of ROG in Th clones inhibits the production of Th cytokines. Taken together, our results suggest that ROG might play a critical role in regulating the differentiation and activation of Th cells.

  16. Lactobacillus Acidophilus Strain L-92 Regulates the Production of Th1 Cytokine as well as Th2 Cytokines

    Directory of Open Access Journals (Sweden)

    Akiko Torii

    2007-01-01

    Conclusions: Oral L-92 administration regulated both Th1 and Th2 cytokine responses, suppressed serum OVA-specific IgE, and induced TGF-β production in PPs. TGF-β is known to be associated with activation of regulatory T (Treg cells. These data suggest that LAB may have immunomodulative effect by Treg cells via TGF-β activity.

  17. Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines

    DEFF Research Database (Denmark)

    Lundh, M; Christensen, D P; Rasmussen, D N

    2010-01-01

    Cytokine-induced beta cell toxicity is abrogated by non-selective inhibitors of lysine deacetylases (KDACs). The KDAC family consists of 11 members, namely histone deacetylases HDAC1 to HDAC11, but it is not known which KDAC members play a role in cytokine-mediated beta cell death. The aim...... of the present study was to examine the KDAC gene expression profile of the beta cell and to investigate whether KDAC expression is regulated by cytokines. In addition, the protective effect of the non-selective KDAC inhibitor ITF2357 and interdependent regulation of four selected KDACs were investigated....

  18. Regulating cytokine function enhances safety and activity of genetic cancer therapies.

    Science.gov (United States)

    Chen, Hannah; Sampath, Padma; Hou, Weizhou; Thorne, Stephen H

    2013-01-01

    Genetic therapies, including transfected immune cells and viral vectors, continue to show clinical responses as systemically deliverable and targeted therapeutics, with the first such approaches having been approved for cancer treatment. The majority of these employ cytokine transgenes. However, expression of cytokines early after systemic delivery can result in increased toxicity and nonspecific induction of the immune response. In addition, premature immune-mediated clearance of the therapy may result, especially for viral-based approaches. Here, it was initially verified that cytokine (interleukin (IL)2) or chemokine (CCL5) expression from a systemically delivered oncolytic virus resulted in reduced oncolytic activity and suboptimal immune activation, while IL2 also resulted in increased toxicity. However, all these limitations could be overcome through incorporation of exogenous regulation of cytokine or chemokine transgene function through fusion of a small and externally controllable destabilizing domain to the protein of interest. Regulation allowed an initial phase without cytokine function, permitting enhanced delivery and oncolytic activity before activation of cytokine function and a subsequent phase of enhanced and tumor-targeted immunotherapeutic activity. As a result of this exogenous regulation of cytokine function, both oncolytic and immune-mediated mechanisms of action were optimized, greatly enhancing therapeutic activity, while toxicity was significantly reduced.

  19. Neutral buoyancy and sleep-deprived serum factors alter expression of cytokines regulating osteogenesis

    Science.gov (United States)

    Gorczynski, Reginald M.; Gorczynski, Christopher P.; Gorczynski, Laura Y.; Hu, Jiang; Lu, Jin; Manuel, Justin; Lee, Lydia

    2005-05-01

    We examined expression of genes associated with cytokine production, and genes implicated in regulating bone metabolism, in bone stromal and osteoblast cells incubated under standard ground conditions and under conditions of neutral buoyancy, and in the presence/absence of serum from normal or sleep-deprived mice. We observed a clear interaction between these two conditions (exposure to neutral buoyancy and serum stimulation) in promoting enhanced osteoclastogenesis. Both conditions independently altered expression of a number of cytokines implicated in the regulation of bone metabolism. However, using stromal cells from IL-1 and TNF α cytokine r KO mice, we concluded that the increased bone loss under microgravity conditions was not primarily cytokine mediated.

  20. Endothelin Regulates Porphyromonas gingivalis-Induced Production of Inflammatory Cytokines.

    Directory of Open Access Journals (Sweden)

    Ga-Yeon Son

    Full Text Available Periodontitis is a very common oral inflammatory disease that results in the destruction of supporting connective and osseous tissues of the teeth. Although the exact etiology is still unclear, Gram-negative bacteria, especially Porphyromonas gingivalis in subgingival pockets are thought to be one of the major etiologic agents of periodontitis. Endothelin (ET is a family of three 21-amino acid peptides, ET-1, -2, and -3, that activate G protein-coupled receptors, ETA and ETB. Endothelin is involved in the occurrence and progression of various inflammatory diseases. Previous reports have shown that ET-1 and its receptors, ETA and ETB are expressed in the periodontal tissues and, that ET-1 levels in gingival crevicular fluid are increased in periodontitis patients. Moreover, P. gingivalis infection has been shown to induce the production of ET-1 along with other inflammatory cytokines. Despite these studies, however, the functional significance of endothelin in periodontitis is still largely unknown. In this study, we explored the cellular and molecular mechanisms of ET-1 action in periodontitis using human gingival epithelial cells (HGECs. ET-1 and ETA, but not ETB, were abundantly expressed in HGECs. Stimulation of HGECs with P. gingivalis or P. gingivalis lipopolysaccharide increased the expression of ET-1 and ETA suggesting the activation of the endothelin signaling pathway. Production of inflammatory cytokines, IL-1β, TNFα, and IL-6, was significantly enhanced by exogenous ET-1 treatment, and this effect depended on the mitogen-activated protein kinases via intracellular Ca2+ increase, which resulted from the activation of the phospholipase C/inositol 1,4,5-trisphosphate pathway. The inhibition of the endothelin receptor-mediated signaling pathway with the dual receptor inhibitor, bosentan, partially ameliorated alveolar bone loss and immune cell infiltration. These results suggest that endothelin plays an important role in P. gingivalis

  1. Gallium arsenide selectively up-regulates inflammatory cytokine expression at exposure site.

    Science.gov (United States)

    Becker, Stephen M; McCoy, Kathleen L

    2003-12-01

    Gallium arsenide (GaAs), a technologically and economically important semiconductor, is widely utilized in both military and commercial applications. This chemical is a potential health hazard as a carcinogen and immunotoxicant. We previously reported that macrophages at the exposure site exhibit characteristics of activation. In vitro culture of macrophages with GaAs fails to recapitulate the in vivo phenotype, suggesting that complete GaAs-mediated activation in vivo may require other cells or components found in the body's microenvironment. Our present study examined the role of cytokines upon GaAs-mediated macrophage activation. Intraperitoneal administration of GaAs elicited rapid specific recruitment of blood monocytes to the exposure site. This recruitment occurred concomitant with up-regulation of 17 chemokine and inflammatory cytokine mRNAs, while transcripts of three inhibitory cytokines diminished. Administration of latex beads caused less cytokine induction than GaAs, indicating that changes in mRNA levels could not be attributed to phagocytosis. Four representative chemokines and cytokines were selected for further analysis. Increased cytokine mRNA expression was paralleled by similar increases in cytokine protein levels, and secreted protein products were detected in peritoneal fluid. Cytokine protein expression was constrained to myeloid cells, and to a lesser extent to B cells. Alterations in patterns of cytokine gene expression elucidate mechanisms for increased cellular activation and antigen processing, and modulation of the inflammatory response. Our findings indicate that in vivo GaAs exposure alters cytokine gene expression, which may lead to an inflammatory reaction and contribute to pathological tissue damage.

  2. Tamm-Horsfall Protein Regulates Circulating and Renal Cytokines by Affecting Glomerular Filtration Rate and Acting as a Urinary Cytokine Trap*

    Science.gov (United States)

    Liu, Yan; El-Achkar, Tarek M.; Wu, Xue-Ru

    2012-01-01

    Although few organ systems play a more important role than the kidneys in cytokine catabolism, the mechanism(s) regulating this pivotal physiological function and how its deficiency affects systemic cytokine homeostasis remain unclear. Here we show that elimination of Tamm-Horsfall protein (THP) expression from mouse kidneys caused a marked elevation of circulating IFN-γ, IL1α, TNF-α, IL6, CXCL1, and IL13. Accompanying this were enlarged spleens with prominent white-pulp macrophage infiltration. Lipopolysaccharide (LPS) exacerbated the increase of serum cytokines without a corresponding increase in their urinary excretion in THP knock-out (KO) mice. This, along with the rise of serum cystatin C and the reduced inulin and creatinine clearance from the circulation, suggested that diminished glomerular filtration may contribute to reduced cytokine clearance in THP KO mice both at the baseline and under stress. Unlike wild-type mice where renal and urinary cytokines formed specific in vivo complexes with THP, this “trapping” effect was absent in THP KO mice, thus explaining why cytokine signaling pathways were activated in renal epithelial cells in such mice. Our study provides new evidence implicating an important role of THP in influencing cytokine clearance and acting as a decoy receptor for urinary cytokines. Based on these and other data, we present a unifying model that underscores the role of THP as a major regulator of renal and systemic immunity. PMID:22451664

  3. Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity.

    Science.gov (United States)

    Smith, Judith A

    2018-01-01

    Protein folding in the endoplasmic reticulum (ER) is an essential cell function. To safeguard this process in the face of environmental threats and internal stressors, cells mount an evolutionarily conserved response known as the unfolded protein response (UPR). Invading pathogens induce cellular stress that impacts protein folding, thus the UPR is well situated to sense danger and contribute to immune responses. Cytokines (inflammatory cytokines and interferons) critically mediate host defense against pathogens, but when aberrantly produced, may also drive pathologic inflammation. The UPR influences cytokine production on multiple levels, from stimulation of pattern recognition receptors, to modulation of inflammatory signaling pathways, and the regulation of cytokine transcription factors. This review will focus on the mechanisms underlying cytokine regulation by the UPR, and the repercussions of this relationship for infection and autoimmune/autoinflammatory diseases. Interrogation of viral and bacterial infections has revealed increasing numbers of examples where pathogens induce or modulate the UPR and implicated UPR-modulated cytokines in host response. The flip side of this coin, the UPR/ER stress responses have been increasingly recognized in a variety of autoimmune and inflammatory diseases. Examples include monogenic disorders of ER function, diseases linked to misfolding protein (HLA-B27 and spondyloarthritis), diseases directly implicating UPR and autophagy genes (inflammatory bowel disease), and autoimmune diseases targeting highly secretory cells (e.g., diabetes). Given the burgeoning interest in pharmacologically targeting the UPR, greater discernment is needed regarding how the UPR regulates cytokine production during specific infections and autoimmune processes, and the relative place of this interaction in pathogenesis.

  4. Molecular mechanisms of novel regulators in cytokine signal transduction

    NARCIS (Netherlands)

    Xiaofei, Zhang

    2013-01-01

    By identifying and studying novel regulators, the studies described in this thesis give substantive insights into the molecular mechanisms and different levels of control of TGF-β/BMP, IL-1β and Wnt signaling pathways. Crucially, our work for the first time demonstrated the monoubiquitination of an

  5. The immunoproteasome is induced by cytokines and regulates apoptosis in human islets

    DEFF Research Database (Denmark)

    Lundh, Morten; Bugliani, Marco; Dahlby, Tina

    2017-01-01

    In addition to degrading misfolded and damaged proteins, the proteasome regulates the fate of cells in response to stress. The role of the proteasome in pro-inflammatory cytokine-induced human beta-cell apoptosis is unknown. Using INS-1, INS-1E and human islets exposed to combinations of IFNγ, IL-1...... proteins in INS-1 cells. While cytokines increased total cellular NFκB subunit P50 and P52 levels and reduced the cytosolic NFκB subunit P65 and IκB levels, these effects were unaffected by PSMB8 inhibition. We conclude that beta cells upregulate immuno-proteasome expression and activity in response...

  6. Dietary factors regulate cytokines in murine models of systemic lupus erythematosus.

    Science.gov (United States)

    Hsieh, Chia-Chien; Lin, Bi-Fong

    2011-11-01

    Cytokines play the active roles in the pathogenesis of systemic lupus erythematosus (SLE) and contribute significantly to the immune imbalance in this disease. Conservative therapeutic approaches, such as dietary modifications have been shown to have some beneficial impact on the disease activity of the SLE. Over the past years, accumulating evidences have supported a major role for specific dietary factors, including calorie restriction, n-3/n-6 fatty acids, vitamin A, vitamin D, vitamin E, phytoestrogens or herbal medicine in the regulation of cytokines involved in SLE development. Although there are many reviews that discuss the issue of nutrition and immunity, there are relatively few articles that focus on the regulation of cytokines by dietary factors. This concise review will summarize those animal studies that investigated not only the outcome of autoantibody production and proteinuria, but also cytokines production. However, the field of dietary factors in the immunomodulation of SLE is still in its infancy. More clinical studies are needed to confirm the preliminary results and advance the knowledge in this field. Lifestyle modification and adjustments in diet are important and encouraged to be suggested as an adjuvant therapy for SLE. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Infringement of cytokines regulation and morphological changes of thyroid gland in Wistar rats with experimental thyrotoxicosis

    OpenAIRE

    V V Zdor; E V Markelova; O M Oleksenko

    2012-01-01

    In view of abundance of autoimmune diseases of thyroid gland, Graves’ Disease in particular, the role of immune regulation and the possibility of controlling it by estimating the function of regulatory T-limphocytes are important questions today. Available for practical estimation of T- and B-lymphocytes tolerance disorder in GBD are serum levels of Th1- and Th2- marker cytokines. Experimental thyrotoxicosis in Wistar rats showed significant increase in serum Il-1α, IFN-γ and Il-10 depending ...

  8. Regulation of embryonic hematopoiesis by a cytokine-inducible SH2 domain homolog in zebrafish.

    Science.gov (United States)

    Lewis, Rowena S; Noor, Suzita M; Fraser, Fiona W; Sertori, Robert; Liongue, Clifford; Ward, Alister C

    2014-06-15

    Cytokine-inducible SH2 domain-containing protein (CISH), a member of the suppressor of cytokine signaling family of negative feedback regulators, is induced by cytokines that activate STAT5 and can inhibit STAT5 signaling in vitro. However, demonstration of a definitive in vivo role for CISH during development has remained elusive. This study employed expression analysis and morpholino-mediated knockdown in zebrafish in concert with bioinformatics and biochemical approaches to investigate CISH function. Two zebrafish CISH paralogs were identified, cish.a and cish.b, with high overall conservation (43-46% identity) with their mammalian counterparts. The cish.a gene was maternally derived, with transcripts present throughout embryogenesis, and increasing at 4-5 d after fertilization, whereas cish.b expression commenced at 8 h after fertilization. Expression of cish.a was regulated by the JAK2/STAT5 pathway via conserved tetrameric STAT5 binding sites (TTCN3GAA) in its promoter. Injection of morpholinos targeting cish.a, but not cish.b or control morpholinos, resulted in enhanced embryonic erythropoiesis, myelopoiesis, and lymphopoiesis, including a 2- 3-fold increase in erythrocytic markers. This occurred concomitantly with increased activation of STAT5. This study indicates that CISH functions as a conserved in vivo target and regulator of STAT5 in the control of embryonic hematopoiesis. Copyright © 2014 by The American Association of Immunologists, Inc.

  9. DMPD: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12773095 Principles of interleukin (IL)-6-type cytokine signalling and its regulati...):1-20. (.png) (.svg) (.html) (.csml) Show Principles of interleukin (IL)-6-type cytokine signalling and its... regulation. PubmedID 12773095 Title Principles of interleukin (IL)-6-type cytoki

  10. Neural cell 3D microtissue formation is marked by cytokines' up-regulation.

    Directory of Open Access Journals (Sweden)

    Yinzhi Lai

    Full Text Available Cells cultured in three dimensional (3D scaffolds as opposed to traditional two-dimensional (2D substrates have been considered more physiologically relevant based on their superior ability to emulate the in vivo environment. Combined with stem cell technology, 3D cell cultures can provide a promising alternative for use in cell-based assays or biosensors in non-clinical drug discovery studies. To advance 3D culture technology, a case has been made for identifying and validating three-dimensionality biomarkers. With this goal in mind, we conducted a transcriptomic expression comparison among neural progenitor cells cultured on 2D substrates, 3D porous polystyrene scaffolds, and as 3D neurospheres (in vivo surrogate. Up-regulation of cytokines as a group in 3D and neurospheres was observed. A group of 13 cytokines were commonly up-regulated in cells cultured in polystyrene scaffolds and neurospheres, suggesting potential for any or a combination from this list to serve as three-dimensionality biomarkers. These results are supportive of further cytokine identification and validation studies with cells from non-neural tissue.

  11. Extracellular IL-33 cytokine, but not endogenous nuclear IL-33, regulates protein expression in endothelial cells.

    Science.gov (United States)

    Gautier, Violette; Cayrol, Corinne; Farache, Dorian; Roga, Stéphane; Monsarrat, Bernard; Burlet-Schiltz, Odile; Gonzalez de Peredo, Anne; Girard, Jean-Philippe

    2016-10-03

    IL-33 is a nuclear cytokine from the IL-1 family that plays important roles in health and disease. Extracellular IL-33 activates a growing number of target cells, including group 2 innate lymphoid cells, mast cells and regulatory T cells, but it remains unclear whether intracellular nuclear IL-33 has additional functions in the nucleus. Here, we used a global proteomic approach based on high-resolution mass spectrometry to compare the extracellular and intracellular roles of IL-33 in primary human endothelial cells, a major source of IL-33 protein in human tissues. We found that exogenous extracellular IL-33 cytokine induced expression of a distinct set of proteins associated with inflammatory responses in endothelial cells. In contrast, knockdown of endogenous nuclear IL-33 expression using two independent RNA silencing strategies had no reproducible effect on the endothelial cell proteome. These results suggest that IL-33 acts as a cytokine but not as a nuclear factor regulating gene expression in endothelial cells.

  12. Salivary cytokine response in the aftermath of stress: An emotion regulation perspective.

    Science.gov (United States)

    Newton, Tamara L; Fernandez-Botran, Rafael; Lyle, Keith B; Szabo, Yvette Z; Miller, James J; Warnecke, Ashlee J

    2017-09-01

    Elevated inflammation in the context of stress has been implicated in mental and physical health. Approaching this from an emotion regulation perspective, we tested whether the salivary cytokine response to stress is dampened by using distraction to minimize opportunity for poststressor rumination. Healthy young adults were randomized to an acute stressor: modified Trier Social Stress Test (TSST, Study 1) or angry memory retrieval (Study 2). Within each study, participants were randomized to poststressor condition-rest or distraction-at a 3:1 ratio. Saliva, collected before and 40 min after the end of each stressor, was assayed for proinflammatory cytokines (PICs): interleukin-1β (IL-1β), TNF-α, and IL-6. Both stressors increased all PICs, and both provoked negative emotion. At 40 min post-TSST, salivary PIC increases did not differ between distraction and rest, but correlated positively with emotional reactivity to stress. At 40 min after memory retrieval, IL-1β increases and intrusive rumination were lower during distraction than rest, but did not correlate with emotional reactivity. Trait rumination and interference control mechanisms, also measured, played little role in PIC increases. Overall, after some stressors, some salivary cytokine responses are lower during distraction than rest. The roles of specific emotions, emotional intensity, and poststressor timing of saliva collection in this finding require clarification. Furthermore, the possibility of two affective paths to inflammation in the context of stress-one sensitive to opportunities for early occurring emotion regulation (as reflected in emotional reactivity), and one sensitive to late-occurring emotion regulation (as reflected in distraction after stress)-deserves attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice.

    Science.gov (United States)

    Chen, Yong; Boettger, Michael K; Reif, Andreas; Schmitt, Angelika; Uçeyler, Nurcan; Sommer, Claudia

    2010-03-02

    Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1beta), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1beta. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1beta, and IL-10 following CFA, overall corroborating the inhibitor data. These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  14. Anti-cytokine autoantibodies suggest pathogenetic links with autoimmune regulator deficiency in humans and mice

    Science.gov (United States)

    Kärner, J.; Meager, A.; Laan, M.; Maslovskaja, J.; Pihlap, M.; Remm, A.; Juronen, E.; Wolff, A. S. B.; Husebye, E. S.; Podkrajšek, K. T.; Bratanic, N.; Battelino, T.; Willcox, N.; Peterson, P.; Kisand, K.

    2013-01-01

    Summary Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is a recessive disorder resulting from mutations in the autoimmune regulator (AIRE). The patients' autoantibodies recognize not only multiple organ-specific targets, but also many type I interferons (IFNs) and most T helper type 17 (Th17) cell-associated cytokines, whose biological actions they neutralize in vitro. These anti-cytokine autoantibodies are highly disease-specific: otherwise, they have been found only in patients with thymomas, tumours of thymic epithelial cells that fail to express AIRE. Moreover, autoantibodies against Th17 cell-associated cytokines correlate with chronic mucocutaneous candidiasis in both syndromes. Here, we demonstrate that the immunoglobulin (Ig)Gs but not the IgAs in APECED sera are responsible for neutralizing IFN-ω, IFN-α2a, interleukin (IL)-17A and IL-22. Their dominant subclasses proved to be IgG1 and, surprisingly, IgG4 without IgE, possibly implicating regulatory T cell responses and/or epithelia in their initiation in these AIRE-deficiency states. The epitopes on IL-22 and IFN-α2a appeared mainly conformational. We also found mainly IgG1 neutralizing autoantibodies to IL-17A in aged AIRE-deficient BALB/c mice – the first report of any target shared by these human and murine AIRE-deficiency states. We conclude that autoimmunization against cytokines in AIRE deficiency is not simply a mere side effect of chronic mucosal Candida infection, but appears to be related more closely to disease initiation. PMID:23379432

  15. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice

    Directory of Open Access Journals (Sweden)

    Üçeyler Nurcan

    2010-03-01

    Full Text Available Abstract Background Although it has been largely demonstrated that nitric oxide synthase (NOS, a key enzyme for nitric oxide (NO production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Results Intraperitoneal (i.p. pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor, aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor, L-N(G-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor, but not L-N(5-(1-iminoethyl-ornithine (L-NIO, a selective endothelial NOS inhibitor, significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl. injection of complete Freund's adjuvant (CFA. Real-time reverse transcription-polymerase chain reaction (RT-PCR revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF, interleukin-1 beta (IL-1β, and interleukin-10 (IL-10 gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1β. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO mice had lower gene expression of TNF, IL-1β, and IL-10 following CFA, overall corroborating the inhibitor data. Conclusion These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  16. Neutralization of MMP-2 protects Staphylococcus aureus infection induced septic arthritis in mice and regulates the levels of cytokines.

    Science.gov (United States)

    Sultana, Sahin; Adhikary, Rana; Nandi, Ajeya; Bishayi, Biswadev

    2016-10-01

    Matrix metalloproteinases (MMPs) are crucial players in Staphylococcus aureus mediated synovial tissue destruction in the pathogenesis of septic arthritis. Bacterial insult increases proteolytic matrix fragments by activated chondrocytes and synovial fibroblasts leading to induction of matrix metalloproteinases. Tissue destruction via MMPs induced by bacterial products, necrotic tissues and proinflammatory cytokines have been reported. Cytokines like TNF-α, IL-1β released from host cells in response to S. aureus infection promote cartilage degradation by stimulating the production of MMPs. Antibiotic treatment can eradicate invading bacteria but elevated levels of cytokines and cytokines induced MMPs activation lead to progressive and devastating bone and cartilage destruction even after bacterial clearance. Like other MMPs, MMP-2 also contributes to extracellular matrix degradation in different types of arthritis. Release of certain pro inflammatory cytokines can also be regulated by MMP-2 activation leading to further tissue destruction. The role of MMP-2 in the pathogenesis of S. aureus infection induced septic arthritis and its influence on cytokines regulation needs further investigation. Whether neutralization of MMP-2 provides protection against Staphylococcus aureus infection induced septic arthritis in mice is an obvious question. Here we reported that neutralization of MMP-2 during S. aureus infection induced septic arthritis might be beneficial for preventing infection induced extracellular matrix destruction thereby decreasing bacterial burden in synovial tissues and regulating inflammatory cytokines in arthritic mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Peculiarities of cytokine type of regulation of immune answer in women with ovarian endometriomas

    Directory of Open Access Journals (Sweden)

    O. S. Shapoval

    2017-10-01

    Full Text Available The problem of improving the treatment of endometrioid ovarian cysts is actual. The aim of the work was to reveal the features of the cytokine type of regulation of the immune response in women with ovarian endometriomas. Materials and methods. 100 women of reproductive age were examined (control group – 50 healthy women, the main one – 51 patients with ovatian endometriomas with different parity. General clinical examination, study of the immune status, bacteriological study of the vaginal discharge were conducted. Statistical processing of the obtained data was carried out using computer programs STATISTICA package (StatSoft Statistica v.6.0. Results. In the spectrum of microorganisms isolated from the vagina, G- and G+ bacteria (E. coli, Ent. Faecalis, Staphylococcus, Streptococcus coagulo-negative and coagulo-positive, fungi of the genus Candida were present. In all patients of the main group, a conditionally pathogenic flora, represented by Ent. faecalis was sown in 80 % of cases. – 107 CFU/ml, there was a decrease in the intolerance of colonization of Lactobacillus spp. In patients with infertility and nulliparity, a decrease in the functional activity of neutrophils at the digestion stage was noted. The indices of the phagocytic number of neutrophils indicated incompleteness of phagocytosis against the background of the depleted functional-metabolic reserve, the parameters of the bactericidal system were reduced. In women giving birth, the functional activity of neutrophils did not change, there was a decrease in digestive capacity against the background of the preserved functional metabolic reserve. In the group of nulliparous women, a Th2/Th1 type of immune response with a predominance of Th2 type was observed (an increase in the production of IL-4, IL-6, TNF-α in the blood serum was noted. When infertility, a Th1/Th2 type of immune response was observed with a predominance of the Th1 type (an increase in the content of TNF

  18. Autoantibodies to Chemokines and Cytokines Participate in the Regulation of Cancer and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Nathan Karin

    2018-03-01

    Full Text Available We have previously shown that predominant expression of key inflammatory cytokines and chemokines at autoimmune sites or tumor sites induces loss of B cells tolerance, resulting in autoantibody production against the dominant cytokine/chemokine that is largely expressed at these sites. These autoantibodies are high-affinity neutralizing antibodies. Based on animal models studies, we suggested that they participate in the regulation of cancer and autoimmunity, albeit at the level of their production cannot entirely prevent the development and progression of these diseases. We have, therefore, named this selective breakdown of tolerance as “Beneficial Autoimmunity.” Despite its beneficial outcome, this process is likely to be stochastic and not directed by a deterministic mechanism, and is likely to be associated with the dominant expression of these inflammatory mediators at sites that are partially immune privileged. A recent study conducted on autoimmune regulator-deficient patients reported that in human this type of breakdown of B cell tolerance is T cell dependent. This explains, in part, why the response is highly restricted, and includes high-affinity antibodies. The current mini-review explores this subject from different complementary perspectives. It also discusses three optional translational aspects: amplification of autoantibody production as a therapeutic approach, development of autoantibody based diagnostic tools, and the use of B cells from donors that produce these autoantibodies for the development of high-affinity human monoclonal antibodies.

  19. Butyrate regulates the expression of inflammatory and chemotactic cytokines in human acute leukemic cells during apoptosis.

    Science.gov (United States)

    Pulliam, Stephanie R; Pellom, Samuel T; Shanker, Anil; Adunyah, Samuel E

    2016-08-01

    Butyrate is a histone deacetylase inhibitor implicated in many studies as a potential therapy for various forms of cancer. High concentrations of butyrate (>1.5mM) have been shown to activate apoptosis in several cancer cell lines including prostate, breast, and leukemia. Butyrate is also known to influence multiple signaling pathways that are mediators of cytokine production. The purpose of this study was to evaluate the impact of high concentrations of butyrate on the cancer microenvironment vis-à-vis apoptosis, cellular migration, and capacity to modulate cytokine expression in cancer cells. The results indicate that high concentrations of butyrate induced a 2-fold activation of caspase-3 and reduced cell viability by 60% in U937 leukemia cells. Within 24h, butyrate significantly decreased the levels of chemokines CCL2 and CCL5 in HL-60 and U937 cells, and decreased CCL5 in THP-1 leukemia cells. Differential effects were observed in treatments with valproic acid for CCL2 and CCL5 indicating butyrate-specificity. Many of the biological effects examined in this study are linked to activation of the AKT and MAPK signaling pathways; therefore, we investigated whether butyrate alters the levels of phosphorylated forms of these signaling proteins and how it correlated with the expression of chemokines. The results show that butyrate may partially regulate CCL5 production via p38 MAPK. The decrease in p-ERK1/2 and p-AKT levels correlated with the decrease in CCL2 production. These data suggest that while promoting apoptosis, butyrate has the potential to influence the cancer microenvironment by inducing differential expression of cytokines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. HYPOXIHYPOBAROTHERAPY IN REGULATION OF NEUROHUMORAL AND CYTOKINE RESPONSE IN REHABILITATION OF CHILDREN WITH BRONCHIAL ASTHMA

    Directory of Open Access Journals (Sweden)

    G.D. Alemanova

    2009-01-01

    Full Text Available The effect of hypoxihypobarotherapy in children with bronchial asthma at the rehabilitation stage on the clinicals and dynamics of immunity response to the disease has been studied. Clinical efficacy of hypoxihypobarotherapy was 63,3% in moderate asthma. Positive dynamics of immunological indicators and neuropeptides have manifested in reduced of IL 4, IL 5, IL 18 and substance P serum levels. Use of hypoxihypobarotherapy in children with bronchial asthma has resulted in favourable clinical and immune dynamics and positive alteration of neurohumoral regulation mechanisms and reduced intensity of neurogenic inflammation. Determining immunological indicators, including neuropeptides, may serve as an additional criterion for assessing the efficacy of this treatment in children with bronchial asthma at the rehabilitation stage.Key words: children, bronchial asthma, pneumotherapy, hypoxihypobarotherapy, neuropeptides, cytokines.

  1. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic ß cell fate in response to cytokines

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Tonnesen, Morten Fog; Madsen, Andreas Nygaard

    2012-01-01

    knockout islets is defective, highlighting a physiological role of iron and ROS in the regulation of insulin secretion. Dmt1 knockout mice are protected against multiple low-dose streptozotocin and high-fat diet-induced glucose intolerance, models of type 1 and type 2 diabetes, respectively. Thus, ß cells......Reactive oxygen species (ROS) contribute to target-cell damage in inflammatory and iron-overload diseases. Little is known about iron transport regulation during inflammatory attack. Through a combination of in vitro and in vivo studies, we show that the proinflammatory cytokine IL-1ß induces...... divalent metal transporter 1 (DMT1) expression correlating with increased ß cell iron content and ROS production. Iron chelation and siRNA and genetic knockdown of DMT1 expression reduce cytokine-induced ROS formation and cell death. Glucose-stimulated insulin secretion in the absence of cytokines in Dmt1...

  2. Cytokines regulate complement receptor immunoglobulin expression and phagocytosis of Candida albicans in human macrophages: A control point in anti-microbial immunity.

    Science.gov (United States)

    Munawara, Usma; Small, Annabelle G; Quach, Alex; Gorgani, Nick N; Abbott, Catherine A; Ferrante, Antonio

    2017-06-22

    Complement Receptor Immunoglobulin (CRIg), selectively expressed by macrophages, plays an important role in innate immunity by promoting phagocytosis of bacteria. Thus modulation of CRIg on macrophages by cytokines can be an important mechanism by which cytokines regulate anti-microbial immunity. The effects of the cytokines, tumor necrosis factor, transforming growth factor-β1, interferon-γ, interleukin (IL)-4, IL-13, IL-10, IL-1β, IL-6, lymphotoxin-α, macrophage-colony stimulating factor (M-CSF) and GM-CSF on CRIg expression were examined in human macrophages. We demonstrated that cytokines regulated the CRIg expression on macrophages during their development from monocytes in culture at the transcriptional level using qPCR and protein by Western blotting. Both CRIg spliced forms (Long and Short), were similarly regulated by cytokines. Direct addition of cytokines to matured CRIg+ macrophages also changed CRIg mRNA expression, suggesting that cytokines control macrophage function via CRIg, at two checkpoints. Interestingly the classical complement receptors, CR3 and CR4 were differentially regulated by cytokines. The changes in CRIg but not CR3/CR4 mRNA expression correlated with ability to phagocytose Candida albicans by macrophages. These findings suggest that CRIg is likely to be a control point in infection and immunity through which cytokines can mediate their effects, and is differentially regulated from CR3 and CR4 by cytokines.

  3. Regulation and functions of the IL-10 family of cytokines in inflammation and disease.

    Science.gov (United States)

    Ouyang, Wenjun; Rutz, Sascha; Crellin, Natasha K; Valdez, Patricia A; Hymowitz, Sarah G

    2011-01-01

    The IL-10 family of cytokines consists of nine members: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, and the more distantly related IL-28A, IL-28B, and IL-29. Evolutionarily, IL-10 family cytokines emerged before the adaptive immune response. These cytokines elicit diverse host defense mechanisms, especially from epithelial cells, during various infections. IL-10 family cytokines are essential for maintaining the integrity and homeostasis of tissue epithelial layers. Members of this family can promote innate immune responses from tissue epithelia to limit the damage caused by viral and bacterial infections. These cytokines can also facilitate the tissue-healing process in injuries caused by infection or inflammation. Finally, IL-10 itself can repress proinflammatory responses and limit unnecessary tissue disruptions caused by inflammation. Thus, IL-10 family cytokines have indispensable functions in many infectious and inflammatory diseases.

  4. Clash of the Cytokine Titans: counter-regulation of interleukin-1 and type I interferon-mediated inflammatory responses.

    Science.gov (United States)

    Mayer-Barber, Katrin D; Yan, Bo

    2017-01-01

    Over the past decades the notion of 'inflammation' has been extended beyond the original hallmarks of rubor (redness), calor (heat), tumor (swelling) and dolor (pain) described by Celsus. We have gained a more detailed understanding of the cellular players and molecular mediators of inflammation which is now being applied and extended to areas of biomedical research such as cancer, obesity, heart disease, metabolism, auto-inflammatory disorders, autoimmunity and infectious diseases. Innate cytokines are often central components of inflammatory responses. Here, we discuss how the type I interferon and interleukin-1 cytokine pathways represent distinct and specialized categories of inflammatory responses and how these key mediators of inflammation counter-regulate each other.

  5. Saponin Inhibits Hepatitis C Virus Propagation by Up-regulating Suppressor of Cytokine Signaling 2

    Science.gov (United States)

    Kang, Sang-Min; Min, Saehong; Son, Kidong; Lee, Han Sol; Park, Eun Mee; Ngo, Huong T. T.; Tran, Huong T. L.; Lim, Yun-Sook; Hwang, Soon B.

    2012-01-01

    Saponins are a group of naturally occurring plant glycosides which possess a wide range of pharmacological properties, including anti-tumorigenic and antiviral activities. To investigate whether saponin has anti-hepatitis C virus (HCV) activity, we examined the effect of saponin on HCV replication. HCV replication was efficiently inhibited at a concentration of 10 µg/ml of saponin in cell culture grown HCV (HCVcc)-infected cells. Inhibitory effect of saponin on HCV replication was verified by quantitative real-time PCR, reporter assay, and immunoblot analysis. In addition, saponin potentiated IFN-α-induced anti-HCV activity. Moreover, saponin exerted antiviral activity even in IFN-α resistant mutant HCVcc-infected cells. To investigate how cellular genes were regulated by saponin, we performed microarray analysis using HCVcc-infected cells. We demonstrated that suppressor of cytokine signaling 2 (SOCS2) protein level was distinctively increased by saponin, which in turn resulted in inhibition of HCV replication. We further showed that silencing of SOCS2 resurrected HCV replication and overexpression of SOCS2 suppressed HCV replication. These data imply that saponin inhibits HCV replication via SOCS2 signaling pathway. These findings suggest that saponin may be a potent therapeutic agent for HCV patients. PMID:22745742

  6. Innate Lymphoid Cells (ILCs): Cytokine Hubs Regulating Immunity and Tissue Homeostasis

    NARCIS (Netherlands)

    Nagasawa, Maho; Spits, Hergen; Ros, Xavier Romero

    2017-01-01

    Innate lymphoid cells (ILCs) have emerged as an expanding family of effector cells particularly enriched in the mucosal barriers. ILCs are promptly activated by stress signals and multiple epithelial- and myeloid-cell-derived cytokines. In response, ILCs rapidly secrete effector cytokines, which

  7. The purine receptor P2X7R regulates the release of pro-inflammatory cytokines in human craniopharyngioma.

    Science.gov (United States)

    Nie, Jing; Huang, Guang-Long; Deng, Sheng-Ze; Bao, Yun; Liu, Ya-Wei; Feng, Zhan-Peng; Wang, Chao-Hu; Chen, Ming; Qi, Song-Tao; Pan, Jun

    2017-06-01

    Craniopharyngiomas (CPs) are usually benign, non-metastasizing embryonic malformations originating from the sellar area. They are, however, locally invasive and generate adherent interfaces with the surrounding brain parenchyma. Previous studies have shown the tumor microenvironment is characterized by a local abundance of adenosine triphosphate (ATP), infiltration of leukocytes and elevated levels of pro-inflammatory cytokines that are thought to be responsible, at least in part, for the local invasion. Here, we examine whether ATP, via the P2X7R, participates in the regulation of cytokine expression in CPs. The expression of P2X7R and pro-inflammatory cytokines were measured at the RNA and protein levels both in tumor samples and in primary cultured tumor cells. Furthermore, cytokine modulation was measured after manipulating P2X7R in cultured tumor cells by siRNA-mediated knockdown, as well as pharmacologically by using selective agonists and antagonists. The following results were observed. A number of cytokines, in particular IL-6, IL-8 and MCP-1, were elevated in patient plasma, tumor tissue and cultured tumor cells. P2X7R was expressed in tumor tissue as well as in cultured tumor cells. RNA expression as measured in 48 resected tumors was positively correlated with the RNA levels of IL-6, IL-8 and MCP-1 in tumors. Furthermore, knockdown of P2X7R in primary tumor cultures reduced, and stimulation of P2XR7 by a specific agonist enhanced the expression of these cytokines. This latter stimulation involved a Ca 2+ -dependent mechanism and could be counteracted by the addition of an antagonist. In conclusion, the results suggest that P2X7R may promote IL-6, IL-8 and MCP-1 production and secretion and contribute to the invasion and adhesion of CPs to the surrounding tissue. © 2017 The authors.

  8. Role of opioid peptides in the regulation of cytokine production by murine CD4+ T cells.

    Science.gov (United States)

    van den Bergh, P; Dobber, R; Ramlal, S; Rozing, J; Nagelkerken, L

    1994-03-01

    The presence of the opioid peptides alpha- and beta-endorphin (-End) but not methionine enkephalin (Met-enk) in in vitro cultures of purified CD4+ T cells, stimulated with concanavalin A in the presence of irradiated spleen cells, resulted in a threefold stimulation of IL-2, IL-4, and IFN-gamma production. The stimulating effect was dependent on the concentration of the peptides and reached optimal values in the dose range from 10(-12) to 10(-10) M. Similar results were obtained when purified CD4+ T cells were stimulated with immobilized anti-CD3, indicating a direct effect of opioid peptides on CD4+ T cells. Moreover, in this system a twofold enhancement of IL-6, but not IL-1, secretion was observed. These stimulatory effects were not mediated through opioid receptors since the peptide fragment beta-End6-31 that lacks the N-terminal opioid receptor binding part was still stimulatory. This is in agreement with our finding that beta-End did not affect cAMP, as described for the triggering of classical opioid receptors. Experiments undertaken to reveal the mechanism of action of opioid peptides suggest an overall enhancement of lymphokine production: (1) enhancement of IL-4 production occurred also in the presence of excess IL-2; and (2) neither IL-1 receptor-antagonizing protein nor anti-IL-6 were capable to abrogate the stimulatory effect on IL-2 and IL-4 production. Finally, the presence and activity of opioid receptors in cultures of CD4+ T cells were substantiated by the fact that the opioid receptor antagonist naloxone by itself enhanced cytokine synthesis, which points to the endogenous production by lymphocytes of down-regulating opioid peptides.

  9. Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity

    OpenAIRE

    Judith A. Smith; Judith A. Smith

    2018-01-01

    Protein folding in the endoplasmic reticulum (ER) is an essential cell function. To safeguard this process in the face of environmental threats and internal stressors, cells mount an evolutionarily conserved response known as the unfolded protein response (UPR). Invading pathogens induce cellular stress that impacts protein folding, thus the UPR is well situated to sense danger and contribute to immune responses. Cytokines (inflammatory cytokines and interferons) critically mediate host defen...

  10. Cytokines as cellular communicators

    Directory of Open Access Journals (Sweden)

    R. Debets

    1996-01-01

    Full Text Available Cytokines and their receptors are involved in the pathophysiology of many diseases. Here we present a detailed review on cytokines, receptors and signalling routes, and show that one important lesson from cytokine biology is the complex and diverse regulation of cytokine activity. The activity of cytokines is controlled at the level of transcription, translation, storage, processing, posttranslational modification, trapping, binding by soluble proteins, and receptor number and/or function. Translation of this diverse regulation in strategies aimed at the control of cytokine activity will result in the development of more specific and selective drugs to treat diseases.

  11. Learning from the Messengers: Innate Sensing of Viruses and Cytokine Regulation of Immunity — Clues for Treatments and Vaccines

    Directory of Open Access Journals (Sweden)

    Jesper Melchjorsen

    2013-01-01

    Full Text Available Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs, recognizing distinct conserved pathogen-associated molecular patterns (PAMPs. The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response.

  12. Inflammatory cytokine regulation by LPS and lymphoid cells in human gamma-irradiated monocytes/macrophages; Regulation des cytokines de l`inflammation en presence de LPS ou de lymphocytes dans les monocytes/macrophages humains irradies

    Energy Technology Data Exchange (ETDEWEB)

    Pons, I.; Gras, G.; Dormont, D. [Centre de Recherches du Service de Sante des Armees, La Tronche, 38 - Grenoble (France)]|[Centre de Recherches du Service de Sante des Armees - Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France)]|[Paris-5 Univ., 75 (France)

    1997-12-31

    We have investigated the inflammatory cytokine regulation after ionizing radiation of monocytes/macrophages. We have not evidenced any significant induction of tumour necrosis factor-{alpha}(TNF{alpha}) after irradiation alone. For one donor only out of eight, interleukin-1{beta}(IL-l{beta}) gene expression was affected by {gamma}-irradiation, with a 2-3-fold increase in level, while for two other donors, interleukin-6 (IL-6) mRNA expression was 5-14 fold increased. For one of the eight donors tested, monocytes/macrophages responded to 10 Gy {gamma}-rays by releasing inflammatory cytokines. In the presence of LPS, a significant increase of IL-1{beta} mRNA expression was detected in 10 Gy {gamma}-irradiated cells treated with 1 {mu}g/ml LPS. In most cases, combination of LPS treatment and 10 Gy irradiation down-regulated cytokine secretion except for a TNF{alpha} induction at 6 h post-irradiation. In the presence of lymphoid cells, IL-6 mRNA level was increased in irradiated cells at 24 h. Increases of IL-1{beta} and IL-6 releases were detected at 24 h post-irradiation too. (authors)

  13. Structural Pathways of Cytokines May Illuminate Their Roles in Regulation of Cancer Development and Immunotherapy

    Directory of Open Access Journals (Sweden)

    Emine Guven-Maiorov

    2014-03-01

    Full Text Available Cytokines are messengers between tissues and the immune system. They play essential roles in cancer initiation, promotion, metastasis, and immunotherapy. Structural pathways of cytokine signaling which contain their interactions can help understand their action in the tumor microenvironment. Here, our aim is to provide an overview of the role of cytokines in tumor development from a structural perspective. Atomic details of protein-protein interactions can help in understanding how an upstream signal is transduced; how higher-order oligomerization modes of proteins can influence their function; how mutations, inhibitors or antagonists can change cellular consequences; why the same protein can lead to distinct outcomes, and which alternative parallel pathways can take over. They also help to design drugs/inhibitors against proteins de novo or by mimicking natural antagonists as in the case of interferon-γ. Since the structural database (PDB is limited, structural pathways are largely built from a series of predicted binary protein-protein interactions. Below, to illustrate how protein-protein interactions can help illuminate roles played by cytokines, we model some cytokine interaction complexes exploiting a powerful algorithm (PRotein Interactions by Structural Matching—PRISM.

  14. Structural Pathways of Cytokines May Illuminate Their Roles in Regulation of Cancer Development and Immunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Guven-Maiorov, Emine; Acuner-Ozbabacan, Saliha Ece; Keskin, Ozlem; Gursoy, Attila [Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul (Turkey); Nussinov, Ruth, E-mail: nussinor@helix.nih.gov [Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702 (United States); Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-03-25

    Cytokines are messengers between tissues and the immune system. They play essential roles in cancer initiation, promotion, metastasis, and immunotherapy. Structural pathways of cytokine signaling which contain their interactions can help understand their action in the tumor microenvironment. Here, our aim is to provide an overview of the role of cytokines in tumor development from a structural perspective. Atomic details of protein-protein interactions can help in understanding how an upstream signal is transduced; how higher-order oligomerization modes of proteins can influence their function; how mutations, inhibitors or antagonists can change cellular consequences; why the same protein can lead to distinct outcomes, and which alternative parallel pathways can take over. They also help to design drugs/inhibitors against proteins de novo or by mimicking natural antagonists as in the case of interferon-γ. Since the structural database (PDB) is limited, structural pathways are largely built from a series of predicted binary protein-protein interactions. Below, to illustrate how protein-protein interactions can help illuminate roles played by cytokines, we model some cytokine interaction complexes exploiting a powerful algorithm (PRotein Interactions by Structural Matching—PRISM)

  15. Structural Pathways of Cytokines May Illuminate Their Roles in Regulation of Cancer Development and Immunotherapy

    International Nuclear Information System (INIS)

    Guven-Maiorov, Emine; Acuner-Ozbabacan, Saliha Ece; Keskin, Ozlem; Gursoy, Attila; Nussinov, Ruth

    2014-01-01

    Cytokines are messengers between tissues and the immune system. They play essential roles in cancer initiation, promotion, metastasis, and immunotherapy. Structural pathways of cytokine signaling which contain their interactions can help understand their action in the tumor microenvironment. Here, our aim is to provide an overview of the role of cytokines in tumor development from a structural perspective. Atomic details of protein-protein interactions can help in understanding how an upstream signal is transduced; how higher-order oligomerization modes of proteins can influence their function; how mutations, inhibitors or antagonists can change cellular consequences; why the same protein can lead to distinct outcomes, and which alternative parallel pathways can take over. They also help to design drugs/inhibitors against proteins de novo or by mimicking natural antagonists as in the case of interferon-γ. Since the structural database (PDB) is limited, structural pathways are largely built from a series of predicted binary protein-protein interactions. Below, to illustrate how protein-protein interactions can help illuminate roles played by cytokines, we model some cytokine interaction complexes exploiting a powerful algorithm (PRotein Interactions by Structural Matching—PRISM)

  16. Cytokine-Regulation of Na+-K+-Cl- Cotransporter 1 and Cystic Fibrosis Transmembrane Conductance Regulator-Potential Role in Pulmonary Inflammation and Edema Formation.

    Science.gov (United States)

    Weidenfeld, Sarah; Kuebler, Wolfgang M

    2017-01-01

    Pulmonary edema, a major complication of lung injury and inflammation, is defined as accumulation of extravascular fluid in the lungs leading to impaired diffusion of respiratory gases. Lung fluid balance across the alveolar epithelial barrier protects the distal airspace from excess fluid accumulation and is mainly regulated by active sodium transport and Cl - absorption. Increased hydrostatic pressure as seen in cardiogenic edema or increased vascular permeability as present in inflammatory lung diseases such as the acute respiratory distress syndrome (ARDS) causes a reversal of transepithelial fluid transport resulting in the formation of pulmonary edema. The basolateral expressed Na + -K + -2Cl - cotransporter 1 (NKCC1) and the apical Cl - channel cystic fibrosis transmembrane conductance regulator (CFTR) are considered to be critically involved in the pathogenesis of pulmonary edema and have also been implicated in the inflammatory response in ARDS. Expression and function of both NKCC1 and CFTR can be modulated by released cytokines; however, the relevance of this modulation in the context of ARDS and pulmonary edema is so far unclear. Here, we review the existing literature on the regulation of NKCC1 and CFTR by cytokines, and-based on the known involvement of NKCC1 and CFTR in lung edema and inflammation-speculate on the role of cytokine-dependent NKCC1/CFTR regulation for the pathogenesis and potential treatment of pulmonary inflammation and edema formation.

  17. Bone and bone marrow pro-osteoclastogenic cytokines are up-regulated in osteoporosis fragility fractures.

    Science.gov (United States)

    D'Amelio, P; Roato, I; D'Amico, L; Veneziano, L; Suman, E; Sassi, F; Bisignano, G; Ferracini, R; Gargiulo, G; Castoldi, F; Pescarmona, G P; Isaia, G C

    2011-11-01

    This study evaluates cytokines production in bone and bone marrow of patients with an osteoporotic fracture or with osteoarthritis by real time PCR, Western blot and immunohistochemistry. We demonstrate that the cytokine pattern is shifted towards osteoclast activation and osteoblast inhibition in patients with osteoporotic fractures. Fragility fractures are the resultant of low bone mass and poor bone architecture typical of osteoporosis. Cytokines involved in the control of bone cell maturation and function are produced by both bone itself and bone marrow cells, but the roles of these two sources in its control and the amounts they produce are not clear. This study compares their production in patients with an osteoporotic fracture and those with osteoarthritis. We evaluated 52 femoral heads from women subjected to hip-joint replacement surgery for femoral neck fractures due to low-energy trauma (37), or for osteoarthritis (15). Total RNA was extracted from both bone and bone marrow, and quantitative PCR was used to identify the receptor activator of nuclear factor kB Ligand (RANKL), osteoprotegerin (OPG), macrophage colony stimulating factor (M-CSF), transforming growth factor β (TGFβ), Dickoppf-1 (DKK-1) and sclerostin (SOST) expression. Immunohistochemistry and Western blot were performed in order to quantify and localize in bone and bone marrow the cytokines. We found an increase of RANKL/OPG ratio, M-CSF, SOST and DKK-1 in fractured patients, whereas TGFβ was increased in osteoarthritic bone. Bone marrow produced greater amounts of RANKL, M-CSF and TGFβ compared to bone, whereas the production of DKK-1 and SOST was higher in bone. We show that bone marrow cells produced the greater amount of pro-osteoclastogenic cytokines, whereas bone cells produced higher amount of osteoblast inhibitors in patients with fragility fracture, thus the cytokine pattern is shifted towards osteoclast activation and osteoblast inhibition in these patients.

  18. Cytokines and Chemokines as Regulators of Skeletal Muscle Inflammation: Presenting the Case of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Boel De Paepe

    2013-01-01

    Full Text Available Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary effects on muscle fiber damage control and tissue regeneration. In this review, current knowledge of cytokine and chemokine expression in Duchenne muscular dystrophy and its relevant animal disease models is listed, and implications for future therapeutic avenues are discussed.

  19. Th17 plasticity and transition toward a pathogenic cytokine signature are regulated by cyclosporine after allogeneic SCT.

    Science.gov (United States)

    Gartlan, Kate H; Varelias, Antiopi; Koyama, Motoko; Robb, Renee J; Markey, Kate A; Chang, Karshing; Wilkinson, Andrew N; Smith, David; Ullah, Md Ashik; Kuns, Rachel D; Raffelt, Neil C; Olver, Stuart D; Lineburg, Katie E; Teal, Bianca E; Cheong, Melody; Teng, Michele W L; Smyth, Mark J; Tey, Siok-Keen; MacDonald, Kelli P A; Hill, Geoffrey R

    2017-02-14

    T-helper 17 (Th17) cells have been widely implicated as drivers of autoimmune disease. In particular, Th17 cytokine plasticity and acquisition of an interleukin-17A + (IL-17A + )interferon γ(IFNγ) + cytokine profile is associated with increased pathogenic capacity. Donor Th17 polarization is known to exacerbate graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (allo-SCT); however, donor Th17 cytokine coexpression and plasticity have not been fully characterized. Using IL-17 "fate-mapping" mice, we identified IL-6-dependent Th17 cells early after allo-SCT, characterized by elevated expression of proinflammatory cytokines, IL-17A, IL-22, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor. This population did not maintain lineage fidelity, with a marked loss of IL-17A and IL-22 expression late posttransplant. Th17 cells were further segregated based on IFNγ coexpression, and IL-17A + IFNγ + Th17 displayed an enhanced proinflammatory phenotype. Th17 cytokine plasticity and IFNγ production were critically dependent upon donor-derived IL-12p40, and cyclosporine (CsA) treatment regulated this differentiation pathway. This observation was highly concordant with clinical samples from allo-SCT recipients receiving CsA-based immune suppression where although the IFNγ-negative-Th17 subset predominated, IFNγ + -Th17 cells were also present. In sum, Th17 polarization and ensuing differentiation are mediated by sequential inflammatory signals, which are modulated by immunosuppressive therapy, leading to distinct phenotypes within this lineage.

  20. Plasma Cytokine Concentrations Indicate In-vivo Hormonal Regulation of Immunity is Altered During Long-Duration Spaceflight

    Science.gov (United States)

    Crician, Brian E.; Zwart, Sara R.; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather A.; Pierson, Duane; Sams, Clarence F.; Smith, Scott M.

    2013-01-01

    Background: Aspects of immune system dysregulation associated with long-duration spaceflight have yet to be fully characterized, and may represent a clinical risk to crewmembers during deep space missions. Plasma cytokine concentration may serve as an indicator of in vivo physiological changes or immune system mobilization. Methods: The plasma concentrations of 22 cytokines were monitored in 28 astronauts during long-duration spaceflight onboard the International Space Station. Blood samples were collected three times before flight, 3-5 times during flight (depending on mission duration), at landing and 30 days post-landing. Analysis was performed by bead array immunoassay. Results: With few exceptions, minimal detectable mean plasma levels (inflammation, leukocyte recruitment, angiogenesis and thrombocyte regulation.

  1. Cytokine and Antioxidant Regulation in the Intestine of the Gray Mouse Lemur (Microcebus murinus During Torpor

    Directory of Open Access Journals (Sweden)

    Shannon N. Tessier

    2015-04-01

    Full Text Available During food shortages, the gray mouse lemur (Microcebus murinus of Madagascar experiences daily torpor thereby reducing energy expenditures. The present study aimed to understand the impacts of torpor on the immune system and antioxidant response in the gut of these animals. This interaction may be of critical importance given the trade-off between the energetically costly immune response and the need to defend against pathogen entry during hypometabolism. The protein levels of cytokines and antioxidants were measured in the small intestine (duodenum, jejunum, and ileum and large intestine of aroused and torpid lemurs. While there was a significant decrease of some pro-inflammatory cytokines (IL-6 and TNF-α in the duodenum and jejunum during torpor as compared to aroused animals, there was no change in anti-inflammatory cytokines. We observed decreased levels of cytokines (IL-12p70 and M-CSF, and several chemokines (MCP-1 and MIP-2 but an increase in MIP-1α in the jejunum of the torpid animals. In addition, we evaluated antioxidant response by examining the protein levels of antioxidant enzymes and total antioxidant capacity provided by metabolites such as glutathione (and others. Our results indicated that levels of antioxidant enzymes did not change between torpor and aroused states, although antioxidant capacity was significantly higher in the ileum during torpor. These data suggest a suppression of the immune response, likely as an energy conservation measure, and a limited role of antioxidant defenses in supporting torpor in lemur intestine.

  2. Ubiquitination of the common cytokine receptor γc and regulation of expression by an ubiquitination/deubiquitination machinery

    International Nuclear Information System (INIS)

    Gesbert, Franck; Malarde, Valerie; Dautry-Varsat, Alice

    2005-01-01

    The common cytokine receptor γ c is shared by the interleukin-2, -4, -7, -9, -15, and -21 receptors, and is essential for lymphocyte proliferation and survival. The regulation of γ c receptor expression level is therefore critical for the ability of cells to respond to these cytokines. We previously reported that γ c is efficiently constitutively internalized and addressed towards a degradation endocytic compartment. We show that γ c is ubiquitinated and also associated to ubiquitinated proteins. We report that the ubiquitin-ligase c-Cbl induces γ c down-regulation. In addition, the ubiquitin-hydrolase, DUB-2, counteracts the effect of c-Cbl on γ c expression. We show that an increase in DUB-2 expression correlates with an increased γ c half-life, resulting in the up-regulation of the receptor. Altogether, we show that γ c is the target of an ubiquitination mechanism and its expression level can be regulated through the activities of a couple of ubiquitin-ligase/ubiquitin-hydrolase enzymes, namely c-Cbl/DUB-2

  3. Consequences of gamma-irradiation on inflammatory cytokine regulation in human monocytes/macrophages; Consequences de l`irradiation gamma sur la regulation des cytokines de l`inflammation dans les monocytes/macrophages humains

    Energy Technology Data Exchange (ETDEWEB)

    Pons, I.; Gras, G.; Dormont, D.

    1995-12-31

    Inflammation is a frequent radiation-induced damage, especially after therapeutic irradiation. In this study, we have investigated, the inflammatory cytokine regulation after ionizing irradiation of monocytes/macrophages from four donors. Semi-quantitative RT-PCR revealed, after in vitro 24 h-differentiated monocytes irradiation between 5 to 40 Gy, no induction of interleukin-I{beta} (IL I{beta}), interleukin-6 (IL-6) and tumor necrosis factor-{alpha} (TNF-{alpha} mRNA) expression. Moreover, protein quantitation shows no significant increase of post-irradiation secretion. (author). 6 refs.

  4. Autoimmune Regulator Expression in DC2.4 Cells Regulates the NF-κB Signaling and Cytokine Expression of the Toll-Like Receptor 3 Pathway.

    Science.gov (United States)

    Sun, Jitong; Niu, Kunwei; Fu, Haiying; Li, Haijun; Li, Yi; Yang, Wei

    2016-12-01

    Autoimmune regulator (Aire) mutations result in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), which manifests as multi-organ autoimmunity and chronic mucocutaneous candidiasis (CMC). Indendritic cells (DCs), pattern recognition receptors (PRR), such as Toll-like receptors (TLRs), are closely involved in the recognition of various pathogens, activating the intercellular signaling pathway, followed by the activation of transcription factors and the expression of downstream genes, which take part in mediating the immune response and maintaining immune tolerance. In this study, we found that Aire up-regulated TLR3 expression and modulated the downstream cytokine expression and nuclear factor-κB (NF-κB) of the TLR3 signaling pathway.

  5. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  6. Genistein alleviates radiation-induced pneumonitis by depressing Ape1/Ref-1 expression to down-regulate inflammatory cytokines.

    Science.gov (United States)

    Liu, Guo-Dong; Xia, Lei; Zhu, Jian-Wu; Ou, Shan; Li, Meng-Xia; He, Yong; Luo, Wei; Li, Juan; Zhou, Qian; Yang, Xue-Qin; Shan, Jin-Lu; Wang, Ge; Wang, Dong; Yang, Zhen-Zhou

    2014-07-01

    The aim of the study was to investigate the role of genistein in alleviating radiation-induced pneumonitis(RIP) through down-regulating levels of the inflammatory cytokines by inhibiting the expression of apurinic/apyrimidinic endonuclease 1/redox factor-1 (Ape1/Ref-1). Fifty female C57BL/6J mice (8 weeks old) were randomly divided into a control group, a pure irradiation (IR) group and a genistein + IR group. At the four time points after IR, hematoxylin, and Masson’s trichrome stainings were used to examine the pathological changes and collagen fiber deposition. Flow cytometry was used to detect reactive oxygen system (ROS) changes, EMSA was used to estimate the nuclear factor kappa B (NF-κB) transcriptional activities and an ELISA assay was used to measure the levels of TGF-β1, IL-1β, TNF-α, and IL-6 in the serum and bronchoalveolar lavage fluid (BALF) 2 weeks after IR.The pathological detection results showed acute inflammatory/fibrinoid exudation of the thoracic tissue after IR,which was significantly alleviated with genistein. The IR inducedan APE1 protein expression increase and NF-jB was effectively suppressed by genistein (P < 0.05). The induction of the inflammatory cytokines TGF-β1, IL-1β,TNF-α, and IL-6 by IR were in turn inhibited in the serum and BALF of the genistein-pretreated mice (P < 0.05). In addition, the ROS production was significantly boosted in the A549 cells after IR, which could be down-regulated by the pretreatment of genistein. The results demonstrate that genistein alleviates RIP by attenuating the inflammatory response in the initiation of RIP. A possible target of genistein is the Ape1/ref-1, which regulates key inflammatory cytokines by activating the NF-κB.

  7. Cytokines and Chemokines as Regulators of Skeletal Muscle Inflammation: Presenting the Case of Duchenne Muscular Dystrophy

    OpenAIRE

    De Paepe, Boel; De Bleecker, Jan L.

    2013-01-01

    Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary eff...

  8. Lactobacillus helveticus SBT2171, a cheese starter, regulates proliferation and cytokine production of immune cells.

    Science.gov (United States)

    Yamashita, M; Ukibe, K; Uenishi, H; Hosoya, T; Sakai, F; Kadooka, Y

    2014-01-01

    Consumption of a Lactobacillus helveticus SBT2171 (LH2171)-containing cheese has been reported to exhibit immunoregulatory actions, including an increase in regulatory T cell population and reduction in proinflammatory cytokine production in mice. We examined the in vitro effects of LH2171 cells per se on immune cell function, specifically proliferation and cytokine production, which are primary reactions of the immune response. Immune cell fractions were prepared by mechanical disruption of mesenteric lymph nodes (MLN), Peyer's patches (PP), and spleens (SP) of mice. The cell fractions were dispensed into a culture plate and stimulated with anti-CD3/CD28 antibody beads in place of antigen-presenting cells or lipopolysaccharide (LPS) in the presence or absence of heat-treated LH2171 cells and other bacterial strains for comparison. After incubation, proliferation, cytokine production, and cell viability of the immune cells were determined. The LH2171 significantly inhibited the proliferation of MLN immune cells stimulated with anti-CD3/CD28 compared with other bacterial strains. The antiproliferative potency of LH2171 was effective not only on MLN but also on PP and SP stimulated with anti-CD3/CD28 or LPS. The LH2171 also decreased LPS-stimulated IL-6 production from MLN, PP, and SP, and IL-1β production from SP, but LH2171 did not affect the viability of immune cells. The LH2171 inhibited immune cell proliferation and proinflammatory cytokine (IL-6 and IL-1β) production. The inhibitory actions were not due to cytotoxicity to immune cells, suggesting that LH2171 is a dairy Lactobacillus strain with beneficial immunoregulatory properties. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Cytokine-Regulated GADD45G Induces Differentiation and Lineage Selection in Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Frederic B. Thalheimer

    2014-07-01

    Full Text Available The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however, the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely, the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that, once GADD45G is expressed, the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here, we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.

  10. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    Science.gov (United States)

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-03

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases.

  11. Dynamic and extensive metabolic state-dependent regulation of cytokine expression and circulating levels

    Science.gov (United States)

    Petersen, Pia S.; Lei, Xia; Seldin, Marcus M.; Rodriguez, Susana; Byerly, Mardi S.; Wolfe, Andrew; Whitlock, Scott

    2014-01-01

    Cytokines play diverse and critical roles in innate and acquired immunity, and several function within the central nervous system and in peripheral tissues to modulate energy metabolism. The extent to which changes in energy balance impact the expression and circulating levels of cytokines (many of which have pleiotropic functions) has not been systematically examined. To investigate metabolism-related changes in cytokine profiles, we used a multiplex approach to assess changes in 71 circulating mouse cytokines in response to acute (fasting and refeeding) and chronic (high-fat feeding) alterations in whole body metabolism. Refeeding significantly decreased serum levels of IL-22, IL-1α, soluble (s)IL-2Rα, and soluble vascular endothelial growth factor receptor 3 (VEGFR3), but markedly increased granulocyte colony-stimulating factor (G-CSF), IL-1β, chemokine (C-C motif) ligand (CCL2), sIL-1RI, lipocalin-2, pentraxin-3, tissue inhibitor of metalloproteinase (TIMP-1), and serum amyloid protein (SAP) relative to the fasted state. Interestingly, only a few of these changes paralleled the alterations in expression of their corresponding mRNAs. Functional studies demonstrated that central delivery of G-CSF increased, whereas IL-22 decreased, food intake. Changes in food intake were not accompanied by acute alterations in orexigenic (Npy and Agrp) and anorexigenic (Pomc and Cart) neuropeptide gene expression in the hypothalamus. In the context of chronic high-fat feeding, circulating levels of chemokine (C-X-C) ligand (CXCL1), serum amyloid protein A3 (SAA3), TIMP-1, α1-acid glycoprotein (AGP), and A2M were increased, whereas IL-12p40, CCL4, sCD30, soluble receptor for advanced glycation end products (sRAGE), CCL12, CCL20, CX3CL1, IL-16, IL-22, and haptoglobin were decreased relative to mice fed a control low-fat diet. These results demonstrate that both short- and long-term changes in whole body metabolism extensively alter cytokine expression and circulating levels

  12. Features of Cytokine Regulation in Multidrug-Resistant Tuberculosis Depending on Severity of Endogenous Intoxication

    Directory of Open Access Journals (Sweden)

    L.D. Todoriko

    2016-02-01

    Conclusions. Comprehensive assessment of integral indices of endogenous intoxication and level of certain pro- and anti-inflammatory cytokines in the blood plasma of patients with MDR TB shows a moderate endogenous intoxication, break down of the cellular component of the immune reactivity due to the formation of conditions for the development of Mycobacterium tuberculosis resistance, with further growth of cytotoxic hypoxia and activation of systemic inflammatory response syndrome. Analysis of plasma concentration of IL-6, IL-10 and IL-18 in patients with multidrug-resistance proved, that their level depends on the nature of Mycobacterium tuberculosis resistance.

  13. Alteration of Mevalonate Pathway in Rat Splenic Lymphocytes: Possible Role in Cytokines Secretion Regulated by L-Theanine

    Directory of Open Access Journals (Sweden)

    Chengjian Li

    2018-01-01

    Full Text Available L-Theanine is a nonprotein amino acid in tea, and its immunomodulatory function has been confirmed. This study aimed to investigate the effect of L-theanine addition on cytokines secretion in rat splenic lymphocytes and explore its potential immunomodulatory effects on the mevalonate biosynthetic pathway. Our results showed that L-theanine treatment did not influence the proliferation and division indexes of the splenic lymphocytes subsets. Interestingly, L-theanine treatment had regulated the contents of IFN-γ, IL-2, IL-4, IL-10, IL-12, and TNF-α  (P<0.001 except IL-6 and upregulated the mRNA and protein expression of Ras-related protein Rap-1A (Rap1A, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR, and farnesyl diphosphate synthase (FDPs (P<0.001. Additionally, there was a positive correlation between Rap1A and HMGCR proteins expression and IFN-γ, IL-4, and IL-6 levels. In conclusion, L-theanine regulated the secretion of cytokines probably by activating expression of Rap1A and HMGCR proteins involved in the mevalonate biosynthetic pathway in rat splenic lymphocytes. Therefore, L-theanine might be a promising potential drug candidate as immunopotentiator.

  14. TGF-b superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator.

    Directory of Open Access Journals (Sweden)

    Vicky Wang-Wei Tsai

    Full Text Available The TGF-b superfamily cytokine MIC-1/GDF15 circulates in all humans and when overproduced in cancer leads to anorexia/cachexia, by direct action on brain feeding centres. In these studies we have examined the role of physiologically relevant levels of MIC-1/GDF15 in the regulation of appetite, body weight and basal metabolic rate. MIC-1/GDF15 gene knockout mice (MIC-1(-/- weighed more and had increased adiposity, which was associated with increased spontaneous food intake. Female MIC-1(-/- mice exhibited some additional alterations in reduced basal energy expenditure and physical activity, possibly owing to the associated decrease in total lean mass. Further, infusion of human recombinant MIC-1/GDF15 sufficient to raise serum levels in MIC-1(-/- mice to within the normal human range reduced body weight and food intake. Taken together, our findings suggest that MIC-1/GDF15 is involved in the physiological regulation of appetite and energy storage.

  15. Cytokines in Drosophila immunity.

    Science.gov (United States)

    Vanha-Aho, Leena-Maija; Valanne, Susanna; Rämet, Mika

    2016-02-01

    Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  16. Tec family kinases Itk and Rlk / Txk in T lymphocytes: cross-regulation of cytokine production and T-cell fates.

    Science.gov (United States)

    Gomez-Rodriguez, Julio; Kraus, Zachary J; Schwartzberg, Pamela L

    2011-06-01

    Developing thymocytes and T cells express the Tec kinases Itk, Rlk/Txk and Tec, which are critical modulators of T-cell receptor signaling, required for full activation of phospholipase Cγ, and downstream Ca(2+) and ERK-mediated signaling pathways. Over the last 10 years, data have implicated the Tec family kinases Itk and Rlk/Txk as important regulators of cytokine production by CD4(+) effector T-cell populations. Emerging data now suggest that the Tec family kinases not only influence cytokine-producing T-cell populations in the periphery, but also regulate the development of distinct innate-type cytokine-producing T-cell populations in the thymus. Together, these results suggest that the Tec family kinases play critical roles in helping shape immune responses via their effects on the differentiation and function of distinct cytokine-producing, effector T-cell populations. Journal compilation © 2011 FEBS. No claim to original US government works.

  17. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat; Tridandapani, Susheela; Parinandi, Narasimham [Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210 (United States); Boyaka, Prosper N. [Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210 (United States); Cormet-Boyaka, Estelle, E-mail: Estelle.boyaka@osumc.edu [Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210 (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. Black-Right-Pointing-Pointer Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. Black-Right-Pointing-Pointer Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. Black-Right-Pointing-Pointer Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-{kappa}B dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.

  18. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    International Nuclear Information System (INIS)

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat; Tridandapani, Susheela; Parinandi, Narasimham; Boyaka, Prosper N.; Cormet-Boyaka, Estelle

    2012-01-01

    Highlights: ► Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. ► Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. ► Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. ► Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-κB dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.

  19. The role of T cell subsets and cytokines in the regulation of intracellular bacterial infection

    Directory of Open Access Journals (Sweden)

    Oliveira S.C.

    1998-01-01

    Full Text Available Cellular immune responses are a critical part of the host's defense against intracellular bacterial infections. Immunity to Brucella abortus crucially depends on antigen-specific T cell-mediated activation of macrophages, which are the major effectors of cell-mediated killing of this organism. T lymphocytes that proliferate in response to B. abortus were characterized for phenotype and cytokine activity. Human, murine, and bovine T lymphocytes exhibited a type 1 cytokine profile, suggesting an analogous immune response in these different hosts. In vivo protection afforded by a particular cell type is dependent on the antigen presented and the mechanism of antigen presentation. Studies using MHC class I and class II knockout mice infected with B. abortus have demonstrated that protective immunity to brucellosis is especially dependent on CD8+ T cells. To target MHC class I presentation we transfected ex vivo a murine macrophage cell line with B. abortus genes and adoptively transferred them to BALB/c mice. These transgenic macrophage clones induced partial protection in mice against experimental brucellosis. Knowing the cells required for protection, vaccines can be designed to activate the protective T cell subset. Lastly, as a new strategy for priming a specific class I-restricted T cell response in vivo, we used genetic immunization by particle bombardment-mediated gene transfer

  20. Chediak-Higashi syndrome: LYST domains regulate exocytosis of lytic granules, but not cytokine secretion by NK cells

    Science.gov (United States)

    Gil-Krzewska, Aleksandra; Wood, Stephanie M.; Murakami, Yousuke; Nguyen, Victoria; Chiang, Samuel Cern Cher; Cullinane, Andrew R.; Giovanna, Peruzzi; Gahl, William A.; Coligan, John E.; Introne, Wendy J.; Bryceson, Yenan T.; Krzewski, Konrad

    2015-01-01

    Background Mutations in LYST cause Chediak-Higashi syndrome (CHS), a rare immunodeficiency with impaired cytotoxic lymphocyte function, mainly that of natural killer (NK) cells. Our understanding of NK cell function deficiency in CHS, and how LYST regulates lytic granule exocytosis is very limited. Objective We sought to delineate cellular defects, associated with LYST mutations, responsible for the impaired NK cell function in CHS. Methods We analyzed NK cells from CHS patients with missense mutations in the LYST ARM/HEAT or BEACH domains. Results CHS NK cells displayed severely reduced cytotoxicity. Mutations in the ARM/HEAT domain led to a reduced number of perforin-containing granules, which were significantly increased in size, but able to polarize to the immunological synapse (IS); however, they were unable to properly fuse with the plasma membrane. Mutations in the BEACH domain resulted in the formation of normal or slightly enlarged granules that had markedly impaired polarization to the immunological synapse, but could be exocytosed upon reaching the IS. Perforin-containing granules in CHS NK cells did not acquire certain lysosomal markers (LAMP1/2), but were positive for markers of transport vesicles (CI-MPR), late endosomes (Rab27a), and to some extent, early endosomes (EEA-1), indicating a lack of integrity in the endo-lysosomal compartments. CHS NK cells had normal cytokine compartments and cytokine secretion. Conclusion LYST is involved in regulation of multiple aspects of NK cell lytic activity ranging from governance of lytic granule size to control of their polarization and exocytosis, as well as the regulation of endo-lysosomal compartment identity. LYST functions in the regulated exocytosis, but not in the constitutive secretion pathway. PMID:26478006

  1. Distinct cytokine patterns may regulate the severity of neonatal asphyxia-an observational study.

    Science.gov (United States)

    Bajnok, Anna; Berta, László; Orbán, Csaba; Veres, Gábor; Zádori, Dénes; Barta, Hajnalka; Méder, Ünőke; Vécsei, László; Tulassay, Tivadar; Szabó, Miklós; Toldi, Gergely

    2017-12-12

    Neuroinflammation and a systemic inflammatory reaction are important features of perinatal asphyxia. Neuroinflammation may have dual aspects being a hindrance, but also a significant help in the recovery of the CNS. We aimed to assess intracellular cytokine levels of T-lymphocytes and plasma cytokine levels in moderate and severe asphyxia in order to identify players of the inflammatory response that may influence patient outcome. We analyzed the data of 28 term neonates requiring moderate systemic hypothermia in a single-center observational study. Blood samples were collected between 3 and 6 h of life, at 24 h, 72 h, 1 week, and 1 month of life. Neonates were divided into a moderate (n = 17) and a severe (n = 11) group based on neuroradiological and amplitude-integrated EEG characteristics. Peripheral blood mononuclear cells were assessed with flow cytometry. Cytokine plasma levels were measured using Bioplex immunoassays. Components of the kynurenine pathway were assessed by high-performance liquid chromatography. The prevalence and extravasation of IL-1b + CD4 cells were higher in severe than in moderate asphyxia at 6 h. Based on Receiver operator curve analysis, the assessment of the prevalence of CD4+ IL-1β+ and CD4+ IL-1β+ CD49d+ cells at 6 h appears to be able to predict the severity of the insult at an early stage in asphyxia. Intracellular levels of TNF-α in CD4 cells were increased at all time points compared to 6 h in both groups. At 1 month, intracellular levels of TNF-α were higher in the severe group. Plasma IL-6 levels were higher at 1 week in the severe group and decreased by 1 month in the moderate group. Intracellular levels of IL-6 peaked at 24 h in both groups. Intracellular TGF-β levels were increased from 24 h onwards in the moderate group. IL-1β and IL-6 appear to play a key role in the early events of the inflammatory response, while TNF-α seems to be responsible for prolonged neuroinflammation, potentially

  2. Deletion of a coordinate regulator of type 2 cytokine expression in mice

    Energy Technology Data Exchange (ETDEWEB)

    Mohrs, Markus; Blankespoor, Catherine M.; Wang, Zhi-En; Loots, Gaby G.; Hadeiba, Husein; Shinkai, Kanade; Rubin, Edward M.; Locksley, Richard M.

    2001-07-30

    Mechanisms underlying the differentiation of stable T helper subsets will be important in understanding how discrete types of immunity develop in response to different pathogens. An evolutionarily conserved {approx}400 base pair non-coding sequence in the IL-4/IL-13 intergenic region, designated CNS-1, was deleted in mice. The capacity to develop Th2 cells was compromised in vitro and in vivo in the absence of CNS-1. Despite the profound effect in T cells, mast cells from CNS-1-deleted mice maintained their capacity to produce IL-4. A T cell-specific element critical for optimal expression of type 2 cytokines may represent evolution of a regulatory sequence exploited by adaptive immunity.

  3. Donor lung derived myeloid and plasmacytoid dendritic cells differentially regulate T cell proliferation and cytokine production

    Directory of Open Access Journals (Sweden)

    Benson Heather L

    2012-03-01

    Full Text Available Abstract Background Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs and plasmacytoid (pDCs are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown. Methods Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d prior to transplanting into C57BL/6 mice (H-2b, followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+. Results Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production. Conclusion Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.

  4. Leonurine exerts anti-inflammatory effect by regulating inflammatory signaling pathways and cytokines in LPS-induced mouse mastitis.

    Science.gov (United States)

    Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2015-02-01

    Bovine mastitis is defined as the inflammation of mammary gland and is the most multiple diseases in dairy cattle. There is still no effective treatment now. Leonurine, extracted from Leonurus cardiaca, has been proved to have anti-inflammatory effect. In the present study, we utilized a mouse mastitis model to study the effect of leonurine on LPS-induced mastitis. Leonurine was administered three times during the 24 h after inducing infection in the mammary gland. The results showed that leonurine significantly alleviated LPS-induced histopathological changes, downregulated the levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), upregulated the level of anti-inflammatory cytokine interleukin-10 (IL-10), and inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Further study revealed that leonurine inhibited the expression of Toll-like receptor 4 (TLR4) and the activation of nuclear factor-kappaB (NF-κB) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK). Therefore, the results demonstrated that leonurine could downregulate the expression of TNF-α, IL-6, iNOS, and COX-2 and upregulate the expression of IL-10 mainly by inhibiting the expression of TLR4 and the activation of NF-κB and the phosphorylation of p38, ERK, and JNK. Leonurine may be a potential agent for mastitis therapy.

  5. Chediak-Higashi syndrome: Lysosomal trafficking regulator domains regulate exocytosis of lytic granules but not cytokine secretion by natural killer cells.

    Science.gov (United States)

    Gil-Krzewska, Aleksandra; Wood, Stephanie M; Murakami, Yousuke; Nguyen, Victoria; Chiang, Samuel C C; Cullinane, Andrew R; Peruzzi, Giovanna; Gahl, William A; Coligan, John E; Introne, Wendy J; Bryceson, Yenan T; Krzewski, Konrad

    2016-04-01

    Mutations in lysosomal trafficking regulator (LYST) cause Chediak-Higashi syndrome (CHS), a rare immunodeficiency with impaired cytotoxic lymphocyte function, mainly that of natural killer (NK) cells. Our understanding of NK cell function deficiency in patients with CHS and how LYST regulates lytic granule exocytosis is very limited. We sought to delineate cellular defects associated with LYST mutations responsible for the impaired NK cell function seen in patients with CHS. We analyzed NK cells from patients with CHS with missense mutations in the LYST ARM/HEAT (armadillo/huntingtin, elongation factor 3, protein phosphatase 2A, and the yeast kinase TOR1) or BEACH (beige and Chediak-Higashi) domains. NK cells from patients with CHS displayed severely reduced cytotoxicity. Mutations in the ARM/HEAT domain led to a reduced number of perforin-containing granules, which were significantly increased in size but able to polarize to the immunologic synapse; however, they were unable to properly fuse with the plasma membrane. Mutations in the BEACH domain resulted in formation of normal or slightly enlarged granules that had markedly impaired polarization to the IS but could be exocytosed on reaching the immunologic synapse. Perforin-containing granules in NK cells from patients with CHS did not acquire certain lysosomal markers (lysosome-associated membrane protein 1/2) but were positive for markers of transport vesicles (cation-independent mannose 6-phosphate receptor), late endosomes (Ras-associated binding protein 27a), and, to some extent, early endosomes (early endosome antigen 1), indicating a lack of integrity in the endolysosomal compartments. NK cells from patients with CHS had normal cytokine compartments and cytokine secretion. LYST is involved in regulation of multiple aspects of NK cell lytic activity, ranging from governance of lytic granule size to control of their polarization and exocytosis, as well as regulation of endolysosomal compartment identity

  6. Inflammatory events at the blood brain barrier: regulation of adhesion molecules, cytokines, and chemokines by reactive nitrogen and oxygen species.

    Science.gov (United States)

    Merrill, J E; Murphy, S P

    1997-12-01

    Recruitment of inflammatory cells into the CNS during pathological processes associated with neurodegeneration, trauma, autoimmune disease, and infection involves the generation of signaling molecules that are both cell-associated and soluble. Alteration in the permeability of the blood brain barrier, adhesion of blood-borne leukocytes to cerebral vessels, activation of chemoattractants and their receptors, and migration of inflammatory cells into the CNS are events that have been proposed to be regulated by cytokines and reactive oxygen and nitrogen species. In this review we propose associative connections between these events and the molecules involved as they may relate to CNS inflammation, placing illustrative emphasis on multiple sclerosis and the animal model for MS, experimental allergic encephalomyelitis.

  7. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism.

    Science.gov (United States)

    Rodríguez, Amaia; Ezquerro, Silvia; Méndez-Giménez, Leire; Becerril, Sara; Frühbeck, Gema

    2015-10-15

    Adipose tissue constitutes an extremely active endocrine organ with a network of signaling pathways enabling the organism to adapt to a wide range of different metabolic challenges, such as starvation, stress, infection, and short periods of gross energy excess. The functional pleiotropism of adipose tissue relies on its ability to synthesize and release a huge variety of hormones, cytokines, complement and growth factors, extracellular matrix proteins, and vasoactive factors, collectively termed adipokines. Obesity is associated with adipose tissue dysfunction leading to the onset of several pathologies including type 2 diabetes, dyslipidemia, nonalcoholic fatty liver, or hypertension, among others. The mechanisms underlying the development of obesity and its associated comorbidities include the hypertrophy and/or hyperplasia of adipocytes, adipose tissue inflammation, impaired extracellular matrix remodeling, and fibrosis together with an altered secretion of adipokines. Recently, the potential role of brown and beige adipose tissue in the protection against obesity has been also recognized. In contrast to white adipocytes, which store energy in the form of fat, brown and beige fat cells display energy-dissipating capacity through the promotion of triacylglycerol clearance, glucose disposal, and generation of heat for thermogenesis. Identification of the morphological and molecular changes in white, beige, and brown adipose tissue during weight gain is of utmost relevance for the identification of pharmacological targets for the treatment of obesity and its associated metabolic diseases. Copyright © 2015 the American Physiological Society.

  8. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    International Nuclear Information System (INIS)

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo; Endo, Yuko; Dang, Nam H.; Morimoto, Chikao

    2010-01-01

    Research highlights: → TNF-α or IL-1β induces EC proliferation with reduction of CD26 expression. → CD26 siRNA or DPP-4 inhibition enhances TNF-α or IL-1β-induced EC proliferation. → Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-α or IL-1β. → Capillary formation induced by TNF-α or IL-1β is enahced in the CD26 -/- mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is a key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.

  9. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Takasawa, Wataru [Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Ohnuma, Kei [Department of Rheumatology and Allergy, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Hatano, Ryo; Endo, Yuko [Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Dang, Nam H. [Division of Hematology/Oncology, University of Florida, 1600 SW Archer Road, Box 100278, Room MSB M410A, Gainesville, FL 32610 (United States); Morimoto, Chikao, E-mail: morimoto@ims.u-tokyo.ac.jp [Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Rheumatology and Allergy, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)

    2010-10-08

    Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is a key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.

  10. Etanercept protects rat cardiomyocytes against hypertrophy by regulating inflammatory cytokines secretion and cell apoptosis

    Science.gov (United States)

    Li, Q.; Yu, Q.; Na, R.; Liu, B.

    2017-01-01

    We aimed to investigate the effect of etanercept, a tumor necrosis factor-α (TNF-α) inhibitor, on rat cardiomyocyte hypertrophy and its underlying mechanism. Primary neonatal rat cardiomyocytes were isolated from Sprague-Dawley rats. The model of rat cardiomyocyte hypertrophy was induced by endothelin, and then treated with different concentrations of etanercept (1, 10, and 50 μM). After treatment, cell counts, viability and cell apoptosis were evaluated. The mRNA levels of myocardial hypertrophy marker genes, including atrial natriuretic factor (ANF), matrix metalloproteinase (MMP)-9 and MMP-13, were detected by qRT-PCR, and the expressions of apoptosis-related proteins (Bcl-2 and Bax) were measured by western blotting. The protein levels of transforming growth factor-β1 (TGF-β1), interleukin (IL)-1β, IL-6, leukemia inhibitory factor (LIF) and cardiotrophin-1 (CT-1) were determined using enzyme linked immunosorbent assay (ELISA) kits. In the present study, TNF-α level in cardiomyocytes with hypertrophy was significantly enhanced (Phypertrophy by inhibiting inflammatory cytokines secretion and cell apoptosis. PMID:28513772

  11. Autoimmune Regulator Expression in DC2.4 Cells Regulates the NF-κB Signaling and Cytokine Expression of the Toll-Like Receptor 3 Pathway

    Directory of Open Access Journals (Sweden)

    Jitong Sun

    2016-12-01

    Full Text Available Autoimmune regulator (Aire mutations result in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED, which manifests as multi-organ autoimmunity and chronic mucocutaneous candidiasis (CMC. Indendritic cells (DCs, pattern recognition receptors (PRR, such as Toll-like receptors (TLRs, are closely involved in the recognition of various pathogens, activating the intercellular signaling pathway, followed by the activation of transcription factors and the expression of downstream genes, which take part in mediating the immune response and maintaining immune tolerance. In this study, we found that Aire up-regulated TLR3 expression and modulated the downstream cytokine expression and nuclear factor-κB (NF-κB of the TLR3 signaling pathway.

  12. Vacuolar-ATPase isoform a2 regulates macrophages and cytokine profile necessary for normal spermatogenesis in testis.

    Science.gov (United States)

    Jaiswal, Mukesh K; Katara, Gajendra K; Mallers, Timothy; Chaouat, Gerard; Gilman-Sachs, Alice; Beaman, Kenneth D

    2014-08-01

    a2V is required for maturation of sperm. The decreased expression of a2V at the feto-maternal interphase causes poor pregnancy outcome. The present study examined the role of a2V in spermatogenesis and inflammatory network in the testis. A single dose of anti-a2V mouse IgG or mouse IgG isotype (3 μg/animal) was injected i.p. into male mice on alternate days for 10 days. Anti-a2V-treated males exhibit severe deficiencies of spermatogenesis, which is indicated by the presence of less numbers of postmeiotic cells. Sperm counts and sperm motility were reduced significantly in anti-a2V-treated males. The release of the cleaved a2NTD was significantly lower in anti-a2V-treated testes. The TMs were identified as M2-like macrophages, and this population and the expression of various cytokines/chemokines (Tgf-β, Il-6, Nos2, Tnf, Lif, Mcp1, Ccl5) were decreased significantly in anti-a2V-treated testis compared with control testis. Moreover, the cleaved a2NTD acts as a key mediator of TMs and significantly up-regulates the secretion of testicular cytokines/chemokines, which are associated with normal spermatogenesis. When these anti-a2V-treated males were used for mating with normal females, the number of implantation sites was decreased significantly in the females mated with anti-a2V-treated males than the females mated with control males. These observations suggest that a2V plays a crucial role in spermatogenesis by regulating testicular immune responses, and its inhibition in males leads to poor pregnancy outcome in females. © 2014 Society for Leukocyte Biology.

  13. Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the Neuroendocrine and Immune Systems.

    Science.gov (United States)

    Shakola, Felitsiya; Suri, Parul; Ruggiu, Matteo

    2015-09-07

    Alternative splicing plays a key role in posttranscriptional regulation of gene expression, allowing a single gene to encode multiple protein isoforms. As such, alternative splicing amplifies the coding capacity of the genome enormously, generates protein diversity, and alters protein function. More than 90% of human genes undergo alternative splicing, and alternative splicing is especially prevalent in the nervous and immune systems, tissues where cells need to react swiftly and adapt to changes in the environment through carefully regulated mechanisms of cell differentiation, migration, targeting, and activation. Given its prevalence and complexity, this highly regulated mode of gene expression is prone to be affected by disease. In the following review, we look at how alternative splicing of signaling molecules—cytokines and their receptors—changes in different pathological conditions, from chronic inflammation to neurologic disorders, providing means of functional interaction between the immune and neuroendocrine systems. Switches in alternative splicing patterns can be very dynamic and can produce signaling molecules with distinct or antagonistic functions and localization to different subcellular compartments. This newly discovered link expands our understanding of the biology of immune and neuroendocrine cells, and has the potential to open new windows of opportunity for treatment of neurodegenerative disorders.

  14. The Adaptor Protein SAP Regulates Type II NKT Cell Development, Cytokine Production and Cytotoxicity Against Lymphoma1

    Science.gov (United States)

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L.; Stein, Paul L.; Wang, Chyung-Ru

    2014-01-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule-associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT cell TCR transgenic mouse model (24αβTg), we demonstrated that CD1d-expressing hematopoietic cells but not thymic epithelial cells meditate efficient selection of type II NKT cells. Further, we showed that SAP regulates type II NKT cell development by controlling Egr2 and PLZF expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IRF4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. PMID:25236978

  15. Omega 3 Fatty Acid inhibition of inflammatory cytokine-mediated Connexin43 regulation in the heart

    Directory of Open Access Journals (Sweden)

    Jennifer R Baum

    2012-07-01

    Full Text Available Background: The proinflammatory cytokine Interleukin-1β (IL-1β, which increases in the heart post myocardial infarction (MI, has been shown to cause loss of Connexin43 (Cx43 function, an event known to underlie formation of the arrhythmogenic substrate. Omega 3 Fatty acids exhibit antiarrhythmic properties and impact IL-1β signaling. We hypothesize that Omega-3 fatty acids prevent arrhythmias in part, by inhibiting IL-1β signaling thus maintaining functional Cx43 channels. Methods: Rat neonatal myocytes or Madin-Darby Canine Kidney Epithelial (MDCK cells grown in media in the absence (Ctr or presence of 30μM docosahexaenoic acid (DHA, an Omega-3 Fatty acid were treated with 0.1μM activated IL-1β. We determined Cx43 channel function using a dye spread assay. Western blot and immunostaining were used to examine Cx43 levels/localization and downstream effectors of IL-1 β. In addition we used a murine model of myocardial infarction (MI for 24 hours to determine the impact of an Omega-3 fatty acid enriched diet on Cx43 levels/localization post myocardial infarction.Results: IL-1β significantly inhibited Cx43 function in Ctr cells (200.9 +/- 17.7 μm [Ctr] vs. 112.8 +/- 14.9 μm [0.1uM IL-1β], p<0.05. However, DHA-treated cells remained highly coupled in the presence of IL-1β [167.9 +/- 21.9 μm [DHA] vs. 164.4 +/- 22.3 μm [DHA+0.1uM IL-1β], p<0.05, n=4. Additionally, western blot showed that IL-1β treatment caused a 38.5% downregulation of Cx43 [1.00au [Ctr] vs 0.615au (0.1μM IL-1β which was completely abolished in DHA treated cells (0.935au [DHA] vs. 1.02au [DHA+0.1μM IL-1β, p<0.05, n=3]. Examination of the downstream modulator of IL-1β, NFκβ showed that while hypoxia caused translocation of NFκβ to the nucleus, this was inhibited by DHA. Additionally we found that a diet enriched in Omega-3 Fatty acids inhibited lateralization of Cx43 in the post-myocardial infarction murine heart as well as limited activation of fibroblasts

  16. Thymic Stromal Lymphopoietin Is Critical for Regulation of Proinflammatory Cytokine Response and Resistance to Experimental Trypanosoma congolense Infection

    Directory of Open Access Journals (Sweden)

    Chukwunonso Onyilagha

    2017-07-01

    Full Text Available African trypanosomiasis (sleeping sickness poses serious threat to human and animal health in sub-Saharan Africa. Because there is currently no vaccine for preventing this disease and available drugs are not safe, understanding the mechanisms that regulate resistance and/or susceptibility to the disease could reveal novel targets for effective disease therapy and prevention. Thymic stromal lymphopoietin (TSLP plays a critical role in driving Th2 immune response. Although susceptibility to experimental Trypanosoma congolense infection in mice is associated with excessive proinflammatory responses due in part to impaired Th2 response, the role of TSLP in resistance to African trypanosomiasis has not been well studied. Here, we investigated whether TSLP is critical for maintaining Th2 environment necessary for survival of T. congolense-infected mice. We observed an increased TSLP level in mice after infection with T. congolense, suggesting a role for this cytokine in resistance to the infection. Indeed, TSLPR−/− mice were more susceptible to T. congolense infection and died significantly earlier than their wild-type (WT controls. Interestingly, serum levels of IFN-γ and TNF-α and the frequency of IFN-γ- and TNF-α-producing CD4+ T cells in the spleens and liver were significantly higher in infected TSLPR−/− mice than in the WT control mice. Susceptibility was also associated with excessive M1 macrophage activation. Treatment of TSLPR−/− mice with anti-IFN-γ mAb during infection abolished their enhanced susceptibility to T. congolense infection. Collectively, our study shows that TSLP plays a critical role in resistance to T. congolense infection by dampening the production of proinflammatory cytokines and its associated M1 macrophage activation.

  17. Cytokines and intraocular inflammation

    NARCIS (Netherlands)

    Hoekzema, R.; Murray, P. I.; Kijlstra, A.

    1990-01-01

    Although new endogenous mediators of inflammatory and immune responses are reported almost on a monthly basis, the cytokines IL-1, TNF, and IL-6 have emerged as the primary regulators of local inflammation in man. In this paper, uveitogenic and other properties of these particular cytokines are

  18. TNF-α-Induced NOD2 and RIP2 Contribute to the Up-Regulation of Cytokines Induced by MDP in Monocytic THP-1 Cells.

    Science.gov (United States)

    Chen, Xiaobin; Xiao, Zhilin; Xie, Xiumei; Liu, Xueting; Jiang, Manli; Yuan, Chuang; Yang, Li; Hu, Jinyue

    2017-06-21

    Nucleotide-binding oligomerization domain containing 2 (NOD2)-induced signal transduction and cytokine production is regulated by a number of factors. However, the feedback effect of the pro-inflammatory TNF-α on NOD2-induced inflammation is not fully understood. In this study, we found unexpectedly that TNF-α up-regulated NOD2 ligand MDP-induced production of the CXC chemokines, including CXCL1, 2, and 8, and the pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, in a dose-dependent manner at both mRNA and protein levels in monocytic THP-1 cells. Though TNF-α induced the up-regulation of ubiquitin-editing enzyme A20, an important negative regulator for Toll-like receptor- and NOD2-induced inflammatory responses, the over-expression of A20 by gene transfer did not reversed MDP-induced production of cytokines, suggested that A20 did not regulate the functions of NOD2 in THP-1 cells. Meanwhile, we found that TNF-α up-regulated NOD2 and its down-stream adaptor protein RIP2 at both mRNA and protein levels. MDP induced the activation of ERK, JNK, p38 and NF-κB, and TNF-α pre-treatment augmented this activation. The results from pharmacological inhibition assay showed that cytokine production was dependent on MAPK signaling. In addition, we found that the pre-treatment of THP-1 cells with MDP down-regulated the mRNA levels of cytokine induced by MDP re-treatment. MDP pre-treatment up-regulated NOD2, but down-regulated RIP2, and down-regulated NOD2 signal transduction induced by MDP re-stimulation. Taking together, these results suggested that TNF-α is a positive regulator for NOD2 functions via up-regulation of NOD2 and its signal adaptor RIP2, and TNF-α-induced A20 does not regulate MDP-induced inflammatory responses in THP-1 cells. J. Cell. Biochem. 9999: 1-10, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. The adaptor protein SAP regulates type II NKT-cell development, cytokine production, and cytotoxicity against lymphoma.

    Science.gov (United States)

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L; Stein, Paul L; Wang, Chyung-Ru

    2014-12-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. NLRP12 negatively regulates proinflammatory cytokine production and host defense against Brucella abortus.

    Science.gov (United States)

    Silveira, Tatiana N; Gomes, Marco Túlio R; Oliveira, Luciana S; Campos, Priscila C; Machado, Gabriela G; Oliveira, Sergio C

    2017-01-01

    Brucella abortus is the causative agent of brucellosis, which causes abortion in domestic animals and undulant fever in humans. This bacterium infects and proliferates mainly in macrophages and dendritic cells, where it is recognized by pattern recognition receptors (PRRs) including Nod-like receptors (NLRs). Our group recently demonstrated the role of AIM2 and NLRP3 in Brucella recognition. Here, we investigated the participation of NLRP12 in innate immune response to B. abortus. We show that NLRP12 inhibits the early production of IL-12 by bone marrow-derived macrophages upon B. abortus infection. We also observed that NLRP12 suppresses in vitro NF-κB and MAPK signaling in response to Brucella. Moreover, we show that NLRP12 modulates caspase-1 activation and IL-1β secretion in B. abortus infected-macrophages. Furthermore, we show that mice lacking NLRP12 are more resistant in the early stages of B. abortus infection: NLRP12 -/- infected-mice have reduced bacterial burdens in the spleens and increased production of IFN-γ and IL-1β compared with wild-type controls. In addition, NLRP12 deficiency leads to reduction in granuloma number and size in mouse livers. Altogether, our findings suggest that NLRP12 plays an important role in negatively regulating the early inflammatory responses against B. abortus. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Administration of JTE013 abrogates experimental asthma by regulating proinflammatory cytokine production from bronchial epithelial cells.

    Science.gov (United States)

    Terashita, Tomomi; Kobayashi, Kazuyuki; Nagano, Tatsuya; Kawa, Yoshitaka; Tamura, Daisuke; Nakata, Kyosuke; Yamamoto, Masatsugu; Tachihara, Motoko; Kamiryo, Hiroshi; Nishimura, Yoshihiro

    2016-11-09

    Sphingosine-1-phosphate (S1P) is a bioactive phospholipid that acts as a signal transducer by binding to S1P receptors (S1PR) 1 to 5. The S1P/S1PRs pathway has been associated with remodeling and allergic inflammation in asthma, but the expression pattern of S1PR and its effects on non-immune cells have not been completely clarified. The aim of this study was to examine the contribution of the signaling of S1P and S1PRs expressed in airway epithelial cells (ECs) to asthma responses in mice. Bronchial asthma was experimentally induced in BALB/c mice by ovalbumin (OVA) sensitization followed by an OVA inhalation challenge. The effects of S1PR antagonists on the development of asthma were analyzed 24 h after the OVA challenge. Immunohistological analysis revealed S1PR1-3 expression on mouse airway ECs. Quantitative real-time polymerase chain reaction demonstrated that S1P greatly stimulated the induction of CCL3 and TIMP2 mRNA in human airway ECs, i.e., BEAS-2B cells, in a dose-dependent manner. Pretreatment with the S1PR2 antagonist JTE013 inhibited the CCL3 gene expression in BEAS-2B cells. Immunohistological analysis also showed that the expression level of CCL3 was attenuated by JTE013 in asthmatic mice. Furthermore, JTE013 as well as anti-CCL3 antibody attenuated allergic responses. Intratracheal administration of JTE013 also attenuated eosinophilic reactions in bronchoalveolar lavage fluids. S1P induced transcription factor NFκB activation, while JTE013 greatly reduced the NFκB activation. JTE013 attenuated allergic airway reactions by regulating CCL3 production from bronchial ECs. The intratracheal administration of JTE013 may be a promising therapeutic strategy for bronchial asthma.

  2. Regulation of Cellular Metabolism and Cytokines by the Medicinal Herb Feverfew in the Human Monocytic THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Chin-Fu Chen

    2009-01-01

    Full Text Available The herb feverfew is a folk remedy for various symptoms including inflammation. Inflammation has recently been implicated in the genesis of many diseases including cancers, atherosclerosis and rheumatoid arthritis. The mechanisms of action of feverfew in the human body are largely unknown. To determine the cellular targets of feverfew extracts, we have utilized oligo microarrays to study the gene expression profiles elicited by feverfew extracts in human monocytic THP-1 cells. We have identified 400 genes that are consistently regulated by feverfew extracts. Most of the genes are involved in cellular metabolism. However, the genes undergoing the highest degree of change by feverfew treatment are involved in other pathways including chemokine function, water homeostasis and heme-mediated signaling. Our results also suggest that feverfew extracts effectively reduce Lipopolysaccharides (LPS-mediated TNF-α and CCL2 (MCP-1 releases by THP-1 cells. We hypothesize that feverfew components mediate metabolism, cell migration and cytokine production in human monocytes/macrophages.

  3. Cytokine-induced macropinocytosis in macrophages is regulated by 14-3-3ζ through its interaction with serine-phosphorylated coronin 1.

    Science.gov (United States)

    BoseDasgupta, Somdeb; Moes, Suzette; Jenoe, Paul; Pieters, Jean

    2015-04-01

    The induction of macropinocytosis in macrophages during an inflammatory response is important for clearance of pathogenic microbes as well as the generation of appropriate immune responses. Recent data suggest that cytokine stimulation of macrophages induces macropinocytosis through phosphorylation of the protein coronin 1, thereby redistributing coronin 1 from the cell cortex to the cytoplasm followed by the activation of phosphoinositol-3 (PI-3) kinase. However, how coronin 1 phosphorylation regulates these processes remains unclear. We here define an essential role for 14-3-3ζ in cytokine-induced and coronin-1-dependent macropinocytosis in macrophages. We found that, upon stimulation, phosphorylated coronin 1 transiently associated with 14-3-3ζ and receptor of activated C kinase 1 (RACK1). Importantly, downregulation of 14-3-3ζ, but not RACK1, prevented relocation of coronin 1, as well as the induction of PI-3 kinase activity and thereby macropinocytosis upon cytokine stimulation. Together these data define an essential role for 14-3-3ζ in the regulation of macropinocytosis in macrophages upon cytokine stimulation through modulation of the localization of coronin 1. © 2015 FEBS.

  4. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile.

    Science.gov (United States)

    DeFuria, Jason; Belkina, Anna C; Jagannathan-Bogdan, Madhumita; Snyder-Cappione, Jennifer; Carr, Jordan David; Nersesova, Yanina R; Markham, Douglas; Strissel, Katherine J; Watkins, Amanda A; Zhu, Min; Allen, Jessica; Bouchard, Jacqueline; Toraldo, Gianluca; Jasuja, Ravi; Obin, Martin S; McDonnell, Marie E; Apovian, Caroline; Denis, Gerald V; Nikolajczyk, Barbara S

    2013-03-26

    Patients with type 2 diabetes (T2D) have disease-associated changes in B-cell function, but the role these changes play in disease pathogenesis is not well established. Data herein show B cells from obese mice produce a proinflammatory cytokine profile compared with B cells from lean mice. Complementary in vivo studies show that obese B cell-null mice have decreased systemic inflammation, inflammatory B- and T-cell cytokines, adipose tissue inflammation, and insulin resistance (IR) compared with obese WT mice. Reduced inflammation in obese/insulin resistant B cell-null mice associates with an increased percentage of anti-inflammatory regulatory T cells (Tregs). This increase contrasts with the sharply decreased percentage of Tregs in obese compared with lean WT mice and suggests that B cells may be critical regulators of T-cell functions previously shown to play important roles in IR. We demonstrate that B cells from T2D (but not non-T2D) subjects support proinflammatory T-cell function in obesity/T2D through contact-dependent mechanisms. In contrast, human monocytes increase proinflammatory T-cell cytokines in both T2D and non-T2D analyses. These data support the conclusion that B cells are critical regulators of inflammation in T2D due to their direct ability to promote proinflammatory T-cell function and secrete a proinflammatory cytokine profile. Thus, B cells are potential therapeutic targets for T2D.

  5. Anti-inflammatory cytokine interleukin-19 inhibits smooth muscle cell migration and activation of cytoskeletal regulators of VSMC motility

    Science.gov (United States)

    Gabunia, Khatuna; Jain, Surbhi; England, Ross N.

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration is an important cellular event in multiple vascular diseases, including atherosclerosis, restenosis, and transplant vasculopathy. Little is known regarding the effects of anti-inflammatory interleukins on VSMC migration. This study tested the hypothesis that an anti-inflammatory Th2 interleukin, interleukin-19 (IL-19), could decrease VSMC motility. IL-19 significantly decreased platelet-derived growth factor (PDGF)-stimulated VSMC chemotaxis in Boyden chambers and migration in scratch wound assays. IL-19 significantly decreased VSMC spreading in response to PDGF. To determine the molecular mechanism(s) for these cellular effects, we examined the effect of IL-19 on activation of proteins that regulate VSMC cytoskeletal dynamics and locomotion. IL-19 decreased PDGF-driven activation of several cytoskeletal regulatory proteins that play an important role in smooth muscle cell motility, including heat shock protein-27 (HSP27), myosin light chain (MLC), and cofilin. IL-19 decreased PDGF activation of the Rac1 and RhoA GTPases, important integrators of migratory signals. IL-19 was unable to inhibit VSMC migration nor was able to inhibit activation of cytoskeletal regulatory proteins in VSMC transduced with a constitutively active Rac1 mutant (RacV14), suggesting that IL-19 inhibits events proximal to Rac1 activation. Together, these data are the first to indicate that IL-19 can have important inhibitory effects on VSMC motility and activation of cytoskeletal regulatory proteins. This has important implications for the use of anti-inflammatory cytokines in the treatment of vascular occlusive disease. PMID:21209363

  6. Lipopolysaccharide-induced toll-like receptor 4 signaling in esophageal squamous cell carcinoma promotes tumor proliferation and regulates inflammatory cytokines expression.

    Science.gov (United States)

    Zu, Yukun; Ping, Wei; Deng, Taoran; Zhang, Ni; Fu, Xiangning; Sun, Wei

    2017-02-01

    Emerging evidence suggests toll-like receptor 4 (TLR4) signaling contributes to cancer development and progression. However, the consequences of signaling via the TLR4 pathway in esophageal squamous cell carcinoma (ESCC) are still unclear. Here, we investigated the impact of Lipopolysaccharide (LPS)-induced TLR4 signaling on ESCC cell proliferation, inflammatory cytokines expression, and downstream molecular mechanisms. Seventy-eight ESCC and 26 normal esophageal specimens were analyzed by immunohistochemistry, and two cell lines (Eca-109 and TE-1) were used for in vitro studies. LPS, a natural agonist of TLR4, was used to activate TLR4 signaling. The effects of LPS-TLR4 signaling on cell proliferation and inflammatory cytokines regulation were examined. Specific inhibitors of mitogen-activated protein kinase (MAPK) (extracellular regulated protein kinase [ERK] and p38) signaling pathways were used to investigate the role of each pathway in LPS-TLR4 signaling. TLR4 protein was increased in ESCC tumor tissues compared with the adjacent normal tissues. TLR4 over-expression was significantly correlated with tumor differentiation grade, lymph node metastasis, and UICC stage. LPS-induced activation of TLR4 signaling promoted cancer cell proliferation, increased production of proinflammatory or immunosuppressive cytokines TNF-α, TGF-β and inhibited the anti-inflammatory cytokine IL-10. LPS-TLR4 signaling was associated with the activation of ERK and p38 MAPK signaling pathways. Further inactivation of the two pathways by specific inhibitors attenuated cell proliferation and inflammatory cytokines expression induced by LPS. Our results indicate that LPS-TLR4 signaling in cancer cells contributes to the progression of human ESCC. © 2016 International Society for Diseases of the Esophagus.

  7. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549).

    Science.gov (United States)

    Farzin, Hamidreza; Toroghi, Reza; Haghparast, Alireza

    2016-01-01

    Influenza H9N2 virus mostly infects avian species but poses a potential health risk to humans. Little is known about the mammalian host immune responses to H9N2 virus. To obtain insight into the innate immune responses of human lung epithelial cells to the avian H9N2 virus, the expressions of pro-inflammatory cytokines and chemokine in the human airway epithelial cells infected with avian H9N2 virus were examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). H9N2 virus was able to cultivate in the human lung epithelial cell line (A549) and stimulate production of pro-inflammatory cytokines (IL-1β, IL-6) and chemokine (IL-8). Expressions of cytokine genes were up-regulated to a significantly higher level for IL-1β (p line compared to non-virus-cultured A549 cells and were significant in both IL-1β (p < 0.05 in 18 hours and p < 0.001 in 24-48 hours harvested supernatant) and IL-6 (p < 0.001). Silencing the p65 component of NF-κB in A549 cells suppressed the stimulatory effects of influenza virus on secretion of pro-inflammatory cytokines and chemokine. The findings in this study will broaden our understanding of host innate immune mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.

  8. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells.

    Science.gov (United States)

    Deng, Minnan; Du, Ganqin; Zhao, Jiegang; Du, Xiaowei

    2017-06-01

    Increasing evidence confirms the involvement of virus infection and miRNA, such as miR-146a, in neuroinflammation-associated epilepsy. In the present study, we investigated the upregulation of miR-146a with RT-qPCR and in situ hybridization methods in a mice infection model of Japanese encephalitis virus (JEV) and in vitro. Subsequently we investigated the involvement of miR-146a in modulating JEV-induced neuroinflammation. It was demonstrated that JEV infection promoted miR-146a production in BALB/c mice brain and in cultured mouse microglial C8-B4 cells, along with pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, IFN-β and IFN-α. We also found that miR-146a exerted negative regulatory effects upon IL-1β, IL-6, TNF-α, IFN-β and IFN-α in C8-B4 cells. Accordingly, miR-146a downregulation with a miR-146a inhibitor promoted the upregulation of IL-1β, IL-6, TNF-α, IFN-β and IFN-α, whereas miR-146a upregulation with miR-146a mimics reduced the upregulation of these cytokines. Moreover, miR-146a exerted no regulation upon JEV growth in C8-B4 cells. In conclusion, JEV infection upregulated miR-146a and pro-inflammatory cytokine production, in mice brain and in cultured C8-B4 cells. Furthermore, miR-146a negatively regulated the production of JEV-induced pro-inflammatory cytokines, in virus growth independent fashion, identifying miR-146a as a negative feedback regulator in JEV-induced neuroinflammation, and possibly in epilepsy.

  9. Cytokiner og osteoporose

    DEFF Research Database (Denmark)

    Jørgensen, N R

    1997-01-01

    During the last few years, progress has been made towards the understanding of local regulation of bone remodelling especially in relation to osteoporosis. Cytokines have shown to be powerful regulators of bone resorption and formation, though under superior control from oestrogen/testosterone, p...

  10. Tanshinone IIA protects against immune-mediated liver injury through activation of T-cell subsets and regulation of cytokines.

    Science.gov (United States)

    Qin, Xiao-Yan; Li, Tang; Yan, Li; Liu, Qing-Shan; Tian, Yu

    2010-03-01

    Tanshione IIA (TSN) is the major active component of Salvia miltiorrhiza, a traditional Chinese Medicine. TSN protects against antioxidant-induced liver injury, although the exact mechanism is not well understood. In this study, the protective effects of TSN was examined by enzyme-linked immunosorbent assay (ELISA) and histochemistry of several cytokines. TSN is found to significantly reduce plasma alanin aminotransferase and aspartate amino transferase levels in mice with concanavalin A-induced immune-mediated liver injury. TSN increases T lymphocyte subset CD3+, CD4+ and CD8+ ratios.Also, TSN significantly reduces inflammatory cytokines, including interleukin-2, interleukin-4, interferon-gamma and tumor necrosis factor alpha, while elevates anti-inflammatory cytokine, interleukin-10. TSN may provide a potential drug candidate for liver injury therapeutics.

  11. Delta 9-THC and N-arachidonoyl glycine regulate BV-2 microglial morphology and cytokine release plasticity: implications for signaling at GPR18

    Directory of Open Access Journals (Sweden)

    Douglas eMcHugh

    2014-01-01

    Full Text Available Microglial cells are extremely plastic and undergo a variety of CNS-prompted shape changes relative to their location and current role. Signaling molecules from neurons also regulate microglial cytokine production. Neurons are known to employ the endogenous cannabinoid system to communicate with other cells of the CNS. N-arachidonoyl glycine (NAGly and Δ9-tetrahydrocannabinol (Δ9-THC signaling via GPR18 has been introduced as an important new target in microglial-neuronal communication. Our hypothesis is that endogenous NAGly-GPR18 signaling regulates phenotypic shape and cytokine production in microglia, and is mimicked by Δ9-THC in the BV-2 microglia model system. BV-2 microglia were exposed to NAGly and Δ9-THC or Vh for 12 hours, which resulted in significant differences in the cell morphologies expressed. Cannabidiol (CBD was effective at antagonizing the effects of both NAGly and Δ9-THC. Using ELISA-based microarrays, BV-2 microglia were exposed to NAGly and Δ9-THC or Vh for 3 hours and the presence of 40 cytokines in the culture media quantified. Production of Axl, CD40, IGF-I, OPN and Pro-MMP-9 were significantly altered by NAGly and Δ9-THC, and antagonized by CBD. These data add to an emerging profile that emphasizes NAGly as a component of an endogenous system present in the CNS that tightly integrates microglial proliferation, recruitment and adhesion with neuron-glia interactivity and tissue remodeling.

  12. Transcription Factors Oct-1 and GATA-3 Cooperatively Regulate Th2 Cytokine Gene Expression via the RHS5 within the Th2 Locus Control Region

    Science.gov (United States)

    Kim, Kiwan; Kim, Najung; Lee, Gap Ryol

    2016-01-01

    The T helper type 2 (Th2) locus control region (LCR) regulates Th2 cell differentiation. Several transcription factors bind to the LCR to modulate the expression of Th2 cytokine genes, but the molecular mechanisms behind Th2 cytokine gene regulation are incompletely understood. Here, we used database analysis and an oligonucleotide competition/electrophoretic mobility shift assays to search for transcription factors binding to RHS5, a DNase I hypersensitive site (DHS) within the Th2 LCR. Consequently, we demonstrated that GATA-binding protein-3 (GATA-3), E26 transformation-specific protein 1 (Ets-1), octamer transcription factor-1 (Oct-1), and Oct-2 selectively associate with RHS5. Furthermore, chromatin immunoprecipitation and luciferase reporter assays showed that Oct-1 and Oct-2 bound within the Il4 promoter region and the Th2 LCR, and that Oct-1 and GATA-3 or Oct-2 synergistically triggered the transactivational activity of the Il4 promoter through RHS5. These results suggest that Oct-1 and GATA-3/Oct-2 direct Th2 cytokine gene expression in a cooperative manner. PMID:26840450

  13. [Low-molecular-weight regulators of biogenic polyamine metabolism affect cytokine production and expression of hepatitis С virus proteins in Huh7.5 human hepatocarcinoma cells].

    Science.gov (United States)

    Masalova, O V; Lesnova, E I; Samokhvalov, E I; Permyakova, K Yu; Ivanov, A V; Kochetkov, S N; Kushch, A A

    2017-01-01

    Hepatitis C virus (HCV) induces the expression of the genes of proinflammatory cytokines, the excessive production of which may cause cell death, and contribute to development of liver fibrosis and hepatocarcinoma. The relationship between cytokine production and metabolic disorders in HCV-infected cells remains obscure. The levels of biogenic polyamines, spermine, spermidine, and their precursor putrescine, may be a potential regulator of these processes. The purpose of the present work was to study the effects of the compounds which modulate biogenic polyamines metabolism on cytokine production and HCV proteins expression. Human hepatocarcinoma Huh7.5 cells have been transfected with the plasmids that encode HCV proteins and further incubated with the following low-molecular compounds that affect different stages of polyamine metabolism: (1) difluoromethylornithine (DFMO), the inhibitor of ornithine decarboxylase, the enzyme that catalyzes the biosynthesis of polyamines; (2) N,N'-bis(2,3-butane dienyl)-1,4-diaminobutane (MDL72.527), the inhibitor of proteins involved in polyamine degradation; and (3) synthetic polyamine analog N^(I),N^(II)-diethylnorspermine (DENSpm), an inducer of polyamine degradation enzyme. The intracellular accumulation and secretion of cytokines (IL-6, IL-1β, TNF-α, and TGF-β) was assessed by immunocytochemistry and in the immunoenzyme assay, while the cytokine gene expression was studied using reverse transcription and PCR. The effects of the compounds under analysis on the expression of HCV proteins were analyzed using the indirect immunofluorescence with anti-HCV monoclonal antibodies. It has been demonstrated that, in cells transfected with HCV genes, DFMO reduces the production of three out of four tested cytokines, namely, TNF-α and TGF-β in cells that express HCV core, Е1Е2, NS3, NS5A, and NS5B proteins, and IL-1β in the cells that express HCV core, Е1Е2, and NS3 proteins. MDL72527 and DENSpm decreased cytokine production

  14. Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer's disease

    DEFF Research Database (Denmark)

    Darreh-Shori, Taher; Vijayaraghavan, Swetha; Aeinehband, Shahin

    2013-01-01

    and that this might be of clinical relevance. The dissociation between astroglial markers and inflammatory cytokines indicates that a proper activation and maintenance of astroglial function is a beneficial response, rather than a disease-driving mechanism. Further studies are needed to explore the therapeutic...

  15. Non-T cell activation linker (NTAL) negatively regulates TREM-1/DAP12-induced inflammatory cytokine production in myeloid cells

    Czech Academy of Sciences Publication Activity Database

    Tessarz, A.S.; Weiler, S.; Zanzinger, K.; Angelisová, Pavla; Hořejší, Václav; Cerwenka, A.

    2007-01-01

    Roč. 178, č. 4 (2007), s. 1991-1999 ISSN 0022-1767 R&D Projects: GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : NTAL * TREM-1 * cytokines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.068, year: 2007

  16. Cytokine responses and regulation of interferon-gamma release by human mononuclear cells to Aspergillus fumigatus and other filamentous fungi.

    NARCIS (Netherlands)

    Warris, A.; Netea, M.G.; Verweij, P.E.; Gaustad, P.; Kullberg, B.J.; Weemaes, C.M.R.; Abrahamsen, T.G.

    2005-01-01

    There is substantial evidence that the production of proinflammatory cytokines is important in host resistance to invasive aspergillosis. Knowledge of the host response towards other filamentous fungi is scarce, as most studies have focused on Aspergillus fumigatus. In addition, interferon-gamma

  17. MicroRNA-206 regulates the secretion of inflammatory cytokines and MMP9 expression by targeting TIMP3 in Mycobacterium tuberculosis-infected THP-1 human macrophages.

    Science.gov (United States)

    Fu, Xiangdong; Zeng, Lihong; Liu, Zhi; Ke, Xue; Lei, Lin; Li, Guobao

    2016-08-19

    Tuberculosis (TB) is a serious disease that is characterized by Mycobacterium tuberculosis (M.tb)-triggered immune system impairment and lung tissue damage shows limited treatment options. MicroRNAs (miRNAs) are regulators of gene expression that play critical roles in many human diseases, and can be up- or downregulated by M.tb infection in macrophage. Recently, tissue inhibitor of matrix metalloproteinase (TIMP) 3 has been found to play roles in regulating macrophage inflammation. Here, we found that TIMP3 expression was regulated by miR-206 in M.tb-infected THP-1 human macrophages. In THP-1 cells infected with M.tb, the miR-206 level was significantly upregulated and the expression of TIMP3 was markedly decreased when the secretion of inflammatory cytokines was increased. Inhibition of miR-206 markedly suppressed inflammatory cytokine secretion and upregulated the expression of TIMP3. In contrast, the upregulation of miR-206 promoted the matrix metalloproteinase (MMP) 9 levels and inhibited TIMP3 levels. Using a dual-luciferase reporter assay, a direct interaction between miR-206 and the 3'-untranslated region (UTR) of TIMP3 was confirmed. SiTIMP3, the small interfering RNA (siRNA) specific for TIMP3, significantly attenuated the suppressive effects of miR-206-inhibitor on inflammatory cytokine secretion and MMP9 expression. Our data suggest that miR-206 may function as an inflammatory regulator and drive the expression of MMP9 in M.tb-infected THP-1 cells by targeting TIMP3, indicating that miR-206 is a potential therapeutic target for patients with TB. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Nrf2 protects the lung against inflammation induced by titanium dioxide nanoparticles: A positive regulator role of Nrf2 on cytokine release.

    Science.gov (United States)

    Delgado-Buenrostro, Norma L; Medina-Reyes, Estefany I; Lastres-Becker, Isabel; Freyre-Fonseca, Verónica; Ji, Zhaoxia; Hernández-Pando, Rogelio; Marquina, Brenda; Pedraza-Chaverri, José; Espada, Sandra; Cuadrado, Antonio; Chirino, Yolanda I

    2015-07-01

    Titanium dioxide nanoparticles (TiO2 NPs) have been classified as possibly carcinogenic to humans and they are an important nanomaterial widely used in pharmaceutical and paint industries. Inhalation is one of the most important routes of exposure in occupational settings. Several experimental models have shown that oxidative stress and inflammation are key mediators of cell damage. In this regard, Nrf2 modulates cytoprotection against oxidative stress and inflammation, however, its role in inflammation induced by TiO2 NPs exposure has been less investigated. The aim of this work was to investigate the role of Nrf2 in the cytokines produced after 4 weeks of TiO2 NPs exposure (5 mg/kg/2 days/week) using wild-type and Nrf2 knockout C57bl6 mice. Results showed that Nrf2 protects against inflammation and oxidative damage induced by TiO2 NPs exposure, however, Nrf2 is a positive mediator in the expression of IFN-γ, TNF-α, and TGF-β in bronchial epithelium and alveolar space after 4 weeks of exposure. These results suggest that Nrf2 has a central role in up-regulation of cytokines released during inflammation induced by TiO2 NPs and those cytokines are needed to cope with histological alterations in lung tissue. © 2014 Wiley Periodicals, Inc.

  19. Hippo, TGF-β, and Src-MAPK pathways regulate transcription of the upd3 cytokine in Drosophila enterocytes upon bacterial infection.

    Science.gov (United States)

    Houtz, Philip; Bonfini, Alessandro; Liu, Xi; Revah, Jonathan; Guillou, Aurélien; Poidevin, Mickael; Hens, Korneel; Huang, Hsin-Yi; Deplancke, Bart; Tsai, Yu-Chen; Buchon, Nicolas

    2017-11-01

    Cytokine signaling is responsible for coordinating conserved epithelial regeneration and immune responses in the digestive tract. In the Drosophila midgut, Upd3 is a major cytokine, which is induced in enterocytes (EC) and enteroblasts (EB) upon oral infection, and initiates intestinal stem cell (ISC) dependent tissue repair. To date, the genetic network directing upd3 transcription remains largely uncharacterized. Here, we have identified the key infection-responsive enhancers of the upd3 gene and show that distinct enhancers respond to various stresses. Furthermore, through functional genetic screening, bioinformatic analyses and yeast one-hybrid screening, we determined that the transcription factors Scalloped (Sd), Mothers against dpp (Mad), and D-Fos are principal regulators of upd3 expression. Our study demonstrates that upd3 transcription in the gut is regulated by the activation of multiple pathways, including the Hippo, TGF-β/Dpp, and Src, as well as p38-dependent MAPK pathways. Thus, these essential pathways, which are known to control ISC proliferation cell-autonomously, are also activated in ECs to promote tissue turnover the regulation of upd3 transcription.

  20. Suppressor of cytokine signaling (SOCS genes are silenced by DNA hypermethylation and histone deacetylation and regulate response to radiotherapy in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Moon-Hong Kim

    Full Text Available Suppressor of cytokine signaling (SOCS family is an important negative regulator of cytokine signaling and deregulation of SOCS has been involved in many types of cancer. All cervical cancer cell lines tested showed lower expression of SOCS1, SOCS3, and SOCS5 than normal tissue or cell lines. The immunohistochemistry result for SOCS proteins in human cervical tissue also confirmed that normal tissue expressed higher level of SOCS proteins than neighboring tumor. Similar to the regulation of SOCS in other types of cancer, DNA methylation contributed to SOCS1 downregulation in CaSki, ME-180, and HeLa cells. However, the expression of SOCS3 or SOCS5 was not recovered by the inhibition of DNA methylation. Histone deacetylation may be another regulatory mechanism involved in SOCS1 and SOCS3 expression, however, SOCS5 expression was neither affected by DNA methylation nor histone deacetylation. Ectopic expression of SOCS1 or SOCS3 conferred radioresistance to HeLa cells, which implied SOCS signaling regulates the response to radiation in cervical cancer. In this study, we have shown that SOCS expression repressed by, in part, epigenetically and altered SOCS1 and SOCS3 expression could contribute to the radiosensitive phenotype in cervical cancer.

  1. Th17 cytokines are critical for RSV associated airway hyperreponsiveness through regulation by complement C3a and tachykinins1

    Science.gov (United States)

    Bera, Monali M.; Lu, Bao; Martin, Thomas R; Cui, Shun; Rhein, Lawrence M.; Gerard, Craig; Gerard, Norma P.

    2011-01-01

    Respiratory syncytial virus (RSV) infection is associated with serious lung disease in infants and immunocompromised individuals and is linked to development of asthma. In mice, acute RSV infection causes airway hyperresponsiveness (AHR), inflammation, and mucus hypersecretion. Infected cells induce complement activation, producing the anaphylatoxin C3a. Here we show RSV infected wild type mice produce Th17 cytokines, a response not previously associated with viral infections. Mice deficient in the C3aR (C3aR1−/−) fail to develop AHR following acute RSV infection, and production of Th17 cytokines was significantly attenuated. Tachykinin production has also been implicated in RSV pathophysiology, and tachykinin receptor null mice (TACR1−/−) were similarly protected from developing AHR. These animals were also deficient in production of Th17 cytokines. Tachykinin release was absent in C3aR1−/− mice, while C3a levels were unchanged in TACR1−/− animals. Thus, our data reveal a crucial sequence following acute RSV infection where initial C3a production causes tachykinin release, followed by activation of the IL-17A pathway. Deficiency of either receptor affords protection from AHR, identifying two potential therapeutic targets. PMID:21918196

  2. Cytokines and mood in healthy young adults

    NARCIS (Netherlands)

    Jansen, J.; Fernstrand, A.M.; Van De Loo, A.J.A.E.; Garssen, J.; Verster, J.C.

    2015-01-01

    Purpose: A link between chronic inflammation and neuropsychiatric disorders has been demonstrated previously. For example, pro- and anti-inflammatory cytokines have shown to impact neurocircuits relevant to mood regulation. Elevated levels of inflammatory cytokines have been associated with the

  3. Cytokine regulation of pro- and anti-apoptotic genes in rat hepatocytes: NF-kappaB-regulated inhibitor of apoptosis protein 2 (cIAP2) prevents apoptosis

    NARCIS (Netherlands)

    Schoemaker, Marieke H.; Ros, Jenny E.; Homan, Manon; Trautwein, Christian; Liston, Peter; Poelstra, Klaas; van Goor, Harry; Jansen, Peter L. M.; Moshage, Han

    2002-01-01

    BACKGROUND/AIMS: In acute liver failure, hepatocytes are exposed to various cytokines that activate both cell survival and apoptotic pathways. NF-kappaB is a central transcription factor in these responses. Recent studies indicate that blocking NF-kappaB causes apoptosis, indicating the existence of

  4. miR-146a regulates inflammatory cytokine production in Porphyromonas gingivalis lipopolysaccharide-stimulated B cells by targeting IRAK1 but not TRAF6.

    Science.gov (United States)

    Jiang, Shaoyun; Hu, Yang; Deng, Shu; Deng, Jiayin; Yu, Xinbo; Huang, Grace; Kawai, Toshihisa; Han, Xiaozhe

    2018-03-01

    It has been suggested that microRNAs (miRs) are involved in the immune regulation of periodontitis. However, it is unclear whether and how miRs regulate the function of B cells in the context of periodontitis. This study is to explore the role of miR-146a on the inflammatory cytokine production of B cells challenged by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). Primary B cells were harvested from mouse spleen. Quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of inflammatory cytokines in B cells in the presence or absence of P. gingivalis LPS and/or miR-146a. Bioinformatics, luciferase reporter assay and overexpression assay were used to explore the binding target of miR-146a. Our results showed that miR-146a level in B cells was elevated by P. gingivalis LPS stimulation, and the mRNA expressions of interleukin (IL)-1β, 6 and 10, and IL-1 receptor associated kinase-1 (IRAK1), but not TNF receptor associated factor 6 (TRAF6), were also upregulated. The expression levels of IL-1β, 6, 10 and IRAK1 were reduced in the presence of miR-146a mimic, but were elevated by the addition of miR-146a inhibitor. MiR-146a could bind with IRAK1 3' untranslated region (UTR) but not TRAF6 3'-UTR. Overexpression of IRAK1 reversed the inhibitory effects of miR-146a on IL-1β, 6 and 10. In summary, miR-146a inhibits inflammatory cytokine production in B cells through directly targeting IRAK1, suggesting a regulatory role of miR-146a in B cell-mediated periodontal inflammation. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Hydrogen sulfide in paraventricular nucleus attenuates blood pressure by regulating oxidative stress and inflammatory cytokines in high salt-induced hypertension.

    Science.gov (United States)

    Liang, Yan-Feng; Zhang, Dong-Dong; Yu, Xiao-Jing; Gao, Hong-Li; Liu, Kai-Li; Qi, Jie; Li, Hong-Bao; Yi, Qiu-Yue; Chen, Wen-Sheng; Cui, Wei; Zhu, Guo-Qing; Kang, Yu-Ming

    2017-03-15

    Hydrogen sulfide (H 2 S) is an important gaseous signaling molecule in neuro-modulation, anti-inflammatory, anti-oxidant and anti-hypertensive effects. The paraventricular nucleus (PVN) is a major integrative nucleus in regulating BP and SNA. The aim of this study is to explore whether endogenous or exogenous H 2 S changed by hydroxylamine hydrochloride (HA) or GYY4137 infused in the PVN affects RSNA and MAP by regulating oxidative stress or the balance between pro-inflammatory cytokines (PICs) and anti-inflammatory cytokines in high salt-induced hypertensive rats. Male Dahl rats were fed by high-salt or normal-salt diet. At the end of the 4th week, GYY4137, HA or vehicle was microinjected into bilateral PVN for 6 weeks. The levels of MAP, HR, plasma norepinephrine (NE), reactive oxygen species (ROS), NOX2, NOX4 and IL-1β were increased significantly in high salt-induced hypertensive rats. Higher levels of these parameters were detected in the group treated by HA, but lower levels in the GYY4137 group. The trends of H 2 S, CBS, IL-10 and Cu/Zn SOD were opposite to the parameters described above. These findings suggest that endogenous or exogenous H 2 S in the PVN attenuates sympathetic activity and hypertensive response, which are partly due to decrease of ROS and PICs within the PVN in high salt-induced hypertension. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of Boron on Thymic Cytokine Expression, Hormone Secretion, Antioxidant Functions, Cell Proliferation, and Apoptosis Potential via the Extracellular Signal-Regulated Kinases 1 and 2 Signaling Pathway.

    Science.gov (United States)

    Jin, Erhui; Ren, Man; Liu, Wenwen; Liang, Shuang; Hu, Qianqian; Gu, Youfang; Li, Shenghe

    2017-12-27

    Boron is an essential trace element in animals. Appropriate boron supplementation can promote thymus development; however, a high dose of boron can lead to adverse effects and cause toxicity. The influencing mechanism of boron on the animal body remains unclear. In this study, we examined the effect of boron on cytokine expression, thymosin and thymopoietin secretion, antioxidant function, cell proliferation and apoptosis, and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in the thymus of rats. We found that supplementation with 10 and 20 mg/L boron to the drinking water significantly elevated levels of interleukin 2 (IL-2), interferon γ (IFN-γ), interleukin 4 (IL-4), and thymosin α1 in the thymus of rats (p boron had no apparent effect on many of the above indicators. In contrast, supplementation with 480 and 640 mg/L boron had the opposite effect on the above indicators in rats and elevated levels of pro-inflammatory cytokines, such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α) (p boron to the drinking water had a U-shaped dose-effect relationship with thymic cytokine expression, hormone secretion, antioxidant function, cell proliferation, and apoptosis. Specifically, supplementation with 10 and 20 mg/L boron promoted thymocyte proliferation and enhanced thymic functions. However, supplementation with 480 and 640 mg/L boron inhibited thymic functions and increased the number of apoptotic thymocytes, suggesting that the effects of boron on thymic functions may be caused via the ERK1/2 signaling pathway.

  7. Nucleotide-Binding Oligomerization Domain 2 Contributes to Limiting Growth of Mycobacterium abscessus in the Lung of Mice by Regulating Cytokines and Nitric Oxide Production

    Directory of Open Access Journals (Sweden)

    Jun-Young Lee

    2017-11-01

    Full Text Available Mycobacterium abscessus is a prominent cause of pulmonary infection in immunosuppressed patients and those with cystic fibrosis. Nucleotide-binding oligomerization domain (NOD 2 is a cytosolic receptor which senses a bacterial peptidoglycan component, muramyl dipeptide (MDP. Although nucleotide-binding oligomerization domain 2 (NOD2 contributes to protect host against various microbial infections, it is still unclear whether NOD2 is essential to regulate host immune responses against M. abscessus infection. In this study, we sought to clarify the role of NOD2 and the underlying mechanism in host defense against M. abscessus infection. Mice were infected intranasally with M. abscessus and sacrificed at indicated time points. Bacterial survival, cytokines production, and pathology in the lungs were determined. Bone marrow-derived macrophages were used to clarify cellular mechanism of NOD2-mediated immune response. Bacterial clearance was impaired, and pathology was more severe in the lungs of NOD2-deficient mice compared with the wild-type mice. In macrophages, NOD2-mediated activation of p38 and JNK were required for production of proinflammatory cytokines and nitric oxide (NO and expression of iNOS in response to M. abscessus. NO was critical for limiting intracellular growth of the pathogen. Intranasal administration of MDP reduced in vivo bacterial replication and thus improved lung pathology in M. abscessus-infected mice. This study offers important new insights into the potential roles of the NOD2 in initiating and potentiating innate immune response against M. abscessus pulmonary infection.

  8. The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses.

    Science.gov (United States)

    Bauer, Inga; Grozio, Alessia; Lasigliè, Denise; Basile, Giovanna; Sturla, Laura; Magnone, Mirko; Sociali, Giovanna; Soncini, Debora; Caffa, Irene; Poggi, Alessandro; Zoppoli, Gabriele; Cea, Michele; Feldmann, Georg; Mostoslavsky, Raul; Ballestrero, Alberto; Patrone, Franco; Bruzzone, Santina; Nencioni, Alessio

    2012-11-30

    Cytokine secretion by cancer cells contributes to cancer-induced symptoms and angiogenesis. Studies show that the sirtuin SIRT6 promotes inflammation by enhancing TNF expression. Here, we aimed to determine whether SIRT6 is involved in conferring an inflammatory phenotype to cancer cells and to define the mechanisms linking SIRT6 to inflammation. We show that SIRT6 enhances the expression of pro-inflammatory cyto-/chemokines, such as IL8 and TNF, and promotes cell migration in pancreatic cancer cells by enhancing Ca(2+) responses. Via its enzymatic activity, SIRT6 increases the intracellular levels of ADP-ribose, an activator of the Ca(2+) channel TRPM2. In turn, TRPM2 and Ca(2+) are shown to be involved in SIRT6-induced TNF and IL8 expression. SIRT6 increases the nuclear levels of the Ca(2+)-dependent transcription factor, nuclear factor of activated T cells (NFAT), and cyclosporin A, a calcineurin inhibitor that reduces NFAT activity, reduces TNF and IL8 expression in SIRT6-overexpressing cells. These results implicate a role for SIRT6 in the synthesis of Ca(2+)-mobilizing second messengers, in the regulation of Ca(2+)-dependent transcription factors, and in the expression of pro-inflammatory, pro-angiogenic, and chemotactic cytokines. SIRT6 inhibition may help combat cancer-induced inflammation, angiogenesis, and metastasis.

  9. t-PA acts as a cytokine to regulate lymphocyte-endothelium adhesion in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Wang, Jinghua; Zhang, Xin; Mu, Lili; Zhang, Mingqing; Gao, Zhongming; Zhang, Jia; Yao, Xiuhua; Liu, Chuanliang; Wang, Guangyou; Wang, Dandan; Kong, Qingfei; Liu, Yumei; Li, Na; Sun, Bo; Li, Hulun

    2014-01-01

    In this study, the capacity for t-PA to affect T cell-brain microvascular endothelial cell adhesion by acting as a cytokine was investigated. Following the treatment of a brain-derived endothelial cell line, bEnd.3, with various concentrations of t-PA, adhesion and transwell migration assays were performed. In the presence of t-PA, enhanced adhesion of T cells to bEnd.3 cells was observed. Using western blot analysis, an increase in ICAM-1 expression was detected for both t-PA-treated bEnd.3 cells and bEnd.3 cells treated with a non-enzymatic form of t-PA. In contrast, when LRP1 was blocked using a specific antibody, upregulation of ICAM-1 was inhibited and cAMP-PKA signaling was affected. Furthermore, using an EAE mouse model, administration of t-PA was associated with an increase in ICAM-1 expression by brain endothelial cells. Taken together, these findings suggest that t-PA can induce ICAM-1 expression in brain microvascular endothelial cells, and this may promote the development of EAE. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Astrocyte matricellular proteins that control excitatory synaptogenesis are regulated by inflammatory cytokines and correlate with paralysis severity during experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Pennelope K. Blakely

    2015-10-01

    Full Text Available The matricellular proteins, secreted protein acidic and rich in cysteine (SPARC and SPARC-like 1 (SPARCL1, are produced by astrocytes and control excitatory synaptogenesis in the central nervous system. While SPARCL1 directly promotes excitatory synapse formation in vitro and in the developing nervous system in vivo, SPARC specifically antagonizes the synaptogenic actions of SPARCL1. We hypothesized these proteins also help maintain existing excitatory synapses in adult hosts, and that local inflammation in the spinal cord alters their production in a way that dynamically modulates motor synapses and impacts the severity of paralysis during experimental autoimmune encephalomyelitis (EAE in mice. Using a spontaneously remitting EAE model, paralysis severity correlated inversely with both expression of synaptic proteins and the number of synapses in direct contact with the perikarya of motor neurons in spinal grey matter. In both remitting and non-remitting EAE models, paralysis severity also correlated inversely with sparcl1:sparc transcript and SPARCL1:SPARC protein ratios directly in lumbar spinal cord tissue. In vitro, astrocyte production of both SPARCL1 and SPARC was regulated by T cell-derived cytokines, causing dynamic modulation of the SPARCL1:SPARC expression ratio. Taken together, these data support a model whereby proinflammatory cytokines inhibit SPARCL1 and/or augment SPARC expression by astrocytes in spinal grey matter that, in turn, cause either transient or sustained synaptic retraction from lumbar spinal motor neurons thereby regulating hind limb paralysis during EAE. Ongoing studies seek ways to alter this SPARCL1:SPARC expression ratio in favor of synapse reformation/maintenance and thus help to modulate neurologic deficits during times of inflammation. This could identify new astrocyte-targeted therapies for diseases such as multiple sclerosis.

  11. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for molecules associated with metabolism, signaling and regulation in central nervous system mixed glial cell cultures

    Directory of Open Access Journals (Sweden)

    Studzinski Diane

    2009-01-01

    Full Text Available Abstract Background Cytokines secreted by immune cells and activated glia play central roles in both the pathogenesis of and protection from damage to the central nervous system (CNS in multiple sclerosis (MS. Methods We have used gene array analysis to identify the initial direct effects of cytokines on CNS glia by comparing changes in early gene expression in CNS glial cultures treated for 6 hours with cytokines typical of those secreted by Th1 and Th2 lymphocytes and monocyte/macrophages (M/M. Results In two previous papers, we summarized effects of these cytokines on immune-related molecules, and on neural and glial related proteins, including neurotrophins, growth factors and structural proteins. In this paper, we present the effects of the cytokines on molecules involved in metabolism, signaling and regulatory mechanisms in CNS glia. Many of the changes in gene expression were similar to those seen in ischemic preconditioning and in early inflammatory lesions in experimental autoimmune encephalomyelitis (EAE, related to ion homeostasis, mitochondrial function, neurotransmission, vitamin D metabolism and a variety of transcription factors and signaling pathways. Among the most prominent changes, all three cytokine mixtures markedly downregulated the dopamine D3 receptor, while Th1 and Th2 cytokines downregulated neuropeptide Y receptor 5. An unexpected finding was the large number of changes related to lipid metabolism, including several suggesting a switch from diacylglycerol to phosphatidyl inositol mediated signaling pathways. Using QRT-PCR we validated the results for regulation of genes for iNOS, arginase and P glycoprotein/multi-drug resistance protein 1 (MDR1 seen at 6 hours with microarray. Conclusion Each of the three cytokine mixtures differentially regulated gene expression related to metabolism and signaling that may play roles in the pathogenesis of MS, most notably with regard to mitochondrial function and neurotransmitter

  12. Rab27A mediated by NF-κB promotes the stemness of colon cancer cells via up-regulation of cytokine secretion.

    Science.gov (United States)

    Feng, Feixue; Jiang, Yinghao; Lu, Huanyu; Lu, Xiaozhao; Wang, Shan; Wang, Lifeng; Wei, Mengying; Lu, Wei; Du, Zhichao; Ye, Zichen; Yang, Guodong; Yuan, Fang; Ma, Yanxia; Lei, Xiaoying; Lu, Zifan

    2016-09-27

    Recent evidences have unveiled critical roles of cancer stem cells (CSCs) in tumorigenicity, but how interactions between CSC and tumor environments help maintain CSC initiation remains obscure. The small GTPases Rab27A regulates autocrine and paracrine cytokines by monitoring exocytosis of extracellular vesicles, and is reported to promote certain tumor progression. We observe that overexpression of Rab27A increased sphere formation efficiency (SFE) by increasing the proportion of CD44+ and PKH26high cells in HT29 cell lines, and accelerating the growth of colosphere with higher percentage of cells at S phase. Mechanism study revealed that the supernatant derived from HT29 sphere after Rab27A overexpression was able to expand sphere numbers with elevated secretion of VEGF and TGF-β. In tumor implanting nude mice model, tumor initiation rates and tumor sizes were enhanced by Rab27A with obvious angiogenesis. As a contrast, knocking down Rab27A impaired the above effects. More importantly, the correlation between higher p65 level and Rab27A in colon sphere was detected, p65 was sufficient to induce up-regulation of Rab27A and a functional NF-κB binding site in the Rab27A promoter was demonstrated. Altogether, our findings reveal a unique mechanism that tumor environment related NF-κB signaling promotes various colon cancer stem cells (cCSCs) properties via an amplified paracrine mechanism regulated by higher Rab27A level.

  13. Short-term cytokine stimulation reveals regulatory T cells with down-regulated Foxp3 expression in human peripheral blood.

    Science.gov (United States)

    Tabares, Paula; Berr, Susanne; Langenhorst, Daniela; Sawitzki, Birgit; Ten Berge, Ineke; Tony, Hans-Peter; Hünig, Thomas

    2018-02-01

    The identification of regulatory T cells (Treg cells) in human peripheral blood is an important tool in diagnosis, research, and therapeutic intervention. As compared to lymphoid tissues, the frequencies of circulating Treg cells identified as CD4 + CD25 + Foxp3 + are, however, low. We here show that many of these cells remain undetected due to transient down regulation of Foxp3, which rapidly decays in the absence of cytokine-mediated STAT5 signals. Short-term incubation of PBMCs or isolated CD4 + T cells, but not of lymph node cells, with IL-2, -7, or -15 more than doubles the frequency of Foxp3 + CD25 + among CD4 + T cells detectable by flow cytometry. This increase is not due to cell division but to upregulation of both proteins. At the same time, the uncovered Treg cells up-regulate CD25 and down-regulate CD127, making them accessible to viable cell sorting. "Latent" Treg cells have a demethylated FOXP3 TSDR sequence, are enriched in naïve, non-cycling cells, and are functional. The confirmation of our findings in RA and SLE patients shows the feasibility of uncovering latent Treg cells for immune monitoring in clinical settings. Finally, our results suggest that unmasking of latent Treg cells contributes to the increase in circulating CD4 + CD25 + Foxp3 + cells reported in IL-2 treated patients. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chemokines: proinflammatory and cell traffic regulator cytokines Las quimioquinas: citoquinas proinflamatorias y reguladoras del tráfico celular

    Directory of Open Access Journals (Sweden)

    Carlos Julio Montoya Guarín

    2001-01-01

    Full Text Available Chemokines are a large group of proinflammatory cytokines; currently, there are about 40 different chemokines produced by different cellular sources and with pleiotropic actions. Interest in chemokines’ research is growing due to their selectivity to activate and to direct the traffic of different leukocyte populations, in contrast with other chemotactic factors that attract neutrophils and monocytes similarly. Furthermore, it has been observed that chemokines are involved in hematopoiesis, angiogenesis, tissue remodeling, tumor growth and apoptosis. As chemokines direct the migration and function of leukocytes, it has been proposed that they have an important role in the pathophysiology of some diseases such as immune-complex glomerulonephritis, ischemia–reperfussion, HIV infection and other immune reactions. Las quimioquinas constituyen un grupo numeroso de citoquinas proinflamatorias; hasta el momento se han caracterizado alrededor de 40 quimioquinas diferentes que provienen de variadas fuentes celulares y tienen acciones muy pleiotrópicas. Su estudio ha despertado gran interés debido a la selectividad que tienen para activar y dirigir el tráfico de diferentes subpoblaciones de leucocitos, a diferencia de otros factores quimiotácticos que atraen por igual a los neutrófilos y monocitos. Adicionalmente, se ha observado que las quimioquinas están involucradas en la hematopoyesis, angiogénesis, morfogénesis tisular, crecimiento tumoral y apoptosis. Debido a que las quimioquinas orquestan la migración y función de los leucocitos, se ha propuesto que cumplen un papel muy importante en la fisiopatología de algunas enfermedades como la glomerulonefritis inducida por inmunocomplejos, la isquemia reperfusión, la ateroesclerosis, la infección por el VIH y algunas reacciones autoinmunes.

  15. Atherogenic Cytokines Regulate VEGF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Izuagie Attairu Ikhapoh

    2015-01-01

    Full Text Available Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs differentiate into endothelial cells (ECs in the presence of VEGF-A in vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined the effect of atherogenic cytokines (IL-6, TNFα, and Ang II on EC differentiation and function. MSCs (CD44+, CD73+, CD90+, CD14−, and CD45− were isolated from the bone marrow of Yucatan microswine. Naïve MSCs cultured in differentiation media containing VEGF-A (50 ng/mL demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin, VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNFα caused a dose-dependent attenuation of EC marker expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs. Addition of Ang II to VEGF-A and IL-6 or TNFα was sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and TNFα inhibit VEGF-A-induced differentiation of MSCs into ECs. These findings have important clinical implications for therapies intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention.

  16. Peimine Inhibits the Production of Proinflammatory Cytokines Through Regulation of the Phosphorylation of NF-κB and MAPKs in HMC-1 Cells.

    Science.gov (United States)

    Park, Ji Hye; Lee, Bina; Kim, Hyun Kab; Kim, Eun-Young; Kim, Jae-Hyun; Min, Ju-Hee; Kim, Sunkook; Sohn, Youngjoo; Jung, Hyuk-Sang

    2017-07-01

    Peimine is a major biologically active component of Fritillaria ussuriensis . Peimine was investigated in chronic inflammation response, but it has not been studied in mast cell-related immediate allergic reaction. The present study aimed to evaluate anti-allergic effect of peimine in human mast cell (HMC-1). The effect of peimine on cell viability was measured by MTS assay in HMC-1. Histamine release was investigated in rat peritoneal mast cells (RPMCs). Interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF-α) expressions were measured by ELISA assay and reverse transcription-polymerase chain reaction. Mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB) were examined by Western blot. Passive cutaneous anaphylaxis (PCA) reactions were evaluated using Sprague-Dawley (SD) rats. Peimine inhibited the production of pro-inflammatory cytokines, such as IL-6, IL-8, and TNF-α. Moreover, peimine reduced MAPKs phosphorylation and the nuclear NF-κB expression in PMACI-induced HMC-1. Peimine decreased PCA reactions in rats as well. Our study proved that peimine might be suitable for the treatment of mast cell-derived allergic inflammatory reactions. Peimine inhibited the production of pro-inflammatory cytokines, such as IL-6, IL-8, and TNF-αPeimine reduced MAPKs phosphorylation and the nuclear NF-κB expression in PMACI-induced HMC-1Peimine decreased PCA reactions in ratsPeimine has anti-allergic effect through regulation of pro-inflammatory mechanism on mast cell. Abbreviations used: HMC-1: Human mast cell, MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, RPMCs: Rat peritoneal mast cells. IL-6: Interleukin 6, IL-8: Interleukin 8, TNF-α: Tumor necrosis factor-α, MAPKs: Mitogen-activated protein kinases; NF-κB: Nuclear factor-kappaB, PCA: Passive cutaneous anaphylaxis reactions, SD: Sprague-Dawley.

  17. RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells.

    Directory of Open Access Journals (Sweden)

    Andreea Iren Serban

    Full Text Available AGEs accumulation in the skin affects extracellular matrix (ECM turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF-β1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF-β1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF-β1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF-β1 negative regulation. RAGE's proinflammatory signaling also antagonized AGEs-TGF-β1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF-β1 and RAGE signaling. RAGE and TGF-β1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF-β1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF-β1 independent mechanism. Our findings raise the possibility that RAGE and TGF-β1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications.

  18. ΔBAFF, an Alternate Splice Isoform That Regulates Receptor Binding and Biopresentation of the B Cell Survival Cytokine, BAFF*

    OpenAIRE

    Gavin, Amanda L; Aït-Azzouzene, Djemel; Ware, Carl F.; Nemazee, David

    2003-01-01

    The tumor necrosis family member BAFF is limiting for the survival of follicular B lymphocytes, but excessive BAFF signaling can lead to autoimmunity, suggesting that its activity must be tightly regulated. We have identified a conserved alternate splice isoform of BAFF, called ΔBAFF, which lacks 57 nt encoding the A–A1 loop and is co-expressed with BAFF in many mouse and human myeloid cells. Mouse ΔBAFF appears on the plasma membrane, but unlike BAFF it is inefficiently released by proteolys...

  19. Avian cytokines in health and disease

    Directory of Open Access Journals (Sweden)

    Wigley P

    2003-01-01

    Full Text Available Cytokines are proteins secreted by cells that play an important role in the activation and regulation of other cells and tissues during inflammation and immune responses. Although well described in several mammalian species, the role of cytokines and other related proteins is poorly understood in avian species. Recent advances in avian genetics and immunology have begun to allow the exploration of cytokines in health and disease. Cytokines may be classified in a number of ways, but may be conveniently arranged into four broad groups on the basis of their function. Proinflammatory cytokines such as interleukin-6 and interleukin-1beta play a role in mediating inflammation during disease or injury. Th1 cytokines, including interleukin-12 and interferon-gamma, are involved in the induction of cell-mediated immunity, whereas Th2 cytokines such as interleukin-4 are involved in the induction of humoral immunity. The final group Th3 or Tr cytokines play a role in regulation of immunity. The role of various cytokines in infectious and non-infectious diseases of chickens and turkeys is now being investigated. Although there are only a few reliable ELISAs or bioassays developed for avian cytokines, the use of molecular techniques, and in particular quantitative RT-PCR (Taqman has allowed investigation of cytokine responses in a number of diseases including salmonellosis, coccidiosis and autoimmune thyroiditis. In addition the use of recombinant cytokines as therapeutic agents or as vaccine adjuvants is now being explored.

  20. Complement C1q regulates LPS-induced cytokine production in bone marrow-derived dendritic cells.

    Science.gov (United States)

    Yamada, Masahide; Oritani, Kenji; Kaisho, Tsuneyasu; Ishikawa, Jun; Yoshida, Hitoshi; Takahashi, Isao; Kawamoto, Shinichirou; Ishida, Naoko; Ujiie, Hidetoshi; Masaie, Hiroaki; Botto, Marina; Tomiyama, Yoshiaki; Matsuzawa, Yuji

    2004-01-01

    We show here that C1q suppresses IL-12p40 production in LPS-stimulated murine bone marrow-derived dendritic cells (BMDC). Serum IL-12p40 concentration of C1q-deficient mice was higher than that of wild-type mice after intraperitoneal LPS-injection. Because neither globular head of C1q (gC1q) nor collagen-like region of C1q (cC1q) failed to suppress LPS-induced IL-12p40 production, both gC1q and cC1q, and/or some specialized conformation of native C1q may be required for the inhibition. While C1q did not affect mRNA expression of Toll-like receptor 4 (TLR4), MD-2, and myeloid differentiation factor 88 (MyD88), BMDC treated with C1q showed the reduced activity of NF-kappaB and the delayed phosphorylation of p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase after LPS-stimulation. CpG oligodeoxynucleotide-induced IL-12p40 and TNF-alpha production, another MyD88-dependent TLR-mediated signal, was also suppressed by C1q treatment. Therefore, C1q is likely to suppress MyD88-dependent pathway in TLR-mediated signals. In contrast, C1q failed to suppress colony formation of B cells responding to LPS or LPS-induced CD40 and CD86 expression on BMDC in MyD88-deficient mice, indicating that inhibitory effects of C1q on MyD88-independent pathways may be limited. Taken together, C1q may regulate innate and adaptive immune systems via modification of signals mediated by interactions between invading pathogens and TLR.

  1. The Local Inflammatory Responses to Infection of the Peritoneal Cavity in Humans: Their Regulation by Cytokines, Macrophages, and Other Leukocytes

    Directory of Open Access Journals (Sweden)

    Marien Willem Johan Adriaan Fieren

    2012-01-01

    Full Text Available Studies on infection-induced inflammatory reactions in humans rely largely on findings in the blood compartment. Peritoneal leukocytes from patients treated with peritoneal dialysis offer a unique opportunity to study in humans the inflammatory responses taking place at the site of infection. Compared with peritoneal macrophages (pM from uninfected patients, pM from infected patients display ex vivo an upregulation and downregulation of proinflammatory and anti-inflammatory mediators, respectively. Pro-IL-1 processing and secretion rather than synthesis proves to be increased in pM from infectious peritonitis suggesting up-regulation of caspase-1 in vivo. A crosstalk between pM, γ T cells, and neutrophils has been found to be involved in augmented TNF expression and production during infection. The recent finding in experimental studies that alternatively activated macrophages (M2 increase by proliferation rather than recruitment may have significant implications for the understanding and treatment of chronic inflammatory conditions such as encapsulating peritoneal sclerosis (EPS.

  2. Tec kinases regulate actin assembly and cytokine expression in LPS-stimulated human neutrophils via JNK activation.

    Science.gov (United States)

    Zemans, Rachel L; Arndt, Patrick G

    2009-01-01

    The acute inflammatory response involves neutrophils wherein recognition of bacterial products, such as lipopolysaccharide (LPS), activates intracellular signaling pathways. We have shown that the mitogen-activated protein kinase (MAPK) c-Jun NH(2) terminal kinase (JNK) is activated by LPS in neutrophils and plays a critical role in monocyte chemoattractant protein (MCP)-1 expression and actin assembly. As the Tec family kinases are expressed in neutrophils and regulate activation of the MAPKs in other cell systems, we hypothesized that the Tec kinases are an upstream component of the signaling pathway leading to LPS-induced MAPKs activation in neutrophils. Herein, we show that the Tec kinases are activated in LPS-stimulated human neutrophils and that inhibition of the Tec kinases, with leflunomide metabolite analog (LFM-A13), decreased LPS-induced JNK, but not p38, activity. Furthermore, LPS-induced actin polymerization as well as MCP-1, tumor necrosis factor-alpha, interleukin-6, and interleukin-1beta expression are dependent on Tec kinase activity.

  3. Morphometric evaluation of nitric oxide synthase isoforms and their cytokine regulators predict pulmonary dysfunction and survival in systemic sclerosis

    Directory of Open Access Journals (Sweden)

    E.R. Parra

    2013-01-01

    Full Text Available Because histopathological changes in the lungs of patients with systemic sclerosis (SSc are consistent with alveolar and vessel cell damage, we presume that this interaction can be characterized by analyzing the expression of proteins regulating nitric oxide (NO and plasminogen activator inhibitor-1 (PAI-1 synthesis. To validate the importance of alveolar-vascular interactions and to explore the quantitative relationship between these factors and other clinical data, we studied these markers in 23 cases of SSc nonspecific interstitial pneumonia (SSc-NSIP. We used immunohistochemistry and morphometry to evaluate the amount of cells in alveolar septa and vessels staining for NO synthase (NOS and PAI-1, and the outcomes of our study were cellular and fibrotic NSIP, pulmonary function tests, and survival time until death. General linear model analysis demonstrated that staining for septal inducible NOS (iNOS related significantly to staining of septal cells for interleukin (IL-4 and to septal IL-13. In univariate analysis, higher levels of septal and vascular cells staining for iNOS were associated with a smaller percentage of septal and vascular cells expressing fibroblast growth factor and myofibroblast proliferation, respectively. Multivariate Cox model analysis demonstrated that, after controlling for SSc-NSIP histological patterns, just three variables were significantly associated with survival time: septal iNOS (P=0.04, septal IL-13 (P=0.03, and septal basic fibroblast growth factor (bFGF; P=0.02. Augmented NOS, IL-13, and bFGF in SSc-NSIP histological patterns suggest a possible functional role for iNOS in SSc. In addition, the extent of iNOS, PAI-1, and IL-4 staining in alveolar septa and vessels provides a possible independent diagnostic measure for the degree of pulmonary dysfunction and fibrosis with an impact on the survival of patients with SSc.

  4. Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children

    DEFF Research Database (Denmark)

    Lundh, M; Christensen, D P; Damgaard Nielsen, M

    2012-01-01

    AIMS/HYPOTHESIS: Histone deacetylases (HDACs) are promising pharmacological targets in cancer and autoimmune diseases. All 11 classical HDACs (HDAC1-11) are found in the pancreatic beta cell, and HDAC inhibitors (HDACi) protect beta cells from inflammatory insults. We investigated which HDACs...... mediate inflammatory beta cell damage and how the islet content of these HDACs is regulated in recent-onset type 1 diabetes. METHODS: The rat beta cell line INS-1 and dispersed primary islets from rats, either wild type or HDAC1-3 deficient, were exposed to cytokines and HDACi. Molecular mechanisms were...... of HDAC1, -2 and -3 rescued INS-1 cells from inflammatory damage. Small hairpin RNAs against HDAC1 and -3, but not HDAC2, reduced pro-inflammatory cytokine-induced beta cell apoptosis in INS-1 and primary rat islets. The protective properties of specific HDAC knock-down correlated with attenuated cytokine...

  5. Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease

    Science.gov (United States)

    Sabatino, A Di; Ciccocioppo, R; Cupelli, F; Cinque, B; Millimaggi, D; Clarkson, M M; Paulli, M; Cifone, M G; Corazza, G R

    2006-01-01

    Background and aims Epithelium derived interleukin (IL)‐15 signalling via IL‐15Rα is critical for the development, activation, and survival of intraepithelial lymphocytes (IEL). We aimed to better understand the IL‐15 driven effects on IEL underlying mucosal damage and lymphomagenesis in coeliac disease (CD). Methods Enterocytes, IEL, and lamina propria mononuclear cells (LPMC) were isolated from 46 patients with uncomplicated CD (25 untreated and 21 treated) and 22 controls. IL‐15 and IL‐15Rα expression were determined by immunoblotting. Secretion of IL‐15, interferon γ (IFN‐γ), tumour necrosis factor α (TNF‐α), and granzyme B into cell culture supernatants was assessed by ELISA. The ability of IL‐15 to regulate IEL proliferation, perforin/granzyme dependent cytotoxicity, and apoptosis was tested by adding different combinations of IL‐15, IL‐15 blocking antibody, or chloroquine to IEL cultured alone or with Caco‐2 cells as target. IL‐15 mucosal levels were also determined by ELISA in five patients with complicated CD (two ulcerative jejunoileites, one refractory sprue, and two enteropathy associated T cell lymphomas) tested for T cell receptor γ chain clonality. Results IL‐15 was overexpressed in untreated CD enterocytes and LPMC, and in the mucosa of complicated CD patients and uncomplicated untreated CD patients, where its levels correlated with the degree of mucosal damage. Enterocytes from untreated, but not treated, CD patients and controls secreted IL‐15. Untreated CD IEL, characterised by higher IL‐15Rα expression, showed increased proliferation, production of IFN‐γ and TNF‐α, and perforin/granzyme dependent cytotoxicity, and a decreased propensity to apoptosis in response to IL‐15. Conclusions Our findings suggest that IL‐15 plays a crucial role in the generation of epithelial damage in active CD. Its promotion of IEL survival in CD may predispose to the emergence of T cell clonal proliferations. Blocking

  6. Epigallocatechin-3-gallate Ameliorates Seawater Aspiration-Induced Acute Lung Injury via Regulating Inflammatory Cytokines and Inhibiting JAK/STAT1 Pathway in Rats

    Science.gov (United States)

    Liu, Wei; Dong, Mingqing; Bo, Liyan; Li, Congcong; Liu, Qingqing; Li, Yanyan; Ma, Lijie; Xie, Yonghong; Fu, Enqing; Mu, Deguang; Pan, Lei; Jin, Faguang; Li, Zhichao

    2014-01-01

    Signal transducers and activators of transcriptions 1 (STAT1) play an important role in the inflammation process of acute lung injury (ALI). Epigallocatechin-3-gallate (EGCG) exhibits a specific and strong anti-STAT1 activity. Therefore, our study is to explore whether EGCG pretreatment can ameliorate seawater aspiration-induced ALI and its possible mechanisms. We detected the arterial partial pressure of oxygen, lung wet/dry weight ratios, protein content in bronchoalveolar lavage fluid, and the histopathologic and ultrastructure staining of the lung. The levels of IL-1, TNF-α, and IL-10 and the total and the phosphorylated protein level of STAT1, JAK1, and JAK2 were assessed in vitro and in vivo. The results showed that EGCG pretreatment significantly improved hypoxemia and histopathologic changes, alleviated pulmonary edema and lung vascular leak, reduced the production of TNF-α and IL-1, and increased the production of IL-10 in seawater aspiration-induced ALI rats. EGCG also prevented the seawater aspiration-induced increase of TNF-α and IL-1 and decrease of IL-10 in NR8383 cell line. Moreover, EGCG pretreatment reduced the total and the phosphorylated protein level of STAT1 in vivo and in vitro and reduced the phosphorylated protein level of JAK1 and JAK2. The present study demonstrates that EGCG ameliorates seawater aspiration-induced ALI via regulating inflammatory cytokines and inhibiting JAK/STAT1 pathway in rats. PMID:24692852

  7. Shen-Qi-Jie-Yu-Fang exerts effects on a rat model of postpartum depression by regulating inflammatory cytokines and CD4+CD25+ regulatory T cells

    Directory of Open Access Journals (Sweden)

    Li JY

    2016-04-01

    Full Text Available Jingya Li,1,* Ruizhen Zhao,1,* Xiaoli Li,1 Wenjun Sun,1 Miao Qu,1 Qisheng Tang,1 Xinke Yang,1 Shujing Zhang2 1Third Affiliated Hospital, 2School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China *These authors contributed equally to this work Background: Shen-Qi-Jie-Yu-Fang (SJF is composed of eight Chinese medicinal herbs. It is widely used in traditional Chinese medicine for treating postpartum depression (PPD. Previous studies have shown that SJF treats PPD through the neuroendocrine mechanism. Aim: To further investigate the effect of SJF on the immune system, including the inflammatory response system and CD4+CD25+ regulatory T (Treg cells. Materials and methods: Sprague Dawley rats were used to create an animal model of PPD by inducing hormone-simulated pregnancy followed by hormone withdrawal. After hormone withdrawal, the PPD rats were treated with SJF or fluoxetine for 1, 2, and 4 weeks. Levels of Treg cells in peripheral blood were measured by flow cytometry analysis. Serum interleukin (IL-1β and IL-6 were evaluated by enzyme-linked immunosorbent assay, and gene and protein expressions of IL-1RI, IL-6Rα, and gp130 in the hippocampus were observed by reverse-transcription polymerase chain reaction and Western blot. Results: Serum IL-1β in PPD rats increased at 2 weeks and declined from then on, while serum IL-6 increased at 1, 2, and 4 weeks. Both IL-1β and IL-6 were downregulated by SJF and fluoxetine. Changes in gene and protein expressions of IL-1RI and gp130 in PPD rats were consistent with changes in serum IL-1β, and were able to be regulated by SJF and fluoxetine. The levels of Treg cells were negatively correlated with serum IL-1β and IL-6, and were decreased in PPD rats. The levels of Treg cells were increased by SJF and fluoxetine. Conclusion: Dysfunction of proinflammatory cytokines and Tregs in different stages of PPD was attenuated by SJF and fluoxetine through

  8. Cytokines and cytokine networks target neurons to modulate long-term potentiation.

    Science.gov (United States)

    Prieto, G Aleph; Cotman, Carl W

    2017-04-01

    Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. CD80 and CD86 Costimulatory Molecules Differentially Regulate OT-II CD4+ T Lymphocyte Proliferation and Cytokine Response in Cocultures with Antigen-Presenting Cells Derived from Pregnant and Pseudopregnant Mice

    Directory of Open Access Journals (Sweden)

    Tomasz Maj

    2014-01-01

    Full Text Available Immune phenomena during the preimplantation period of pregnancy are poorly understood. The aim of our study was to assess the capacity for antigen presentation of splenic antigen-presenting cells (APCs derived from pregnant and pseudopregnant mice in in vitro conditions. Therefore, sorted CD11c+ dendritic cells and macrophages F4/80+ and CD11b+ presenting ovalbumin (OVA were cocultured with CD4+ T cells derived from OT-II mice’s (C57BL6/J-Tg(TcraTcrb1100Mjb/J spleen. After 132 hours of cell culture, proliferation of lymphocytes (ELISA-BrdU, activation of these cells (flow cytometry, cytokine profile (ELISA, and influence of costimulatory molecules blocking on these parameters were measured. We did not detect any differences in regulation of Th1/Th2 cytokine balance. CD86 seems to be the main costimulatory molecule involved in the proliferation response but CD80 is the main costimulatory molecule influencing cytokine secretion in pregnant mice. In conclusion, this study showed that CD80 and CD86 costimulatory molecules regulate OT-II CD4+ T lymphocyte proliferation and cytokine response in cocultures with antigen-presenting cells derived from pregnant and pseudopregnant mice. The implications of these changes still remain unclear.

  10. Cytokine Regulation Immunoglobulin Isotype Production

    Science.gov (United States)

    1994-11-08

    digestion-circularization polymerase chain reaction DNA - deoxyribonucleic acid XXII EAE - experimental autoimmune encephalomyelitis ECF eosinophil...its immunoinhibitory properties (216,217). Further, In experimental autoimmune encephalomyelitis (EAE) the secretion of TGF-~ by CD8+ suppressor T...dicarded and the cell pellet was resu spended in a sterile filtered complement cocktail containing guinea pig complement (GibcoBRL, 38 Long

  11. Benzopyrene promotes lung cancer A549 cell migration and invasion through up-regulating cytokine IL8 and chemokines CCL2 and CCL3 expression.

    Science.gov (United States)

    Zhang, Jin; Chang, Li; Jin, Hanyu; Xia, Yaoxiong; Wang, Li; He, Wenjie; Li, Wenhui; Chen, Hong

    2016-08-01

    Tobacco-sourced carcinogen including benzopyrene (B[a]P) in lung cancer metastasis has not been fully reported. In this study, lung carcinoma A549 cell line was used to investigate the potential roles of tobacco-sourced B[a]P on cell metastasis and invasion and to assess its underlying mechanism. Effects of tobacco-sourced carcinogen on A549 cell proliferation, metastasis, and invasion were analyzed using MTT assay, Transwell assay, and scratch method, respectively. The effects of tobacco-sourced carcinogen on cytokines and chemokines secretion were detected using enzyme-linked immunosorbent assay. Moreover, correlation between inflammatory factor expression and cancer cell migration and invasion was assessed using siRNA-mediated gene silencing. Data showed that both B[a]P and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone either at high or low dose performed no significant difference on A549 cell proliferation with time increasing. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone performed no significant difference on A549 cell migration and invasion while B[a]P significantly increased A549 cell migration and invasion compared to the control group (P A549 cells were significantly decreased compared to the control, respectively (P < 0.05), while silenced IL-8 drastically decreased the migrated and invasive cells compared to the control (P < 0.01). Taken together, this study illustrated that there may be significant correlation between smoking and lung cancer metastasis. B[a]P maybe an excellent contributor for lung cancer metastasis through up-regulating IL-8, CCL-2, and CCL-3 expression. © 2016 by the Society for Experimental Biology and Medicine.

  12. Differential regulation of innate immune cytokine production through pharmacological activation of Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2 in burn patient immune cells and monocytes.

    Directory of Open Access Journals (Sweden)

    Timothy K Eitas

    Full Text Available Burn patients suffer from immunological dysfunction for which there are currently no successful interventions. Similar to previous observations, we find that burn shock patients (≥15% Total Burn Surface Area (TBSA injury have elevated levels of the innate immune cytokines Interleukin-6 (IL-6 and Monocyte Chemoattractant Protein-1 (MCP-1/CC-motif Chemokine Ligand 2(CCL2 early after hospital admission (0-48 Hours Post-hospital Admission (HPA. Functional immune assays with patient Peripheral Blood Mononuclear Cells (PBMCs revealed that burn shock patients (≥15% TBSA produced elevated levels of MCP-1/CCL2 after innate immune stimulation ex vivo relative to mild burn patients. Interestingly, treatment of patient PBMCs with the Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2 agonist, CDDO-Me(bardoxolone methyl, reduced MCP-1 production but not IL-6 or Interleukin-10 (IL-10 secretion. In enriched monocytes from healthy donors, CDDO-Me(bardoxolone methyl also reduced LPS-induced MCP1/CCL2 production but did not alter IL-6 or IL-10 secretion. Similar immunomodulatory effects were observed with Compound 7, which activates the NRF2 pathway through a different and non-covalent Mechanism Of Action (MOA. Hence, our findings with CDDO-Me(bardoxolone methyl and Compound 7 are likely to reflect a generalizable aspect of NRF2 activation. These observed effects were not specific to LPS-induced immune responses, as NRF2 activation also reduced MCP-1/CCL2 production after stimulation with IL-6. Pharmacological NRF2 activation reduced Mcp-1/Ccl2 transcript accumulation without inhibiting either Il-6 or Il-10 transcript levels. Hence, we describe a novel aspect of NRF2 activation that may contribute to the beneficial effects of NRF2 agonists during disease. Our work also demonstrates that the NRF2 pathway is retained and can be modulated to regulate important immunomodulatory functions in burn patient immune cells.

  13. [6]-Shogaol inhibits the production of proinflammatory cytokines via regulation of NF-κB and phosphorylation of JNK in HMC-1 cells.

    Science.gov (United States)

    Sohn, Youngjoo; Han, Na-Young; Lee, Min Jung; Cho, Hyun-Joo; Jung, Hyuk-Sang

    2013-08-01

    [6]-Shogaol is a major bioactive component of Zingiber officinale. Although [6]-shogaol has a number of pharmacological activities including antipyretic, analgesic, antitussive and anti-inflammatory effects, the specific mechanisms of its anti-allergic effects have not been studied. In this study, we present the effects of [6]-shogaol on mast cell-mediated allergic reactions in vivo and in vitro. Sprague-Dawley rats received intradermal injections of anti-DNP IgE was injected into dorsal skin sites. After 48 h, [6]-shogaol was administered orally 1 h prior to challenge with DNP-HSA in saline containing 4% Evans blue through the dorsal vein of the penis. In addition, rat peritoneal mast cells (RPMCs) were cultured and purified to investigate histamine release. In vitro, we evaluated the regulatory effects of [6]-shogaol on the level of inflammatory mediators in phorbol 12-myristate 13-acetate plus calcium ionomycin A23187-stimulated human mast cells (HMC-1). [6]-Shogaol reduced the passive cutaneous anaphylaxis reaction compared to the control group, and histamine release decreased significantly following the treatment of RPMCs with [6]-shogaol. In HMC-1 cells, [6]-shogaol inhibited the production of TNF-α, IL-6 and IL-8, as well as the activation of nuclear factor-κB (NF-κB) and phosphorylation of JNK in compound 48/80-induced HMC-1 cells. [6]-shogaol inhibited mast cell-mediated allergic reactions by inhibiting the release of histamine and the production of proinflammatory cytokines with the involvement of regulation of NF-κB and phosphorylation of JNK.

  14. Regulation of the pro-inflammatory cytokine osteopontin by GIP in adipocytes - A role for the transcription factor NFAT and phosphodiesterase 3B

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Bilal [Department of Experimental Medical Sciences, Diabetes, Metabolism and Endocrinology, Biomedical Center, Lund University, Lund (Sweden); Banke, Elin, E-mail: elin.banke@med.lu.se [Department of Experimental Medical Sciences, Diabetes, Metabolism and Endocrinology, Biomedical Center, Lund University, Lund (Sweden); Guirguis, Emilia [Cardiovascular Pulmonary Branch, NHLBI, NIH, Bethesda, MD (United States); Aakesson, Lina [Department of Clinical Sciences, Diabetes and Celiac Disease Unit, Clinical Research Centre, Lund University, Malmoe (Sweden); Manganiello, Vincent [Cardiovascular Pulmonary Branch, NHLBI, NIH, Bethesda, MD (United States); Lyssenko, Valeriya; Groop, Leif [Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Centre, Lund University, Malmoe (Sweden); Gomez, Maria F. [Department of Clinical Sciences, Vascular ET Coupling, Clinical Research Centre, Lund University, Malmoe (Sweden); Degerman, Eva [Department of Experimental Medical Sciences, Diabetes, Metabolism and Endocrinology, Biomedical Center, Lund University, Lund (Sweden)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. Black-Right-Pointing-Pointer GIP-induced osteopontin expression is NFAT-dependent. Black-Right-Pointing-Pointer Osteopontin expression is PDE3-dependent. Black-Right-Pointing-Pointer Osteopontin expression is increased in PDE3B KO mice. -- Abstract: The incretin - glucose-dependent insulinotropic polypeptide (GIP) - and the pro-inflammatory cytokine osteopontin are known to have important roles in the regulation of adipose tissue functions. In this work we show that GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. The GIP-induced increase in osteopontin expression was inhibited by the NFAT (the transcription factor nuclear factor of activated T-cells) inhibitor A-285222. Also, the NFAT kinase glycogen synthase kinase (GSK) 3 was upregulated by GIP. To test whether cAMP might be involved in GIP-mediated effects on osteopontin a number of strategies were used. Thus, the {beta}3-adrenergic receptor agonist CL316,243 stimulated osteopontin expression, an effects which was mimicked by OPC3911, a specific inhibitor of phosphodiesterase 3. Furthermore, treatment of phosphodiesterase 3B knock-out mice with CL316,243 resulted in a dramatic upregulation of osteopontin in adipose tissue which was not the case in wild-type mice. In summary, we delineate mechanisms by which GIP stimulates osteopontin in adipocytes. Given the established link between osteopontin and insulin resistance, our data suggest that GIP by stimulating osteopontin expression, also could promote insulin resistance in adipocytes.

  15. RSV-Induced H3K4 Demethylase KDM5B Leads to Regulation of Dendritic Cell-Derived Innate Cytokines and Exacerbates Pathogenesis In Vivo

    DEFF Research Database (Denmark)

    Ptaschinski, Catherine; Mukherjee, Sumanta; Moore, Martin L

    2015-01-01

    -transfected cells. The generation of Kdm5bfl/fl-CD11c-Cre+ mice recapitulated the latter results during in vitro DC activation showing innate cytokine modulation. In vivo, infection of Kdm5bfl/fl-CD11c-Cre+ mice with RSV resulted in higher production of IFN-γ and reduced IL-4 and IL-5 compared to littermate....../fl-CD11c-CRE mice were used, the exacerbated response was abrogated. Importantly, human monocyte-derived DCs treated with a chemical inhibitor for KDM5B resulted in increased innate cytokine levels as well as elicited decreased Th2 cytokines when co-cultured with RSV reactivated CD4+ T cells...

  16. Cytokine signal transduction in P19 embryonal carcinoma cells : Regulation of Stat3-mediated transactivation occurs independently of p21ras-Erk signaling

    NARCIS (Netherlands)

    van Puijenbroek, AAFL; van der Saag, PT; Coffer, PJ

    1999-01-01

    Ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) are members of a subfamily of related cytokines that share gp130 as common signal-transducing receptor component. CNTF has recently been demonstrated to induce increased survival and neuronal differentiation of P19 embryonal

  17. Suppressor of Cytokine Signaling 6 (SOCS6) Negatively Regulates Flt3 Signal Transduction through Direct Binding to Phosphorylated Tyrosines 591 and 919 of Flt3

    DEFF Research Database (Denmark)

    Kazi, Julhash U; Sun, Jianmin; Phung, Bengt

    2012-01-01

    The receptor tyrosine kinase Flt3 is an important growth factor receptor in hematopoiesis, and gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia. SOCS6 (suppressor of cytokine signaling 6) is a member of the SOCS family of E3 ubiquitin ligases...

  18. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells

    DEFF Research Database (Denmark)

    Ortis, Fernanda; Naamane, Najib; Flamez, Daisy

    2010-01-01

    OBJECTIVE: Cytokines contribute to pancreatic beta-cell death in type 1 diabetes. This effect is mediated by complex gene networks that remain to be characterized. We presently utilized array analysis to define the global expression pattern of genes, including spliced variants, modified by the cy...

  19. Transcriptional regulator GntR of Brucella abortus regulates cytotoxicity, induces the secretion of inflammatory cytokines and affects expression of the type IV secretion system and quorum sensing system in macrophages.

    Science.gov (United States)

    Li, Zhiqiang; Wang, Shuli; Zhang, Hui; Zhang, Jinliang; Xi, Li; Zhang, Junbo; Chen, Chuangfu

    2017-03-01

    The pathogenic mechanisms of Brucella are still poorly understood. GntR is a transcriptional regulator and plays an important role in the intracellular survival of Brucella. To investigate whether GntR is involved in the cytotoxicity of Brucella abortus (B. abortus), we created a 2308ΔgntR mutant of B. abortus 2308 (S2308). Lactate dehydrogenase (LDH) cytotoxicity assays using a murine macrophage cell line (RAW 264.7) show that high-dose infection with the parental strain produces a high level of cytotoxicity to macrophages, but the 2308ΔgntR mutant exhibits a very low level of cytotoxicity, indicating that mutation of GntR impairs the cytotoxicity of B. abortus to macrophages. After the macrophages are infected with 2308ΔgntR, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8) increase and are slightly higher than that for the S2308 infected group, indicating that the 2308ΔgntR mutant could induce the secretion of inflammatory cytokines. The virulence factor detection experiments indicate that genes involved in the type IV secretion system (T4SS) and quorum sensing system (QSS) are down-regulated in 2308ΔgntR. The lower levels of survival of 2308ΔgntR under various stress conditions and the increased sensitivity of 2308ΔgntR to polymyxin B suggest that GntR is a virulence factor and that deletion of gntR reduces of B. abortus to stress conditions. Taken together, our results demonstrate that GntR is involved in the cytotoxicity, virulence and intracellular survival of B. abortus during its infection.

  20. A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model

    Directory of Open Access Journals (Sweden)

    McNamara Laurie K

    2007-09-01

    Full Text Available Abstract Background An accumulating body of evidence is consistent with the hypothesis that excessive or prolonged increases in proinflammatory cytokine production by activated glia is a contributor to the progression of pathophysiology that is causally linked to synaptic dysfunction and hippocampal behavior deficits in neurodegenerative diseases such as Alzheimer's disease (AD. This raises the opportunity for the development of new classes of potentially disease-modifying therapeutics. A logical candidate CNS target is p38α MAPK, a well-established drug discovery molecular target for altering proinflammatory cytokine cascades in peripheral tissue disorders. Activated p38 MAPK is seen in human AD brain tissue and in AD-relevant animal models, and cell culture studies strongly implicate p38 MAPK in the increased production of proinflammatory cytokines by glia activated with human amyloid-beta (Aβ and other disease-relevant stressors. However, the vast majority of small molecule drugs do not have sufficient penetrance of the blood-brain barrier to allow their use as in vivo research tools or as therapeutics for neurodegenerative disorders. The goal of this study was to test the hypothesis that brain p38α MAPK is a potential in vivo target for orally bioavailable, small molecules capable of suppressing excessive cytokine production by activated glia back towards homeostasis, allowing an improvement in neurologic outcomes. Methods A novel synthetic small molecule based on a molecular scaffold used previously was designed, synthesized, and subjected to analyses to demonstrate its potential in vivo bioavailability, metabolic stability, safety and brain uptake. Testing for in vivo efficacy used an AD-relevant mouse model. Results A novel, CNS-penetrant, non-toxic, orally bioavailable, small molecule inhibitor of p38α MAPK (MW01-2-069A-SRM was developed. Oral administration of the compound at a low dose (2.5 mg/kg resulted in attenuation of

  1. Dual-inflammatory cytokines on TiO2nanotube-coated surfaces used for regulating macrophage polarization in bone implants.

    Science.gov (United States)

    Gao, Lili; Li, Mengting; Yin, Lu; Zhao, Chanjuan; Chen, Junhong; Zhou, Jie; Duan, Ke; Feng, Bo

    2018-03-10

    Excessive immune responses following the use of implantable, biomaterial-based medical devices represent a substantial challenge for treatment efficacy and patient well-being. Specifically, after implantation, pro-inflammatory M1 macrophages are activated by cytokines such as interferon-γ (IFN-γ) followed by anti-inflammatory M2 macrophages polarized by cytokines including interleukin-4 (IL-4), leading to healing and long-term stability of implants. Here, we report the loading of an immunomodulatory cytokine,IL-4, into TiO 2 nanotubes (TNTs) followed by hydrogel coating on the TNTs for subsequent release of IL-4. Finally, IFN-γ was added onto the gel layer to effect rapid release. The release rates of both cytokines from the samples were monitored using an immersion test in phosphate-buffered solution. The cytocompatibility of the sample was evaluated using cultures of osteoblasts and macrophages. Macrophage phenotype switching in vitro was examined via cytokine secretion and gene expression analyses. In vitro testing showed that the sample could stimulate macrophage polarization from the M1 to M2 phenotype at the desired period owing to temporal release of IFN-γ and IL-4. Another biomaterial containing only IL-4 in TNTs was also able to modulate the transformation of M1 to M2 although with weaker effect than that containing IFN-γ and IL-4. The biomaterial may be useful as an osteoimplant in vivo owing to the inflammation caused by a wound or implantation. This study provided biomaterials capable of facilitating smooth M1 to M2 macrophages switching, which might be helpful to research immune responses of tissues to implants and will likely contribute to the development of bone substitute materials. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  2. Class I Cytokine Receptors

    DEFF Research Database (Denmark)

    Steinocher, Helena

    , the minimal determinants for specificity between membrane spanning helices were investigated with small artificial low complexity peptides, prior found to activate the EPOR in cells. The placement of single methyl group in the so called transmembrane aptamers (traptamers) determined the stabilizing effect...... characteristics of membrane spanning helices, was designed and hGHR TMD and hEPOR TMD produced in sufficient amounts for spectroscopic investigations. The isolated hGHR TMD was revealed to associate in dimeric complexes in detergent micelles and first presumptions about the dimer interface could be made. Further...... the traptamers on the hEPOR TMD dimeric complex in detergent micelles. To gain a better understanding of hGHR regulation a point mutation in the hGHR intracellular domain (ICD), which has recently been linked to lung cancer, was characterized. The mutation was found to decrease binding of suppressor of cytokine...

  3. Cytokines as Immunological Markers for Follow up of Disease ...

    African Journals Online (AJOL)

    Background: Cytokines play a major role in protection against Mycobacterium tuberculosis infection and regulate the immune responses at a cellular level. Cytokine profile determines clinical outcome of the disease and responses to treatment as well. A T helper 1 (Th1) cytokine interferon gamma (IFN-U) is one of the most ...

  4. Novel methods of cytokine detection: Real-time PCR, ELISPOT, and intracellular cytokine staining

    Directory of Open Access Journals (Sweden)

    Eliza Turlej

    2009-05-01

    Full Text Available Cytokines are small hormone-like proteins that play important roles in immune system control. Cytokines regulate the proliferation and differentiation of cells and hematopoiesis and act as mediators in the inflammatory reaction. Changes in cytokine levels are found in many diseases, such as sepsis, bowel inflammatory disease, autoimmune diseases, as well as graft-versus-host disease. Cytokines levels can be detected using in vivo, in vitro, and ex vivo techniques. The level of cytokine produced can be measured by immunoenzymatic test (ELISA in supernatant after cell culture with the addition of stimulant and in plasma by techniques that measure the level of cytokine secretion in cells (e.g. immunohistochemical staining, ELISPOT, and intracellular cytokine staining, and by molecular biological methods (RPA, real-time PCR, in situ hybridization, and Northern blot. Detection of cytokine mRNA in tissues is useful in the direct determination of heterogenic populations of cytokine-producing cells. Nowadays the most frequently used methods for measuring cytokine level are ELISPOT, intracellular cytokine staining with flow cytometry detection, and real-time PCR. These methods have an important clinical role in vaccine efficacy, in viral, bacterial, and verminous diagnostics, and in determining the efficacy of cancer treatment.

  5. Invasive Streptococcus mutans induces inflammatory cytokine production in human aortic endothelial cells via regulation of intracellular toll-like receptor 2 and nucleotide-binding oligomerization domain 2.

    Science.gov (United States)

    Nagata, E; Oho, T

    2017-04-01

    Streptococcus mutans, the primary etiologic agent of dental caries, can gain access to the bloodstream and has been associated with cardiovascular disease. However, the roles of S. mutans in inflammation in cardiovascular disease remain unclear. The aim of this study was to examine cytokine production induced by S. mutans in human aortic endothelial cells (HAECs) and to evaluate the participation of toll-like receptors (TLRs) and cytoplasmic nucleotide-binding oligomerization domain (NOD) -like receptors in HAECs. Cytokine production by HAECs was determined using enzyme-linked immunosorbent assays, and the expression of TLRs and NOD-like receptors was evaluated by real-time polymerase chain reaction, flow cytometry and immunocytochemistry. The involvement of TLR2 and NOD2 in cytokine production by invaded HAECs was examined using RNA interference. The invasion efficiencies of S. mutans strains were evaluated by means of antibiotic protection assays. Five of six strains of S. mutans of various serotypes induced interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production by HAECs. All S. mutans strains upregulated TLR2 and NOD2 mRNA levels in HAECs. Streptococcus mutans Xc upregulated the intracellular TLR2 and NOD2 protein levels in HAECs. Silencing of the TLR2 and NOD2 genes in HAECs invaded by S. mutans Xc led to a reduction in interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production. Cytokine production induced by invasive S. mutans via intracellular TLR2 and NOD2 in HAECs may be associated with inflammation in cardiovascular disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Autoantibodies to myelin basic protein (MBP) in healthy individuals and in patients with multiple sclerosis: a role in regulating cytokine responses to MBP

    DEFF Research Database (Denmark)

    Hedegaard, Chris Juul; Chen, Ning; Sellebjerg, Finn Thorup

    2009-01-01

    and the MBP-induced IgM deposition and cytokine production, indicating that these events were facilitated by autoantibodies recognizing conformational epitopes on MBP. We infer that MBP-elicited TNF-alpha and IL-10 responses are promoted to equal extents by naturally occurring MBP autoantibodies...... and autoantibodies contained in MS sera. However, the latter seem to be more efficient in facilitating the production of IFN-gamma and IL-5....

  7. Th17 cytokines are critical for respiratory syncytial virus-associated airway hyperreponsiveness through regulation by complement C3a and tachykinins.

    Science.gov (United States)

    Bera, Monali M; Lu, Bao; Martin, Thomas R; Cui, Shun; Rhein, Lawrence M; Gerard, Craig; Gerard, Norma P

    2011-10-15

    Respiratory syncytial virus (RSV) infection is associated with serious lung disease in infants and immunocompromised individuals and is linked to development of asthma. In mice, acute RSV infection causes airway hyperresponsiveness (AHR), inflammation, and mucus hypersecretion. Infected cells induce complement activation, producing the anaphylatoxin C3a. In this paper, we show RSV-infected wild-type mice produce Th17 cytokines, a response not previously associated with viral infections. Mice deficient in the C3aR fail to develop AHR following acute RSV infection, and production of Th17 cytokines was significantly attenuated. Tachykinin production also has been implicated in RSV pathophysiology, and tachykinin receptor-null mice were similarly protected from developing AHR. These animals were also deficient in production of Th17 cytokines. Tachykinin release was absent in mice deficient in C3aR, whereas C3a levels were unchanged in tachykinin receptor-null animals. Thus, our data reveal a crucial sequence following acute RSV infection where initial C3a production causes tachykinin release, followed by activation of the IL-17A pathway. Deficiency of either receptor affords protection from AHR, identifying two potential therapeutic targets.

  8. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Grecco, Ana Carolina P; Mizutani, Erica; Peterlevitz, Alfredo C; Ceragioli, Helder J; Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Universidade de Campinas, Campinas, SP (Brazil); Paula, Rosemeire F O; Sartorelli, Juliana C; Milani, Ana M; Longhini, Ana Leda F; Oliveira, Elaine C; Pradella, Fernando; Silva, Vania D R; Moraes, Adriel S; Farias, Alessandro S; Santos, Leonilda M B, E-mail: leonilda@unicamp.br [Laboratorio de Neuroimunologia, Departamento Genetica, Evolucao e Bioagentes, Instituto de Biologia, Universidade de Campinas, Campinas, SP (Brazil)

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFN{gamma}), tumor necrosis factor-alpha (TNF{alpha}) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGF{beta}) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGF{beta} and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  9. TLR2 and TLR4 differentially regulate B7-1 resulting in distinct cytokine responses to the mycoplasma superantigen MAM as well as to disease induced by Mycoplasma arthritidis.

    Science.gov (United States)

    Mu, Hong-Hua; Humphreys, Jennifer; Chan, Fok Vun; Cole, Barry C

    2006-03-01

    Mycoplasma arthritidis mitogen (MAM) is a superantigen secreted by M. arthritidis, an agent of murine arthritis and toxicity. We previously demonstrated that C3H mouse sub-strains differing in expression of Toll-like receptor 4 (TLR4), differed in immune reactivity to MAM due to differential engagement of TLR2 and TLR4. Here we examine the role of B7 co-stimulatory molecules in immune outcome and disease manifestations resulting from these different MAM/TLR2 and MAM/TLR4 interactions. Injections of MAM into C3H/HeJ mice upregulated expression of B7-1 but not B7-2 on peritoneal adherent cells, whereas B7-1 expression was lower on cells from C3H/HeSnJ mice. Anti-B7-1 antibody but not anti-B7-2, injected in vivo, changed the type 1 cytokines in MAM-injected C3H/HeJ mice to a type 2 cytokines and, conversely, the type 2 response in C3H/HeSnJ mice injected with anti-B7-1 shifted to a type 1 pattern. Whereas anti-B7-2 exerted no effect on disease in either mouse strain, anti-B7-1 significantly delayed the lethal toxicity of M. arthritidis in C3H/HeJ mice but enhanced arthritis in C3H/HeSnJ mice. Thus, TLR-mediated regulation of B7-1 results in diverse cytokine profiles in C3H sub-strains, and that the interaction of MAM with different TLR(s) may differentially affect cytokine responses and ultimately, M. arthritidis disease.

  10. Urinary tract diseases revealed after DTP vaccination in infants and young children: cytokine irregularities and down-regulation of cytochrome P-450 enzymes induced by the vaccine may uncover latent diseases in genetically predisposed subjects.

    Science.gov (United States)

    Prandota, Joseph

    2004-01-01

    -lasting induction of cytokine release and down-regulation of hepatic cytochrome P-450 isoenzyme activities after administration of DTP vaccine to mice and may be supported by the fact that TH1 phenotype is associated with the up-regulation of intercellular adhesion molecule-1 and RANTES, whereas TH2 phenotype is associated with the up-regulation of the vascular cell adhesion molecule and P-selectin, which are key players in the migration into inflamed tissues and localization of lymphocytes and other allergic effector and inflammatory cells. Because several inflammatory cytokines down-regulate gene expression of major cytochrome P-450 and/or other enzymes with the specific effects on mRNA levels, protein expression, and enzyme activity, thus affecting the metabolism of several endogenous lipophilic substances such as steroids, lipid-soluble vitamins, prostaglandins, leukotrienes, thromboxanes, and exogenous substances, their irregularities in the body may eventually lead to the flare of latent diseases in some predisposed subjects. Also, interleukin genetic polymorphisms, especially the constellation of TNF-alpha and IL-6 genetic variants, might predispose some infants with infection to a more than usually intense inflammatory response in the kidneys after vaccination. It seems that the aforementioned pathomechanism may also be responsible for some cases of sudden infant death syndrome, which is often preceded by infection/inflammation.

  11. Comparative analysis of B7-1 and B7-2 expression in Langerhans cells: differential regulation by T helper type 1 and T helper type 2 cytokines.

    Science.gov (United States)

    Kawamura, T; Furue, M

    1995-07-01

    Epidermal Langerhans cells (LC) are Ia-bearing potent antigen-presenting cells (APC) of dendritic cell lineage that play a crucial role in primary and secondary T cell-dependent immune responses. LC express several costimulatory molecules such as B7, which has been implicated as one of the important determinants of professional APC. Recently, B7 antigens have been shown to include three distinct molecules termed B7-1, B7-2, and B7-3, and the expression of B7-1 and B7-2 in LC has been already confirmed. However, little is known of the regulation of B7-1 and B7-2 expression in LC. We demonstrated that LC do not express B7-1 and B7-2 in situ; however, the expression of both molecules is rapidly induced during the first 3 days of culture, and high levels of expression are maintained at least until day 6. We show that the expression of B7-2 in LC is much higher than that of B7-1 in each experiment, and that B7-1 and B7-2 expression is reproducibly augmented by interleukin (IL)-4 in a dose-dependent manner; however, IL-2 affected expression very little. Finally, B7-1 expression is significantly and dose-dependently down-regulated by interferon (IFN)-gamma or IL-10, and B7-2 expression is consistently inhibited by IL-10, but not by IFN-gamma. The effects of these cytokines are active only in the induction phase (during first 3 days of culture) of B7 expression: the modulatory effects of cytokines are hardly detected in the plateau phase (days 4 to 6 of culture) of B7 expression in LC. These findings suggest that B7-1 and B7-2 expression are indeed selectively and differentially regulated by these T cell-derived cytokines, and that the cytokines may modulate the synthesis of B7 molecules rather than the degradation of already-expressed B7 molecules.

  12. Effect of 1,25-(OH2D3 on Proliferation of Fibroblast-Like Synoviocytes and Expressions of Pro-Inflammatory Cytokines through Regulating MicroRNA-22 in a Rat Model of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Ping Fan

    2017-05-01

    Full Text Available Objective: This study aims to investigate the regulatory mechanism of 1,25-(OH2D3 on the proliferation of fibroblast-like synoviocytes (FLS and expressions of pro-inflammatory cytokines in rheumatoid arthritis (RA rats via microRNA-22 (miR-22. Methods: A rat model of RA was established with a subcutaneous injection of type II collagen. After treated with different concentrations of 1,25-(OH2D3 the proliferation of FLS was estimated by the MTT method, and the optimal concentration of 1,25-(OH2D3 was selected for further experiments. Cell proliferation was detected by MTT. Cell cycle and apoptosis were analyzed by FCM. The IL-1β, IL-6, IL-8, and PGE2 protein expressions were determined by ELISA, and MMP-3, INOS, and Cox-2 mRNA expressions were measured by qRT-PCR. Results: The rat model of RA was successfully established. Compared with the blank group, the 1,25-(OH2D3 and miR-22 inhibitors groups exhibited higher proliferation inhibition and apoptosis rates, lower levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and PGE2, and decreased mRNA expressions of MMP-3, INOS, and Cox-2. The miR-22 mimics group had lower proliferation inhibition and apoptosis rates, elevated expressions of pro-inflammatory cytokines and MMP-3, INOS, and Cox-2 than the blank group. In contrast to the 1,25-(OH2D3 group, the proliferation inhibition and apoptosis rates were down-regulated, and the expressions of pro-inflammatory cytokines and MMP-3, INOS, and Cox-2 were up-regulated in the 1,25-(OH2D3 + miR-22 mimics group. Conclusion: Our study demonstrated that 1,25-(OH2D3 inhibits the proliferation of FLS and alleviates inflammatory response in RA rats by down-regulating miR-22.

  13. An extract of Phellinus linteus grown on germinated brown rice inhibits inflammation markers in RAW264.7 macrophages by suppressing inflammatory cytokines, chemokines, and mediators and up-regulating antioxidant activity.

    Science.gov (United States)

    Park, Hye-Jin; Han, Eun Su; Park, Dong Ki; Lee, Chan; Lee, Ki Won

    2010-12-01

    The immunomodulatory activity of an organic extract of Phellinus linteus grown on slightly germinated brown rice (PBR) was previously demonstrated. Here, we investigated the possible anti-inflammatory activity of the PBR extract by analyzing its effect on the expression of macrophage-derived cytokines, chemokines, and mediator genes that participate in immune and inflammatory responses and diseases. The extract profoundly inhibited the induction of cytokines and chemokines, including tumor necrosis factor-α, chemokine (C-X-C motif) ligand-10, granulocyte-macrophage colony-stimulating factor, and interleukin-6, in lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells. It also greatly inhibited LPS-stimulated production of nitric oxide (NO) and prostaglandin E(2) in RAW264.7 cells by suppressing the expression of inducible NO synthase and cyclooxygenase-2. PBR extract inhibited NO production with a twofold lower half-maximal inhibitory concentration value than P. linteus extract. To elucidate the underlying mechanism of action, we examined the effect of the PBR extract on the LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) in RAW264.7 cells. PBR extract greatly inhibited extracellular signal-regulated kinase and c-Jun N-terminal kinase phosphorylation and slightly inhibited p38 MAPK phosphorylation. It also significantly increased intracellular glutathione peroxidase activity and heme oxygenase-1 protein expression. Thus, the PBR extract has anti-inflammatory activity in LPS-stimulated RAW264.7 cells by virtue of its ability to suppress the production of inflammatory cytokines and chemokines via inhibition of MAPK activation and up-regulation of antioxidant activities.

  14. Baicalein inhibits IL-1β- and TNF-α-induced inflammatory cytokine production from human mast cells via regulation of the NF-κB pathway

    Directory of Open Access Journals (Sweden)

    Krishnaswamy Guha

    2007-11-01

    Full Text Available Abstract Background Human mast cells are multifunctional cells capable of a wide variety of inflammatory responses. Baicalein (BAI, isolated from the traditional Chinese herbal medicine Huangqin (Scutellaria baicalensis Georgi, has been shown to have anti-inflammatory effects. We examined its effects and mechanisms on the expression of inflammatory cytokines in an IL-1β- and TNF-α-activated human mast cell line, HMC-1. Methods HMC-1 cells were stimulated either with IL-1β (10 ng/ml or TNF-α (100 U/ml in the presence or absence of BAI. We assessed the expression of IL-6, IL-8, and MCP-1 by ELISA and RT-PCR, NF-κB activation by electrophoretic mobility shift assay (EMSA, and IκBα activation by Western blot. Results BAI (1.8 to 30 μM significantly inhibited production of IL-6, IL-8, and MCP-1 in a dose-dependent manner in IL-1β-activated HMC-1. BAI (30 μM also significantly inhibited production of IL-6, IL-8, and MCP-1 in TNF-α-activated HMC-1. Inhibitory effects appear to involve the NF-κB pathway. BAI inhibited NF-κB activation in IL-1β- and TNF-α-activated HMC-1. Furthermore, BAI increased cytoplasmic IκBα proteins in IL-1β- and TNF-α-activated HMC-1. Conclusion Our results showed that BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation in human mast cells. This inhibitory effect of BAI on the expression of inflammatory cytokines suggests its usefulness in the development of novel anti-inflammatory therapies.

  15. Participation of MCP-induced protein 1 in lipopolysaccharide preconditioning-induced ischemic stroke tolerance by regulating the expression of proinflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Liang Jian

    2011-12-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS preconditioning-induced neuroprotection is known to be related to suppression of the inflammatory response in the ischemic area. This study seeks to determine if monocyte chemotactic protein-induced protein 1 (MCPIP1, a recently identified CCCH Zn finger-containing protein, plays a role in focal brain ischemia and to elucidate the mechanisms of LPS-induced ischemic brain tolerance. Methods Transcription and expression of MCPIP1 gene was monitored by qRT-PCR and Western blot. Mouse microglia was prepared from cortices of C57BL/6 mouse brain and primary human microglia was acquired from Clonexpress, Inc. Wild type and MCPIP1 knockout mice were treated with LPS (0.2 mg/kg 24 hours before brain ischemia induced by transient middle cerebral artery occlusion (MCAO. The infarct was measured by 2,3,5-triphenyltetrazolium chloride (TTC staining. Results MCPIP1 protein and mRNA levels significantly increased in both mouse and human microglia and mouse brain undergoing LPS preconditioning. MCPIP1 mRNA level significantly increased in mice ipsilateral brain than that of contralateral side after MCAO. The mortality of MCPIP1 knockout mice was significantly higher than that of wild-type after MCAO. MCPIP1 deficiency caused significant increase in the infarct volume compared with wild type mice undergoing LPS preconditioning. MCPIP1 deficiency caused significant upregulation of proinflammatory cytokines in mouse brain. Furthermore, MCPIP1 deficiency increased c-Jun N terminal kinase (JNK activation substantially. Inhibition of JNK signaling decreased the production of proinflammatory cytokines in MCPIP1 knock out mice after MCAO. Conclusions Our data indicate that absence of MCPIP1 exacerbates ischemic brain damage by upregulation of proinflammatory cytokines and that MCPIP1 participates in LPS-induced ischemic stroke tolerance.

  16. The Cross-talk between Tristetraprolin and Cytokines in Cancer.

    Science.gov (United States)

    Guo, Jian; Wang, Hao; Jiang, Shiyi; Xia, Jiazeng; Jin, Shimao

    2017-11-24

    Cytokines are small secreted proteins serving as vital mediators that mediate the host immune responses. Transcription and post-transcription play a critical role in cytokine expression through the regulation of message RNA (mRNA) cytoplasmic localization, translation initiation and decay. Researches have been conducted to reveal regulatory mechanisms of cytokines production in cells involved in cancer. AU-rich element (ARE) can regulate the degradation and translation of mRNA by connecting with specific ARE binding proteins. It is now clear that tristetraprolin (TTP), as the most common ARE binding protein, negatively regulates many aspects of the cytokines through binding to the AREs in the 3'-untranslated region (3'UTR) of mRNA. Furthermore, some certain cytokines have an impact on TTP expression and function. Therefore, the cross-regulation between cytokines and TTP has come into sight. The complicated regulatory networks between cytokines and TTP are closely related to tumorigenesis. In this review, we summarize specific regulatory mechanisms of cytokine mRNAs. We focus on how TTP negatively regulates inflammatory and oncogenic cytokines expression after combining with AREs, we also pay attention to some cytokines mediating the expression of TTP and their cross-talk in various cancers in detail. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Th17 cytokines induce pro-fibrotic cytokines release from human eosinophils

    Science.gov (United States)

    2013-01-01

    Background Subepithelial fibrosis is one of the most critical structural changes affecting bronchial airway function during asthma. Eosinophils have been shown to contribute to the production of pro-fibrotic cytokines, TGF-β and IL-11, however, the mechanism regulating this process is not fully understood. Objective In this report, we investigated whether cytokines associated with inflammation during asthma may induce eosinophils to produce pro-fibrotic cytokines. Methods Eosinophils were isolated from peripheral blood of 10 asthmatics and 10 normal control subjects. Eosinophils were stimulated with Th1, Th2 and Th17 cytokines and the production of TGF-β and IL-11 was determined using real time PCR and ELISA assays. Results The basal expression levels of eosinophil derived TGF-β and IL-11 cytokines were comparable between asthmatic and healthy individuals. Stimulating eosinophils with Th1 and Th2 cytokines did not induce expression of pro-fibrotic cytokines. However, stimulating eosinophils with Th17 cytokines resulted in the enhancement of TGF-β and IL-11 expression in asthmatic but not healthy individuals. This effect of IL-17 on eosinophils was dependent on p38 MAPK activation as inhibiting the phosphorylation of p38 MAPK, but not other kinases, inhibited IL-17 induced pro-fibrotic cytokine release. Conclusions Th17 cytokines might contribute to airway fibrosis during asthma by enhancing production of eosinophil derived pro-fibrotic cytokines. Preventing the release of pro-fibrotic cytokines by blocking the effect of Th17 cytokines on eosinophils may prove to be beneficial in controlling fibrosis for disorders with IL-17 driven inflammation such as allergic and autoimmune diseases. PMID:23496774

  18. Cytokines and intestinal inflammation.

    Science.gov (United States)

    Bamias, Giorgos; Cominelli, Fabio

    2016-11-01

    Cytokines of the intestinal microenvironment largely dictate immunological responses after mucosal insults and the dominance of homeostatic or proinflammatory pathways. This review presents important recent studies on the role of specific cytokines in the pathogenesis of intestinal inflammation. The particular mucosal effects of cytokines depend on their inherent properties but also the cellular origin, type of stimulatory antigens, intermolecular interactions, and the particular immunological milieu. Novel cytokines of the interleukin-1 (IL-1) family, including IL-33 and IL-36, have dominant roles in mucosal immunity, whereas more established ones such as IL-18 are constantly enriched with unique properties. Th17 cells are important mucosal constituents, although their profound plasticity, makes the specific set of cytokines they secrete more important than their mere numbers. Finally, various cytokines, such as tumor necrosis factor-α, IL-6, tumor necrosis factor-like cytokine 1A, and death receptor, 3 demonstrate dichotomous roles with mucosa-protective function in acute injury but proinflammatory effects during chronic inflammation. The role of cytokines in mucosal health and disease is increasingly revealed. Such information not only will advance our understanding of the pathogenesis of gut inflammation, but also set the background for development of reliable diagnostic and prognostic biomarkers and cytokine-specific therapies.

  19. Neutralization of MMP-2 and TNFR1 Regulates the Severity of S. aureus-Induced Septic Arthritis by Differential Alteration of Local and Systemic Proinflammatory Cytokines in Mice.

    Science.gov (United States)

    Sultana, Sahin; Adhikary, Rana; Bishayi, Biswadev

    2017-06-01

    Despite advancement in the field of antibiotics septic arthritis remains a serious concern till date. Staphylococcus aureus is the most common bacterium that causes septic arthritis. Severity of this disease is directly correlated with chronic inflammation induced by proinflammatory cytokines like TNF-α, interleukin (IL)-1β, IL-6, and induction of matrix metalloproteinases (MMPs) including MMP-2. The objective of our study was to evaluate the role of MMP-2 and tumor necrosis factor receptor 1 (TNFR1) in the pathogenesis of S. aureus infection-induced septic arthritis. Mice were infected with live S. aureus (5 × 10 6 cells/ml) followed by administration of MMP-2 inhibitor and TNFR1 antibody. Arthritis index showed highest reduction in severity of arthritis in mice treated with both MMP-2 inhibitor and TNFR1 antibody after infection. Combined neutralization of MMP-2 and TNFR1 led to marked diminution in bacterial count in the combined group. Lowest levels of pro inflammatory cytokines like TNF-α, IL-1β, IL-6, and IFN-γ were observed in both serum and synovial tissues indicating maximum protection in S. aureus arthritis during combination treatment. Increment in the level of IL-10 in the combination group could be positively correlated with the recovery of arthritis. Similarly, expressions of COX-2 and iNOS, markers of acute inflammation were also significantly reduced in the combination group due to resolution of inflammation. Levels of O2 .- and NO also showed a significant fall in case of the group treated with MMP-2 inhibitor and TNFR1 antibody both. Neutralization of both MMP-2 and TNFR1 caused rapid decline in recruitment of neutrophil and macrophages in the synovial tissues as evident from reduced MPO and MCP-1 levels, respectively, compared to other groups. Overall, it can be suggested that administration of MMP-2 inhibitor and TNFR1 antibody in combination is protective against the severity of inflammation and cartilage destruction associated with S

  20. Increasing heat storage by wearing extra clothing during upper body exercise up-regulates heat shock protein 70 but does not modify the cytokine response.

    Science.gov (United States)

    Leicht, Christof A; Papanagopoulos, Aris; Haghighat, Sam; Faulkner, Steve H

    2017-09-01

    Plasma heat shock protein 70 (HSP70) concentrations rise during heat stress, which can independently induce cytokine production. Upper body exercise normally results in modest body temperature elevations. The aim of this study was to investigate the impacts of additional clothing on the body temperature, cytokine and HSP70 responses during this exercise modality. Thirteen males performed 45-min constant-load arm cranking at 63% maximum aerobic power (62 ± 7%V̇O 2peak ) in either a non-permeable whole-body suit (intervention, INT) or shorts and T-shirt (control, CON). Exercise resulted in a significant increase of IL-6 and IL-1ra plasma concentrations (P  0.19). The increase in HSP70 from pre to post was only significant for INT (0.12 ± 0.11ng∙mL -1 , P < 0.01 vs. 0.04 ± 0.18 ng∙mL -1 , P = 0.77). Immediately following exercise, T core was elevated by 0.46 ± 0.29 (INT) and 0.37 ± 0.23ºC (CON), respectively (P < 0.01), with no difference between conditions (P = 0.16). The rise in mean T skin (2.88 ± 0.50 and 0.30 ± 0.89ºC, respectively) and maximum heat storage (3.24 ± 1.08 and 1.20 ± 1.04 J∙g -1 , respectively) was higher during INT (P < 0.01). Despite large differences in heat storage between conditions, the HSP70 elevations during INT, even though significant, were very modest. Possibly, the T core elevations were too low to induce a more pronounced HSP70 response to ultimately affect cytokine production.

  1. Melatonin promotes survival of nonvascularized fat grafts and enhances the viability and migration of human adipose-derived stem cells via down-regulation of acute inflammatory cytokines.

    Science.gov (United States)

    Tan, Shaun S; Zhan, Weiqing; Poon, Christopher J; Han, Xiaolian; Marre, Diego; Boodhun, Sholeh; Palmer, Jason A; Mitchell, Geraldine M; Morrison, Wayne A

    2018-02-01

    Nonvascularized fat grafting is a valuable technique for soft tissue reconstruction but poor survival of fat in the host environment remains a problem. A process known as cell-assisted transfer is used to enhance fat graft retention by adding stromal vascular fraction, an adipose-derived stem cell (ASC) rich content to lipoaspirate. We have recently shown that the use of melatonin, a reactive oxygen species scavenger, protects human ASCs from hydrogen peroxide-induced oxidative stress and cell death in vitro but its role as a pharmacological adjunct in clinical fat grafting has not been studied. Herein, the effect of melatonin was examined on human ASCs in vitro using survival and functional assays including the MTT assay, CellTox Green assay, monolayer scratch assay as well as a human cytokine chemoluminescence, and tumour necrosis factor-α assay. Further, the effect of melatonin-treated fat grafts was tested in vivo with a murine model. Haematoxylin and eosin staining, perilipin and CD31 immunostaining were performed with morphometric analysis of adipose tissue. The results demonstrate that, in vitro, the addition of melatonin to ASCs significantly improved their cell-viability, promoted cell migration and preserved membrane integrity as compared to controls. In addition, it induced a potent anti-inflammatory response by downregulating acute inflammatory cytokines particularly tumour necrosis factor-α. For the first time, it is demonstrated in vivo that melatonin enhances fat graft volume retention by reducing inflammation and increasing the percentage of adipose volume within fat grafts with comparable volumes to that of cell-assisted lipotransfer. Based on these novel findings, melatonin may be a useful pharmacological adjunct in clinical fat grafting. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Secretome profiling of cytokines and growth factors reveals that neuro-glial differentiation is associated with the down-regulation of Chemokine Ligand 2 (MCP-1/CCL2) in amniotic fluid derived-mesenchymal progenitor cells.

    Science.gov (United States)

    Miceli, Marco; Dell'Aversana, Carmela; Russo, Rosita; Rega, Camilla; Cupelli, Lorenzo; Ruvo, Menotti; Altucci, Lucia; Chambery, Angela

    2016-02-01

    Secreted cytokines and growth factors play a key role in the modulation of stem cell proliferation, differentiation and survival. To investigate the interplay between the changes in their expression levels, we used the newly characterized human amniotic fluid derived-mesenchymal progenitor MePR-2B cell line differentiated to a neuro-glial phenotype and exploited the very high sensitivity and versatility of magnetic beads-based immunoassays. We found that a sub-set of proteins, including the cytokines IL-6, TNFα, IL-15, IFNγ, IL-8, IL-1ra, MCP-1/CCL2, RANTES and the growth factor PDGFbb, underwent a significant down-regulation following neuro-glial differentiation, whereas the expression levels of IL-12 p70, IL-5, IL-7, bFGF, VEGF and G-CSF were increased. The role of MCP-1/CCL2, previously identified as a regulator of neural progenitor stem cell differentiation, has been further investigated at transcriptional level, revealing that both the chemokine and its receptor are co-expressed in MePR-2B cells and that are regulated upon differentiation, suggesting the presence of an autocrine and paracrine loop in differentiating cells. Moreover, we demonstrated that exogenous CCL2 is capable to affect neuro-glial differentiation in MePR-2B cells, thus providing novel evidences for the potential involvement of chemokine-mediated signaling in progenitor/stem cells differentiation processes and fate specification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tight control of MEK-ERK activation is essential in regulating proliferation, survival, and cytokine production of CD34(+)-derived neutrophil progenitors

    NARCIS (Netherlands)

    Geest, Christian R.; Buitenhuis, Miranda; Koerkamp, Marian J. A. Groot; Holstege, Frank C. P.; Vellenga, Edo; Coffer, Paul J.

    2009-01-01

    A plethora of extracellular stimuli regulate growth, survival, and differentiation responses through activation of the MEK-ERK MAPK signaling module. Using CD34(+) hematopoietic progenitor cells, we describe a novel role for the MEK-ERK signaling module in the regulation of proliferation, survival,

  4. Synergistic Cytotoxic Effects of Ganoderma lucidum and Bacillus Calmette Guérin on Premalignant Urothelial HUC-PC Cells and Its Regulation on Proinflammatory Cytokine Secretion

    Directory of Open Access Journals (Sweden)

    John Wai-man Yuen

    2012-01-01

    Full Text Available Bacillus Calmette-Guérin (BCG is conventionally used as an adjuvant immunotherapy to reduce the recurrence of bladder cancer. To address the issues of efficacy and safety, an ethanol extract of Ganoderma lucidum (GLe was evaluated for its interaction with BCG. In a model of premalignant human uroepithelial cells (HUC-PC, GLe exerted immediate cytotoxic effects while BCG showed a delayed response, given that both were immunological active in inducing the secretion of interleukin (IL-6, IL-8, and monocyte chemotactic protein-1 (MCP-1. Synergistic cytotoxic effects were observed when cells were either coincubated with both drugs or firstly preincubated with GLe. Synergism between GLe and BCG was demonstrated to achieve a complete cytostasis in 24 hours, and such effects were progressed in the subsequent 5 days. However, the pretreatment of GLe resulted in suppression of IL-6, IL-8, and MCP-1 secretions without affecting the cytotoxicity. Given that numerous proinflammatory cytokines are associated with the high side effects toll of BCG, results herein suggested the potential implications of GL to supplement the BCG immunotherapy in bladder cancer, for better efficacy and reducing side effects.

  5. The Anti-Allergic Rhinitis Effect of Traditional Chinese Medicine of Shenqi by Regulating Mast Cell Degranulation and Th1/Th2 Cytokine Balance.

    Science.gov (United States)

    Shao, Yang-Yang; Zhou, Yi-Ming; Hu, Min; Li, Jin-Ze; Chen, Cheng-Juan; Wang, Yong-Jiang; Shi, Xiao-Yun; Wang, Wen-Jie; Zhang, Tian-Tai

    2017-03-22

    Shenqi is a traditional Chinese polyherbal medicine has been widely used for the treatment of allergic rhinitis (AR). The aim of this study was to investigate the anti-allergic rhinitis activity of Shenqi and explore its underlying molecular mechanism. Ovalbumin (OVA)-induced allergic rhinitis rat model was used to evaluate the anti-allergic rhinitis effect of Shenqi. The effect of Shenqi on IgE-mediated degranulation was measured using rat basophilic leukemia (RBL-2H3) cells. Primary spleen lymphocytes were isolated to investigate the anti-allergic mechanism of Shenqi by detecting the expression of transcription factors via Western blot and the level of cytokines (IL-4 and IFN-γ) via ELISA. In OVA-induced AR rat models, Shenqi relieved the allergic rhinitis symptoms, inhibited the histopathological changes of nasal mucosa, and reduced the levels of IL-4 and IgE. The results from the in vitro study certified that Shenqi inhibited mast cell degranulation. Furthermore, the results of GATA3, T-bet, p-STAT6, and SOCS1 expression and production of IFN-γ and IL-4 demonstrated that Shenqi balanced the ratio of Th1/Th2 (IFN-γ/IL-4) in OVA-stimulated spleen lymphocytes. In conclusion, these results suggest that Shenqi exhibits an obvious anti-allergic effect by suppressing the mast cell-mediated allergic response and by improving the imbalance of Th1/Th2 ratio in allergic rhinitis.

  6. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Erica M. [Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States); Barnes, Betsy J., E-mail: barnesbe@njms.rutgers.edu [Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States)

    2014-04-23

    Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin{sup ®}) and rituximab (Rituxan{sup ®})) and the first approved cancer vaccine, Provenge{sup ®} (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response.

  7. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    International Nuclear Information System (INIS)

    Pimenta, Erica M.; Barnes, Betsy J.

    2014-01-01

    Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin ® ) and rituximab (Rituxan ® )) and the first approved cancer vaccine, Provenge ® (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response

  8. Role of Tertiary Lymphoid Structures (TLS in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Directory of Open Access Journals (Sweden)

    Erica M. Pimenta

    2014-04-01

    Full Text Available Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin® and rituximab (Rituxan® and the first approved cancer vaccine, Provenge® (sipuleucel-T, investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS within the tumor microenvironment may be used to enhance immunotherapy response.

  9. Ethyl Acetate Fraction of Amomum xanthioides Exerts Antihepatofibrotic Actions via the Regulation of Fibrogenic Cytokines in a Dimethylnitrosamine-Induced Rat Model

    Directory of Open Access Journals (Sweden)

    Sung-Bae Lee

    2016-01-01

    Full Text Available Amomum xanthioides has been traditionally used to treat diverse digestive system disorders in the Asian countries. We investigated antihepatofibrotic effects of ethyl acetate fraction of Amomum xanthioides (EFAX. Liver fibrosis is induced by dimethylnitrosamine (DMN injection (intraperitoneally, 10 mg/kg of DMN for 4 weeks to Sprague-Dawley rats. EFAX (25 or 50 mg/kg, silymarin (50 mg/kg, or distilled water was orally administered every day. The DMN injection drastically altered body and organ mass, serum biochemistry, and platelet count, while EFAX treatment significantly attenuated this alteration. Severe liver fibrosis is determined by trichrome staining and measurement of hydroxyproline contents. EFAX treatment significantly attenuated these symptoms as well as the increase in oxidative by-products of lipid and protein metabolism in liver tissues. DMN induced a dramatic activation of hepatic stellate cells and increases in the levels of protein and gene expression of transforming growth factor-beta (TGF-β, platelet derived growth factor-beta (PDGF-β, and connective tissue growth factor (CTGF. Immunohistochemical analyses revealed increases in the levels of protein and gene expression of α-smooth muscle actin. These alterations were significantly normalized by EFAX treatment. Our findings demonstrate the potent antihepatofibrotic properties of EFAX via modulation of fibrogenic cytokines, especially TGF-β in the liver fibrosis rat model.

  10. Eosinophil cytokines: Emerging roles in immunity

    Directory of Open Access Journals (Sweden)

    Paige eLacy

    2014-11-01

    Full Text Available Eosinophils derive from the bone marrow and circulate at low levels in the blood in healthy individuals. These granulated cells preferentially leave the circulation and marginate to tissues, where they are implicated in the regulation of innate and adaptive immunity. In diseases such as allergic inflammation, eosinophil numbers escalate markedly in the blood and tissues where inflammatory foci are located. Eosinophils possess a range of immunomodulatory factors that are released upon cell activation, including over 35 cytokines, growth factors, and chemokines. Unlike T and B cells, eosinophils can rapidly release cytokines within minutes in response to stimulation. While some cytokines are stored as preformed mediators in crystalloid granules and secretory vesicles, eosinophils are also capable of undergoing de novo synthesis and secretion of these immunological factors. Some of the molecular mechanisms that coordinate the final steps of cytokine secretion are hypothesized to involve binding of membrane fusion complexes comprised of soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs. These intracellular receptors regulate the release of granules and vesicles containing a range of secreted proteins, among which are cytokines and chemokines. Emerging evidence from both human and animal model-based research has suggested an active participation of eosinophils in several physiological/pathological processes such as immunomodulation and tissue remodeling. The observed eosinophil effector functions in health and disease implicate eosinophil cytokine secretion as a fundamental immunoregulatory process. The focus of this review is to describe the cytokines, growth factors, and chemokines that are elaborated by eosinophils, and to illustrate some of the intracellular events leading to the release of eosinophil-derived cytokines.

  11. Paeoniflorin down-regulates ATP-induced inflammatory cytokine production and P2X7R expression on peripheral blood mononuclear cells from patients with primary Sjögren's syndrome.

    Science.gov (United States)

    Yu, Jingya; Chen, Yong; Li, Mingcai; Gao, Qiaoyan; Peng, Yong; Gong, Qiongyao; Zhang, Zhen; Wu, Xiudi

    2015-09-01

    This study determined the effects of paeoniflorin (PF) on the expression of purinergic receptor P2X ligand-gated ion channel 7 (P2X7R) expressed on peripheral blood mononuclear cells (PBMCs) and production of ATP-induced pro-inflammatory cytokines released by PBMCs in patients with primary Sjögren's syndrome (pSS). The pharmacological functions and cytotoxic effects of PF were dose dependent in PBMCs from 20 newly diagnosed pSS patients and 20 normal individuals. The optimum dose of PF was 100μM. PF significantly down-regulated the production of interleukin (IL)-1β and IL-6 from pSS PBMCs, and significantly inhibited ATP-induced expression of P2X7R, that might contribute to reduced IL-1β and IL-6. mRNA and protein levels of P2X7R on pSS PBMCs were significantly higher than in normal individuals (p=0.03, pP2X7R mRNA and protein levels were decreased significantly (pP2X7R on pSS PBMCs, indicating that PF might be useful for the management of pSS via down-regulating P2X7R expression. Thus, PF may provide a new therapeutic approach to regulate P2X7R-mediated pathologic responses of pSS. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Anti-fibrotic effects of a novel small compound on the regulation of cytokine production in a mouse model of colorectal fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Jin [Center for Matrix Biology and Medicine, Tokai University School of Medicine, Kanagawa (Japan); Department of Gastroenterology, Tokai University School of Medicine, Kanagawa (Japan); Hozumi, Katsuto, E-mail: hozumi@is.icc.u-tokai.ac.jp [Center for Matrix Biology and Medicine, Tokai University School of Medicine, Kanagawa (Japan); Department of Immunology, Tokai University School of Medicine, Kanagawa (Japan); Sumiyoshi, Hideaki [Center for Matrix Biology and Medicine, Tokai University School of Medicine, Kanagawa (Japan); Department of Regenerative Medicine, Tokai University School of Medicine, Kanagawa (Japan); Yazawa, Masaki; Hirano, Ken-ichi [Department of Immunology, Tokai University School of Medicine, Kanagawa (Japan); Abe, Jun; Higashi, Kiyoshi [Environmental Health Science Laboratory, Sumitomo Chemical Company Limited, Osaka (Japan); Inagaki, Yutaka [Center for Matrix Biology and Medicine, Tokai University School of Medicine, Kanagawa (Japan); Department of Regenerative Medicine, Tokai University School of Medicine, Kanagawa (Japan); Mine, Tetsuya [Department of Gastroenterology, Tokai University School of Medicine, Kanagawa (Japan)

    2015-12-25

    Intestinal fibrotic stricture is a major complication of inflammatory bowel disease. Despite its clinical importance, anti-fibrotic therapy has not been implemented. Transforming growth factor-β (TGF-β) is considered to be a major factor contributing to tissue fibrosis. We have previously shown that the administration of a small compound, HSc025, which promotes the nuclear translocation of YB-1 as a downstream effector of IFN-γ and antagonizes TGF-β/Smad signaling, improves fibrosis in several murine tissues. In this study, we evaluated the anti-fibrotic effect of HSc025 on colorectal fibrosis in TNBS-induced murine chronic colitis. Daily oral administration of HSc025 (3, 15 and 75 mg/kg) suppressed collagen production and decreased the severity of colorectal fibrosis in a dose-dependent manner. In addition, the local production of TGF-β was decreased after HSc025 treatment, whereas that of IL-13 and TNF-α was not affected. HSc025 administration maintained the level of IFN-γ production, even at a late stage when IFN-γ production was lost without the drug treatment. These results demonstrate that HSc025 could be a therapeutic candidate for intestinal fibrosis in inflammatory bowel disease that acts by altering the local production of cytokines, as well as by directly suppressing collagen production. - Highlights: • Colorectal fibrosis of TNBS-induced colitis was attenuated by HSc025 administration. • Local production of TGF-b was suppressed by the modulation of TGF-b/IFN-g signaling. • Derepression of IFN-g production was induced by the drug treatment.

  13. 15-deoxy-Δ12,14-prostaglandin J2 Down-Regulates Activin-Induced Activin Receptor, Smad, and Cytokines Expression via Suppression of NF-κB and MAPK Signaling in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Seung-Won Park

    2013-01-01

    Full Text Available 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2 and activin are implicated in the control of apoptosis, cell proliferation, and inflammation in cells. We examined both the mechanism by which 15d-PGJ2 regulates the transcription of activin-induced activin receptors (ActR and Smads in HepG2 cells and the involvement of the nuclear factor-κB (NF-κB and mitogen-activated protein kinase (MAPK pathways in this regulation. Activin A (25 ng/mL inhibited HepG2 cell proliferation, whereas 15d-PGJ2 (2 μM and 5 μM had no effect. Activin A and 15d-PGJ2 showed different regulatory effects on ActR and Smad expression, NF-κB p65 activity and MEK/ERK phosphorylation, whereas they both decreased IL-6 production and increased IL-8 production. When co-stimulated with 15d-PGJ2 and activin, 15d-PGJ2 inhibited the activin-induced increases in ActR and Smad expression, and decreased activin-induced IL-6 production. However, it increased activin-induced IL-8 production. In addition, 15d-PGJ2 inhibited activin-induced NF-κB p65 activity and activin-induced MEK/ERK phosphorylation. These results suggest that 15d-PGJ2 suppresses activin-induced ActR and Smad expression, down-regulates IL-6 production, and up-regulates IL-8 production via suppression of NF-κB and MAPK signaling pathway in HepG2 cells. Regulation of ActR and Smad transcript expression and cytokine production involves NF-κB and the MAPK pathway via interaction with 15d-PGJ2/activin/Smad signaling.

  14. Cytokines in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Vedel Kessing, Lars

    2012-01-01

    to affective state. METHODS: We conducted a systemtic review of studies measuring endogenous cytokine concentrations in patients with bipolar disorder and a meta-analysis, reporting results according to the PRISMA statement. RESULTS: Thirteen studies were included, comprising 556 bipolar disorder patients......BACKGROUND: Current research and hypothesis regarding the pathophysiology of bipolar disorder suggests the involvement of immune system dysfunction that is possibly related to disease activity. Our objective was to systematically review evidence of cytokine alterations in bipolar disorder according...

  15. Amniotic fluid inflammatory cytokines

    DEFF Research Database (Denmark)

    Abdallah, Morsi; Larsen, Nanna; Grove, Jakob

    2013-01-01

    The aim of the study was to analyze cytokine profiles in amniotic fluid (AF) samples of children developing autism spectrum disorders (ASD) and controls, adjusting for maternal autoimmune disorders and maternal infections during pregnancy.......The aim of the study was to analyze cytokine profiles in amniotic fluid (AF) samples of children developing autism spectrum disorders (ASD) and controls, adjusting for maternal autoimmune disorders and maternal infections during pregnancy....

  16. Censored correlated cytokine concentrations

    DEFF Research Database (Denmark)

    Andersen, Andreas; Benn, Christine Stabell; Jørgensen, Mathias J

    2013-01-01

    Interest in cytokines as markers for the function of the immune system is increasing. Methods quantifying cytokine concentrations are often subject to detection limits, which lead to non-detectable observations and censored distributions. When distributions are skewed, geometric mean ratios (GMRs...... stacking method that uses clustered variance-covariance estimation allowing homogeneous (Stackc) or inhomogeneous (Stackh) variances. We compare it with direct estimation of the bivariate Tobit likelihood function (Bitobit) and multiple imputation. We assess sensitivity to inhomogeneity and non...

  17. Cytokines in Sjögren's syndrome

    NARCIS (Netherlands)

    Roescher, N.; Tak, P. P.; Illei, G. G.

    2009-01-01

    Cytokines play a central role in the regulation of immunity and are often found to be deregulated in autoimmune diseases. Sjögren's syndrome is a chronic autoimmune disease characterized by inflammation and loss of secretory function of the salivary and lachrymal glands. This review highlights the

  18. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells

    Directory of Open Access Journals (Sweden)

    Chantong Boonrat

    2012-11-01

    Full Text Available Abstract Background Microglia, the resident macrophage-like cells in the brain, regulate innate immune responses in the CNS to protect neurons. However, excessive activation of microglia contributes to neurodegenerative diseases. Corticosteroids are potent modulators of inflammation and mediate their effects by binding to mineralocorticoid receptors (MR and glucocorticoid receptors (GR. Here, the coordinated activities of GR and MR on the modulation of the nuclear factor-κB (NF-κB pathway in murine BV-2 microglial cells were studied. Methods BV-2 cells were treated with different corticosteroids in the presence or absence of MR and GR antagonists. The impact of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 was determined by incubating cells with 11-dehydrocorticosterone, with or without selective inhibitors. Expression of interleukin-6 (IL-6, tumor necrosis factor receptor 2 (TNFR2, and 11β-HSD1 mRNA was analyzed by RT-PCR and IL-6 protein expression by ELISA. NF-κB activation and translocation upon treatment with various corticosteroids were visualized by western blotting, immunofluorescence microscopy, and translocation assays. Results GR and MR differentially regulate NF-κB activation and neuroinflammatory parameters in BV-2 cells. By converting inactive 11-dehydrocorticosterone to active corticosterone, 11β-HSD1 essentially modulates the coordinated action of GR and MR. Biphasic effects were observed for 11-dehydrocorticosterone and corticosterone, with an MR-dependent potentiation of IL-6 and tumor necrosis factor-α (TNF-α expression and NF-κB activation at low/moderate concentrations and a GR-dependent suppression at high concentrations. The respective effects were confirmed using the MR ligand aldosterone and the antagonist spironolactone as well as the GR ligand dexamethasone and the antagonist RU-486. NF-κB activation could be blocked by spironolactone and the inhibitor of NF

  19. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...

  20. Cytokine genes as potential biomarkers for muscle weakness in OPMD

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Raz, Yotam; van der Slujis, Barbara

    2016-01-01

    been exploited in the last decade. Cytokines are released from many tissues, including skeletal muscles, but their application to monitor muscle pathology is sparse. We report that the cytokine functional group is altered in the transcriptome of oculopharyngeal muscular dystrophy (OPMD). OPMD...... is a dominant, late-onset myopathy, caused by an alanine-expansion mutation in the gene encoding for poly(A) binding protein nuclear 1 (expPABPN1). Here, we investigated the hypothesis that cytokines could mark OPMD disease state. We determined cytokines levels the vastus lateralis muscle from genetically...... confirmed expPABPN1 carriers at a symptomatic or a presymptomatic stage. We identified cytokine-related genes candidates from a transcriptome study in a mouse overexpressing exp PABPN1 Six cytokines were found to be consistently down-regulated in OPMD vastus lateralis muscles. Expression levels...

  1. Macrophage cytokines: Involvement in immunity and infectious diseases

    Directory of Open Access Journals (Sweden)

    Guillermo eArango Duque

    2014-10-01

    Full Text Available The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting ‘classically activated’, to anti-inflammatory or ‘alternatively activated’ macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.

  2. Macrophage cytokines: involvement in immunity and infectious diseases.

    Science.gov (United States)

    Arango Duque, Guillermo; Descoteaux, Albert

    2014-01-01

    The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting "classically activated," to anti-inflammatory or "alternatively activated" macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.

  3. DC-SIGN reacts with TLR-4 and regulates inflammatory cytokine expression via NF-κB activation in renal tubular epithelial cells during acute renal injury.

    Science.gov (United States)

    Feng, D; Wang, Y; Liu, Y; Wu, L; Li, X; Chen, Y; Chen, Y; Chen, Y; Xu, C; Yang, K; Zhou, T

    2018-01-01

    In the pathological process of acute kidney injury (AKI), innate immune receptors are essential in inflammatory response modulation; however, the precise molecular mechanisms are still unclear. Our study sought to demonstrate the inflammatory response mechanisms in renal tubular epithelial cells via Toll-like receptor-4 (TLR-4) and dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin 1 (DC-SIGN) signalling. We found that DC-SIGN exhibited strong expression in renal tubular epithelial cells of human acute renal injury tissues. DC-SIGN protein expression was increased significantly when renal tubular epithelial cells were exposed to lipopolysaccharide (LPS) for a short period. Furthermore, DC-SIGN was involved in the activation of p65 by TLR-4, which excluded p38 and c-Jun N-terminal kinases (JNK). Interleukin (IL)-6 and tumour necrosis factor (TNF)-α expression was decreased after DC-SIGN knock-down, and LPS induced endogenous interactions and plasma membrane co-expression between TLR-4 and DC-SIGN. These results show that DC-SIGN and TLR-4 interactions regulate inflammatory responses in renal tubular epithelial cells and participate in AKI pathogenesis. © 2017 British Society for Immunology.

  4. Differential regulation of oxidative stress and cytokine production by endothelin ETA and ETB receptors in superoxide anion-induced inflammation and pain in mice.

    Science.gov (United States)

    Fattori, Victor; Serafim, Karla G G; Zarpelon, Ana C; Borghi, Sergio M; Pinho-Ribeiro, Felipe A; Alves-Filho, José C; Cunha, Thiago M; Cunha, Fernando Q; Casagrande, Rúbia; Verri, Waldiceu A

    2017-03-01

    The present study investigated whether endothelin-1 acts via ET A or ET B receptors to mediate superoxide anion-induced pain and inflammation. Mice were treated with clazosentan (ET A receptor antagonist) or BQ-788 (ET B receptor antagonist) prior to stimulation with the superoxide anion donor, KO 2 . Intraplantar treatment with 30 nmol of clazosentan or BQ-788 reduced mechanical hyperalgesia (47% and 42%), thermal hyperalgesia (68% and 76%), oedema (50% and 30%); myeloperoxidase activity (64% and 32%), and overt-pain like behaviours, such as paw flinching (42% and 42%) and paw licking (38% and 62%), respectively. Similarly, intraperitoneal treatment with 30 nmol of clazosentan or BQ-788 reduced leukocyte recruitment to the peritoneal cavity (58% and 32%) and abdominal writhing (81% and 77%), respectively. Additionally, intraplantar treatment with clazosentan or BQ-788 decreased spinal (45% and 41%) and peripheral (47% and 47%) superoxide anion production as well as spinal (47% and 47%) and peripheral (33% and 54%) lipid peroxidation, respectively. Intraplantar treatment with clazosentan, but not BQ-788, reduced spinal (71%) and peripheral (51%) interleukin-1 beta as well as spinal (59%) and peripheral (50%) tumor necrosis factor-alpha production. Therefore, the present study unveils the differential mechanisms by which ET-1, acting on ET A or ET B receptors, regulates superoxide anion-induced inflammation and pain.

  5. Biologics for Targeting Inflammatory Cytokines, Clinical Uses, and Limitations

    Directory of Open Access Journals (Sweden)

    Peleg Rider

    2016-01-01

    Full Text Available Proinflammatory cytokines are potent mediators of numerous biological processes and are tightly regulated in the body. Chronic uncontrolled levels of such cytokines can initiate and derive many pathologies, including incidences of autoimmunity and cancer. Therefore, therapies that regulate the activity of inflammatory cytokines, either by supplementation of anti-inflammatory recombinant cytokines or by neutralizing them by using blocking antibodies, have been extensively used over the past decades. Over the past few years, new innovative biological agents for blocking and regulating cytokine activities have emerged. Here, we review some of the most recent approaches of cytokine targeting, focusing on anti-TNF antibodies or recombinant TNF decoy receptor, recombinant IL-1 receptor antagonist (IL-1Ra and anti-IL-1 antibodies, anti-IL-6 receptor antibodies, and TH17 targeting antibodies. We discuss their effects as biologic drugs, as evaluated in numerous clinical trials, and highlight their therapeutic potential as well as emphasize their inherent limitations and clinical risks. We suggest that while systemic blocking of proinflammatory cytokines using biological agents can ameliorate disease pathogenesis and progression, it may also abrogate the hosts defense against infections. Moreover, we outline the rational need to develop new therapies, which block inflammatory cytokines only at sites of inflammation, while enabling their function systemically.

  6. Recombinant Cytokines from Plants

    Czech Academy of Sciences Publication Activity Database

    Sirko, A.; Vaněk, Tomáš; Gora-Sochacka, A.; Redkiewicz, P.

    2011-01-01

    Roč. 12, č. 6 (2011), s. 3536-3552 ISSN 1661-6596 Institutional research plan: CEZ:AV0Z50380511 Keywords : cytokines * pharmaceutical proteins * plant-based production systems Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.598, year: 2011

  7. Cytokines in human milk.

    Science.gov (United States)

    Garofalo, Roberto

    2010-02-01

    Epidemiologic studies conducted in the past 30 years to investigate the protective functions of human milk strongly support the notion that breastfeeding prevents infantile infections, particularly those affecting the gastrointestinal and respiratory tracts. However, more recent clinical and experimental observations also suggest that human milk not only provides passive protection, but also can directly modulate the immunological development of the recipient infant. The study of this remarkable defense system in human milk has been difficult because of its biochemical complexity, the small concentration of certain bioactive components, the compartmentalization of some of these agents, the dynamic quantitative and qualitative changes of milk during lactation, and the lack of specific reagents to quantify these agents. However, a host of bioactive substances, including hormones, growth factors, and immunological factors such as cytokines, have been identified in human milk. Cytokines are pluripotent polypeptides that act in autocrine/paracrine fashions by binding to specific cellular receptors. They operate in networks and orchestrate the development and functions of immune system. Several different cytokines and chemokines have been discovered in human milk in the past years, and the list is growing very rapidly. This article will review the current knowledge about the increasingly complex network of chemoattractants, activators, and anti-inflammatory cytokines present in human milk and their potential role in compensating for the developmental delay of the neonate immune system. Copyright 2010. Published by Mosby, Inc.

  8. Cytokiner og osteoporose

    DEFF Research Database (Denmark)

    Jørgensen, N R

    1997-01-01

    /testosterone, parathyroidhormone and 1,25(OH)2D3. Some of the cytokines primarily enhance osteoclastic bone resorption e.g. IL-1 (Interleukin-1), TNF (Tumor Necrosis Factor) and IL-6 (Interleukin-6), while others primarily stimulate bone formation e.g. TGF-beta (Transforming Growth Factor), IGF (Insulin-like Growth Factor...

  9. Lack of cystic fibrosis transmembrane conductance regulator in CD3+ lymphocytes leads to aberrant cytokine secretion and hyperinflammatory adaptive immune responses.

    Science.gov (United States)

    Mueller, Christian; Braag, Sofia A; Keeler, Allison; Hodges, Craig; Drumm, Mitchell; Flotte, Terence R

    2011-06-01

    Cystic fibrosis (CF), the most common fatal monogenic disease in the United States, results from mutations in CF transmembrane conductance regulator (CFTR), a chloride channel. The mechanisms by which CFTR mutations cause lung disease in CF are not fully defined but may include altered ion and water transport across the airway epithelium and aberrant inflammatory and immune responses to pathogens within the airways. We have shown that Cftr(-/-) mice mount an exaggerated IgE response toward Aspergillus fumigatus, with higher levels of IL-13 and IL-4, mimicking both the T helper cell type 2-biased immune responses seen in patients with CF. Herein, we demonstrate that these aberrations are primarily due to Cftr deficiency in lymphocytes rather than in the epithelium. Adoptive transfer experiments with CF splenocytes confer a higher IgE response to Aspergillus fumigatus compared with hosts receiving wild-type splenocytes. The predilection of Cftr-deficient lymphocytes to mount T helper cell type 2 responses with high IL-13 and IL-4 was confirmed by in vitro antigen recall experiments. Conclusive data on this phenomenon were obtained with conditional Cftr knockout mice, where mice lacking Cftr in T cell lineages developed higher IgE than their wild-type control littermates. Further analysis of Cftr-deficient lymphocytes revealed an enhanced intracellular Ca(2+) flux in response to T cell receptor activation. This was accompanied by an increase in nuclear localization of the calcium-sensitive transcription factor, nuclear factor of activated T cell, which could drive the IL-13 response. In summary, our data identified that CFTR dysfunction in T cells can lead directly to aberrant immune responses. These findings implicate the lymphocyte population as a potentially important target for CF therapeutics.

  10. The role of cytokines in postmenopausal osteoporosis.

    Science.gov (United States)

    Brincat, S D; Borg, M; Camilleri, G; Calleja-Agius, J

    2014-08-01

    Postmenopausal osteoporosis is a silent systemic progressive disease characterised by a decrease in bone mass per unit volume. This condition compromises the physical strength of the skeleton and increases the susceptibility to fractures on minor trauma. The imbalance between bone formation and bone resorption is known to be responsible for postmenopausal bone loss. Estrogen deficiency contributes to bone loss by increasing the production of pro-inflammatory cytokines by bone marrow and bone cells. Clinical and molecular evidence indicates that estrogen-regulated cytokines exert regulatory effects on bone turnover implicating their role as being the primary mediators of the accelerated bone loss at menopause. The current perspective on the role and interaction of cytokines such as IL-1, IL-4, IL-6, IL-17, TNF, IFN-γ and TGF-β in bone loss linked with estrogen deficiency is reviewed. Current treatment options and emerging drug therapies in the management of postmenopausal osteoporosis are also evaluated.

  11. Eosinophil secretion of granule-derived cytokines

    Directory of Open Access Journals (Sweden)

    Lisa A Spencer

    2014-10-01

    Full Text Available Eosinophils are tissue-dwelling leukocytes, present in the thymus, and gastrointestinal and genitourinary tracts of healthy individuals at baseline, and recruited, often in large numbers, to allergic inflammatory foci and sites of active tissue repair. The biological significance of eosinophils is vast and varied. In health, eosinophils support uterine and mammary gland development, and maintain bone marrow plasma cells and adipose tissue alternatively activated macrophages, while in response to tissue insult eosinophils function as inflammatory effector cells, and, in the wake of an inflammatory response, promote tissue regeneration and wound healing. One common mechanism driving many of the diverse eosinophil functions is the regulated and differential secretion of a vast array of eosinophil-derived cytokines. Eosinophils are distinguished from most other leukocytes in that many, if not all, of the over three dozen eosinophil-derived cytokines are pre-synthesized and stored within intracellular granules, poised for very rapid, stimulus-induced secretion. Eosinophils engaged in cytokine secretion in situ utilize distinct pathways of cytokine release that include: classical exocytosis, whereby granules themselves fuse with the plasma membrane and release their entire contents extracellularly; piecemeal degranulation, whereby granule-derived cytokines are selectively mobilized into vesicles that emerge from granules, traverse the cytoplasm and fuse with the plasma membrane to release discrete packets of cytokines; and eosinophil cytolysis, whereby intact granules are extruded from eosinophils, and deposited within tissues. In this latter scenario, extracellular granules can themselves function as stimulus-responsive secretory-competent organelles within the tissue. Here we review the distinctive processes of differential secretion of eosinophil granule-derived cytokines.

  12. Oral administration of curcumin and salsalate attenuates high fat diet-induced up-regulation of pro-inflammatory colonic cytokines via suppression of Akt/NFkappaB in azoxymethane-treated mice

    Science.gov (United States)

    Background: Obesity, a robust risk factor for colorectal cancer (CRC), is known to elevate the concentrations of proinflammatory cytokines in the murine colon. Also, signaling through the Akt pathway, which is known to be activated by proinflammatory cytokines, is thought to play a role in colorecta...

  13. Pro-inflammatory cytokines in animal and human gestation.

    Science.gov (United States)

    Paulesu, Luana; Bhattacharjee, Jayonta; Bechi, Nicoletta; Romagnoli, Roberta; Jantra, Silke; Ietta, Francesca

    2010-01-01

    The story of cytokines in pregnancy began about 30 years ago, approximately in concomitance with the understanding that cytokines are autocrine-paracrine regulators of physiological processes. Pro-inflammatory cytokines are predominant in the early and late events of gestation, e.g. pregnancy establishment and parturition, both of which have been described as inflammatory-like events. Pro-inflammatory cytokines are also produced in response to microbes constantly in contact with the female reproductive tract. While a pro-inflammatory response is beneficial to successful pregnancy, an exaggerated response, as may occur for an unresolved infection, could result in an unfavorable pregnancy outcome in animals and humans. Therapeutic strategies are required to avoid the risks to the health of fetus and mother. In this review, we discuss the involvement of pro-inflammatory cytokines in pregnancy at implantation and parturition, including the pathologies which might be related to an alteration of the cytokine levels. We also deal with the use of anti-cytokines and/or anti-inflammatory mediators to antagonize the action of pro-inflammatory cytokines. Finally we discuss the potential of animal models to evaluate the association of cytokines in the establishment and maintenance of pregnancy.

  14. Detection of autoantibodies to cytokines

    DEFF Research Database (Denmark)

    Bendtzen, K; Hansen, M B; Ross, C

    2000-01-01

    Autoantibodies to various cytokines have been reported in normal individuals and in patients with various infectious and immunoinflammatory disorders, and similar antibodies (Ab) may be induced in patients receiving human recombinant cytokines. The clinical relevance of these Ab is often difficult...... to evaluate. Not only are in vitro neutralizing cytokine Ab not necessarily neutralizing in vivo, but assays for binding and neutralizing Ab to cytokines are often difficult to interpret. For example, denaturation of immobilized cytokines in immunoblotting techniques and immunometric assays may leave Ab...

  15. Regulation of human cytokines by Cordyceps militaris

    OpenAIRE

    Sun, Yong; Shao, Yani; Zhang, Zhiguo; Wang, Lianfen; Mariga, Alfred M.; Pang, Guangchang; Geng, Chaoyu; Ho, Chi-Tang; Hu, Qiuhui; Zhao, Liyan

    2014-01-01

    Cordyceps (Cordyceps militaris) exhibits many biological activities including antioxidant, inhibition of inflammation, cancer prevention, hypoglycemic, and antiaging properties, etc. However, a majority of studies involving C. militaris have focused only on in vitro and animal models, and there is a lack of direct translation and application of study results to clinical practice (e.g., health benefits). In this study, we investigated the regulatory effects of C. militaris micron powder (3 dos...

  16. The γc family of cytokines: fine-tuning signals from IL-2 and IL-21 in the regulation of the immune response [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Rosanne Spolski

    2017-10-01

    Full Text Available Interleukin (IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 form a family of cytokines based on the sharing of a receptor component, the common cytokine receptor γ chain, γc, which is encoded by the gene mutated in humans with X-linked severe combined immunodeficiency (XSCID. Together, these cytokines play critical roles in lymphoid development, differentiation, growth, and survival as well as mediating effector function. Here, we provide an overview of the main actions of members of this cytokine family but then primarily focus on IL-2 and IL-21, discussing their dynamic interplay and contributions to a fine-tuned immune response. Moreover, we discuss the therapeutic utility of modulating their actions, particularly for autoimmunity and cancer.

  17. Hypoxia-increased RAGE expression regulates chemotaxis and pro-inflammatory cytokines release through nuclear translocation of NF-κ B and HIF1α in THP-1 cells.

    Science.gov (United States)

    Bai, Wei; Zhou, Jing; Zhou, Na; Liu, Qin; Cui, Jian; Zou, Wei; Zhang, Wei

    2018-01-15

    The potential role of hypoxia in mediating the receptor for advanced glycation end products (RAGE) expression deserves to be confirmed. And the role of RAGE in hypoxia-induced chemotaxis and inflammation is still unclear. In present study, THP-1 cells were pretreated with siRNA to block HIF1α, NF-κ B, or RAGE, followed by exposed to hypoxia (combined with H 2 O 2 or SNP), and then RAGE expression, nuclear translocation of HIF1α and NF-κ B, release of TNF-α and IL-1β, as well as expression of MCP-1 and CCR2 were measured. The results revealed that RAGE mRNA and protein in THP-1 cells were significantly increased after exposed into hypoxia atmosphere, especially into the solution containing SNP or H 2 O 2 . Moreover, SNP or H 2 O 2 exposure could further amplify hypoxia-induced nuclear translocation of HIF-1α and NF-κ B. Knockdown HIF-1α or NF-κ B by siRNAs could reduce hypoxia- and oxidative stress-induced RAGE hyper-expression. And pretreatment THP-1 cells with RAGE siRNA or NF-κ B siRNA could reduce hypoxia- and oxidative stress-induced expression of MCP-1 and CCR2, and release of TNF-α and IL-1β. Thus, hypoxia not only increases RAGE expression in THP-1 cells by promoting nuclear translocation of NF-κ B and HIF1α, but also regulates chemotaxis and pro-inflammatory cytokines release, which may be partially mediated through upregulation of RAGE expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cytokines in Bipolar Disorder: Paving the Way for Neuroprogression

    Directory of Open Access Journals (Sweden)

    Izabela Guimarães Barbosa

    2014-01-01

    Full Text Available Bipolar disorder (BD is a severe, chronic, and recurrent psychiatric illness. It has been associated with high prevalence of medical comorbidities and cognitive impairment. Its neurobiology is not completely understood, but recent evidence has shown a wide range of immune changes. Cytokines are proteins involved in the regulation and the orchestration of the immune response. We performed a review on the involvement of cytokines in BD. We also discuss the cytokines involvement in the neuroprogression of BD. It has been demonstrated that increased expression of cytokines in the central nervous system in postmortem studies is in line with the elevated circulating levels of proinflammatory cytokines in BD patients. The proinflammatory profile and the immune imbalance in BD might be regarded as potential targets to the development of new therapeutic strategies.

  19. Role of IL-38 and Its Related Cytokines in Inflammation

    Directory of Open Access Journals (Sweden)

    Xianli Yuan

    2015-01-01

    Full Text Available Interleukin- (IL- 38 is a recently discovered cytokine and is the tenth member of the IL-1 cytokine family. IL-38 shares structural features with IL-1 receptor antagonist (IL-1Ra and IL-36Ra. IL-36R is the specific receptor of IL-38, a partial receptor antagonist of IL-36. IL-38 inhibits the production of T-cell cytokines IL-17 and IL-22. IL-38 also inhibits the production of IL-8 induced by IL-36γ, thus inhibiting inflammatory responses. IL-38-related cytokines, including IL-1Ra and IL-36Ra, are involved in the regulation of inflammation and immune responses. The study of IL-38 and IL-38-related cytokines might provide new insights for developing anti-inflammatory treatments in the near future.

  20. Cytokines as biomarkers of nanoparticle immunotoxicity.

    Science.gov (United States)

    Elsabahy, Mahmoud; Wooley, Karen L

    2013-06-21

    Nanoscale objects, whether of biologic origin or synthetically created, are being developed into devices for a variety of bionanotechnology diagnostic and pharmaceutical applications. However, the potential immunotoxicity of these nanomaterials and mechanisms by which they may induce adverse reactions have not received sufficient attention. Nanomaterials, depending on their characteristics and compositions, can interact with the immune system in several ways and either enhance or suppress immune system function. Cytokines perform pleiotropic functions to mediate and regulate the immune response and are generally recognized as biomarkers of immunotoxicity. While the specificity and validity of certain cytokines as markers of adverse immune response has been established for chemicals, small and macromolecular drugs, research on their applicability for predicting and monitoring the immunotoxicity of engineered nanomaterials is still ongoing. The goal of this review is to provide guidelines as to important cytokines that can be utilized for evaluating the immunotoxicity of nanomaterials and to highlight the role of those cytokines in mediating adverse reactions, which is of particular importance for the clinical development of nanopharmaceuticals and other nanotechnology-based products. Importantly, the rational design of nanomaterials of low immunotoxicity will be discussed, focusing on synthetic nanodevices, with emphasis on both the nanoparticle-forming materials and the embedded cargoes.

  1. Cytokines and immune surveillance in humans

    Science.gov (United States)

    Sonnenfeld, Gerald

    1994-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to explore further the effects of space flight on cyotokines and cytokine-directed immunological function. Among the tests carried out are interferon-alpha production, interferon-gamma production, interleukin-1 and -2 production, signal transduction in neutrophils, signal transduction in monocytes, and monocyte phagocytic activity. The experiments will be performed using peripheral blood obtained from human subjects. It is our intent to eventually carry out these experiments using astronauts as subjects to determine the effects of space flight on cytokine production and activity. However, these subjects are not currently available. Until they become available, we will carry out these experiments using subjects maintained in the bed-rest model for microgravity.

  2. Cytokines as biomarkers of nanoparticle immunotoxicity

    Science.gov (United States)

    Elsabahy, Mahmoud; Wooley, Karen L.

    2013-01-01

    Nanoscale objects, whether of biologic origin or synthetically created, are being developed into devices for a variety of bionanotechnology diagnostic and pharmaceutical applications. However, the potential immunotoxicity of these nanomaterials and mechanisms by which they may induce adverse reactions have not received sufficient attention. Nanomaterials, depending on their characteristics and compositions, can interact with the immune system in several ways and either enhance or suppress immune system function. Cytokines perform pleiotropic functions to mediate and regulate the immune response and are generally recognized as biomarkers of immunotoxicity. While the specificity and validity of certain cytokines as markers of adverse immune response has been established for chemicals, small and macromolecular drugs, research on their applicability for predicting and monitoring the immunotoxicity of engineered nanomaterials is still ongoing. The goal of this review is to provide guidelines as to important cytokines that can be utilized for evaluating the immunotoxicity of nanomaterials and to highlight the role of those cytokines in mediating adverse reactions, which is of particular importance for the clinical development of nanopharmaceuticals and other nanotechnology-based products. Importantly, the rational design of nanomaterials of low immunotoxicity will be discussed, focusing on synthetic nanodevices, with emphasis on both the nanoparticle-forming materials and the embedded cargoes. PMID:23549679

  3. Cytokine gene expression in murine epidermal cell suspensions: interleukin 1 beta and macrophage inflammatory protein 1 alpha are selectively expressed in Langerhans cells but are differentially regulated in culture.

    Science.gov (United States)

    Heufler, C; Topar, G; Koch, F; Trockenbacher, B; Kämpgen, E; Romani, N; Schuler, G

    1992-10-01

    Epidermal Langerhans cells (LC) are considered direct yet immature precursors of dendritic cells (DC) in the draining lymph nodes. Although the development of LC into potent immunostimulatory DC occurs in vitro and has been studied in detail, little is known about their profile of cytokine gene expression. By using reverse transcriptase polymerase chain reaction analysis to screen 16 cytokines followed by Northern blotting for selected analysis, we determined the cytokine gene expression profile of murine LC at different time points in culture when T cell stimulatory activity is increasing profoundly. LC regularly expressed macrophage inflammatory proteins, MIP-1 alpha and MIP-2, and interleukin 1 beta (IL-1 beta). Both MIPs were downregulated upon culture and maturation into DC, whereas IL-1 beta was strongly upregulated in culture. MIP-1 alpha and IL-1 beta mRNA were found only in LC, but not in other epidermal cells. Apart from trace amounts of IL-6 in cultured LC, several macrophage and T cell products were not detected. The cytokine expression profile of LC thus appears distinct from typical macrophages. The exact role of the cytokine genes we found transcribed in LC remains to be determined.

  4. CYTOKINE - The Official Journal of the International Cytokine Society. Volume 11, Number 11

    Science.gov (United States)

    1999-12-09

    AND CHEMOKINE RECEPTORS Disease Targets for Therapeutic Development November 15-16,1999 • The Ritz - Carlton , Tysons Corner • McLean, Virginia As...but rather on the mechanisms involved in the regulation of chemokine biology. Many presentations extended the concept that the signals present at the...Legend. The cover is an original painting commissioned from the artist Tina York. It depicts the artist’s conceptions of cytokines emanating from a

  5. Dysregulation of suppressor of cytokine signaling 3 in keratinocytes causes skin inflammation mediated by interleukin-20 receptor-related cytokines.

    Directory of Open Access Journals (Sweden)

    Ayako Uto-Konomi

    Full Text Available Homeostatic regulation of epidermal keratinocytes is controlled by the local cytokine milieu. However, a role for suppressor of cytokine signaling (SOCS, a negative feedback regulator of cytokine networks, in skin homeostasis remains unclear. Keratinocyte specific deletion of Socs3 (Socs3 cKO caused severe skin inflammation with hyper-production of IgE, epidermal hyperplasia, and S100A8/9 expression, although Socs1 deletion caused no inflammation. The inflamed skin showed constitutive STAT3 activation and up-regulation of IL-6 and IL-20 receptor (IL-20R related cytokines, IL-19, IL-20 and IL-24. Disease development was rescued by deletion of the Il6 gene, but not by the deletion of Il23, Il4r, or Rag1 genes. The expression of IL-6 in Socs3 cKO keratinocytes increased expression of IL-20R-related cytokines that further facilitated STAT3 hyperactivation, epidermal hyperplasia and neutrophilia. These results demonstrate that skin homeostasis is strictly regulated by the IL-6-STAT3-SOCS3 axis. Moreover, the SOCS3-mediated negative feedback loop in keratinocytes has a critical mechanistic role in the prevention of skin inflammation caused by hyperactivation of STAT3.

  6. Leucocytes, cytokines and satellite cells

    DEFF Research Database (Denmark)

    Paulsen, Gøran; Mikkelsen, Ulla Ramer; Raastad, Truls

    2012-01-01

    -damaging exercise', primarily eccentric exercise. We review the evidence for the notion that the degree of muscle damage is related to the magnitude of the cytokine response. In the third and final section, we look at the satellite cell response to a single bout of eccentric exercise, as well as the role...... variation in individual responses to a given exercise should, however be expected. The link between cytokine and satellite cell responses and exercise-induced muscle damage is not so clear The systemic cytokine response may be linked more closely to the metabolic demands of exercise rather than muscle...... damage. With the exception of IL-6, the sources of systemic cytokines following exercise remain unclear The satellite cell response to severe muscle damage is related to regeneration, whereas the biological significance of satellite cell proliferation after mild damage or non-damaging exercise remains...

  7. Gene polymorphisms in heart transplantation : association studies of cytokine and stress protein gene polymorphisms in heart failure and transplant related complications

    NARCIS (Netherlands)

    C.T.J. Holweg (Cécile)

    2003-01-01

    textabstractInflammation is a characteristic feature of heart failure and of complications after heart transplantation. These inflammatory responses are regulated by cytokines and stress proteins. The production and function of cytokines and stress proteins can be controlled by genetic

  8. Cytokines in Sjogren's syndrome: potential therapeutic targets

    NARCIS (Netherlands)

    Roescher, N.; Tak, P.P.; Illei, G.G.

    2010-01-01

    The dysregulated cytokine network in Sjogren's Syndrome (SS) is reflected by local and systemic overexpression of pro-inflammatory cytokines and absent or low levels of anti-inflammatory cytokines. To date, the use of cytokine based therapies in SS has been disappointing. Oral administration of low

  9. Human astrocytes: secretome profiles of cytokines and chemokines.

    Directory of Open Access Journals (Sweden)

    Sung S Choi

    Full Text Available Astrocytes play a key role in maintenance of neuronal functions in the central nervous system by producing various cytokines, chemokines, and growth factors, which act as a molecular coordinator of neuron-glia communication. At the site of neuroinflammation, astrocyte-derived cytokines and chemokines play both neuroprotective and neurotoxic roles in brain lesions of human neurological diseases. At present, the comprehensive profile of human astrocyte-derived cytokines and chemokines during inflammation remains to be fully characterized. We investigated the cytokine secretome profile of highly purified human astrocytes by using a protein microarray. Non-stimulated human astrocytes in culture expressed eight cytokines, including G-CSF, GM-CSF, GROα (CXCL1, IL-6, IL-8 (CXCL8, MCP-1 (CCL2, MIF and Serpin E1. Following stimulation with IL-1β and TNF-α, activated astrocytes newly produced IL-1β, IL-1ra, TNF-α, IP-10 (CXCL10, MIP-1α (CCL3 and RANTES (CCL5, in addition to the induction of sICAM-1 and complement component 5. Database search indicated that most of cytokines and chemokines produced by non-stimulated and activated astrocytes are direct targets of the transcription factor NF-kB. These results indicated that cultured human astrocytes express a distinct set of NF-kB-target cytokines and chemokines in resting and activated conditions, suggesting that the NF-kB signaling pathway differentially regulates gene expression of cytokines and chemokines in human astrocytes under physiological and inflammatory conditions.

  10. Distinct PKC-mediated posttranscriptional events set cytokine production kinetics in CD8(+) T cells

    NARCIS (Netherlands)

    Salerno, Fiamma; Paolini, Nahuel A.; Stark, Regina; von Lindern, Marieke; Wolkers, Monika C.

    2017-01-01

    Effective T cell responses against invading pathogens require the concerted production of three key cytokines: TNF-alpha, IFN-gamma, and IL-2. The cytokines functionally synergize, but their production kinetics widely differ. How the differential timing of expression is regulated remains, however,

  11. The relationship between IL-2 cytokine secretion and CD4 T ...

    African Journals Online (AJOL)

    Concentration of IL-2 cytokine was determined using ELISA technique, while CD4 T-lymphocyte count was done with C6 Acurri flow cytometer system. Levels ... Although there was elevation of IL-2 cytokine secretion during highly active antiretroviral therapy (HAART), with down regulation of viral burden, no corresponding ...

  12. Modulation of chicken macrophage effector function by Th1/Th2 cytokines

    Science.gov (United States)

    Regulation of macrophage activity by TH1/2 cytokines is important to maintain the balance of immunity to provide adequate protective immunity while avoiding excessive inflammation. IFN-gamma and IL-4 are the hallmark TH1 and TH2 cytokines, respectively. In avian species, information concerning reg...

  13. Use of cytokines in infection.

    Science.gov (United States)

    Aoki, Naoko; Xing, Zhou

    2004-11-01

    Infectious disease remains an ever-growing health concern worldwide due to increasing antibiotic-resistant microbial strains, immune-compromised populations, international traffic and globalisation, and bioterrorism. There exists an urgent need to develop novel prophylactic and therapeutic strategies. In addition to classic antibiotic therapeutics, immune-modulatory molecules such as cytokines or their inhibitors represent a promising form of antimicrobial therapeutics or immune adjuvant used for the purpose of vaccination. These molecules, in the form of either recombinant protein or transgene, exert their antimicrobial effect by enhancing infectious agent-specific immune activation or memory development, or by dampening undesired inflammatory and immune responses resulting from infection and host defence mechanisms. In the last two decades, a number of cytokine therapy-based experimental and clinical trials have been conducted, and some of these efforts have led to the routine clinical use of cytokines. For instance, although IFNs have been used to treat hepatitis C with great success, many other cytokines are yet to be fully evaluated for their antimicrobial potential. This review discusses the biology and therapeutic potential of selected immune modulatory cytokines and their inhibitors, including granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, IFN-gamma, IL-12 and TNF.

  14. Cytokine network in psoriasis revisited.

    Science.gov (United States)

    Michalak-Stoma, Anna; Pietrzak, Aldona; Szepietowski, Jacek C; Zalewska-Janowska, Anna; Paszkowski, Tomasz; Chodorowska, Grażyna

    2011-12-01

    Psoriasis is a chronic genetically determined, erythemato-squamous disease associated with many comorbidities. Evidence from clinical studies and experimental models support the concept that psoriasis is a T cell-mediated inflammatory skin disease and T helper (Th) cells - Th1, Th17 and Th22 - play an important role in the pathogenesis. Th1 cytokines IFNγ, IL-2, as well as Th17 cytokines IL-17A, IL-17F, IL-22, IL-26, and TNFα (Th1 and Th17 cytokine) are increased in serum and lesional skin. IL-22 produced by Th17 and new subset of T helper cells, Th22, is also increased within psoriatic lesions and in the serum. Other recently recognized cytokines of significant importance in psoriasis are IL-23, IL-20 and IL-15. The IL-23/Th17 pathway plays a dominant role in psoriasis pathogenesis. Currently due to enormous methodological progress, more and more clinical and histopathological psoriatic features could be explained by particular cytokine imbalance, which still is one of the most fascinating dermatological research fields stimulating new and new generations of researchers.

  15. Malaria: toxins, cytokines and disease

    DEFF Research Database (Denmark)

    Jakobsen, P H; Bate, C A; Taverne, J

    1995-01-01

    In this review the old concept of severe malaria as a toxic disease is re-examined in the light of recent discoveries in the field of cytokines. Animal studies suggest that the induction of TNF by parasite-derived molecules may be partly responsible for cerebral malaria and anemia, while hypoglyc......In this review the old concept of severe malaria as a toxic disease is re-examined in the light of recent discoveries in the field of cytokines. Animal studies suggest that the induction of TNF by parasite-derived molecules may be partly responsible for cerebral malaria and anemia, while...

  16. Anti-viral CD8 T cells and the cytokines that they love

    Science.gov (United States)

    Cox, Maureen A.; Kahan, Shannon M.; Zajac, Allan J.

    2013-01-01

    Viral infections cause an immunological disequilibrium that provokes CD8 T cell responses. These cells play critical roles in purging acute infections, limiting persistent infections, and conferring life-long protective immunity. At every stage of the response anti-viral CD8 T cells are sensitive to signals from cytokines. Initially cytokines operate as immunological warning signs that inform of the presence of an infection, and also influence the developmental choices of the responding cells. Later during the course of the response other sets of cytokines support the survival and maintenance of the differentiated anti-viral CD8 T cells. Although many cytokines promote virus-specific CD8 T cells, other cytokines can suppress their activities and thus favor viral persistence. In this review we discuss how select cytokines act to regulate anti-viral CD8 T cells throughout the response and influence the outcome of viral infections. PMID:23217625

  17. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanzhen; Mei, Chenfang [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China); Liu, Hao [Affiliated Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou 510095 (China); Wang, Hongsheng [Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Zeng, Guoqu; Lin, Jianhui [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China); Xu, Meiying, E-mail: xumy@gdim.cn [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China)

    2014-09-05

    Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health.

  18. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A

    International Nuclear Information System (INIS)

    Liu, Yanzhen; Mei, Chenfang; Liu, Hao; Wang, Hongsheng; Zeng, Guoqu; Lin, Jianhui; Xu, Meiying

    2014-01-01

    Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health

  19. Transglutaminase II interacts with rac1, regulates production of reactive oxygen species, expression of snail, secretion of Th2 cytokines and mediates in vitro and in vivo allergic inflammation.

    Science.gov (United States)

    Kim, Youngmi; Eom, Sangkyung; Kim, Kyungjong; Lee, Yun-Sil; Choe, Jongseon; Hahn, Jang Hee; Lee, Hansoo; Kim, Young-Myeong; Ha, Kwon Soo; Ro, Jai Youl; Jeoung, Dooil

    2010-02-01

    Transglutaminase II (TGase II) is a protein cross-linking enzyme with diverse biological functions. Here we report the role of TGase II in allergic inflammation. Antigen stimulation induced expression and activity of TGase II by activation of NF-kappaB in rat basophilic leukemia (RBL2H3) cells. This induction of TGase II was dependent on FcepsilonRI and EGFR. Interaction between TGase II and rac1 was induced following antigen stimulation. TGase II was responsible for the increased production of reactive oxygen species, expression of prostaglandin E2 synthase (PGE2 synthase) and was responsible for increased secretion of prostaglandin E2. ChIP assay showed that TGase II, through interaction with NF-kappaB, was responsible for the induction of histone deacetylase-3 (HDAC3) and snail by direct binding to promoter sequences. HDAC3 and snail induced by TGase II, exerted transcriptional repression on E-cadherin. Snail exerted negative effect on expression of MMP-2, and secretion of Th2 cytokines. Inhibition of matrix metalloproteinase-2 (MMP-2) inhibited secretion of Th2 cytokines. In vivo induction of TGase II was observed in Balb/c mouse model of IgE antibody-induced passive cutaneous anaphylaxis. Chemical inhibition of TGase II exerted negative effect on IgE-dependent passive cutaneous anaphylaxis. Chemical inhibition of TGase II by cystamine exerted negative effect on Balb/c mouse model of phorbol myristate acetate (PMA)-induced atopic dermatitis. These results suggest novel role of TGase II in allergic inflammation and TGase II can be developed as target for the development of allergy therapeutics. (c) 2009 Elsevier Ltd. All rights reserved.

  20. The neuroimmune-endocrine axis: pathophysiological implications for the central nervous system cytokines and hypothalamus-pituitary-adrenal hormone dynamics

    Directory of Open Access Journals (Sweden)

    J. Licinio

    2000-10-01

    Full Text Available Cytokines are molecules that were initially discovered in the immune system as mediators of communication between various types of immune cells. However, it soon became evident that cytokines exert profound effects on key functions of the central nervous system, such as food intake, fever, neuroendocrine regulation, long-term potentiation, and behavior. In the 80's and 90's our group and others discovered that the genes encoding various cytokines and their receptors are expressed in vascular, glial, and neuronal structures of the adult brain. Most cytokines act through cell surface receptors that have one transmembrane domain and which transduce a signal through the JAK/STAT pathway. Of particular physiological and pathophysiological relevance is the fact that cytokines are potent regulators of hypothalamic neuropeptidergic systems that maintain neuroendocrine homeostasis and which regulate the body's response to stress. The mechanisms by which cytokine signaling affects the function of stress-related neuroendocrine systems are reviewed in this article.

  1. Leucocytes, cytokines and satellite cells

    DEFF Research Database (Denmark)

    Paulsen, Gøran; Mikkelsen, Ulla Ramer; Raastad, Truls

    2012-01-01

    damage. With the exception of IL-6, the sources of systemic cytokines following exercise remain unclear The satellite cell response to severe muscle damage is related to regeneration, whereas the biological significance of satellite cell proliferation after mild damage or non-damaging exercise remains...

  2. Cytokine networks in the establishment and maintenance of pregnancy.

    Science.gov (United States)

    Orsi, Nicolas Michel

    2008-12-01

    Pregnancy is an immunological compromise geared towards inducing maternal immunopermissiveness that promotes tolerance of the foetal allograft. This process is mediated by an extensive array of cytokines, which operate in a highly coordinated and complex network system at both local (compartmentalized) and systemic levels. These glycoproteins also play an active role in gametogenesis and act as embryotrophins in the maternal tract. In addition to being involved in the seminal plasma-induced priming of the uterus for the establishment of pregnancy, they mediate the embryo-maternal paracrine dialogue and thus orchestrate various facets of embryo implantation and trophoblast invasion. Cytokines are recognized regulators of embryogenesis and foetal development, and participate in the inflammatory triggering of the onset of labour in late pregnancy. Given their central role in gestation, deregulations in cytokine networks are correspondingly associated with a host of human pregnancy complications, including miscarriage, pre-eclampsia and preterm labour.

  3. Proinflammatory cytokine levels in patients with conversion disorder.

    Science.gov (United States)

    Tiyekli, Utkan; Calıyurt, Okan; Tiyekli, Nimet Dilek

    2013-06-01

    It was aimed to evaluate the relationship between proinflammatory cytokine levels and conversion disorder both commonly known as stress regulated. Baseline proinflammatory cytokine levels-[Tumour necrosis factor alpha (TNF-α), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6)]-were evaluated with enzyme-linked immunosorbent assay in 35 conversion disorder patients and 30 healthy controls. Possible changes in proinflammatory cytokine levels were evaluated again, after their acute phase in conversion disorder patients. Statistically significant decreased serum TNF-α levels were obtained in acute phase of conversion disorder. Those levels increased after acute conversion phase. There were no statistically significant difference observed between groups in serum IL-1β and (IL-6) levels. Stress associated with conversion disorder may suppress immune function in acute conversion phase and may have diagnostic and therapeutic value.

  4. Cytokine-producing T cell subsets in human leishmaniasis

    DEFF Research Database (Denmark)

    Kemp, Kåre

    2000-01-01

    Leishmania specific Th1/Th2 cells have been identified in humans as well as in mice. There is a correlation between the clinical outcome of the infection and the cytokine response profile. Generally, the production of Th2 cytokines leads to severe infection, whereas the production of Th1 cytokines...... leads to subclinical or mild infections. In mice, an infection leads to a polarisation of either Th1 or Th2 Leishmania antigen specific cells. In contrast, both Th1 and Th2 Leishmania antigen specific cells can be identified in humans cured from L. donovani infections. Theoretically, Th1 cells and Th2...... cells mutually down-regulate each other. However, the presence of antigen specific regulatory T cell subsets may provide an environment that allows the presence of both Th1 and Th2 cells....

  5. Suppressors of cytokine signaling 1 and 3 are up-regulated in brain resident cells in response to virus induced inflammation of the CNS via at least two distinctive pathways

    DEFF Research Database (Denmark)

    Steffensen, Maria Abildgaard; Fenger, Christina; Christensen, Jeanette Erbo

    2014-01-01

    underlie a virus induced up-regulation of SOCS in the CNS. We found that i.c. infection with either lymphocytic choriomeningitis virus (LCMV) or yellow fever virus (YF) results in gradual up-regulation of SOCS1/3 mRNA expression peaking at day 7 post infection (p.i.). In the LCMV model, SOCS m...

  6. Ethyl acetate extract from Asparagus cochinchinensis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophage cells by regulating COX-2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity

    Science.gov (United States)

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-01-01

    differential regulation of inflammatory cytokines and cell cycle in RAW264.7 cells. In addition, these results provide strong evidence to suggest that EaEAC may be considered as an important candidate for the treatment of particular inflammatory diseases. PMID:28260011

  7. Ethyl acetate extract from Asparagus cochinchinensis exerts anti‑inflammatory effects in LPS‑stimulated RAW264.7 macrophage cells by regulating COX‑2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity.

    Science.gov (United States)

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-04-01

    and ROS production, as well as differential regulation of inflammatory cytokines and cell cycle in RAW264.7 cells. In addition, these results provide strong evidence to suggest that EaEAC may be considered as an important candidate for the treatment of particular inflammatory diseases.

  8. Cytokines and Pancreatic β-Cell Apoptosis

    DEFF Research Database (Denmark)

    Berchtold, L A; Prause, M; Størling, J

    2016-01-01

    in the low to the high picomolar-femtomolar range and vary exposure time for up to 14-16h to reproduce the acute regulatory effects of systemic inflammation on β-cell secretory responses, with a shift to inhibition at high picomolar concentrations or more than 16h of exposure to illustrate adverse effects...... of anticytokine therapies has yet to be shown by testing the incremental effects of appropriate dosing, timing, and combinations of treatments. Due to the considerable translational importance of enhancing the precision, specificity, and safety of antiinflammatory treatments of diabetes, we review here......The discovery 30 years ago that inflammatory cytokines cause a concentration, activity, and time-dependent bimodal response in pancreatic β-cell function and viability has been a game-changer in the fields of research directed at understanding inflammatory regulation of β-cell function and survival...

  9. Cytokines and Angiogenesis in the Corpus Luteum

    Directory of Open Access Journals (Sweden)

    António M. Galvão

    2013-01-01

    Full Text Available In adults, physiological angiogenesis is a rare event, with few exceptions as the vasculogenesis needed for tissue growth and function in female reproductive organs. Particularly in the corpus luteum (CL, regulation of angiogenic process seems to be tightly controlled by opposite actions resultant from the balance between pro- and antiangiogenic factors. It is the extremely rapid sequence of events that determines the dramatic changes on vascular and nonvascular structures, qualifying the CL as a great model for angiogenesis studies. Using the mare CL as a model, reports on locally produced cytokines, such as tumor necrosis factor α (TNF, interferon gamma (IFNG, or Fas ligand (FASL, pointed out their role on angiogenic activity modulation throughout the luteal phase. Thus, the main purpose of this review is to highlight the interaction between immune, endothelial, and luteal steroidogenic cells, regarding vascular dynamics/changes during establishment and regression of the equine CL.

  10. Cytokine Correlations in Youth with Tic Disorders

    OpenAIRE

    Parker-Athill, E. Carla; Ehrhart, Jared; Tan, Jun; Murphy, Tanya K.

    2015-01-01

    Background: Studies have noted immunological disruptions in patients with tic disorders, including increased serum cytokine levels. This study aimed to determine whether or not cytokine levels could be correlated with tic symptom severity in patients with a diagnosed tic disorder.

  11. Cytokine determinants of viral tropism

    Science.gov (United States)

    McFadden, Grant; Mohamed, Mohamed R.; Rahman, Masmudur M.; Bartee, Eric

    2015-01-01

    The specificity of a given virus for a ceil type, tissue or species — collectively known as viral tropism — is an important factor in determining the outcome of viral infection in any particular host. Owing to the increased prevalence of zoonotic infections and the threat of emerging and re-emerging pathogens, gaining a better understanding of the factors that determine viral tropism has become particularly important. In this Review, we summarize our current understanding of the central role of antiviral and pro-inflammatory cytokines, particularly the interferons and tumour necrosis factor, in dictating viral tropism and how these cytokine pathways can be exploited therapeutically for cancer treatment and to better counter future threats from emerging zoonotic pathogens. PMID:19696766

  12. Systemic Inflammation in C57BL/6J Mice Receiving Dietary Aluminum Sulfate; Up-Regulation of the Pro-Inflammatory Cytokines IL-6 and TNFα, C-Reactive Protein (CRP) and miRNA-146a in Blood Serum.

    Science.gov (United States)

    Pogue, A I; Jaber, V; Zhao, Y; Lukiw, W J

    2017-01-01

    A number of experimental investigations utilizing different murine species have previously reported: (i) that standard mouse-diets supplemented with physiologically realistic amounts of neurotoxic metal salts substantially induce pro-inflammatory signaling in a number of murine tissues; (ii) that these diet-stimulated changes may contribute to a systemic inflammation (SI), a potential precursor to neurodegenerative events in both the central and the peripheral nervous system (CNS, PNS); and (iii) that these events may ultimately contribute to a chronic and progressive inflammatory neurodegeneration, such as that which is observed in Alzheimer's disease (AD) brain. In these experiments we assayed for markers of SI in the blood serum of C57BL/6J mice after 0, 1, 3 and 5 months of exposure to a standard mouse diet that included aluminum-sulfate in the food and drinking water, compared to age-matched controls receiving magnesium-sulfate or no additions. The data indicate that the SI markers that include the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), the acute phase reactive protein C-reactive protein (CRP) production and a triad of pro-inflammatory microRNAs (miRNA-9, miRNA-125b and miRNA-146a) all increase in the serum after aluminum-sulfate exposure. For the first time these results suggest that ad libitum exposure to aluminum-sulfate at physiologically realistic concentrations, as would be found in the human diet over the long term, may predispose to SI and the potential development of chronic, progressive, inflammatory neurodegeneration with downstream pathogenic consequences.

  13. The inhibitory effect of Duchesnea chrysantha extract on the development of atopic dermatitis-like lesions by regulating IgE and cytokine production in Nc/Nga mice.

    Science.gov (United States)

    Lee, Ji-Sook; Kim, In Sik; Ryu, Ji-Sun; Kim, Joo-Hwan; Kim, Jin Sook; Kim, Dong-Hee; Yun, Chi-Young

    2012-02-01

    Duchesnea chrysantha belongs to the Rosaceae family and has been used traditionally for the treatment of various diseases in Korea and other parts of East Asia. This study examined the antiinflammatory effect of Duchesnea chrysantha extract (DcE) on atopic dermatitis in vitro and in vivo. DcE inhibited the production of IL-6, IL-8 and MCP-1 in THP-1 cells and the release of IL-6 and MCP-1 in EoL-1 cells after treatment with house dust mite extract. In the in vivo experiment, Nc/Nga mice were sensitized to DNCB and then orally and dorsally administered DcE (50 mg/kg in PBS) for 3 weeks. The DcE administration significantly reduced the skin severity score when compared with the control group and inhibited the thickening of the epidermis and infiltration of inflammatory cells into the dermis. In addition, the serum IgE levels decreased markedly in the DcE-treated mice when compared with the control group. The synthesis of IL-5, IL-13, MCP-1 and eotaxin was also decreased in splenocytes of the DcE-treated group, while IFN-γ was increased in the Dc-administered group. These results may indicate that DcE attenuates the development of atopic dermatitis-like lesions by lowering the IgE and inflammatory cytokine levels, and that it is useful in drug development for the treatment of atopic dermatitis. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord.

    Science.gov (United States)

    Kawasaki, Yasuhiko; Zhang, Ling; Cheng, Jen-Kun; Ji, Ru-Rong

    2008-05-14

    Central sensitization, increased sensitivity in spinal cord dorsal horn neurons after injuries, plays an essential role in the induction and maintenance of chronic pain. However, synaptic mechanisms underlying central sensitization are incompletely known. Growing evidence suggests that proinflammatory cytokines (PICs), such as interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNFalpha), are induced in the spinal cord under various injury conditions and contribute to pain hypersensitivity. Using patch-clamp recordings in lamina II neurons of isolated spinal cord slices, we compared the effects of IL-1beta, IL-6, and TNFalpha on excitatory and inhibitory synaptic transmission. Whereas TNFalpha enhanced the frequency of spontaneous EPSCs (sEPSCs), IL-6 reduced the frequency of spontaneous IPSCs (sIPSCs). Notably, IL-1beta both enhanced the frequency and amplitude of sEPSCs and reduced the frequency and amplitude of sIPSCs. Consistently, TNFalpha and IL-1beta enhanced AMPA- or NMDA-induced currents, and IL-1beta and IL-6 suppressed GABA- and glycine-induced currents. Furthermore, all the PICs increased cAMP response element-binding protein (CREB) phosphorylation in superficial dorsal horn neurons and produced heat hyperalgesia after spinal injection. Surprisingly, soluble IL-6 receptor (sIL-6R) produced initial decrease of sEPSCs, followed by increase of sEPSCs and CREB phosphorylation. Spinal injection of sIL-6R also induced heat hyperalgesia that was potentiated by coadministration with IL-6. Together, our data have demonstrated that PICs induce central sensitization and hyperalgesia via distinct and overlapping synaptic mechanisms in superficial dorsal horn neurons either by increasing excitatory synaptic transmission or by decreasing inhibitory synaptic transmission. PICs may further induce long-term synaptic plasticity through CREB-mediated gene transcription. Blockade of PIC signaling could be an effective way to suppress

  15. Cytokine profile in children with newly diagnosed tuberculosis

    Directory of Open Access Journals (Sweden)

    O. M. Raznatovska

    2017-10-01

    Full Text Available Nowadays, the most important task of children's phthisiology is to increase the effectiveness of children with tuberculosis treatment, and in the first priority should be given to the first time diagnosed tuberculosis (FTDTB. Examination of the immune system state by cytokine profile in blood serum studying is paid to sufficient attention, as cytokines are the system which regulates the entire complex of organism protective reactions, and immunological dysregulation is the cause of pathological process increasing. There few data of the cytokine profile state studying in children with FTDTB inUkraine in the available literature and various combinations of cytokines comprehensively with other immunological parameters are studied. According to our studies of the blood serum cytokine profile state in adult patients with tuberculosis, the reliable indices of immune system changes are interleukin (IL-2, IL-6, IL-4 and IL-10. The aim of the work is to study the indicators of blood serum cytokine profile (IL-2, IL-6, IL-4, IL-10 in children with FTDTB. Materials and methods. The study of the cytokine profile indicators has been performed in 28 children with FTDTB, aged from 1 to 16 years old (an average age was 9.2 ± 1.1 years. The indicators of the cytokine profile were studied by researching the levels of IL-2, IL-6, IL-4, IL-10 in blood serum by ELISA technique on the equipment of Sirio S immuno-enzyme reader using “Bender MedSystems GmbH” (Austria kit (pkg/ml. These indicators were evaluated at the beginning of antimycobacterial therapy intensive phase. Results. Despite the fact that according to the data from BCG vaccination, 42.8 % of children suffering from FTDTB had full immunity, the changes of cytokine profile indicators at the beginning of the disease were determined in 96.4 % of cases. The peculiarities of cytokine profile changes in sick children were a significant decrease in the content of anti-inflammatory cytokine IL-4, increase in

  16. The role of cytokine deficiencies and cytokine autoantibodies in clinical dermatology

    DEFF Research Database (Denmark)

    Liszewski, Walter; Gniadecki, Robert

    2016-01-01

    Cytokines are small, secreted proteins that are essential for promoting and maintaining a normal immune response. Upregulation of cytokines frequently occurs in autoimmune and inflammatory diseases. Conversely, several immunodeficiency, autoimmune and autoinflammatory disorders are known to occur...... review the role of cytokine deficiencies and cytokine autoantibodies in immunodeficiency syndromes, as well as in autoimmune disorders. Finally, we will examine autoinflammatory disorders due to cytokine deficiencies....

  17. Up-regulation of HIV coreceptors CXCR4 and CCR5 on CD4(+) T cells during human endotoxemia and after stimulation with (myco)bacterial antigens: the role of cytokines

    NARCIS (Netherlands)

    Juffermans, N. P.; Paxton, W. A.; Dekkers, P. E.; Verbon, A.; de Jonge, E.; Speelman, P.; van Deventer, S. J.; van der Poll, T.

    2000-01-01

    Concurrent infections in patients with human immunodeficiency virus (HIV) infection stimulate HIV replication. Chemokine receptors CXCR4 and CCR5 can act as HIV coreceptors. The authors hypothesized that concurrent infection increases the HIV load through up-regulation of CXCR4 and CCR5. Using

  18. Dissecting Innate Immune Signaling in Viral Evasion of Cytokine Production

    OpenAIRE

    Zhang, Junjie; Zhu, Lining; Feng, Pinghui

    2014-01-01

    In response to a viral infection, the host innate immune response is activated to up-regulate gene expression and production of antiviral cytokines. Conversely, viruses have evolved intricate strategies to evade and exploit host immune signaling for survival and propagation. Viral immune evasion, entailing host defense and viral evasion, provides one of the most fascinating and dynamic interfaces to discern the host-virus interaction. These studies advance our understanding in innate immune r...

  19. Dissecting innate immune signaling in viral evasion of cytokine production.

    Science.gov (United States)

    Zhang, Junjie; Zhu, Lining; Feng, Pinghui

    2014-03-02

    In response to a viral infection, the host innate immune response is activated to up-regulate gene expression and production of antiviral cytokines. Conversely, viruses have evolved intricate strategies to evade and exploit host immune signaling for survival and propagation. Viral immune evasion, entailing host defense and viral evasion, provides one of the most fascinating and dynamic interfaces to discern the host-virus interaction. These studies advance our understanding in innate immune regulation and pave our way to develop novel antiviral therapies. Murine γHV68 is a natural pathogen of murine rodents. γHV68 infection of mice provides a tractable small animal model to examine the antiviral response to human KSHV and EBV of which perturbation of in vivo virus-host interactions is not applicable. Here we describe a protocol to determine the antiviral cytokine production. This protocol can be adapted to other viruses and signaling pathways. Recently, we have discovered that γHV68 hijacks MAVS and IKKβ, key innate immune signaling components downstream of the cytosolic RIG-I and MDA5, to abrogate NFΚB activation and antiviral cytokine production. Specifically, γHV68 infection activates IKKβ and that activated IKKβ phosphorylates RelA to accelerate RelA degradation. As such, γHV68 efficiently uncouples NFΚB activation from its upstream activated IKKβ, negating antiviral cytokine gene expression. This study elucidates an intricate strategy whereby the upstream innate immune activation is intercepted by a viral pathogen to nullify the immediate downstream transcriptional activation and evade antiviral cytokine production.

  20. Plasma cytokines in acute stroke

    DEFF Research Database (Denmark)

    Christensen, Hanne Krarup; Boysen, Gudrun; Christensen, Erik

    2011-01-01

    GOALS: The aim of this study was to test the relations between plasma cytokines and the clinical characteristics, course, and risk factors in acute stroke. PATIENTS AND METHODS: The analysis was based on 179 patients with acute stroke included within 24 hours of stroke onset. On inclusion and 3...... months later plasma levels of interleukin 1 beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha), interleukin-1 receptor antagonist (IL-1RA), interleukin 6 (IL-6), interleukin 10 (IL-10), soluble tumor necrosis factor receptor 1 (sTNF-R1), and soluble tumor necrosis factor receptor 2 (sTNF-R2) were...

  1. Academic stress-induced changes in Th1- and Th2-cytokine response

    Directory of Open Access Journals (Sweden)

    Areej M. Assaf

    2017-12-01

    Full Text Available Psychological stress stimulates physiological responses releasing catecholamines and corticoids, which act via corresponding receptors on immune cells, producing a shift in the cytokine balance. These responses are variable depending on the nature of stressors. The effect of the academic stress on the production of the Th1-cytokines (TNF-α, IFN-γ, IL-1β, IL-2, IL-6 and IL-8 and Th2-cytokines (IL-1ra, IL-4, IL-5 and IL-10 on 35 medical/health sciences students after completing their questionnaires was investigated. Blood samples were taken at three stages; baseline stage at the beginning, midterm and final academic examination stages. Plasma cortisol and cytokines were measured during the three stages. The last two stages were compared with the baseline non-stress period. Results of the stress induced during the final examination stage were the highest with a significant increase in cortisol release, IL-4, IL-5 and IL-1ra release with a shift in Th1:Th2 cytokines balance towards Th2. Whereby, the midterm stage did not show significant reduction in Th1-cytokines except for TNF-α, with an increase in IFN-γ level that was reduced in the third stage. Th2 cytokine, IL-1ra, had positive correlations with Th1 cytokines; IL-2 and IFN-γ in the second stage and IL-6 cytokine in the third stage. Cortisol was positively correlated with IL-8 in the last stage and heart rates had negative correlation with IL-10 in the first and last stages. Findings of this study indicate that exam stress down-regulates Th1 with a selective up-regulation of Th2-cytokines. In conclusion, Cortisol might have a role in suppressing the release of Th1- mediated cellular immune response which could increase the vulnerability among the students to infectious diseases.

  2. Academic stress-induced changes in Th1- and Th2-cytokine response.

    Science.gov (United States)

    Assaf, Areej M; Al-Abbassi, Reem; Al-Binni, Maysaa

    2017-12-01

    Psychological stress stimulates physiological responses releasing catecholamines and corticoids, which act via corresponding receptors on immune cells, producing a shift in the cytokine balance. These responses are variable depending on the nature of stressors. The effect of the academic stress on the production of the Th1-cytokines (TNF-α, IFN-γ, IL-1β, IL-2, IL-6 and IL-8) and Th2-cytokines (IL-1ra, IL-4, IL-5 and IL-10) on 35 medical/health sciences students after completing their questionnaires was investigated. Blood samples were taken at three stages; baseline stage at the beginning, midterm and final academic examination stages. Plasma cortisol and cytokines were measured during the three stages. The last two stages were compared with the baseline non-stress period. Results of the stress induced during the final examination stage were the highest with a significant increase in cortisol release, IL-4, IL-5 and IL-1ra release with a shift in Th1:Th2 cytokines balance towards Th2. Whereby, the midterm stage did not show significant reduction in Th1-cytokines except for TNF-α, with an increase in IFN-γ level that was reduced in the third stage. Th2 cytokine, IL-1ra, had positive correlations with Th1 cytokines; IL-2 and IFN-γ in the second stage and IL-6 cytokine in the third stage. Cortisol was positively correlated with IL-8 in the last stage and heart rates had negative correlation with IL-10 in the first and last stages. Findings of this study indicate that exam stress down-regulates Th1 with a selective up-regulation of Th2-cytokines. In conclusion, Cortisol might have a role in suppressing the release of Th1- mediated cellular immune response which could increase the vulnerability among the students to infectious diseases.

  3. Role of a Th2 cytokine inhibitor in asthma treatment

    Directory of Open Access Journals (Sweden)

    Jun Tamaoki

    2004-01-01

    Full Text Available The airway wall of asthmatic patients is infiltrated with inflammatory cells, consisting chiefly of eosinophils and T lymphocytes. Among these T lymphocytes, Th2 cells are involved in the regulation of the IgE immune response and local allergic inflammation, which underlie allergic diseases. Various cytokines produced and released by Th2 cells play important roles in the development of many allergic diseases, including asthma, and the exacerbations of their disease states. Therefore, targeting of Th2 cell-derived cytokines is a rational therapeutic strategy for the treatment of asthma. Corticosteroids and immunosuppressive agents can potently inhibit Th2 cytokine-mediated responses, but have no selectivity for Th2 cells: they also exert pharmacological activity against cells other than inflammatory cells, thereby potentially causing adverse side-effects. However, suplatast tosilate is the only specific Th2 cytokine inhibitor that can be used clinically and it has been used widely in Japan as a maintenance drug in the treatment of asthma, atopic dermatitis and allergic rhinitis. There is considerable evidence of the effectiveness of suplatast tosilate in patients with mild asthma or moderate persistent asthma. Furthermore, an effect on cough variant asthma and a steroid-sparing effect have also been reported for suplatast tosilate.

  4. EVALUATION OF CYTOKINE GENE POLYMORPHISM IN B CELL LYMPHOID MALIGNANCIES

    Directory of Open Access Journals (Sweden)

    E. L. Nazarova

    2014-01-01

    Full Text Available Previous studies with some solid tumors has shown that polymorphisms of certain cytokine genes may be used as predictors of clinical outcome in the patients. It seemed important to evaluate potential correlations between production of certain pro- and anti-inflammatory cytokines and co-receptor molecules, and promoter polymorphism of the cytokine genes involved into regulation of cell proliferation, differentiation, apoptosis, lipid metabolism and blood clotting in the patients with hematological malignancies. The article contains our results concerning associations between of IL-1β, -2, -4, -10, -17, TNFα, and allelic polymorphisms of their genes in 62 patients with B cell lymphoid malignancies in an ethnically homogenous group (self-identified as Russians. We have shown that the GА and AA genotypes of the G-308A polymorphism in TNFα gene are significantly associated with increased production of this cytokine, being more common in aggressive non-Hodgkin lymphomas, more rare in multiple myeloma and in indolent non-Hodgkin lymphomas.

  5. Cytokines in Male Fertility and Reproductive Pathologies: Immunoregulation and Beyond

    Directory of Open Access Journals (Sweden)

    Kate L. Loveland

    2017-11-01

    Full Text Available Germline development in vivo is dependent on the environment formed by somatic cells and the differentiation cues they provide; hence, the impact of local factors is highly relevant to the production of sperm. Knowledge of how somatic and germline cells interact is central to achieving biomedical goals relating to restoring, preserving or restricting fertility in humans. This review discusses the growing understanding of how cytokines contribute to testicular function and maintenance of male reproductive health, and to the pathologies associated with their abnormal activity in this organ. Here we consider both cytokines that signal through JAKs and are regulated by SOCS, and those utilizing other pathways, such as the MAP kinases and SMADs. The importance of cytokines in the establishment and maintenance of the testis as an immune-privilege site are described. Current research relating to the involvement of immune cells in testis development and disease is highlighted. This includes new data relating to testicular cancer which reinforce the understanding that tumorigenic cells shape their microenvironment through cytokine actions. Clinical implications in pathologies relating to local inflammation and to immunotherapies are discussed.

  6. Cytokine Network Involvement in Subjects Exposed to Benzene

    Science.gov (United States)

    Gangemi, Sebastiano

    2014-01-01

    Benzene represents an ubiquitous pollutant both in the workplace and in the general environment. Health risk and stress posed by benzene have long been a concern because of the carcinogenic effects of the compound which was classified as a Group 1 carcinogen to humans and animals. There is a close correlation between leukemia, especially acute myeloid leukemia, and benzene exposure. In addition, exposure to benzene can cause harmful effects on immunological, neurological, and reproductive systems. Benzene can directly damage hematopoietic progenitor cells, which in turn could lead to apoptosis or may decrease responsiveness to cytokines and cellular adhesion molecules. Alternatively, benzene toxicity to stromal cells or mature blood cells could disrupt the regulation of hematopoiesis, including hematopoietic commitment, maturation, or mobilization, through the network of cytokines, chemokines, and adhesion molecules. Today there is mounting evidence that benzene may alter the gene expression, production, or processing of several cytokines in vitro and in vivo. The purpose of this review was to systematically analyze the published cases of cytokine effects on human benzene exposure, particularly hematotoxicity, and atopy, and on lungs. PMID:25202711

  7. Significant elevation of a Th2 cytokine, interleukin-10, in pelvic inflammatory disease.

    Science.gov (United States)

    Chen, Kuo-Shuen; Wang, Po-Hui; Yang, Shun-Fa; Lin, Ding-Bang; Lin, Yi-Jiun; Kuo, Dong-Yih; Lin, Long-Yau; Wu, Ming-Tsang; Lin, Chiao-Wen; Lee, Sheuan; Chou, Ming-Chih; Tsai, Hsiu-Ting; Hsieh, Yih-Shou

    2008-01-01

    We investigated the expressions and ratios of type 1 T helper cell (Th1) cytokines interferon-gamma (IFN-gamma) and interleukin-2 (IL-2), as well as type 2 T helper cell (Th2) cytokines interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-13 (IL-13) and interleukin-10 (IL-10) in pelvic inflammatory disease (PID) patients. The human cytokine LINCOplex multiplex bead array was used to measure the plasma levels of Th1 and Th2 cytokines in 50 healthy controls, as well as in 41 PID patients before and after routine protocol treatment. Significantly increased expressions of Th1 cytokine IFN-gamma (p=0.004), as well as Th2 cytokine IL-5 (p=0.001), and dramatically increased IL-10 (p=0.0001), but significantly decreased expression of Th1 cytokine IL-2 (p=0.029) in PID patients were found after comparison to the control group. The ratio of IFN-gamma to IL-13 showed a significant increase, but the ratios of IFN-gamma to IL-10 and IL-2 to IL-10 was significantly decreased in PID patients before treatment compared to after treatment and controls. The results indicate that the imbalance and cross-regulation between Th1 and Th2 cytokines pathways is probably contributed to the mechanism of PID.

  8. Impact of inflammatory cytokines on effector and memory CD8+ T cells

    Directory of Open Access Journals (Sweden)

    Marie eKim

    2014-06-01

    Full Text Available Inflammatory cytokines have long been recognized to produce potent APCs to elicit robust T cell responses for protective immunity. The impact of inflammatory cytokine signaling directly on T cells, however, has only recently been appreciated. Although much remains to be learned, the CD8 T cell field has made considerable strides in understanding the effects of inflammatory cytokines throughout the CD8 T cell response. Key findings first identified IL-12 and type I interferons as ‘signal 3’ cytokines, emphasizing their importance in generating optimal CD8 T cell responses. Separate investigations revealed another inflammatory cytokine, IL-15, to play a critical role in memory CD8 T cell maintenance. These early studies highlighted potential regulators of CD8 T cells, but were unable to provide mechanistic insight into how these inflammatory cytokines enhanced CD8 T cell-mediated immunity. Here, we describe the mechanistic advances that have been made in our lab regarding the role of ‘signal 3’ cytokines and IL-15 in optimizing effector and memory CD8 T cell number and function. Furthermore, we assess initial progress on the role of cytokines, such as TGF-β, in generation of recently described resident memory CD8 T cell populations.

  9. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling

    DEFF Research Database (Denmark)

    Adams, T E; Hansen, J A; Starr, R

    1998-01-01

    Four members (SOCS-1, SOCS-2, SOCS-3, and CIS) of a family of cytokine-inducible, negative regulators of cytokine receptor signaling have recently been identified. To address whether any of these genes are induced in response to growth hormone (GH), serum-starved 3T3-F442A fibroblasts were incuba...

  10. Differential intragraft cytokine messenger RNA profiles during rejection and repair of clinical heart transplants. A longitudinal study

    NARCIS (Netherlands)

    de Groot-Kruseman, Hester A; Mol, Wendy M; Niesters, Hubert G M; Maat, Alex P W; van Gelder, Teun; Balk, Aggie H M M; Weimar, Willem; Baan, Carla C

    After clinical heart transplantation, ischemia, acute rejection, and repair mechanisms can trigger the up-regulation of cytokines. To investigate the cytokine profile early after transplantation, we monitored messenger RNA (mRNA) expression levels of tumor necrosis factor-alpha (TNF-alpha), monocyte

  11. Macrophage Migration Inhibitory Factor: A Multifunctional Cytokine in Rheumatic Diseases

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Kasama

    2010-01-01

    Full Text Available Macrophage migration inhibitory factor (MIF was originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibited the random migration of macrophages. MIF is now recognized to be a multipotent cytokine involved in the regulation of immune and inflammatory responses. Moreover, the pivotal nature of its involvement highlights the importance of MIF to the pathogenesis of various inflammatory disorders and suggests that blocking MIF may be a useful therapeutic strategy for treating these diseases. This paper discusses the function and expressional regulation of MIF in several rheumatic diseases and related conditions.

  12. Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response.

    Science.gov (United States)

    Alfarsi, Mohammed A; Hamlet, Stephen M; Ivanovski, Saso

    2014-01-01

    Increased titanium surface hydrophilicity has been shown to accelerate dental implant osseointegration. Macrophages are important in the early inflammatory response to surgical implant placement and influence the subsequent healing response. This study investigated the modulatory effect of a hydrophilic titanium surface on the inflammatory cytokine expression profile in a human macrophage cell line (THP-1). Genes for 84 cytokines, chemokines, and their receptors were analyzed following exposure to (1) polished (SMO), (2) micro-rough sand blasted, acid etched (SLA), and (3) hydrophilic-modified SLA (modSLA) titanium surfaces for 1 and 3 days. By day 3, the SLA surface elicited a pro-inflammatory response compared to the SMO surface with statistically significant up-regulation of 16 genes [Tumor necrosis factor (TNF) Interleukin (IL)-1β, Chemokine (C-C motif) ligand (CCL)-1, 2, 3, 4, 18, 19, and 20, Chemokine (C-X-C motif) ligand (CXCL)-1, 5, 8 and 12, Chemokine (C-C motif) receptor (CCR)-7, Lymphotoxin-beta (LTB), and Leukotriene B4 receptor (LTB4R)]. This effect was countered by the modSLA surface, which down-regulated the expression of 10 genes (TNF, IL-1α and β, CCL-1, 3, 19 and 20, CXCL-1 and 8, and IL-1 receptor type 1), while two were up-regulated (osteopontin and CCR5) compared to the SLA surface. These cytokine gene expression changes were confirmed by decreased levels of corresponding protein secretion in response to modSLA compared to SLA. These results show that a hydrophilic titanium surface can modulate human macrophage pro-inflammatory cytokine gene expression and protein secretion. An attenuated pro-inflammatory response may be an important molecular mechanism for faster and/or improved wound healing. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  13. Bioanalytical Chemistry of Cytokines-A Review

    Science.gov (United States)

    Stenken, Julie A.; Poschenrieder, Andreas J.

    2014-01-01

    Cytokines are bioactive proteins produced by many different cells of the immune system. Due to their role in different inflammatory disease states and maintaining homeostasis, there is enormous clinical interest in the quantitation of cytokines. The typical standard methods for quantitation of cytokines are immunoassay-based techniques including enzyme-linked immusorbent assays (ELISA) and bead-based immunoassays read by either standard or modified flow cytometers. A review of recent developments in analytical methods for measurements of cytokine proteins is provided. This review briefly covers cytokine biology and the analysis challenges associated with measurement of these biomarker proteins for understanding both health and disease. New techniques applied to immunoassay-based assays are presented along with the uses of aptamers, electrochemistry, mass spectrometry, optical resonator-based methods. Methods used for elucidating the release of cytokines from single cells as well as in vivo collection methods are described. PMID:25467452

  14. CYTOKINE DISBALANCE AT HERPESVIRUS MYOCARDITIS

    Directory of Open Access Journals (Sweden)

    Peremot S. D

    2016-12-01

    Full Text Available Viral myocarditis is a heterogeneous group of diseases not only by etiologic factors, which belong to different families of Vira kingdom, but is also characterized by a unique mechanism of inflammatory process and cytokine levels specific for each of them. According to numerous researches in сardio-immunology, at herpesvirus infection of the cardiovascular system occur both systemic and localized violations of the immune response. Unfortunately, the accessible literature did not provide the data analysis of complex cardio-immunological research that would take into account the features of herpesvirus myocarditis clinical course. This grounds relevance of immunodiagnosis directed on the exposure of dysimmunities by study of indices of general and local immunity with the estimation of the immune status in patients depending on the stage of exasperation or relapse of chronic herpetic infection in the complex of diagnostic tests. The purpose of our research was to determine features of the state of the immune system with the complex analysis of cytokine profile data, immune and interferon statuses in subacute and chronic forms of herpesvirus myocarditis. Materials and methods. 87 myocarditis patients who were receiving inpatient treatment in medical establishments of Kharkiv were examined. The average age was (M ± m 36 ± 3,46 years old. The diagnosis of myocarditis was established according to the order № 436 by the Ministry of Healthcare of Ukraine from 03.07.2006 of clinical findings protocol. In accordance with the term of myocarditis clinical course, the patients were divided in two sub-groups: 44 patients with subacute (from 2 to 6 months, and 43 patients with chronic (over 6 months clinical course of viral myocarditis. The control group correlated with patients of basic group by age and gender and consisted of 40 practically healthy persons without implications of cardial pathology. Definition of cytokine concentration: IL-2, IL-4, IL-6

  15. Angiopoietin-2 is critical for cytokine-induced vascular leakage.

    Directory of Open Access Journals (Sweden)

    Andrew V Benest

    Full Text Available Genetic experiments (loss-of-function and gain-of-function have established the role of Angiopoietin/Tie ligand/receptor tyrosine kinase system as a regulator of vessel maturation and quiescence. Angiopoietin-2 (Ang-2 acts on Tie2-expressing resting endothelial cells as an antagonistic ligand to negatively interfere with the vessel stabilizing effects of constitutive Ang-1/Tie-2 signaling. Ang-2 thereby controls the vascular response to inflammation-inducing as well as angiogenesis-inducing cytokines. This study was aimed at assessing the role of Ang-2 as an autocrine (i.e. endothelial-derived regulator of rapid vascular responses (within minutes caused by permeability-inducing agents. Employing two independent in vivo assays to quantitatively assess vascular leakage (tracheal microsphere assay, 1-5 min and Miles assay, 20 min, the immediate vascular response to histamine, bradykinin and VEGF was analyzed in Ang-2-deficient (Ang-2(-/- mice. In comparison to the wild type control mice, the Ang2(-/- mice demonstrated a significantly attenuated response. The Ang-2(-/- phenotype was rescued by systemic administration (paracrine of an adenovirus encoding Ang-2. Furthermore, cytokine-induced intracellular calcium influx was impaired in Ang-2(-/- endothelioma cells, consistent with reduced phospholipase activation in vivo. Additionally, recombinant human Ang-2 (rhAng-2 alone was unable to induce vascular leakage. In summary, we report here in a definite genetic setting that Ang-2 is critical for multiple vascular permeability-inducing cytokines.

  16. Keratinocyte cytokine and chemokine receptors.

    Science.gov (United States)

    Tüzün, Yalçin; Antonov, Meltem; Dolar, Neslihan; Wolf, Ronni

    2007-10-01

    Chemokines are a superfamily of small, secreted proteins that regulate cell traffic in homeostatic and inflammatory conditions. Keratinocytes synthesize many chemokines, including members of the CC and CXC subfamilies, such as regulated on activation of normal T-cell expressed and secreted, gamma-interferon inducible protein-10, monokine induced by gamma-interferon, and thymus- and activation-regulated chemokine. They also express some chemokine receptors that mediate the inflammatory or immune response by attracting various kinds of leukocytes.

  17. IL-10: A Multifunctional Cytokine in Viral Infections

    Directory of Open Access Journals (Sweden)

    José M. Rojas

    2017-01-01

    Full Text Available The anti-inflammatory master regulator IL-10 is critical to protect the host from tissue damage during acute phases of immune responses. This regulatory mechanism, central to T cell homeostasis, can be hijacked by viruses to evade immunity. IL-10 can be produced by virtually all immune cells, and it can also modulate the function of these cells. Understanding the effects of this multifunctional cytokine is therefore a complex task. In the present review we discuss the factors driving IL-10 production and the cellular sources of the cytokine during antiviral immune responses. We particularly focus on the IL-10 regulatory mechanisms that impact antiviral immune responses and how viruses can use this central regulatory pathway to evade immunity and establish chronic/latent infections.

  18. Cytokine profile of cervical cancer cells

    NARCIS (Netherlands)

    Hazelbag, S.; Fleuren, G. J.; Baelde, J. J.; Schuuring, E.; Kenter, G. G.; Gorter, A.

    2001-01-01

    OBJECTIVE: In patients with cervical carcinoma, the presence of cytokines produced by T(H)2 cells, and the presence of an eosinophilic inflammatory infiltrate, has been associated with a less effective immune response and tumor progression. In the present study, we have investigated the cytokine

  19. Cytokine profile of cervical cancer cells

    NARCIS (Netherlands)

    Hazelbag, S; Fleuren, GJ; Baelde, JJ; Schuuring, E; Kenter, GG; Gorter, A

    2001-01-01

    Objective. In patients with cervical carcinoma, the presence of cytokines produced by T(H)2 cells, and the presence of an eosinophilic inflammatory infiltrate, has been associated with a less effective immune response and tumor progression. In the present study, we have investigated the cytokine

  20. Cytokines and organ failure in acute pancreatitis

    DEFF Research Database (Denmark)

    Malmstrøm, Marie Louise; Hansen, Mark Berner; Andersen, Anders Møller

    2012-01-01

    We aimed at synchronously examining the early time course of 4 proinflammatory cytokines as predictive factors for development of organ failure in patients with acute pancreatitis (AP).......We aimed at synchronously examining the early time course of 4 proinflammatory cytokines as predictive factors for development of organ failure in patients with acute pancreatitis (AP)....

  1. Cytokine gene expression of peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    Lipopolysaccharide (LPS) is a predominant glycolipid in the outer membranes of gam-negative bacteria that stimulates monocytes, macrophages, and neutrophils to produce cytokines. The aim was to study the expression profile of TLRs and cytokines and determine the role of LPS in the peripheral blood lymphocytes.

  2. Interactions between Autophagy and Inhibitory Cytokines.

    Science.gov (United States)

    Wu, Tian-Tian; Li, Wei-Min; Yao, Yong-Ming

    2016-01-01

    Autophagy is a degradative pathway that plays an essential role in maintaining cellular homeostasis. Most early studies of autophagy focused on its involvement in age-associated degeneration and nutrient deprivation. However, the immunological functions of autophagy have become more widely studied in recent years. Autophagy has been shown to be an intrinsic cellular defense mechanism in the innate and adaptive immune responses. Cytokines belong to a broad and loose category of proteins and are crucial for innate and adaptive immunity. Inhibitory cytokines have evolved to permit tolerance to self while also contributing to the eradication of invading pathogens. Interactions between inhibitory cytokines and autophagy have recently been reported, revealing a novel mechanism by which autophagy controls the immune response. In this review, we discuss interactions between autophagy and the regulatory cytokines IL-10, transforming growth factor-β, and IL-27. We also mention possible interactions between two newly discovered cytokines, IL-35 and IL-37, and autophagy.

  3. Waste management - cytokines, growth factors and cachexia.

    Science.gov (United States)

    Saini, Amarjit; Al-Shanti, Nasser; Nasser, Al-Shanti; Stewart, Claire E H

    2006-12-01

    Muscle damage with a lack of regeneration, manifests itself in several life-threatening diseases, including cancer cachexia, congestive heart failure, AIDS and sepsis. Often misdiagnosed as a condition simply of weight loss, cachexia is actually a highly complex metabolic disorder involving features of anorexia, anaemia, lipolysis and insulin resistance. A significant loss of lean body mass arises from such conditions, resulting in wasting of skeletal muscle. Unlike starvation, the weight loss seen in chronic illnesses arises equally from loss of muscle and of fat. The cachectic state is particularly problematic in cancer, typifying poor prognosis and often lowering responses to chemotherapy and radiation treatment. More than half of cancer patients suffer from cachexia, and strikingly, nearly one-third of cancer deaths are related to cachexia rather than the tumour burden. In considering this disorder, we are faced with a conundrum; how is it possible for uncontrolled growth to prevail in the tumour, in the face of unrestrained tissue loss in our muscles? Consistently, the catabolic state has been associated with a shift in the homeostatic balance between muscle synthesis and degradation mediated by the actions of growth factors and cytokines. Indeed, tumour necrosis factor-alpha (TNF-alpha) levels are raised in several animal models of cachectic muscle wasting, whereas the insulin-like growth factor (IGF) system acts potently to regulate muscle development, hypertrophy and maintenance. This concept of skeletal muscle homeostasis, often viewed as the net balance between two separate processes of protein synthesis and degradation has however changed. More recently, the view is that these two biochemical processes are not occurring independently of each other but in fact are finely co-ordinated by a web of intricate signalling networks. This review, therefore, aims to discuss data currently available regarding the mechanisms of degeneration and regeneration with

  4. Modulation of cytokine production by carnitine

    Directory of Open Access Journals (Sweden)

    Nicola M. Kouttab

    1993-01-01

    Full Text Available The ability of carnitine congeners to modulate cytokine production by human peripheral blood mononuclear cells (PBMC was investigated. Modulation of cytokine production by PBMC of young (30 years of age or younger and old (70 years of age or older normal donors was first compared. The PBMC were collected over Ficoll–Hypaque and incubated in the presence of various concentrations of acetyl L-carnitine for 24 h. Subsequently the supernatants were collected and examined for cytokine production. The presence of cytokines in tissue culture supernatants was examined by ELISA. The cytokines measured included IL-1α, IL-1β, IL-2, IL-4, IL-6, TNFα, GM–CSF, and IFNγ. The results showed that at 50 μg/ml of acetyl L-carnitine the most significant response was obtained for TNFα. In this regard four of five young donors responded, but only one of five old donors responded. More recently these studies were expanded to examine the ability of L-carnitine to modulate cytokine production at higher doses, 200 and 400 μg/ml, in young donors. The results of these studies showed that in addition to TNFα, significant production of IL-1β and IL-6 was observed. These preliminary studies provide evidence that carnitine may modulate immune functions through the production of selected cytokines.

  5. Calcium Contributes to the Cytotoxic Interaction Between Diclofenac and Cytokines.

    Science.gov (United States)

    Maiuri, Ashley R; Breier, Anna B; Turkus, Jonathan D; Ganey, Patricia E; Roth, Robert A

    2016-02-01

    Diclofenac (DCLF) is a widely used non-steroidal anti-inflammatory drug that is associated with idiosyncratic, drug-induced liver injury (IDILI) in humans. The mechanisms of DCLF-induced liver injury are unknown; however, patients with certain inflammatory diseases have an increased risk of developing IDILI, which raises the possibility that immune mediators play a role in the pathogenesis. DCLF synergizes with the cytokines tumor necrosis factor-alpha (TNF) and interferon-gamma (IFN) to cause hepatocellular apoptosis in vitro by a mechanism that involves activation of the endoplasmic reticulum (ER) stress response pathway and of the mitogen-activated protein kinases, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). DCLF also causes an increase in intracellular calcium (Ca(++)) in hepatocytes, but the role of this in the cytotoxic synergy between DCLF and cytokines is unknown. We tested the hypothesis that Ca(++) contributes to DCLF/cytokine-induced cytotoxic synergy. Treatment of HepG2 cells with DCLF led to an increase in intracellular Ca(++) at 6 and 12 h, and this response was augmented in the presence of TNF and IFN at 12 h. The intracellular Ca(++) chelator BAPTA/AM reduced cytotoxicity and caspase-3 activation caused by DCLF/cytokine cotreatment. BAPTA/AM also significantly reduced DCLF-induced activation of the ER stress sensor, protein kinase RNA-like ER kinase (PERK), as well as activation of JNK and ERK. Treatment of cells with an inositol trisphosphate receptor antagonist almost completely eliminated DCLF/cytokine-induced cytotoxicity and decreased DCLF-induced activation of PERK, JNK, and ERK. These findings indicate that Ca(++) contributes to DCLF/cytokine-induced cytotoxic synergy by promoting activation of the ER stress-response pathway and JNK and ERK. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Cytokines in Machado Joseph Disease/Spinocerebellar Ataxia 3.

    Science.gov (United States)

    da Silva Carvalho, Gerson; Saute, Jonas Alex Morales; Haas, Clarissa Branco; Torrez, Vitor Rocco; Brochier, Andressa Wigner; Souza, Gabriele Nunes; Furtado, Gabriel Vasata; Gheno, Tailise; Russo, Aline; Monte, Thais Lampert; Schumacher-Schuh, Artur; D'Avila, Rui; Donis, Karina Carvalho; Castilhos, Raphael Machado; Souza, Diogo Onofre; Saraiva-Pereira, Maria Luiza; Torman, Vanessa Leotti; Camey, Suzi; Portela, Luis Valmor; Jardim, Laura Bannach

    2016-08-01

    The aim of the present study is to describe the serum concentrations of a broad spectrum of cytokines in symptomatic and asymptomatic carriers of Machado Joseph disease (SCA3/MJD) CAG expansions. Molecularly confirmed carriers and controls were studied. Age at onset, disease duration, and clinical scales Scale for the Assessment and Rating of Ataxia (SARA), Neurological Examination Score for Spinocerebellar Ataxias (NESSCA), SCA Functional Index (SCAFI), and Composite Cerebellar Functional Score (CCFS) were obtained from the symptomatic carriers. Serum was obtained from all individuals and a cytokine panel "consisted of" eotaxin, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-α, IFN-γ, interleukin (IL)-1β, IL-1RA, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-15, IL-17, interferon gamma-induced protein (IP)-10, monocyte chemoattractant protein (MCP)-1, monokine induced by gamma interferon (MIG), macrophage inflammatory protein (MIP)-a, MIP-b, regulated on activation, normal T cell expressed and secreted (RANTES) and tumor necrosis factor (TNF)-α was analyzed. In a subgroup of symptomatic carriers, the cytokine panel was repeated after 360 days. Cytokine distribution among groups was studied by discriminant analysis; changes in serum levels after 360 days were studied by generalized estimation equation. Sixty-six symptomatic carriers, 13 asymptomatic carriers, and 43 controls were studied. No differences in cytokine patterns were found between controls and carriers of the CAG expansions or between controls and symptomatic carriers only. In contrast, eotaxin concentrations were significantly higher in asymptomatic than in symptomatic carriers or in controls (p = 0.001, ANCOVA). Eotaxin did not correlate with age, disease duration, CAG expansion, NESSCA score, and SARA score. Among symptomatic carriers, eotaxin dropped after 360 days (p = 0.039, GEE). SCA3/MJD patients presented a benign pattern of

  7. Cytokine accumulation in osteitis fibrosa of renal osteodystrophy

    Directory of Open Access Journals (Sweden)

    Duarte M.E.L.

    2002-01-01

    Full Text Available Bone marrow fibrosis occurs in association with a number of pathological states. Despite the extensive fibrosis that sometimes characterizes renal osteodystrophy, little is known about the factors that contribute to marrow accumulation of fibrous tissue. Because circulating cytokines are elevated in uremia, possibly in response to elevated parathyroid hormone levels, we have examined bone biopsies from 21 patients with end-stage renal disease and secondary hyperparathyroidism. Bone sections were stained with antibodies to human interleukin-1alpha (IL-1alpha, IL-6, IL-11, tumor necrosis factor-alpha (TNF-alpha and transforming growth factor-ß (TGF-ß using an undecalcified plastic embedding method. Intense staining for IL-1alpha, IL-6, TNF-alpha and TGF-ß was evident within the fibrotic tissue of the bone marrow while minimal IL-11 was detected. The extent of cytokine deposition corresponded to the severity of fibrosis, suggesting their possible involvement in the local regulation of the fibrotic response. Because immunoreactive TGF-ß and IL-6 were also detected in osteoblasts and osteocytes, we conclude that selective cytokine accumulation may have a role in modulating bone and marrow cell function in parathyroid-mediated uremic bone disease.

  8. RNA-seq reveals activation of both common and cytokine-specific pathways following neutrophil priming.

    Directory of Open Access Journals (Sweden)

    Helen L Wright

    Full Text Available Neutrophils are central to the pathology of inflammatory diseases, where they can damage host tissue through release of reactive oxygen metabolites and proteases, and drive inflammation via secretion of cytokines and chemokines. Many cytokines, such as those generated during inflammation, can induce a similar "primed" phenotype in neutrophils, but it is unknown if different cytokines utilise common or cytokine-specific pathways to induce these functional changes. Here, we describe the transcriptomic changes induced in control human neutrophils during priming in vitro with pro-inflammatory cytokines (TNF-α and GM-CSF using RNA-seq. Priming led to the rapid expression of a common set of transcripts for cytokines, chemokines and cell surface receptors (CXCL1, CXCL2, IL1A, IL1B, IL1RA, ICAM1. However, 580 genes were differentially regulated by TNF-α and GM-CSF treatment, and of these 58 were directly implicated in the control of apoptosis. While these two cytokines both delayed apoptosis, they induced changes in expression of different pro- and anti-apoptotic genes. Bioinformatics analysis predicted that these genes were regulated via differential activation of transcription factors by TNF-α and GM-CSF and these predictions were confirmed using functional assays: inhibition of NF-κB signalling abrogated the protective effect of TNF-α (but not that of GM-CSF on neutrophil apoptosis, whereas inhibition of JAK/STAT signalling abrogated the anti-apoptotic effect of GM-CSF, but not that of TNF-α (p<0.05. These data provide the first characterisation of the human neutrophil transcriptome following GM-CSF and TNF-α priming, and demonstrate the utility of this approach to define functional changes in neutrophils following cytokine exposure. This may provide an important, new approach to define the molecular properties of neutrophils after in vivo activation during inflammation.

  9. Diverse Toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages.

    Science.gov (United States)

    Park, Se-Ra; Kim, Dong-Jae; Han, Seung-Hyun; Kang, Min-Jung; Lee, Jun-Young; Jeong, Yu-Jin; Lee, Sang-Jin; Kim, Tae-Hyoun; Ahn, Sang-Gun; Yoon, Jung-Hoon; Park, Jong-Hwan

    2014-05-01

    Toll-like receptors (TLRs) orchestrate a repertoire of immune responses in macrophages against various pathogens. Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans are two important periodontal pathogens. In the present study, we investigated TLR signaling regulating cytokine production of macrophages in response to F. nucleatum and A. actinomycetemcomitans. TLR2 and TLR4 are redundant in the production of cytokines (interleukin-6 [IL-6] and tumor necrosis factor alpha [TNF-α]) in F. nucleatum- and A. actinomycetemcomitans-infected macrophages. The production of cytokines by macrophages in response to F. nucleatum and A. actinomycetemcomitans infection was impaired in MyD88-deficient macrophages. Moreover, cytokine concentrations were lower in MyD88-deficient macrophages than in TLR2/TLR4 (TLR2/4) double-deficient cells. An endosomal TLR inhibitor, chloroquine, reduced cytokine production in TLR2/4-deficient macrophages in response to F. nucleatum and A. actinomycetemcomitans, and DNA from F. nucleatum or A. actinomycetemcomitans induced IL-6 production in bone marrow-derived macrophages (BMDMs), which was abolished by chloroquine. Western blot analysis revealed that TLR2/4 and MyD88 were required for optimal activation of NF-κB and mitogen-activated protein kinases (MAPKs) in macrophages in response to F. nucleatum and A. actinomycetemcomitans, with different kinetics. An inhibitor assay showed that NF-κB and all MAPKs (p38, extracellular signal-regulated kinase [ERK], and Jun N-terminal protein kinase [JNK]) mediate F. nucleatum-induced production of cytokines in macrophages, whereas NF-κB and p38, but not ERK and JNK, are involved in A. actinomycetemcomitans-mediated cytokine production. These findings suggest that multiple TLRs may participate in the cytokine production of macrophages against periodontal bacteria.

  10. Inflammatory cytokine levels in chronic venous insufficiency ulcer tissue before and after compression therapy

    Science.gov (United States)

    Beidler, Stephanie K.; Douillet, Christelle D.; Berndt, Daniel F.; Keagy, Blair A.; Rich, Preston B.; Marston, William A.

    2015-01-01

    Objective Elevated inflammatory cytokine levels have been implicated in the pathogenesis of non3 healing chronic venous insufficiency (CVI) ulcers. The goal of this study was to determine the protein levels of a wide range of inflammatory cytokines in untreated CVI ulcer tissue before and after 4 weeks of high strength compression therapy. These levels were compared to cytokines present in healthy tissue. Methods Thirty limbs with untreated CVI and leg ulceration received therapy for 4 weeks with sustained high compression bandaging at an ambulatory wound center. Biopsies were obtained from healthy and ulcerated tissue before and after therapy. A multiplexed protein assay was used to measure multiple cytokines in a single sample. Patients were designated as rapid or delayed healers based on ulcer surface area change. Results The majority of pro-inflammatory cytokine protein levels were elevated in ulcer tissue compared to healthy tissue, and compression therapy significantly reduced these cytokines. TGF-β1 was up-regulated in ulcer tissue following compression therapy. Rapid healing ulcers had significantly higher levels of IL-1α, IL-1β, IFN-γ, IL-12p40 and GM-CSF before compression therapy, and IL-1 Ra after therapy. IFN-γ levels significantly decreased following therapy in the rapidly healing patients. Conclusion CVI ulcer healing is associated with a pro-inflammatory environment prior to treatment that reflects metabolically active peri-wound tissue that has the potential to heal. Treatment with compression therapy results in healing that is coupled with reduced pro-inflammatory cytokine levels and higher levels of the anti-inflammatory cytokine IL-1 Ra. Clinical Relevance This data suggests that cytokines may provide targets in which topical therapeutic inhibition or promotion at appropriate time points in the healing process may provide novel therapeutic approaches to the healing of CVI ulcers. PMID:19341889

  11. Cytokines: applications in domestic food animals.

    Science.gov (United States)

    Blecha, F

    1991-01-01

    Cytokines such as human, bovine, and porcine interferons and human and bovine interleukin-1 and interleukin-2 have been used in vivo in cattle and pigs. Colony-stimulating factors and tumor necrosis factor alpha have been evaluated in vitro in food animals. Studies to evaluate cytokines in domestic food animals have shown that specific and nonspecific immunomodulation is possible in immunosuppressed or pathogen-exposed animals. Cytokine prophylaxis or therapy in food animals may have the greatest potential for control of respiratory disease and mastitis.

  12. Cytokines in Radiobiological Responses: A Review

    Science.gov (United States)

    Schaue, Dörthe; Kachikwu, Evelyn L.; McBride, William H.

    2013-01-01

    Cytokines function in many roles that are highly relevant to radiation research. This review focuses on how cytokines are structurally organized, how they are induced by radiation, and how they orchestrate mesenchymal, epithelial and immune cell interactions in irradiated tissues. Pro-inflammatory cytokines are the major components of immediate early gene programs and as such can be rapidly activated after tissue irradiation. They converge with the effects of ionizing radiation in that both generate free radicals including reactive oxygen and nitrogen species (ROS/RNS). “Self” molecules secreted or released from cells after irradiation feed the same paradigm by signaling for ROS and cytokine production. As a result, multilayered feedback control circuits can be generated that perpetuate the radiation tissue damage response. The pro-inflammatory phase persists until such times as perceived challenges to host integrity are eliminated. Antioxidant, anti-inflammatory cytokines then act to restore homeostasis. The balance between pro-inflammatory and anti-inflammatory forces may shift to and fro for a long time after radiation exposure, creating waves as the host tries to deal with persisting pathogenesis. Individual cytokines function within socially interconnected groups to direct these integrated cellular responses. They hunt in packs and form complex cytokine networks that are nested within each other so as to form mutually reinforcing or antagonistic forces. This yin-yang balance appears to have redox as a fulcrum. Because of their social organization, cytokines appear to have a considerable degree of redundancy and it follows that an elevated level of a specific cytokine in a disease situation or after irradiation does not necessarily implicate it causally in pathogenesis. In spite of this, “driver” cytokines are emerging in pathogenic situations that can clearly be targeted for therapeutic benefit, including in radiation settings. Cytokines can greatly

  13. Differential cytokine contributions of perivascular haematopoietic stem cell niches.

    Science.gov (United States)

    Asada, Noboru; Kunisaki, Yuya; Pierce, Halley; Wang, Zichen; Fernandez, Nicolas F; Birbrair, Alexander; Ma'ayan, Avi; Frenette, Paul S

    2017-03-01

    Arterioles and sinusoids of the bone marrow (BM) are accompanied by stromal cells that express nerve/glial antigen 2 (NG2) and leptin receptor (LepR), and constitute specialized niches that regulate quiescence and proliferation of haematopoietic stem cells (HSCs). However, how niche cells differentially regulate HSC functions remains unknown. Here, we show that the effects of cytokines regulating HSC functions are dependent on the producing cell sources. Deletion of chemokine C-X-C motif ligand 12 (Cxcl12) or stem cell factor (Scf) from all perivascular cells marked by nestin-GFP dramatically depleted BM HSCs. Selective Cxcl12 deletion from arteriolar NG2 + cells, but not from sinusoidal LepR + cells, caused HSC reductions and altered HSC localization in BM. By contrast, deletion of Scf in LepR + cells, but not NG2 + cells, led to reductions in BM HSC numbers. These results uncover distinct contributions of cytokines derived from perivascular cells in separate vascular niches to HSC maintenance.

  14. Exposure to Porphyromonas gingivalis LPS during macrophage polarisation leads to diminished inflammatory cytokine production.

    Science.gov (United States)

    Belfield, Louise A; Bennett, Jon H; Abate, Wondwossen; Jackson, Simon K

    2017-09-01

    The objective of the present study was to determine the effects of concurrent LPS and cytokine priming, reflective of the in vivo milieu, on macrophage production of key periodontitis associated cytokines TNF, IL-1β and IL-6. THP-1 cells were pre-treated with combinations of Porphyromonas gingivalis and Escherichia coli lipopolysaccharide (LPS), concurrently with polarising cytokines IFNγ and IL-4, or PMA as a non-polarised control. Production of key periodontitis associated cytokines in response to subsequent LPS challenge were measured by enzyme - linked immunosorbent assay. Compared with cells incubated with IFNγ or IL-4 alone in the "polarisation" phase, macrophages that were incubated with LPS during the first 24h displayed a down-regulation of TNF and IL-1β production upon secondary LPS treatment in the "activation" phase. In all three macrophage populations (M0, M1 and M2), pre-treatment with P. gingivalis LPS during the polarisation process led to a significant decrease in TNF production in response to subsequent activation by LPS (p=0.007, p=0.002 and p=0.004, respectively). Pre-treatment with E. coli LPS also led to a significant down-regulation in TNF production in all three macrophage populations (pLPS during polarisation also led to the down-regulation of IL-1β in the M1 population (pLPS challenge, whereby production of key periodontitis associated cytokines TNF and IL-1β is reduced after exposure to LPS during the polarisation phase, even in the presence of inflammatory polarising cytokines. This diminished cytokine response may lead to the reduced ability to clear infection and transition to chronic inflammation seen in periodontitis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Dynamical Systems, Cytokine Storms, and Blood Filtration

    Science.gov (United States)

    Foster, Glenn; Hubler, Alfred

    2008-03-01

    Various infections and non-infectious diseases can trigger immune cells and the proteins (cytokines) the cells use to communicate with each other to be caught in a positive feedback loop; this ``cytokine storm'' is frequently fatal. By examining the network of cytokine-immune cell interactions we will illustrate why anti-mediator drugs have been generally ineffective in stopping this feedback. A more effective approach may be to try and reduce interactions by dampening many signals at once by filtering the cytokines out of the blood directly (think dialysis). We will argue that feedback on an out of control nonlinear dynamical system is easier to understand than its normal healthy state and apply filtration to a toy model of immune response.

  16. Angiopoietin-2 Is Critical for Cytokine-Induced Vascular Leakage

    Science.gov (United States)

    Thomas, Markus; Laib, Anna M.; Loos, Elias K.; Fiedler, Ulrike; Augustin, Hellmut G.

    2013-01-01

    Genetic experiments (loss-of-function and gain-of-function) have established the role of Angiopoietin/Tie ligand/receptor tyrosine kinase system as a regulator of vessel maturation and quiescence. Angiopoietin-2 (Ang-2) acts on Tie2-expressing resting endothelial cells as an antagonistic ligand to negatively interfere with the vessel stabilizing effects of constitutive Ang-1/Tie-2 signaling. Ang-2 thereby controls the vascular response to inflammation-inducing as well as angiogenesis-inducing cytokines. This study was aimed at assessing the role of Ang-2 as an autocrine (i.e. endothelial-derived) regulator of rapid vascular responses (within minutes) caused by permeability-inducing agents. Employing two independent in vivo assays to quantitatively assess vascular leakage (tracheal microsphere assay, 1–5 min and Miles assay, 20 min), the immediate vascular response to histamine, bradykinin and VEGF was analyzed in Ang-2-deficient (Ang-2−/−) mice. In comparison to the wild type control mice, the Ang2−/− mice demonstrated a significantly attenuated response. The Ang-2−/− phenotype was rescued by systemic administration (paracrine) of an adenovirus encoding Ang-2. Furthermore, cytokine-induced intracellular calcium influx was impaired in Ang-2−/− endothelioma cells, consistent with reduced phospholipase activation in vivo. Additionally, recombinant human Ang-2 (rhAng-2) alone was unable to induce vascular leakage. In summary, we report here in a definite genetic setting that Ang-2 is critical for multiple vascular permeability-inducing cytokines. PMID:23940579

  17. Dual functionality of interleukin-1 family cytokines: implications for anti-interleukin-1 therapy.

    Science.gov (United States)

    Luheshi, N M; Rothwell, N J; Brough, D

    2009-08-01

    Dysregulated inflammation contributes to disease pathogenesis in both the periphery and the brain. Cytokines are coordinators of inflammation and were originally defined as secreted mediators, released from expressing cells to activate plasma membrane receptors on responsive cells. However, a group of cytokines is now recognized as having dual functionality. In addition to their extracellular effects, these cytokines act inside the nuclei of cytokine-expressing or cytokine-responsive cells. Interleukin-1 (IL-1) family cytokines are key pro-inflammatory mediators, and blockade of the IL-1 system in inflammatory diseases is an attractive therapeutic goal. All current therapies target IL-1 extracellular actions. Here we review evidence that suggests IL-1 family members have dual functionality. Several IL-1 family members have been detected inside the nuclei of IL-1-expressing or IL-1-responsive cells, and intranuclear IL-1 is reported to regulate gene transcription and mRNA splicing. However, further work is required to determine the impact of IL-1 intranuclear actions on disease pathogenesis. The intranuclear actions of IL-1 family members represent a new and potentially important area of IL-1 biology and may have implications for the future development of anti-IL-1 therapies.

  18. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases

    Science.gov (United States)

    Schwartz, Daniella M.; Bonelli, Michael; Gadina, Massimo; O’Shea, John J.

    2015-01-01

    Cytokines are major drivers of autoimmunity, and biologic agents targeting cytokines have revolutionized the treatment of immune-mediated diseases. Despite the effectiveness of these drugs, they do not induce complete remission in all patients, prompting the development of alternative strategies—including targeting of intracellular signal transduction pathways downstream of cytokines. Many cytokines that bind type I and type II cytokine receptors are critical regulators of immune-mediated diseases and employ the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathway to exert their effect. Pharmacological inhibition of JAKs block the actions of type I/II cytokines, and within the past 3 years therapeutic JAK inhibitors, or Jakinibs, have become available to rheumatologists. Jakinibs have proven effective for the treatment of rheumatoid arthritis and other inflammatory diseases. Adverse effects of these agents are largely related to their mode of action and include infections and hyperlipidemia. Jakinibs are currently being investigated for a number of new indications, and second-generation selective Jakinibs are being developed and tested. Targeting STATs could be a future avenue for the treatment of rheumatic diseases, although substantial challenges remain. Nonetheless, the ability to therapeutically target intracellular signalling pathways has already created a new paradigm for the treatment of rheumatologic disease. PMID:26633291

  19. Neutralization Versus Reinforcement of Proinflammatory Cytokines to Arrest Autoimmunity in Type 1 Diabetes.

    Science.gov (United States)

    Kaminitz, Ayelet; Ash, Shifra; Askenasy, Nadir

    2017-06-01

    As physiological pathways of intercellular communication produced by all cells, cytokines are involved in the pathogenesis of inflammatory insulitis as well as pivotal mediators of immune homeostasis. Proinflammatory cytokines including interleukins, interferons, transforming growth factor-β, tumor necrosis factor-α, and nitric oxide promote destructive insulitis in type 1 diabetes through amplification of the autoimmune reaction, direct toxicity to β-cells, and sensitization of islets to apoptosis. The concept that neutralization of cytokines may be of therapeutic benefit has been tested in few clinical studies, which fell short of inducing sustained remission or achieving disease arrest. Therapeutic failure is explained by the redundant activities of individual cytokines and their combinations, which are rather dispensable in the process of destructive insulitis because other cytolytic pathways efficiently compensate their deficiency. Proinflammatory cytokines are less redundant in regulation of the inflammatory reaction, displaying protective effects through restriction of effector cell activity, reinforcement of suppressor cell function, and participation in islet recovery from injury. Our analysis suggests that the role of cytokines in immune homeostasis overrides their contribution to β-cell death and may be used as potent immunomodulatory agents for therapeutic purposes rather than neutralized.

  20. Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research

    Directory of Open Access Journals (Sweden)

    Helena Kupcova Skalnikova

    2017-12-01

    Full Text Available Melanoma is a skin cancer with permanently increasing incidence and resistance to therapies in advanced stages. Reports of spontaneous regression and tumour infiltration with T-lymphocytes makes melanoma candidate for immunotherapies. Cytokines are key factors regulating immune response and intercellular communication in tumour microenvironment. Cytokines may be used in therapy of melanoma to modulate immune response. Cytokines also possess diagnostic and prognostic potential and cytokine production may reflect effects of immunotherapies. The purpose of this review is to give an overview of recent advances in proteomic techniques for the detection and quantification of cytokines in melanoma research. Approaches covered span from mass spectrometry to immunoassays for single molecule detection (ELISA, western blot, multiplex assays (chemiluminescent, bead-based (Luminex and planar antibody arrays, ultrasensitive techniques (Singulex, Simoa, immuno-PCR, proximity ligation/extension assay, immunomagnetic reduction assay, to analyses of single cells producing cytokines (ELISpot, flow cytometry, mass cytometry and emerging techniques for single cell secretomics. Although this review is focused mainly on cancer and particularly melanoma, the discussed techniques are in general applicable to broad research field of biology and medicine, including stem cells, development, aging, immunology and intercellular communication.

  1. Inflammatory bowel disease: the role of inflammatory cytokine gene polymorphisms

    Directory of Open Access Journals (Sweden)

    Joanna Balding

    2004-01-01

    Full Text Available THE mechanisms responsible for development of inflammatory bowel disease (IBD have not been fully elucidated, although the main cause of disease pathology is attributed to up-regulated inflammatory processes. The aim of this study was to investigate frequencies of polymorphisms in genes encoding pro-inflammatory and anti-inflammatory markers in IBD patients and controls. We determined genotypes of patients with IBD (n=172 and healthy controls (n=389 for polymorphisms in genes encoding various cytokines (interleukin (IL-1β, IL-6, tumour necrosis factor (TNF, IL-10, IL-1 receptor antagonist. Association of these genotypes to disease incidence and pathophysiology was investigated. No strong association was found with occurrence of IBD. Variation was observed between the ulcerative colitis study group and the control population for the TNF-α-308 polymorphism (p=0.0135. There was also variation in the frequency of IL-6-174 and TNF-α-308 genotypes in the ulcerative colitis group compared with the Crohn's disease group (p=0.01. We concluded that polymorphisms in inflammatory genes are associated with variations in IBD phenotype and disease susceptibility. Whether the polymorphisms are directly involved in regulating cytokine production, and consequently pathophysiology of IBD, or serve merely as markers in linkage disequilibrium with susceptibility genes remains unclear.

  2. IL2rg Cytokines Enhance Umbilical Cord Blood CD34+ Cells Differentiation to T Cells

    Science.gov (United States)

    Aliyari, Zeynab; Soleimanirad, Sara; Sayyah Melli, Manizheh; Tayefi Nasrabadi, Hamid; Nozad Charoudeh, Hojjatollah

    2015-01-01

    Purpose: Umbilical cord blood (UCB) is an alternative source of hematopoietic stem cell (HSC) transplantation for the treatment of patients with leukemia if matched donor is not available. CD34+ is a pan marker for human hematopoietic stem cells, including umbilical cord blood stem cell. In comparison to other sources, cord blood CD34+ cells proliferate more rapidly and produce large number of progeny cells. For ex vivo expansion of Umbilical Cord Blood- HSCs/HPCs, different combinations of cytokines have been used in many laboratories. IL2rg cytokines, including IL2, IL7 and IL15, are key cytokines in the regulation of differentiation, proliferation and survival of immune cells. IL2 is important cytokine for T cell survival and proliferation, IL7 involve in B cell development and IL15 is a key cytokine for NK cell development. In this study we evaluated the generation of T cells derived from CD34+ and CD34- cord blood mononuclear cells by using combination of cytokines including IL2, IL7 and IL15. Methods: Cultured cord blood mononuclear cells were evaluated at distinct time points during 21 days by using flow cytometry. Results: Present study showed that differentiation of T cells derived from CD34+ cord blood mononuclear cells increased by using IL2 and IL7 at different time points. In the other hand IL15 did not show any significant role in generation of T cells from CD34+ cord blood mononuclear cells. Conclusion: Taken together, our data illustrated that either IL2 or IL7 versus other cytokine combinations, generate more T cell from cord blood CD34 cells, probably this cytokines can be the best condition for ex vivo expansion of UCB HSCs. PMID:26793606

  3. Proinflammatory and anti-inflammatory cytokine profile in pediatric patients with irritable bowel syndrome

    Directory of Open Access Journals (Sweden)

    R. Vázquez-Frias

    2015-01-01

    Conclusions: This study suggests that children with IBS have a state of altered immune regulation. This is consistent with the theory of low-grade inflammatory state in these patients. Further studies are needed to elucidate the role played by these cytokines, specifically TGF-β in the pathogenesis of IBS.

  4. Maternal and pregnancy-related factors affecting human milk cytokines among Peruvian mothers bearing low-birth-weight neonates.

    Science.gov (United States)

    Zambruni, Mara; Villalobos, Alex; Somasunderam, Anoma; Westergaard, Sarah; Nigalye, Maitreyee; Turin, Christie G; Zegarra, Jaime; Bellomo, Sicilia; Mercado, Erik; Ochoa, Theresa J; Utay, Netanya S

    2017-04-01

    Several cytokines have been detected in human milk but their relative concentrations differ among women and vary over time in the same person. The drivers of such differences have been only partially identified, while the effect of luminal cytokines in the fine-regulation of the intestinal immune system is increasingly appreciated. The aim of this study was to investigate the associations between obstetrical complications and human milk cytokine profiles in a cohort of Peruvian women giving birth to Low Birth Weight (LBW) infants. Colostrum and mature human milk samples were collected from 301 Peruvian women bearing LBW infants. The concentration of twenty-three cytokines was measured using the Luminex platform. Ninety-nine percent of women had at least one identified obstetrical complication leading to intra-uterine growth restriction and/or preterm birth. Median weight at birth was 1,420g; median gestational age 31 weeks. A core of 12 cytokines, mainly involved in innate immunity and epithelial cell integrity, was detectable in most samples. Maternal age, maternal infection, hypertensive disorders, preterm labor, and premature rupture of membranes were associated with specific cytokine profiles both in colostrum and mature human milk. Mothers of Very LBW (VLBW) neonates had significantly higher concentrations of chemokines and growth factor cytokines both in their colostrum and mature milk compared with mothers of larger neonates. Thus, maternal conditions affecting pregnancy duration and in utero growth are also associated with specific human milk cytokine signatures. Copyright © 2017. Published by Elsevier B.V.

  5. Cytokines and Organ Failure in Acute Pancreatitis

    DEFF Research Database (Denmark)

    Malmstrøm, Marie Louise; Hansen, Mark Berner; Andersen, Anders Møller

    2012-01-01

    renal, respiratory, and circulatory failure, as was the case for patients with multiorgan failure. Interleukin 18 levels were significantly elevated in renal and respiratory failure only. Tumor necrosis factor > was significantly elevated in all types of organ failures, except for intestinal failure....... Conclusions: Synchronous measurements of 4 cytokines demonstrated IL-6 and IL-8 to be predictive as early surrogate markers with regard to organ failures in AP. The fact that all of the cytokines were particularly elevated in patients with organ failures calls for evaluation of agents modifying the severe...

  6. IL-34 is a Treg-specific cytokine and mediates transplant tolerance

    OpenAIRE

    Bézie, Séverine; Picarda, Elodie; Ossart, Jason; Tesson, Laurent; Usal, Claire; Renaudin, Karine; Anegon, Ignacio; Guillonneau, Carole

    2015-01-01

    Cytokines and metabolic pathway–controlling enzymes regulate immune responses and have potential as powerful tools to mediate immune tolerance. Blockade of the interaction between CD40 and CD40L induces long-term cardiac allograft survival in rats through a CD8+CD45RClo Treg potentiation. Here, we have shown that the cytokine IL-34, the immunoregulatory properties of which have not been previously studied in transplantation or T cell biology, is expressed by rodent CD8+CD45RClo Tregs and huma...

  7. Arsenic affects inflammatory cytokine expression in Gallus gallus brain tissues.

    Science.gov (United States)

    Sun, Xiao; He, Ying; Guo, Ying; Li, Siwen; Zhao, Hongjing; Wang, Yu; Zhang, Jingyu; Xing, Mingwei

    2017-06-05

    The heavy metal arsenic is widely distributed in nature and posses a serious threat to organism's health. However, little is known about the arsenic-induced inflammatory response in the brain tissues of birds and the relationship and mechanism of the inflammatory response. The purpose of this study was to explore the effects of dietary arsenic on the expression of inflammatory cytokines in the brains of Gallus gallus. Seventy-two 1-day-old male Hy-line chickens were divided into a control group, a low arsenic trioxide (As 2 O 3 )-treated (7.5 mg/kg) group, a middle As 2 O 3 -treated (15 mg/kg) group, and a high As 2 O 3 -treated (30 mg/kg) group. Arsenic exposure caused obvious ultrastructural changes. The mRNA levels of the transcription factor nuclear factor-κB (NF-κB) and of pro-inflammatory cytokines, including inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E synthase (PTGEs), in chicken brain tissues (cerebrum, cerebellum, thalamus, brainstem and myelencephalon) on days 30, 60 and 90, respectively, were measured by real-time PCR. The protein expression of iNOS was detected by western blot. The results showed that after being treated with As 2 O 3, the levels of inflammatory-related factor NF-κB and pro-inflammatory cytokines in chicken brain tissues increased (P Arsenic exposure in the chickens triggered host defence and induced an inflammatory response by regulating the expression of inflammatory-related genes in the cerebrum, cerebellum, thalamus, brainstem and myelencephalon. These data form a foundation for further research on arsenic-induced neurotoxicity in Gallus gallus.

  8. Diminazene aceturate (Berenil) modulates LPS induced pro-inflammatory cytokine production by inhibiting phosphorylation of MAPKs and STAT proteins.

    Science.gov (United States)

    Kuriakose, Shiby; Muleme, Helen; Onyilagha, Chukwunonso; Okeke, Emeka; Uzonna, Jude E

    2014-10-01

    Although diminazene aceturate (Berenil) is widely used as a trypanolytic agent in livestock, its mechanisms of action remain poorly understood. We previously showed that Berenil treatment suppresses pro-inflammatory cytokine production by splenic and liver macrophages leading to a concomitant reduction in serum cytokine levels in mice infected with Trypanosoma congolense or challenged with LPS. Here, we investigated the molecular mechanisms through which Berenil alters pro-inflammatory cytokine production by macrophages. We show that pre-treatment of macrophages with Berenil dramatically suppressed IL-6, IL-12 and TNF-α production following LPS, CpG and Poly I:C stimulation without altering the expression of TLRs. Instead, it significantly down-regulated phosphorylation of mitogen-activated protein kinases (p38, extracellular signal-regulated kinase and c-Jun N-terminal kinases), signal transducer and activator of transcription (STAT) proteins (STAT1 and STAT3) and NF-кB p65 activity both in vitro and in vivo. Interestingly, Berenil treatment up-regulated the phosphorylation of STAT5 and the expression of suppressor of cytokine signaling 1 (SOCS1) and SOCS3, which are negative regulators of innate immune responses, including MAPKs and STATs. Collectively, these results show that Berenil down-regulates macrophage pro-inflammatory cytokine production by inhibiting key signaling pathways associated with cytokine production and suggest that this drug may be used to treat conditions caused by excessive production of inflammatory cytokines. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Animal Models of Bone Loss in Inflammatory Arthritis: from Cytokines in the Bench to Novel Treatments for Bone Loss in the Bedside—a Comprehensive Review

    NARCIS (Netherlands)

    C.H. Alves (Celso Henrique); E. Farrell (Eric); M. Vis (M.); E.M. Colin (Edgar); E.W. Lubberts (Erik)

    2016-01-01

    textabstractThroughout life, bone is continuously remodelled. Bone is formed by osteoblasts, from mesenchymal origin, while osteoclasts induce bone resorption. This process is tightly regulated. During inflammation, several growth factors and cytokines are increased inducing osteoclast

  10. Cytokines in atherosclerosis: an intricate balance

    NARCIS (Netherlands)

    Boshuizen, M.C.S.

    2016-01-01

    Atherosclerosis is the underlying pathology in the majority of clinical manifestations of cardiovascular diseases, which are nowadays the main global cause of mortality. Atherosclerosis is a lipid-driven chronic inflammatory disease of the arterial wall. This inflammatory response, with cytokines as

  11. Cytokine gene expression of peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... Key words: Lipopolysaccharide, lymphocytes, TLRs, cytokines. INTRODUCTION. Lipopolysaccharide (LPS), a predominant glycolipid in the outer membranes of Gam-negative bacteria, stimulates monocyte, macrophages, and neutrophils and increase expression of cell adhesion molecules (Trent et al., ...

  12. Study of cytokines microenvironment during autoimmune diseases ...

    African Journals Online (AJOL)

    22, IL-23, TNF-α and TGF-β) were determined. We used the immunoenzymatic technology to assess the titer of cytokines. We found that there was no significant variation of TNF-α level in normal controls and autoimmune diseases ...

  13. Current status and challenges of cytokine pharmacology

    Czech Academy of Sciences Publication Activity Database

    Zídek, Zdeněk; Anzenbacher, P.; Kmoníčková, Eva

    2009-01-01

    Roč. 157, č. 3 (2009), s. 342-361 ISSN 0007-1188 R&D Projects: GA ČR GA305/08/0535; GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z50390512 Keywords : cytokines * immunotherapy * immunopharmacology Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 5.204, year: 2009

  14. Immunodeficiency secondary to anti-cytokine autoantibodies

    Science.gov (United States)

    Browne, Sarah K.; Holland, Steven M.

    2011-01-01

    Purpose of review Anti-cytokine autoantibodies are an important and emerging mechanism of disease pathogenesis. We will review the clinical and laboratory features of syndromes in which immunodeficiency is caused by or associated with neutralizing anti-cytokine autoantibodies. Recent findings A growing number of patients have been described who demonstrate unique infectious phenotypes associated with neutralizing autoantibodies that target a particular cytokine known to participate in host defense against the offending organism. Examples include anti-granulocyte macrophage-colony stimulating factor (GM-CSF) autoantibodies and pulmonary alveolar proteinosis; anti-interferon(IFN)-γ autoantibodies and disseminated nontuberculous mycobacteria(NTM); anti-(interleukin)IL-6 autoantibodies and severe staphylococcal skin infection; anti-IL-17A, antiIL-17F or anti-IL-22 autoantibodies in patients with mucocutaneous candidiasis in the setting of both the autoimmune polyendocrinopathy, candidiasis, ectodermal dystrophy (APECED) syndrome and in cases of thymoma. Summary Anti-cytokine autoantibodies have manifestations that are diverse, ranging from asymptomatic to life-threatening. These emerging and fascinating causes of acquired immunodeficiency may explain some previously idiopathic syndromes. PMID:20966748

  15. Omics and cytokine discovery in fish

    NARCIS (Netherlands)

    Jacobson, Gregory; Muncaster, Simon; Mensink, Koen; Forlenza, Maria; Elliot, Nick; Broomfield, Grant; Signal, Beth; Bird, Steve

    2017-01-01

    A continued programme of research is essential to overcome production bottlenecks in any aquacultured fish species. Since the introduction of genetic and molecular techniques, the quality of immune research undertaken in fish has greatly improved. Thousands of species specific cytokine genes have

  16. Proinflammatory cytokine responses in patients with psoriasis.

    Science.gov (United States)

    Kouris, Anargyros; Pistiki, Aikaterini; Katoulis, Alexandros; Georgitsi, Marianna; Giatrakou, Sofia; Papadavid, Evangelia; Netea, Mihai G; Stavrianeas, Nikolaos; Giamarellos-Bourboulis, Evangelos J

    2014-01-01

    Psoriasis is one of the most common, immune-mediated, chronic inflammatory skin diseases. Proinflammatory cytokines play an important pathogenetic role at a local level. To assess whether the proinflammatory cytokines IL-1β, IL-6, IL-17, IL-22 and TNF-α are released systemically during psoriasis. Peripheral blood mononuclear cells (PBMCs) were isolated from 30 patients with psoriasis and 30 healthy volunteers. Cytokine production was assessed in supernatants using an enzyme immunoassay after stimulation of PBMCs with microbial stimuli. In addition, flow cytometry was used to determine the subsets of monocytes involved and the intracellular TNF-α production in monocytes. IL-17 levels were significantly higher in the supernatants of PBMCs from psoriatic patients after stimulation with phytohemagglutinin. TNF-α production was also significantly higher in cells from psoriatic patients after stimulation with all stimuli, as compared with health volunteers. Similar changes were not found for the other cytokines. A statistically significant difference was observed between patients and controls for inflammatory CD14(+)/CD16(+) monocytes (ppsoriasis. These results support the concept that there is a systemic, proinflammatory component in psoriasis.

  17. Cytokines and Immune Responses in Murine Atherosclerosis

    NARCIS (Netherlands)

    Kusters, Pascal J. H.; Lutgens, Esther

    2015-01-01

    Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and

  18. Effect of TIM-3 Blockade on the Immunophenotype and Cytokine Profile of Murine Uterine NK Cells.

    Directory of Open Access Journals (Sweden)

    Sudipta Tripathi

    Full Text Available NK cells are the most abundant lymphocyte population in the feto-maternal interface during gestation. The uterine NK cells (uNK are transient, have a unique immunophenotype and produce a number of cytokines. These cytokines play an important role in establishment and maintenance of vascular remodeling and tolerance associated with successful pregnancy. The uNK cells also express TIM-3 during gestation and blockade of TIM-3 expression results in fetal loss in mice. In this study we determined the effect of TIM-3 blockade on uNK cells. Specifically we observed surface receptor phenotype and cytokine production by uNK cells following TIM-3 blockade. Our results show that TIM-3 plays a role in regulating the uNK cells and contributes to the maintenance of tolerance at the feto-maternal interface.

  19. Role of Common-Gamma Chain Cytokines in NK Cell Development and Function: Perspectives for Immunotherapy

    Directory of Open Access Journals (Sweden)

    Raffaella Meazza

    2011-01-01

    Full Text Available NK cells are components of the innate immunity system and play an important role as a first-line defense mechanism against viral infections and in tumor immune surveillance. Their development and their functional activities are controlled by several factors among which cytokines sharing the usage of the common cytokine-receptor gamma chain play a pivotal role. In particular, IL-2, IL-7, IL-15, and IL-21 are the members of this family predominantly involved in NK cell biology. In this paper, we will address their role in NK cell ontogeny, regulation of functional activities, development of specialized cell subsets, and acquisition of memory-like functions. Finally, the potential application of these cytokines as recombinant molecules to NK cell-based immunotherapy approaches will be discussed.

  20. Association between the serotonin transporter and cytokines: Implications for the pathophysiology of bipolar disorder.

    Science.gov (United States)

    Chou, Yuan-Hwa; Hsieh, Wen-Chi; Chen, Li-Chi; Lirng, Jiing-Feng; Wang, Shyh-Jen

    2016-02-01

    Reduced brain serotonin transporter (SERT) has been demonstrated in bipolar disorder (BD). The aim of this study was to explore the potential role of cytokines on reduced SERT in BD. Twenty-eight BD type I patients and 28 age- and gender-matched healthy controls (HCs) were recruited. Single photon emission computed tomography with the radiotracer 123I ADAM was used for SERT imaging. Regions of interest included the midbrain, thalamus, putamen and caudate. Seven cytokines, including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1α (IL-1α), IL-1β, IL-4, IL-6 and IL-10, were measured using an enzyme linked immune-sorbent assay. SERT availability in the midbrain and caudate was significantly lower in BD compared to HCs. IL-1β was significantly lower, whereas IL-10 was significantly higher in BD compared to HCs. Multiple linear regression analyses revealed that there were associations between cytokines, IL-1α, IL-1β, IL-6 and SERT availability in the midbrain but not in the thalamus, putamen and caudate. Furthermore, linear mixed effect analyses demonstrated that these associations were not different between HCs and BD. While many cytokines have been proposed to be important in the pathophysiology of BD, our results demonstrated that significant associations between cytokines and SERT availability may explain the role of cytokines in mood regulation. However, these associations were not different between HCs and BD, which imply the role of these cytokines is not specific for BD. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. T cell cytokine gene polymorphisms in canine diabetes mellitus.

    Science.gov (United States)

    Short, Andrea D; Catchpole, Brian; Kennedy, Lorna J; Barnes, Annette; Lee, Andy C; Jones, Chris A; Fretwell, Neale; Ollier, William E R

    2009-03-15

    Insulin-deficiency diabetes in dogs shares some similarities with human latent autoimmune diabetes of adults (LADA). Canine diabetes is likely to have a complex pathogenesis with multiple genes contributing to overall susceptibility and/or disease progression. An association has previously been shown between canine diabetes and MHC class II genes, although other genes are also likely to contribute to the genetic risk. Potential diabetes susceptibility genes include immuno-regulatory TH1/TH2 cytokines such as IFNgamma, IL-12, IL-4 and IL-10. We screened these candidate genes for single nucleotide polymorphisms (SNPs) in a range of different dog breeds using dHPLC analysis and DNA sequencing. Thirty-eight of the SNPs were genotyped in crossbreed dogs and seven other breed groups (Labrador Retriever, West Highland White Terrier, Collie, Schnauzer, Cairn Terrier, Samoyed and Cavalier King Charles Spaniel), which demonstrated substantial intra-breed differences in allele frequencies. When SNPs were examined for an association with diabetes by case:control analysis significant associations were observed for IL-4 in three breeds, the Collie, Cairn Terrier and Schnauzer and for IL-10 in the Cavalier King Charles Spaniel. These results suggest that canine cytokine genes regulating the TH1/TH2 immune balance might play a contributory role in determining susceptibility to diabetes in some breeds.

  2. DAMP-TLR-cytokine axis dictates the fate of tumor.

    Science.gov (United States)

    Patidar, Ashok; Selvaraj, Sathishkumar; Sarode, Aditya; Chauhan, Prashant; Chattopadhyay, Debprasad; Saha, Bhaskar

    2017-10-09

    Random mutations leading to loss of cell cycle control is not a rare occurrence in an organism but the mutated cells are recognized and eliminated preventing the development of a tumor. These potentially tumorigenic cells release damage-associated molecular patterns (DAMPs), which are recognized by toll-like receptors (TLRs) on macrophages and dendritic cells. The initial TLR-DAMP interactions lead to different responses such as altered antigen presentation and cytokine release that directly affect T cell activation and removal of the tumorigenic cells. The indirect effects of TLR-DAMP interaction include chemokine-directed altered T cell trafficking, angiogenesis for both T cell infiltration and tumor cell metastasis, and alteration of intra-tumoral milieu contributing to the development of tumor cells heterogeneity. Thus, the initial TLR-DAMP interaction has a set of local effects that modulate tumor cell growth and heterogeneity and a disseminating set of central effects that dynamically affect T cell trafficking and functions. Herein, we argue that the DAMP-TLR-cytokine axis in the tumor microenvironment serves as the mainstay that orchestrates and regulates the pro- and anti-tumor elements which dynamically interact between themselves eventuating in tumor regression or growth. The knowledge of this TLR-based immuno-surveillance framework is a key to developing a novel immunotherapy against cancer. Copyright © 2017. Published by Elsevier Ltd.

  3. Neuropathic pain and cytokines: current perspectives

    Directory of Open Access Journals (Sweden)

    Clark AK

    2013-11-01

    Full Text Available Anna K Clark, Elizabeth A Old, Marzia Malcangio Wolfson Centre for Age Related Diseases, King's College London, London, UK Abstract: Neuropathic pain represents a major problem in clinical medicine because it causes debilitating suffering and is largely resistant to currently available analgesics. A characteristic of neuropathic pain is abnormal response to somatic sensory stimulation. Thus, patients suffering peripheral neuropathies may experience pain caused by stimuli which are normally nonpainful, such as simple touching of the skin or by changes in temperature, as well as exaggerated responses to noxious stimuli. Convincing evidence suggests that this hypersensitivity is the result of pain remaining centralized. In particular, at the first pain synapse in the dorsal horn of the spinal cord, the gain of neurons is increased and neurons begin to be activated by innocuous inputs. In recent years, it has become appreciated that a remote damage in the peripheral nervous system results in neuronal plasticity and changes in microglial and astrocyte activity, as well as infiltration of macrophages and T cells, which all contribute to central sensitization. Specifically, the release of pronociceptive factors such as cytokines and chemokines from neurons and non-neuronal cells can sensitize neurons of the first pain synapse. In this article we review the current evidence for the role of cytokines in mediating spinal neuron–non-neuronal cell communication in neuropathic pain mechanisms following peripheral nerve injury. Specific and selective control of cytokine-mediated neuronal–glia interactions results in attenuation of the hypersensitivity to both noxious and innocuous stimuli observed in neuropathic pain models, and may represent an avenue for future therapeutic intervention. Keywords: anti-inflammatory cytokines, proinflammatory cytokines, microglia, astrocytes, first pain synapse

  4. Inflammatory cytokines as biomarkers in heart failure.

    Science.gov (United States)

    Ueland, Thor; Gullestad, Lars; Nymo, Ståle H; Yndestad, Arne; Aukrust, Pål; Askevold, Erik T

    2015-03-30

    Inflammation has been implicated in the pathogenesis of heart failure (HF). In addition to their direct involvement as mediators in the pathogenesis of HF, inflammatory cytokines and related mediators could also be suitable markers for risk stratification and prognostication in HF patients. Many reports have suggested that inflammatory cytokines may predict adverse outcome in these patients. However, most studies have been limited in sample size and lacking full adjustment with the most recent and strongest biochemical predictor such as NT-proBNP and high sensitivity troponins. Furthermore, a number of pre-analytical and analytical aspects of cytokine measurements may limit their use as biomarkers. This review focuses on technical, informative and practical considerations concerning the clinical use of inflammatory cytokines as prognostic biomarkers in HF. We focus on the predictive value of tumor necrosis factor (TNF) α, the TNF family receptors sTNFR1 and osteoprotegerin, interleukin (IL)-6 and its receptor gp130, the chemokines MCP-1, IL-8, CXCL16 and CCL21 and the pentraxin PTX-3 in larger prospective fully adjusted studies. No single inflammatory cytokine provides sufficient discrimination to justify the transition to everyday clinical use as a prognosticator in HF. However, while subjecting potential new HF markers to rigorous comparisons with "gold-standard" markers, such as NT-proBNP, using receiver operating characteristics (ROCs) and HF risk models, makes sense from a clinical standpoint, it may pose a threat to a broadening of mechanistic insight if the new markers are dismissed solely on account of lower statistical power. Copyright © 2014. Published by Elsevier B.V.

  5. Comparison of ophthalmic sponges and extraction buffers for quantifying cytokine profiles in tears using Luminex technology

    Science.gov (United States)

    Inic-Kanada, Aleksandra; Nussbaumer, Andrea; Montanaro, Jacqueline; Belij, Sandra; Schlacher, Simone; Stein, Elisabeth; Bintner, Nora; Merio, Margarethe; Zlabinger, Gerhard J.

    2012-01-01

    measurement of proinflammatory cytokines, Th1/Th2 distinguishing cytokines, nonspecific acting cytokines, and chemokines. Results We demonstrated the following: (i) 25 cytokines/chemokines expressed highly variable interactions with buffers and matrices. Several buffers enabled recovery of similar cytokine values (regulated and normal T cell expressed and secreted [RANTES], interleukin [IL]-13, IL-6, IL-8, IL-2R, and granulocyte-macrophage colony-stimulating factor [GM-CSF]); others were highly variable (monocyte chemotactic protein-1 [MCP-1], monokine induced by interferon-gamma [MIG], IL-1β, IL-4, IL-7, and eotaxin). (ii) Various extraction buffers displayed significantly different recovery rates on the same sponge for the same cytokine/chemokine. (iii) The highest recovery rates were obtained with the Merocel ophthalmic sponge except for tumor necrosis factor-α: the Weck-Cel ophthalmic sponge showed the best results, either with cytokine standards loaded onto sponges or with tears collected from the inner canthus of the eye, using the sponge. (iv) IL-5, IL-10, and interferon-α were not detected in any tear sample from four normal human subjects. Twenty-two cytokines/chemokines that we detected were extracted from the Merocel sponge to a satisfactory recovery percentage. The recovery of IL-7 was significantly lower in the extracted Merocel sponge compared to the diluted tear samples. The cytokine/chemokine extraction from tears showed the same pattern of extraction that we observed for extracting the standards. Conclusions Simultaneous measurement of various cytokines using ophthalmic sponges yielded diverse results for various cytokines as the level of extraction differs noticeably for certain cytokines. A second set of controls (standard curves “with sponges”) should be used to delineate the extent of extraction for each cytokine to be analyzed. Many cytokines/chemokines were detected in tear samples collected with the Merocel sponge, including many that have been

  6. Th1-, Th2-, and Th17-associated cytokine expression in hypopharyngeal carcinoma and clinical significance.

    Science.gov (United States)

    Chen, Xuemei; Wang, Junfu; Wang, Rui; Su, Qinghong; Luan, Junwen; Huang, Haiyan; Zhou, Peng; Liu, Jinsheng; Xu, Xiaoqun

    2016-02-01

    Th0 cells differentiate into Th1 or Th2 depending on multiple transcription factors acting on specific time points to regulate gene expression. Th17 cells, a subset of IL-17-producing T cells distinct from Th1 or Th2 cells, have been described as key players in inflammation and autoimmune diseases as well as cancer development. In the present study, 53 patients with hypopharyngeal cancer were included. The expression levels of Th1-, Th2- and Th17-associated cytokines in hypopharyngeal cancer tissues and pericarcinoma tissues were detected. The relationship between Th1, Th2, or Th17 infiltration and metastasis was studied. Our results showed that the mRNA and protein expressions of Th1 cytokines were lower, while the expressions of Th2 and Th17 cytokines were higher in tumor tissues, and the intensity of expression was strengthened with clinical stage increasing. Cancer tissues had higher level expressions of Th2 and Th17 cytokines than that of pericarcinoma tissues. From the above data, we speculated that high expressions of Th2- and Th17-associated cytokines in hypopharyngeal carcinoma may contribute to cancer development and metastasis.

  7. The effects of age and gender on plasma levels of 63 cytokines.

    Science.gov (United States)

    Larsson, Anders; Carlsson, Lena; Gordh, Torsten; Lind, Anne-Li; Thulin, Måns; Kamali-Moghaddam, Masood

    2015-10-01

    Cytokines play important roles as regulators of cell functions, and over the last decades a number of cytokine assays have been developed. The aim of the present study was to investigate the effects of age and gender on a large number of cytokines. Plasma samples were collected from 33 healthy blood donors. The samples were analyzed using a multiplex proximity extension assay (PEA) allowing simultaneous measurement of 92 cytokines and four technical controls. Biomarkers with less than 80% quantitative results were excluded leaving 63 cytokines that were analyzed for the effects of gender and age. The plasma level of three of the investigated biomarkers (DNER, MCP-4 and MMP-10) were found to be significantly different for the two genders (adjusted p-valuecytokine assays. CXCL5 and TNFB were significantly higher in females, while the other markers with significant gender-dependent differences were higher in males. For the markers that were significantly associated with age, only CXCL6 was found to decrease with age, while the other biomarkers increased with age. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Higher Baseline Proinflammatory Cytokines Mark Poor Antidepressant Response in Bipolar Disorder.

    Science.gov (United States)

    Benedetti, Francesco; Poletti, Sara; Hoogenboezem, Thomas A; Locatelli, Clara; de Wit, Harm; Wijkhuijs, Annemarie J M; Colombo, Cristina; Drexhage, Hemmo A

    The clinical relevance of raised levels of circulating cytokines in bipolar disorder is still unclear. Cytokines influence neurotransmitters, neuroplasticity, and white matter integrity. An inconsistent literature suggests that higher cytokine levels could hamper antidepressant response. Total sleep deprivation (TSD) and light therapy (LT) prompt a rapid antidepressant response and can provide a model treatment to study predictors of response. We studied at baseline 15 immune-regulating compounds in 37 consecutively admitted inpatients with a major depressive episode in the course of bipolar disorder (DSM-5 criteria) and in 24 controls. Thirty-one patients (84%) had a lifetime history of drug resistance. Patients were administered 3 TSD + LT cycles in 1 week (study period: 2010-2012). Data were analyzed with age- and false-discovery-rate-corrected analysis of variance and were tested as predictors in a regressive model. Twenty-three patients (62%) responded to treatment (Inventory of Depressive Symptomatology IDS-C score cytokines (Q² = 0.15), and a high factor score significantly predicted worse response (b = -0.692; W = 4.34, P = .037). A higher body mass index correlated with higher cytokines (r = 0.430, P = .010), indirectly hampering response (b = -0.0192, P = .013). Proinflammatory compounds reflecting an M1-like proinflammatory state of monocytes/macrophages are associated with a poor response to antidepressant TSD + LT treatment in bipolar depression.

  9. [Development of Researches on Cytokine Mechanisms in Analgesia and Anti-inflammation in Acupuncture Therapy for Rheumatoid Arthritis].

    Science.gov (United States)

    Hong, Shou-Hai; Ding, Sha-Sha; Zhang, Kuo; Xu, Yuan; Zhao, Xue; Xuan, Li-Hua; Guo, Yi

    2016-10-25

    Cytokines are closely related to the occurrence and development of rheumatoid arthritis(RA). Acupuncture exerts anti-inflammatory and analgesic effects via elevating anti-inflammatory cytokine level and reducing pro-inflammatory cytokine level and regulating Th 1/Th 2 balance, which reflects the dual directional regulatory effect of acupuncture. However, problems exist in the current researches, such as inadequate depth, limited breadth and not so up-to-date research focus. The mediocre research level and the phenomena of some contradictory results among studies also need being concerned. Therefore, progress may be attained if a holistic, dynamic and networked study is conducted on the influence of acupuncture on cytokines by combining the latest progress in the mechanisms of network of cytokines and neuroendocrine immune network, and high throughput cytokine capture assay. In this way, the mechanism of cytokines in multi-targets (such as local joints, peripheral blood circulation, central nervous system) involving the effects of acupuncture in improving RA will be known more.

  10. Heroin use is associated with suppressed pro-inflammatory cytokine response after LPS exposure in HIV-infected individuals.

    Directory of Open Access Journals (Sweden)

    Hinta Meijerink

    Full Text Available Opioid use is associated with increased incidence of infectious diseases. Although experimental studies have shown that opioids affect various functions of immune cells, only limited data are available from human studies. Drug use is an important risk factor for HIV transmission; however no data are available whether heroin and/or methadone modulate immune response. Therefore, we examined the effect of heroin and methadone use among HIV-infected individuals on the production of cytokines after ex vivo stimulation with various pathogens.Treatment naïve HIV-infected individuals from Indonesia were recruited. Several cohorts of individuals were recruited: 1 using heroin 2 receiving methadone opioid substitution 3 using heroin over 1 year ago and 4 controls (never used opioids. Whole blood was stimulated with Mycobacterium tuberculosis, Candida albicans and LPS for 24 to 48 hours. Cytokine production (IL-1 β, IL-6, IL-10, IFN-α, IFN-γ and TNF-α was determined using multiplex beads assay.Among 82 individuals, the cytokine levels in unstimulated samples did not differ between groups. Overall, heroin users had significantly lower cytokine response after exposure to LPS (p<0.05. After stimulation with either M. tuberculosis or C. albicans the cytokine production of all groups were comparable.The cytokine production after exposure to LPS is significantly down-regulated in HIV-infected heroin users. Interesting, methadone use did not suppress cytokine response, which could have implications guidelines of opioid substitution.

  11. Xuebijing injection alleviates cytokine-induced inflammatory liver injury in CLP-induced septic rats through induction of suppressor of cytokine signaling 1.

    Science.gov (United States)

    Li, Ailin; Li, Jing; Bao, Yuhua; Yuan, Dingshan; Huang, Zhongwei

    2016-09-01

    Dysregulation of inflammatory cytokines and liver injury are associated with the pathogenesis of sepsis. Xuebijing injection, a Chinese herbal medicine, has been used in the treatment of sepsis and can contribute to the improvement of patients' health. However, the underlying molecular mechanisms are not yet clearly illuminated. In the present study, a septic rat model with liver injury was established by the cecal ligation and puncture (CLP) method. Histological alterations to the liver, activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), levels of inflammatory cytokine secretion and the expression of suppressors of cytokine signaling 1 (SOCS-1) in the CLP model rats with and without Xuebijing treatment were determined. The results showed that Xuebijing injection ameliorated the pathological changes in liver tissues caused by sepsis, and reduced the sepsis-induced elevation in serum ALT and AST levels. Furthermore, Xuebijing injection markedly downregulated the expression of tumor necrosis factor α and interleukin (IL)-6, and upregulated the expression of IL-10. More importantly, SOCS1 expression levels at the protein and mRNA levels were further increased by Xuebijing. These findings demonstrate that Xuebijing injection can significantly alleviate liver injury in CLP-induced septic rats via the regulation of inflammatory cytokine secretion and the promotion of SOCS1 expression. The protective effects of Xuebijing injection suggest its therapeutic potential in the treatment of CLP-induced liver injury.

  12. Cytokines: Roles in atherosclerosis disease progression and potential therapeutic targets

    Science.gov (United States)

    Moss, Joe W. E.; Ramji, Dipak P.

    2017-01-01

    Atherosclerosis, the primary cause of cardiovascular disease (CVD), is a chronic inflammatory disorder in the walls of medium and large arteries. CVD is currently responsible for about one in three global deaths and this is expected to rise in the future due to an increase in the prevalence of obesity and diabetes. Current therapies for atherosclerosis mainly modulate lipid homeostasis and whilst successful at reducing the risk of a CVD-related death, they are associated with considerable residual risk and various side effects. There is therefore a need for alternative therapies aimed at regulating inflammation in order to reduce atherogenesis. This review will highlight the key role cytokines play during disease progression as well as potential therapeutic strategies to target them. PMID:27357616

  13. Cytokine Correlations in Youth with Tic Disorders

    Science.gov (United States)

    Parker-Athill, E. Carla; Ehrhart, Jared; Tan, Jun

    2015-01-01

    Abstract Background: Studies have noted immunological disruptions in patients with tic disorders, including increased serum cytokine levels. This study aimed to determine whether or not cytokine levels could be correlated with tic symptom severity in patients with a diagnosed tic disorder. Methods: Twenty-one patients, ages 4–17 years (average 10.63±2.34 years, 13 males), with a clinical diagnosis of Tourette's syndrome (TS) or chronic tic disorder (CTD), were selected based on having clinic visits that coincided with a tic symptom exacerbation and a remission. Ratings of tic severity were assessed using the Yale Global Tic Severity Scale (YGTSS) and serum cytokine levels (interleukin [IL]-2, IL-4, IL-5, IL-10, IL-12p70, IL-13, interferon [IFN]-γ, tumor necrosis factor [TNF]-α, and granulocyte macrophage-colony stimulating factor [GM-CSF]) were measured using Luminex xMAP technology. Results: During tic symptom exacerbation, patients had higher median serum TNF-α levels (z=−1.962, p=0.05), particularly those on antipsychotics (U=9.00, p=0.033). Increased IL-13 was also associated with antipsychotic use during exacerbation (U=4.00, p=0.043) despite being negatively correlated to tic severity scores (ρ=−0.599, p=018), whereas increased IL-5 was associated with antibiotic use (U=6.5, p=0.035). During tic symptom remission, increased serum IL-4 levels were associated with antipsychotic (U=6.00, p=0.047) and antibiotic (U=1.00, p=0.016) use, whereas increased IL-12p70 (U=4.00, p=0.037) was associated with antibiotic use. Conclusions: These findings suggest a role for cytokine dysregulation in the pathogenesis of tic disorders. It also points toward the mechanistic involvement and potential diagnostic utility of cytokine monitoring, particularly TNF-α levels. Larger, systematic studies are necessary to further delineate the role of cytokines and medication influences on immunological profiling in tic disorders. PMID:25658821

  14. Cytokine correlations in youth with tic disorders.

    Science.gov (United States)

    Parker-Athill, E Carla; Ehrhart, Jared; Tan, Jun; Murphy, Tanya K

    2015-02-01

    Studies have noted immunological disruptions in patients with tic disorders, including increased serum cytokine levels. This study aimed to determine whether or not cytokine levels could be correlated with tic symptom severity in patients with a diagnosed tic disorder. Twenty-one patients, ages 4-17 years (average 10.63±2.34 years, 13 males), with a clinical diagnosis of Tourette's syndrome (TS) or chronic tic disorder (CTD), were selected based on having clinic visits that coincided with a tic symptom exacerbation and a remission. Ratings of tic severity were assessed using the Yale Global Tic Severity Scale (YGTSS) and serum cytokine levels (interleukin [IL]-2, IL-4, IL-5, IL-10, IL-12p70, IL-13, interferon [IFN]-γ, tumor necrosis factor [TNF]-α, and granulocyte macrophage-colony stimulating factor [GM-CSF]) were measured using Luminex xMAP technology. During tic symptom exacerbation, patients had higher median serum TNF-α levels (z=-1.962, p=0.05), particularly those on antipsychotics (U=9.00, p=0.033). Increased IL-13 was also associated with antipsychotic use during exacerbation (U=4.00, p=0.043) despite being negatively correlated to tic severity scores (ρ=-0.599, p=018), whereas increased IL-5 was associated with antibiotic use (U=6.5, p=0.035). During tic symptom remission, increased serum IL-4 levels were associated with antipsychotic (U=6.00, p=0.047) and antibiotic (U=1.00, p=0.016) use, whereas increased IL-12p70 (U=4.00, p=0.037) was associated with antibiotic use. These findings suggest a role for cytokine dysregulation in the pathogenesis of tic disorders. It also points toward the mechanistic involvement and potential diagnostic utility of cytokine monitoring, particularly TNF-α levels. Larger, systematic studies are necessary to further delineate the role of cytokines and medication influences on immunological profiling in tic disorders.

  15. Prospects for cytokine and chemokine biotherapy.

    Science.gov (United States)

    Oppenheim, J J; Murphy, W J; Chertox, O; Schirrmacher, V; Wang, J M

    1997-12-01

    Cytokines with immunostimulating effects have the capacity to induce tumor immunity in animal models, whereas some cytokines interfere with tumor growth based on their angiostatic effects. Despite these capabilities, cytokines, such as IFN-, IFN-, tumor necrosis factor, interleukin (IL)-1, and IL-2, have had limited clinical efficacy and many undesirable side effects. In preclinical models, cytokines can even promote tumor growth and increase metastatic spread. Although chemokines have had limited clinical evaluation, studies of animal models show that they can also have tumor-suppressive or tumor-enhancing effects. In mice, chemokines, such as IP-10, RANTES, and TCA3, have resulted in tumor regression and immunity to subsequent tumor challenge. Those chemokines that are angiostatic (e.g., PF4, IP-10, and MIG) can also induce tumor regression by reducing the tumor blood supply. Conversely, IL-8, which is angiogenic, can promote tumor growth. Our studies show that nasopharyngeal cell line cells (FADU) show a chemotactic as well as a proliferative response to MCP-1. In addition, a variant murine T cell lymphoma cell line Esb-MP, unlike the parental variant Esb, was selectively chemoattracted by murine MCP-1/JE. When injected s.c. into mice, the Esb-MP variant metastasized to the kidney with much higher frequency than the Esb variant. Both cultured kidneys from normal mice and a mesangial cell line constitutively produced chemoattractants that acted on Esb-MP but not Esb parental cells. Purification to homogeneity of these chemoattractants led to the identification of RANTES and JE. These results demonstrate that some chemokines may promote tumor growth and organ-specific metastatic spread of those tumors that have adapted and become responsive to chemokines. Finally, tumors appear to use numerous adaptive mechanisms to subvert and suppress the immune system. More effective therapy with cytokines and chemokines will require better characterization of the means by

  16. Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4.

    Directory of Open Access Journals (Sweden)

    Katharine J Goodall

    Full Text Available Heparanase is a β-D-endoglucuronidase that cleaves heparan sulfate (HS, facilitating degradation of the extracellular matrix (ECM and the release of HS-bound biomolecules including cytokines. The remodeling of the ECM by heparanase is important for various physiological and pathological processes, including inflammation, wound healing, tumour angiogenesis and metastasis. Although heparanase has been proposed to facilitate leukocyte migration through degradation of the ECM, its role in inflammation by regulating the expression and release of cytokines has not been fully defined. In this study, the role of heparanase in regulating the expression and release of cytokines from human and murine immune cells was examined. Human peripheral blood mononuclear cells treated ex vivo with heparanase resulted in the release of a range of pro-inflammatory cytokines including IL-1β, IL-6, IL-8, IL-10 and TNF. In addition, mouse splenocytes treated ex vivo with heparanase resulted in the release of IL-6, MCP-1 and TNF. A similar pattern of cytokine release was also observed when cells were treated with soluble HS. Furthermore, heparanase-induced cytokine release was abolished by enzymatic-inhibitors of heparanase, suggesting this process is mediated via the enzymatic release of cell surface HS fragments. As soluble HS can signal through the Toll-like receptor (TLR pathway, heparanase may promote the upregulation of cytokines through the generation of heparanase-cleaved fragments of HS. In support of this hypothesis, mouse spleen cells lacking the key TLR adaptor molecule MyD88 demonstrated an abolition of cytokine release after heparanase stimulation. Furthermore, TLR4-deficient spleen cells showed reduced cytokine release in response to heparanase treatment, suggesting that TLR4 is involved in this response. Consistent with these observations, the pathway involved in cytokine upregulation was identified as being NF-κB-dependent. These data identify a new

  17. Characterization and potential clinical applications of autoantibodies against cytokines

    DEFF Research Database (Denmark)

    de Lemos Rieper, Carina; Galle, Pia; Hansen, Morten Bagge

    2009-01-01

    Autoantibodies recognizing cytokines arise in certain patients during the course of therapy with recombinant cytokines, although they may arise spontaneously as well. They are typically high avidity and in vitro neutralizing IgG antibodies present in picomolar to nanomolar concentrations. Methodo....... There are many ways in which the autoantibodies could be naturally induced, and they have been experimentally induced with ease. Therefore, a new therapeutic concept of inducing cytokine autoantibodies via anti-cytokine vaccination is currently rapidly emerging....

  18. Analysis of the cytokine profile in the duodenal mucosa of refractory coeliac disease patients.

    Science.gov (United States)

    Caruso, Roberta; Marafini, Irene; Sedda, Silvia; Del Vecchio Blanco, Giovanna; Giuffrida, Paolo; MacDonald, Thomas T; Corazza, Gino Roberto; Pallone, Francesco; Di Sabatino, Antonio; Monteleone, Giovanni

    2014-03-01

    RCD [refractory CD (coeliac disease)] is characterized by severe symptoms/signs of malabsorption and mucosal damage unresponsive to a GFD (gluten-free diet). The pathogenesis of RCD is not fully understood. In the present paper, we have characterized the mucosal profile of effector cytokines in RCD. Duodenal biopsies were taken from patients with RCD, patients with active CD and normal controls and were analysed for inflammatory cytokines by real-time PCR and ELISA. IFN (interferon)-γ and IL (interleukin)-21 transcripts were increased in active CD patients but not in RCD patients as compared with normal controls, whereas IL-17A RNA was up-regulated in both active CD and RCD. No significant increase in IL-15 transcripts was observed in both active CD and RCD, whereas IL-15 protein was increased in active CD. IL-6 and TNF (tumour necrosis factor)-α were up-regulated only in RCD. As a proof, we present the case of a woman affected by RCD who responded to anti-TNF-α treatment with improvement of malabsorptive symptoms/signs but no healing of mucosal lesions. The findings indicate that the profile of mucosal effector cytokines differs between RCD and active CD and suggest that TNF-α, IL-6 and IL-17A, but not Th1-type cytokines, could drive the detrimental response in this condition.

  19. Interaction of Dietary Fatty Acids with Tumour Necrosis Factor Family Cytokines during Colon Inflammation and Cancer

    Science.gov (United States)

    Straková, Nicol; Vaculová, Alena Hyršlová; Tylichová, Zuzana; Šafaříková, Barbora; Kozubík, Alois

    2014-01-01

    Intestinal homeostasis is precisely regulated by a number of endogenous regulatory molecules but significantly influenced by dietary compounds. Malfunction of this system may result in chronic inflammation and cancer. Dietary essential n-3 polyunsaturated fatty acids (PUFAs) and short-chain fatty acid butyrate produced from fibre display anti-inflammatory and anticancer activities. Both compounds were shown to modulate the production and activities of TNF family cytokines. Cytokines from the TNF family (TNF-α, TRAIL, and FasL) have potent inflammatory activities and can also regulate apoptosis, which plays an important role in cancer development. The results of our own research showed enhancement of apoptosis in colon cancer cells by a combination of either docosahexaenoic acid (DHA) or butyrate with TNF family cytokines, especially by promotion of the mitochondrial apoptotic pathway and modulation of NFκB activity. This review is focused mainly on the interaction of dietary PUFAs and butyrate with these cytokines during colon inflammation and cancer development. We summarised recent knowledge about the cellular and molecular mechanisms involved in such effects and outcomes for intestinal cell behaviour and pathologies. Finally, the possible application for the prevention and therapy of colon inflammation and cancer is also outlined. PMID:24876678

  20. Fetuin-A induces cytokine expression and suppresses adiponectin production.

    Directory of Open Access Journals (Sweden)

    Anita M Hennige

    Full Text Available BACKGROUND: The secreted liver protein fetuin-A (AHSG is up-regulated in hepatic steatosis and the metabolic syndrome. These states are strongly associated with low-grade inflammation and hypoadiponectinemia. We, therefore, hypothesized that fetuin-A may play a role in the regulation of cytokine expression, the modulation of adipose tissue expression and plasma concentration of the insulin-sensitizing and atheroprotective adipokine adiponectin. METHODOLOGY AND PRINCIPAL FINDINGS: Human monocytic THP1 cells and human in vitro differenttiated adipocytes as well as C57BL/6 mice were treated with fetuin-A. mRNA expression of the genes encoding inflammatory cytokines and the adipokine adiponectin (ADIPOQ was assessed by real-time RT-PCR. In 122 subjects, plasma levels of fetuin-A, adiponectin and, in a subgroup, the multimeric forms of adiponectin were determined. Fetuin-A treatment induced TNF and IL1B mRNA expression in THP1 cells (p<0.05. Treatment of mice with fetuin-A, analogously, resulted in a marked increase in adipose tissue Tnf mRNA as well as Il6 expression (27- and 174-fold, respectively. These effects were accompanied by a decrease in adipose tissue Adipoq mRNA expression and lower circulating adiponectin levels (p<0.05, both. Furthermore, fetuin-A repressed ADIPOQ mRNA expression of human in vitro differentiated adipocytes (p<0.02 and induced inflammatory cytokine expression. In humans in plasma, fetuin-A correlated positively with high-sensitivity C-reactive protein, a marker of subclinical inflammation (r = 0.26, p = 0.01, and negatively with total- (r = -0.28, p = 0.02 and, particularly, high molecular weight adiponectin (r = -0.36, p = 0.01. CONCLUSIONS AND SIGNIFICANCE: We provide novel evidence that the secreted liver protein fetuin-A induces low-grade inflammation and represses adiponectin production in animals and in humans. These data suggest an important role of fatty liver in the pathophysiology of insulin resistance and

  1. Cytokine-producing T cell subsets in human leishmaniasis

    DEFF Research Database (Denmark)

    Kemp, Kåre

    2000-01-01

    Leishmania specific Th1/Th2 cells have been identified in humans as well as in mice. There is a correlation between the clinical outcome of the infection and the cytokine response profile. Generally, the production of Th2 cytokines leads to severe infection, whereas the production of Th1 cytokine...

  2. Cytokines and Other Mediators in Alopecia Areata

    Directory of Open Access Journals (Sweden)

    Stamatis Gregoriou

    2010-01-01

    Full Text Available Alopecia areata, a disease of the hair follicles with multifactorial etiology and a strong component of autoimmune origin, has been extensively studied as far as the role of several cytokines is concerned. So far, IFN-, interleukins, TNF-, are cytokines that are well known to play a major role in the pathogenesis of the disease, while several studies have shown that many more pathways exist. Among them, MIG, IP-10, BAFF, HLA antigens, MIG, as well as stress hormones are implicated in disease onset and activity. Within the scope of this paper, the authors attempt to shed light upon the complexity of alopecia areata underlying mechanisms and indicate pathways that may suggest future treatments.

  3. Rosacea: the Cytokine and Chemokine Network

    Science.gov (United States)

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Steinhoff, Martin; Homey, Bernhard

    2013-01-01

    Rosacea is one of the most common dermatoses of adults. Recent studies have improved our understanding of the pathophysiology of rosacea. Current concepts suggest that known clinical trigger factors of rosacea such as UV radiation, heat, cold, stress, spicy food, and microbes modulate Toll-like receptor signaling, induce reactive oxygen species, as well as enhance antimicrobial peptide and neuropeptide production. Downstream of these events cytokines and chemokines orchestrate an inflammatory response that leads to the recruitment and activation of distinct leukocyte subsets and induces the characteristic histopathological features of rosacea. Here we summarize the current knowledge of the cytokine and chemokine network in rosacea and propose pathways that may be of therapeutic interest. PMID:22076326

  4. Aberrant Production of Th1/Th2/Th17-Related Cytokines in Serum of C57BL/6 Mice after Short-Term Formaldehyde Exposure

    Directory of Open Access Journals (Sweden)

    Haiyan Wei

    2014-09-01

    Full Text Available Previous studies have shown that formaldehyde (FA could cause immunotoxicity by changing the number of T lymphocytes and that cytokines play a pivotal role in the regulation of T lymphocytes. However, the previously used cytokine detection methods are difficult to use in the measurement of several cytokines in a small amount of sample for one test. Therefore, the cytometric bead array (CBA technique was used. CBA showed better analytical efficiency and sensitivity than the previous methods. C57BL/6 mice were exposed to the control (normal saline, low FA concentration (0.5 mg/kg, and high FA concentration (2 mg/kg for 1 week or 1 month. The contents of cytokines, including Th1-related cytokines (IL-2, IFN-γ, and tumor necrosis factor, Th2-related cytokines (IL-4, IL-6, and IL-10, and Th17-related cytokines (IL-17A, were measured by using the BD FACS Canto II Flow Cytometer and analyzed by FCAP ArrayTM Software. Th1/Th2/Th17-related cytokines showed a slightly decreasing trend after low FA exposure. Conversely, a significantly increasing trend was found after high FA exposure. Th1/Th2/Th17-related cytokines all serve important functions in the immune reactions in mice after FA exposure.

  5. Original Research Rotavirus antigen, cytokine, and neutralising ...

    African Journals Online (AJOL)

    cytokines examined were IL-1β, IL-2, IL-7, IL-12, IL-. 17, IFN-γ, TNF-α, IL-4, IL-5, IL-6, IL-10, IL-13, IL-8,. G-CSF, GM-CSF, MCP-1(MCAF), and MIP-1β. Rotavirus-. Table 1: Comparison of demographic and rotavirus antigenaemia data by HIV status among children with rotavirus diarrhoea in Blantyre, Malawi. Variables.

  6. Cytokine Expression in Homozygous Sickle Cell Anaemia

    Directory of Open Access Journals (Sweden)

    Nnodim Johnkennedy

    2015-01-01

    Full Text Available Background: Sickle cell anaemia is an inherited disease in which the red blood cells become rigid and sticky, and change from being disc-shaped to being crescent-shaped. The change in shape is due to the presence of an abnormal form of haemoglobin. This results in severe pain and damage to some organs. Aim and Objective: The study was carried out to determine the levels of cytokine in sickle cell anemia. Material and Methods: Thirty confirmed sickle cell patients in steady state (HbSS-SS and thirty persons with normal haemoglobin (HbAA as well as sixteen sickle cell disease in crises (HbSS-cr between the ages of 15 to 30 years were selected in this study. Cytokines including interleukin 1 beta (IL- 1β, interleukin 2 (IL- 2, interleukin (IL-6, tumour necrosis factor alpha (TNF-α, and interferon gamma (IFN- λ were measured by commercially available ELISA kits. Results: The results obtained showed that the levels of TNF-α and IL-6 in sickle cell anaemia patients in crisis were significantly elevated when compared with sickle cell in steady state (P<0.05. Similarly, the levels of IL-1β, IL-6, and IFN- λ were significantly increased in sickle cell anaemia stable state when compared to HbAA subjects (P<0.05. Conclusion: This may probably implies that cytokine imbalance is implicated in the pathogenesis of sickle cell crisis. Also, cytokines could be used as an inflammatory marker as well as related marker in disease severity and hence therapeutic intervention.

  7. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Kakita, Hiroki [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Aoyama, Mineyoshi, E-mail: ao.mine@med.nagoya-cu.ac.jp [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Nagaya, Yoshiaki; Asai, Hayato [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Hussein, Mohamed Hamed [Neonatal Intensive Care Unit, Pediatric Hospital, Cairo University, Cairo 11559 (Egypt); Maternal and Child Health Department, VACSERA, 51 Wizaret El-Zeraa-Agouza, Giza 22311 (Egypt); Suzuki, Mieko [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Kato, Shin [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Saitoh, Shinji [Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-04-15

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N{sup G}-monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for

  8. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    International Nuclear Information System (INIS)

    Kakita, Hiroki; Aoyama, Mineyoshi; Nagaya, Yoshiaki; Asai, Hayato; Hussein, Mohamed Hamed; Suzuki, Mieko; Kato, Shin; Saitoh, Shinji; Asai, Kiyofumi

    2013-01-01

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N G -monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for IAE

  9. Cytokines in systemic lupus erythematosus: far beyond Th1/Th2 dualism lupus: cytokine profiles.

    Science.gov (United States)

    Guimarães, Poliana Macedo; Scavuzzi, Bruna Miglioranza; Stadtlober, Nicole Perugini; Franchi Santos, Lorena Flor da Rosa; Lozovoy, Marcell Alysson Batisti; Iriyoda, Tatiana Mayumi Veiga; Costa, Neide Tomimura; Reiche, Edna Maria Vissoci; Maes, Michael; Dichi, Isaias; Simão, Andréa Name Colado

    2017-10-01

    The aims of this study were to delineate cytokine profiles of systemic lupus erythematosus (SLE), construct prediction models for diagnosis and disease activity using those profiles, and to examine the associations between TNFB Ncol polymorphism, body mass index (BMI) and vitamin D levels with cytokine levels. Two hundred SLE patients and 196 healthy controls participated in this case-control study. Plasma cytokines levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-1β, IL- 4, IL-6, IL-10, IL-12 and IL-17 were measured and cytokines profiles were computed. IL-6, IL-12, IL-17, IFN-γ and IL-10 levels were significantly higher in SLE, while IL-4 was lower in SLE. The Th1/Th2 and Th1+Th17/Th2 profiles were significantly higher in SLE than in healthy controls, whereas there were no significant differences in the proinflammatory cytokine profile (TNFα+IL-6+IL-1β). In total, 90.4% of all subjects were correctly classified using Th1+Th17 profile and IL-10 (positively associated) and IL-4 (negatively associated) as predictor variables (sensitivity=66.7% and specificity=96.9%). In all, 20.9% of the variance in the SLE Disease Activity Index was predicted by the Th1+Th17/Th2 ratio, IL-10 and BMI (all positively) and proinflammatory profile (inversely associated). B1/B1 genotype is accompanied by increased IL-17 and Th17/Th2 ratio, while B1/B2 genotype is accompanied by higher IL-4 and IFNγ values. 25-OH vitamin D was inversely associated with IFN-γ levels. SLE is accompanied by Th1, Th17 and Treg profile and lowered IL-4 production. Lowered vitamin D levels and B1/B1 genotype, but not BMI, contribute to changes in cytokines profiles. Future treatments should target Th1, Th2 and Th17 profiles rather than inflammatory cytokines.

  10. The role of cytokines in skin aging.

    Science.gov (United States)

    Borg, M; Brincat, S; Camilleri, G; Schembri-Wismayer, P; Brincat, M; Calleja-Agius, J

    2013-10-01

    Cutaneous aging is one of the major noticeable menopausal complications that most women want to fight in their quest for an eternally youthful skin appearance. It may contribute to some maladies that occur in aging which, despite not being life-threatening, affect the well-being, psychological state and quality of life of aged women. Skin aging is mainly affected by three factors: chronological aging, decreased levels of estrogen after menopause, and environmental factors. Aged skin is characterized by a decrease in collagen content and skin thickness which result in dry, wrinkled skin that is easily bruised and takes a longer time to heal. Cytokines play a crucial role in the manifestation of these features of old skin. The pro-inflammatory cytokine tumor necrosis factor-alpha inhibits collagen synthesis and enhances collagen degradation by increasing the production of MMP-9. It also lowers the skin immunity and thus increases the risk of cutaneous infections in old age. Deranged levels of several interleukins and interferons also affect the aging process. The high level of CCN1 protein in aged skin gives dermal fibroblasts an 'age-associated secretory phenotype' that causes abnormal homeostasis of skin collagen and leads to the loss of the function and integrity of skin. Further research is required especially to establish the role of cytokines in the treatment of cutaneous aging.

  11. Cytokines as Biomarkers in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Agata Burska

    2014-01-01

    Full Text Available RA is a complex disease that develops as a series of events often referred to as disease continuum. RA would benefit from novel biomarker development for diagnosis where new biomarkers are still needed (even if progresses have been made with the inclusion of ACPA into the ACR/EULAR 2010 diagnostic criteria and for prognostic notably in at risk of evolution patients with autoantibody-positive arthralgia. Risk biomarkers for rapid evolution or cardiovascular complications are also highly desirable. Monitoring biomarkers would be useful in predicting relapse. Finally, predictive biomarkers for therapy outcome would allow tailoring therapy to the individual. Increasing numbers of cytokines have been involved in RA pathology. Many have the potential as biomarkers in RA especially as their clinical utility is already established in other diseases and could be easily transferable to rheumatology. We will review the current knowledge’s relation to cytokine used as biomarker in RA. However, given the complexity and heterogeneous nature of RA, it is unlikely that a single cytokine may provide sufficient discrimination; therefore multiple biomarker signatures may represent more realistic approach for the future of personalised medicine in RA.

  12. Cytokines as Biomarkers in Rheumatoid Arthritis

    Science.gov (United States)

    Burska, Agata; Boissinot, Marjorie; Ponchel, Frederique

    2014-01-01

    RA is a complex disease that develops as a series of events often referred to as disease continuum. RA would benefit from novel biomarker development for diagnosis where new biomarkers are still needed (even if progresses have been made with the inclusion of ACPA into the ACR/EULAR 2010 diagnostic criteria) and for prognostic notably in at risk of evolution patients with autoantibody-positive arthralgia. Risk biomarkers for rapid evolution or cardiovascular complications are also highly desirable. Monitoring biomarkers would be useful in predicting relapse. Finally, predictive biomarkers for therapy outcome would allow tailoring therapy to the individual. Increasing numbers of cytokines have been involved in RA pathology. Many have the potential as biomarkers in RA especially as their clinical utility is already established in other diseases and could be easily transferable to rheumatology. We will review the current knowledge's relation to cytokine used as biomarker in RA. However, given the complexity and heterogeneous nature of RA, it is unlikely that a single cytokine may provide sufficient discrimination; therefore multiple biomarker signatures may represent more realistic approach for the future of personalised medicine in RA. PMID:24733962

  13. [Study on the correlation of the effect of entecavir on Th1/Th2 cytokines level in the treatment of chronic hepatitis].

    Science.gov (United States)

    Li, L; Jing, Y B; Liu, J; Wang, C L; Liu, B

    2017-08-20

    Objective: To explore the expression level of peripheral blood Th1/Th2 type cytokines of chronic hepatitis b (CHB) patients in the entecavir (ETV) antiviral treatment, analyze the relationship between various cytokines, and the correlation among of cytokines and HBV DNA loads. Methods: Luminex Liquid Chip Technology was applied to detect the peripheral blood Th1/Th2 type cytokines expression level of CHB patients; At the same time, liver function was detected by Fully Automatic Biochemical Analyzer; HBV DNA loads were detected by PCR Method; Hepatitis b virology markers were detected by Chemiluminescence Method. F-test and Pearson correlation analysis were used for statistical analysis. Results: Before ETV antiviral treatment, peripheral blood Th1 cytokines IFN gamma expression level in patients with CHB increased significantly ( P = 0.010) compared with the healthy control group while TNF alpha expression level having no statistically significant difference ( P = 0.095); Th2 type cytokines IL-4, IL-6, IL-10 levels decreased obviously ( P = 0.039, P = 0.014, P = 0.026) compared with those in the control group. After 48 weeks of treatment, Th1 cytokines IFN gamma and TNF alpha expression levels were reduced significantly (19.2±5.03 pg/ml vs 24.69±6.51 pg/ml, and 6.09±4.99 pg/ml vs 9.50±7.34 pg/ml, P Th1/Th2 type cytokines. And there was no correlation between the various cytokines and HBV DNA loads in patients with CHB. Conclusion: ETV can not only inhibit HBV DNA replication, reducing HBV DNA loads, but also contribute to regulate Th1/Th2 type cytokines expression level in patients with CHB, but there was no correlation between the levels of various cytokines, various cytokines and HBV DNA loads.

  14. Cytokines, cytokine antagonists, and soluble adhesion molecules in pediatric OMS and other neuroinflammatory disorders.

    Science.gov (United States)

    Pranzatelli, Michael R; Tate, Elizabeth D; McGee, Nathan R; Colliver, Jerry A

    2013-03-15

    To test for hypothesized disease- and treatment-induced changes in cytokines and adhesion molecules in children with opsoclonus-myoclonus syndrome (OMS). Multiplex bead assay technology was used for simultaneous measurement of 34 soluble cytokines in cerebrospinal fluid (CSF) and serum. Soluble intercellular adhesion molecule-1 (sICAM-1) and vascular cell adhesion molecule-1 (sVCAM-1) were measured by ELISA. In total, there were 388 children (239 OMS, 114 controls, and 35 other inflammatory neurological disorders (OIND)). In untreated OMS, mean CSF IL-6 was elevated 2.3-fold, but 67-fold in OIND, without significant differences in other CSF cytokines. Mean serum concentrations of sIL-2Ra (+50%) and CXCL1 (+70%) (pOMS than controls (p=0.005), as was serum CCL11 and IL-13 in treated OMS. Mean CSF CCL4 and IL-1Ra were selectively higher in IVIg-treated OMS (p≤0.0001). CSF sICAM-1 was elevated only in OIND (3.3-fold); serum sICAM-1 was higher in untreated OMS (+21%); and sVCAM-1 was not affected. No correlations with OMS severity or duration were identified. Novel cytokine, cytokine antagonist, and soluble adhesion molecule abnormalities due to OMS or treatment were found. However, the normality of much of the data strengthens previous findings implicating B cell mechanisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Cytokine balance in human malaria: does Plasmodium vivax elicit more inflammatory responses than Plasmodium falciparum?

    Directory of Open Access Journals (Sweden)

    Raquel M Gonçalves

    Full Text Available BACKGROUND: The mechanisms by which humans regulate pro- and anti-inflammatory responses on exposure to different malaria parasites remains unclear. Although Plasmodium vivax usually causes a relatively benign disease, this parasite has been suggested to elicit more host inflammation per parasitized red blood cell than P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS: We measured plasma concentrations of seven cytokines and two soluble tumor necrosis factor (TNF-α receptors, and evaluated clinical and laboratory outcomes, in Brazilians with acute uncomplicated infections with P. vivax (n = 85, P. falciparum (n = 30, or both species (n = 12, and in 45 asymptomatic carriers of low-density P. vivax infection. Symptomatic vivax malaria patients, compared to those infected with P. falciparum or both species, had more intense paroxysms, but they had no clear association with a pro-inflammatory imbalance. To the contrary, these patients had higher levels of the regulatory cytokine interleukin (IL-10, which correlated positively with parasite density, and elevated IL-10/TNF-α, IL-10/interferon (IFN-γ, IL-10/IL-6 and sTNFRII/TNF-α ratios, compared to falciparum or mixed-species malaria patient groups. Vivax malaria patients had the highest levels of circulating soluble TNF-α receptor sTNFRII. Levels of regulatory cytokines returned to normal values 28 days after P. vivax clearance following chemotherapy. Finally, asymptomatic carriers of low P. vivax parasitemias had substantially lower levels of both inflammatory and regulatory cytokines than did patients with clinical malaria due to either species. CONCLUSIONS: Controlling fast-multiplying P. falciparum blood stages requires a strong inflammatory response to prevent fulminant infections, while reducing inflammation-related tissue damage with early regulatory cytokine responses may be a more cost-effective strategy in infections with the less virulent P. vivax parasite. The early induction

  16. Modulation of PBMC-decay accelerating factor (PBMC-DAF) and cytokines in rheumatoid arthritis.

    Science.gov (United States)

    Pahwa, Roma; Kumar, Uma; Das, Nibhriti

    2016-03-01

    Studies have suggested that abnormal expression of complement regulatory proteins and cytokines contribute significantly to the path-physiology of rheumatoid arthritis. In this context, Decay accelerating factor (DAF) a complement regulatory protein is gaining increased attention. With the notion that immune effecter mechanisms are all interlinked and circulating peripheral blood mononuclear cells (PBMCs) should have a role in a systemic disease like rheumatoid arthritis, we studied the modulation and significance of PBMC-DAF and cytokines in RA. Seventy-five RA patients and 75 healthy controls were recruited. Expression of DAF and cytokines (IFN-γ, IL-17A and IL-10) in the PBMCs of patients and controls was determined. Correlations among DAF, cytokines, and disease activity were evaluated by standard statistical methods. The effect of IFN-γ, IL-17A, and IL-10 on the expression of DAF in patients and controls was studied in vitro. Expression of PBMC-DAF declined in patients both at mRNA and surface level and correlated negatively with the disease activity. Expression of IFN-γ also declined in patients but correlated positively with DAF and negatively with disease activity. Expression of IL-17A and IL-10 was higher in patients. The levels correlated positively with disease activity and negatively with DAF both in patients and controls. In vitro studies indicated that IFN-γ up-regulated DAF expression in PBMCs, whereas IL-17A and IL-10 had negative effect on the same. The decline in the PBMC-DAF is a contributing factor in manifestations of RA. Cytokine environment contributes to this decline. These findings brought novel insights into the complement-cytokine axis in the path-physiology of RA.

  17. Blood Cytokine Profiles Associated with Distinct Patterns of Bronchopulmonary Dysplasia among Extremely Low Birth Weight Infants.

    Science.gov (United States)

    D'Angio, Carl T; Ambalavanan, Namasivayam; Carlo, Waldemar A; McDonald, Scott A; Skogstrand, Kristin; Hougaard, David M; Shankaran, Seetha; Goldberg, Ronald N; Ehrenkranz, Richard A; Tyson, Jon E; Stoll, Barbara J; Das, Abhik; Higgins, Rosemary D

    2016-07-01

    To explore differences in blood cytokine profiles among distinct bronchopulmonary dysplasia (BPD) patterns. We evaluated blood spots collected from 943 infants born at ≤1000 g and surviving to 28 days on postnatal days 1, 3, 7, 14, and 21 for 25 cytokines. Infants were assigned to the following lung disease patterns: (1) no lung disease (NLD); (2) respiratory distress syndrome without BPD; (3) classic BPD (persistent exposure to supplemental oxygen until 28 days of age); or (4) atypical BPD (period without supplemental oxygen before 28 days). Median cytokine levels for infants with BPD were compared with the IQR of results among infants with NLD. The distribution of enrolled infants by group was as follows: 69 (NLD), 73 (respiratory distress syndrome), 381 (classic BPD), and 160 (atypical BPD). The remaining 260 infants could not be classified because of missing data (104) or not fitting a predefined pattern (156). Median levels of 3 cytokines (elevated interleukin [IL]-8, matrix metalloproteinase-9; decreased granulocyte macrophage colony-stimulating factor) fell outside the IQR for at least 2 time points in both infants with atypical and classic BPD. Profiles of 7 cytokines (IL-6, IL-10, IL-18, macrophage inflammatory protein-1α, C-reactive protein, brain-derived neurotrophic factor, regulated on activation, normal T cell expressed and secreted) differed between infants with classic and atypical BPD. Blood cytokine profiles may differ between infants developing classic and atypical BPD. These dissimilarities suggest the possibility that differing mechanisms could explain the varied patterns of pathophysiology of lung disease in extremely premature infants. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Intrinsically disordered cytoplasmic domains of two cytokine receptors mediate conserved interactions with membranes

    DEFF Research Database (Denmark)

    Haxholm, Gitte Wolfsberg; Nikolajsen, Louise Fletcher; Olsen, Johan Gotthardt

    2015-01-01

    Class 1 cytokine receptors regulate essential biological processes through complex intracellular signaling networks. However, the structural platform for understanding their functions is currently incomplete as structure-function studies of the intracellular domains (ICDs) are critically lacking...... of the inner plasma membrane leaflet through conserved motifs resembling immuno T-cell receptor activation motifs(ITAMs). However, contrary to the observations made for ITAMs, lipid association of the prolactin and growth hormone receptor ICDs was shown to be unaccompanied by changes in transient secondary...... structure and independent of tyrosine phosphorylation. The data presented here provides a new structural platform for studying class 1 cytokine receptors and may implicate the membrane as an active component regulating intracellular signaling....

  19. The Role of Cytokine in the Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Yasunori Iwata

    2011-01-01

    Full Text Available Lupus nephritis (LN is a major clinical manifestation of systemic lupus erythematosus (SLE. Although numerous abnormalities of immune system have been proposed, cytokine overexpression plays an essential role in the pathogenesis of LN. In the initial phase of the disease, the immune deposits and/or autoantibodies induce cytokine production in renal resident cells, leading to further inflammatory cytokine/chemokine expression and leukocyte infiltration and activation. Then, infiltrate leukocytes, such as macrophages (Mφ and dendritic cells (DCs, secrete a variety of cytokines and activate naïve T cells, leading the cytokine profile towards T helper (Th1, Th2, and/or Th17. Recent studies revealed these inflammatory processes in experimental animal models as well as human LN. The cytokine targeted intervention may have the therapeutic potentials for LN. This paper focuses on the expression of cytokine and its functional role in the pathogenesis of LN.

  20. Loss of cytokine-STAT5 signaling in the CNS and pituitary gland alters energy balance and leads to obesity.

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Lee

    Full Text Available Signal transducers and activators of transcription (STATs are critical components of cytokine signaling pathways. STAT5A and STAT5B (STAT5, the most promiscuous members of this family, are highly expressed in specific populations of hypothalamic neurons in regions known to mediate the actions of cytokines in the regulation of energy balance. To test the hypothesis that STAT5 signaling is essential to energy homeostasis, we used Cre-mediated recombination to delete the Stat5 locus in the CNS. Mutant males and females developed severe obesity with hyperphagia, impaired thermal regulation in response to cold, hyperleptinemia and insulin resistance. Furthermore, central administration of GM-CSF mediated the nuclear accumulation of STAT5 in hypothalamic neurons and reduced food intake in control but not in mutant mice. These results demonstrate that STAT5 mediates energy homeostasis in response to endogenous cytokines such as GM-CSF.

  1. Caries Induced Cytokine Network in the Odontoblast Layer of Human Teeth

    OpenAIRE

    Horst, Orapin V; Horst, Jeremy A; Samudrala, Ram; Dale, Beverly A

    2011-01-01

    Abstract Background Immunologic responses of the tooth to caries begin with odontoblasts recognizing carious bacteria. Inflammatory propagation eventually leads to tooth pulp necrosis and danger to health. The present study aims to determine cytokine gene expression profiles generated within human teeth in response to dental caries in vivo and to build a mechanistic model of these responses and the downstream signaling network. Results We demonstrate profound differential up-regulation of inf...

  2. Caries induced cytokine network in the odontoblast layer of human teeth

    Directory of Open Access Journals (Sweden)

    Horst Jeremy A

    2011-01-01

    Full Text Available Abstract Background Immunologic responses of the tooth to caries begin with odontoblasts recognizing carious bacteria. Inflammatory propagation eventually leads to tooth pulp necrosis and danger to health. The present study aims to determine cytokine gene expression profiles generated within human teeth in response to dental caries in vivo and to build a mechanistic model of these responses and the downstream signaling network. Results We demonstrate profound differential up-regulation of inflammatory genes in the odontoblast layer (ODL in human teeth with caries in vivo, while the pulp remains largely unchanged. Interleukins, chemokines, and all tested receptors thereof were differentially up-regulated in ODL of carious teeth, well over one hundred-fold for 35 of 84 genes. By interrogating reconstructed protein interaction networks corresponding to the differentially up-regulated genes, we develop the hypothesis that pro-inflammatory cytokines highly expressed in ODL of carious teeth, IL-1β, IL-1α, and TNF-α, carry the converged inflammatory signal. We show that IL1β amplifies antimicrobial peptide production in odontoblasts in vitro 100-fold more than lipopolysaccharide, in a manner matching subsequent in vivo measurements. Conclusions Our data suggest that ODL amplifies bacterial signals dramatically by self-feedback cytokine-chemokine signal-receptor cycling, and signal convergence through IL1R1 and possibly others, to increase defensive capacity including antimicrobial peptide production to protect the tooth and contain the battle against carious bacteria within the dentin.

  3. Caries induced cytokine network in the odontoblast layer of human teeth.

    Science.gov (United States)

    Horst, Orapin V; Horst, Jeremy A; Samudrala, Ram; Dale, Beverly A

    2011-01-24

    Immunologic responses of the tooth to caries begin with odontoblasts recognizing carious bacteria. Inflammatory propagation eventually leads to tooth pulp necrosis and danger to health. The present study aims to determine cytokine gene expression profiles generated within human teeth in response to dental caries in vivo and to build a mechanistic model of these responses and the downstream signaling network. We demonstrate profound differential up-regulation of inflammatory genes in the odontoblast layer (ODL) in human teeth with caries in vivo, while the pulp remains largely unchanged. Interleukins, chemokines, and all tested receptors thereof were differentially up-regulated in ODL of carious teeth, well over one hundred-fold for 35 of 84 genes. By interrogating reconstructed protein interaction networks corresponding to the differentially up-regulated genes, we develop the hypothesis that pro-inflammatory cytokines highly expressed in ODL of carious teeth, IL-1β, IL-1α, and TNF-α, carry the converged inflammatory signal. We show that IL1β amplifies antimicrobial peptide production in odontoblasts in vitro 100-fold more than lipopolysaccharide, in a manner matching subsequent in vivo measurements. Our data suggest that ODL amplifies bacterial signals dramatically by self-feedback cytokine-chemokine signal-receptor cycling, and signal convergence through IL1R1 and possibly others, to increase defensive capacity including antimicrobial peptide production to protect the tooth and contain the battle against carious bacteria within the dentin.

  4. DMPD: Convergence of the NF-kappaB and IRF pathways in the regulation of the innateantiviral response. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available ateantiviral response. Hiscott J. Cytokine Growth Factor Rev. 2007 Oct-Dec;18(5-6):483-90. Epub 2007 Aug 13.... IRF pathways in the regulation of the innateantiviral response. Authors Hiscott J. Publication Cytokine Gro

  5. Harmonization of the intracellular cytokine staining assay.

    Science.gov (United States)

    Welters, Marij J P; Gouttefangeas, Cécile; Ramwadhdoebe, Tamara H; Letsch, Anne; Ottensmeier, Christian H; Britten, Cedrik M; van der Burg, Sjoerd H

    2012-07-01

    Active immunotherapy for cancer is an accepted treatment modality aiming to reinforce the T-cell response to cancer. T-cell reactivity is measured by various assays and used to guide the clinical development of immunotherapeutics. However, data obtained across different institutions may vary substantially making comparative conclusions difficult. The Cancer Immunotherapy Immunoguiding Program organizes proficiency panels to identify key parameters influencing the outcome of commonly used T-cell assays followed by harmonization. Our successes with IFNγ-ELISPOT and peptide HLA multimer analysis have led to the current study on intracellular cytokine staining (ICS). We report the results of three successive panels evaluating this assay. At the beginning, 3 out of 9 participants (33 %) were able to detect >6 out of 8 known virus-specific T-cell responses in peripheral blood of healthy individuals. This increased to 50 % of the laboratories in the second phase. The reported percentages of cytokine-producing T cells by the different laboratories were highly variable with coefficients of variation well over 60 %. Variability could partially be explained by protocol-related differences in background cytokine production leading to sub-optimal signal-to-noise ratios. The large number of protocol variables prohibited identification of prime guidelines to harmonize the assays. In addition, the gating strategy used to identify reactive T cells had a major impact on assay outcome. Subsequent harmonization of the gating strategy considerably reduced the variability within the group of participants. In conclusion, we propose that first basic guidelines should be applied for gating in ICS experiments before harmonizing assay protocol variables.

  6. Cytokines and growth factors cross-link heparan sulfate

    Science.gov (United States)

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.

    2015-01-01

    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  7. Cholecystokinin-stimulated monocytes produce inflammatory cytokines and eicosanoids.

    Science.gov (United States)

    Cunningham, M E; Shaw-Stiffel, T A; Bernstein, L H; Tinghitella, T J; Claus, R E; Brogan, D A; McMillen, M A

    1995-04-01

    Plasma cholecystokinin increases with enteral feeding. Cholecystokinin increases intracellular calcium in lymphocytes/monocytes and is a lymphocyte co-mitogen. We hypothesize that decreased cholecystokinin production with "bowel rest" and parenteral nutrition may be beneficial in inflammatory bowel disease by down-regulating gut immune/inflammatory mechanisms. The majority of cells observed in mucosa of inflammatory bowel disease are monocytes and neutrophils. Cholecystokinin effect was therefore measured on monocyte production of proinflammatory mediators (tumor necrosis factor alpha, interleukin-1 beta, interleukin-6) and neutrophil chemotaxins/activators (interleukin-8, granulocyte-macrophage colony stimulating factor, and leukotriene B4). Peripheral blood monocytes (0.5 x 10(6)) from healthy donors in 1 mL of RPMI 1640 plus 5% fetal calf serum were cultured for 24 h in 5% CO2 at 37 degrees C with 5 micrograms/mL endotoxin, 1 x 10(-7) M cholecystokinin, or no agonist. Supernatants were analyzed by ELISA for cytokines and leukotriene B4. Endotoxin-stimulated monocytes produced 1130 pg/mL tumor necrosis factor versus 81 pg/mL for cholecystokinin, 612 pg/mL interleukin-1 versus 10 pg/mL, 694 pg/mL interleukin-6 versus 30 pg/mL, 4531 pg/mL of interleukin-8 versus 3848 pg/mL, 21 pg/mL granulocyte-macrophage colony stimulating factor versus 9 pg/mL, and 21 pg/mL leukotriene B4 versus 12 pg/mL. Controls produced no cytokines/eicosanoids (N = 8, p alimentation may decrease inflammatory mediator production.

  8. Catch and Release of Cytokines Mediated by Tumor Phosphatidylserine Converts Transient Exposure into Long-Lived Inflammation.

    Science.gov (United States)

    Oyler-Yaniv, Jennifer; Oyler-Yaniv, Alon; Shakiba, Mojdeh; Min, Nina K; Chen, Ying-Han; Cheng, Sheue-Yann; Krichevsky, Oleg; Altan-Bonnet, Nihal; Altan-Bonnet, Grégoire

    2017-06-01

    Immune cells constantly survey the host for pathogens or tumors and secrete cytokines to alert surrounding cells of these threats. In vivo, activated immune cells secrete cytokines for several hours, yet an acute immune reaction occurs over days. Given these divergent timescales, we addressed how cytokine-responsive cells translate brief cytokine exposure into phenotypic changes that persist over long timescales. We studied melanoma cell responses to transient exposure to the cytokine interferon γ (IFNγ) by combining a systems-scale analysis of gene expression dynamics with computational modeling and experiments. We discovered that IFNγ is captured by phosphatidylserine (PS) on the surface of viable cells both in vitro and in vivo then slowly released to drive long-term transcription of cytokine-response genes. This mechanism introduces an additional function for PS in dynamically regulating inflammation across diverse cancer and primary cell types and has potential to usher in new immunotherapies targeting PS and inflammatory pathways. Published by Elsevier Inc.

  9. Dietary perilla oil inhibits proinflammatory cytokine production in the bronchoalveolar lavage fluid of ovalbumin-challenged mice.

    Science.gov (United States)

    Chang, Hui-Hsiang; Chen, Chin-Shun; Lin, Jin-Yuarn

    2008-06-01

    To evaluate the anti-inflammatory effects of different dietary oils on ovalbumin-sensitized and -challenged mice. Experimental BALB/c mice were fed with different diets containing 5% corn oil [rich in linoleic acid, 18:2n-6 polyunsaturated fatty acids (PUFA), as a control diet], 5% perilla oil (rich in alpha-linolenic acid, 18:3n-3 PUFA) or 5% compound oil containing 50% corn oil and 50% perilla oil, for 5 consecutive weeks. The leukocyte count, inflammatory mediators, and cytokine levels, including proinflammatory and Th1/Th2 cytokines in the bronchoalveolar lavage fluid (BALF) from the mice were determined. The results showed that 5% compound oil administration significantly (P 0.05) decrease the eosinophil accumulation or the secretions of inflammatory mediators such as prostaglandin E2 (PGE2), histamine, nitric oxide and eotaxin. However, dietary perilla oil significantly (P < 0.05) reduced proinflammatory cytokine (TNF-alpha, IL-1beta and IL-6) and Th1 cytokine (IFN-gamma and IL-2) production. The production of Th2 cytokine IL-10, but not IL-4 and IL-5, was also significantly inhibited by perilla oil administration. The results suggest that dietary perilla oil might alleviate inflammation via decreasing the secretion of pro-inflammatory cytokines in BALF, but failed to regulate the Th1/Th2 balance toward Th1 pole during the Th2-skewed allergic airway inflammation.

  10. Hypothyroidism and depression: Are cytokines the link?

    Directory of Open Access Journals (Sweden)

    Parimal S Tayde

    2017-01-01

    Full Text Available Context: Primary hypothyroidism has been thought of as an inflammatory condition characterized by raised levels of cytokines such as C-reactive protein (CRP, interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α. Depression is also well known to occur in hypothyroidism. Depression is also characterized by elevated inflammatory cytokines. We planned to study whether cytokines play an important part in linking these two conditions. Objectives: (1 To know the prevalence of depression in overt hypothyroidism due to autoimmune thyroid disease. (2 To correlate the levels of inflammatory markers with the occurrence of depression. (3 To study the effect of levothyroxine on inflammatory markers and depression. Materials and Methods: In this longitudinal, case–controlled study, 33 patients with autoimmune hypothyroidism (thyroid-stimulating hormone >10 uIU/ml were included with 33 age-, sex-, and body max index-matched healthy controls. Individuals were tested for Serum TNF-α, IL-6, high-sensitivity-CRP (hs-CRP. They were assessed for depression using Montgomery Asberg Depression Rating Scale (MADRS and World Health Organization Quality of Life (QOL Scale. Patients received L Thyroxine titrated to achieve euthyroidism and were reassessed for inflammatory markers and cognitive dysfunction. Results: Nineteen patients (57% had mild to moderate depression (MADRS >11. After 6 months of treatment, eight patients (42% had remission of depression with significant improvement in QOL scores (P < 0.05. TNF-α, IL-6, and hs-CRP were significantly elevated in patients compared with controls and reduced with therapy but did not reach baseline as controls. The change in inflammatory markers correlated with improvement in QOL scores in social and environmental domains (P < 0.01. Conclusions: Primary autoimmune hypothyroidism is an inflammatory state characterized by elevated cytokines which decline with LT4 therapy. It is associated with depression and poor

  11. Cytokines in the modulation of eosinophilia

    Directory of Open Access Journals (Sweden)

    Faccioli Lúcia H

    1997-01-01

    Full Text Available In this review we discuss our recently results showing interleukin 5 (IL-5 involvement in eosinophil migration and in the maintenance of eosinophilia in blood, bone marrow, lung and peritoneal cavity, in a visceral larva migrans syndrome model using guinea-pigs infected with Toxocara canis. We also describe the sequential release of TNF-alpha and IL-8 during the course of infection, and the interaction between these cytokines and IL-5 during infection. Finally we propose a new biological role for IL-5, at least in our model, as a modulator of IL-8 release and secretion.

  12. Diabetes, Inflammation, Proinflammatory Cytokines, and Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Juan F. Navarro

    2006-01-01

    Full Text Available Diabetes and its complications have become a public health problem. Diabetic nephropathy is the main cause of renal failure. In spite of our higher knowledge on this complication, the intimate mechanisms leading to the development and progression of renal injury are not yet fully known. Activated innate immunity and inflammation are relevant factors in the pathogenesis of diabetes. Moreover, inflammation, and more specifically proinflammatory cytokines and other molecules with a relevant role within the inflammatory process, may be critical factors in the development of microvascular diabetic complications, including nephropathy. This new pathogenic perspective may lead to important new therapeutic considerations and new therapeutic goals for the treatment of diabetic nephropathy.

  13. Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications

    Science.gov (United States)

    Felger, Jennifer C.; Lotrich, Francis E.

    2013-01-01

    Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, e.g. brain derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression’s development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed. PMID:23644052

  14. Defective Suppressor of Cytokine Signaling 1 Signaling Contributes to the Pathogenesis of Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Huixia Wang

    2017-10-01

    Full Text Available Systemic lupus erythematosus (SLE is a complex autoimmune disease involving injuries in multiple organs and systems. Exaggerated inflammatory responses are characterized as end-organ damage in patients with SLE. Although the explicit pathogenesis of SLE remains unclear, increasing evidence suggests that dysregulation of cytokine signals contributes to the progression of SLE through the Janus kinase/signal transducer and activator of transcription (STAT signaling pathway. Activated STAT proteins translocate to the cell nucleus and induce transcription of target genes, which regulate downstream cytokine production and inflammatory cell infiltration. The suppressor of cytokine signaling 1 (SOCS1 is considered as a classical inhibitor of cytokine signaling. Recent studies have demonstrated that SOCS1 expression is decreased in patients with SLE and in murine lupus models, and this negatively correlates with the magnitude of inflammation. Dysregulation of SOCS1 signals participates in various pathological processes of SLE such as hematologic abnormalities and autoantibody generation. Lupus nephritis is one of the most serious complications of SLE, and it correlates with suppressed SOCS1 signals in renal tissues. Moreover, SOCS1 insufficiency affects the function of several other organs, including skin, central nervous system, liver, and lungs. Therefore, SOCS1 aberrancy contributes to the development of both systemic and local inflammation in SLE patients. In this review, we discuss recent studies regarding the roles of SOCS1 in the pathogenesis of SLE and its therapeutic implications.

  15. The breakdown of the cytokine network subsequent to human immunodeficiency virus infection

    Directory of Open Access Journals (Sweden)

    M. Clerici

    1995-01-01

    Full Text Available The acquired immunodeflciency syndrome (AIDS is a clinically multifaceted disease induced by infection with the human immunodeficiency virus (HIV. HIV infection results in a complex pattern of immunologic alterations that leads to the development of AIDS in the majority of HIV seropositive (HIV+ individuals. The reduction in CD4 T lymphocyte counts is the hallmark of HIV infection; nevertheless, long before the reduction in CD4 counts reaches critical levels, a series of profound and complex defects that impair the function of CD4 T lymphocytes can be detected. Thus, HIV infection is characterized by quantitative and qualitative defects affecting CD4 T lymphocytes. It was suggested recently that programmed cell death (PCD is an important mechanism leading to CD4 depletion in HIV infection, and that susceptibility of peripheral lymphocytes to PCD is differentially regulated by diverse cytokines. Thus, type 1 cytokines would protect CD4 lymphocytes against PCD, whereas type 2 cytokines would not protect against, and could augment, PCD. We suggest that the qualitative alterations of the immune response provoke the CD4 depletion characteristic of HIV disease via type 2 cytokinemediated augmentation of PCD, and are therefore ultimately responsible for the progression of HIV infection. Finally, we summarize recent data showing that three correlates of disease progression: emergence of HIV strains with syncitium-inducing ability (SI, type 1-to-type 2 cytokine shift, and CD4 depletion, are significantly associated, suggesting a complex interconnected virologic-immunologic pathogenesis of HIV infection.

  16. Some cytokine profiles of T-helper cells in lesions of advanced periodontitis.

    Science.gov (United States)

    Berglundh, Tord; Liljenberg, Birgitta; Lindhe, Jan

    2002-08-01

    The aim of the present study was to analyze some cytokine profiles of T-helper cells in periodontitis lesions. 22 adult patients (7 females and 15 males, aged 24-66 years) with advanced and generalized chronic periodontitis were recruited. Clinical and radiographical characteristics of periodontal disease was assessed. From each patient a gingival biopsy was obtained from one randomly selected diseased interproximal site. The soft tissue sample was prepared for immunohistochemical analysis. Double staining was performed to detect cells positive for both the CD4 marker and different cytokines, i.e. interleukin (IL)-2, IL-4, IL-6 and interferon-gamma (IFN-gamma). The lesions in advanced periodontitis contained similar proportions of cells positive for the different cytokine markers examined. In addition, the number of cells expressing cytokine profiles for either T helper-1 (IFN-gamma + IL-2) or T helper-2 (IL-4 + IL-6) was similar. It is suggested that the lesions of periodontitis are regulated by a combined Th-1 and Th-2 function.

  17. Pro- and Anti-Inflammatory Cytokines Release in Mice Injected with Crotalus durissus terrificus Venom

    Directory of Open Access Journals (Sweden)

    A. Hernández Cruz

    2008-01-01

    Full Text Available The effects of Crotalus durissus terrificus venom (Cdt were analyzed with respect to the susceptibility and the inflammatory mediators in an experimental model of severe envenomation. BALB/c female mice injected intraperitoneally presented sensibility to Cdt, with changes in specific signs, blood biochemical and inflammatory mediators. The venom induced reduction of glucose and urea levels and an increment of creatinine levels in serum from mice. Significant differences were observed in the time-course of mediator levels in sera from mice injected with Cdt. The maximum levels of IL-6, NO, IL-5, TNF, IL-4 and IL-10 were observed 15 min, 30 min, 1, 2 and 4 hours post-injection, respectively. No difference was observed for levels of IFN-γ. Taken together, these data indicate that the envenomation by Cdt is regulated both pro- and anti-inflammatory cytokine responses at time-dependent manner. In serum from mice injected with Cdt at the two first hours revealed of pro-inflammatory dominance. However, with an increment of time an increase of anti-inflammatory cytokines was observed and the balance toward to anti-inflammatory dominance. In conclusion, the observation that Cdt affects the production of pro- and anti-inflammatory cytokines provides further evidence for the role played by Cdt in modulating pro/anti-inflammatory cytokine balance.

  18. Scanning for Therapeutic Targets within the Cytokine Network of Idiopathic Inflammatory Myopathies

    Directory of Open Access Journals (Sweden)

    Boel De Paepe

    2015-08-01

    Full Text Available The idiopathic inflammatory myopathies (IIM constitute a heterogeneous group of chronic disorders that include dermatomyositis (DM, polymyositis (PM, sporadic inclusion body myositis (IBM and necrotizing autoimmune myopathy (NAM. They represent distinct pathological entities that, most often, share predominant inflammation in muscle tissue. Many of the immunopathogenic processes behind the IIM remain poorly understood, but the crucial role of cytokines as essential regulators of the intramuscular build-up of inflammation is undisputed. This review describes the extensive cytokine network within IIM muscle, characterized by strong expression of Tumor Necrosis Factors (TNFα, LTβ, BAFF, Interferons (IFNα/β/γ, Interleukins (IL-1/6/12/15/18/23 and Chemokines (CXCL9/10/11/13, CCL2/3/4/8/19/21. Current therapeutic strategies and the exploration of potential disease modifying agents based on manipulation of the cytokine network are provided. Reported responses to anti-TNFα treatment in IIM are conflicting and new onset DM/PM has been described after administration of anti-TNFα agents to treat other diseases, pointing to the complex effects of TNFα neutralization. Treatment with anti-IFNα has been shown to suppress the IFN type 1 gene signature in DM/PM patients and improve muscle strength. Beneficial effects of anti-IL-1 and anti-IL-6 therapy have also been reported. Cytokine profiling in IIM aids the development of therapeutic strategies and provides approaches to subtype patients for treatment outcome prediction.

  19. Cytokine-mediated downregulation of vasopressin V(1A) receptors during acute endotoxemia in rats.

    Science.gov (United States)

    Bucher, Michael; Hobbhahn, Jonny; Taeger, Kai; Kurtz, Armin

    2002-04-01

    The reduced pressure response to vasopressin during acute sepsis has directed our interest to the regulation of vasopressin V(1A) receptors. Rats were injected with lipopolysaccharide for induction of experimental gram-negative sepsis. V(1A) receptor gene expression was downregulated in the liver, lung, kidney, and heart during endotoxemia. Inasmuch as the concentrations of proinflammatory cytokines such as interleukin-1beta, tumor necrosis factor-alpha, and interferon-gamma were highly increased during sepsis, the influence of these cytokines on V(1A) receptor expression was investigated in primary cultures of hepatocytes and in the aortic vascular smooth muscle cell line A7r5. V(1A) receptor expression was downregulated by the cytokines in a nitric oxide-independent manner. Blood pressure dose-response studies after injection of endotoxin showed a diminished responsiveness to the selective V(1) receptor agonist Phe(2),Ile(3),Orn(8)-vasopressin. Our data show that sepsis causes a downregulation of V(1A) receptors and suggest that this effect is likely mediated by proinflammatory cytokines. We propose that this downregulation of V(1A) receptors contributes to the attenuated responsiveness of blood pressure in response to vasopressin and, therefore, contributes to the circulatory failure in septic shock.

  20. Anti-inflammatory cytokines in asthma and allergy: interleukin-10, interleukin-12, interferon-γ

    Directory of Open Access Journals (Sweden)

    Fan Chung

    2001-01-01

    Full Text Available Interleukin-10 (IL-10 is a cytokine derived from CD4+ T-helper type 2 (TH2 cells identified as a suppressor of cytokines from T-helper type 1(TH1 cells. Interleukin-12 (IL-12 is produced by B cells, macrophages and dendritic cells, and primarily regulates TH1 cell differentiation, while suppressing the expansion of TH2 cell clones. Interferon-γ (IFN-γ is a product of TH1 cells and exerts inhibitory effects on TH2 cell differentiation. These cytokines have been implicated in the pathogenesis of asthma and allergies. In this context, IL-12 and IFN-γ production in asthma have been found to be decreased, and this may reduce their capacity to inhibit IgE synthesis and allergic inflammation. IL-10 is a potent inhibitor of monocyte/macrophage function, suppressing the production of many pro-inflammatory cytokines. A relative underproduction of IL-10 from alveolar macrophages of atopic asthmatics has been reported. Therapeutic modulation of TH1/TH2 imbalance in asthma and allergy by mycobacterial vaccine, specific immunotherapy and cytoline-guanosine dinucleotide motif may lead to increases in IL-12 and IFN-γ production. Stimulation of IL-10 production by antigen-specific T-cells during immunotherapy may lead to anergy through inhibition of CD28-costimulatory molecule signalling by IL-10s anti-inflammatory effect on basophils, mast cells and eosinophils.

  1. Extraction of mRNA from coagulated horse blood and analysis of inflammation-related cytokine responses to coagulation

    DEFF Research Database (Denmark)

    Bovbjerg, Kirsten Katrine Lindegaard; Heegaard, Peter M. H.; Skovgaard, Kerstin

    2010-01-01

    available. Here, a protocol for RNA extraction from highly clotted blood was optimized and the regulation of a number of cytokine genes compared to stabilized blood was studied. Whole blood samples from 10 clinically healthy horses were incubated for 24 hours at 37°C and RNA was extracted from...

  2. Relationship of cytokines and cytokine signaling to immunodeficiency disorders in the mouse

    Directory of Open Access Journals (Sweden)

    Morawetz R.A.

    1998-01-01

    Full Text Available The contributions of cytokines to the development and progression of disease in a mouse model of retrovirus-induced immunodeficiency (MAIDS are controversial. Some studies have indicated an etiologic role for type 2 cytokines, while others have emphasized the importance of type 1 cytokines. We have used mice deficient in expression of IL-4, IL-10, IL-4 and IL-10, IFN-g, or ICSBP - a transcriptional protein involved in IFN signaling - to examine their contributions to this disorder. Our results demonstrate that expression of type 2 cytokines is an epiphenomenon of infection and that IFN-g is a driving force in disease progression. In addition, exogenously administered IL-12 prevents many manifestations of disease while blocking retrovirus expression. Interruption of the IFN signaling pathways in ICSBP-/- mice blocks induction of MAIDS. Predictably, ICSBP-deficient mice exhibit impaired responses to challenge with several other viruses. This immunodeficiency is associated with impaired production of IFN-g and IL-12. Unexpectedly, however, the ICSBP-/- mice also develop a syndrome with many similarities to chronic myelogenous leukemia in humans. The chronic phase of this disease is followed by a fatal blast crisis characterized by clonal expansions of undifferentiated cells. ICSBP is thus an important determinant of hematopoietic growth and differentiation as well as a prominent signaling molecule for IFNs

  3. Anti-cytokine autoantibodies in autoimmune diseases

    Science.gov (United States)

    Cappellano, Giuseppe; Orilieri, Elisabetta; Woldetsadik, Abiy D; Boggio, Elena; Soluri, Maria F; Comi, Cristoforo; Sblattero, Daniele; Chiocchetti, Annalisa; Dianzani, Umberto

    2012-01-01

    An overview of the current literature is showing that autoantibodies (AutoAbs) against cytokines are produced in several pathological conditions, including autoimmune diseases, but can also be detected in healthy individuals. In autoimmune diseases, these AutoAbs may also be prognostic markers, either negative (such as AutoAbs to IL-8 and IL-1α in rheumatoid arthritis) or positive (such as AutoAbs to IL-6 in systemic sclerosis and those to osteopontin in rheumatoid arthritis). They may have neutralizing activity and influence the course of the physiological and pathological immune responses. High levels of AutoAbs against cytokines may even lead to immunodeficiency, such as those to IL-17 in autoimmune polyendocrine syndrome type I or those to IFN-γ in mycobacterial infections. Their role in human therapy may be exploited not only through passive immunization but also through vaccination, which may improve the costs for long lasting treatments of autoimmune diseases. Detection and quantification of these AutoAbs can be profoundly influenced by the technique used and standardization of these methods is needed to increase the value of their analysis. PMID:23885320

  4. Evolution of Class I cytokine receptors

    Science.gov (United States)

    Liongue, Clifford; Ward, Alister C

    2007-01-01

    Background The Class I cytokine receptors have a wide range of actions, including a major role in the development and function of immune and blood cells. However, the evolution of the genes encoding them remains poorly understood. To address this we have used bioinformatics to analyze the Class I receptor repertoire in sea squirt (Ciona intestinalis) and zebrafish (Danio rerio). Results Only two Class I receptors were identified in sea squirt, one with homology to the archetypal GP130 receptor, and the other with high conservation with the divergent orphan receptor CLF-3. In contrast, 36 Class I cytokine receptors were present in zebrafish, including representative members for each of the five structural groups found in mammals. This allowed the identification of 27 core receptors belonging to the last common ancestor of teleosts and mammals. Conclusion This study suggests that the majority of diversification of this receptor family occurred after the divergence of urochordates and vertebrates approximately 794 million years ago (MYA), but before the divergence of ray-finned from lobe-finned fishes around 476 MYA. Since then, only relatively limited lineage-specific diversification within the different Class I receptor structural groups has occurred. PMID:17640376

  5. Interplay of cytokines in preterm birth

    Directory of Open Access Journals (Sweden)

    Monika Pandey

    2017-01-01

    Full Text Available Preterm infants (i.e., born before <37 wk of gestation are at increased risk of morbidity and mortality and long-term disabilities. Global prevalence of preterm birth (PTB varies from 5 to 18 per cent. There are multiple aetiological causes and factors associated with PTB. Intrapartum infections are conventionally associated with PTB. However, maternal genotype modulates response to these infections. This review highlights the association of cytokine gene polymorphisms and their levels with PTB. Varying PTB rates across the different ethnic groups may be as a result of genetically mediated varying cytokines response to infections. Studies on genetic variations in tumour necrosis factor-alpha, interleukin-1 alpha (IL-1α, IL-1β, IL-6, IL-10 and toll-like receptor-4 genes and their association with PTB, have been reviewed. No single polymorphism of the studied genes was found to be associated with PTB. However, increased maternal levels of IL-1β and IL-6 and low levels of IL-10 have been found to be associated with PTB.

  6. Relation between stressful life events, neuropeptides and cytokines: results from the LISA birth cohort study.

    Science.gov (United States)

    Herberth, Gunda; Weber, Annegret; Röder, Stefan; Elvers, Horst-Dietrich; Krämer, Ursula; Schins, Roel P F; Diez, Ulrike; Borte, Michael; Heinrich, Joachim; Schäfer, Thomas; Herbarth, Olf; Lehmann, Irina

    2008-12-01

    Stressful life events evidently have an impact on development of allergic diseases, but the mechanism linking stress to pathological changes of immune system function is still not fully understood. The aim of our study was to investigate the relationship between stressful life events, neuropeptide and cytokine concentrations in children. Within the LISAplus (Life style-Immune system-Allergy) study, blood samples from children of 6 yr of age were analysed for concentration of the neuropeptides vasoactive intestinal peptide (VIP), somatostatin (SOM), substance P (SP) and the Th1/Th2 cytokines interferon-gamma (IFN-gamma) and interleukin (IL)-4. Life events such as severe disease or death of a family member, unemployment or divorce of the parents were assessed with a questionnaire filled in by the parents. For 234 children, blood analysis and questionnaire data regarding life events were available. Children with separated/divorced parents showed high VIP levels and high concentrations of the Th2 cytokine IL-4 in their blood. Severe diseases and death of a family member were neither associated with neuropeptide levels nor with cytokine concentrations. Unemployment of the parents was associated with decreased IFN-gamma concentrations in children's blood but not with neuropeptide levels, whereas children experiencing concomitant severe disease and death of a family member had reduced SP blood levels. The neuropeptide VIP might be a mediator between stressful life events and immune regulation contributing to the Th2 shifted immune response in children with separated/divorced parents. Unemployment of the parents was associated with immune regulation in children on the basis of a still unknown mechanism whereas reduced SP levels seem to have no effect on immune regulation.

  7. Cytokine ratios in chronic periodontitis and type 2 diabetes mellitus.

    Science.gov (United States)

    Acharya, Anirudh B; Thakur, Srinath; Muddapur, M V; Kulkarni, Raghavendra D

    Chronic periodontitis may influence systemic cytokines in type 2 diabetes. This study aimed to evaluate the cytokine ratios in type 2 diabetes with, and without chronic periodontitis. Gingival status, periodontal, glycemic parameters and serum cytokines were evaluated in participants grouped as healthy, chronic periodontitis, and type 2 diabetes with, and without chronic periodontitis. Cytokine ratios showed significant differences in type 2 diabetes and chronic periodontitis, were highest in participants having both type 2 diabetes and chronic periodontitis, with a statistically significant cut-off point and area under curve by receiver operating characteristic. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  8. Changes in cytokine production in healthy subjects practicing Guolin Qigong : a pilot study

    Directory of Open Access Journals (Sweden)

    Jones Brian M

    2001-10-01

    Full Text Available Abstract Background Guolin Qigong is a combination of meditation, controlled breathing and physical movement designed to control the vital energy (qi of the body and consequently to improve spiritual, physical and mental health. Practice of Qigong has been reported to alter immunological function, but there have been few studies of its effects on cytokines, the key regulators of immunity. Methods Numbers of peripheral blood cytokine-secreting cells were determined by ELISPOT in 19 healthy volunteers aged 27 – 55, before they were taught the practice of Qigong and after 3, 7 and 14 weeks of daily practice. The effect of Qigong on blood cortisol was also examined. Results Numbers of IL4 and IL12-secreting cells remained stable. IL6 increased at 7 weeks and TNFα increased in unstimulated cultures at 3 and 7 weeks but decreased at these times in LPS and SAC-stimulated cultures. Of particular interest, IFNγ-secreting cells increased and IL10-secreting cells decreased in PHA-stimulated cultures, resulting in significant increases in the IFNγ:IL10 ratio. Cortisol, a known inhibitor of type 1 cytokine production, was reduced by practicing Qigong. Conclusion These preliminary studies in healthy subjects, although not necessarily representative of a randomized healthy population and not including a separate control group, have indicated that blood levels of the stress-related hormone cortisol may be lowered by short-term practice of Qigong and that there are concomitant changes in numbers of cytokine-secreting cells. Further studies of the effect of Qigong in patients with clinical diseases known to be associated with type 2 cytokine predominance are merited.

  9. Exposure to moderate air pollution during late pregnancy and cord blood cytokine secretion in healthy neonates.

    Directory of Open Access Journals (Sweden)

    Philipp Latzin

    Full Text Available BACKGROUND/OBJECTIVES: Ambient air pollution can alter cytokine concentrations as shown in vitro and following short-term exposure to high air pollution levels in vivo. Exposure to pollution during late pregnancy has been shown to affect fetal lymphocytic immunophenotypes. However, effects of prenatal exposure to moderate levels of air pollutants on cytokine regulation in cord blood of healthy infants are unknown. METHODS: In a birth cohort of 265 healthy term-born neonates, we assessed maternal exposure to particles with an aerodynamic diameter of 10 µm or less (PM₁₀, as well as to indoor air pollution during the last trimester, specifically the last 21, 14, 7, 3 and 1 days of pregnancy. As a proxy for traffic-related air pollution, we determined the distance of mothers' homes to major roads. We measured cytokine and chemokine levels (MCP-1, IL-6, IL-10, IL-1ß, TNF-α and GM-CSF in cord blood serum using LUMINEX technology. Their association with pollution levels was assessed using regression analysis, adjusted for possible confounders. RESULTS: Mean (95%-CI PM₁₀ exposure for the last 7 days of pregnancy was 18.3 (10.3-38.4 µg/m³. PM₁₀ exposure during the last 3 days of pregnancy was significantly associated with reduced IL-10 and during the last 3 months of pregnancy with increased IL-1ß levels in cord blood after adjustment for relevant confounders. Maternal smoking was associated with reduced IL-6 levels. For the other cytokines no association was found. CONCLUSIONS: Our results suggest that even naturally occurring prenatal exposure to moderate amounts of indoor and outdoor air pollution may lead to changes in cord blood cytokine levels in a population based cohort.

  10. Inflammatory cytokines in general and central obesity and modulating effects of physical activity.

    Science.gov (United States)

    Schmidt, Frank M; Weschenfelder, Julia; Sander, Christian; Minkwitz, Juliane; Thormann, Julia; Chittka, Tobias; Mergl, Roland; Kirkby, Kenneth C; Faßhauer, Mathias; Stumvoll, Michael; Holdt, Lesca M; Teupser, Daniel; Hegerl, Ulrich; Himmerich, Hubertus

    2015-01-01

    Chronic systemic inflammation in obesity originates from local immune responses in visceral adipose tissue. However, assessment of a broad range of inflammation-mediating cytokines and their relationship to physical activity and adipometrics has scarcely been reported to date. To characterize the profile of a broad range of pro- and anti-inflammatory cytokines and the impact of physical activity and energy expenditure in individuals with general obesity, central obesity, and non-obese subjects. A cross-sectional study comprising 117 obese patients (body mass index (BMI) ≥ 30) and 83 non-obese community-based volunteers. Serum levels of interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12, IL-13, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-γ and tumor necrosis factor (TNF)-α were measured. Physical activity and energy expenditure (MET) were assessed with actigraphy. Adipometrics comprised BMI, weight, abdominal-, waist- and hip-circumference, waist to hip ratio (WHR), and waist-to-height-ratio (WHtR). General obesity was associated with significantly elevated levels of IL-5, IL-10, IL-12, IL-13, IFN-γ and TNF-α, central obesity with significantly elevated IL-5, IL-10, IL-12, IL-13 and IFN-γ-levels. In participants with general obesity, levels of IL-4, IL-10 and IL-13 were significantly elevated in participants with low physical activity, even when controlled for BMI which was negatively associated with physical acitivity. Cytokines significantly correlated with adipometrics, particularly in obese participants. Results confirm up-regulation of certain pro- and anti-inflammatory cytokines in obesity. In obese subjects, physical activity may lower levels and thus reduce pro-inflammatory effects of cytokines that may link obesity, insulin resistance and diabetes.

  11. The role of sex steroid hormones, cytokines and the endocannabinoid system in female fertility.

    Science.gov (United States)

    Karasu, T; Marczylo, T H; Maccarrone, M; Konje, J C

    2011-01-01

    Marijuana, the most used recreational drug, has been shown to have adverse effects on human reproduction. Endogenous cannabinoids (also called endocannabinoids) bind to the same receptors as those of Δ(9)-tetrahydrocannabinol (THC), the psychoactive component of Cannabis sativa. The most extensively studied endocannabinoids are anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol. The endocannabinoids, their congeners and the cannabinoid receptors, together with the metabolic enzymes and putative transporters form the endocannabinoid system (ECS). In this review, we summarize current knowledge about the relationships of ECS, sex steroid hormones and cytokines in female fertility, and underline the importance of this endocannabinoid-hormone-cytokine network. Pubmed and the Web of Science databases were searched for studies published since 1985, looking into the ECS, sex hormones, type-1/2 T-helper (Th1/Th2) cytokines, leukaemia inhibitory factor, leptin and reproduction. The ECS plays a pivotal role in human reproduction. The enzymes involved in the synthesis and degradation of endocannabinoids normalize levels of AEA for successful implantation. The AEA degrading enzyme (fatty acid amide hydrolase) activity as well as AEA content in blood may potentially be used for the monitoring of early pregnancies. Progesterone and oestrogen are involved in the maintenance of endocannabinoid levels. The ECS plays an important role in the immune regulation of human fertility. The available studies suggest that tight control of the endocannabinoid-hormone-cytokine network is required for successful implantation and early pregnancy maintenance. This hormone-cytokine network is a key element at the maternal-foetal interface, and any defect in such a network may result in foetal loss.

  12. Misoprostol modulates cytokine expression through a cAMP Pathway: potential therapeutic implication for liver disease

    Science.gov (United States)

    Gobejishvili, Leila; Ghare, Smita; Khan, Rehan; Cambon, Alexander; Barker, David F.; Barve, Shirish; McClain, Craig; Hill, Daniell

    2015-01-01

    Dysregulated cytokine metabolism plays a critical role in the pathogenesis of many forms of liver disease, including alcoholic and non-alcoholic liver disease. In this study we examined the efficacy of Misoprostol in modulating LPS-inducible TNFα and IL-10 expression in healthy human subjects and evaluated molecular mechanisms for Misoprostol modulation of cytokines in vitro. Healthy subjects were given 14 day courses of Misoprostol at doses of 100, 200, and 300 µg four times a day, in random order. Baseline and LPS-inducible cytokine levels were examined ex vivo in whole blood at the beginning and the end of the study. Additionally, in vitro studies were performed using primary human PBMCs and the murine macrophage cell line, RAW 264.7, to investigate underlying mechanisms of misoprostol on cytokine production. Administration of Misoprostol reduced LPS inducible TNF production by 29%, while increasing IL-10 production by 79% in human subjects with no significant dose effect on ex vivo cytokine activity; In vitro, the effect of Misoprostol was largely mediated by increased cAMP levels and consequent changes in CRE and NFκB activity, which are critical for regulating IL-10 and TNF expression. Additionally, chromatin immunoprecipitation (ChIP) studies demonstrated that Misoprostol treatment led to changes in transcription factor and RNA Polymerase II binding, resulting in changes in mRNA levels. In summary, Misoprostol was effective at beneficially modulating TNF and IL-10 levels both in vivo and in vitro; these studies suggest a potential rationale for Misoprostol use in ALD, NASH and other liver diseases where inflammation plays an etiologic role. PMID:26408955

  13. SATB1 packages densely-looped, transciptionally-active chromatinfor coordinated expression of cytokine genes

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Shutao; Lee, Charles C.; Kohwi-Shigematsu, Terumi

    2006-05-23

    SATB1 is an important regulator of nuclear architecture that anchors specialized DNA sequences onto its cage-like network and recruits chromatin remodeling/modifying factors to control gene transcription. We studied the role of SATB1 in regulating the coordinated expression of Il5, Il4, and Il13 from the 200kb cytokine gene cluster region of mouse chromosome 11 during T-helper 2 (Th2)-cell activation. We show that upon cell activation, SATB1 is rapidly induced to form a unique transcriptionally-active chromatin structure that includes the cytokine gene region. Chromatin is folded into numerous small loops all anchored by SATB1, is histone H3 acetylated at lysine 9/14, and associated with Th2-specific factors, GATA3, STAT6, c-Maf, the chromatin-remodeling enzyme Brg-1, and RNA polymerase II across the 200kb region. Before activation, the chromatin displays some of these features, such as association with GATA3 and STAT6, but these were insufficient for cytokine gene expression. Using RNA interference (RNAi), we show that upon cell activation, SATB1 is not only required for chromatin folding into dense loops, but also for c-Maf induction and subsequently for Il4, Il5, and Il13 transcription. Our results show that SATB1 is an important determinant for chromatin architecture that constitutes a novel higher-order, transcriptionally-active chromatin structure upon Th2-cell activation.

  14. Gliotransmitters and cytokines in the control of blood-brain barrier permeability.

    Science.gov (United States)

    Osipova, Elena D; Semyachkina-Glushkovskaya, Oxana V; Morgun, Andrey V; Pisareva, Natalia V; Malinovskaya, Natalia A; Boitsova, Elizaveta B; Pozhilenkova, Elena A; Belova, Olga A; Salmin, Vladimir V; Taranushenko, Tatiana E; Noda, Mami; Salmina, Alla B

    2018-01-08

    The contribution of astrocytes and microglia to the regulation of neuroplasticity or neurovascular unit (NVU) is based on the coordinated secretion of gliotransmitters and cytokines and the release and uptake of metabolites. Blood-brain barrier (BBB) integrity and angiogenesis are influenced by perivascular cells contacting with the abluminal side of brain microvessel endothelial cells (pericytes, astrocytes) or by immune cells existing (microglia) or invading the NVU (macrophages) under pathologic conditions. The release of gliotransmitters or cytokines by activated astroglial and microglial cells is provided by distinct mechanisms, affects intercellular communication, and results in the establishment of microenvironment controlling BBB permeability and neuroinflammation. Glial glutamate transporters and connexin and pannexin hemichannels working in the tight functional coupling with the purinergic system serve as promising molecular targets for manipulating the intercellular communications that control BBB permeability in brain pathologies associated with excessive angiogenesis, cerebrovascular remodeling, and BBB-mediated neuroinflammation. Substantial progress in deciphering the molecular mechanisms underlying the (patho)physiology of perivascular glia provides promising approaches to novel clinically relevant therapies for brain disorders. The present review summarizes the current understandings on the secretory machinery expressed in glial cells (glutamate transporters, connexin and pannexin hemichannels, exocytosis mechanisms, membrane-derived microvesicles, and inflammasomes) and the role of secreted gliotransmitters and cytokines in the regulation of NVU and BBB permeability in (patho)physiologic conditions.

  15. Modulation of Cytokine and Cytokine Receptor/Antagonist by Treatment with Doxycycline and Tetracycline in Patients with Dengue Fever

    Directory of Open Access Journals (Sweden)

    J. E. Z. Castro

    2011-01-01

    Full Text Available Dengue virus infection can lead to dengue fever (DF or dengue hemorrhagic fever (DHF. Disease severity has been linked to an increase in various cytokine levels. In this study, we evaluated the effectiveness of doxycycline and tetracycline to modulate serum levels of IL-6, IL-1B, and TNF and cytokine receptor/receptor antagonist TNF-R1 and IL-1RA in patients with DF or DHF. Hospitalized patients were randomized to receive standard supportive care or supportive care combined with doxycycline or tetracycline therapy. Serum cytokine and cytokine receptor/antagonist levels were determined at the onset of therapy and after 3 and 7 days. Cytokine and cytokine receptor/antagonist levels were substantially elevated at day 0. IL-6, IL-1β, and TNF remained at or above day 0 levels throughout the study period in untreated patients. Treatment with tetracycline or doxycycline resulted in a significant decline in cytokine levels. Similarly, IL-1RA and TNF-R1 serum concentrations were elevated at baseline and showed a moderate increase among untreated patients. Both drugs resulted in a significant rise in IL-1Ra levels by day 3 in patients. In contrast, treatment did not affect a similar result for TNF-R1. When compared to the control group, however, a significant rise post-treatment was seen upon intragroup analysis. Further analysis demonstrated that doxycycline was significantly more effective at modulating cytokine and cytokine receptor/antagonist levels than tetracycline.

  16. Increased Blood Levels of Growth Factors, Proinflammatory Cytokines, and Th17 Cytokines in Patients with Newly Diagnosed Type 1 Diabetes.

    Science.gov (United States)

    Alnek, Kristi; Kisand, Kalle; Heilman, Kaire; Peet, Aleksandr; Varik, Karin; Uibo, Raivo

    2015-01-01

    The production of several cytokines could be dysregulated in type 1 diabetes (T1D). In particular, the activation of T helper (Th) type 1 (Th1) cells has been proposed to underlie the autoimmune pathogenesis of the disease, although roles for inflammatory processes and the Th17 pathway have also been shown. Nevertheless, despite evidence for the role of cytokines before and at the onset of T1D, the corresponding findings are inconsistent across studies. Moreover, conflicting data exist regarding the blood cytokine levels in T1D patients. The current study was performed to investigate genetic and autoantibody markers in association with the peripheral blood cytokine profiles by xMap multiplex technology in newly diagnosed young T1D patients and age-matched healthy controls. The onset of young-age T1D was characterized by the upregulation of growth factors, including granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-7, the proinflammatory cytokine IL-1β (but not IL-6 or tumor necrosis factor [TNF]-α), Th17 cytokines, and the regulatory cytokines IL-10 and IL-27. Ketoacidosis and autoantibodies (anti-IA-2 and -ZnT8), but not human leukocyte antigen (HLA) genotype, influenced the blood cytokine levels. These findings broaden the current understanding of the dysregulation of systemic levels of several key cytokines at the young-age onset of T1D and provide a further basis for the development of novel immunoregulatory treatments in this disease.

  17. Modulation of cytokine and cytokine receptor/antagonist by treatment with doxycycline and tetracycline in patients with dengue fever.

    Science.gov (United States)

    Castro, J E Z; Vado-Solis, I; Perez-Osorio, C; Fredeking, T M

    2011-01-01

    Dengue virus infection can lead to dengue fever (DF) or dengue hemorrhagic fever (DHF). Disease severity has been linked to an increase in various cytokine levels. In this study, we evaluated the effectiveness of doxycycline and tetracycline to modulate serum levels of IL-6, IL-1B, and TNF and cytokine receptor/receptor antagonist TNF-R1 and IL-1RA in patients with DF or DHF. Hospitalized patients were randomized to receive standard supportive care or supportive care combined with doxycycline or tetracycline therapy. Serum cytokine and cytokine receptor/antagonist levels were determined at the onset of therapy and after 3 and 7 days. Cytokine and cytokine receptor/antagonist levels were substantially elevated at day 0. IL-6, IL-1β, and TNF remained at or above day 0 levels throughout the study period in untreated patients. Treatment with tetracycline or doxycycline resulted in a significant decline in cytokine levels. Similarly, IL-1RA and TNF-R1 serum concentrations were elevated at baseline and showed a moderate increase among untreated patients. Both drugs resulted in a significant rise in IL-1Ra levels by day 3 in patients. In contrast, treatment did not affect a similar result for TNF-R1. When compared to the control group, however, a significant rise post-treatment was seen upon intragroup analysis. Further analysis demonstrated that doxycycline was significantly more effective at modulating cytokine and cytokine receptor/antagonist levels than tetracycline.

  18. Notch2 Is Required for Inflammatory Cytokine-Driven Goblet Cell Metaplasia in the Lung

    Directory of Open Access Journals (Sweden)

    Henry Danahay

    2015-01-01

    Full Text Available The balance and distribution of epithelial cell types is required to maintain tissue homeostasis. A hallmark of airway diseases is epithelial remodeling, leading to increased goblet cell numbers and an overproduction of mucus. In the conducting airway, basal cells act as progenitors for both secretory and ciliated cells. To identify mechanisms regulating basal cell fate, we developed a screenable 3D culture system of airway epithelial morphogenesis. We performed a high-throughput screen using a collection of secreted proteins and identified inflammatory cytokines that specifically biased basal cell differentiation toward a goblet cell fate, culminating in enhanced mucus production. We also demonstrate a specific requirement for Notch2 in cytokine-induced goblet cell metaplasia in vitro and in vivo. We conclude that inhibition of Notch2 prevents goblet cell metaplasia induced by a broad range of stimuli and propose Notch2 neutralization as a therapeutic strategy for preventing goblet cell metaplasia in airway diseases.

  19. Plasma cytokine profiles at diagnosis in pediatric patients with non-hodgkin lymphoma

    DEFF Research Database (Denmark)

    Mellgren, Karin; Hedegaard, Chris Juul; Schmiegelow, Kjeld

    2012-01-01

    Non-Hodgkin lymphoma (NHL) has been associated with elevated levels of inflammatory and immune-regulating cytokines, and polymorphisms in the genes encoding interleukin (IL)-10 and tumor necrosis factor (TNF)-α have been associated with increased incidence of certain subtypes of NHL. The aim......, between 1995 and 2008. Cytokines and growth factors were measured in serum using the Luminex platform by application of a 30-plex kit. Levels of IL-6, IL-2R, IL-10, TNF-RI, and macrophage inflammatory protein-1α were significantly higher in patients with anaplastic large-cell lymphoma compared...... with patients diagnosed with B-cell lymphomas and lymphoblastic lymphomas. High levels of IL-4, IL-13, TNF-RI, and epidermal growth factor were associated with a poorer general condition at diagnosis. The present study suggests that NHL subgrouping and the general condition of pediatric patients at diagnosis...

  20. Cytokine and anti-cytokine therapy for the treatment of asthma and allergic disease

    Directory of Open Access Journals (Sweden)

    Stephen T Holgate

    2004-01-01

    Full Text Available Asthma is a chronic inflammatory disorder of the airways superimposed upon structural changes that include an increase in smooth muscle and airway wall remodeling. In addition to a background of chronic mediator release, asthma is characterized by considerable variations in airway function brought about by important interactions with the environment, including allergen, pollutant and virus exposure. At least in mild-moderate disease, cytokines released from Th2 cells appear important in orchestrating the inflammation. The situation in more severe disease is complicated by the superimposition of a Th1 on top of a Th2 response. Until recently, the only controller treatment for chronic asthma has been corticosteroids. However, identification of specific effector molecules in asthma has led to targeting of specific pathways by using cytokines and cytokine inhibitors. Administration of a monoclonal blocking antibody against IgE has been shown to be highly efficacious in severe allergic asthma, but enhancement of Th1 responses or attempts to reduce eosinophils using anti-interleukin-5 monoclonal antibodies have no clinical benefit. In more severe asthma, blockade of tumor necrosis factor-a using the decoy etanercept has revealed efficacy in a small open study supporting the view that Th1, in addition to Th2, pathways are important as the disease adopts a more severe phenotype. Thus, like atopic dermatitis, it is likely that asthma is not a single disease, but a group of disorders that differ in

  1. Distinctive Subcellular Inhibition of Cytokine-Induced Src by Salubrinal and Fluid Flow

    Science.gov (United States)

    Wan, Qiaoqiao; Xu, Wenxiao; Yan, Jing-long; Yokota, Hiroki; Na, Sungsoo

    2014-01-01

    A non-receptor protein kinase Src plays a crucial role in fundamental cell functions such as proliferation, migration, and differentiation. While inhibition of Src is reported to contribute to chondrocyte homeostasis, its regulation at a subcellular level by chemical inhibitors and mechanical stimulation has not been fully understood. In response to inflammatory cytokines and stress to the endoplasmic reticulum (ER) that increase proteolytic activities in chondrocytes, we addressed two questions: Do cytokines such as interleukin 1 beta (IL1β) and tumor necrosis factor alpha (TNFα) induce location-dependent Src activation? Can cytokine-induced Src activation be suppressed by chemically alleviating ER stress or by applying fluid flow? Using live cell imaging with two Src biosensors (i.e., cytosolic, and plasma membrane-bound biosensors) for a fluorescence resonance energy transfer (FRET) technique, we determined cytosolic Src activity as well as membrane-bound Src activity in C28/I2 human chondrocytes. In response to TNFα and IL1β, both cytosolic and plasma membrane-bound Src proteins were activated, but activation in the cytosol occurred earlier than that in the plasma membrane. Treatment with salubrinal or guanabenz, two chemical agents that attenuate ER stress, significantly decreased cytokine-induced Src activities in the cytosol, but not in the plasma membrane. In contrast, fluid flow reduced Src activities in the plasma membrane, but not in the cytosol. Collectively, the results demonstrate that Src activity is differentially regulated by salubrinal/guanabenz and fluid flow in the cytosol and plasma membrane. PMID:25157407

  2. Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE)

    DEFF Research Database (Denmark)

    Penkowa, M; Hidalgo, J

    2001-01-01

    . However, it is not known how EAE progression is regulated nor how cytokine production and cell death can be reduced. We herewith demonstrate that treatment with Zn-MT-II significantly decreased the CNS expression of IL-6 and TNF-alpha during EAE. Zn-MT-II treatment could also significantly reduce...... apoptotic cell death of neurons and oligodendrocytes during EAE, as judged by using TUNEL and immunoreactivity for cytochrome c and caspases 1 and 3. In contrast, the number of apoptotic lymphocytes and macrophages was less affected by Zn-MT-II treatment. The Zn-MT-II-induced decrease in proinflammatory...... cytokines and apoptosis during EAE could contribute to the reported diminution of clinical symptoms and mortality in EAE-immunized rats receiving Zn-MT-II treatment. Our results demonstrate that MT-II reduces the CNS expression of proinflammatory cytokines and the number of apoptotic neurons during EAE...

  3. Caspase 3 inactivates biologically active full length interleukin-33 as a classical cytokine but does not prohibit nuclear translocation

    International Nuclear Information System (INIS)

    Ali, Shafaqat; Nguyen, Dang Quan; Falk, Werner; Martin, Michael Uwe

    2010-01-01

    IL-33 is a member of the IL-1 family of cytokines with dual function which either activates cells via the IL-33 receptor in a paracrine fashion or translocates to the nucleus to regulate gene transcription in an intracrine manner. We show that full length murine IL-33 is active as a cytokine and that it is not processed by caspase 1 to mature IL-33 but instead cleaved by caspase 3 at aa175 to yield two products which are both unable to bind to the IL-33 receptor. Full length IL-33 and its N-terminal caspase 3 breakdown product, however, translocate to the nucleus. Finally, bioactive IL-33 is not released by cells constitutively or after activation. This suggests that IL-33 is not a classical cytokine but exerts its function in the nucleus of intact cells and only activates others cells via its receptor as an alarm mediator after destruction of the producing cell.

  4. Inflammatory Cytokines Induce Podoplanin Expression at the Tumor Invasive Front.

    Science.gov (United States)

    Kunita, Akiko; Baeriswyl, Vanessa; Meda, Claudia; Cabuy, Erik; Takeshita, Kimiko; Giraudo, Enrico; Wicki, Andreas; Fukayama, Masashi; Christofori, Gerhard

    2018-05-01

    Tumor invasion is a critical first step in the organismic dissemination of cancer cells and the formation of metastasis in distant organs, the most important prognostic factor and the actual cause of death in most of the cancer patients. We report herein that the cell surface protein podoplanin (PDPN), a potent inducer of cancer cell invasion, is conspicuously expressed by the invasive front of squamous cell carcinomas (SCCs) of the cervix in patients and in the transgenic human papillomavirus/estrogen mouse model of cervical cancer. Laser capture microscopy combined with gene expression profiling reveals that the expression of interferon-responsive genes is up-regulated in PDPN-expressing cells at the tumor invasive front, which are exposed to CD45-positive inflammatory cells. Indeed, PDPN expression can be induced in cultured SCC cell lines by single or combined treatments with interferon-γ, transforming growth factor-β, and/or tumor necrosis factor-α. Notably, shRNA-mediated ablation of either PDPN or STAT1 in A431 SCC cells repressed cancer cell invasion on s.c. transplantation into immunodeficient mice. The results highlight the induction of tumor cell invasion by the inflammatory cytokine-stimulated expression of PDPN in the outermost cell layers of cervical SCC. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Role of IRS-2 in insulin and cytokine signalling.

    Science.gov (United States)

    Sun, X J; Wang, L M; Zhang, Y; Yenush, L; Myers, M G; Glasheen, E; Lane, W S; Pierce, J H; White, M F

    1995-09-14

    The protein IRS-1 acts as an interface between signalling proteins with Src-homology-2 domains (SH2 proteins) and the receptors for insulin, IGF-1, growth hormone, several interleukins (IL-4, IL-9, IL-13) and other cytokines. It regulates gene expression and stimulates mitogenesis, and appears to mediate insulin/IGF-1-stimulated glucose transport. Thus, survival of the IRS-1-/- mouse with only mild resistance to insulin was surprising. This dilemma is provisionally resolved with our discovery of a second IRS-signalling protein. We purified and cloned a likely candidate called 4PS from myeloid progenitor cells and, because of its resemblance to IRS-1, we designate it IRS-2. Alignment of the sequences of IRS-2 and IRS-1 revealed a highly conserved amino terminus containing a pleckstrin-homology domain and a phosphotyrosine-binding domain, and a poorly conserved carboxy terminus containing several tyrosine phosphorylation motifs. IRS-2 is expressed in many cells, including tissues from IRS-1-/- mice, and may be essential for signalling by several receptor systems.

  6. Cytokine Levels in the Serum of Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Giulio Kleiner

    2013-01-01

    Full Text Available Growing knowledge about the cytokine network response has led to a better comprehension of mechanisms of pathologies and to the development of new treatments with biological drugs, able to block specific molecules of the immune response. Indeed, when the cytokine production is deregulated, diseases often occur. The understanding of the physiological mechanism of the cytokine network would be useful to better comprehend pathological conditions. Moreover, since the immune system and response change their properties with development, differences in patients' age should be taken into account, both in physiological and in pathological conditions. In this study, we analyzed the profile of 48 cytokines and chemokines in the serum of healthy subjects, comparing adults (≥18 years with young children and children (1–6 and 7–17 years. We found that a certain number of cytokines were not being produced in healthy subjects; others showed a constant serum level amongst the groups. Certain cytokines exhibited a downward or an upward trend with increasing age. The remaining cytokines were up- or downregulated in the group of the children with respect to the other groups. In conclusion, we drew some kinds of guidelines about the physiological production of cytokines and chemokines, underling the difference caused by aging.

  7. Anti-cytokine therapies in T1D

    DEFF Research Database (Denmark)

    Nepom, Gerald T; Ehlers, Mario; Mandrup-Poulsen, Thomas

    2013-01-01

    Therapeutic targeting of proinflammatory cytokines is clinically beneficial in several autoimmune disorders. Several of these cytokines are directly implicated in the pathogenesis of type 1 diabetes, suggesting opportunities for design of clinical trials in type 1 diabetes that incorporate select...... suitable for modulating the immune response in T1D....

  8. Modulation of cytokine production profiles in splenic dendritic cells ...

    African Journals Online (AJOL)

    We examined the role of splenic dendritic cells in immune response to Toxoplasma gondii infection in SAG1 (P30+) transgenic mice by investigating the kinetics of intracellular cytokines expression of IL-4, IL-10, IL-12 and IFN-γ by intracellular cytokine staining (ICS) using flow cytometry, and compared the results to those of ...

  9. Cytokines and Chemokines Involved in Acute Retinal Necrosis

    NARCIS (Netherlands)

    de Boer, JH; de Visser, L; Rijkers, G.; Wiertz, K.; van den Ham, H.J.; van Loon, A.M.; Rothova, Aniki; Mijnes, JDF

    2017-01-01

    Purpose: To investigate which cytokines and chemokines are involved in the immunopathogenesis of acute retinal necrosis (ARN), and whether cytokine profiles are associated with clinical manifestations, such as visual outcome. Methods: Serum and aqueous humor (AH) samples of 19 patients with ARN were

  10. Cytokines and chemokines involved in acute retinal necrosis

    NARCIS (Netherlands)

    L. De Visser (Lenneke); J.H. de Boer (Joke); G.T. Rijkers; Wiertz, K. (Karin); H.J. van den Ham; de Boer, R. (Rob); van Loon, A.M. (Anton M.); A. Rothová (Aniki); J.D.F. de Groot-Mijnes (Jolanda )

    2017-01-01

    textabstractPURPOSE. To investigate which cytokines and chemokines are involved in the immunopatho-genesis of acute retinal necrosis (ARN), and whether cytokine profiles are associated with clinical manifestations, such as visual outcome. METHODS. Serum and aqueous humor (AH) samples of 19 patients

  11. Peripheral parasitaemia and its association with plasma cytokines ...

    African Journals Online (AJOL)

    Also, plasma levels of cytokines were measured using Th1/Th2 human cytokine ELISA kits (Abcam, UK). Analysis of Variance and Student's t-test were used for Comparison of groups while Pearson's Correlation Coefficient was used for tests of association. Results: The results revealed a mean parasite density of ...

  12. Cytokines and the neurodevelopmental basis of mental illness

    Directory of Open Access Journals (Sweden)

    Udani eRatnayake

    2013-10-01

    Full Text Available Epidemiological studies suggest that prenatal exposure to different types of viral or bacterial infections may be associated with similar outcomes; i.e., an increased risk of mental illness disorders in the offspring. Infections arising from various causes have similar debilitating effects in later life, suggesting that the exact pathogen may not be the critical factor in determining the neurological and cognitive outcome in the offspring. Instead, it is thought that response of the innate immune system, specifically the increased production of inflammatory cytokines, may be the critical mediator in altering fetal brain development pre-disposing the offspring to mental illness disorders later in life. Inflammatory cytokines are essential for normal brain development. Factors such as the site of cytokine production, a change in balance between anti- and pro- inflammatory cytokines, placental transfer of cytokines, the effects of cytokines on glial cells, and the effects of glucocorticoids are important when evaluating the impact of maternal infection on fetal brain development. Although it is clear that cytokines are altered in the fetal brain following maternal infection, further evidence is required to determine if cytokines are the critical factor that alters the trajectory of brain development, subsequently leading to postnatal behavioural and neurological abnormalities.

  13. Autoantibodies induced by chimeric cytokine-HIV envelope glycoprotein immunogens

    NARCIS (Netherlands)

    Isik, Gözde; van Montfort, Thijs; Chung, Nancy P. Y.; Moore, John P.; Sanders, Rogier W.

    2014-01-01

    Cytokines are often used as adjuvants to increase the immunogenicity of vaccines because they can improve the immune response and/or direct it into a desired direction. As an alternative to codelivering Ags and cytokines separately, they can be fused into a composite protein, with the advantage that

  14. Cytokines: abnormalities in major depression and implications for pharmacological treatment.

    LENUS (Irish Health Repository)

    O'Brien, Sinead M

    2012-02-03

    The role of cytokines in depression was first considered when the cytokine interferon resulted in "sickness behaviour", the symptoms of which are similar to those of major depression. The latter is associated with an increase in pro-inflammatory cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-alpha). These cytokines are potent modulators of corticotropin-releasing hormone (CRH) which produces heightened hypothalamic-pituitary-adrenal axis (HPA) activity characterized by increases in ACTH and cortisol, both of which are reported elevated in major depression. Antidepressant treatment has immunomodulatory effects with increases in the production of IL-10, which is an anti-inflammatory cytokine. This review based on a Medline search from 1980-2003, focuses on the evidence available of cytokine changes in acute stress, chronic stress and major depression. It examines the effects of antidepressant treatment on immune parameters in both animal models and clinical trials. We suggest that future antidepressants may target the immune system by either blocking the actions of pro-inflammatory cytokines or increasing the production of anti-inflammatory cytokines.

  15. Impact of weight loss on oxidative stress and inflammatory cytokines ...

    African Journals Online (AJOL)

    addressed the beneficial effects of weight reduction in modulating biomarkers of inflammatory cytokines and oxidative stress for obesity associated with type 2 diabetes mellitus. Objective: This study was designed to detect the effects of weight loss on the inflammatory cytokines, oxidative stress markers in obese type 2 ...

  16. Cytokines in lethal graft-versus-host disease

    NARCIS (Netherlands)

    Knulst, A.C.; Bril-Bazuin, C.; Tibbe, G.J.M.; Oudenaren, van A.; Savelkoul, H.F.J.; Benner, R.

    1992-01-01

    Graft-versus-host disease (GVHD) is caused by donor T lymphocytes that recognize foreign antigens on host tissues. This leads to T cell activation, which involves a cascade of events including the transcription of genes for cytokines and their receptors and the production of cytokines. One of the

  17. Cytokines and the Risk of Preterm Delivery in Twin Pregnancies

    DEFF Research Database (Denmark)

    Rode, Line; Klein, Katharina; Larsen, Helle

    2012-01-01

    To estimate the association between cytokine levels in twin pregnancies and risk of spontaneous preterm delivery, including the effect of progesterone treatment.......To estimate the association between cytokine levels in twin pregnancies and risk of spontaneous preterm delivery, including the effect of progesterone treatment....

  18. Inflammatory cytokines and risk of coronary heart disease

    DEFF Research Database (Denmark)

    Kaptoge, Stephen; Seshasai, Sreenivasa Rao Kondapally; Gao, Pei

    2014-01-01

    Because low-grade inflammation may play a role in the pathogenesis of coronary heart disease (CHD), and pro-inflammatory cytokines govern inflammatory cascades, this study aimed to assess the associations of several pro-inflammatory cytokines and CHD risk in a new prospective study, including meta...

  19. Spironolactone inhibits production of proinflammatory cytokines by human mononuclear cells

    DEFF Research Database (Denmark)

    Hansen, Peter Riis; Rieneck, Klaus; Bendtzen, Klaus

    2004-01-01

    The mineralocorticoid receptor antagonist spironolactone (SPIR) reduces the mortality and morbidity in patients with congestive heart failure (CHF). Overexpression of proinflammatory cytokines contribute to the development and progression of CHF.......The mineralocorticoid receptor antagonist spironolactone (SPIR) reduces the mortality and morbidity in patients with congestive heart failure (CHF). Overexpression of proinflammatory cytokines contribute to the development and progression of CHF....

  20. Pathogen interactions with cytokines and host defence: an overview.

    Science.gov (United States)

    Seow, H F

    1998-05-15

    This review summarises some of the immune evasion tactics adopted by pathogens. They include the antagonism of immune function through the use of homologues of cytokine receptors, expression of viral proteins which interact with cytokine signal transduction and expression of cytokine mimics and host proteins that influence the Type I or II cytokine responses. Some of the viral defense molecules that interfere with the functions of cytokines include the EBV protein BCRF1 (viral IL-10) which blocks synthesis of cytokines such as IFN-gamma, viral IL-17 and IL-8 receptor encoded by the herpesvirus saimiri genome and chemokine receptor homologues of Epstein-Barr virus, herpesvirus saimiri and cytomegalovirus. These immunomodulatory tactics function to protect the host from the lethal inflammatory effects as well as inhibit the local inflammatory response elicited to kill the foreign pathogen. Other strategies include the alterations in cytokine expression such as demonstrated with the hepatitis B virus (HBV) core protein and terminal protein which can inhibit interferon-beta gene expression, the interactions of the hepatitis C virus core protein to lymphotoxin-beta receptor and the effects of the interferon signal transduction pathway by adenovirus EIA oncogene and HBV by reducing levels or activity of the cytosolic latent transcriptional factors (STATS). Immune evasive strategies of helminth parasites related to cytokine activities will also be briefly discussed.

  1. Signal pathway of cytokines produced by reactive oxygen species generated from phorbol myristate acetate-stimulated HMC-1 cells.

    Science.gov (United States)

    Kim, J Y; Ro, J Y

    2005-07-01

    The relationship of cytokine production and reactive oxygen species (ROS) generated in mast cells has not been reported yet. This study aimed to examine the signal pathway in the production of cytokines [interleukin-8 (IL-8) and tumour necrosis factor-alpha (TNF-alpha)] by ROS generated from phorbol myristate acetate (PMA)-stimulated human mast cell line-1 cells (HMC-1). HMC-1 cells were stimulated with 25 ng/ml of PMA. The ROS generation and production of cytokines (IL-8 and TNF-alpha) were measured by fluorescence-activated cell sorter and enzyme-linked immunosorbent assay method, respectively. Phosphorylation of mitogen-activated protein kinase family (extracellular signal-regulated kinase, p38 and c-Jun N-terminal kinase) was detected by the Western blotting method. The expression of cytokine's mRNA was measured by reverse transcriptase--polymerase chain reaction, and the DNA-binding activity of the transcription factors [nuclear factor-kappaB (NF-kappaB) and activator protein-1] was detected by electrophoretic mobility shift assay. PMA-stimulated HMC-1 cells immediately generated ROS, and the generated ROS was inhibited by 1,3-dimethyl-2-thiourea (DMTU), but partially inhibited by catalase or N-acetyl-L-cysteine. The production of cytokines in PMA-stimulated HMC-1 cells reached the maximum at 3-5 h and was inhibited by DMTU and specific kinase inhibitor for p38, SB203580. DMTU and SB203580 also inhibited the expressed cytokine's mRNA level and the increased DNA-binding activity of transcription factors, NF-kappaB in PMA-stimulated HMC-1 cells. These data suggest that intracellular ROS generated from PMA-stimulated HMC-1 cells contributes to the production of inflammatory cytokines via p38 kinase/NF-kappaB.

  2. The cytokines cardiotrophin-like cytokine/cytokine-like factor-1 (CLC/CLF) and ciliary neurotrophic factor (CNTF) differ in their receptor specificities.

    Science.gov (United States)

    Tormo, Aurélie Jeanne; Letellier, Marie-Claude; Lissilaa, Rami; Batraville, Laurie-Anne; Sharma, Mukut; Ferlin, Walter; Elson, Greg; Crabé, Sandrine; Gauchat, Jean-François

    2012-12-01

    Ciliary neurotrophic factor (CNTF) and cardiotrophin-like cytokine (CLC) are two cytokines with neurotrophic and immunomodulatory activities. CNTF is a cytoplasmic factor believed to be released upon cellular damage, while CLC requires interaction with a soluble cytokine receptor, cytokine-like factor 1 (CLF), to be efficiently secreted. Both cytokines activate a receptor complex comprising the cytokine binding CNTF receptor α (CNTFRα) and two signaling chains namely, leukemia inhibitory factor receptor β (LIFRβ) and gp130. Human CNTF can recruit and activate an alternative receptor in which CNTFRα is substituted by IL-6Rα. As both CNTF and CLC have immune-regulatory activities in mice, we compared their ability to recruit mouse receptors comprising both gp130 and LIFRβ signaling chains and either IL-6Rα or IL-11Rα which, unlike CNTFRα, are expressed by immune cells. Our results indicate that 1) mouse CNTF, like its human homologue, can activate cells expressing gp130/LIFRβ with either CNTFRα or IL-6Rα and, 2) CLC/CLF is more restricted in its specificity in that it activates only the tripartite CNTFR. Several gp130 signaling cytokines influence T helper cell differentiation. We therefore investigated the effect of CNTF on CD4 T cell cytokine production. We observed that CNTF increased the number of IFN-γ producing CD4 T cells. As IFN-γ is considered a mediator of the therapeutic effect of IFN-β in multiple sclerosis, induction of IFN-γ by CNTF may contribute to the beneficial immunomodulatory effect of CNTF in mouse multiple sclerosis models. Together, our results indicate that CNTF activates the same tripartite receptors in mouse and human cells and further validate rodent models for pre-clinical investigation of CNTF and CNTF derivatives. Furthermore, CNTF and CLC/CLF differ in their receptor specificities. The receptor α chain involved in the immunomodulatory effects of CLC/CLF remains to be identified. Crown Copyright © 2012. Published by

  3. The inflammatory cytokines: molecular biomarkers for major depressive disorder?

    Science.gov (United States)

    Martin, Charlotte; Tansey, Katherine E; Schalkwyk, Leonard C; Powell, Timothy R

    2015-01-01

    Cytokines are pleotropic cell signaling proteins that, in addition to their role as inflammatory mediators, also affect neurotransmitter systems, brain functionality and mood. Here we explore the potential utility of cytokine biomarkers for major depressive disorder. Specifically, we explore how genetic, transcriptomic and proteomic information relating to the cytokines might act as biomarkers, aiding clinical diagnosis and treatment selection processes. We advise future studies to investigate whether cytokine biomarkers might differentiate major depressive disorder patients from other patient groups with overlapping clinical characteristics. Furthermore, we invite future pharmacogenetic studies to investigate whether early antidepressant-induced changes to cytokine mRNA or protein levels precede behavioral changes and act as longer-term predictors of clinical antidepressant response.

  4. [Cytokine imbalance in critically ill patients: SIRS and CARS].

    Science.gov (United States)

    Murata, A; Kikuchi, M; Mishima, S; Sakaki, S; Goto, H; Matsuoka, T; Tanaka, H; Yukioka, T; Shimazaki, S

    1999-07-01

    It remains difficult to treat severely ill patients, especially those who have sepsis and subsequent multiple organ dysfunction syndrome. We propose the hypothesis that the pathophysiology in the sequential sepsis and multiple organ dysfunction syndrome may be strongly related to the imbalance between inflammatory cytokines and antiinflammatory cytokines induced for the host defense to active neutrophils and endothelial cells. Thus we attempted to develop cytokine modulation therapy to normalize the cytokine balance in the host defense system. In this review, we elucidate the relationship between cytokine imbalance and SIRS/CARS in patients with severe burn injury. Furthermore, we examine the possible usage of G-CSF to amplify neutrophil function, and clarify the reasons why various innovative therapies against sepsis have failed.

  5. Unique Cytokine Signature in the Plasma of Patients with Fibromyalgia

    Directory of Open Access Journals (Sweden)

    Jamie Sturgill

    2014-01-01

    Full Text Available Fibromyalgia (FMS is a chronic pain syndrome with a complex but poorly understood pathogenesis affecting approximately 10 million adults in the United States. The lack of a clear etiology of FMS has limited the effective diagnosis and treatment of this debilitating condition. The objective of this secondary data analysis was to examine plasma cytokine levels in women with FMS using the Bio-Plex Human Cytokine 17-plex Assay. Post hoc analysis of plasma cytokine levels was performed to evaluate patterns that were not specified a priori. Upon examination, patients with FMS exhibited a marked reduction in TH2 cytokines such as IL-4, IL-5, and IL-13. The finding of this pattern of altered cytokine milieu not only supports the role of inflammation in FMS but also may lead to more definitive diagnostic tools for clinicians treating FMS. The TH2 suppression provides strong evidence of immune dysregulation in patients with FMS.

  6. Overexpression of the Cytokine BAFF and Autoimmunity Risk.

    Science.gov (United States)

    Steri, Maristella; Orrù, Valeria; Idda, M Laura; Pitzalis, Maristella; Pala, Mauro; Zara, Ilenia; Sidore, Carlo; Faà, Valeria; Floris, Matteo; Deiana, Manila; Asunis, Isadora; Porcu, Eleonora; Mulas, Antonella; Piras, Maria G; Lobina, Monia; Lai, Sandra; Marongiu, Mara; Serra, Valentina; Marongiu, Michele; Sole, Gabriella; Busonero, Fabio; Maschio, Andrea; Cusano, Roberto; Cuccuru, Gianmauro; Deidda, Francesca; Poddie, Fausto; Farina, Gabriele; Dei, Mariano; Virdis, Francesca; Olla, Stefania; Satta, Maria A; Pani, Mario; Delitala, Alessandro; Cocco, Eleonora; Frau, Jessica; Coghe, Giancarlo; Lorefice, Lorena; Fenu, Giuseppe; Ferrigno, Paola; Ban, Maria; Barizzone, Nadia; Leone, Maurizio; Guerini, Franca R; Piga, Matteo; Firinu, Davide; Kockum, Ingrid; Lima Bomfim, Izaura; Olsson, Tomas; Alfredsson, Lars; Suarez, Ana; Carreira, Patricia E; Castillo-Palma, Maria J; Marcus, Joseph H; Congia, Mauro; Angius, Andrea; Melis, Maurizio; Gonzalez, Antonio; Alarcón Riquelme, Marta E; da Silva, Berta M; Marchini, Maurizio; Danieli, Maria G; Del Giacco, Stefano; Mathieu, Alessandro; Pani, Antonello; Montgomery, Stephen B; Rosati, Giulio; Hillert, Jan; Sawcer, Stephen; D'Alfonso, Sandra; Todd, John A; Novembre, John; Abecasis, Gonçalo R; Whalen, Michael B; Marrosu, Maria G; Meloni, Alessandra; Sanna, Serena; Gorospe, Myriam; Schlessinger, David; Fiorillo, Edoardo; Zoledziewska, Magdalena; Cucca, Francesco

    2017-04-27

    Genomewide association studies of autoimmune diseases have mapped hundreds of susceptibility regions in the genome. However, only for a few association signals has the causal gene been identified, and for even fewer have the causal variant and underlying mechanism been defined. Coincident associations of DNA variants affecting both the risk of autoimmune disease and quantitative immune variables provide an informative route to explore disease mechanisms and drug-targetable pathways. Using case-control samples from Sardinia, Italy, we performed a genomewide association study in multiple sclerosis followed by TNFSF13B locus-specific association testing in systemic lupus erythematosus (SLE). Extensive phenotyping of quantitative immune variables, sequence-based fine mapping, cross-population and cross-phenotype analyses, and gene-expression studies were used to identify the causal variant and elucidate its mechanism of action. Signatures of positive selection were also investigated. A variant in TNFSF13B, encoding the cytokine and drug target B-cell activating factor (BAFF), was associated with multiple sclerosis as well as SLE. The disease-risk allele was also associated with up-regulated humoral immunity through increased levels of soluble BAFF, B lymphocytes, and immunoglobulins. The causal variant was identified: an insertion-deletion variant, GCTGT→A (in which A is the risk allele), yielded a shorter transcript that escaped microRNA inhibition and increased production of soluble BAFF, which in turn up-regulated humoral immunity. Population genetic signatures indicated that this autoimmunity variant has been evolutionarily advantageous, most likely by augmenting resistance to malaria. A TNFSF13B variant was associated with multiple sclerosis and SLE, and its effects were clarified at the population, cellular, and molecular levels. (Funded by the Italian Foundation for Multiple Sclerosis and others.).

  7. Cytokine production and visualized effects in the feto-maternal unit. Quantitative and topographic data on cytokines during intrauterine disease.

    Science.gov (United States)

    Stallmach, T; Hebisch, G; Joller-Jemelka, H I; Orban, P; Schwaller, J; Engelmann, M

    1995-09-01

    A large array of cytokines show high activity in amniotic fluid. Attempts have been made to quantify the concentrations or to track rising levels for diagnostic purposes when examining disturbances of the feto-maternal unit. However, the kinetics of cytokine production in the amniotic fluid are not well understood, and there is lack of knowledge about concomitant levels in fetal and maternal blood. The presence of cytokines in fetal and placental cells was demonstrated by immunohistochemistry using mAb. Cytokines were quantified by enzymimmunoassay in amniotic fluid and fetal and maternal blood. This was done with regard to two disease states that quite frequently complicate the course of pregnancy, namely chorioamnionitis and intrauterine growth retardation. The cytokines examined were G-CSF, GM-CSF, TNF-alpha, IL-1, IL-6, and IL-8. In chorioamnionitis, all cytokines, except GM-CSF, were elevated about 100 times in the amniotic fluid. An accompanying increase in maternal and fetal blood was only found for IL-6 and G-CSF; IL-8 was elevated in fetal blood only. Intrauterine growth retardation was characterized by elevated levels of TNF-alpha in the amniotic fluid, whereas G-CSF, GM-CSF, and IL-1 beta were significantly reduced. Immunohistochemistry showed that under normal conditions the cytokines are to be found in a characteristic distribution in certain cell types in the fetus, the placenta, and the placental bed. With rising concentrations, more cells seemed to be recruited for cytokine production, especially macrophages and decidual cells. In chorioamnionitis, fetal extramedullary granulopoiesis was augmented, and in intrauterine growth retardation, erythropoiesis as well as granulopoiesis were depressed. Not only inflammatory disease but also intrauterine growth retardation is characterized by a changing cytokine pattern. Alterations in fetal hematopoiesis observed at postmortem examination of perinatal deaths can be correlated to changes in cytokine

  8. Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro.

    Science.gov (United States)

    Chaitanya, Ganta V; Cromer, Walter E; Wells, Shannon R; Jennings, Merilyn H; Couraud, P Olivier; Romero, Ignacio A; Weksler, Babette; Erdreich-Epstein, Anat; Mathis, J Michael; Minagar, Alireza; Alexander, J Steven

    2011-11-23

    The glio-vascular unit (G-unit) plays a prominent role in maintaining homeostasis of the blood-brain barrier (BBB) and disturbances in cells forming this unit may seriously dysregulate BBB. The direct and indirect effects of cytokines on cellular components of the BBB are not yet unclear. The present study compares the effects of cytokines and cytokine-treated astrocytes on brain endothelial barrier. 3-dimensional transwell co-cultures of brain endothelium and related-barrier forming cells with astrocytes were used to investigate gliovascular barrier responses to cytokines during pathological stresses. Gliovascular barrier was measured using trans-endothelial electrical resistance (TEER), a sensitive index of in vitro barrier integrity. We found that neither TNF-α, IL-1β or IFN-γ directly reduced barrier in human or mouse brain endothelial cells or ECV-304 barrier (independent of cell viability/metabolism), but found that astrocyte exposure to cytokines in co-culture significantly reduced endothelial (and ECV-304) barrier. These results indicate that the barrier established by human and mouse brain endothelial cells (and other cells) may respond positively to cytokines alone, but that during pathological conditions, cytokines dysregulate the barrier forming cells indirectly through astrocyte activation involving reorganization of junctions, matrix, focal adhesion or release of barrier modulating factors (e.g. oxidants, MMPs). © 2011 Chaitanya et al; licensee BioMed Central Ltd.

  9. Inflammation, cytokines and anti-inflammatory therapies in heart failure.

    Science.gov (United States)

    Tabet, J Y; Lopes, M E; Champagne, S; Su, J B; Merlet, P; Hittinger, L

    2002-03-01

    Both experimental and clinical studies have shown a role for inflammation in the pathogenesis of heart failure. This seems related to an imbalance between pro-inflammatory and anti-inflammatory cytokines. Certain categories in patients with dilated cardiomyopathy have shown the presence of humoral and cellular immunity activation suggesting a possible relation between myocarditis and dilated cardiomyopathy. Recent studies suggest a link between the circulating levels of cytokines (TNF alpha IL-1 et IL-6), the clinical status and prognostic. However, the mechanisms connecting heart failure and cytokine activation are unclear and the sites of cytokines production remain controversial. In the clinical setting, specific measurements of cytokines are not available. As tests of inflammation, erythrocyte sedimentation rate and C-reactive protein concentration appear to have interesting pronostic values. Current conventional therapy i.e. ACE inhibitors, type I angiotensin II antagonist and beta-blockers have shown some anti-cytokine properties. Recently, immunosuppressive therapies have shown their ability to improve symptoms and LV ejection in selected patients with dilated cardiomyopathy and clear sign of myocardium inflammation. Specific anti-cytokine therapy have been developed and showed interesting results in preliminary clinical studies. However large clinical trials testing this new therapy have been stoppel prematurely because of deterious effects.

  10. Altered Cytokine Gene Expression in Peripheral Blood Monocytes across the Menstrual Cycle in Primary Dysmenorrhea: A Case-Control Study

    Science.gov (United States)

    Ma, Hongyue; Hong, Min; Duan, Jinao; Liu, Pei; Fan, Xinsheng; Shang, Erxin; Su, Shulan; Guo, Jianming; Qian, Dawei; Tang, Yuping

    2013-01-01

    Primary dysmenorrhea is one of the most common gynecological complaints in young women, but potential peripheral immunologic features underlying this condition remain undefined. In this paper, we compared 84 common cytokine gene expression profiles of peripheral blood mononuclear cells (PBMCs) from six primary dysmenorrheic young women and three unaffected controls on the seventh day before (secretory phase), and the first (menstrual phase) and the fifth (regenerative phase) days of menstruation, using a real-time PCR array assay combined with pattern recognition and gene function annotation methods. Comparisons between dysmenorrhea and normal control groups identified 11 (nine increased and two decreased), 14 (five increased and nine decreased), and 15 (seven increased and eight decreased) genes with ≥2-fold difference in expression (Pmenstrual phase, genes encoding pro-inflammatory cytokines (IL1B, TNF, IL6, and IL8) were up-regulated, and genes encoding TGF-β superfamily members (BMP4, BMP6, GDF5, GDF11, LEFTY2, NODAL, and MSTN) were down-regulated. Functional annotation revealed an excessive inflammatory response and insufficient TGF-β superfamily member signals with anti-inflammatory consequences, which may directly contribute to menstrual pain. In the secretory and regenerative phases, increased expression of pro-inflammatory cytokines and decreased expression of growth factors were also observed. These factors may be involved in the regulation of decidualization, endometrium breakdown and repair, and indirectly exacerbate primary dysmenorrhea. This first study of cytokine gene expression profiles in PBMCs from young primary dysmenorrheic women demonstrates a shift in the balance between expression patterns of pro-inflammatory cytokines and TGF-β superfamily members across the whole menstrual cycle, underlying the peripheral immunologic features of primary dysmenorrhea. PMID:23390521

  11. Altered cytokine gene expression in peripheral blood monocytes across the menstrual cycle in primary dysmenorrhea: a case-control study.

    Directory of Open Access Journals (Sweden)

    Hongyue Ma

    Full Text Available Primary dysmenorrhea is one of the most common gynecological complaints in young women, but potential peripheral immunologic features underlying this condition remain undefined. In this paper, we compared 84 common cytokine gene expression profiles of peripheral blood mononuclear cells (PBMCs from six primary dysmenorrheic young women and three unaffected controls on the seventh day before (secretory phase, and the first (menstrual phase and the fifth (regenerative phase days of menstruation, using a real-time PCR array assay combined with pattern recognition and gene function annotation methods. Comparisons between dysmenorrhea and normal control groups identified 11 (nine increased and two decreased, 14 (five increased and nine decreased, and 15 (seven increased and eight decreased genes with ≥ 2-fold difference in expression (P<0.05 in the three phases of menstruation, respectively. In the menstrual phase, genes encoding pro-inflammatory cytokines (IL1B, TNF, IL6, and IL8 were up-regulated, and genes encoding TGF-β superfamily members (BMP4, BMP6, GDF5, GDF11, LEFTY2, NODAL, and MSTN were down-regulated. Functional annotation revealed an excessive inflammatory response and insufficient TGF-β superfamily member signals with anti-inflammatory consequences, which may directly contribute to menstrual pain. In the secretory and regenerative phases, increased expression of pro-inflammatory cytokines and decreased expression of growth factors were also observed. These factors may be involved in the regulation of decidualization, endometrium breakdown and repair, and indirectly exacerbate primary dysmenorrhea. This first study of cytokine gene expression profiles in PBMCs from young primary dysmenorrheic women demonstrates a shift in the balance between expression patterns of pro-inflammatory cytokines and TGF-β superfamily members across the whole menstrual cycle, underlying the peripheral immunologic features of primary dysmenorrhea.

  12. Expression of acute phase proteins and inflammatory cytokines in mouse mammary gland following Staphylococcus aureus challenge and in response to milk accumulation

    DEFF Research Database (Denmark)

    Nazemi, Sasan; Aalbæk, Bent; Kjelgaard-Hansen, Mads

    2014-01-01

    We used a mouse model of pathogenic (Staphylococcus aureus) and non-pathogenic (teat sealing) mammary inflammation to investigate mRNA expression of several inflammatory cytokines and acute phase proteins (APP) in mammary tissue and liver, and the appearance of some of these factors in plasma...... or lesser extent, whilst expression of APP was up-regulated to a much greater extent. The first appearance of increased cytokine and APP concentrations in plasma and of milk amyloid A (MAA) in milk occurred in advance of the measurable up-regulation of expression, hence their origin cannot be stated...

  13. Differing House Finch Cytokine Expression Responses to Original and Evolved Isolates ofMycoplasma gallisepticum.

    Science.gov (United States)

    Vinkler, Michal; Leon, Ariel E; Kirkpatrick, Laila; Dalloul, Rami A; Hawley, Dana M

    2018-01-01

    The recent emergence of the poultry bacterial pathogen Mycoplasma gallisepticum (MG) in free-living house finches ( Haemorhous mexicanus ), which causes mycoplasmal conjunctivitis in this passerine bird species, resulted in a rapid coevolutionary arms-race between MG and its novel avian host. Despite extensive research on the ecological and evolutionary dynamics of this host-pathogen system over the past two decades, the immunological responses of house finches to MG infection remain poorly understood. We developed seven new probe-based one-step quantitative reverse transcription polymerase chain reaction assays to investigate mRNA expression of house finch cytokine genes ( IL1B, IL6, IL10, IL18, TGFB2, TNFSF15 , and CXCLi2 , syn. IL8L ). These assays were then used to describe cytokine transcription profiles in a panel of 15 house finch tissues collected at three distinct time points during MG infection. Based on initial screening that indicated strong pro-inflammatory cytokine expression during MG infection at the periorbital sites in particular, we selected two key house finch tissues for further characterization: the nictitating membrane, i.e., the internal eyelid in direct contact with MG, and the Harderian gland, the secondary lymphoid tissue responsible for regulation of periorbital immunity. We characterized cytokine responses in these two tissues for 60 house finches experimentally inoculated either with media alone (sham) or one of two MG isolates: the earliest known pathogen isolate from house finches (VA1994) or an evolutionarily more derived isolate collected in 2006 (NC2006), which is known to be more virulent. We show that the more derived and virulent isolate NC2006, relative to VA1994, triggers stronger local inflammatory cytokine signaling, with peak cytokine expression generally occurring 3-6 days following MG inoculation. We also found that the extent of pro-inflammatory interleukin 1 beta signaling was correlated with conjunctival MG loads

  14. Differing House Finch Cytokine Expression Responses to Original and Evolved Isolates of Mycoplasma gallisepticum

    Science.gov (United States)

    Vinkler, Michal; Leon, Ariel E.; Kirkpatrick, Laila; Dalloul, Rami A.; Hawley, Dana M.

    2018-01-01

    The recent emergence of the poultry bacterial pathogen Mycoplasma gallisepticum (MG) in free-living house finches (Haemorhous mexicanus), which causes mycoplasmal conjunctivitis in this passerine bird species, resulted in a rapid coevolutionary arms-race between MG and its novel avian host. Despite extensive research on the ecological and evolutionary dynamics of this host–pathogen system over the past two decades, the immunological responses of house finches to MG infection remain poorly understood. We developed seven new probe-based one-step quantitative reverse transcription polymerase chain reaction assays to investigate mRNA expression of house finch cytokine genes (IL1B, IL6, IL10, IL18, TGFB2, TNFSF15, and CXCLi2, syn. IL8L). These assays were then used to describe cytokine transcription profiles in a panel of 15 house finch tissues collected at three distinct time points during MG infection. Based on initial screening that indicated strong pro-inflammatory cytokine expression during MG infection at the periorbital sites in particular, we selected two key house finch tissues for further characterization: the nictitating membrane, i.e., the internal eyelid in direct contact with MG, and the Harderian gland, the secondary lymphoid tissue responsible for regulation of periorbital immunity. We characterized cytokine responses in these two tissues for 60 house finches experimentally inoculated either with media alone (sham) or one of two MG isolates: the earliest known pathogen isolate from house finches (VA1994) or an evolutionarily more derived isolate collected in 2006 (NC2006), which is known to be more virulent. We show that the more derived and virulent isolate NC2006, relative to VA1994, triggers stronger local inflammatory cytokine signaling, with peak cytokine expression generally occurring 3–6 days following MG inoculation. We also found that the extent of pro-inflammatory interleukin 1 beta signaling was correlated with conjunctival MG loads and

  15. Decreased proinflammatory cytokine production by peripheral blood mononuclear cells from vitiligo patients following aspirin treatment

    International Nuclear Information System (INIS)

    Zailaie, Mohammad Z.

    2005-01-01

    low-dose oral aspirin can down-regulate the PBMC proinflammatory cytokine production in active vitiligo with concomitant arrest of disease activity. (author)

  16. Proinflammatory cytokines decrease the expression of genes critical for RPE function.

    Science.gov (United States)

    Kutty, R Krishnan; Samuel, William; Boyce, Kaifa; Cherukuri, Aswini; Duncan, Todd; Jaworski, Cynthia; Nagineni, Chandrasekharam N; Redmond, T Michael

    2016-01-01

    Proinflammatory cytokines interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1β) secreted by infiltrating lymphocytes or macrophages may play a role in triggering RPE dysfunction associated with age-related macular degeneration (AMD). Binding of these proinflammatory cytokines to their specific receptors residing on the RPE cell surface can activate signaling pathways that, in turn, may dysregulate cellular gene expression. The purpose of the present study was to investigate whether IFN-γ, TNF-α, and IL-1β have an adverse effect on the expression of genes essential for RPE function, employing the RPE cell line ARPE-19 as a model system. ARPE-19 cells were cultured for 3-4 months until they exhibited epithelial morphology and expressed mRNAs for visual cycle genes. The differentiated cells were treated with IFN-γ, TNF-α, and/or IL-1β, and gene expression was analyzed with real-time PCR analysis. Western immunoblotting was employed for the detection of proteins. Proinflammatory cytokines (IFN-γ + TNF-α + IL-1β) greatly increased the expression of chemokines and cytokines in cultured ARPE-19 cells that exhibited RPE characteristics. However, this response was accompanied by markedly decreased expression of genes important for RPE function, such as CDH1 , RPE65 , RDH5 , RDH10 , TYR , and MERTK . This was associated with decreased expression of the genes MITF , TRPM1 , and TRPM3 , as well as microRNAs miR-204 and miR-211, which are known to regulate RPE-specific gene expression. The decreased expression of the epithelial marker gene CDH1 was associated with increased expression of mesenchymal marker genes ( CDH2 , VIM , and CCND1 ) and epithelial-mesenchymal transition (EMT) promoting transcription factor genes ( ZEB1 and SNAI1 ). RPE cells exposed to proinflammatory cytokines IFN-γ, TNF-α, and IL-1β showed decreased expression of key genes involved in the visual cycle, epithelial morphology, and phagocytosis. This

  17. Interaction Effects of Season of Birth and Cytokine Genes on Schizotypal Traits in the General Population

    Directory of Open Access Journals (Sweden)

    Margarita V. Alfimova

    2017-01-01

    Full Text Available Literature suggests that the effect of winter birth on vulnerability to schizophrenia might be mediated by increased expression of proinflammatory cytokines due to prenatal infection and its inadequate regulation by anti-inflammatory factors. As the response of the immune system depends on genotype, this study assessed the interaction effects of cytokine genes and season of birth (SOB on schizotypy measured with the Schizotypal Personality Questionnaire (SPQ-74. We searched for associations of IL1B rs16944, IL4 rs2243250, and IL-1RN VNTR polymorphisms, SOB, and their interactions with the SPQ-74 total score in a sample of 278 healthy individuals. A significant effect of the IL4 X SOB interaction was found, p=0.007 and η2=0.028. We confirmed this effect using an extended sample of 373 individuals. Homozygotes CC born in winter showed the highest SPQ total score and differed significantly from winter-born T allele carriers, p=0.049. This difference was demonstrated for cognitive-perceptual and disorganized but not interpersonal dimensions. The findings are consistent with the hypothesis that the cytokine genes by SOB interaction can influence variability of schizotypal traits in the general population. The IL4 T allele appeared to have a protective effect against the development of positive and disorganized schizotypal traits in winter-born individuals.

  18. ADAM17 silencing in mouse colon carcinoma cells: the effect on tumoricidal cytokines and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Sudipta Das

    Full Text Available ADAM17 (a disintegrin and metalloprotease 17 is a major sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules and is often overexpressed in malignant cells. It is generally accepted that ADAM17 promotes tumor development via activating growth factors from the EGF family, thus facilitating autocrine stimulation of tumor cell proliferation and migration. Here we show, using MC38CEA murine colon carcinoma model, that ADAM17 also regulates tumor angiogenesis and cytokine profile. When ADAM17 was silenced in MC38CEA cells, in vivo tumor growth and in vitro cell motility were significantly diminished, but no effect was seen on in vitro cell proliferation. ADAM17-silencing was accompanied by decreased in vitro expression of vascular endothelial growth factor-A and matrix metalloprotease-9, which was consistent with the limited angiogenesis and slower growth seen in ADAM17-silenced tumors. Among the growth factors susceptible to shedding by ADAM17, neuregulin-1 was the only candidate to mediate the effects of ADAM17 on MC38CEA motility and tumor angiogenesis. Concentrations of TNF and IFNγ, cytokines that synergistically induced proapoptotic effects on MC38CEA cells, were significantly elevated in the lysates of ADAM17-silenced tumors compared to mock transfected controls, suggesting a possible role for ADAM17 in host immune suppression. These results introduce new, complex roles of ADAM17 in tumor progression, including its impact on the anti-tumor immune response.

  19. Fish Suppressors of Cytokine Signaling (SOCS): Gene Discovery, Modulation of Expression and Function

    Science.gov (United States)

    Wang, Tiehui; Gorgoglione, Bartolomeo; Maehr, Tanja; Holland, Jason W.; Vecino, Jose L. González; Wadsworth, Simon; Secombes, Christopher J.

    2011-01-01

    The intracellular suppressors of cytokine signaling (SOCS) family members, including CISH and SOCS1 to 7 in mammals, are important regulators of cytokine signaling pathways. So far, the orthologues of all the eight mammalian SOCS members have been identified in fish, with several of them having multiple copies. Whilst fish CISH, SOCS3, and SOCS5 paralogues are possibly the result of the fish-specific whole genome duplication event, gene duplication or lineage-specific genome duplication may also contribute to some paralogues, as with the three trout SOCS2s and three zebrafish SOCS5s. Fish SOCS genes are broadly expressed and also show species-specific expression patterns. They can be upregulated by cytokines, such as IFN-γ, TNF-α, IL-1β, IL-6, and IL-21, by immune stimulants such as LPS, poly I:C, and PMA, as well as by viral, bacterial, and parasitic infections in member- and species-dependent manners. Initial functional studies demonstrate conserved mechanisms of fish SOCS action via JAK/STAT pathways. PMID:22203897

  20. Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells

    Directory of Open Access Journals (Sweden)

    Ulrich eBlank

    2014-09-01

    Full Text Available Upon activation mast cells (MC secrete numerous inflammatory compounds stored in their cytoplasmic secretory granules (SG by a process called anaphylactic degranulation, which is responsible for type I hypersensitivity responses. Prestored mediators include histamine and mast cell proteases but also some cytokines and growth factors making them available within minutes for a maximal biological effect. Degranulation is followed by the de novo synthesis of lipid mediators such as prostaglandins and leukotrienes as well as a vast array of cytokines, chemokines and growth factors, which are responsible for late phase inflammatory responses. While lipid mediators diffuse freely out of the cell through lipid bilayers, both anaphylactic degranulation and secretion of cytokines, chemokines and growth factors depends on highly regulated vesicular trafficking steps that occur along the secretory pathway starting with the translocation of proteins to the ER. Vesicular trafficking in mast cells also intersects with endocytic routes, notably to form specialized cytoplasmic granules called secretory lysosomes. Some of the mediators like histamine reach granules via specific vesicular monoamine transporters directly from the cytoplasm. In this review, we try to summarize the available data on granule biogenesis and signaling events that coordinate the complex steps that lead to the release of the inflammatory mediators from the various vesicular carriers in mast cells.

  1. Efficient Maturation and Cytokine Production of Neonatal DCs Requires Combined Proinflammatory Signals

    Directory of Open Access Journals (Sweden)

    Doreen Krumbiegel

    2005-01-01

    Full Text Available Specific functional properties of dendritic cells (DCs have been suspected as being responsible for the impaired specific immune responses observed in human neonates. To analyze stimulatory requirements for the critical transition from immature, antigen-processing DCs to mature, antigen-presenting DCs, we investigated the effect of different proinflammatory mediators and antigens on phenotype and cytokine secretion of human neonatal DCs derived from hematopoietic progenitor cells (HPCs. Whereas single proinflammatory mediators were unable to induce the maturation of neonatal DCs, various combinations of IFNγ, CD40L, TNFα, LPS and antigens, induced the maturation of neonatal DCs documented by up-regulation of HLA-DR, CD83 and CD86. Combinations of proinflammatory mediators also increased cytokine secretion by neonatal DCs. Especially combined stimulation with LPS and IFNγ proved to be very efficient in inducing maturation and cytokine synthesis of neonatal DCs. In conclusion, neonatal DCs can be stimulated to express maturation as well as costimulatory surface molecules. However, induction of maturation requires combined stimulation with multiple proinflammatory signals.

  2. Development of a flow cytometric assay to quantify lymphocyte adhesion to cytokine-stimulated human endothelial and biliary epithelial cells.

    Science.gov (United States)

    Korlipara, L V; Leon, M P; Rix, D A; Douglas, M S; Gibbs, P; Bassendine, M F; Kirby, J A

    1996-05-27

    The adhesive interaction between T lymphocytes and parenchymal cells is of importance for many processes of the cellular immune response. This adhesion is regulated by the activation status of the T cell and by cytokines in the microenvironment which can alter adhesion molecule expression by endothelial and epithelial cells. In this study results from an isotopic adhesion assay were compared with those from a flow cytometric assay in order to determine which was most appropriate for the investigation of lymphocyte adhesion to human umbilical vein endothelial cells (HUVEC) and intrahepatic biliary epithelial cells (HIBEC). Treatment of both these cell types with the proinflammatory cytokines interferon-gamma (IFN-gamma) or tumour necrosis factor-alpha (TNF-alpha) significantly upregulated expression of intercellular adhesion molecule-1 (ICAM-1). Treatment with TNF-alpha also induced endothelial cells to express vascular cell adhesion molecule-1 (VCAM-1). The isotopic assay demonstrated increased adhesion of lymphoblasts to HUVEC which had been stimulated with cytokines for 15 h but failed to detect major changes in adhesion following 72 h of cytokine treatment of HUVEC or HIBEC. However, the flow cytometric assay reproducibly demonstrated increased adhesion following cytokine treatment for both these time periods; these increases corresponded with the changes in adhesion molecule expression by cytokine-stimulated HUVEC and HIBEC targets. The differences in apparent adhesion measured by the two assays after cytokine stimulation for 72 h may be explained by cytokine-induced changes in the morphology and confluency of cultured cells. Results of the isotopic assay are proportional to the total number of lymphoid cells bound by the cultured target cells and will be distorted by changes in effective target cell area. The flow cytometric assay measures the mean number of lymphoid cells bound by each target cell and is independent of the total binding area. It is concluded

  3. Neuronal release of cytokine IL-3 triggered by mechanosensitive autostimulation of the P2X7 receptor is neuroprotective

    Directory of Open Access Journals (Sweden)

    Jason C Lim

    2016-11-01

    increased in rat retinas stretched with moderate intraocular pressure (IOP elevation; BBG blocked the rise in IL-3, implicating a role for the P2X7R in transcriptional regulation in vivo. In summary, mechanical stretch triggers release of cytokines from neurons that can convey neuroprotection. Enhancement of these signals in vivo implicates P2X7R-mediated IL-3 signaling as an endogenous pathway that could minimize damage following neuronal exposure to chronic mechanical strain.

  4. Autophagy and IL-1 family cytokines

    Directory of Open Access Journals (Sweden)

    James eHarris

    2013-04-01

    Full Text Available Autophagy is an important intracellular homeostatic mechanism for the targeting of cytosolic constituents, including organelles, for lysosomal degradation. Autophagy plays roles in numerous physiological processes, including immune cell responses to endogenous and exogenous pathogenic stimuli. Moreover, autophagy has a potentially pivotal role to play in the regulation of inflammatory responses. In particular, autophagy regulates endogenous inflammasome activators, as well as inflammasome components and pro-IL-1β. As a result, autophagy acts a key modulator of IL-1β and IL-18, as well as IL-1α, release. This review focuses specifically on the role autophagy plays in regulating the production, processing and secretion of IL-1 and IL-18 and the consequences of this important function.

  5. Polymorphisms in cytokine genes and serum cytokine levels among New Mexican women with and without breast cancer.

    Science.gov (United States)

    Erdei, Esther; Kang, Huining; Meisner, Angela; White, Kirsten; Pickett, Gavin; Baca, Cynthia; Royce, Melanie; Berwick, Marianne

    2010-07-01

    Among New Mexican Hispanic women, breast cancer is detected at a more advanced stage than compared to Non-Hispanic White women. One central factor that has been little studied is the role of critical cytokines. We genotyped incident breast cancer cases and their age-, gender- and smoking-matched controls (N=40 matched pairs) for 25 single nucleotide polymorphisms (SNPs) in cytokine genes. We measured corresponding serum cytokine levels as well. Five cytokines (IL-1beta, IL-5, TNF-alpha, IL-6 and IL-2) were significantly associated with disease and based on their serum levels, concentrations were higher in the cases than in the controls. Disease odds ratios corresponding to one standard deviation change in log-transformed concentrations of these cytokines were 18.87, 4.10, 3.61, 3.27 and 2.52. Three most statistically significant SNPs were rs2069705, located in the promoter region of the interferon gamma gene (INF-gamma); rs2243248, in the promoter of IL-4 (rs2243248); and rs1800925, in the promoter of the IL-13 gene. Increased serum cytokine levels at diagnosis are indicative for immunological alterations and possibly related to genetic susceptibility markers as well. These findings might guide us to understand the presence of SNPs in cytokine genes and serum concentrations among breast cancer patients and potentially in other cancers. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Interleukin-1 antagonists and other cytokine blockade strategies for type 1 diabetes

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, Thomas

    2012-01-01

    Proinflammatory cytokines stimulate adaptive immunity and attenuate T cell regulation and tolerance induction. They also profoundly impair β-cell function, proliferation, and viability, activities of similar importance in the context of type 1 diabetes (T1D). Detailed knowledge of the molecular...... in T1D. Critical and balanced appraisal of the preclinical and clinical evidence of efficacy and safety of anti-immune, anti-inflammatory, and anti-dysmetabolic therapeutics should thus guide future studies to move closer to novel treatments, targeting the underlying causes of β-cell failure...

  7. The Effect of Autophagy on Inflammation Cytokines in Renal Ischemia/Reperfusion Injury.

    Science.gov (United States)

    Ling, Haibin; Chen, Hongguang; Wei, Miao; Meng, Xiaoyin; Yu, Yonghao; Xie, Keliang

    2016-02-01

    Acute kidney injury (AKI) is characterized by a rapid loss of kidney function and an antigen-independent inflammatory process that causes tissue damage, which was one of the main manifestations of kidney ischemia/reperfusion (I/R). Recent studies have demonstrated autophagy participated in the pathological process of acute kidney injury. In this study, we discuss how autophagy regulated inflammation response in the kidney I/R. AKI was performed by renal I/R. Autophagy activator rapamycin (Rap) and inhibitor 3-methyladenine (MA) were used to investigate the role of autophagy on kidney function and inflammation response. After the experiment, kidney tissues were obtained for the detection of autophagy-related protein microtubule-associated protein light chain 3(LC3)II, Beclin1, and Rab7 and lysosome-associated membrane protein type (LAMP)2 protein by reverse transcription-polymerase chain reaction (PT-PCR) and Western blotting, and histopathology and tissue injury scores also. The blood was harvested to measure kidney function (creatinine (Cr) and blood urea nitrogen (BUN) levels) after I/R. Cytokines TNF-α, IL-6, HMGB1, and IL-10 were measured after I/R. I/R induced the expression of LC3II, Beclin1, LAMP2, and Rab7. The activation and inhibition of autophagy by rapamycin and 3-MA were promoted and attenuated histological and renal function in renal I/R rats, respectively. Cytokines TNF-α, IL-6, and HMGB1 were decreased, and IL-10 was further increased after activation of autophagy treated in I/R rats, while 3-MA exacerbated the pro-inflammatory cytokines TNF-α, IL-6, HMGB1, and anti-inflammatory cytokine IL-10 in renal I/R. I/R can activated the autophagy, and autophagy increase mitigated the renal injury by decreasing kidney injury score, levels of Cr and BUN after renal I/R, and inflammation response via regulating the balance of pro-inflammation and anti-inflammation cytokines.

  8. Increased Blood Levels of Growth Factors, Proinflammatory Cytokines, and Th17 Cytokines in Patients with Newly Diagnosed Type 1 Diabetes.

    Directory of Open Access Journals (Sweden)

    Kristi Alnek

    Full Text Available The production of several cytokines could be dysregulated in type 1 diabetes (T1D. In particular, the activation of T helper (Th type 1 (Th1 cells has been proposed to underlie the autoimmune pathogenesis of the disease, although roles for inflammatory processes and the Th17 pathway have also been shown. Nevertheless, despite evidence for the role of cytokines before and at the onset of T1D, the corresponding findings are inconsistent across studies. Moreover, conflicting data exist regarding the blood cytokine levels in T1D patients. The current study was performed to investigate genetic and autoantibody markers in association with the peripheral blood cytokine profiles by xMap multiplex technology in newly diagnosed young T1D patients and age-matched healthy controls. The onset of young-age T1D was characterized by the upregulation of growth factors, including granulocyte macrophage-colony stimulating factor (GM-CSF and interleukin (IL-7, the proinflammatory cytokine IL-1β (but not IL-6 or tumor necrosis factor [TNF]-α, Th17 cytokines, and the regulatory cytokines IL-10 and IL-27. Ketoacidosis and autoantibodies (anti-IA-2 and -ZnT8, but not human leukocyte antigen (HLA genotype, influenced the blood cytokine levels. These findings broaden the current understanding of the dysregulation of systemic levels of several key cytokines at the young-age onset of T1D and provide a further basis for the development of novel immunoregulatory treatments in this disease.

  9. Nicotine inhibits LPS-induced cytokine production and leukocyte infiltration in rat placenta.

    Science.gov (United States)

    Bao, Junjie; Liu, Yuanyuan; Yang, Jinying; Gao, Qiu; Shi, Shao-Qing; Garfield, Robert E; Liu, Huishu

    2016-03-01

    Previous work conducted by our group has shown that nicotine reduces lipopolysaccharide (LPS)-induced systemic inflammatory responses and protects fetuses in pregnant Sprague-Dawley (SD) rats. In the present study, we aim to evaluate the influence of nicotine on rat placenta, including cytokine release, leukocyte infiltration, and α7 nicotinic acetylcholine receptor (α7-nAChR) expression. Placental tissues of SD rats on gestation day 14 (GD14) were obtained and cultured in the presence or absence of LPS and/or nicotine. Culture media after 24 h were analyzed for cytokines release using Luminex. Other pregnant SD rats were first pretreated with nicotine on GD14 and GD15, followed by LPS injection on GD16. Placentas were collected on GD18 for H&E staining to evaluate leukocyte density and for real-time PCR and western blotting to identify the α7-nAChR expression in different groups. Nicotine suppresses LPS-stimulated placental proinflammatory cytokines (IL-1, IL-2, IL-6, TNF-α, IFN-γ) production except IL-17 in vitro, and reduces leucocytes infiltration in the placental chorionic plate caused by LPS in vivo. Moreover, LPS increases the α7-nAChR protein expression in placentas while pretreatment of nicotine inhibits it. These data show that nicotine suppresses LPS-induced placental inflammation by inhibition of cytokine release and infiltration of leukocytes into the placenta, and regulates the increased expression of α7-nAChR in placenta after LPS treatment. Nicotine and other nicotinic agonists may be an alternative therapeutic strategy for placental inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Subfornical Organ Mediates Sympathetic and Hemodynamic Responses to Blood-borne Pro-Inflammatory Cytokines

    Science.gov (United States)

    Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G.; Yu, Yang; Johnson, Alan Kim; Felder, Robert B.

    2013-01-01

    Pro-inflammatory cytokines play an important role in regulating autonomic and cardiovascular function in hypertension and heart failure. Peripherally administered pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) act upon the brain to increase blood pressure (BP), heart rate (HR) and sympathetic nerve activity. These molecules are too large to penetrate blood brain barrier (BBB), and so the mechanisms by which they elicit these responses remain unknown. We tested the hypothesis that the subfornical organ (SFO), a forebrain circumventricular organ that lacks a BBB, plays a major role in mediating the sympathetic and hemodynamic responses to circulating pro-inflammatory cytokines. Intracarotid artery (ICA) injection of TNF-α (200 ng) or IL-1β (200 ng) dramatically increased mean BP (MBP), HR and renal sympathetic nerve activity (RSNA) in rats with sham lesions of the SFO (SFO-s). These excitatory responses to ICA TNF-α and IL-1β were significantly attenuated in SFO-lesioned (SFO-x) rats. Similarly, the increases in MBP, HR and RSNA in response to intravenous (IV) injections of TNF-α (500 ng) or IL-1β (500 ng) in SFO-s rats were significantly reduced in the SFO-x rats. Immunofluorescent staining revealed a dense distribution of the p55 TNF-α receptor and the IL-1 receptor accessory protein, a subunit of the IL-1 receptor, in the SFO. These data suggest that SFO is a predominant site in the brain at which circulating pro-inflammatory cytokines act to elicit cardiovascular and sympathetic responses. PMID:23670302

  11. Lung-derived innate cytokines: new epigenetic targets of allergen-specific sublingual immunotherapy

    Directory of Open Access Journals (Sweden)

    Abbas Pishdadian

    2016-01-01

    Full Text Available Objective(s:Sublingual allergen-specific immunotherapy is a safe and effective method for treatment of IgE-mediated respiratory allergies; however, the underlying mechanisms are not fully understood. This study was planned to test whether sublingual immunotherapy (SLIT can exert epigenetic mechanisms through which the airway allergic responses can be extinguished. Materials and Methods:BALB/c mice were sensitized intraperitoneally and challenged intranasally. Then, they received sublingual treatment with recombinant Che a 2 (rChe a 2, a major allergen of Chenopodium album. After SLIT, allergen-specific antibodies in sera, cytokine profiles of spleen cell cultures, mRNA and protein expression of lung-derived IL-33, IL-25, and TSLP (thymic stromal lymphopoietin, and histone modifications of these three genes were assessed. Results:Following Immunotherapy, systemic immune responses shifted from Th2 to Th1 profile as demonstrated by significant decrease in IgE and IL-4 and substantial increase in IgG2a and IFN-γ. At local site, mRNA and protein levels of lung-derived pro-inflammatory cytokines IL-33 and TSLP were markedly down-regulated following SLIT that was associated with marked enrichment of trimethylated lysine 27 of histone H3 at promoter regions of these two cytokines. Conclusion:In our study, sublingual immunotherapy with recombinant allergen effectively attenuated allergic immune responses, at least partly, by induction of distinct histone modifications at specific loci. Additionally, the lung-derived pro-allergic cytokines IL-33 and TSLP could be promising mucosal candidates for either monitoring allergic conditions or therapeutic approaches.

  12. Lung-derived innate cytokines: new epigenetic targets of allergen-specific sublingual immunotherapy.

    Science.gov (United States)

    Pishdadian, Abbas; Varasteh, Abdolreza; Gholamin, Mehran; Nasiraie, Leila Roozbeh; Hosseinpour, Mitra; Moghadam, Malihe; Sankian, Mojtaba

    2016-01-01

    Sublingual allergen-specific immunotherapy is a safe and effective method for treatment of IgE-mediated respiratory allergies; however, the underlying mechanisms are not fully understood. This study was planned to test whether sublingual immunotherapy (SLIT) can exert epigenetic mechanisms through which the airway allergic responses can be extinguished. BALB/c mice were sensitized intraperitoneally and challenged intranasally. Then, they received sublingual treatment with recombinant Che a 2 (rChe a 2), a major allergen of Chenopodium album. After SLIT, allergen-specific antibodies in sera, cytokine profiles of spleen cell cultures, mRNA and protein expression of lung-derived IL-33, IL-25, and TSLP (thymic stromal lymphopoietin), and histone modifications of these three genes were assessed. Following Immunotherapy, systemic immune responses shifted from Th2 to Th1 profile as demonstrated by significant decrease in IgE and IL-4 and substantial increase in IgG2a and IFN-γ. At local site, mRNA and protein levels of lung-derived pro-inflammatory cytokines IL-33 and TSLP were markedly down-regulated following SLIT that was associated with marked enrichment of trimethylated lysine 27 of histone H3 at promoter regions of these two cytokines. In our study, sublingual immunotherapy with recombinant allergen effectively attenuated allergic immune responses, at least partly, by induction of distinct histone modifications at specific loci. Additionally, the lung-derived pro-allergic cytokines IL-33 and TSLP could be promising mucosal candidates for either monitoring allergic conditions or therapeutic approaches.

  13. The central role of calcium in the effects of cytokines on beta-cell function: implications for type 1 and type 2 diabetes.

    Science.gov (United States)

    Ramadan, James W; Steiner, Stephen R; O'Neill, Christina M; Nunemaker, Craig S

    2011-12-01

    The appropriate regulation of intracellular calcium is a requirement for proper cell function and survival. This review focuses on the effects of proinflammatory cytokines on calcium regulation in the insulin-producing pancreatic beta-cell and how normal stimulus-secretion coupling, organelle function, and overall beta-cell viability are impacted. Proinflammatory cytokines are increasingly thought to contribute to beta-cell dysfunction not only in type 1 diabetes (T1D), but also in the progression of type 2 diabetes (T2D). Cytokine-induced disruptions in calcium handling result in reduced insulin release in response to glucose stimulation. Cytokines can alter intracellular calcium levels by depleting calcium from the endoplasmic reticulum (ER) and by increasing calcium influx from the extracellular space. Depleting ER calcium leads to protein misfolding and activation of the ER stress response. Disrupting intracellular calcium may also affect organelles, including the mitochondria and the nucleus. As a chronic condition, cytokine-induced calcium disruptions may lead to beta-cell death in T1D and T2D, although possible protective effects are also discussed. Calcium is thus central to both normal and pathological cell processes. Because the tight regulation of intracellular calcium is crucial to homeostasis, measuring the dynamics of calcium may serve as a good indicator of overall beta-cell function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Class I Cytokine Receptors: Structure and function in the Membrane

    DEFF Research Database (Denmark)

    Bugge, Katrine Østergaard

    Class I cytokine receptors are involved in important biological functions of both physiological and pathological nature in mammals. However, the molecular details of the cross-membrane signal transduction through these receptors remain obscure. One of the major reasons for this is the lack...... ample material of high quality for structural studies with NMR spectroscopy of several class I cytokine receptor TMDs. Furthermore, the structure of a class I cytokine receptor TMD in DHPC micelles was solved with solution-state NMR spectroscopy. Additionally, since structural studies of intact proteins...... receptor. This integrative structure opens up for interpreting these receptors in their intact form and offers unique insights on the topology of single-pass transmembrane receptors with intrinsically disordered domains. Dimerization of the TMDs of class I cytokine receptors has been shown to be important...

  15. Cytokine gene polymorphisms and their association with cervical ...

    African Journals Online (AJOL)

    Cytokine gene polymorphisms and their association with cervical cancer: A North Indian study. ... Egyptian Journal of Medical Human Genetics ... factors and adhesion molecules promotes tumor progression and involves inflammation, angiogenesis and thrombosis, thus providing optimal conditions for cancer development.

  16. Influence of phthalates on cytokine production in monocytes and macrophages

    DEFF Research Database (Denmark)

    Hansen, Juliana Frohnert; Bendtzen, Klaus; Boas, Malene

    2015-01-01

    BACKGROUND: Phthalates are a group of endocrine disrupting chemicals suspected to influence the immune system. The aim of this systematic review is to summarise the present knowledge on the influence of phthalates on monocyte and macrophage production and secretion of cytokines, an influence which......://www.crd.york.ac.uk/NIHR_PROSPERO, registration number CRD42013004236). In vivo, ex vivo and in vitro studies investigating the influence of phthalates on cytokine mRNA expression and cytokine secretion in animals and humans were included. A total of 11 reports, containing 12 studies, were found eligible for inclusion. In these, a total of four...... different phthalate diesters, six primary metabolites (phthalate monoesters) and seven different cytokines were investigated. Though all studies varied greatly in study design and species sources, four out of five studies that investigated di-2-ethylhexyl phthalate found an increased tumour necrosis factor...

  17. Cytokines in bipolar disorder vs. healthy control subjects

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Braüner, Julie Vestergaard; Kessing, Lars Vedel

    2013-01-01

    Bipolar disorder may be associated with peripheral immune system dysfunction; however, results in individual studies are conflicting. Our aim was to systematically review evidence of peripheral cytokine alterations in bipolar disorder integrating findings from various affective states....

  18. Serum Cytokine Profile in a Patient Diagnosed with Dysferlinopathy

    Directory of Open Access Journals (Sweden)

    Svetlana F. Khaiboullina

    2017-01-01

    Full Text Available Limb-girdle muscular dystrophy type 2 (LGMD2B is a mild form of dysferlinopathy, characterized by limb weakness and wasting. It is an autosomal recessive disease, with currently 140 mutations in the LGMD2B gene identified. Lack of functional dysferlin inhibits muscle fiber regeneration in voluntary muscles, the main pathological finding in LGMD2B patients. However, the immune system has been suggested to contribute to muscle cell death and tissue regeneration. Serum levels of 27 cytokines were evaluated in a dysferlinopathy patient. Levels of 8 cytokines differed in patient serum compared to controls. Five cytokines (IL-10, IL-17, CCL2, CXCL10, and G-CSF were higher while 3 were lower in the patient than in controls (IL-2, IL-8, and CCL11. Together, these data on serum cytokine profile of this dysferlinopathy patient suggest immune response activation, which could explain leukocyte infiltration in the muscle tissue.

  19. The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder.

    Science.gov (United States)

    Masi, Anne; Glozier, Nicholas; Dale, Russell; Guastella, Adam J

    2017-04-01

    Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental condition characterized by variable impairments in communication and social interaction as well as restricted interests and repetitive behaviors. Heterogeneity of presentation is a hallmark. Investigations of immune system problems in ASD, including aberrations in cytokine profiles and signaling, have been increasing in recent times and are the subject of ongoing interest. With the aim of establishing whether cytokines have utility as potential biomarkers that may define a subgroup of ASD, or function as an objective measure of response to treatment, this review summarizes the role of the immune system, discusses the relationship between the immune system, the brain, and behavior, and presents previously-identified immune system abnormalities in ASD, specifically addressing the role of cytokines in these aberrations. The roles and identification of biomarkers are also addressed, particularly with respect to cytokine profiles in ASD.

  20. High efficiency cell-specific targeting of cytokine activity

    Science.gov (United States)

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  1. Featured Article: Modulation of the OGF-OGFr pathway alters cytokine profiles in experimental autoimmune encephalomyelitis and multiple sclerosis.

    Science.gov (United States)

    Ludwig, Michael D; Zagon, Ian S; McLaughlin, Patricia J

    2018-02-01

    -dose naltrexone modulated IL-6 and IL-10 cytokine expression. Validation in human serum revealed markedly reduced IL-6 cytokine levels in MS patients taking low-dose naltrexone relative to standard care. In summary, modulation of the OGF-OGFr pathway regulates some inflammatory cytokines, and together with opioid growth factor serum levels, may begin to form a panel of valid biomarkers to monitor progression of multiple sclerosis and response to therapy. Impact statement Modulation of the opioid growth factor (OGF)-OGF receptor (OGFr) alters inflammatory cytokine expression in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Multiplex cytokine assays demonstrated that mice with chronic EAE and treated with either OGF or low-dose naltrexone (LDN) had decreased expression of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and the anti-inflammatory cytokine IL-10 within 10 days or treatment, as well as increased serum expression of the pro-inflammatory cytokine IL-6, relative to immunized mice receiving saline. Multiplex data were validated using ELISA kits and serum from MS patients treated with LDN and revealed decreased in IL-6 levels in patients taking LDN relative to standard care alone. These data, along with serum levels of OGF, begin to formulate a selective biomarker profile for MS that is easily measured and effective at monitoring disease progression and response to therapy.

  2. Role of cytokines in Trypanosoma brucei-induced anaemia: A ...

    African Journals Online (AJOL)

    Publications on the cytokines studied in trypanosomiasis-associated anaemia ordered by year. Publication. Infecting trypanosome. Clinical sample. Cytokines. Other factors associated with anaemia. Magez et al. 1999. T.b.b AnTat1.1E. Blood from TNF-α -/-. TNF-α. -. Namangala et al. 2001. T.b.b AnTat1.1E. T.b.b PLC-/-.

  3. Systemic Cytokines in Type 2 Diabetes Mellitus and Chronic Periodontitis.

    Science.gov (United States)

    Acharya, Anirudh B; Thakur, Srinath; Muddapur, M V; Kulkarni, Raghavendra D

    2018-01-01

    Cytokine dysregulation plays an important role in Type 2 Diabetes Mellitus (T2DM) and Chronic Periodontitis (CP) with a commonality in pathogenic mechanisms. CP is considered the sixth complication of diabetes and may have an increased influence on systemic levels of cytokines in individuals with T2DM. This study investigated two pro-, and two presumed anti-inflammatory cytokines and their ratios in the serum of healthy individuals, in chronic periodontitis with and without T2DM with, and without CP and in CP alone aimed at evaluating the systemic inflammatory burden of a local oral infection. Eighty participants were divided equally into four groups as healthy volunteers (H) and patients having T2DM with, and without CP (T2DM+CP, and T2DM) and only CP (CP). Serum samples were collected to measure glycated hemoglobin (HbA1c), Random Blood Sugar (RBS) and also Tumor Necrosis Factor (TNF)-α, Interleukin (IL)-4, -6 - 10 were assessed using commercially available ELISA kits. The cytokines were detected in all groups. Significant differences were observed between groups for all the clinical, biochemical parameters and cytokines. Cytokine levels and the ratios showed significant correlations. The ratios of the cytokines differed significantly amongst groups, were highest in T2DM+CP. In this study, the cytokine ratios provided a qualitative profile along with the absolute levels in T2DM with periodontitis, indicative of an intensified systemic inflammatory state. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Relationship between cytokines and running economy in marathon runners

    Directory of Open Access Journals (Sweden)

    Luna Junior Luiz Antonio

    2016-01-01

    Full Text Available Running economy (RE, expresses the relationship between the energy cost of running (Cr and the work performed by a runner and is an predictor of performance. Given the intense effort of marathon runners during training and competition and the dearth of studies that address performance and cytokines in this population, the objective of the current study was to investigate the relationship between RE and cytokines in marathon runners.

  5. Cytokine profile associated with human chronic schistosomiasis mansoni

    OpenAIRE

    Magalhães, Andréa; Miranda, Delfin Gonzalez; Miranda, Roberval Gonzalez; Araujo, Maria Ilma Andrade Santos; Jesus, Adriana Almeida de

    2004-01-01

    p. 21-26 This study objective was to evaluate the cytokines associated with early events of hepatic fibrosis in schistosomiasis mansoni. Hepatic fibrosis was classified by ultrasonography in 94 patients.Immunological evaluation was performed by measurement of secreted cytokines (interleukin IL-5, IL-10, IL-13, interferon-g, tumor necrosis factor-a and transforming growth factors-b) in peripherl blood mononuclear cells stimulated by Schistosoma mansoni antigens. Significantly, higher levels...

  6. Pro-inflammatory cytokines in cryptoglandular anal fistulas.

    Science.gov (United States)

    van Onkelen, R S; Gosselink, M P; van Meurs, M; Melief, M J; Schouten, W R; Laman, J D

    2016-09-01

    Sphincter-preserving procedures for the treatment of transsphincteric fistulas fail in at least one out of every three patients. It has been suggested that failure is due to ongoing disease in the remaining fistula tract. Cytokines play an important role in inflammation. At present, biologicals targeting cytokines are available. Therefore, detection and identification of cytokines in anal fistulas might have implications for future treatment modalities. The objective of the present study was to assess local production of a selected panel of cytokines in anal fistulas, including pro-inflammatory interleukin (IL)-1β and tumor necrosis factor α (TNF-α). Fistula tract tissue was obtained from 27 patients with a transsphincteric fistula of cryptoglandular origin who underwent flap repair, ligation of the intersphincteric fistula tract or a combination of both procedures. Patients with a rectovaginal fistula or a fistula due to Crohn's disease were excluded. Frozen tissue samples were sectioned and stained using advanced immuno-enzyme staining methods for detection of selected cytokines, IL-1β, IL-8, IL-10, IL-12p40, IL-17A, IL-18, IL-36 and TNF-α. The presence and frequencies of cytokine-producing cells in samples were quantitated. The key finding was abundant expression of IL-1β in 93 % of the anal fistulas. Frequencies of IL-1β-producing cells were highest (>50 positive stained cells) in 7 % of the anal fistulas. Also, cytokines IL-8, IL-12p40 and TNF-α were present in respectively 70, 33 and 30 % of the anal fistulas. IL-1β is expressed in the large majority of cryptoglandular anal fistulas, as well as several other pro-inflammatory cytokines.

  7. Anti-parasite effects of cytokines in malaria.

    Science.gov (United States)

    Mendis, K N; Naotunne, T D; Karunaweera, N D; Del Giudice, G; Grau, G E; Carter, R

    1990-08-01

    Cytokines induced during natural malaria infections, e.g., at crisis of a blood infection of Plasmodium cynomolgi, and during clinical paroxysms in human Plasmodium vivax infections, mediate killing of intra-erythrocytic blood stage malaria parasites. These cytokines, TNF and IFN-gamma, require additional, yet unidentified complementary factors that are present in "crisis" and "paroxysm" serum to kill intra-erythrocytic blood stage parasites. In contrast, cytokines, (mainly IFN-gamma) are able to effect killing of intra-hepatic stages of the parasite by themselves independent of serum complementary factors, suggesting that the mechanisms of killing may be different with respect to the two parasite stages. Cytokines also appear to be critical intermediates in mechanisms of clinical disease in malaria. Serum cytokine (TNF) levels and killing effects on blood stage malaria parasites were lower in patients who were exposed to endemic P. vivax malaria who had partial clinical immunity, than in non-immune patients. Evidence suggest that individuals acquire natural immunity to the disease by avoiding the induction of high levels of cytokines and complementary factors.

  8. INVESTIGATION OF CYTOKINE PROFILE IN PATIENTS WITH REACTIVE ARTHRITIS

    Directory of Open Access Journals (Sweden)

    T. V. Gaponova

    2008-01-01

    Full Text Available Abstract. Pathogenesis of reactive arthritis (ReA is not clear yet. Several trials suggest that increased production of proinflammatory cytokines is responsible for development of arthritis in ReA, while other studies report that Th1 cytokine response in ReA is impaired in favor of Th2 response. The aim of our study was to investigate serum levels of cytokines IL-1β, IL-4, IL-6, TNFα, IFNγ and IL-1Ra in the patients with ReA of different etiology, as compared with infection-related arthritis. The results of our study had demonstrated that serum levels of IL-1β and TNFα in the patients with ReA were significantly higher, whereas IL-1Ra, IL-4, IL-6 proved to be significantly lower than in healthy controls. Serum levels of IL-6 were significantly higher in patients with chronic ReA, as compared to the cases of acute and recurrent ReA. No significant differences in cytokine profiles were found between the patients with ReA, and the persons with infection-related arthritis. The data obtained are, generally, suggestive for proinflammatory Th1 cytokine profile in ReA patients studied, this confirming the mostly assumed pathogenetic hypothesis for reactive arthritis where an underlying cytokine imbalance is suggested. (Med. Immunol., 2008, vol. 10, N 2-3, pp 167-172.

  9. [Prospects of the anti-cytokine therapy in rheumatoid arthritis].

    Science.gov (United States)

    Lukina, G V

    2003-01-01

    The development and introduction of the anti-cytokine therapy applicable to rheumatoid arthritis (RA) is a most significant achievement in RA therapy. A high degree of purpose-orientation and selectivity of the mentioned method ensuring a high therapeutic effect and providing, simultaneously, for defining a number of important chains in RA pathogenesis is an essential advantage of the discussed approach. The clinical use of neutralization of key cytokines TNF-alpha, IL-1 and IF-gamma is a serious progress within this trend. Possibilities of developing new directions of the cytokines therapy are preconditioned, to a great extent, by the role of new, including little-studied cytokines, in the evolution of immune inflammation. A search for more simple low-molecular inhibitors of cytokines, which do not cause any tolerance-related problems, is another important trend. Hopefully, a further study of anti-cytokines and of their application in combination with other antirheumatic drugs will improve the general treatment results and outline new opportunities in antirheumatic therapy.

  10. Cytokines as biomarkers in depressive disorder: current standing and prospects.

    Science.gov (United States)

    Lichtblau, Nicole; Schmidt, Frank M; Schumann, Robert; Kirkby, Kenneth C; Himmerich, Hubertus

    2013-10-01

    The frequently observed co-occurrence of depressive disorders and inflammatory diseases suggests a close connection between the nervous and the immune systems. Increased pro-inflammatory and type 1 cytokines, such as interleukin (IL)-1, tumour necrosis factor (TNF)-α and interferon (IFN)-γ, appear to be an important link. Cytokines are synthesized by immune cells in the blood and peripheral tissues and by glial cells in the central nervous system (CNS). Evidence suggests that the blood-brain barrier (BBB) is permeable to cytokines and immune cells, and that afferent nerves, e.g. the vagus nerve, mediate the communication between peripheral inflammatory processes and CNS. Cytokines such as IL-1ß, TNF-α and IFN-γ seem to contribute to the pathophysiology of depression by activating monoamine reuptake, stimulating the hypothalamic-pituitary-adrenocortical (HPA) axis and decreasing production of serotonin due to increased activity of indolamine-2,3-dioxygenase (IDO). However, critical appraisal of these hypotheses is required, because cytokine elevation is not specific to depression. Moreover, several effective antidepressants such as amitriptyline and mirtazapine have been shown to increase cytokine production. When applying immunomodulatory therapies, these drugs may increase the risk of specific side effects such as infections or interact with antidepressant drugs on important functions of the body such as the coagulation system.

  11. FEATURES OF CYTOKINE PRODUCTION IN PATIENTS WITH RECURRENT HERPETIC INFECTION

    Directory of Open Access Journals (Sweden)

    I. A. Novikovа

    2013-01-01

    Full Text Available Abstract. Cytokines play an important role in resistance to herpesvirus infections. Therefore, studies of cytokine profile are necessary in recurrent herpetic infection. However, functional studies of cytokine network upon remission of the disease yielded controversial results. In this paper, we provide some results concerning comprehensive evaluation of ex vivo cytokine production by whole blood leukocytes drawn from 15 patients observed during clinical remission of recurrent Herpes Simplex virus infection. We have found a decrease of IL-1β, IL-8 and IL-10 production, as well as imbalance of cytokine profile, with predominance of IFNγ and IL-8 synthesis over IL-10 production, along with increased IL-4 and IL-13 levels to IL-1β contents. Differently directed correlations between the content of activated lymphocytes (CD3+HLA-DR+ and CD3+CD4+CD25+, natural killers (СD3-СD16/56+, NKT-cells and cytokine production levels were found in the groups of patients and healthy individuals. These differences may be due to shifts in major cytokineproducing populations in herpesvirus infections.

  12. Aggressive Periodontitis and Chronic Arthritis: Blood Mononuclear Cell Gene Expression and Plasma Protein Levels of Cytokines and Cytokine Inhibitors

    DEFF Research Database (Denmark)

    Sørensen, Lars Korsbæk Connor; Poulsen, Anne Havemose; Bendtzen, Klaus

    2009-01-01

    -inflammatory cytokines and cytokine receptors in patients with periodontitis and patients with arthritis representing two examples of chronic inflammatory diseases, such as periodontitis and arthritis. To identify possible disease-specific characteristics of subjects with periodontitis relative to subjects with chronic...... inflammation in general, patients with arthritis (juvenile idiopathic arthritis [JIA] and rheumatoid arthritis [RA]) were included. METHODS: The study population consisted of white adults aggressive periodontitis (LAgP; n = 18), generalized aggressive periodontitis......TNF-RI plasma levels in patients with LAgP and RA. CONCLUSIONS: The study demonstrated only a few changes in the PBMC expression of various cytokine and cytokine inhibitor genes in aggressive periodontitis and chronic arthritis compared to controls. There were a few similarities among disease groups...

  13. Leukocyte Population Dynamics and Detection of IL-9 as a Major Cytokine at the Mouse Fetal-Maternal Interface

    Science.gov (United States)

    Habbeddine, Mohamed; Verbeke, Philippe; Karaz, Sonia; Bobé, Pierre; Kanellopoulos-Langevin, Colette

    2014-01-01

    Despite much interest in the mechanisms regulating fetal-maternal interactions, information on leukocyte populations and major cytokines present in uterus and placenta remains fragmentary. This report presents a detailed and quantitative study of leukocyte populations at the mouse fetal-maternal interface, including a comparison between pregnancies from syngeneic and allogeneic crosses. Our results provide evidence for drastic differences not only in the composition of leukocyte populations in the uterus during pregnancy, but also between uterine and placental tissues. Interestingly, we have observed a significant decrease in the number of myeloid Gr1+ cells including monocytes, and myeloid CD11c+ cells including DCs in placenta from an allogeneic pregnancy. In addition, we have compared the expression levels of a panel of cytokines in non-pregnant (NP) or pregnant mouse uterus, in placenta, or in their isolated resident leukocytes. Qualitative and quantitative differences have emerged between NP, pregnant uterus and placenta. Unexpectedly, IL-9 was the major cytokine in NP uterus, and was maintained at high levels during pregnancy both in uterus and placenta. Moreover, we have found that pregnancy is associated with an increase in uterine IL-1a and a significant decrease in uterine G-CSF and GM-CSF. Comparing allogeneic versus syngeneic pregnancy, less allogeneic placental pro-inflammatory cytokines CCL2 (MCP-1), CXCL10 (IP-10) and more IL1-α in whole uterus was reproducibly observed. To our knowledge, this is the first report showing a detailed overview of the leukocyte and cytokine repertoire in the uterus of virgin females and at the fetal-maternal interface, including a comparison between syngeneic and allogeneic pregnancy. This is also the first evidence for the presence of IL-9 in NP uterus and at the maternal-fetal interface, suggesting a major role in the regulation of local inflammatory or immune responses potentially detrimental to the conceptus. PMID

  14. Cytokines: their pathogenic and therapeutic role in chronic viral hepatitis Citoquinas: papel patogénico y terapéutico de las hepatitis crónicas víricas

    Directory of Open Access Journals (Sweden)

    J. R. Larrubia

    2009-05-01

    Full Text Available Cytokines make up a network of molecules involved in the regulation of immune response and organ functional homeostasis. Cytokines coordinate both physiological and pathological processes occurring in the liver during viral infection, including infection control, inflammation, regeneration, and fibrosis. Hepatitis B and hepatitis C viruses interfere with the complex cytokine network brought about by the immune system and liver cells in order to prevent an effective immune response, capable of viral control. This situation leads to intrahepatic sequestration of nonspecific inflammatory infiltrates that release proinflammatory cytokines, which in turn favor chronic inflammation and fibrosis. The therapeutical administration of cytokines such as interferon alpha may result in viral clearance during persistent infection, and revert this process.

  15. Comparison of the Calibration Standards of Three Commercially Available Multiplex Kits for Human Cytokine Measurement to WHO Standards Reveals Striking Differences

    Directory of Open Access Journals (Sweden)

    Ivan M. Roitt

    2008-01-01

    Full Text Available Serum parameters as indicators for the efficacy of therapeutic drugs are currently in the focus of intensive research. The induction of certain cytokines (or cytokine patterns is known to be related to the status of the immune response e.g. in regulating the TH1/TH2 balance. Regarding their potential value as surrogate parameters in clinical trials and subsequently for the assignment of treatment effi cacy, the accurate and reliable determination of cytokines in patient serum is mandatory. Because serum samples are precious and limited, test methods—like the xMAP multiplex technology—that allow for the simultaneous determination of a variety of cytokines from only a small sample aliquot, can offer great advantages.We here have compared multiplex kits from three different manufactures and found striking differences upon standardizing using WHO standards for selected cytokines. We therefore extended our xMAP multiplex measurements investigations to an ex-vivo situation by testing serum samples and found that the cytokine amounts measured was critically influenced by the actual kit used. The presented data indicate that statements regarding the quantitive determination of cytokines—and therefore their use as biomarkers—in serum samples have to be interpreted with caution.

  16. Memory and flexibility of cytokine gene expression as separable properties of human T(H)1 and T(H)2 lymphocytes.

    Science.gov (United States)

    Messi, Mara; Giacchetto, Isabella; Nagata, Kinya; Lanzavecchia, Antonio; Natoli, Gioacchino; Sallusto, Federica

    2003-01-01

    CD4+ T cell priming under T helper type I (T(H)1) or T(H)2 conditions gives rise to polarized cytokine gene expression. We found that in these conditions human naive T cells acquired stable histone hyperacetylation at either the Ifng or Il4 promoter. Effector memory T cells showed polarized cytokine gene acetylation patterns in vivo, whereas central memory T cells had hypoacetylated cytokine genes but acquired polarized acetylation and expression after appropriate stimulation. However, hypoacetylation of the nonexpressed cytokine gene did not lead to irreversible silencing because most T(H)1 and T(H)2 cells acetylated and expressed the alternative gene when stimulated under opposite T(H) conditions. Such cytokine flexibility was absent in a subset of T(H)2 cells that failed to up-regulate T-bet and to express interferon-gamma when stimulated under T(H)1 conditions. Thus, most human CD4+ T cells retain both memory and flexibility of cytokine gene expression.

  17. Dysregulated cytokine expression by CD4+ T cells from post-septic mice modulates both Th1 and Th2-mediated granulomatous lung inflammation.

    Directory of Open Access Journals (Sweden)

    William F Carson

    Full Text Available Previous epidemiological studies in humans and experimental studies in animals indicate that survivors of severe sepsis exhibit deficiencies in the activation and effector function of immune cells. In particular, CD4+ T lymphocytes can exhibit reduced proliferative capacity and improper cytokine responses following sepsis. To further investigate the cell-intrinsic defects of CD4+ T cells following sepsis, splenic CD4+ T cells from sham surgery and post-septic mice were transferred into lymphopenic mice. These recipient mice were then subjected to both TH1-(purified protein derivative and TH2-(Schistosoma mansoni egg antigen driven models of granulomatous lung inflammation. Post-septic CD4+ T cells mediated smaller TH1 and larger TH2 lung granulomas as compared to mice receiving CD4+ T cells from sham surgery donors. However, cytokine production by lymph node cells in antigen restimulation assays indicated increased pan-specific cytokine expression by post-septic CD4+ T cell recipient mice in both TH1 and TH2 granuloma models. These include increased production of T(H2 cytokines in TH1 inflammation, and increased production of T(H1 cytokines in TH2 inflammation. These results suggest that cell-intrinsic defects in CD4+ T cell effector function can have deleterious effects on inflammatory processes post-sepsis, due to a defect in the proper regulation of TH-specific cytokine expression.

  18. Collection of Aerosolized Human Cytokines Using Teflon® Filters

    Science.gov (United States)

    McKenzie, Jennifer H.; McDevitt, James J.; Fabian, M. Patricia; Hwang, Grace M.; Milton, Donald K.

    2012-01-01

    Background Collection of exhaled breath samples for the analysis of inflammatory biomarkers is an important area of research aimed at improving our ability to diagnose, treat and understand the mechanisms of chronic pulmonary disease. Current collection methods based on condensation of water vapor from exhaled breath yield biomarker levels at or near the detection limits of immunoassays contributing to problems with reproducibility and validity of biomarker measurements. In this study, we compare the collection efficiency of two aerosol-to-liquid sampling devices to a filter-based collection method for recovery of dilute laboratory generated aerosols of human cytokines so as to identify potential alternatives to exhaled breath condensate collection. Methodology/Principal Findings Two aerosol-to-liquid sampling devices, the SKC® Biosampler and Omni 3000™, as well as Teflon® filters were used to collect aerosols of human cytokines generated using a HEART nebulizer and single-pass aerosol chamber setup in order to compare the collection efficiencies of these sampling methods. Additionally, methods for the use of Teflon® filters to collect and measure cytokines recovered from aerosols were developed and evaluated through use of a high-sensitivity multiplex immunoassay. Our results show successful collection of cytokines from pg/m3 aerosol concentrations using Teflon® filters and measurement of cytokine levels in the sub-picogram/mL concentration range using a multiplex immunoassay with sampling times less than 30 minutes. Significant degradation of cytokines was observed due to storage of cytokines in concentrated filter extract solutions as compared to storage of dry filters. Conclusions Use of filter collection methods resulted in significantly higher efficiency of collection than the two aerosol-to-liquid samplers evaluated in our study. The results of this study provide the foundation for a potential new technique to evaluate biomarkers of inflammation in

  19. CYTOKINES GENETIC POLYMORPHISM: THE PAST AND THE FUTURE

    Directory of Open Access Journals (Sweden)

    L. V. Puzyryova

    2016-01-01

    Full Text Available The molecular genetics opens the new horizons in modern medicine, especially now when many diseases are given huge value in a type of their prevalence among various groups of population. Extremely high interleukin genes polymorphism degrees are studied well especially genetic polymorphism of tumor necrosis factor. Patients with HIV infection in the territory of Russia cause now the highest degree of mortality that is the most actual and socially significant problem of healthcare. This problems studying attracts many researchers. Works in respect of genetic immunity to a virus and influence of cytokines production on the disease forecast are especially interesting. One of the HIV replication influencing factors are cytokines, some of which, including the tumor necrosis factor and interleukin-6 can promote replication of HIV, raising an expression of virus regulatory genes. During disease progress in parallel of anti-inflammatory cytokines level increase (causing in this case rather ineffective antibodies level increase there is an T-helpers suppression stimulating a strong cellular component. Cytokine network functioning during HIV infection depends on many reasons which the individual variation in cytokine production caused by a number of genetic features, as well as an existence of opportunistic infection. Cytokines polymorphism determination in HIV infected patients is necessary in clinical practice for disease progression forecast to adverse fast transition to AIDS that it is important to consider in a choice of tactics of the supporting therapy of HIV-positive patients. Considering insufficient efficiency of modern methods of treatment, restoration and modulation of cytokines balance will increase anti-virus activity of immune system, influencing the factors blocking replication of a HIV.

  20. Plasma cytokine levels predict response to corticosteroids in septic shock.

    Science.gov (United States)

    Bentzer, Peter; Fjell, Chris; Walley, Keith R; Boyd, John; Russell, James A

    2016-12-01

    To investigate if plasma cytokine concentrations predict a beneficial response to corticosteroid treatment in septic shock patients. A cohort of septic shock patients in whom a panel of 39 cytokines had been measured at baseline (n = 363) was included. Patients who received corticosteroids were propensity score matched to non-corticosteroid-treated patients. An optimal threshold to identify responders to corticosteroid treatment for each cytokine was defined as the concentration above which the odds ratio for 28-day survival between corticosteroid- and non-corticosteroid-treated patients was highest. Propensity score matching partitioned 165 patients into 61 sets; each set contained matched corticosteroid- and non-corticosteroid-treated patients. For 13 plasma cytokines threshold concentrations were found where the odds ratio for survival between corticosteroid- and non-corticosteroid-treated patients was significant (P highest odds ratio and identified 21 % of the patients in the propensity score matched cohort as responders to corticosteroid treatment. Combinations of triplets of cytokines with a significant odds ratio, using the thresholds identified above, were tested to find a higher proportion of responders. IL3, IL6, and CCL4 identified 50 % of the patients in the propensity score matched cohort as responders to corticosteroid treatment. The odds ratio for 28-day survival was 19 (95 % CI 3.5-140, P = 0.02) with a concentration above threshold for a least one of these cytokines. Plasma concentration of selected cytokines is a potential predictive biomarker to identify septic shock patients that may benefit from treatment with corticosteroids.

  1. Cellular sources of dysregulated cytokines in relapsing-remitting multiple sclerosis

    DEFF Research Database (Denmark)

    Romme Christensen, Jeppe; Börnsen, Lars; Hesse, Dan

    2012-01-01

    Numerous cytokines are implicated in the immunopathogenesis of multiple sclerosis (MS), but studies are often limited to whole blood (WB) or peripheral blood mononuclear cells (PBMCs), thereby omitting important information about the cellular origin of the cytokines. Knowledge about the relation...... between blood and cerebrospinal fluid (CSF) cell expression of cytokines and the cellular source of CSF cytokines is even more scarce....

  2. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cδ*

    Science.gov (United States)

    Farnsworth, Nikki L.; Walter, Rachelle L.; Hemmati, Alireza; Westacott, Matthew J.; Benninger, Richard K. P.

    2016-01-01

    Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. PMID:26668311

  3. Development and validation of quantitative PCR assays to measure cytokine transcript levels in the Florida manatee (Trichechus manatus latirostris)

    Science.gov (United States)

    Ferrante, Jason; Hunter, Margaret; Wellehan, James F.X.

    2018-01-01

    Cytokines have important roles in the mammalian response to viral and bacterial infections, trauma, and wound healing. Because of early cytokine production after physiologic stresses, the regulation of messenger RNA (mRNA) transcripts can be used to assess immunologic responses before changes in protein production. To detect and assess early immune changes in endangered Florida manatees (Trichechus manatus latirostris), we developed and validated a panel of quantitative PCR assays to measure mRNA transcription levels for the cytokines interferon (IFN)-γ; interleukin (IL)-2, -6, and -10; tumor necrosis factor-α, and the housekeeping genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin (reference genes). Assays were successfully validated using blood samples from free-ranging, apparently healthy manatees from the east and west coasts of central Florida. No cytokine or housekeeping gene transcription levels were significantly different among age classes or sexes. However, the transcription levels for GAPDH, IL-2, IL-6, and IFN-γ were significantly higher (Pin manatees from the east coast of Florida than they were from those from the west coast. We found IL-10 and β-actin to be consistent between sites and identified β-actin as a good candidate for use as a reference gene in future studies. Our assays can aid in the investigation of manatee immune response to physical trauma and novel or ongoing environmental stressors.

  4. Development and validation of quantitative PCR assays to measure cytokine transcript levels in the Florida manatee (Trichechus manatus latirostris)

    Science.gov (United States)

    Ferrante, Jason; Hunter, Margaret; Wellehan, James F.X.

    2018-01-01

    Cytokines have important roles in the mammalian response to viral and bacterial infections, trauma, and wound healing. Because of early cytokine production after physiologic stresses, the regulation of messenger RNA (mRNA) transcripts can be used to assess immunologic responses before changes in protein production. To detect and assess early immune changes in endangered Florida manatees (Trichechus manatus latirostris), we developed and validated a panel of quantitative PCR assays to measure mRNA transcription levels for the cytokines interferon (IFN)-γ; interleukin (IL)-2, -6, and -10; tumor necrosis factor-α, and the housekeeping genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin (reference genes). Assays were successfully validated using blood samples from free-ranging, apparently healthy manatees from the east and west coasts of central Florida. No cytokine or housekeeping gene transcription levels were significantly different among age classes or sexes. However, the transcription levels for GAPDH, IL-2, IL-6, and IFN-γ were significantly higher (P<0.05) in manatees from the east coast of Florida than they were from those from the west coast. We found IL-10 and β-actin to be consistent between sites and identified β-actin as a good candidate for use as a reference gene in future studies. Our assays can aid in the investigation of manatee immune response to physical trauma and novel or ongoing environmental stressors.

  5. Effects of magnesium isoglycyrrhizinate on AST, ALT, and serum levels of Th1 cytokines in patients with allo-HSCT.

    Science.gov (United States)

    Lv, Jinglong; Xiao, Qing; Chen, Yongping; Fan, Xuegong; Liu, Xin; Liu, Fen; Luo, Guoping; Zhang, Bangshuo; Wang, Sheng

    2017-05-01

    This study aimed to investigate the protective effects of magnesium isoglycyrrhizinate (MGL) on aspartate aminotransferase (AST), alanine aminotransferase (ALT), and serum levels of T helper 1 (Th1) cytokines in patients with allogeneic hematopoietic stem cell transplantation (allo-HSCT). The study included 42 patients prepared for allo-HSCT, who were divided equally into MGL and reduced glutathione groups. The ALT and AST levels were detected 1day before pretreatment and transplantation, and 7, 14, and 21days after transplantation. The total days and times of fever, treatment time of patients in the laminar flow room, white blood cell (WBC) count, platelet (PTL) implantation time, and success rate of transplantation were recorded. The serum levels of Th1/Th2 cytokines were detected. MGL had a significant protective effect on AST 1day before transplantation and 7, 14, and 21days after transplantation, while ALT had a statistical difference only 7days after transplantation. MGL could shorten the duration of fever during transplantation and advance the WBC and PTL implantation time. Significant differences in Th1-like cytokines (P0.05) were found in the MGL group compared with the control group. MGL had significant protective effects on AST after transplantation. MGL could reduce the duration of fever during transplantation, help the reconstruction and recovery of WBCs and PTLs, and regulate Th1 cytokines, revealing its protective effects on hepatic transaminases and graft versus host disease in allo-HSCT patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Altered Circulating Inflammatory Cytokines Are Associated with Anovulatory Polycystic Ovary Syndrome (PCOS) Women Resistant to Clomiphene Citrate Treatment.

    Science.gov (United States)

    Wang, LianLian; Qi, HongBo; Baker, Philip N; Zhen, QianNa; Zeng, Qing; Shi, Rui; Tong, Chao; Ge, Qian

    2017-03-01

    BACKGROUND Polycystic ovary syndrome (PCOS) is a common gynecological disease characterized by chronic oligoanovulation, clinical/biochemical hyperandrogenism, polycystic ovaries, and insulin resistance. Accumulating evidence has shown that PCOS-related ovarian dysfunction is the main cause of anovulatory infertility. Clomiphene citrate (CC) is the first-line therapy for PCOS patients; however, approximately 15-40% PCOS patients are resistant to CC treatment. It has been demonstrated that PCOS is a chronic pro-inflammatory state, as some pro-inflammatory cytokines were elevated in the peripheral circulation of PCOS patients, but whether altered inflammatory cyt