WorldWideScience

Sample records for swine flu virus

  1. Swine Flu: Prevention to Pandemic

    Directory of Open Access Journals (Sweden)

    Preeti Padda

    2015-03-01

    Full Text Available Swine flu, also known as swine influenza, pig influenza, hog flu and pig flu, is a respiratory disease caused by viruses (influenza viruses that infect the respiratory tract of pigs, resulting in nasal secretions, a barking cough, decreased appetite, and listless behaviour. Swine flu produces most of the same symptoms in pigs as human flu produces in people. Mostly people who are closely associated with pigs (for example, pork processors and farmers acquire the infection and similarly pigs get infected occasionally human flu infection. The cross-species infections (swine virus to man; human flu virus to pigs have always been confined to local areas and have not spread across borders in either pigs or humans. Unfortunately, this cross-species situation with influenza viruses has had the potential to change and cause epidemics and pandemics. Most recent pandemic has been reported in 2009,  where "swine flu" strain, first seen in Mexico, was termed as H1N1 as it was mainly infecting people and exhibited two main surface antigens, H1 (hemagglutinin type 1 and N1 (neuraminidase type1. This unique eight RNA strands from novel H1N1 flu have one strand derived from human flu strains, two from avian (bird strains, and five from swine strains. Since then it has been infecting people here and there. 

  2. H1N1 influenza (Swine flu)

    Science.gov (United States)

    Swine flu; H1N1 type A influenza ... The H1N1 virus is now considered a regular flu virus. It is one of the three viruses included in the regular (seasonal) flu vaccine . You cannot get H1N1 flu virus from ...

  3. Swine Influenza (Swine Flu) in Pigs

    Science.gov (United States)

    ... Avian Swine Variant Pandemic Other Key Facts about Swine Influenza (Swine Flu) in Pigs Language: English (US) Español Recommend on Facebook Tweet ... visit the CDC seasonal flu website . What is Swine Influenza? Swine Influenza (swine flu) is a respiratory ...

  4. Swine Flu -A Comprehensive View

    Science.gov (United States)

    Singh, Vandana; Sood, Meenakshi

    2012-07-01

    The present article is aimed on comprehensive view of Swine flu. It was first isolated from pigs in 1930 in USA. Pandemic caused by H1N1 in 2009 brought it in limelight. Itís a viral respiratory disease caused by viruses that infects pigs, resulting in nasal secretions, barking cough, decreased appetite, and listless behavior. Swine virus consist of eight RNA strands, one strand derived from human flu strains, two from avian (bird) strains, and five from swine strains. Swine flu spreads from infected person to healthy person by inhalation or ingestion of droplets contaminated with virus while sneezing or coughing. Two antiviral agents have been reported to help prevent or reduce the effects of swine flu, flu shot and nasal spray. WHO recommended for pandemic period to prevent its future outbreaks through vaccines or non-vaccines means. Antiviral drugs effective against this virus are Tamiflu and Relenza. Rapid antigen testing (RIDT), DFA testing, viral culture, and molecular testing (RT-PCR) are used for its diagnosis in laboratory

  5. Swine flu - A pandemic outbreak

    Directory of Open Access Journals (Sweden)

    Jini George

    Full Text Available Hippocrates had described influenza like outbreak in 412 B.C. and since then repeated influenza like epidemics and pandemics have been recorded in recent times. One of the greatest killers of all time was the pandemic of swine flu (Spanish flu of 1918-1919, when 230 million people died. Annual influenza epidemics are estimated to affect 5–15% of the global population, resulting in severe illness in 3–5 million patients causing 250,000–500,000 deaths worldwide. Severe illness and deaths occur mainly in the high-risk populations of infants, the elderly and chronically ill patients. The 2009 outbreak of swine flu is thought to be a mutation more specifically a reassortment of four known strains of influenza A virus subtype H1N1; one endemic in humans, one endemic in birds, and two endemic in pigs. WHO officially declared the outbreak to be a pandemic on June 11, 2009, but stressed that the new designation was a result of the global "spread of the virus," not its severity. [Vet World 2009; 2(12.000: 472-474

  6. CDC Recommendations to Reduce the Risk of H3N2v Flu Virus Infection for Fairgoers and Swine Exhibitors

    Centers for Disease Control (CDC) Podcasts

    2012-09-10

    In this podcast, Dr. Lyn Finelli discusses CDC’s recommendations for reducing the risk of infection with H3N2v flu viruses for fairgoers and swine exhibitors.  Created: 9/10/2012 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/10/2012.

  7. Initial psychological responses to swine flu.

    Science.gov (United States)

    Goodwin, Robin; Gaines, Stanley O; Myers, Lynn; Neto, Felix

    2011-06-01

    The emergence of influenza A ("swine flu") in early 2009 led to widespread public concern. However, little research has examined the factors that underlie initial worry about infection and subsequent behavioral responses to such worry. This study seeks to model some key predictors of worry and behavioral responses in the early stages of the swine flu pandemic (WHO pandemic stage 5). A cross-sectional internet questionnaire study (N = 186). Twenty-five percent of respondents rated themselves as worried about being a victim of swine flu, 40% that they were worried of a family member contracting the virus. Twenty percent had bought, or intended to buy, preparatory materials (e.g., face masks), 20% intended to delay or cancel air travel. In a structural equation model, conservation values and family or friends perception of risks predicted worry about infection, while worry correlated with the purchase of preparatory materials, a lesser willingness to travel by public transport, and difficulty in focusing on everyday activities. While previous research on pandemic risk perception has focused on cognitive risk judgments, our data suggests that initial "emotional" concerns about infection are also significant predictors of behavioral responses to pandemic threat. Such worry is likely to be influenced by a variety of individual factors, such as personal values, as well as normative pressures. Practitioners can use and expand on such models of pandemic response when tailoring health campaigns to meet newly emergent threats.

  8. Variant (Swine Origin) Influenza Viruses in Humans

    Science.gov (United States)

    ... Types Seasonal Avian Swine Variant Other Variant Influenza Viruses: Background and CDC Risk Assessment and Reporting Language: ... Background CDC Assessment Reporting Background On Variant Influenza Viruses Swine flu viruses do not normally infect humans. ...

  9. Deciphering the Swine-Flu Pandemics of 1918 and 2009

    Science.gov (United States)

    Goldstein, Richard; Dos Reis, Mario; Tamuri, Asif; Hay, Alan

    The devastating "Spanish flu" of 1918 killed an estimated 50 million people worldwide, ranking it as the deadliest pandemic in recorded human history. It is generally believed that the virus transferred from birds directly to humans shortly before the start of the pandemic, subsequently jumping from humans to swine. By developing 'non-homogeneous' substitution models that consider that substitution patterns may be different in human, avian, and swine hosts, we can determine the timing of the host shift to mammals. We find it likely that the Spanish flu of 1918, like the current 2009 pandemic, was a 'swine-origin' influenza virus. Now that we are faced with a new pandemic, can we understand how influenza is able to change hosts? Again by modelling the evolutionary process, considering the different selective constraints for viruses in the different hosts, we can identify locations that seem to be under different selective constraints in humans and avian hosts. This allows us to identify changes that may have facilitated the establishment of the 2009 swine-origin flu in humans.

  10. Finding a new drug and vaccine for emerging swine flu: What is the concept?

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2009-08-01

    Full Text Available Viroj WiwanitkitWiwanitkit House, Bangkhae, Bangkok 10160Abstract: Influenza is a well known infection of the respiratory system. The main clinical manifestations of influenza include fever, sore throat, headache, cough, coryza, and malaise. Apart from the well known classical influenza, there are also groups of influenza virus infections that are called “atypical infection”. These infections are usually due to a novel influenza virus infection. In early 2009, an emerging novel influenza originating from Mexico called swine flu was reported. The World Health Organization noted a level VI precaution, the highest level precaution possible, for this newest influenza virus infection. As of June 2009, it is not known if this disease will be successfully controlled. Finding new drugs and vaccine for the emerging swine flu is still required to cope with this emerging worldwide problem.Keywords: swine flu, drug, vaccine, concept

  11. What every Hepatologist should Know about Swine Flu?

    OpenAIRE

    Kamran Bagheri Lankarani

    2009-01-01

    As world is witnessing ever fastest growing pandemic, physicians with various specialties should adopt themselves to the new situation (1). Global death toll of swine flu by November 15, 2009, has raised to 6750. Many of those who died or were hospitalized suffered from comorbid conditions which increased either the severity or the risk of acquiring the disease (2). Swine flu may change the course of many chronic diseases. Thus, all physicians in different disciplines should realize and consi...

  12. Public views of the uk media and government reaction to the 2009 swine flu pandemic

    Directory of Open Access Journals (Sweden)

    Smith Emily

    2010-11-01

    Full Text Available Abstract Background The first cases of influenza A/H1N1 (swine flu were confirmed in the UK on 27th April 2009, after a novel virus first identified in Mexico rapidly evolved into a pandemic. The swine flu outbreak was the first pandemic in more than 40 years and for many, their first encounter with a major influenza outbreak. This study examines public understandings of the pandemic, exploring how people deciphered the threat and perceived they could control the risks. Methods Purposive sampling was used to recruit seventy three people (61 women and 12 men to take part in 14 focus group discussions around the time of the second wave in swine flu cases. Results These discussions showed that there was little evidence of the public over-reacting, that people believed the threat of contracting swine flu was inevitable, and that they assessed their own self-efficacy for protecting against it to be low. Respondents assessed a greater risk to their health from the vaccine than from the disease. Such findings could have led to apathy about following the UK Governments recommended health protective behaviours, and a sub-optimal level of vaccine uptake. More generally, people were confused about the difference between seasonal influenza and swine flu and their vaccines. Conclusions This research suggests a gap in public understandings which could hinder attempts to communicate about novel flu viruses in the future. There was general support for the government's handling of the pandemic, although its public awareness campaign was deemed ineffectual as few people changed their current hand hygiene practices. There was less support for the media who were deemed to have over-reported the swine flu pandemic.

  13. Public views of the UK media and government reaction to the 2009 swine flu pandemic.

    Science.gov (United States)

    Hilton, Shona; Smith, Emily

    2010-11-15

    The first cases of influenza A/H1N1 (swine flu) were confirmed in the UK on 27th April 2009, after a novel virus first identified in Mexico rapidly evolved into a pandemic. The swine flu outbreak was the first pandemic in more than 40 years and for many, their first encounter with a major influenza outbreak. This study examines public understandings of the pandemic, exploring how people deciphered the threat and perceived they could control the risks. Purposive sampling was used to recruit seventy three people (61 women and 12 men) to take part in 14 focus group discussions around the time of the second wave in swine flu cases. These discussions showed that there was little evidence of the public over-reacting, that people believed the threat of contracting swine flu was inevitable, and that they assessed their own self-efficacy for protecting against it to be low. Respondents assessed a greater risk to their health from the vaccine than from the disease. Such findings could have led to apathy about following the UK Governments recommended health protective behaviours, and a sub-optimal level of vaccine uptake. More generally, people were confused about the difference between seasonal influenza and swine flu and their vaccines. This research suggests a gap in public understandings which could hinder attempts to communicate about novel flu viruses in the future. There was general support for the government's handling of the pandemic, although its public awareness campaign was deemed ineffectual as few people changed their current hand hygiene practices. There was less support for the media who were deemed to have over-reported the swine flu pandemic.

  14. Public views of the uk media and government reaction to the 2009 swine flu pandemic

    OpenAIRE

    Hilton, Shona; Smith, Emily

    2010-01-01

    Abstract Background The first cases of influenza A/H1N1 (swine flu) were confirmed in the UK on 27th April 2009, after a novel virus first identified in Mexico rapidly evolved into a pandemic. The swine flu outbreak was the first pandemic in more than 40 years and for many, their first encounter with a major influenza outbreak. This study examines public understandings of the pandemic, exploring how people deciphered the threat and perceived they could control the risks. Methods Purposive sam...

  15. Influenza (Flu) Viruses

    Science.gov (United States)

    ... and antigenic shift. Transmission of Influenza Viruses from Animals to People Influenza A viruses also are found in many different animals, including ducks, chickens, pigs, whales, horses and seals. ...

  16. Red state, blue state, flu state: media self-selection and partisan gaps in Swine flu vaccinations.

    Science.gov (United States)

    Baum, Matthew A

    2011-12-01

    This study assesses the relationship between political partisanship and attitudes and behavior with respect to the H1N1 virus (swine flu) crisis of 2009 in general, and the U.S. mass vaccination program in particular. I argue that even seemingly nonpartisan political issues like public health are increasingly characterized by partisan polarization in public attitudes and that such polarization is attributable, at least partly, to the breakdown of the information commons that characterized the U.S. mass media from roughly the 1950s until the early 1990s. In its place has arisen an increasingly fragmented and niche-oriented media marketplace in which individuals are better able to limit their information exposure to attitudes and opinions that reinforce, rather than challenge, their preexisting beliefs. I test my argument against a variety of data sources, including opinion surveys and state-level swine flu vaccination rate data.

  17. Determinants of adults' intention to vaccinate against pandemic swine flu

    Directory of Open Access Journals (Sweden)

    Goodwin Robin

    2011-01-01

    Full Text Available Abstract Background Vaccination is one of the cornerstones of controlling an influenza pandemic. To optimise vaccination rates in the general population, ways of identifying determinants that influence decisions to have or not to have a vaccination need to be understood. Therefore, this study aimed to predict intention to have a swine influenza vaccination in an adult population in the UK. An extension of the Theory of Planned Behaviour provided the theoretical framework for the study. Methods Three hundred and sixty two adults from the UK, who were not in vaccination priority groups, completed either an online (n = 306 or pen and paper (n = 56 questionnaire. Data were collected from 30th October 2009, just after swine flu vaccination became available in the UK, and concluded on 31st December 2009. The main outcome of interest was future swine flu vaccination intentions. Results The extended Theory of Planned Behaviour predicted 60% of adults' intention to have a swine flu vaccination with attitude, subjective norm, perceived control, anticipating feelings of regret (the impact of missing a vaccination opportunity, intention to have a seasonal vaccine this year, one perceived barrier: "I cannot be bothered to get a swine flu vaccination" and two perceived benefits: "vaccination decreases my chance of getting swine flu or its complications" and "if I get vaccinated for swine flu, I will decrease the frequency of having to consult my doctor," being significant predictors of intention. Black British were less likely to intend to have a vaccination compared to Asian or White respondents. Conclusions Theoretical frameworks which identify determinants that influence decisions to have a pandemic influenza vaccination are useful. The implications of this research are discussed with a view to maximising any future pandemic influenza vaccination uptake using theoretically-driven applications.

  18. The neuropsychiatric aspects of influenza/swine flu: A selective review.

    Science.gov (United States)

    Manjunatha, Narayana; Math, Suresh Bada; Kulkarni, Girish Baburao; Chaturvedi, Santosh Kumar

    2011-07-01

    The world witnessed the influenza virus during the seasonal epidemics and pandemics. The current strain of H1N1 (swine flu) pandemic is believed to be the legacy of the influenza pandemic (1918-19). The influenza virus has been implicated in many neuropsychiatric disorders. In view of the recent pandemic, it would be interesting to review the neuropsychiatric aspects of influenza, specifically swine flu. Author used popular search engine 'PUBMED' to search for published articles with different MeSH terms using Boolean operator (AND). Among these, a selective review of the published literature was done. Acute manifestations of swine flu varied from behavioral changes, fear of misdiagnosis during outbreak, neurological features like seizures, encephalopathy, encephalitis, transverse myelitis, aseptic meningitis, multiple sclerosis, and Guillian-Barre Syndrome. Among the chronic manifestations, schizophrenia, Parkinson's disease, mood disorder, dementia, and mental retardation have been hypothesized. Further research is required to understand the etiological hypothesis of the chronic manifestations of influenza. The author urges neuroscientists around the world to make use of the current swine flu pandemic as an opportunity for further research.

  19. The neuropsychiatric aspects of influenza/swine flu: A selective review

    Directory of Open Access Journals (Sweden)

    Narayana Manjunatha

    2011-01-01

    Full Text Available The world witnessed the influenza virus during the seasonal epidemics and pandemics. The current strain of H1N1 (swine flu pandemic is believed to be the legacy of the influenza pandemic (1918-19. The influenza virus has been implicated in many neuropsychiatric disorders. In view of the recent pandemic, it would be interesting to review the neuropsychiatric aspects of influenza, specifically swine flu. Author used popular search engine ′PUBMED′ to search for published articles with different MeSH terms using Boolean operator (AND. Among these, a selective review of the published literature was done. Acute manifestations of swine flu varied from behavioral changes, fear of misdiagnosis during outbreak, neurological features like seizures, encephalopathy, encephalitis, transverse myelitis, aseptic meningitis, multiple sclerosis, and Guillian-Barre Syndrome. Among the chronic manifestations, schizophrenia, Parkinson′s disease, mood disorder, dementia, and mental retardation have been hypothesized. Further research is required to understand the etiological hypothesis of the chronic manifestations of influenza. The author urges neuroscientists around the world to make use of the current swine flu pandemic as an opportunity for further research.

  20. Swine flu-have we learnt any lesson from the past ? | Yadav | Pan ...

    African Journals Online (AJOL)

    Abstract. The world has suffered the pandemics due to swine flu in the past. The present epidemic in India has claimed many lives. Even, after the first outbreak of swine flu in 2009 no concrete efforts are done to prevent this infection. There is an urgent need to take radical steps to prevent such epidemics. Key words: Swine ...

  1. Red, Blue, and the Flu: Media Self-Selection and Partisan Gaps in Swine Flu Vaccinations

    OpenAIRE

    Baum, Matthew A.

    2011-01-01

    This study assesses the relationship between political partisanship and attitudes and behavior with respect to the Swine Flu crisis of 2009 in general, and the U.S. mass vaccination program in particular. I argue that even seemingly non-partisan political issues like public health are increasingly characterized by partisan polarization in public attitudes, and that such polarization is in part attributable, at least in part, to the breakdown of the information commons that characterized the A...

  2. Population dynamics of swine influenza virus in finishing pigs

    NARCIS (Netherlands)

    Loeffen, W.L.A.

    2008-01-01

    Influenza virus infections in swine were first noticed in the US in 1918, during the human pandemic of the Spanish flu. In Europe, seroprevalences for the three most common swine influenza strains at the moment, H1N1, H3N2 and H1N2, range from 20-80% in finishing pigs at the end of the finishing

  3. Key Facts about Influenza (Flu) and Flu Vaccine

    Science.gov (United States)

    ... Collection of Respiratory Specimens for Influenza Virus Testing Clinical Signs & Symptoms of Influenza Symptoms & Laboratory Diagnosis Information for ... Submit" /> Archived Flu Emails Influenza Types Seasonal Avian Swine Variant Pandemic Other ... This Page What is Influenza (also called Flu)? Signs and Symptoms of Flu How Flu Spreads Period ...

  4. Can mothers who have swine flu continue to breastfeed? Yes!

    African Journals Online (AJOL)

    Siegal_D

    Explain to the mother and other family members that the main way the flu virus is transmitted is by. 'droplets' from coughs and sneezes. So the family can reduce the risk of infecting each other (including mother and baby), and other people by: ▫ Washing hands with soap frequently and thoroughly, especially after sneezing.

  5. Pandemic H1N1 2009 ('swine flu'): diagnostic and other challenges.

    Science.gov (United States)

    Burkardt, Hans-Joachim

    2011-01-01

    Pandemic H1N1 2009 ('swine flu') virus was 'the virus of the year 2009' because it affected the lives of many people in this year. H1N1 was first described in California in April 2009 and spread very rapidly all over the globe. The fast global penetration of the swine flu caused the WHO in Geneva to call the infection with H1N1 a new pandemic with a rapid escalation of the different pandemic phases that ended on 11 June 2009, with the declaration of phase 6 (full-blown pandemic). This had far-reaching consequences for the local health authorities in the different affected countries and created awareness in the public and fear in the experts and even more so in many lay people. The consequences were: setting up reliable diagnostic tests as soon as possible; enhanced production, distribution and stock creation of the few drugs that were available to treat newly infected persons; and development, production, distribution and stock creation of new and appropriate anti-H1N1 swine flu vaccines. This all resulted in enormous costs in the local healthcare systems and also required smart and diligent logistics, because demand for all this was, in most cases, much higher than availability. Fortunately, the pandemic ended quite quickly (there was no 'second wave' as had been anticipated by some experts) and the death toll was moderate, compared with other influenza pandemic in the past and even to the regular annual appearance of the seasonal flu. This favorable outcome, however, provoked some harsh criticism that the WHO and healthcare systems in general had over-reacted and by doing so, a lot of money was thrown out of the window. This article describes the history of the H1N1 pandemic, the diagnostic challenges and resolutions, touches on treatment and vaccination very briefly and also comments on the criticism and arguments that came up immediately at the end and following the termination of the pandemic situation.

  6. Mayaro virus: the jungle flu

    Directory of Open Access Journals (Sweden)

    Izurieta RO

    2018-04-01

    Full Text Available Ricardo O Izurieta,1 David A DeLacure,1 Andres Izurieta,2 Ismael A Hoare,1 Miguel Reina Ortiz,1,3 1Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, USA; 2Department of Computer Science and Engineering, College of Engineering, University of South Florida, Tampa, FL, USA; 3Fundación Raíces, Esmeraldas, Ecuador Abstract: Mayaro fever is an emerging acute viral disease endemic in Central and South America. Mayaro virus (MAYV is classified in the Semliki Forest virus antigenic complex and shares similarities with the alphavirus Chikungunya virus and the flavivirus Dengue virus. MAYV is an arbovirus transmitted by Haemagogus janthinomys, with competence also demonstrated in Aedes aegypti, Aedes scapularis, and Anopheles quadrimaculatus. Outbreaks and small epidemics of Mayaro fever have occurred in several countries in northern South America and the Caribbean. In addition, travel-associated cases have been reported in European nationals returning from endemic areas. Clinical features of Mayaro fever include fever, chills, persistent arthralgia, retro-orbital pain, maculopapular rash, itching, dizziness, and, rarely, lymphadenopathy. Methods of control for MAYV are similar to those used for other sylvatic arboviruses. Although MAYV was discovered as long ago as the 1950s and continues to be prevalent in the tropical areas of the Americas, it remains neglected and under-studied. This paper provides a thorough and current review of the published MAYV literature ranging from its original description to modern outbreaks, and from the basic virus characteristics to the clinical and epidemiological aspects of this disease. Keywords: Mayaro virus, emerging arbovirus, dengue-like virus, arthrogenic virus

  7. Knowledge, attitude and practices regarding swine flu among para-medical workers in a tertiary care hospital in Pondicherry.

    Science.gov (United States)

    Datta, S S; Kuppuraman, D; Boratne, A V; Abraham, S B; Singh, Z

    2011-03-01

    Para-medical workers (PMWs) are first contacts for suspected Swine flu patients and also the media to spread key messages regarding its prevention and control strategies. Present study was conducted to ascertain knowledge, attitude and practices regarding Swine flu among para-medical workers in a tertiary care hospital. A hospital based cross-sectional study was conducted among PMWs during May-July, 2010. KAP regarding Swine flu was collected through pre-designed questionnaire and information on attitude towards Swine flu was also collected through FGD-free list analysis. Data was analysed using Epi_Info and Anthropac software. A total of 237 PMWs responded. Majority of the PMWs knew about signs and symptoms (89.03%), mode of transmission (91.56%) and route of transmission (91.98%) of Swine flu. Television (67.51%) was the major source of information. 75.53% and 58.65% PMWs respectively knew about organ of the body chiefly affected and type of specimen to be collected during Swine flu. 196 (82.7%) and 191 (80.59%) PMWs respectively knew about availability of vaccine and treatment against Swine flu. 94.09% PMWs stated that extra precautions such as use of face mask, frequent handwashing, use of gloves etc. should be taken while handling any suspected Swine flu case and 73.84% PMWs do take such precautions. 80.17% PMWs opined that epidemic of Swine flu can be halted at current stage. In the present study, PMWs possessed good knowledge, attitude and practices regarding Swine flu and this fact should be utilized while designing and guiding containment strategies against existing Swine flu epidemic.

  8. Initial psychological responses to Influenza A, H1N1 ("Swine flu"

    Directory of Open Access Journals (Sweden)

    Neto Felix

    2009-10-01

    Full Text Available Abstract Background The outbreak of the pandemic flu, Influenza A H1N1 (Swine Flu in early 2009, provided a major challenge to health services around the world. Previous pandemics have led to stockpiling of goods, the victimisation of particular population groups, and the cancellation of travel and the boycotting of particular foods (e.g. pork. We examined initial behavioural and attitudinal responses towards Influenza A, H1N1 ("Swine flu" in the six days following the WHO pandemic alert level 5, and regional differences in these responses. Methods 328 respondents completed a cross-sectional Internet or paper-based questionnaire study in Malaysia (N = 180 or Europe (N = 148. Measures assessed changes in transport usage, purchase of preparatory goods for a pandemic, perceived risk groups, indicators of anxiety, assessed estimated mortality rates for seasonal flu, effectiveness of seasonal flu vaccination, and changes in pork consumption Results 26% of the respondents were 'very concerned' about being a flu victim (42% Malaysians, 5% Europeans, p Conclusion Initial responses to Influenza A show large regional differences in anxiety, with Malaysians more anxious and more likely to reduce travel and to buy masks and food. Discussions with family and friends may reinforce existing anxiety levels. Particular groups (homosexuals, prostitutes, the homeless are perceived as at greater risk, potentially leading to increased prejudice during a pandemic. Europeans underestimated mortality of seasonal flu, and require more information about the protection given by seasonal flu inoculation.

  9. A study of the swine flu (H1N1 epidemic among health care providers of a medical college hospital of Delhi

    Directory of Open Access Journals (Sweden)

    Om Prakash Rajoura

    2011-01-01

    Full Text Available Background: Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. Understanding the role of specific perceptions in motivating people to engage in precautionary behavior may help health communicators to improve their messages about outbreaks of new infectious disease generally and swine flu specifically. Objectives: To study the knowledge and practices of health care providers regarding swine flu and to study the attitudes and practices of health care providers toward the prevention of the swine flu epidemic. Materials and Methods: The present study was a cross-sectional (descriptive study and was conducted in the month of September, 2009, among doctors and nurses. A maximum of 40% of the total health care providers of GTB Hospital were covered because of feasibility and logistics, and, therefore, the sample size was 334. Results: Around 75% of the health care providers were aware about the symptoms of swine flu. Mostly, all study subjects were aware that it is transmitted through droplet infection. Correct knowledge of the incubation period of swine flu was known to 80% of the doctors and 69% of the nurses. Knowledge about high-risk groups (contacts, travelers, health care providers was observed among 88% of the doctors and 78.8% of the nurses. Practice of wearing mask during duty hours was observed among 82.6% of doctors and 85% of nurses, whereas of the total study population, only 40% were correctly using mask during duty hours. Conclusions: Significant gaps observed between knowledge and actual practice of the Health Care Provider regarding swine flu need to be filled by appropriate training. Data indicate that the health care providers are very intellectual, but they do not themselves practice what they preach.

  10. Los encuadres sanitarios en prensa. Gripe A y bacteria e.coli. / The Sanitary framing in Spanish press: Swine flu virus and E. coli bacterium

    Directory of Open Access Journals (Sweden)

    Paloma López Villafranca

    2012-12-01

    Full Text Available ResumenEn la siguiente investigación se analizan los encuadres sobre dos crisis sanitarias, gripe A y bacteria e.coli en prensa, en los diarios de mayor tirada; El País, El Mundo y ABC. En este estudio se refleja cómo se produce un enfoque muy distinto de ambas crisis y la influencia en estos encuadres e importancia de las fuentes institucionales como principales portadoras de información frente a las fuentes sanitarias o científicas, con escasa relevancia para la prensa española.AbstractThe following analysis is focused on the approach made by newspapers such as El País, El Mundo and ABC about the sanitary crisis of A Flu and E.coli bacteria. The methodology used is the analysis of content of a wide range of news samples generated during both crisis. As a result of this analysis it is made clear that both crises have been approached by Spanish press in different ways, giving more importance to government and official sources in opposition to the lack of relevance given to scientific or sanitary ones.

  11. Influenza A virus infections in swine: pathogenesis and diagnosis.

    Science.gov (United States)

    Janke, B H

    2014-03-01

    Influenza has been recognized as a respiratory disease in swine since its first appearance concurrent with the 1918 "Spanish flu" human pandemic. All influenza viruses of significance in swine are type A, subtype H1N1, H1N2, or H3N2 viruses. Influenza viruses infect epithelial cells lining the surface of the respiratory tract, inducing prominent necrotizing bronchitis and bronchiolitis and variable interstitial pneumonia. Cell death is due to direct virus infection and to insult directed by leukocytes and cytokines of the innate immune system. The most virulent viruses consistently express the following characteristics of infection: (1) higher or more prolonged virus replication, (2) excessive cytokine induction, and (3) replication in the lower respiratory tract. Nearly all the viral proteins contribute to virulence. Pigs are susceptible to infection with both human and avian viruses, which often results in gene reassortment between these viruses and endemic swine viruses. The receptors on the epithelial cells lining the respiratory tract are major determinants of infection by influenza viruses from other hosts. The polymerases, especially PB2, also influence cross-species infection. Methods of diagnosis and characterization of influenza viruses that infect swine have improved over the years, driven both by the availability of new technologies and by the necessity of keeping up with changes in the virus. Testing of oral fluids from pigs for virus and antibody is a recent development that allows efficient sampling of large numbers of animals.

  12. Acute necrotizing encephalopathy of childhood: a fatal complication of swine flu

    International Nuclear Information System (INIS)

    Khan, M.R.; Maheshwari, P.K.; Haque, A.

    2010-01-01

    Acute necrotizing encephalopathy of childhood (ANEC) is a rare condition characterized by the presence of multifocal symmetrical brain lesions involving mainly thalami, brainstem, cerebellum and white matter. ANEC is a serious and life threatening complication of simple viral infections. We present a case of a young child who developed this condition with classical clinical and radiological findings consistent with ANEC, secondary to swine flu (H1N1). He needed ventilatory support and had profound motor and intellectual deficit on discharge. We report this case with aim of raising awareness about this fatal complication of swine flu which has become a global health care issue these days. (author)

  13. Potential of Complementary and Alternative Medicine in Preventive Management of Novel H1N1 Flu (Swine Flu Pandemic: Thwarting Potential Disasters in the Bud

    Directory of Open Access Journals (Sweden)

    Rajesh Arora

    2011-01-01

    Full Text Available The emergence of novel H1N1 has posed a situation that warrants urgent global attention. Though antiviral drugs are available in mainstream medicine for treating symptoms of swine flu, currently there is no preventive medicine available. Even when available, they would be in short supply and ineffective in a pandemic situation, for treating the masses worldwide. Besides the development of drug resistance, emergence of mutant strains of the virus, emergence of a more virulent strain, prohibitive costs of available drugs, time lag between vaccine developments, and mass casualties would pose difficult problems. In view of this, complementary and alternative medicine (CAM offers a plethora of interesting preventive possibilities in patients. Herbs exhibit a diverse array of biological activities and can be effectively harnessed for managing pandemic flu. Potentially active herbs can serve as effective anti influenza agents. The role of CAM for managing novel H1N1 flu and the mode of action of these botanicals is presented here in an evidence-based approach that can be followed to establish their potential use in the management of influenza pandemics. The complementary and alternative medicine approach deliberated in the paper should also be useful in treating the patients with serious influenza in non pandemic situations.

  14. Initial psychological responses to Influenza A, H1N1 ("Swine flu").

    Science.gov (United States)

    Goodwin, Robin; Haque, Shamsul; Neto, Felix; Myers, Lynn B

    2009-10-06

    The outbreak of the pandemic flu, Influenza A H1N1 (Swine Flu) in early 2009, provided a major challenge to health services around the world. Previous pandemics have led to stockpiling of goods, the victimisation of particular population groups, and the cancellation of travel and the boycotting of particular foods (e.g. pork). We examined initial behavioural and attitudinal responses towards Influenza A, H1N1 ("Swine flu") in the six days following the WHO pandemic alert level 5, and regional differences in these responses. 328 respondents completed a cross-sectional Internet or paper-based questionnaire study in Malaysia (N = 180) or Europe (N = 148). Measures assessed changes in transport usage, purchase of preparatory goods for a pandemic, perceived risk groups, indicators of anxiety, assessed estimated mortality rates for seasonal flu, effectiveness of seasonal flu vaccination, and changes in pork consumption 26% of the respondents were 'very concerned' about being a flu victim (42% Malaysians, 5% Europeans, p public transport use (48% Malaysia, 22% Europe, p Malaysia, 17% Europe, p Malaysia, 7% Europe), 41% Malaysia (15% Europe) intended to do so (p < .001). 63% of Europeans, 19% of Malaysians had discussed the pandemic with friends (p < .001). Groups seen as at 'high risk' of infection included the immune compromised (mentioned by 87% respondents), pig farmers (70%), elderly (57%), prostitutes/highly sexually active (53%), and the homeless (53%). In data collected only in Europe, 64% greatly underestimated the mortality rates of seasonal flu, 26% believed seasonal flu vaccination gave protection against swine flu. 7% had reduced/stopped eating pork. 3% had purchased anti-viral drugs for use at home, while 32% intended to do so if the pandemic worsened. Initial responses to Influenza A show large regional differences in anxiety, with Malaysians more anxious and more likely to reduce travel and to buy masks and food. Discussions with family and friends may

  15. OpenFluDB, a database for human and animal influenza virus.

    Science.gov (United States)

    Liechti, Robin; Gleizes, Anne; Kuznetsov, Dmitry; Bougueleret, Lydie; Le Mercier, Philippe; Bairoch, Amos; Xenarios, Ioannis

    2010-07-06

    Although research on influenza lasted for more than 100 years, it is still one of the most prominent diseases causing half a million human deaths every year. With the recent observation of new highly pathogenic H5N1 and H7N7 strains, and the appearance of the influenza pandemic caused by the H1N1 swine-like lineage, a collaborative effort to share observations on the evolution of this virus in both animals and humans has been established. The OpenFlu database (OpenFluDB) is a part of this collaborative effort. It contains genomic and protein sequences, as well as epidemiological data from more than 27,000 isolates. The isolate annotations include virus type, host, geographical location and experimentally tested antiviral resistance. Putative enhanced pathogenicity as well as human adaptation propensity are computed from protein sequences. Each virus isolate can be associated with the laboratories that collected, sequenced and submitted it. Several analysis tools including multiple sequence alignment, phylogenetic analysis and sequence similarity maps enable rapid and efficient mining. The contents of OpenFluDB are supplied by direct user submission, as well as by a daily automatic procedure importing data from public repositories. Additionally, a simple mechanism facilitates the export of OpenFluDB records to GenBank. This resource has been successfully used to rapidly and widely distribute the sequences collected during the recent human swine flu outbreak and also as an exchange platform during the vaccine selection procedure. Database URL: http://openflu.vital-it.ch.

  16. Swine flu- a serious pandeMic threat | Rachna | IMTU Medical Journal

    African Journals Online (AJOL)

    Swine infl uenza (swine fl u) is a respiratory disease caused by type A infl uenza virus, the only pandemic strain. This new strain called swine-origin (H1N1) infl uenza A virus (SO-IAV), is transmitted to humans and spreads quickly from person to person. It emerged in Mexico and USA in April 2009. The 2009 outbreak of ...

  17. Flu Vaccine Safety Information

    Science.gov (United States)

    ... Types Seasonal Avian Swine Variant Pandemic Other Flu Vaccine Safety Information Questions & Answers Language: English (US) Español ... of flu vaccines monitored? Egg Allergy Are flu vaccines safe? Flu vaccines have good safety record. Hundreds ...

  18. The Evaluations of Swine Flu Magnitudes in TV News: A Comparative Analysis of Paired Influenza Pandemics.

    Science.gov (United States)

    Pan, Po-Lin; Meng, Juan

    2015-01-01

    This study examined how major TV news networks covered two flu pandemics in 1976 and 2009 in terms of news frames, mortality exemplars, mortality subject attributes, vaccination, evaluation approaches, and news sources. Results showed that the first pandemic was frequently framed with the medical/scientific and political/legal issues, while the second pandemic was emphasized with the health risk issue in TV news. Both flu pandemics were regularly reported with mortality exemplars, but the focus in the first pandemic was on the flu virus threat and vaccination side effects, while the vaccination shortage was frequently revealed in the second outbreak.

  19. H1N1 influenza ('swine 'flu') in the paediatric ICU in South Africa

    African Journals Online (AJOL)

    Schoub B. Swine flu – implications for South Africa. Communicable Diseases Surveillance. Bulletin 2009;7(3):5-7. 5. Ahrens JO, Morrow BM, Argent AC. Influenza A(H1N1)pdm09 in critically ill children admitted to a paediatric intensive care unit, South Africa. S Afr J Crit Care 2015;31(1):4-7. 6. Cox CM, Blanton L, Dhara R, ...

  20. Swine Flu and The Effect of Compulsory Class Attendance on Academic Performance

    OpenAIRE

    Goulas, Sofoklis; Megalokonomou, Rigissa

    2016-01-01

    We use a natural experiment that relaxed class attendance requirements for one school year to explore students' marginal propensity to skip class, and to examine the effects of their absences on scholastic outcomes. We exploit exogenous variation resulting from a one-time policy Greece implemented allowing high school students to miss 30 percent more class hours without penalty during the 2009-10 academic year, a period when officials feared outbreaks of swine flu. Using a new dataset, we ana...

  1. Crying wolf? Biosecurity and metacommunication in the context of the 2009 swine flu pandemic.

    Science.gov (United States)

    Nerlich, Brigitte; Koteyko, Nelya

    2012-07-01

    This article explores how the 2009 pandemic of swine flu (H1N1) intersected with issues of biosecurity in the context of an increasing entanglement between the spread of disease and the spread of information. Drawing on research into metacommunication, the article studies the rise of communication about ways in which swine flu was communicated, both globally and locally, during the pandemic. It examines and compares two corpora of texts, namely UK newspaper articles and blogs, written between 28 March and 11 June 2009, that is, the period from the start of the outbreak till the WHO announcement of the pandemic. Findings show that the interaction between traditional and digital media as well as the interaction between warnings about swine flu and previous warnings about other epidemics contributed to a heightened discourse of blame and counter-blame but also, more surprisingly, self-blame and reflections about the role the media in pandemic communication. The consequences of this increase in metacommunication for research into crisis communication are explored. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Swine Flu, in the Spanish Press/La ‘gripe A’, en la prensa española

    Directory of Open Access Journals (Sweden)

    Dra. Idoia Camacho Markina

    2009-01-01

    Full Text Available Abstract: Mass media are faced with an exceptional challenge when they cover an epidemic, since the role of the media is to offer the most complete and accurate information in order to avoid spreading panic. However, many media outlets have been guided by financial reasons rather than public service criteria when they have covered the latest epidemic outbreak, which has resulted in a sensationalist coverage. The goal of this paper is to analyze the news coverage given by Spanish dailies to the outbreak and spread of the Novel H1N1 Virus, commonly known as the Swine Flu. This research points to the role played by print media in the coverage of this particular issue after a content analysis of the news articles published by the main five Spanish dailies during the first week after the Swine Flu outbreak.Resumen: Informar sobre epidemias constituye una situación excepcional para los medios de comunicación, cuya función debe ser ofrecer al público la información más completa posible para evitar que se extienda el pánico. Sin embargo, en las últimas epidemias muchos medios se han guiado más por criterios económicos, buscando el sensacionalismo, que por criterios de servicio público. El presente trabajo tiene como objetivo estudiar el tratamiento informativo que la prensa escrita diaria española ha hecho del brote de epidemia del virus de influenza A (H1/N1. El análisis de contenido de las noticias publicadas por los cinco diarios españoles de mayor difusión en la primera semana desde que se conoció la epidemia nos indica qué papel ha adoptado la prensa en esta ocasión.

  3. Determining symptoms for chest radiographs in patients with swine flu (H1N1)

    International Nuclear Information System (INIS)

    Al-Nakshabandi, Nizar A.

    2011-01-01

    The question arises about the chest X-ray findings and clinical symptoms in swine flu and about the most important clinical finding when correlated with the chest radiograph. Should physicians order a chest X-ray in each patient suspected of having swine flu? There were 179 patients with a high suspicion of swine flu. All 179 patients had an initial chest radiograph. As many as 65 males (representing 56% of the projected study population) had a normal chest radiograph, while 35 males (representing 55.6% of the study population) had an abnormal chest X-ray. As many as 51 females (representing 44% of the population) had a normal chest X-ray, while 20 females (representing 44% of the study population) had abnormal chest X-rays. Polymerase chain reaction (PCR) was not a determining factor for normal vs. abnormal chest X-ray (CXR). Rapid antigen test was not a determining factor for normal vs. abnormal CXR. Fever was not a determining factor for normal vs. abnormal CXR. Cough appears to be a determining factor for normal vs. abnormal CXR. Sore throat appears to be a determining factor for normal vs. abnormal CXR. Chest pain was not a determining factor for normal vs. abnormal CXR. Presence of cough with PCR was statistically significant. In my opinion, chest radiographs in patients with suspected H1N1 should only be obtained if there is a cough or sore throat. Other symptoms associated with H1N1 do not warrant a chest radiograph unless absolutely necessary

  4. Classical Swine Fever Virus-Rluc Replicons

    DEFF Research Database (Denmark)

    Risager, Peter Christian; Belsham, Graham J.; Rasmussen, Thomas Bruun

    Classical swine fever virus (CSFV) is the etiologic agent of the severe porcine disease, classical swine fever. Unraveling the molecular determinants of efficient replication is crucial for gaining proper knowledge of the pathogenic traits of this virus. Monitoring the replication competence within...

  5. Thimerosal in Flu Vaccine

    Science.gov (United States)

    ... Avian Swine Variant Pandemic Other Thimerosal in Flu Vaccine Questions & Answers Language: English (US) Español Recommend on ... or fungi from contaminating the vaccine. Do flu vaccines contain thimerosal? Flu vaccines in multi-dose vials ...

  6. Pandemic swine influenza virus: Preparedness planning | Ojogba ...

    African Journals Online (AJOL)

    The novel H1N1 influenza virus that emerged in humans in Mexico in early 2009 and transmitted efficiently in the human population with global spread was declared a pandemic strain. The introduction of different avian and human influenza virus genes into swine influenza viruses often result in viruses of increased fitness ...

  7. Novel Isoprene Sensor for a Flu Virus Breath Monitor

    Directory of Open Access Journals (Sweden)

    Pelagia-Irene Gouma

    2017-01-01

    Full Text Available A common feature of the inflammatory response in patients who have actually contracted influenza is the generation of a number of volatile products of the alveolar and airway epithelium. These products include a number of volatile organic compounds (VOCs and nitric oxide (NO. These may be used as biomarkers to detect the disease. A portable 3-sensor array microsystem-based tool that can potentially detect flu infection biomarkers is described here. Whether used in connection with in-vitro cell culture studies or as a single exhale breathalyzer, this device may be used to provide a rapid and non-invasive screening method for flu and other virus-based epidemics.

  8. Computational analysis and determination of a highly conserved surface exposed segment in H5N1 avian flu and H1N1 swine flu neuraminidase

    Directory of Open Access Journals (Sweden)

    Nandy Ashesh

    2010-02-01

    Full Text Available Abstract Background Catalytic activity of influenza neuraminidase (NA facilitates elution of progeny virions from infected cells and prevents their self-aggregation mediated by the catalytic site located in the body region. Research on the active site of the molecule has led to development of effective inhibitors like oseltamivir, zanamivir etc, but the high rate of mutation and interspecies reassortment in viral sequences and the recent reports of oseltamivir resistant strains underlines the importance of determining additional target sites for developing future antiviral compounds. In a recent computational study of 173 H5N1 NA gene sequences we had identified a 50-base highly conserved region in 3'-terminal end of the NA gene. Results We extend the graphical and numerical analyses to a larger number of H5N1 NA sequences (514 and H1N1 swine flu sequences (425 accessed from GenBank. We use a 2D graphical representation model for the gene sequences and a Graphical Sliding Window Method (GSWM for protein sequences scanning the sequences as a block of 16 amino acids at a time. Using a protein sequence descriptor defined in our model, the protein sliding scan method allowed us to compare the different strains for block level variability, which showed significant statistical correlation to average solvent accessibility of the residue blocks; single amino acid position variability results in no correlation, indicating the impact of stretch variability in chemical environment. Close to the C-terminal end the GSWM showed less descriptor-variability with increased average solvent accessibility (ASA that is also supported by conserved predicted secondary structure of 3' terminal RNA and visual evidence from 3D crystallographic structure. Conclusion The identified terminal segment, strongly conserved in both RNA and protein sequences, is especially significant as it is surface exposed and structural chemistry reveals the probable role of this stretch in

  9. The swine flu vaccine, public attitudes, and researcher interpretations: a systematic review of qualitative research.

    Science.gov (United States)

    Carlsen, Benedicte; Glenton, Claire

    2016-06-24

    During pandemics, health authorities may be uncertain about the spread and severity of the disease and the effectiveness and safety of available interventions. This was the case during the swine flu (H1N1) pandemic of 2009-2010, and governments were forced to make decisions despite these uncertainties. While many countries chose to implement wide scale vaccination programmes, few accomplished their vaccination goals. Many research studies aiming to explore barriers and facilitators to vaccine uptake have been conducted in the aftermath of the pandemic, including several qualitative studies. 1. To explore public attitudes to the swine flu vaccine in different countries through a review of qualitative primary studies. 2. To describe and discuss the implications drawn by the primary study authors. Systematic review of qualitative research studies, using a broadly comparative cross case-study approach. Study quality was appraised using an adaptation of the Critical Appraisal Skills Programme (CASP) quality assessment tool. The review indicates that the public had varying opinions about disease risk and prevalence and had concerns about vaccine safety. Most primary study authors concluded that participants were uninformed, and that more information about the disease and the vaccine would have led to an increase in vaccine uptake. We find these conclusions problematic. We suggest instead that people's questions and concerns were legitimate given the uncertainties of the situation at the time and the fact that the authorities did not have the necessary information to convince the public. Our quality assessment of the included studies points to a lack of reflexivity and a lack of information about study context. We suggest that these study weaknesses are tied to primary study authors' lack of acknowledgement of the uncertainties surrounding the disease and the vaccine. While primary study authors suggest that authorities could increase vaccine uptake through increased

  10. Flu Facts

    Science.gov (United States)

    ... spread worldwide, they're called pandemics . The H1N1 ("swine flu") outbreak of 2009–2010 was considered a ... for example, diabetes, heart problems, asthma, or other lung problems) Most teens can take acetaminophen or ibuprofen ...

  11. Pandemic Flu

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other Pandemic Influenza Language: English (US) Español Recommend on Facebook ... Planning State and Local Government Planning More 1918 Pandemic Flu Commemoration 100 years later, read about the ...

  12. Reassortment patterns in Swine influenza viruses.

    Directory of Open Access Journals (Sweden)

    Hossein Khiabanian

    Full Text Available Three human influenza pandemics occurred in the twentieth century, in 1918, 1957, and 1968. Influenza pandemic strains are the results of emerging viruses from non-human reservoirs to which humans have little or no immunity. At least two of these pandemic strains, in 1957 and in 1968, were the results of reassortments between human and avian viruses. Also, many cases of swine influenza viruses have reportedly infected humans, in particular, the recent H1N1 influenza virus of swine origin, isolated in Mexico and the United States. Pigs are documented to allow productive replication of human, avian, and swine influenza viruses. Thus it has been conjectured that pigs are the "mixing vessel" that create the avian-human reassortant strains, causing the human pandemics. Hence, studying the process and patterns of viral reassortment, especially in pigs, is a key to better understanding of human influenza pandemics. In the last few years, databases containing sequences of influenza A viruses, including swine viruses, collected since 1918 from diverse geographical locations, have been developed and made publicly available. In this paper, we study an ensemble of swine influenza viruses to analyze the reassortment phenomena through several statistical techniques. The reassortment patterns in swine viruses prove to be similar to the previous results found in human viruses, both in vitro and in vivo, that the surface glycoprotein coding segments reassort most often. Moreover, we find that one of the polymerase segments (PB1, reassorted in the strains responsible for the last two human pandemics, also reassorts frequently.

  13. Knowledge and attitude regarding swine flu among dental house surgeons in Belagavi city: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Shreya Nerli

    2017-01-01

    Conclusions: We concluded that dental house surgeons do not have sufficient knowledge about swine flu. It seems that traditional educational models are not efficient and government with other nongovernmental organizations should emphasize to advocate motivational education methods including health belief model and motivational interview at undergraduate levels. Younger students and dentists may have less motivation to change their attitude and behavior so that we can focus our interventions on these groups.

  14. Non-hydrolyzed in digestive tract and blood natural L-carnosine peptide ("bioactivated Jewish penicillin") as a panacea of tomorrow for various flu ailments: signaling activity attenuating nitric oxide (NO) production, cytostasis, and NO-dependent inhibition of influenza virus replication in macrophages in the human body infected with the virulent swine influenza A (H1N1) virus.

    Science.gov (United States)

    Babizhayev, Mark A; Deyev, Anatoliy I; Yegorov, Yegor E

    2013-01-01

    Influenza (flu) is caused by a highly contagious virus that is spread by coughs and sneezes. Flu symptoms include high fever, chills and sweating, sore throat, weakness, headache, muscle and joint pains, and cough. Older people and those with an underlying medical condition are more likely to develop serious complications, including secondary bacterial pneumonia, primary influenza pneumonia, and inflammation of the brain or heart. There are three types of flu virus: A, B, and C. The flu virus has a unique ability to change its surface structure. This allows it to escape recognition by the body's immune system and cause widespread illness (epidemics and pandemics). Most cases of influenza occur within a 6- to 8-week period during winter and spring. Epidemics occur when there are minor changes in the nature of the virus so that more people within a community are susceptible. Influenza A is more likely to cause epidemics. Pandemics (worldwide epidemics) occur when there are major changes in the virus so that the disease affects a large proportion of people in a geographic region or on more than one continent. The findings presented in this article have many important implications for understanding the influenza A (H1N1) viral pathogenesis, prevention, and treatment. Direct viral cytotoxicity (referred cytopathic effect) is only a fraction of several types of events induced by virus infection. Nitric oxide and oxygen free radicals such as superoxide anion (O2-·) are generated markedly in influenza A (including H1N1) virus-infected host boosts, and these molecular species are identified as the potent pathogenic agents. The mutual interaction of nitric oxide (NO) with O2-· resulting in the formation of peroxynitrite is operative in the pathogenic mechanism of influenza virus pneumonia. Influenza virus infection involves pathological events in which oxygen free radicals play an important role in the pathogenesis. The toxicity and reactivity of oxygen radicals generated

  15. Colds and flu – an overview of the management

    African Journals Online (AJOL)

    infected person or object5. Table 1: Types of influenza strains and their differences1. Virus Strain: Influenza A. Influenza B. Who can become infected: Animals and Humans Humans. Severity of infection: Causes pandemics, like swine flu and bird flu. Less severe than. Influenza A. A rapid onset of fever, headaches, myalgia, ...

  16. CLINICAL PRESENTATION, RADIOLOGICAL FEATURES AND COURSE OF THE DISEASE IN SWINE FLU POSITIVE PATIENTS ADMITTED IN THE RESPIRATORY INTENSIVE CARE UNIT OF A TERTIARY CARE HOSPITAL

    Directory of Open Access Journals (Sweden)

    Aruna

    2015-06-01

    Full Text Available BACKGROUND : Since the 2009 pandemic of H1N1 or Swine Flu influenza , there have been respiratory emergencies every year throughout India , but in the early part of this year that is between January and April 2015 an explosion of cases was seen throughout the country , and so also in our state , Andhra Pradesh. The study of clinical presentation , radiological features and course of the disease helps in early suspicion , isolation , detection and institution of treatment in swine flu positive patients so that further spread of the disease can be co ntrolled and the patients saved . MATERIAL AND METHODS : This is a cross - sectional study conducted at the Department of Pulmonary Medicine , S.V.R.R. Govt. General Hospital , Tirupathi , between January 2015 and April 2015. Study sample was the total number of swine flu suspects who were admitted in the Respiratory Intensive Care Unit and swine flu wards of the Department of Pulmonary Medicine. SUMMARY : Out of 32 suspects admitted , 13 tested positive for swine flu. 8 of the 13 were females (61% and 5 were males (39%. Cold , cough and breathlessness were present in all the patients (100%. Sore throat was present in only 4 patients (30%. 11 out of the 13 patients were in respiratory failure (85%. 9 out of the 13 had comorbidities like diabetes , bronchial asthma and chronic kidney disease (70%. Chest X - ray and CT chest showed ARDS like pic ture and pneumonia in 11 out of the 13 patients (85%.

  17. Molecular epidemiology of novel swine origin influenza virus (S-OIV from Gwalior, India, 2009

    Directory of Open Access Journals (Sweden)

    Shukla Jyoti

    2011-06-01

    Full Text Available Abstract Background The H1N1pandemic virus is a newly emergent human influenza A virus that is closely related to a number of currently circulating pig viruses in the 'classic North American' and 'Eurasian' swine influenza virus lineages and thus referred as S-OIV. Since the first reports of the virus in humans in April 2009, H1N1 virus has spread to 168 countries and overseas territories. India also witnessed severe H1N1 pandemic virus epidemic with considerable morbidity and mortality in different parts starting from May 2009. Findings The suspected swine flu outbreak from Gwalior India during October- December 2009 was confirmed through S-OIV HA gene specific RT-LAMP and real time RT-PCR. Positive samples through CDC real time and Lamp assay were further processed for isolation of the virus. Full HA gene sequencing of the H1N1 isolates of Gwalior, India revealed 99% homology with California and other circulating novel swine flu viruses. Three major changes were observed at nucleotide level, while two major amino acid shifts were observed at the position C9W and I30M corresponding to the ORF with prototype strain. The HA gene sequence phylogeny revealed the circulation of two genetically distinct lineages belonging to Clade VII and Clade I of S-OIV. Conclusions Our findings also supported the earlier report about circulation of mixed genogroups of S-OIV in India. Therefore continuous monitoring of the genetic makeup of this newly emergent virus is essential to understand its evolution within the country.

  18. pandemic swine influenza virus: preparedness planning

    African Journals Online (AJOL)

    Zamzar

    pandemic planning. Keywords: Pandemic, swine, influenza, virus, preparedness. INTRODUCTION. Effective pandemic preparedness and response should involve all sectors of ... In less affluent countries, human and material resources are often scarce and other ... Once surge requirements have been estimated, policy ...

  19. The global antigenic diversity of swine influenza A viruses

    DEFF Research Database (Denmark)

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled...... with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential...

  20. The global antigenic diversity of swine influenza A viruses

    NARCIS (Netherlands)

    N.S. Lewis (Nicola); C.A. Russell (Colin); P. Langat (Pinky); T.K. Anderson (Tavis); K. Berger (Kathryn); F. Bielejec (Filip); D.F. Burke (David); G. Dudas (Gytis); J.M. Fonville (Judith); R.A.M. Fouchier (Ron); P. Kellam (Paul); B.F. Koel (Björn); P. Lemey (Philippe); T. Nguyen (Tung); B. Nuansrichy (Bundit); J.S. Malik Peiris; T. Saito (Takehiko); G. Simon (Gaelle); E. Skepner (Eugene); N. Takemae (Nobuhiro); R.J. Webby (Richard J.); K. van Reeth; S.M. Brookes (Sharon M.); L. Larsen (Lars); S.J. Watson (Simon J.); I.H. Brown (Ian); A.L. Vincent (Amy L.); S. Reid (Scott); M.A. Garcia (Montserrat Auero); T.C. Harder (Timm); E. Foni (Emanuela); I. Markowska-Daniel (Iwona)

    2016-01-01

    textabstractSwine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds

  1. The global antigenic diversity of swine influenza A viruses

    Science.gov (United States)

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky; Anderson, Tavis K; Berger, Kathryn; Bielejec, Filip; Burke, David F; Dudas, Gytis; Fonville, Judith M; Fouchier, Ron AM; Kellam, Paul; Koel, Bjorn F; Lemey, Philippe; Nguyen, Tung; Nuansrichy, Bundit; Peiris, JS Malik; Saito, Takehiko; Simon, Gaelle; Skepner, Eugene; Takemae, Nobuhiro; Webby, Richard J; Van Reeth, Kristien; Brookes, Sharon M; Larsen, Lars; Watson, Simon J; Brown, Ian H; Vincent, Amy L

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential. Here, using the most comprehensive set of swine influenza virus antigenic data compiled to date, we quantify the antigenic diversity of swine influenza viruses on a multi-continental scale. The substantial antigenic diversity of recently circulating viruses in different parts of the world adds complexity to the risk profiles for the movement of swine and the potential for swine-derived infections in humans. DOI: http://dx.doi.org/10.7554/eLife.12217.001 PMID:27113719

  2. Avian Influenza (Bird Flu)

    Science.gov (United States)

    ... in People Spread of Bird Flu Viruses Between Animals and People Examples of Human Infections with Avian Influenza A ... Subtypes Transmission of Avian Influenza A Viruses Between Animals and People Related Links Research Glossary of Influenza (Flu) Terms ...

  3. Flu Vaccine Safety and Pregnancy

    Science.gov (United States)

    ... Types Seasonal Avian Swine Variant Pandemic Other Flu Vaccine Safety and Pregnancy Questions & Answers Language: English (US) ... allergic conditions. How is the safety of flu vaccines in pregnant women monitored? CDC and FDA conduct ...

  4. Genetic evolution of recently emerged novel human-like swine H3 influenza A viruses (IAV) in United States swine

    Science.gov (United States)

    Introduction Influenza A virus (IAV) is a major cause of respiratory disease in swine. IAV transmission from humans to swine is a major contributor to swine IAV diversity. In 2012, a novel H3N2 with an HA (hu-H3) and NA derived from human seasonal H3N2 was detected in United States (US) swine. The h...

  5. Efficacy of influenza vaccination and tamiflu® treatment--comparative studies with Eurasian Swine influenza viruses in pigs.

    Science.gov (United States)

    Duerrwald, Ralf; Schlegel, Michael; Bauer, Katja; Vissiennon, Théophile; Wutzler, Peter; Schmidtke, Michaela

    2013-01-01

    Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain) and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain) in two independent trials. In each trial (i) 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection), (ii) another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii) 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters. In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs.

  6. Efficacy of Influenza Vaccination and Tamiflu® Treatment – Comparative Studies with Eurasian Swine Influenza Viruses in Pigs

    Science.gov (United States)

    Duerrwald, Ralf; Schlegel, Michael; Bauer, Katja; Vissiennon, Théophile; Wutzler, Peter; Schmidtke, Michaela

    2013-01-01

    Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain) and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain) in two independent trials. In each trial (i) 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection), (ii) another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii) 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters. In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs. PMID:23630601

  7. Efficacy of influenza vaccination and tamiflu® treatment--comparative studies with Eurasian Swine influenza viruses in pigs.

    Directory of Open Access Journals (Sweden)

    Ralf Duerrwald

    Full Text Available Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain in two independent trials. In each trial (i 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection, (ii another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters. In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs.

  8. STUDY OF FACTORS INFLUENCING EARLY SYMPTOMATIC IMPROVEMENT, RETURN TO NORMOXIA AND RADIOLOGICAL RESOLUTION IN SWINE FLU PATIENTS WITH RESPIRATORY FAILURE IN RICU

    Directory of Open Access Journals (Sweden)

    Vamsidhar Reddy Manne

    2017-05-01

    Full Text Available BACKGROUND Since 2009, swine influenza outbreaks have been recorded virtually every year, although their extent and severity have varied widely. Localised outbreaks are taking place at variable intervals, usually every 1-3 years. The most recent outbreak has been from December 2016 through April 2017. We still are in the midst of one. This study of factors influencing early clinical and radiological improvement and reversion to normoxia in swine flu patients with respiratory failure helps in saving precious lives. MATERIALS AND METHODS This is a cross-sectional study conducted at RICU, Department of Pulmonary Medicine, S.V.R.R. Government General Hospital/S.V. Medical College, Tirupathi, Andhra Pradesh, between January 2017 and April 2017. Study sample was the total number of swine flu patients admitted to the RICU of the Department of Pulmonary Medicine with respiratory failure. RESULTS Out of 42 patients who tested positive for swine flu, 37 had respiratory failure and were immediately admitted in RICU. Oxygen support, oseltamivir and higher antibiotics were immediately started, injectable steroids given where necessary. Comorbidities were meticulously managed. 19 were males and 18 were females. 21 patients (>50% were above 50 years. Cough and breathlessness were present in all patients (100%. At admission, all 37 showed SpO2 <85% and at discharge all of them were normoxic. 18 patients had either multilobar pneumonia or ARDS on CXR, which had resolved by the time of discharge. The shortest duration of stay was 7 days and the longest duration of stay was 11 days. 35 patients were discharged and 2 patients died. CONCLUSION Good oxygenation, starting of oseltamivir on day 1 of admission prevents further complications and hastens recovery. Swine flu patients with normal chest x-ray and no comorbidities can still end up with respiratory failure. Steroids decrease cough and breathlessness, but have no role in hastening recovery. No residual symptoms

  9. Onset of a pandemic: characterizing the initial phase of the swine flu (H1N1 epidemic in Israel

    Directory of Open Access Journals (Sweden)

    Mendelson Ella

    2011-04-01

    Full Text Available Abstract Background The swine influenza H1N1 first identified in Mexico, spread rapidly across the globe and is considered the fastest moving pandemic in history. The early phase of an outbreak, in which data is relatively scarce, presents scientific challenges on key issues such as: scale, severity and immunity which are fundamental for establishing sound and rapid policy schemes. Our analysis of an Israeli dataset aims at understanding the spatio-temporal dynamics of H1N1 in its initial phase. Methods We constructed and analyzed a unique dataset from Israel on all confirmed cases (between April 26 to July 7, 2009, representing most swine flu cases in this period. We estimated and characterized fundamental epidemiological features of the pandemic in Israel (e.g. effective reproductive number, age-class distribution, at-risk social groups, infections between sexes, and spatial dynamics. Contact data collected during this stage was used to estimate the generation time distribution of the pandemic. Results We found a low effective reproductive number (Re = 1.06, an age-class distribution of infected individuals (skewed towards ages 18-25, at-risk social groups (soldiers and ultra Orthodox Jews, and significant differences in infections between sexes (skewed towards males. In terms of spatial dynamics, the pandemic spread from the central coastal plain of Israel to other regions, with higher infection rates in more densely populated sub-districts with higher income households. Conclusions Analysis of high quality data holds much promise in reducing uncertainty regarding fundamental aspects of the initial phase of an outbreak (e.g. the effective reproductive number Re, age-class distribution, at-risk social groups. The formulation for determining the effective reproductive number Re used here has many advantages for studying the initial phase of the outbreak since it neither assumes exponential growth of infectives and is independent of the

  10. Molecular characterization of African swine fever virus in apparently ...

    African Journals Online (AJOL)

    African swine fever (ASF) is a highly lethal and economically significant disease of domestic pigs in Uganda where outbreaks regularly occur. There is neither a vaccine nor treatment available for ASF control. Twenty two African swine fever virus (ASFV) genotypes (I - XXII) have been identified based on partial sequencing ...

  11. Close Relationship of Ruminant Pestiviruses and Classical Swine Fever Virus

    Science.gov (United States)

    Postel, Alexander; Schmeiser, Stefanie; Oguzoglu, Tuba Cigdem; Indenbirken, Daniela; Alawi, Malik; Fischer, Nicole; Grundhoff, Adam

    2015-01-01

    To determine why serum from small ruminants infected with ruminant pestiviruses reacted positively to classical swine fever virus (CSFV)–specific diagnostic tests, we analyzed 2 pestiviruses from Turkey. They differed genetically and antigenically from known Pestivirus species and were closely related to CSFV. Cross-reactions would interfere with classical swine fever diagnosis in pigs. PMID:25811683

  12. Novel reassortant swine influenza viruses are circulating in Danish pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    of the reassortant viruses comprised a HA gene similar to H1 of H1N1 avian-like swine influenza virus (SIV) and a NA gene most closely related to N2 gene of human H3N2 influenza virus that circulated in humans in the mid 1990s. The internal genes of this reassortant virus with the subtype H1avN2hu all belonged...... to the H1N1 avian-like SIV lineages. Until now this novel virus H1avN2hu has only been detected in Danish swine. The other novel reassortant virus contained the HA gene from H1N1pdm09 virus and a NA gene similar to the N2 gene of H3N2 SIV that have been circulating in European swine since the mid 1980s...

  13. Antibody levels to hepatitis E virus in North Carolina swine workers, non-swine workers, swine, and murids.

    Science.gov (United States)

    Withers, Mark R; Correa, Maria T; Morrow, Morgan; Stebbins, Martha E; Seriwatana, Jitvimol; Webster, W David; Boak, Marshall B; Vaughn, David W

    2002-04-01

    In a cross-sectional serosurvey, eastern North Carolina swine workers (n = 165) were compared with non-swine workers (127) for the presence of antibodies to hepatitis E virus as measured by a quantitative immunoglobulin enzyme-linked immunosorbent assay. Using a cutoff of 20 Walter Reed U/ml, swine-exposed subjects had a 4.5-fold higher antibody prevalence (10.9%) than unexposed subjects (2.4%). No evidence of past clinical hepatitis E or unexplained jaundice could be elicited. Swine (84) and mice (61), from farm sites in the same region as exposed subjects, were also tested. Antibody prevalence in swine (overall = 34.5%) varied widely (10.0-91.7%) according to site, but no antibody was detected in mice. Our data contribute to the accumulating evidence that hepatitis E may be a zoonosis and specifically to the concept of it as an occupational infection of livestock workers.

  14. Transcription analysis on response of swine lung to H1N1 swine influenza virus.

    Science.gov (United States)

    Li, Yongtao; Zhou, Hongbo; Wen, Zhibin; Wu, Shujuan; Huang, Canhui; Jia, Guangmin; Chen, Huanchun; Jin, Meilin

    2011-08-08

    As a mild, highly contagious, respiratory disease, swine influenza always damages the innate immune systems, and increases susceptibility to secondary infections which results in considerable morbidity and mortality in pigs. Nevertheless, the systematical host response of pigs to swine influenza virus infection remains largely unknown. To explore it, a time-course gene expression profiling was performed for comprehensive analysis of the global host response induced by H1N1 swine influenza virus in pigs. At the early stage of H1N1 swine virus infection, pigs were suffering mild respiratory symptoms and pathological changes. A total of 268 porcine genes showing differential expression (DE) after inoculation were identified to compare with the controls on day 3 post infection (PID) (Fold change ≥ 2, p swine influenza virus infection in pigs. The observed gene expression profile could help to screen the potential host agents for reducing the prevalence of swine influenza virus and further understand the molecular pathogenesis associated with H1N1 infection in pigs.

  15. Pathogenesis of swine influenza virus (Thai isolates in weanling pigs: an experimental trial

    Directory of Open Access Journals (Sweden)

    Kitikoon Pravina

    2009-03-01

    Full Text Available Abstract Background The objective of this study is to investigate the pathogenesis of swine influenza virus (SIV subtype H1N1 and H3N2 (Thai isolates in 22-day-old SPF pigs. Results The study found that all pigs in the infected groups developed typical signs of flu-like symptoms on 1–4 days post- infection (dpi. The H1N1-infected pigs had greater lung lesion scores than those of the H3N2-infected pigs. Histopathological lesions related to swine influenza-induced lesions consisting of epithelial cells damage, airway plugging and peribronchial and perivascular mononuclear cell infiltration were present in both infected groups. Immunofluorescence and immunohistochemistry using nucleoprotein specific monoclonal antibodies revealed positive staining cells in lung sections of both infected groups at 2 and 4 dpi. Virus shedding was detected at 2 dpi from both infected groups as demonstrated by RT-PCR and virus isolation. Conclusion The results demonstrated that both SIV subtypes were able to induce flu-like symptoms and lung lesions in weanling pigs. However the severity of the diseases with regards to lung lesions both gross and microscopic lesions was greater in the H1N1-infected pigs. Based on phylogenetic analysis, haemagglutinin gene of subtype H1N1 from Thailand clustered with the classical H1 SIV sequences and neuraminidase gene clustered with virus of avian origin, whereas, both genes of H3N2 subtype clustered with H3N2 human-like SIV from the 1970s.

  16. Bat Influenza (Flu)

    Science.gov (United States)

    ... genetic information. Reassortment can sometimes lead to the emergence of new flu viruses capable of infecting humans. Yellow-shouldered ... important for public health because bats represent a new animal species that may act as a source of flu ...

  17. High level of political involvement 1976 flu pandemic- that never ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. High level of political involvement 1976 flu pandemic- that never occurred. In 1976, one patient died from an influenza, identified as swine virus. CDC Director argued forcefully in favor of immunization as only way to mitigate ensuing pandemic. President Ford on advice of ...

  18. FluTyper-an algorithm for automated typing and subtyping of the influenza virus from high resolution mass spectral data

    Directory of Open Access Journals (Sweden)

    Schwahn Alexander B

    2010-05-01

    Full Text Available Abstract Background High resolution mass spectrometry has been employed to rapidly and accurately type and subtype influenza viruses. The detection of signature peptides with unique theoretical masses enables the unequivocal assignment of the type and subtype of a given strain. This analysis has, to date, required the manual inspection of mass spectra of whole virus and antigen digests. Results A computer algorithm, FluTyper, has been designed and implemented to achieve the automated analysis of MALDI mass spectra recorded for proteolytic digests of the whole influenza virus and antigens. FluTyper incorporates the use of established signature peptides and newly developed naïve Bayes classifiers for four common influenza antigens, hemagglutinin, neuraminidase, nucleoprotein, and matrix protein 1, to type and subtype the influenza virus based on their detection within proteolytic peptide mass maps. Theoretical and experimental testing of the classifiers demonstrates their applicability at protein coverage rates normally achievable in mass mapping experiments. The application of FluTyper to whole virus and antigen digests of a range of different strains of the influenza virus is demonstrated. Conclusions FluTyper algorithm facilitates the rapid and automated typing and subtyping of the influenza virus from mass spectral data. The newly developed naïve Bayes classifiers increase the confidence of influenza virus subtyping, especially where signature peptides are not detected. FluTyper is expected to popularize the use of mass spectrometry to characterize influenza viruses.

  19. African swine fever virus isolate, Georgia, 2007.

    Science.gov (United States)

    Rowlands, Rebecca J; Michaud, Vincent; Heath, Livio; Hutchings, Geoff; Oura, Chris; Vosloo, Wilna; Dwarka, Rahana; Onashvili, Tinatin; Albina, Emmanuel; Dixon, Linda K

    2008-12-01

    African swine fever (ASF) is widespread in Africa but is rarely introduced to other continents. In June 2007, ASF was confirmed in the Caucasus region of Georgia, and it has since spread to neighboring countries. DNA fragments amplified from the genome of the isolates from domestic pigs in Georgia in 2007 were sequenced and compared with other ASF virus (ASFV) isolates to establish the genotype of the virus. Sequences were obtained from 4 genome regions, including part of the gene B646L that encodes the p72 capsid protein, the complete E183L and CP204L genes, which encode the p54 and p30 proteins and the variable region of the B602L gene. Analysis of these sequences indicated that the Georgia 2007 isolate is closely related to isolates belonging to genotype II, which is circulating in Mozambique, Madagascar, and Zambia. One possibility for the spread of disease to Georgia is that pigs were fed ASFV-contaminated pork brought in on ships and, subsequently, the disease was disseminated throughout the region.

  20. Estimation of the transmission dynamics of African swine fever virus within a swine house

    DEFF Research Database (Denmark)

    Nielsen, J. P.; Larsen, T. S.; Hisham Beshara Halasa, Tariq

    2017-01-01

    The spread of African swine fever virus (ASFV) threatens to reach further parts of Europe. In countries with a large swine production, an outbreak of ASF may result in devastating economic consequences for the swine industry. Simulation models can assist decision makers setting up contingency plans......·00 (95% CI 0-1). Furthermore, we simulated the spread of ASFV within a pig house using a modified SEIR-model to establish the time from infection of one animal until ASFV is detected in the herd. Based on a chosen detection limit of 2·55% equivalent to 10 dead pigs out of 360, the disease would...

  1. Feral Swine in the United States Have Been Exposed to both Avian and Swine Influenza A Viruses.

    Science.gov (United States)

    Martin, Brigitte E; Sun, Hailiang; Carrel, Margaret; Cunningham, Fred L; Baroch, John A; Hanson-Dorr, Katie C; Young, Sean G; Schmit, Brandon; Nolting, Jacqueline M; Yoon, Kyoung-Jin; Lutman, Mark W; Pedersen, Kerri; Lager, Kelly; Bowman, Andrew S; Slemons, Richard D; Smith, David R; DeLiberto, Thomas; Wan, Xiu-Feng

    2017-10-01

    Influenza A viruses (IAVs) in swine can cause sporadic infections and pandemic outbreaks among humans, but how avian IAV emerges in swine is still unclear. Unlike domestic swine, feral swine are free ranging and have many opportunities for IAV exposure through contacts with various habitats and animals, including migratory waterfowl, a natural reservoir for IAVs. During the period from 2010 to 2013, 8,239 serum samples were collected from feral swine across 35 U.S. states and tested against 45 contemporary antigenic variants of avian, swine, and human IAVs; of these, 406 (4.9%) samples were IAV antibody positive. Among 294 serum samples selected for antigenic characterization, 271 cross-reacted with ≥1 tested virus, whereas the other 23 did not cross-react with any tested virus. Of the 271 IAV-positive samples, 236 cross-reacted with swine IAVs, 1 with avian IAVs, and 16 with avian and swine IAVs, indicating that feral swine had been exposed to both swine and avian IAVs but predominantly to swine IAVs. Our findings suggest that feral swine could potentially be infected with both avian and swine IAVs, generating novel IAVs by hosting and reassorting IAVs from wild birds and domestic swine and facilitating adaptation of avian IAVs to other hosts, including humans, before their spillover. Continued surveillance to monitor the distribution and antigenic diversities of IAVs in feral swine is necessary to increase our understanding of the natural history of IAVs. IMPORTANCE There are more than 5 million feral swine distributed across at least 35 states in the United States. In contrast to domestic swine, feral swine are free ranging and have unique opportunities for contact with wildlife, livestock, and their habitats. Our serological results indicate that feral swine in the United States have been exposed to influenza A viruses (IAVs) consistent with those found in both domestic swine and wild birds, with the predominant infections consisting of swine-adapted IAVs

  2. Quantification of underlying mechanisms of classical swine fever virus transmission

    NARCIS (Netherlands)

    Weesendorp, E.

    2010-01-01

    Classical swine fever (CSF) is an exotic viral disease in most European countries. Occasionally, outbreaks occur due to re-introduction of the virus. During these outbreaks, virus transmission between herds occurs via direct contact between infected and susceptible pigs, or via indirect transmission

  3. Experimental infection of pregnant gilts with swine hepatitis E virus

    OpenAIRE

    Kasorndorkbua, Chaiyan; Thacker, Brad J.; Halbur, Patrick G.; Guenette, Denis K.; Buitenwerf, Ryan M.; Royer, Ryan L.; Meng, Xiang-Jin

    2003-01-01

    To determine the effect of swine hepatitis E virus (HEV) infection on pregnant gilts, their fetuses, and offspring, 12 gilts were intravenously inoculated with swine HEV. Six gilts, who were not inoculated, served as controls. All inoculated gilts became actively infected and shed HEV in feces, but vertical transmission was not detected in the fetuses. There was no evidence of clinical disease in the gilts or their offspring. Mild multifocal lymphohistiocytic hepatitis was observed in 4 of 12...

  4. Influenza A Viruses of Human Origin in Swine, Brazil

    Science.gov (United States)

    Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-01-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil’s swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009–2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance. PMID:26196759

  5. Proteomic analysis of swine serum following highly virulent classical swine fever virus infection

    Directory of Open Access Journals (Sweden)

    Guo Huan-cheng

    2011-03-01

    Full Text Available Abstract Background Classical swine fever virus (CSFV belongs to the genus Pestivirus within the family Flaviviridae. Virulent strains of classical swine fever virus (CSFV cause severe disease in pigs characterized by immunosuppression, thrombocytopenia and disseminated intravascular coagulation, which causes significant economic losses to the pig industry worldwide. Methods To reveal proteomic changes in swine serum during the acute stage of lethal CSFV infection, 5 of 10 pigs were inoculated with the virulent CSFV Shimen strain, the remainder serving as uninfected controls. A serum sample was taken at 3 days post-infection from each swine, at a stage when there were no clinical symptoms other than increased rectal temperatures (≥40°C. The samples were treated to remove serum albumin and immunoglobulin (IgG, and then subjected to two-dimension differential gel electrophoresis. Results Quantitative intensity analysis revealed 17 protein spots showing at least 1.5-fold quantitative alteration in expression. Ten spots were successfully identified by MALDI-TOF MS or LTQ MS. Expression of 4 proteins was increased and 6 decreased in CSFV-infected pigs. Functions of these proteins included blood coagulation, anti-inflammatory activity and angiogenesis. Conclusion These proteins with altered expression may have important implications in the pathogenesis of classical swine fever and provide a clue for identification of biomarkers for classical swine fever early diagnosis.

  6. The impact of communications about swine flu (influenza A H1N1v) on public responses to the outbreak: results from 36 national telephone surveys in the UK.

    Science.gov (United States)

    Rubin, G J; Potts, H W W; Michie, S

    2010-07-01

    To assess the association between levels of worry about the possibility of catching swine flu and the volume of media reporting about it; the role of psychological factors in predicting likely uptake of the swine flu vaccine; and the role of media coverage and advertising in predicting other swine flu-related behaviours. Data from a series of random-digit-dial telephone surveys were analysed. A time series analysis tested the association between levels of worry and the volume of media reporting on the start day of each survey. Cross-sectional regression analyses assessed the relationships between likely vaccine uptake or behaviour and predictor variables. Thirty-six surveys were run at, on average, weekly intervals across the UK between 1 May 2009 and 10 January 2010. Five surveys (run between 14 August and 13 September) were used to assess likely vaccine uptake. Five surveys (1-17 May) provided data relating to other behaviours. Between 1047 and 1173 people aged 16 years or over took part in each survey: 5175 participants provided data about their likely uptake of the swine flu vaccine; 5419 participants provided data relating to other behaviours. All participants were asked to state how worried they were about the possibility of personally catching swine flu. Subsets were asked how likely they were to take up a swine flu vaccination if offered it and whether they had recently carried tissues with them, bought sanitising hand gel, avoided using public transport or had been to see a general practitioner, visited a hospital or called NHS Direct for a flu-related reason. The percentage of 'very' or 'fairly' worried participants fluctuated between 9.6% and 32.9%. This figure was associated with the volume of media reporting, even after adjusting for the changing severity of the outbreak [chi2(1) = 6.6, p = 0.010, coefficient for log-transformed data = 2.6]. However, this effect only occurred during the UK's first summer wave of swine flu. In total, 56.1% of

  7. Insights from investigating the interactions of adamantane-based drugs with the M2 proton channel from the H1N1 swine virus

    International Nuclear Information System (INIS)

    Wang, Jing-Fang; Wei, Dong-Qing; Chou, Kuo-Chen

    2009-01-01

    The M2 proton channel is one of indispensable components for the influenza A virus that plays a vital role in its life cycle and hence is an important target for drug design against the virus. In view of this, the three-dimensional structure of the H1N1-M2 channel was developed based on the primary sequence taken from a patient recently infected by the H1N1 (swine flu) virus. With an explicit water-membrane environment, molecular docking studies were performed for amantadine and rimantadine, the two commercial drugs generally used to treat influenza A infection. It was found that their binding affinity to the H1N1-M2 channel is significantly lower than that to the H5N1-M2 channel, fully consistent with the recent report that the H1N1 swine virus was resistant to the two drugs. The findings and the relevant analysis reported here might provide useful structural insights for developing effective drugs against the new swine flu virus.

  8. Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs.

    Science.gov (United States)

    Dhakal, Santosh; Hiremath, Jagadish; Bondra, Kathryn; Lakshmanappa, Yashavanth S; Shyu, Duan-Liang; Ouyang, Kang; Kang, Kyung-Il; Binjawadagi, Basavaraj; Goodman, Jonathan; Tabynov, Kairat; Krakowka, Steven; Narasimhan, Balaji; Lee, Chang Won; Renukaradhya, Gourapura J

    2017-02-10

    Swine influenza virus (SwIV) is one of the important zoonotic pathogens. Current flu vaccines have failed to provide cross-protection against evolving viruses in the field. Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable FDA approved polymer and widely used in drug and vaccine delivery. In this study, inactivated SwIV H1N2 antigens (KAg) encapsulated in PLGA nanoparticles (PLGA-KAg) were prepared, which were spherical in shape with 200 to 300nm diameter, and induced maturation of antigen presenting cells in vitro. Pigs vaccinated twice with PLGA-KAg via intranasal route showed increased antigen specific lymphocyte proliferation and enhanced the frequency of T-helper/memory and cytotoxic T cells (CTLs) in peripheral blood mononuclear cells (PBMCs). In PLGA-KAg vaccinated and heterologous SwIV H1N1 challenged pigs, clinical flu symptoms were absent, while the control pigs had fever for four days. Grossly and microscopically, reduced lung pathology and viral antigenic mass in the lung sections with clearance of infectious challenge virus in most of the PLGA-KAg vaccinated pig lung airways were observed. Immunologically, PLGA-KAg vaccine irrespective of not significantly boosting the mucosal antibody response, it augmented the frequency of IFN-γ secreting total T cells, T-helper and CTLs against both H1N2 and H1N1 SwIV. In summary, inactivated influenza virus delivered through PLGA-NPs reduced the clinical disease and induced cross-protective cell-mediated immune response in a pig model. Our data confirmed the utility of a pig model for intranasal particulate flu vaccine delivery platform to control flu in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Functional analysis of replication determinantsin classical swine fever virus

    DEFF Research Database (Denmark)

    Hadsbjerg, Johanne

    and animal pathogens should facilitate finding new approaches for efficient disease control. The principal aim of this thesis is to characterise determinants involved in the replication of classical swine fever virus (CSFV). Classical swine fever is a highly contagious virus disease of domestic pigs and wild...... in cell culture. Knowledge of these sequence variations and putative long-range interactions will provide valuable insights into mechanisms underlying virustranslation and replication. In manuscript 3, a selection marker has been inserted into a CSFV-based replicon making it suitable for screening...

  10. The future of influenza A virus vaccines for swine

    Science.gov (United States)

    Economic losses due to influenza A virus (IAV) infections are substantial and a global problem, ranking among the top three major health challenges in the swine industry. Currently, H1 and H3 subtypes circulate in pigs globally associated with different combinations of N1 and N2 subtypes; however, t...

  11. Modulation of Translation Initiation Efficiency in Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Rasmussen, Thomas Bruun; Belsham, Graham

    2012-01-01

    Modulation of translation initiation efficiency on classical swine fever virus (CSFV) RNA can be achieved by targeted mutations within the internal ribosome entry site (IRES). In this study, cDNAs corresponding to the wild type (wt) or mutant forms of the IRES of CSFV strain Paderborn were...

  12. Modulation of Translation Initiation Efficiency in Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Rasmussen, Thomas Bruun; Belsham, Graham J.

    Modulation of translation initiation efficiency on classical swine fever virus (CSFV) RNA can be achieved by targeted mutations within the internal ribosome entry site (IRES). In this study, the nucleotides 47 to 427, including the IRES region of the wt CSFV strain Paderborn, were amplified...

  13. Hepatitis E Virus Genotype 3 in Humans and Swine, Bolivia

    Science.gov (United States)

    Cavallo, Annalisa; Gonzales, José Luis; Bonelli, Sara Irene; Valda, Ybar; Pieri, Angela; Segundo, Higinio; Ibañez, Ramón; Mantella, Antonia; Bartalesi, Filippo; Tolari, Francesco; Bartoloni, Alessandro

    2011-01-01

    We determined the seroprevalence of hepatitis E virus (HEV) in persons in 2 rural communities in southeastern Bolivia and the presence of HEV in human and swine fecal samples. HEV seroprevalence was 6.3%, and HEV genotype 3 strains with high sequence homology were detected. PMID:21801630

  14. Imported pigs may have introduced the first classical swine influenza viruses into Mainland China.

    Science.gov (United States)

    Zhu, Wenfei; Yang, Shuai; Guo, Yuanji; Yang, Lei; Bai, Tian; Yu, Zaijiang; Li, Xiaodan; Li, Ming; Guo, Junfeng; Wang, Dayan; Gao, Rongbao; Dong, Libo; Zou, Shumei; Li, Zi; Wang, Min; Shu, Yuelong

    2013-07-01

    The first classical swine influenza A H1N1 viruses were isolated in Mainland China in 1991. To aid surveillance of swine influenza viruses as part of pandemic preparedness, we sought to identify their origin. We sequenced and phylogenically analyzed 19 swine influenza viruses isolated in 1991 and 1992 in China and compared them with viruses isolated from other regions during the same period. All 19 swine influenza viruses analyzed in our study shared the highest similarity with the classical swine influenza virus A/Swine/Maryland/23239/1991 (H1N1). Phylogenetic trees of eight segmented genes exhibited similar topology, with all segments in the cluster of classical swine influenza viruses. In addition, antigenic analysis also indicated that the tested isolated were related to classical swine influenza isolates. Classical swine H1N1 influenza viruses were predominant in Beijing pig herds during this period. Since both antibody and virus detections did not indicate the presence of CS H1N1 before 1991 in Mainland China, we combined with the data on pigs imported to and exported from China and concluded that these viruses might spread to China via pigs imported from North America and that they could affect the genetic evolution and transmission dynamics of swine influenza viruses in Hong Kong. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Analyzing the interaction of a herbal compound Andrographolide from Andrographis paniculata as a folklore against swine flu (H1N1

    Directory of Open Access Journals (Sweden)

    Chandrabhan Seniya

    2014-09-01

    Full Text Available Objective: To find new bioactive molecules for the treatment of swine flu. Methods: The present study is an attempt to elucidate inhibition potential of andrographolide and its derivatives along with an associated binding mechanism through virtual screening and molecular docking simulation studies. Results: Our findings revealed structural conformation changes in 150 loop, secondary sialic acid binding site residues of ACZ97474 {Neuraminidase (A/Blore/NIV236/2009(H1N1}. Andrographolide have been identified as the highest binging energy of -1 0.88 Kcal/mol, 3 hydrogen bond interactions (Arg152, Lys150, and Gly197, total intermolecular energy of -12.07 Kcal/mol with bioactivity value (Ki of 10.59 nmol/L, while the Food and Drug Admistraton approved drug Oseltamivir and Zanamivir have shown 2 and 4 hydrogen bond interactions with binding energies of -6.28 Kcal/mol and -7.73Kcal/mol, respectively, which is higher than andrographolide. The guanidine group of Arg152 has binding affinities to the hydrophilic nature of the inhibitors (-OH and =O groups, as identified by docking of andrographolide (CID: 5318517 on neuraminidase. Conclusions: Hence, andrographolide has the potential to inhibit neuraminidase activity of H1N1 and may be used as an alternative medicinal therapy for swine flu positive patient. With potent antiviral activity and a potentially new mechanism of action, andrographolide may warrant further evaluation as a possible therapy for influenza.

  16. Efficacy of Influenza Vaccination and Tamiflu? Treatment ? Comparative Studies with Eurasian Swine Influenza Viruses in Pigs

    OpenAIRE

    Duerrwald, Ralf; Schlegel, Michael; Bauer, Katja; Vissiennon, Th?ophile; Wutzler, Peter; Schmidtke, Michaela

    2013-01-01

    Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebu...

  17. Virus survival in slurry: Analysis of the stability of foot-and-mouth disease, classical swine fever, bovine viral diarrhoea and swine influenza viruses

    DEFF Research Database (Denmark)

    Bøtner, Anette; Belsham, Graham

    2012-01-01

    of an outbreak of disease before it has been recognized. The survival of foot-and-mouth disease virus, classical swine fever virus, bovine viral diarrhoea virus and swine influenza virus, which belong to three different RNA virus families plus porcine parvovirus (a DNA virus) was examined under controlled...... conditions. For each RNA virus, the virus survival in farm slurry under anaerobic conditions was short (generally ≤1h) when heated (to 55°C) but each of these viruses could retain infectivity at cool temperatures (5°C) for many weeks. The porcine parvovirus survived considerably longer than each of the RNA...

  18. Credibility of the Printed Media: The Swine Flu as a Case Study

    Directory of Open Access Journals (Sweden)

    Ksenija Žlof

    2011-12-01

    Full Text Available The issue of credibility becomes especially pronounced in times of crises, which characteristically abound in the unknown, uncertainty, and doubt. Such crises are mostly sudden, often complex, andsometimes mired in controversial events. The public subsequently craves more information in times of crises, such that they may obtain more precise guidance, and ease their ability to cope. Given the relatively low frequency of crisis situations, most people lack actual experience relevant to a given predicament. The appearance of Virus A (H1N1 at the onset of 2009 is one such case. Despite H1N1’s classification as a broad-scale, serious health hazard, preventive vaccinations failed to reach a large segment of the population. We contend that the lack of credibility in informing the public through the media contributed considerably to this failure. Therefore, the aim of this paper is to determine the level of credible information provided by the print media from which the general public could have taken an informed position on the crisis in question. Quantitative research and content analysis ascertained from a body of print media sources with national coverage reveals that the Croatian print media, contrary to our expectations, largely rely on official sources and transparently cite authors, which contributes to a higher degree of credibility. Yet further analysis of the number of sources suggests that most journalists used on average only one or no named sources, which significantly reduces the credibility of the published articles.

  19. Chest radiographic appearances in adult inpatients admitted with swine flu infection: local experience in Melbourne

    International Nuclear Information System (INIS)

    Pirakalathanan, Janu; Lau, Kenneth K.; Joosten, Simon A.

    2013-01-01

    The influenza A virus (H1N1) pandemic began in Mexico in March 2009. As of July 2009, there were 5298 reported cases in Australia including 10 deaths. The aim of this review is to demonstrate the local chest radiographic findings in adult inpatients with proven H1N1, to assess the radiological disease progression and resolution, and to evaluate whether the severity of chest X-rays findings had a bearing on the length of admission and need for intensive care admission. Eleven H1N1 patients (5 males and 6 females, mean age of 36), presenting with cough (64%), fever (55%) and shortness of breath (55%), were admitted to our hospital between 13 August and 1 November 2010. Details of radiographic features, risk factors, clinical course including length of stay, doubling time of consolidation and time for 50% resolution of consolidation were recorded and analysed. Seventy-three per cent of our patients presented with bilateral mid and/or lower zone alveolar consolidation. One patient with underlying cystic fibrosis had only bilateral upper zone consolidation. No pleural effusion, lymphadenopathy or cardiomegaly was noted on any of the plain chest radiographs. The mean doubling time of consolidation was 1.5 days. The mean time for 50% resolution of consolidation after antiviral treatment was 10.5 days. The average length of stay in hospital was 22 days. Ninety-one per cent of our patients required intensive-care unit admission with 50% of those requiring intubation. Rapid progression of bilateral mid and lower zone air-space opacities in relatively young unwell patients, with lack of pleural effusion, pericardial effusion or lymphadenopathy on plain radiographs, should raise the clinical suspicion of H1N1 infection. Patients requiring hospital admission usually show slow clinical and radiological improvement, and require prolonged hospital stays.

  20. Comparison of rapid immunofluorescence procedure with TestPack RSV and Directigen FLU-A for diagnosis of respiratory syncytial virus and influenza A virus.

    OpenAIRE

    Todd, S J; Minnich, L; Waner, J L

    1995-01-01

    A rapid immunofluorescence format requiring 20 min for completion was as effective as conventional indirect and direct immunofluorescence procedures for detecting respiratory syncytial virus and influenza A virus antigens in clinical specimens. Rapid immunofluorescence was more sensitive than TestPack RSV and comparable to Directigen FLU-A immunosorbent assays, which require 20 min for completion.

  1. Avian Flu

    International Nuclear Information System (INIS)

    Eckburg, Paul

    2006-01-01

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  2. Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013

    DEFF Research Database (Denmark)

    J. Watson, Simon; Langat, Pinky; M. Reid, Scott

    2015-01-01

    The emergence in humans of the A(H1N1)pdm09 influenza virus, a complex reassortant virus of swine origin, highlighted the importance of worldwide influenza virus surveillance in swine. To date, large-scale surveillance studies have been reported for southern China and North America, but such data...

  3. Swine Influenza/Variant Influenza Viruses

    Science.gov (United States)

    ... Humans Key Facts about Human Infections with Variant Viruses Interim Guidance for Clinicians on Human Infections Background, Risk Assessment & Reporting Reported Infections with Variant Influenza Viruses in the United States since 2005 Past Outbreaks ...

  4. Swine Influenza Viruses – Evolution and Zoonotic Potential

    DEFF Research Database (Denmark)

    Fobian, Kristina

    the establishment of a reverse genetics system based on a backbone from the Danish H1N2 SIV, which is one of the two most prevalent subtypes in Denmark. Recently, a variant of a North American swine H3N2 virus containing a pandemic M gene was transmitted to humans in the US and on few occasions human......-to-human transmission was observed. These events underline the need for a reverse genetics system to be used for an analysis of the behavior of a pandemic M gene in a Danish SIV.......Influenza A virus (IAV) is an important respiratory pathogen with a broad host range. The natural reservoir for IAV is waterfowls, but both human and swine are considered natural hosts. During the past century IAV has caused severe pandemics as well as seasonal epidemics in the human population...

  5. Genesis and genetic constellations of swine influenza viruses in Thailand.

    Science.gov (United States)

    Poonsuk, Sukontip; Sangthong, Pradit; Petcharat, Nantawan; Lekcharoensuk, Porntippa

    2013-12-27

    Swine influenza virus (SIV) is one of the most important zoonotic agents and the origin of the most recent pandemic virus. Asia is considered to be the epicenter for genetic exchanging of influenza A viruses and Southeast Asia including Thailand serves as a reservoir to maintain the persistence of the viruses for seeding other regions. Therefore, searching for new reassortants in this area has been routinely required. Although SIVs in Thailand have been characterized, collective information regarding their genetic evolution and gene constellations is limited. In this study, whole genomes of 30 SIVs isolated during clinical target surveillance plus all available sequences of past and currently circulating Thai SIVs were genetically characterized based on their evolutionary relationships. All genetic pools of Thai SIVs are comprised of four lineages including classical swine (CS), Eurasian swine (EAs), Triple reassortants (TRIG) and Seasonal human (Shs). Out of 84 isolates, nine H1N1, six H3N2 and one H1N2 strains were identified. Gene constellations of SIVs in Thailand are highly complex resulting from multiple reassortments among concurrently circulating SIVs and temporally introduced foreign genes. Most strains contain gene segments from both EAs and CS lineages and appeared transiently. TRIG lineage has been recently introduced into Thai SIV gene pools. The existence of EAs and TRIG lineages in this region may increase rates of genetic exchange and diversity while Southeast Asia is a persistent reservoir for influenza A viruses. Continual monitoring of SIV evolution in this region is crucial in searching for the next potential pandemic viruses. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Spatial Dynamics of Human-Origin H1 Influenza A Virus in North American Swine

    Science.gov (United States)

    Nelson, Martha I.; Lemey, Philippe; Tan, Yi; Vincent, Amy; Lam, Tommy Tsan-Yuk; Detmer, Susan; Viboud, Cécile; Suchard, Marc A.; Rambaut, Andrew; Holmes, Edward C.; Gramer, Marie

    2011-01-01

    The emergence and rapid global spread of the swine-origin H1N1/09 pandemic influenza A virus in humans underscores the importance of swine populations as reservoirs for genetically diverse influenza viruses with the potential to infect humans. However, despite their significance for animal and human health, relatively little is known about the phylogeography of swine influenza viruses in the United States. This study utilizes an expansive data set of hemagglutinin (HA1) sequences (n = 1516) from swine influenza viruses collected in North America during the period 2003–2010. With these data we investigate the spatial dissemination of a novel influenza virus of the H1 subtype that was introduced into the North American swine population via two separate human-to-swine transmission events around 2003. Bayesian phylogeographic analysis reveals that the spatial dissemination of this influenza virus in the US swine population follows long-distance swine movements from the Southern US to the Midwest, a corn-rich commercial center that imports millions of swine annually. Hence, multiple genetically diverse influenza viruses are introduced and co-circulate in the Midwest, providing the opportunity for genomic reassortment. Overall, the Midwest serves primarily as an ecological sink for swine influenza in the US, with sources of virus genetic diversity instead located in the Southeast (mainly North Carolina) and South-central (mainly Oklahoma) regions. Understanding the importance of long-distance pig transportation in the evolution and spatial dissemination of the influenza virus in swine may inform future strategies for the surveillance and control of influenza, and perhaps other swine pathogens. PMID:21695237

  7. Modified live virus vaccine induces a distinct immune response profile compared to inactivated influenza A virus vaccines in swine

    Science.gov (United States)

    Genetic and antigenic diversity within H1 influenza A virus (IAV) subtypes circulating in swine is increasing. The need for cross-protective influenza vaccines in swine is necessary as the virus becomes more diverse. This study compared the humoral and cell-mediated immune response of modified live ...

  8. Antigenic and genetic evolution of swine influenza A (H3N2) viruses in Europe

    NARCIS (Netherlands)

    J.C. de Jong (Jan); D.J. Smith (Derek James); A.S. Lapedes (Alan); I. Donatelli; L. Campitelli; G. Barigazzi; K. van Reeth; T.C. Jones (Terry); G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron)

    2007-01-01

    textabstractIn the early 1970s, a human influenza A/Port Chalmers/1/73 (H3N2)-like virus colonized the European swine population. Analyses of swine influenza A (H3N2) viruses isolated in The Netherlands and Belgium revealed that in the early 1990s, antigenic drift had occurred, away from A/Port

  9. No evidence of African swine fever virus replication in hard ticks

    NARCIS (Netherlands)

    de Carvalho Ferreira, Helena C; Tudela Zúquete, Sara; Wijnveld, Michiel; Weesendorp, Eefke; Jongejan, Frans; Stegeman, Arjan; Loeffen, Willie L A

    African swine fever (ASF) is caused by African swine fever virus (ASFV), a tick-borne DNA virus. Soft ticks of the genus Ornithodoros are the only biological vectors of ASFV recognized so far. Although other hard ticks have been tested for vector competence, two commonly found tick species in

  10. Virulence determinants within the E2 glycoprotein of Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Johnston, Camille Melissa; Fahnøe, Ulrik; Lohse, Louise

    Classical Swine Fever is a highly contagious disease of pigs caused by Classical Swine Fever Virus (CSFV), a member of the pestivirus genus within the family Flaviviridae. The E2 glycoprotein of CSFV has been shown to be an important factor for the virulence of the virus. In a recent study, we have...

  11. Mitigation Approaches to Combat the Flu Pandemic

    Science.gov (United States)

    Chawla, Raman; Sharma, Rakesh Kumar; Madaan, Deepali; Dubey, Neha; Arora, Rajesh; Goel, Rajeev; Singh, Shefali; Kaushik, Vinod; Singh, Pankaj Kumar; Chabbra, Vivek; Bhardwaj, Janak Raj

    2009-01-01

    Management of flu pandemic is a perpetual challenge for the medical fraternity since time immemorial. Animal to human transmission has been observed thrice in the last century within an average range of 11-39 years of antigenic recycling. The recent outbreak of influenza A (H1N1, also termed as swine flu), first reported in Mexico on April 26, 2009, occurred in the forty first year since last reported flu pandemic (July 1968). Within less than 50 days, it has assumed pandemic proportions (phase VI) affecting over 76 countries with 163 deaths/35,928 cases (as on 15th June 2009). It indicated the re-emergence of genetically reassorted virus having strains endemic to humans, swine and avian (H5N1). The World Health Organisation (WHO) member states have already pulled up their socks and geared up to combat such criticalities. Earlier outbreaks of avian flu (H5N1) in different countries led WHO to develop pandemic preparedness strategies with national/regional plans on pandemic preparedness. Numerous factors related to climatic conditions, socio-economic strata, governance and sharing of information/logistics at all levels have been considered critical indicators in monitoring the dynamics of escalation towards a pandemic situation. The National Disaster Management Authority (NDMA), Government of India, with the active cooperation of UN agencies and other stakeholders/experts has formulated a concept paper on role of nonhealth service providers during pandemics in April 2008 and released national guidelines - management of biological disasters in July 2008. These guidelines enumerate that the success of medical management endeavors like pharmaceutical (anti-viral Oseltamivir and Zanamivir therapies), nonpharmaceutical interventions and vaccination development etc., largely depends on level of resistance offered by mutagenic viral strain and rationale use of pharmaco therapeutic interventions. This article describes the mitigation approach to combat flu pandemic with its

  12. African swine fever virus uses macropinocytosis to enter host cells.

    Directory of Open Access Journals (Sweden)

    Elena G Sánchez

    Full Text Available African swine fever (ASF is caused by a large and highly pathogenic DNA virus, African swine fever virus (ASFV, which provokes severe economic losses and expansion threats. Presently, no specific protection or vaccine against ASF is available, despite the high hazard that the continued occurrence of the disease in sub-Saharan Africa, the recent outbreak in the Caucasus in 2007, and the potential dissemination to neighboring countries, represents. Although virus entry is a remarkable target for the development of protection tools, knowledge of the ASFV entry mechanism is still very limited. Whereas early studies have proposed that the virus enters cells through receptor-mediated endocytosis, the specific mechanism used by ASFV remains uncertain. Here we used the ASFV virulent isolate Ba71, adapted to grow in Vero cells (Ba71V, and the virulent strain E70 to demonstrate that entry and internalization of ASFV includes most of the features of macropinocytosis. By a combination of optical and electron microscopy, we show that the virus causes cytoplasm membrane perturbation, blebbing and ruffles. We have also found that internalization of the virions depends on actin reorganization, activity of Na(+/H(+ exchangers, and signaling events typical of the macropinocytic mechanism of endocytosis. The entry of virus into cells appears to directly stimulate dextran uptake, actin polarization and EGFR, PI3K-Akt, Pak1 and Rac1 activation. Inhibition of these key regulators of macropinocytosis, as well as treatment with the drug EIPA, results in a considerable decrease in ASFV entry and infection. In conclusion, this study identifies for the first time the whole pathway for ASFV entry, including the key cellular factors required for the uptake of the virus and the cell signaling involved.

  13. Stomach Flu: How Long Am I Contagious?

    Science.gov (United States)

    ... long am I contagious if I have the stomach flu? Answers from James M. Steckelberg, M.D. ... more, depending on which virus is causing your stomach flu (gastroenteritis). A number of viruses can cause ...

  14. Interaction between Mycoplasma hyopneumoniae and Swine Influenza Virus

    Science.gov (United States)

    Thacker, Eileen L.; Thacker, Brad J.; Janke, Bruce H.

    2001-01-01

    An experimental respiratory model was used to investigate the interaction between Mycoplasma hyopneumoniae and swine influenza virus (SIV) in the induction of pneumonia in susceptible swine. Previous studies demonstrated that M. hyopneumoniae, which produces a chronic bronchopneumonia in swine, potentiates a viral pneumonia induced by the porcine reproductive and respiratory syndrome virus (PRRSV). In this study, pigs were inoculated with M. hyopneumoniae 21 days prior to inoculation with SIV. Clinical disease as characterized by the severity of cough and fever was evaluated daily. Percentages of lung tissue with visual lesions and microscopic lesions were assessed upon necropsy at 3, 7, 14, and 21 days following SIV inoculation. Clinical observations revealed that pigs infected with both SIV and M. hyopneumoniae coughed significantly more than pigs inoculated with a single agent. Macroscopic pneumonia on necropsy at days 3 and 7 was greatest in both SIV-infected groups, with minimal levels of pneumonia in the M. hyopneumoniae-only-infected pigs. At 14 days post-SIV inoculation, pneumonia was significantly more severe in pigs infected with both pathogens. However, by 21 days postinoculation, the level of pneumonia in the dual-infected pigs was similar to that of the M. hyopneumoniae-only-infected group, and the pneumonia in the pigs inoculated with only SIV was nearly resolved. Microscopically, there was no apparent increase in the severity of pneumonia in pigs infected with both agents compared to that of single-agent-challenged pigs. The results of this study found that while pigs infected with both agents exhibited more severe clinical disease, the relationship between the two pathogens lacked the profound potentiation found with dual infection with M. hyopneumoniae and PRRSV. These findings demonstrate that the relationship between mycoplasmas and viruses varies with the individual agent. PMID:11427564

  15. Effect of radiation on certain animal viruses in liquid swine manure

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.; Mocsari, E.; di Gleria, M.; Felkai, V. (Phylaxia Oltoanyag- es Tapszertermeloe Vallalat, Budapest (Hungary); Orszagos Allategeszseguegyi Intezet, Budapest (Hungary))

    1983-03-01

    The virucidal effect of /sup 60/Co gamma radiation was studied in cell culture medium and in liquid swine manure involving the most important porcine viruses that can be spread by liquid manure. The radiation doses (20 kGy and 30 kGy) were determined in preliminary experiments employing a porcine enterovirus from the serogroup 1 (Teschen group). In the main experiment, the following viruses were employed: swine vesicular disease (SVD) virus, type C foot-and-mouth disease (FMD) virus, a field strain of Aujeszky's disease (AD) virus, transmissible gastroenteritis (TGE) virus, as well as bovine viral diarrhea (BVD) virus. The latter strain served as a model for hog cholera virus. The results of the experiments indicate that safe disinfection of the virus infected liquid swine manure by ionizing radiation requires a radiation dose of 30 kGy.

  16. Novel triple-reassortant H1N1 swine influenza viruses in pigs in Tianjin, Northern China.

    Science.gov (United States)

    Sun, Ying-Feng; Wang, Xiu-Hui; Li, Xiu-Li; Zhang, Li; Li, Hai-Hua; Lu, Chao; Yang, Chun-Lei; Feng, Jing; Han, Wei; Ren, Wei-Ke; Tian, Xiang-Xue; Tong, Guang-Zhi; Wen, Feng; Li, Ze-Jun; Gong, Xiao-Qian; Liu, Xiao-Min; Ruan, Bao-Yang; Yan, Ming-Hua; Yu, Hai

    2016-02-01

    Pigs are susceptible to both human and avian influenza viruses and therefore have been proposed to be mixing vessels for the generation of pandemic influenza viruses through reassortment. In this study, for the first time, we report the isolation and genetic analyses of three novel triple-reassortant H1N1 swine influenza viruses from pigs in Tianjin, Northern China. Phylogenetic analysis showed that these novel viruses contained genes from the 2009 pandemic H1N1 (PB2, PB1, PA and NP), Eurasian swine (HA, NA and M) and triple-reassortant swine (NS) lineages. This indicated that the reassortment among the 2009 pandemic H1N1, Eurasian swine and triple-reassortant swine influenza viruses had taken place in pigs in Tianjin and resulted in the generation of new viruses. Furthermore, three human-like H1N1, two classical swine H1N1 and two Eurasian swine H1N1 viruses were also isolated during the swine influenza virus surveillance from 2009 to 2013, which indicated that multiple genetic lineages of swine H1N1 viruses were co-circulating in the swine population in Tianjin, China. The emergence of novel triple-reassortant H1N1 swine influenza viruses may be a potential threat to human health and emphasizes the importance of further continuous surveillance. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses

    Science.gov (United States)

    African swine fever is a contagious and often lethal disease for domestic pigs with a significant economic impact on the swine industry. The etiological agent, African swine fever virus (ASFV), is a highly structurally complex double stranded DNA virus. No effective vaccines or antiviral treatment ...

  18. Surveillance of illness associated with pandemic (H1N1) 2009 virus infection among adults using a global clinical site network approach: the INSIGHT FLU 002 and FLU 003 studies

    DEFF Research Database (Denmark)

    Dwyer, Dominic E; Nielsen, Henrik Ib

    2011-01-01

    The novel pandemic influenza A (H1H1) 2009 virus spread rapidly around the world in 2009. The paucity of prospective international epidemiologic data on predictors of clinical outcomes with pandemic (H1N1) 2009 virus infection stimulated the INSIGHT network, an international network of community...... and hospital-based investigators, to commence two worldwide clinical observational studies to describe pandemic (H1N1) 2009 virus activity. The purpose of these two studies was to estimate the percent of adult patients with illness due to laboratory-confirmed pandemic (H1N1) 2009 virus infection......, with 1049 enrollments into the FLU 002 outpatient study and 316 into the FLU 003 hospitalization study. These 'in progress' INSIGHT influenza observational studies may act as a model for obtaining epidemiological, clinical and laboratory information in future international disease outbreaks....

  19. The nonadaptive nature of the H1N1 2009 Swine Flu pandemic contrasts with the adaptive facilitation of transmission to a new host

    Directory of Open Access Journals (Sweden)

    Abdussamad Juwaeriah

    2011-01-01

    Full Text Available Abstract Background The emergence of the 2009 H1N1 Influenza pandemic followed a multiple reassortment event from viruses originally circulating in swines and humans, but the adaptive nature of this emergence is poorly understood. Results Here we base our analysis on 1180 complete genomes of H1N1 viruses sampled in North America between 2000 and 2010 in swine and human hosts. We show that while transmission to a human host might require an adaptive phase in the HA and NA antigens, the emergence of the 2009 pandemic was essentially nonadaptive. A more detailed analysis of the NA protein shows that the 2009 pandemic sequence is characterized by novel epitopes and by a particular substitution in loop 150, which is responsible for a nonadaptive structural change tightly associated with the emergence of the pandemic. Conclusions Because this substitution was not present in the 1918 H1N1 pandemic virus, we posit that the emergence of pandemics is due to epistatic interactions between sites distributed over different segments. Altogether, our results are consistent with population dynamics models that highlight the epistatic and nonadaptive rise of novel epitopes in viral populations, followed by their demise when the resulting virus is too virulent.

  20. Hepatitis E virus and coliphages in waters proximal to swine concentrated animal feeding operations

    OpenAIRE

    Gentry-Shields, Jennifer; Myers, Kevin; Pisanic, Nora; Heaney, Christopher; Stewart, Jill

    2014-01-01

    North Carolina is the second leading state in pork production in the United States, with over 10 million swine. Swine manure in NC is typically collected and stored in open-pit lagoons before the liquid waste is sprayed onto agricultural fields for disposal. Components of this waste may be able to impact surface water quality with the potential for human exposure. This study examined viruses of public health concern in creeks adjacent to swine concentrated animal feeding operation (CAFO) spra...

  1. EVIDENCE OF PSEUDORABIES VIRUS SHEDDING IN FERAL SWINE ( SUS SCROFA) POPULATIONS OF FLORIDA, USA.

    Science.gov (United States)

    Hernández, Felipe A; Sayler, Katherine A; Bounds, Courtney; Milleson, Michael P; Carr, Amanda N; Wisely, Samantha M

    2018-01-01

    :  Feral swine ( Sus scrofa) are a pathogen reservoir for pseudorabies virus (PrV). The virus can be fatal to wildlife and contributes to economic losses in the swine industry worldwide. National surveillance efforts in the US use serology to detect PrV-specific antibodies in feral swine populations, but PrV exposure is not a direct indicator of pathogen transmission among conspecifics or to non-suid wildlife species. We measured antibody production and the presence of PrV DNA in four tissue types from feral swine populations of Florida, US. We sampled blood, nasal, oral, and genital swabs from 551 individuals at 39 sites during 2014-16. Of the animals tested for antibody production, 224 of 436 (51%) feral swine were antibody positive while 38 of 549 feral swine (7%) tested for viral shedding were quantitative polymerase chain reaction (qPCR)-positive for PrV. The detection of PrV DNA across all the collected sample types (blood, nasal, oral, and genital [vaginal] swabs) suggested viral shedding via direct (oronasal or venereal), and potentially indirect (through carcass consumption), routes of transmission among infected and susceptible animals. Fourteen of 212 seronegative feral swine were qPCR-positive, indicating 7% false negatives in the serologic assay. Our findings suggest that serology may underestimate the actual infection risk posed by feral swine to other species and that feral swine populations in Florida are capable of shedding the virus through multiple routes.

  2. Serological study of influenza viruses in veterinarians working with swine in Mexico.

    Science.gov (United States)

    Saavedra-Montañez, Manuel; Castillo-Juárez, Héctor; Sánchez-Betancourt, Iván; Rivera-Benitez, José Francisco; Ramírez-Mendoza, Humberto

    2017-06-01

    Humans and swine are both affected by influenza viruses, and swine are considered a potential source of new influenza viruses. Transmission of influenza viruses across species is well documented. The aim of this study was to evaluate the seroprevalence of different influenza virus subtypes in veterinarians working for the Mexican swine industry, using a hemagglutination inhibition test. All sera tested were collected in July 2011. The data were analysed using a generalized linear model and a linear model to study the possible association of seroprevalence with the age of the veterinarian, vaccination status, and biosecurity level of the farm where they work. The observed seroprevalence was 12.3%, 76.5%, 46.9%, and 11.1% for the human subtypes of pandemic influenza virus (pH1N1), seasonal human influenza virus (hH1N1), the swine subtypes of classical swine influenza virus (swH1N1), and triple-reassortant swine influenza virus (swH3N2), respectively. Statistical analysis indicated that age was associated with hH1N1 seroprevalence (P veterinarians, whereas all of those not vaccinated tested negative for this subtype. Our findings suggest that, between the onset of the 2009 pandemic and July 2011, the Mexican veterinarians working in the swine industry did not have immunity to the pH1N1 virus; hence, they would have been at risk for infection with this virus if this subtype had been circulating in swine in Mexico prior to 2011.

  3. Reflections on the UK's approach to the 2009 swine flu pandemic: conflicts between national government and the local management of the public health response.

    Science.gov (United States)

    Chambers, Jacky; Barker, Kezia; Rouse, Andrew

    2012-07-01

    The first cases of swine flu in the UK were detected on 27th April 2009. Two weeks later Birmingham became a "hotspot" for the HIN1 pandemic in England. This paper describes the experiences of local public health agencies during the pandemic and the problems encountered when trying to work within a hierarchical and hermetic system of national policy making. We argue that over reliance on the speculative logic of modellers, together with a failure to adapt swiftly the nation's preparedness plans and public health apparatus created in readiness for a serious and fatal disease, led to an institutional void of policy making during the pandemic, where new rules and concepts emerged about what constituted scientifically acceptable and politically legitimate interventions. The imposition of a single national approach to managing the pandemic and a disregard for the role of local authorities seriously impaired the ability of local agencies to respond in a flexible, timely and pragmatic way to the rapidly emerging situation. Future planning for pandemics must recognise that global epidemics are curbed at the local level, and ensure that any response is proportionate, flexible and effective. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The genetic diversity of contemporary swine influenza A viruses in the United States

    Science.gov (United States)

    Introduction: Influenza A virus (IAV) is one of the most important respiratory pathogens of swine. It impacts mortality and causes significant financial losses through decreased production and the costs associated with vaccination and treatment. Further, due to the susceptibility of swine to transie...

  5. Transcriptional immunoresponse of tissue-specific macrophages in swine after infection with African swine fever virus

    Directory of Open Access Journals (Sweden)

    Kowalczyk Andrzej

    2015-12-01

    Full Text Available Macrophages and cytokines are important in the control of inflammation and regulation of the immune response. However, they can also contribute to immunopathology in the host after viral infection and the regulatory network can be subverted by infectious agents, including viruses, some of which produce cytokine analogues or have mechanisms that inhibit cytokine function. African swine fever virus (ASFV encodes a number of proteins which modulate cytokine and chemokine induction, host transcription factor activation, stress responses, and apoptosis. The aim of this review is to elucidate the mechanisms of immune responses to ASFV in different subpopulations of porcine macrophages. A transcriptional immune response in different resident tissue macrophages following ASFV infection was presented in many publications. ASFV-susceptible porcine macrophages can be of several origins, such as peripheral blood, lungs, bone marrow, etc. blood monocytes, blood macrophages, and lung macrophages have demonstrated a modulation of phenotype. Monocyte-derived macrophages could express surface markers not found on their monocyte precursors. Moreover, they can undergo further differentiation after infection and during inflammation. When viruses infect such cells, immunological activity can be seriously impaired or modified.

  6. Quantitative assessment of the likelihood of the introduction of classical swine fever virus into the Danish swine population

    DEFF Research Database (Denmark)

    Bronsvoort, BMD; Alban, L.; Greiner, M.

    2008-01-01

    Classical swine fever virus (CSFV) is a major infectious-disease agent of livestock and causes production losses through increased morbidity and mortality, particularly of young pigs. We identified the pathways for introduction of CSFV into Denmark and assessed the annual probability...

  7. The Spanish flu in Denmark

    DEFF Research Database (Denmark)

    Kolte, Ida Viktoria; Skinhøj, Peter; Keiding, Niels

    2008-01-01

    The spread of H5N1 influenza and the similarity between this avian virus and the Spanish flu virus causes fear of a new influenza pandemic, but data from the Spanish flu may also be of guidance in planning for preventive measures. Using data on influenza cases, influenza deaths and total deaths...

  8. Genetic and pathogenic characteristics of H1 avian and swine influenza A viruses.

    Science.gov (United States)

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jeong, Jipseol; Kim, Hye-Ryoung; Choi, Eun-Jin; Shin, Yeun-Kyung; Lee, Hee-Soo; Lee, Youn-Jeong

    2014-10-01

    This study examined the potential for cross-species transmission of influenza viruses by comparing the genetic and pathogenic characteristics of H1 avian influenza viruses (AIVs) with different host origins in Korea. Antigenic and phylogenetic analyses of H1 AIVs circulating in Korea provided evidence of genetic similarity between viruses that infect domestic ducks and those that infect wild birds, although there was no relationship between avian and swine viruses. However, there were some relationships between swine and human viral genes. The replication and pathogenicity of the H1 viruses was assessed in chickens, domestic ducks and mice. Viral shedding in chickens was relatively high. Virus was recovered from both oropharyngeal and cloacal swabs up to 5-10 days post-inoculation. The titres of domestic duck viruses in chickens were much higher than those of wild-bird viruses. Both domestic duck and wild-bird viruses replicated poorly in domestic ducks. None of the swine viruses replicated in chickens or domestic ducks; however, six viruses showed relatively high titres in mice, regardless of host origin, and induced clinical signs such as ruffled fur, squatting and weight loss. Thus, although the phylogenetic and antigenic analyses showed no evidence of interspecies transmission between birds and swine, the results suggest that Korean H1 viruses have the potential to cause disease in mammals. Therefore, we should intensify continuous monitoring of avian H1 viruses in mammals and seek to prevent interspecies transmission. © 2014 The Authors.

  9. H1N1 influenza viruses varying widely in hemagglutinin stability transmit efficiently from swine to swine and to ferrets.

    Directory of Open Access Journals (Sweden)

    Marion Russier

    2017-03-01

    Full Text Available A pandemic-capable influenza virus requires a hemagglutinin (HA surface glycoprotein that is immunologically unseen by most people and is capable of supporting replication and transmission in humans. HA stabilization has been linked to 2009 pH1N1 pandemic potential in humans and H5N1 airborne transmissibility in the ferret model. Swine have served as an intermediate host for zoonotic influenza viruses, yet the evolutionary pressure exerted by this host on HA stability was unknown. For over 70 contemporary swine H1 and H3 isolates, we measured HA activation pH to range from pH 5.1 to 5.9 for H1 viruses and pH 5.3 to 5.8 for H3 viruses. Thus, contemporary swine isolates vary widely in HA stability, having values favored by both avian (pH >5.5 and human and ferret (pH ≤5.5 species. Using an early 2009 pandemic H1N1 (pH1N1 virus backbone, we generated three viruses differing by one HA residue that only altered HA stability: WT (pH 5.5, HA1-Y17H (pH 6.0, and HA2-R106K (pH 5.3. All three replicated in pigs and transmitted from pig-to-pig and pig-to-ferret. WT and R106 viruses maintained HA genotype and phenotype after transmission. Y17H (pH 6.0 acquired HA mutations that stabilized the HA protein to pH 5.8 after transmission to pigs and 5.5 after transmission to ferrets. Overall, we found swine support a broad range of HA activation pH for contact transmission and many recent swine H1N1 and H3N2 isolates have stabilized (human-like HA proteins. This constitutes a heightened pandemic risk and underscores the importance of ongoing surveillance and control efforts for swine viruses.

  10. HIV/AIDS and the Flu

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other HIV/AIDS and the Flu Questions & Answers Language: English ( ... people with HIV and AIDS. Should people with HIV/AIDS receive the inactivated influenza vaccine? People with ...

  11. Adjuvant effects of invariant NKT cell ligand potentiates the innate and adaptive immunity to an inactivated H1N1 swine influenza virus vaccine in pigs.

    Science.gov (United States)

    Dwivedi, Varun; Manickam, Cordelia; Dhakal, Santosh; Binjawadagi, Basavaraj; Ouyang, Kang; Hiremath, Jagadish; Khatri, Mahesh; Hague, Jacquelyn Gervay; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-04-15

    Pigs are considered as the source of some of the emerging human flu viruses. Inactivated swine influenza virus (SwIV) vaccine has been in use in the US swine herds, but it failed to control the flu outbreaks. The main reason has been attributed to lack of induction of strong local mucosal immunity in the respiratory tract. Invariant natural killer T (iNKT) cell is a unique T cell subset, and activation of iNKT cell using its ligand α-Galactosylceramide (α-GalCer) has been shown to potentiate the cross-protective immunity to inactivated influenza virus vaccine candidates in mice. Recently, we discovered iNKT cell in pig and demonstrated its activation using α-GalCer. In this study, we evaluated the efficacy of an inactivated H1N1 SwIV coadministered with α-GalCer intranasally against a homologous viral challenge. Our results demonstrated the potent adjuvant effects of α-GalCer in potentiating both innate and adaptive immune responses to SwIV Ags in the lungs of pigs, which resulted in reduction in the lung viral load by 3 logs compared to without adjuvant. Immunologically, in the lungs of pigs vaccinated with α-GalCer an increased virus specific IgA response, IFN-α secretion and NK cell-cytotoxicity was observed. In addition, iNKT cell-stimulation enhanced the secretion of Th1 cytokines (IFN-γ and IL-12) and reduced the production of immunosuppressive cytokines (IL-10 and TGF-β) in the lungs of pigs⋅ In conclusion, we demonstrated for the first time iNKT cell adjuvant effects in pigs to SwIV Ags through augmenting the innate and adaptive immune responses in the respiratory tract. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. African swine fever virus infection in Classical swine fever subclinically infected wild boars.

    Science.gov (United States)

    Cabezón, Oscar; Muñoz-González, Sara; Colom-Cadena, Andreu; Pérez-Simó, Marta; Rosell, Rosa; Lavín, Santiago; Marco, Ignasi; Fraile, Lorenzo; de la Riva, Paloma Martínez; Rodríguez, Fernando; Domínguez, Javier; Ganges, Llilianne

    2017-08-01

    Recently moderate-virulence classical swine fever virus (CSFV) strains have been proven capable of generating postnatal persistent infection (PI), defined by the maintenance of viremia and the inability to generate CSFV-specific immune responses in animals. These animals also showed a type I interferon blockade in the absence of clinical signs. In this study, we assessed the infection generated in 7-week-old CSFV PI wild boars after infection with the African swine fever virus (ASFV). The wild boars were divided in two groups and were infected with ASFV. Group A comprised boars who were CSFV PI in a subclinical form and Group B comprised pestivirus-free wild boars. Some relevant parameters related to CSFV replication and the immune response of CSFV PI animals were studied. Additionally, serum soluble factors such as IFN-α, TNF-α, IL-6, IL-10, IFN-γ and sCD163 were analysed before and after ASFV infection to assess their role in disease progression. After ASFV infection, only the CSFV PI wild boars showed progressive acute haemorrhagic disease; however, the survival rates following ASFV infection was similar in both experimental groups. Notwithstanding, the CSFV RNA load of CSFV PI animals remained unaltered over the study; likewise, the ASFV DNA load detected after infection was similar between groups. Interestingly, systemic type I FN-α and IL-10 levels in sera were almost undetectable in CSFV PI animals, yet detectable in Group B, while detectable levels of IFN-γ were found in both groups. Finally, the flow cytometry analysis showed an increase in myelomonocytic cells (CD172a + ) and a decrease in CD4 + T cells in the PBMCs from CSFV PI animals after ASFV infection. Our results showed that the immune response plays a role in the progression of disease in CSFV subclinically infected wild boars after ASFV infection, and the immune response comprised the systemic type I interferon blockade. ASFV does not produce any interference with CSFV replication, or vice

  13. DETECTION OF CLASSICAL SWINE FEVER VIRUS BY RT-PCR IN WEST BENGAL, INDIA

    Directory of Open Access Journals (Sweden)

    Sumit Chowdhury

    2016-12-01

    Full Text Available Classical swine fever is a deadly disease of swine, caused by a RNA virus. The present study has identified presence of the classical swine fever virus (CSFV in pigs of West Bengal by one step reverse transcriptase PCR (RT-PCR performed using 5’ NTR specific primers. Internal organs from clinically affected pigs were examined from three districts of West Bengal. RT-PCT has identified presence of CSFV in all the tissues examined confirming presence of CSFV in different parts of the state.

  14. Unraveling the Armor of a Killer: Evasion of Host Defenses by African Swine Fever Virus.

    Science.gov (United States)

    Reis, Ana Luisa; Netherton, Chris; Dixon, Linda K

    2017-03-15

    African swine fever is an acute hemorrhagic disease of pigs. Extensive recent spread in the Russian Federation and Eastern Europe has increased the risk to global pig production. The virus is a large DNA virus and is the only member of the Asfarviridae family. In pigs, the virus replicates predominantly in macrophages. We review how the virus overcomes the barriers to replication in the macrophage and the virus mechanism to inhibit key host defense pathways. Copyright © 2017 American Society for Microbiology.

  15. Interspecies interactions and potential Influenza A virus risk in small swine farms in Peru

    Directory of Open Access Journals (Sweden)

    McCune Sarah

    2012-03-01

    Full Text Available Abstract Background The recent avian influenza epidemic in Asia and the H1N1 pandemic demonstrated that influenza A viruses pose a threat to global public health. The animal origins of the viruses confirmed the potential for interspecies transmission. Swine are hypothesized to be prime "mixing vessels" due to the dual receptivity of their trachea to human and avian strains. Additionally, avian and human influenza viruses have previously been isolated in swine. Therefore, understanding interspecies contact on smallholder swine farms and its potential role in the transmission of pathogens such as influenza virus is very important. Methods This qualitative study aimed to determine swine-associated interspecies contacts in two coastal areas of Peru. Direct observations were conducted at both small-scale confined and low-investment swine farms (n = 36 and in open areas where swine freely range during the day (n = 4. Interviews were also conducted with key stakeholders in swine farming. Results In both locations, the intermingling of swine and domestic birds was common. An unexpected contact with avian species was that swine were fed poultry mortality in 6/20 of the farms in Chancay. Human-swine contacts were common, with a higher frequency on the confined farms. Mixed farming of swine with chickens or ducks was observed in 36% of all farms. Human-avian interactions were less frequent overall. Use of adequate biosecurity and hygiene practices by farmers was suboptimal at both locations. Conclusions Close human-animal interaction, frequent interspecies contacts and suboptimal biosecurity and hygiene practices pose significant risks of interspecies influenza virus transmission. Farmers in small-scale swine production systems constitute a high-risk population and need to be recognized as key in preventing interspecies pathogen transfer. A two-pronged prevention approach, which offers educational activities for swine farmers about sound hygiene and

  16. Sequence adaptations during growth of rescued classical swine fever viruses in cell culture and within infected pigs

    DEFF Research Database (Denmark)

    Hadsbjerg, Johanne; Friis, Martin Barfred; Fahnøe, Ulrik

    2016-01-01

    Classical swine fever virus (CSFV) causes an economically important disease of swine. Four different viruses were rescued from full-length cloned cDNAs derived from the Paderborn strain of CSFV. Three of these viruses had been modified by mutagenesis (with 7 or 8 nt changes) within stem 2 of the ...

  17. In Vitro Reassortment between Endemic H1N2 and 2009 H1N1 Pandemic Swine Influenza Viruses Generates Attenuated Viruses

    OpenAIRE

    Hause, Ben M.; Collin, Emily A.; Ran, Zhiguang; Zhu, Laihua; Webby, Richard J.; Simonson, Randy R.; Li, Feng

    2012-01-01

    The pandemic H1N1 (pH1N1) influenza virus was first reported in humans in the spring of 2009 and soon thereafter was identified in numerous species, including swine. Reassortant viruses, presumably arising from the co-infection of pH1N1 and endemic swine influenza virus (SIV), were subsequently identified from diagnostic samples collected from swine. In this study, co-infection of swine testicle (ST) cells with swine-derived endemic H1N2 (MN745) and pH1N1 (MN432) yielded two reassortant H1N2 ...

  18. [Immune response of pigs to Aujeszky disease virus and swine influenza virus].

    Science.gov (United States)

    Tamarov, G; Khristov, S

    1978-01-01

    Explored was the possibility of simultaneous vaccination of pigs against the Aujeszky's disease virus and the swine influenza virus. Used were strain MK-25 against the former and strain 3sb against the latter. It was found that at the simultaneous subcutaneous or oral treatment with the two antigens equally effective immunity was built as in the case of vaccination with each one of them used alone. No antagonism was established between the two antigens during the time of immunity building in the body.

  19. Swine flu and hype: a systematic review of media dramatization of the H1N1 influenza pandemic

    NARCIS (Netherlands)

    Klemm, C.; Das, E.; Hartmann, T.

    2016-01-01

    Highly disconcerting at the time, in retrospective, the 2009 H1N1 influenza pandemic looks like much ado about nothing. As a consequence, many accused the media of having created an artificial hype or hysteria around the new virus, thus contributing to unwarranted public fear. The current paper set

  20. Polyanhydride nanovaccine against swine influenza virus in pigs.

    Science.gov (United States)

    Dhakal, Santosh; Goodman, Jonathan; Bondra, Kathryn; Lakshmanappa, Yashavanth S; Hiremath, Jagadish; Shyu, Duan-Liang; Ouyang, Kang; Kang, Kyung-Il; Krakowka, Steven; Wannemuehler, Michael J; Won Lee, Chang; Narasimhan, Balaji; Renukaradhya, Gourapura J

    2017-02-22

    We have recently demonstrated the effectiveness of an influenza A virus (IAV) subunit vaccine based on biodegradable polyanhydride nanoparticles delivery in mice. In the present study, we evaluated the efficacy of ∼200nm polyanhydride nanoparticles encapsulating inactivated swine influenza A virus (SwIAV) as a vaccine to induce protective immunity against a heterologous IAV challenge in pigs. Nursery pigs were vaccinated intranasally twice with inactivated SwIAV H1N2 (KAg) or polyanhydride nanoparticle-encapsulated KAg (KAg nanovaccine), and efficacy was evaluated against a heterologous zoonotic virulent SwIAV H1N1 challenge. Pigs were monitored for fever daily. Local and systemic antibody responses, antigen-specific proliferation of peripheral blood mononuclear cells, gross and microscopic lung lesions, and virus load in the respiratory tract were compared among the groups of animals. Our pre-challenge results indicated that KAg nanovaccine induced virus-specific lymphocyte proliferation and increased the frequency of CD4 + CD8αα + T helper and CD8 + cytotoxic T cells in peripheral blood mononuclear cells. KAg nanovaccine-immunized pigs were protected from fever following SwIAV challenge. In addition, pigs immunized with the KAg nanovaccine presented with lower viral antigens in lung sections and had 6 to 8-fold reduction in nasal shedding of SwIAV four days post-challenge compared to control animals. Immunologically, increased IFN-γ secreting T lymphocyte populations against both the vaccine and challenge viruses were detected in KAg nanovaccine-immunized pigs compared to the animals immunized with KAg alone. However, in the KAg nanovaccine-immunized pigs, hemagglutination inhibition, IgG and IgA antibody responses, and virus neutralization titers were comparable to that in the animals immunized with KAg alone. Overall, our data indicated that intranasal delivery of polyanhydride-based SwIAV nanovaccine augmented antigen-specific cellular immune response in

  1. Differentiated swine airway epithelial cell cultures for the investigation of influenza A virus infection and replication.

    Science.gov (United States)

    Bateman, Allen C; Karasin, Alexander I; Olsen, Christopher W

    2013-03-01

    Differentiated human airway epithelial cell cultures have been utilized to investigate cystic fibrosis, wound healing, and characteristics of viral infections. These cultures, grown at an air-liquid interface (ALI) in media with defined hormones and growth factors, recapitulate many aspects of the in vivo respiratory tract and allow for experimental studies at the cellular level. To optimize growth conditions for differentiated swine airway epithelial cultures and to use these cultures to examine influenza virus infection and replication. Primary swine respiratory epithelial cells were grown at an air-liquid interface with varying amounts of retinoic acid and epidermal growth factor. Cells grown with optimized concentrations of these factors for 4 weeks differentiated into multilayer epithelial cell cultures resembling the lining of the swine respiratory tract. Influenza virus infection and replication were examined in these cultures. Retinoic acid promoted ciliogenesis, whereas epidermal growth factor controlled the thickness of the pseudoepithelium. The optimal concentrations for differentiated swine cell cultures were 1·5 ng/ml epidermal growth factor and 100nm retinoic acid. Influenza A viruses infected and productively replicated in these cultures in the absence of exogenous trypsin, suggesting that the cultures express a protease capable of activating influenza virus hemagglutinin. Differences in virus infection and replication characteristics found previously in pigs in vivo were recapitulated in the swine cultures. This system could be a useful tool for a range of applications, including investigating influenza virus species specificity, defining cell tropism of influenza viruses in the swine respiratory epithelium, and studying other swine respiratory diseases. © 2012 Blackwell Publishing Ltd.

  2. Molecular characterization of Belgian pseudorabies virus isolates from domestic swine and wild boar.

    Science.gov (United States)

    Verpoest, Sara; Cay, Ann Brigitte; De Regge, Nick

    2014-08-06

    Aujeszky's disease is an economically important disease in domestic swine caused by suid herpesvirus 1, also called pseudorabies virus (PRV). In several European countries, including Belgium, the virus has successfully been eradicated from the domestic swine population. The presence of PRV in the wild boar population however poses a risk for possible reintroduction of the virus into the domestic pig population. It is therefore important to assess the genetic relatedness between circulating strains and possible epidemiological links. In this study, nine historical Belgian domestic swine isolates that circulated before 1990 and five recent wild boar isolates obtained since 2006 from Belgium and the Grand Duchy of Luxembourg were genetically characterized by restriction fragment length polymorphism (RFLP) analysis and phylogenetic analysis. While all wild boar isolates were characterized as type I RFLP genotypes, the RFLP patterns of the domestic swine isolates suggest that a shift from genotype I to genotype II might have occurred in the 1980s in the domestic population. By phylogenetic analysis, Belgian wild boar isolates belonging to both clade A and B were observed, while all domestic swine isolates clustered within clade A. The joint phylogenetic analysis of both wild boar and domestic swine strains showed that some isolates with identical sequences were present within both populations, raising the question whether these strains represent an increased risk for reintroduction of the virus into the domestic population. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. New influenza A virus reassortments have been found in Danish swine in 2011

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2012-01-01

    % of the samples were positive for swine influenza virus. All influenza positive samples were tested for the H1N1pdm09 virus by a real time RT-PCR assay specific for the pandemic HA gene and 26% of the samples were positive. Subtyping of 90 samples by sequencing revealed the presence of; i) H1N1 “avian like...... in the Danish pig population. iii) H1N1pdm09 viruses which were found the first time in Danish pigs in January 2010. iv) Three new subtype variants comprising H1 “avian like” together with N2 “human like”, H1 pandemic with N2 “human like” and finally H1 pandemic with N2 from swine H3N2. The presence of N2...... the pandemic H1N1 virus. This study contribute significantly to our knowledge of the epidemiology of swine influenza A virus circulating in Danish swine and the potential role of swine in the emergence of novel reassortant viruses....

  4. Assessment of zoonotic potential of four European swine influenza viruses in the ferret model

    DEFF Research Database (Denmark)

    Fobian, Kristina; P. Fabrizio, Thomas; Yoon, Sun-Woo

    The reverse zoonotic events that introduced the 2009 pandemic influenza virus into swine herds have drastically increased the diversity of reassortants throughout Europe. The pandemic potential of these novel reassortments is unknown, hence necessitating enhanced surveillance of European swine......-like H1 and human-like N2 and one with pandemic H1 and swine-like N2. All viruses replicated to high viral titers in nasal wash- and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via respiratory droplets...... to neuraminidase inhibitors. These findings suggest that the investigated viruses have the potential to infect humans and further underline the need for continued surveillance as well as pandemic and zoonotic assessment of new influenza reassortants....

  5. Uncovering of Classical Swine Fever Virus adaptive response to vaccination by Next Generation Sequencing

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Orton, Richard; Höper, Dirk

    Next Generation Sequencing (NGS) has rapidly become the preferred technology in nucleotide sequencing, and can be applied to unravel molecular adaptation of RNA viruses such as Classical Swine Fever Virus (CSFV). However, the detection of low frequency variants within viral populations by NGS...

  6. Super-oxidized water inactivates major viruses circulating in swine farms.

    Science.gov (United States)

    Chen, Jianing; Zhang, Chengyu; Liu, Yue; Liu, Guangliang

    2017-04-01

    Disinfectant is commonly employed to eliminate infectious agents and prevent its transmission. In this study, we investigated the efficacy of Medilox ® super-oxidized water on inactivating veterinary viruses mainly circulating in swine farms. The results demonstrated that this super-oxidized water could effectively inactivate porcine viruses. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Genotype patterns of contemporary reassorted H3N2 virus in U.S. swine

    Science.gov (United States)

    To understand the evolution of H3N2v influenza viruses that have infected 288 humans since July 2011, we performed the largest phylogenetic analysis at a whole genome scale of influenza viruses from North American swine to date (n = 200). At least ten distinct reassorted H3N2/pandemic H1N1 (rH3N2p)...

  8. The Use of Bioaerosol Sampling for Airborne Virus Surveillance in Swine Production Facilities: A Mini Review

    OpenAIRE

    Benjamin D. Anderson; Benjamin D. Anderson; John A. Lednicky; Montserrat Torremorell; Gregory C. Gray

    2017-01-01

    Modern swine production facilities typically house dense populations of pigs and may harbor a variety of potentially zoonotic viruses that can pass from one pig generation to another and periodically infect human caretakers. Bioaerosol sampling is a common technique that has been used to conduct microbial risk assessments in swine production, and other similar settings, for a number of years. However, much of this work seems to have been focused on the detection of non-viral microbial agents ...

  9. Continual re-introduction of human pandemic H1N1 influenza A viruses into US swine, 2009-2014

    Science.gov (United States)

    Human-to-swine transmission of pandemic H1N1 influenza viruses (pH1N1) increased the genetic diversity of influenza A viruses in swine (swIAVs) globally and is linked to the emergence of new pandemic threats, including H3N2v variants. Through phylogenetic analysis of contemporary swIAVs in the Unit...

  10. Regulation of host translational machinery by African swine fever virus.

    Directory of Open Access Journals (Sweden)

    Alfredo Castelló

    2009-08-01

    Full Text Available African swine fever virus (ASFV, like other complex DNA viruses, deploys a variety of strategies to evade the host's defence systems, such as inflammatory and immune responses and cell death. Here, we analyse the modifications in the translational machinery induced by ASFV. During ASFV infection, eIF4G and eIF4E are phosphorylated (Ser1108 and Ser209, respectively, whereas 4E-BP1 is hyperphosphorylated at early times post infection and hypophosphorylated after 18 h. Indeed, a potent increase in eIF4F assembly is observed in ASFV-infected cells, which is prevented by rapamycin treatment. Phosphorylation of eIF4E, eIF4GI and 4E-BP1 is important to enhance viral protein production, but is not essential for ASFV infection as observed in rapamycin- or CGP57380-treated cells. Nevertheless, eIF4F components are indispensable for ASFV protein synthesis and virus spread, since eIF4E or eIF4G depletion in COS-7 or Vero cells strongly prevents accumulation of viral proteins and decreases virus titre. In addition, eIF4F is not only activated but also redistributed within the viral factories at early times of infection, while eIF4G and eIF4E are surrounding these areas at late times. In fact, other components of translational machinery such as eIF2alpha, eIF3b, eIF4E, eEF2 and ribosomal P protein are enriched in areas surrounding ASFV factories. Notably, the mitochondrial network is polarized in ASFV-infected cells co-localizing with ribosomes. Thus, translation and ATP synthesis seem to be coupled and compartmentalized at the periphery of viral factories. At later times after ASFV infection, polyadenylated mRNAs disappear from the cytoplasm of Vero cells, except within the viral factories. The distribution of these pools of mRNAs is similar to the localization of viral late mRNAs. Therefore, degradation of cellular polyadenylated mRNAs and recruitment of the translation machinery to viral factories may contribute to the inhibition of host protein synthesis

  11. MODEL SEIR UNTUK EPIDEMI FLU BABI PADA POPULASI BABI DENGAN LAJU KONTAK JENUH

    Directory of Open Access Journals (Sweden)

    M Kharis

    2012-09-01

    Full Text Available Babi merupakan inang alami dari virus influensa yang secara anatomis, fisiologis, dan imunitas mirip (similar dengan yang ada pada manusia. Virus influenza subtipe A yang ada pada manusia yaitu H1N1, H3N2 dan H1N2 merupakan enzootic pada populasi babi di dunia. babi dapat terinfeksi oleh turunan-turunan virus influenza tipe A dari manusia maupun dari burung dan dalam hal ini dianggap sebagai inang sementara (Intermediate hosts dari turunan-turunan virus flu babi yang berpotensi menyebabkan epidemi bahkan pandemi. Evolusi antigenik dari virus influenza pada babi terjadi dengan laju sekitar 6 kali lebih lambat dibandingkan dengan virus influenza pada manusia. Dalam tulisan ini akan dikaji model matematika untuk epidemi flu babi pada populasi babi. Model yang diberikan merupakan model deterministik dengan laju kontak jenuh yang merupakan perumuman dari laju kontak standar. Perumuman ini dinyatakan dengan adanya probabilitas suatu individu melakukan kontak yang dinyatakan sebagai suatu fungsi dari populasi. Pengkajian yang dilakukan meliputi penentuan titik ekuilibrium model matematika dan analisa kestabilannya. Diharapkan hasil kajian ini dapat bermanfaat dalam penanggulangan wabah flu babi pada sumber utama yaitu populasi babi sehingga dapat dilakukan pencegahan sebelum mewabah di populasi manusia. Pigs are a natural host of influenza virus that are similar anatomically, physiologically, and immunity which in humans. Influenza viruses of A subtype in humans are H1N1, H3N2 and H1N2. They are enzootic in the swine population in the world. Pigs can be infected by strains of type A influenza viruses from humans or from birds. Pigs are considered as a temporary host (intermediate hosts of the derivatives of the swine flu virus that has the potential to cause epidemics and even pandemics. Antigenic evolution of influenza viruses in pigs occurred at rate about 6 times slower than the influenza viruses in humans. In this paper the mathematical model

  12. Pathogenicity and transmissibility of North American triple reassortant swine influenza A viruses in ferrets.

    Directory of Open Access Journals (Sweden)

    Subrata Barman

    Full Text Available North American triple reassortant swine (TRS influenza A viruses have caused sporadic human infections since 2005, but human-to-human transmission has not been documented. These viruses have six gene segments (PB2, PB1, PA, HA, NP, and NS closely related to those of the 2009 H1N1 pandemic viruses. Therefore, understanding of these viruses' pathogenicity and transmissibility may help to identify determinants of virulence of the 2009 H1N1 pandemic viruses and to elucidate potential human health threats posed by the TRS viruses. Here we evaluated in a ferret model the pathogenicity and transmissibility of three groups of North American TRS viruses containing swine-like and/or human-like HA and NA gene segments. The study was designed only to detect informative and significant patterns in the transmissibility and pathogenicity of these three groups of viruses. We observed that irrespective of their HA and NA lineages, the TRS viruses were moderately pathogenic in ferrets and grew efficiently in both the upper and lower respiratory tracts. All North American TRS viruses studied were transmitted between ferrets via direct contact. However, their transmissibility by respiratory droplets was related to their HA and NA lineages: TRS viruses with human-like HA and NA were transmitted most efficiently, those with swine-like HA and NA were transmitted minimally or not transmitted, and those with swine-like HA and human-like NA (N2 showed intermediate transmissibility. We conclude that the lineages of HA and NA may play a crucial role in the respiratory droplet transmissibility of these viruses. These findings have important implications for pandemic planning and warrant confirmation.

  13. Mechanical design for positioning of GM detector for system of avian flu virus detection equipment

    International Nuclear Information System (INIS)

    Rahmat; Budi Santoso; Krismawan; Abdul Jalil

    2010-01-01

    Mechanical design for positioning of GM detector system has been done. It is used for avian flu detection equipment. The requirements for the design are to protect detection system against shock, portable, and easy to maintain. The mechanical system consists of connectors, cable assemblies, holders, casing, housing and detectors cover. The selected material should have small gamma radiation absorption property in order to give optimum counts for the detector. The design result should give a system that is easy to operate, cheap and easy to assemble. (author)

  14. PA-X protein decreases replication and pathogenicity of swine influenza virus in cultured cells and mouse models.

    Science.gov (United States)

    Gong, Xiao-Qian; Sun, Ying-Feng; Ruan, Bao-Yang; Liu, Xiao-Min; Wang, Qi; Yang, Hai-Ming; Wang, Shuai-Yong; Zhang, Peng; Wang, Xiu-Hui; Shan, Tong-Ling; Tong, Wu; Zhou, Yan-Jun; Li, Guo-Xin; Zheng, Hao; Tong, Guang-Zhi; Yu, Hai

    2017-06-01

    Swine influenza viruses have been circulating in pigs throughout world and might be potential threats to human health. PA-X protein is a newly discovered protein produced from the PA gene by ribosomal frameshifting and the effects of PA-X on the 1918 H1N1, the pandemic 2009 H1N1, the highly pathogenic avian H5N1 and the avian H9N2 influenza viruses have been reported. However, the role of PA-X in the pathogenesis of swine influenza virus is still unknown. In this study, we rescued the H1N1 wild-type (WT) classical swine influenza virus (A/Swine/Guangdong/1/2011 (H1N1)) and H1N1 PA-X deficient virus containing mutations at the frameshift motif, and compared their replication properties and pathogenicity of swine influenza virus in vitro and in vivo. Our results show that the expression of PA-X inhibits virus replication and polymerase activity in cultured cells and decreases virulence in mouse models. Therefore, our study demonstrates that PA-X protein acts as a negative virulence regulator for classical H1N1 swine influenza virus and decreases virulence by inhibiting viral replication and polymerase activity, deepening our understanding of the pathogenesis of swine influenza virus. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Dang, Thai Trung; Nguyen, Phi Hung

    2012-01-01

    The emergence of the H1N1 swine flu pandemic has the possibility to develop the occurrence of disaster- or drug-resistant viruses by additional reassortments in novel influenza A virus. In the course of an anti-influenza screening program for natural products, 10 xanthone derivatives (1-10) were...

  16. Diagnosis of influenza viruses with special reference to novel H1N1 2009 influenza virus

    OpenAIRE

    Broor, Shobha; Chahar, Harendra Singh; Kaushik, Samander

    2009-01-01

    On 15 April and 17 April 2009, novel swineorigin influenza A (H1N1) virus was identifi ed in specimens obtained from two epidemiologically unlinked patients in the United States. The ongoing outbreak of novel H1N1 2009 influenza (swine influenza) has caused more than 3,99,232 laboratory confi rmed cases of pandemic influenza H1N1 and over 4735 deaths globally. This novel 2009 influenza virus designated as H1N1 A/swine/California/04/2009 virus is not zoonotic swine flu and is transmitted from ...

  17. Identification of swine influenza virus epitopes and analysis of multiple specificities expressed by cytotoxic T cell subsets

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Breum, Solvej Østergaard; Riber, Ulla

    2014-01-01

    Background: Major histocompatibility complex (MHC) class I peptide binding and presentation are essential for antigen-specific activation of cytotoxic T lymphocytes (CTLs) and swine MHC class I molecules, also termed swine leukocyte antigens (SLA), thus play a crucial role in the process that leads...... to elimination of viruses such as swine influenza virus (SwIV). This study describes the identification of SLA-presented peptide epitopes that are targets for a swine CTL response, and further analyses multiple specificities expressed by SwIV activated CTL subsets. Findings: Four SwIV derived peptides were...

  18. Evidence of infection with avian, human, and swine influenza viruses in pigs in Cairo, Egypt.

    Science.gov (United States)

    Gomaa, Mokhtar R; Kandeil, Ahmed; El-Shesheny, Rabeh; Shehata, Mahmoud M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2018-02-01

    The majority of the Egyptian swine population was culled in the aftermath of the 2009 H1N1 pandemic, but small-scale growing remains. We sampled pigs from piggeries and an abattoir in Cairo. We found virological evidence of infection with avian H9N2 and H5N1 viruses as well as human pandemic H1N1 influenza virus. Serological evidence suggested previous exposure to avian H5N1 and H9N2, human pandemic H1N1, and swine avian-like and human-like viruses. This raises concern about potential reassortment of influenza viruses in pigs and highlights the need for better control and prevention of influenza virus infection in pigs.

  19. Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States

    Science.gov (United States)

    Chen, Li-Mei; Rivailler, Pierre; Hossain, Jaber; Carney, Paul; Balish, Amanda; Perry, Ijeoma; Davis, C. Todd; Garten, Rebecca; Shu, Bo; Xu, Xiyan; Klimov, Alexander; Paulson, James C.; Cox, Nancy J.; Swenson, Sabrina; Stevens, James; Vincent, Amy; Gramer, Marie; Donis, Ruben O.

    2017-01-01

    The evolution of classical swine influenza viruses receptor specificity preceding the emergence of the 2009 H1N1 pandemic virus was analyzed in glycan microarrays. Classical swine influenza viruses from the α, β, and γ antigenic clusters isolated between 1945 and 2009 revealed a binding profile very similar to that of 2009 pandemic H1N1 viruses, with selectivity for α2-6-linked sialosides and very limited binding to α2-3 sialosides. Despite considerable genetic divergence, the ‘human-like’ H1N1 viruses circulating in swine retained strong binding preference for α2-6 sialylated glycans. Interspecies transmission of H1N1 influenza viruses from swine to humans or from humans to swine has not driven selection of viruses with distinct novel receptor binding specificities. Classical swine and human seasonal H1N1 influenza viruses have conserved specificity for similar α2-6-sialoside receptors in spite of long term circulation in separate hosts, suggesting that humans and swine impose analogous selection pressures on the evolution of receptor binding function. PMID:21333316

  20. The Use of Bioaerosol Sampling for Airborne Virus Surveillance in Swine Production Facilities: A Mini Review.

    Science.gov (United States)

    Anderson, Benjamin D; Lednicky, John A; Torremorell, Montserrat; Gray, Gregory C

    2017-01-01

    Modern swine production facilities typically house dense populations of pigs and may harbor a variety of potentially zoonotic viruses that can pass from one pig generation to another and periodically infect human caretakers. Bioaerosol sampling is a common technique that has been used to conduct microbial risk assessments in swine production, and other similar settings, for a number of years. However, much of this work seems to have been focused on the detection of non-viral microbial agents (i.e., bacteria, fungi, endotoxins, etc.), and efforts to detect viral aerosols in pig farms seem sparse. Data generated by such studies would be particularly useful for assessments of virus transmission and ecology. Here, we summarize the results of a literature review conducted to identify published articles related to bioaerosol generation and detection within swine production facilities, with a focus on airborne viruses. We identified 73 scientific reports, published between 1991 and 2017, which were included in this review. Of these, 19 (26.7%) used sampling methodology for the detection of viruses. Our findings show that bioaerosol sampling methodologies in swine production settings have predominately focused on the detection of bacteria and fungi, with no apparent standardization between different approaches. Information, specifically regarding virus aerosol burden in swine production settings, appears to be limited. However, the number of viral aerosol studies has markedly increased in the past 5 years. With the advent of new sampling technologies and improved diagnostics, viral bioaerosol sampling could be a promising way to conduct non-invasive viral surveillance among swine farms.

  1. The Use of Bioaerosol Sampling for Airborne Virus Surveillance in Swine Production Facilities: A Mini Review

    Directory of Open Access Journals (Sweden)

    Benjamin D. Anderson

    2017-07-01

    Full Text Available Modern swine production facilities typically house dense populations of pigs and may harbor a variety of potentially zoonotic viruses that can pass from one pig generation to another and periodically infect human caretakers. Bioaerosol sampling is a common technique that has been used to conduct microbial risk assessments in swine production, and other similar settings, for a number of years. However, much of this work seems to have been focused on the detection of non-viral microbial agents (i.e., bacteria, fungi, endotoxins, etc., and efforts to detect viral aerosols in pig farms seem sparse. Data generated by such studies would be particularly useful for assessments of virus transmission and ecology. Here, we summarize the results of a literature review conducted to identify published articles related to bioaerosol generation and detection within swine production facilities, with a focus on airborne viruses. We identified 73 scientific reports, published between 1991 and 2017, which were included in this review. Of these, 19 (26.7% used sampling methodology for the detection of viruses. Our findings show that bioaerosol sampling methodologies in swine production settings have predominately focused on the detection of bacteria and fungi, with no apparent standardization between different approaches. Information, specifically regarding virus aerosol burden in swine production settings, appears to be limited. However, the number of viral aerosol studies has markedly increased in the past 5 years. With the advent of new sampling technologies and improved diagnostics, viral bioaerosol sampling could be a promising way to conduct non-invasive viral surveillance among swine farms.

  2. Antiviral Activity of Porcine Interferon Regulatory Factor 1 against Swine Viruses in Cell Culture.

    Science.gov (United States)

    Li, Yongtao; Chang, Hongtao; Yang, Xia; Zhao, Yongxiang; Chen, Lu; Wang, Xinwei; Liu, Hongying; Wang, Chuanqing; Zhao, Jun

    2015-11-17

    Interferon regulatory factor 1 (IRF1), as an important transcription factor, is abundantly induced upon virus infections and participates in host antiviral immune responses. However, the roles of porcine IRF1 (poIRF1) in host antiviral defense remain poorly understood. In this study, we determined that poIRF1 was upregulated upon infection with viruses and distributed in nucleus in porcine PK-15 cells. Subsequently, we tested the antiviral activities of poIRF1 against several swine viruses in cells. Overexpression of poIRF1 can efficiently suppress the replication of viruses, and knockdown of poIRF1 promotes moderately viral replication. Interestingly, overexpression of poIRF1 enhances dsRNA-induced IFN-β and IFN-stimulated response element (ISRE) promoter activation, whereas knockdown of poIRF1 cannot significantly affect the activation of IFN-β promoter induced by RNA viruses. This study suggests that poIRF1 plays a significant role in cellular antiviral response against swine viruses, but might be dispensable for IFN-β induction triggered by RNA viruses in PK-15 cells. Given these results, poIRF1 plays potential roles in cellular antiviral responses against swine viruses.

  3. Propidium Monoazide Coupled with PCR Predicts Infectivity of Enteric Viruses in Swine Manure and Biofertilized Soil.

    Science.gov (United States)

    Fongaro, Gislaine; Hernández, Marta; García-González, María Cruz; Barardi, Célia Regina Monte; Rodríguez-Lázaro, David

    2016-03-01

    The use of propidium monoazide (PMA) coupled with real-time PCR (RT-qPCR or qPCR for RNA or DNA viruses, respectively) was assessed to discriminate infectious enteric viruses in swine raw manure, swine effluent from anaerobic biodigester (AB) and biofertilized soils. Those samples were spiked either with infectious and heat-inactivated human adenovirus-2 (HAdV-2) or mengovirus (vMC0), and PMA-qPCR/RT-qPCR allowed discriminating inactivated viruses from the infective particles, with significant reductions (>99.9%). Then, the procedure was further assayed to evaluate the presence and stability of two non-cultivable viruses (porcine adenovirus and rotavirus A) in natural samples (swine raw manure, swine effluent from AB and biofertilized soils); it demonstrated viral inactivation during the storage period at 23 °C. As a result, the combination of PMA coupled to real-time PCR can be a promising alternative for prediction of viral infectivity in comparison to more labour-intensive and costly techniques such as animal or tissue-culture infectivity methods, and for those viruses that do not have currently available cell culture techniques.

  4. Presence of influenza viruses in backyard poultry and swine in El Yali wetland, Chile.

    Science.gov (United States)

    Bravo-Vasquez, N; Di Pillo, F; Lazo, A; Jiménez-Bluhm, P; Schultz-Cherry, S; Hamilton-West, C

    2016-11-01

    In South America little is known regarding influenza virus circulating in backyard poultry and swine populations. Backyard productive systems (BPS) that breed swine and poultry are widely distributed throughout Chile with high density in the central zone, and several BPS are located within the "El Yali" (EY) ecosystem, which is one of the most important wetlands in South America. Here, 130 different wild bird species have been described, of them, at least 22 species migrate yearly from North America for nesting. For this reason, EY is considered as a high-risk zone for avian influenza virus. This study aims to identify if backyard poultry and swine bred in the EY ecosystem have been exposed to influenza A virus and if so, to identify influenza virus subtypes. A biosecurity and handling survey was applied and samples were collected from BPS in two seasons (spring 2013 and fall 2014) for influenza seroprevalence, and in one season (fall 2014) for virus presence. Seroprevalence at BPS level was 42% (95% CI:22-49) during spring 2013 and 60% (95% CI 43-72) in fall 2014. rRT-PCR for the influenza A matrix gene indicated a viral prevalence of 27% (95% CI:14-39) at BPS level in fall 2014. Eight farms (73% of rRT-PCR positive farms) were also positive to the Elisa test at the same time. One BPS was simultaneously positive (rRT-PCR) in multiple species (poultry, swine and geese) and a H1N2 virus was identified from swine, exemplifying the risk that these BPS may pose for generation of novel influenza viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Flu Widget

    Science.gov (United States)

    ... What are Flu Antiviral Drugs Antiviral Drug Resistance Mixing Oseltamivir Capsules For Children What to do if ... PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple Quicktime file RealPlayer file Text ...

  6. Diagnosing Flu

    Science.gov (United States)

    ... What are Flu Antiviral Drugs Antiviral Drug Resistance Mixing Oseltamivir Capsules For Children What to do if ... PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple Quicktime file RealPlayer file Text ...

  7. Influenza (Flu)

    Science.gov (United States)

    ... develop influenza. Weakened immune system. Cancer treatments, anti-rejection drugs, corticosteroids and HIV/AIDS can weaken your ... for Disease Control and Prevention recommends annual flu vaccination for everyone over the age of 6 months. ...

  8. Grid attacks avian flu

    CERN Multimedia

    2006-01-01

    During April, a collaboration of Asian and European laboratories analysed 300,000 possible drug components against the avian flu virus H5N1 using the EGEE Grid infrastructure. Schematic presentation of the avian flu virus.The distribution of the EGEE sites in the world on which the avian flu scan was performed. The goal was to find potential compounds that can inhibit the activities of an enzyme on the surface of the influenza virus, the so-called neuraminidase, subtype N1. Using the Grid to identify the most promising leads for biological tests could speed up the development process for drugs against the influenza virus. Co-ordinated by CERN and funded by the European Commission, the EGEE project (Enabling Grids for E-sciencE) aims to set up a worldwide grid infrastructure for science. The challenge of the in silico drug discovery application is to identify those molecules which can dock on the active sites of the virus in order to inhibit its action. To study the impact of small scale mutations on drug r...

  9. Differentiated swine airway epithelial cell cultures for the investigation of influenza A virus infection and replication

    OpenAIRE

    Bateman, Allen C.; Karasin, Alexander I.; Olsen, Christopher W.

    2012-01-01

    Please cite this paper as: Bateman et al. (2013) Differentiated swine airway epithelial cell cultures for the investigation of influenza A virus infection and replication. Influenza and Other Respiratory Viruses 7(2) 139–150. Background  Differentiated human airway epithelial cell cultures have been utilized to investigate cystic fibrosis, wound healing, and characteristics of viral infections. These cultures, grown at an air–liquid interface (ALI) in media with defined hormones and growth fa...

  10. First Isolation of Hepatitis E Virus Genotype 4 in Europe through Swine Surveillance in the Netherlands and Belgium

    Science.gov (United States)

    Hakze-van der Honing, Renate W.; van Coillie, Els; Antonis, Adriaan F. G.; van der Poel, Wim H. M.

    2011-01-01

    Hepatitis E virus (HEV) genotypes 3 and 4 are a cause of human hepatitis and swine are considered the main reservoir. To study the HEV prevalence and characterize circulating HEV strains, fecal samples from swine in the Netherlands and Belgium were tested by RT-PCR. HEV prevalence in swine was 7–15%. The Dutch strains were characterized as genotype 3, subgroups 3a, 3c and 3f, closely related to sequences found in humans and swine earlier. The HEV strains found in Belgium belonged to genotypes 3f and 4b. The HEV genotype 4 strain was the first ever reported in swine in Europe and an experimental infection in pigs was performed to isolate the virus. The genotype 4 strain readily infected piglets and caused fever and virus shedding. Since HEV4 infections have been reported to run a more severe clinical course in humans this observation may have public health implications. PMID:21829641

  11. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus

    Science.gov (United States)

    African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs. There are no vaccines to control Africa swine fever (ASF). Experimental vaccines have been developed using genetically modified live attenuated ASFVs obtained by specifically de...

  12. Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate results in virus attenuation and may be a potential virus vaccine strain

    Science.gov (United States)

    African Swine Fever Virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs that has significant economic consequences for the swine industry. The control of African Swine Fever (ASF) has been hampered by the unavailability of vaccines. Successful experi...

  13. Molecular epidemiology of current classical swine fever virus isolates of wild boar in Germany

    DEFF Research Database (Denmark)

    Leifer, I; Hoffmann, B; Höper, D

    2010-01-01

    Classical swine fever (CSF) has caused significant economic losses in industrialized pig production, and is still present in some European countries. Recent CSF outbreaks in Europe were mainly associated with strains of genogroup 2 (subgroup 2.3). Although there are extensive datasets regarding 2.......3 strains, there is very little information available on longer fragments or whole classical swine fever virus (CSFV) genomes. Furthermore, there are no detailed analyses of the molecular epidemiology of CSFV wild boar isolates available. Nevertheless, complete genome sequences are supportive...

  14. Bioinformatics prediction of swine MHC class I epitopes from Porcine Reproductive and Respiratory Syndrome Virus

    DEFF Research Database (Denmark)

    Welner, Simon; Nielsen, Morten; Lund, Ole

    an effective CTL response against PRRSV, we have taken a bioinformatics approach to identify common PRRSV epitopes predicted to react broadly with predominant swine MHC (SLA) alleles. First, the genomic integrity and sequencing method was examined for 334 available complete PRRSV type 2 genomes leaving 104...... by the PopCover algorithm, providing a final list of 54 epitopes prioritized according to maximum coverage of PRRSV strains and SLA alleles. This bioinformatics approach provides a rational strategy for selecting peptides for a CTL-activating vaccine with broad coverage of both virus and swine diversity...

  15. Pathogenic characteristics of a novel triple-reasserted H1N2 swine influenza virus.

    Science.gov (United States)

    Liu, Huili; Tao, Jie; Zhang, Pengchao; Yin, Xiuchen; Ha, Zhuo; Zhang, Chunling

    2016-07-01

    A novel triple reasserted H1N2 virus A/swine/Shanghai/1/2007 (SH07) was isolated from nasal swabs of weaned pig showing clinical symptoms of coughing and sneezing. To explore the virus characteristics, mice, chickens and pigs were selected for pathogenicity study. Pigs inoculated intranasally with 10(6) TCID50 SH07 showed clinical symptoms with coughing and sneezing, but no death. The virus nuclear acid was detected in many tissues using real-time PCR, which was mainly distributed in respiratory system particularly in the lungs. The virus was low-pathogenic to chickens with 10(6) TCID50 dose inoculation either via intramuscular or intranasal routes. However virus nuclear acid detection and virus isolation confirmed that the virus can also be found in nasal and rectum. When virus was inoculated into mice by intramuscular or intranasal routes we observed 100% and 80% lethality respectively. The third generation of samples passaged on MDCK cell were SIV positive in indirect immunofluorescence assay (IFA) using antiserum against H1N2 SIV. Furthermore, the lungs of mice showed obvious lesion with interstitial pneumonia. Data in our study suggest that SH07 is preferentially pathogenic to mammals rather than birds although it is a reasserting virus with the fragments from swine, human and avian origin. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  16. Protective efficacy of a virus-vectored multi-component vaccine against porcine reproductive and respiratory syndrome virus, porcine circovirus type 2 and swine influenza virus.

    Science.gov (United States)

    Tian, Debin; Sooryanarain, Harini; Matzinger, Shannon R; Gauger, Phil C; Karuppannan, Anbu K; Elankumaran, Subbiah; Opriessnig, Tanja; Meng, Xiang-Jin

    2017-12-01

    Porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2) and swine influenza virus (SIV) are three of the most economically important swine pathogens, causing immense economic losses to the global swine industry. Monovalent commercial vaccines against each of the three viruses are routinely used in pig farms worldwide. A trivalent vaccine against all three pathogens would greatly simplify the vaccination programme and reduce the financial burden to the swine industry. In this study, by using an attenuated strain of PRRSV (strain DS722) as a live virus vector, we generated a multi-component vaccine virus, DS722-SIV-PCV2, which expresses the protective antigens from SIV and PCV2. The DS722-SIV-PCV2 trivalent vaccine virus replicates well, and expresses PCV2 capsid and SIV HA proteins in vitro. A subsequent vaccination and challenge study in 48 pigs revealed that the DS722-SIV-PCV2-vaccinated pigs had significantly reduced lung lesions and viral RNA loads when challenged with PRRSV. Upon challenge with PCV2, the vaccinated pigs had partially reduced lymphoid lesions and viral DNA loads, and when challenged with SIV the vaccinated pigs had significantly reduced acute respiratory sign scores. The results from this study demonstrate the potential of DS722-SIV-PCV2 as a candidate trivalent vaccine, and also shed light on exploring PRRSV as a potential live virus vaccine vector.

  17. Pre-infection of pigs with Mycoplasma hyopneumoniae modifies outcomes of infection with European swine influenza virus of H1N1, but not H1N2, subtype.

    Science.gov (United States)

    Deblanc, C; Gorin, S; Quéguiner, S; Gautier-Bouchardon, A V; Ferré, S; Amenna, N; Cariolet, R; Simon, G

    2012-05-25

    Swine influenza virus (SIV) and Mycoplasma hyopneumoniae (Mhp) are widespread in farms and are major pathogens involved in the porcine respiratory disease complex (PRDC). The aim of this experiment was to compare the pathogenicity of European avian-like swine H1N1 and European human-like reassortant swine H1N2 viruses in naïve pigs and in pigs previously infected with Mhp. Six groups of SPF pigs were inoculated intra-tracheally with either Mhp, or H1N1, or H1N2 or Mhp+H1N1 or Mhp+H1N2, both pathogens being inoculated at 21 days intervals in these two last groups. A mock-infected group was included. Although both SIV strains induced clinical signs when singly inoculated, results indicated that the H1N2 SIV was more pathogenic than the H1N1 virus, with an earlier shedding and a greater spread in lungs. Initial infection with Mhp before SIV inoculation increased flu clinical signs and pathogenesis (hyperthermia, loss of appetite, pneumonia lesions) due to the H1N1 virus but did not modify significantly outcomes of H1N2 infection. Thus, Mhp and SIV H1N1 appeared to act synergistically, whereas Mhp and SIV H1N2 would compete, as H1N2 infection led to the elimination of Mhp in lung diaphragmatic lobes. In conclusion, SIV would be a risk factor for the severity of respiratory disorders when associated with Mhp, depending on the viral subtype involved. This experimental model of coinfection with Mhp and avian-like swine H1N1 is a relevant tool for studying the pathogenesis of SIV-associated PRDC and testing intervention strategies for the control of the disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Accelerating vaccine development for African swine fever virus ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-01-12

    Jan 12, 2018 ... Photo: IDRC / Bartay The challenge African swine fever (ASF) is a highly infectious hemorrhagic viral disease that wipes out entire herds of infected pigs. ASF is widespread in at least half of sub-Saharan Africa, and threatens food security due to devastating economic losses.

  19. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model.

    Science.gov (United States)

    Carlson, Jolene; O'Donnell, Vivian; Alfano, Marialexia; Velazquez Salinas, Lauro; Holinka, Lauren G; Krug, Peter W; Gladue, Douglas P; Higgs, Stephen; Borca, Manuel V

    2016-10-22

    African swine fever (ASF) is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV). There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4) virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus) is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi) showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi). This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN)-γ responses, or specific cytokine profiles) and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  20. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model

    Directory of Open Access Journals (Sweden)

    Jolene Carlson

    2016-10-01

    Full Text Available African swine fever (ASF is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV. There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4 virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi. This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN-γ responses, or specific cytokine profiles and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  1. Replication of influenza A virus in swine umbilical cord epithelial stem-like cells.

    Science.gov (United States)

    Khatri, Mahesh; Chattha, Kuldeep S

    2015-01-01

    In this study, we describe the isolation and characterization of epithelial stem-like cells from the swine umbilical cord and their susceptibility to influenza virus infection. Swine umbilical cord epithelial stem cells (SUCECs) expressed stem cell and pluripotency associated markers such as SSEA-1, SSEA-4, TRA 1-60 and TRA 1-81 and Oct4. Morphologically, cells displayed polygonal morphology and were found to express epithelial markers; pancytokeratin, cytokeratin-18 and occludin; mesenchymal cell markers CD44, CD90 and haematopoietic cell marker CD45 were not detected on these cells. The cells had extensive proliferation and self- renewal properties. The cells also possessed immunomodulatory activity and inhibited the proliferation of T cells. Also, higher levels of anti-inflammatory cytokine IL-10 were detected in SUCEC-T cell co-cultures. The cells were multipotent and differentiated into lung epithelial cells when cultured in epithelial differentiation media. We also examined if SUCECs are susceptible to infection with influenza virus. SUCECs expressed sialic acid receptors, used by influenza virus for binding to cells. The 2009 pandemic influenza virus and swine influenza virus replicated in these cells. SUCECs due to their differentiation and immunoregulatory properties will be useful as cellular therapy in a pig model for human diseases. Additionally, our data indicate that influenza virus can infect SUCECs and may transmit influenza virus from mother to fetus through umbilical cord and transplantation of influenza virus-infected stem cells may transmit infection to recipients. Therefore, we propose that umbilical cord cells, in addition to other agents, should also be tested for influenza virus before cryopreservation for future use as a cell therapy for disease conditions.

  2. Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets

    NARCIS (Netherlands)

    V.J. Munster (Vincent); E. de Wit (Emmie); J.M.A. van den Brand (Judith); S. Herfst (Sander); E.J.A. Schrauwen (Eefje); T.M. Bestebroer (Theo); D.A.M.C. van de Vijver (David); C.A.B. Boucher (Charles); M.P.G. Koopmans D.V.M. (Marion); G.F. Rimmelzwaan (Guus); T. Kuiken (Thijs); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron)

    2009-01-01

    textabstractThe swine-origin A(H1N1) influenza virus that has emerged in humans in early 2009 has raised concerns about pandemic developments. In a ferret pathogenesis and transmission model, the 2009 A(H1N1) influenza virus was found to be more pathogenic than a seasonal A(H1N1) virus, with more

  3. Avian-like A (H1N1) swine influenza virus antibodies among swine farm residents and pigs in southern China.

    Science.gov (United States)

    Zhou, Han; Cao, Zhenpeng; Tan, Likai; Fu, Xinliang; Lu, Gang; Qi, Wenbao; Ke, Changwen; Wang, Heng; Sun, Lingshuang; Zhang, Guihong

    2014-01-01

    Infection of human with avian-like A (H1N1) swine influenza virus (SIV) occasionally occurs in China, suggesting a potential risk of cross-species transmission of the swine influenza H1N1 virus from pigs to humans, particularly to those having direct contact with pigs. A seroepidemiological study was conducted to assess the prevalence of antibodies against the avian-like A (H1N1) SIV among swine farm residents and pigs in southern China to evaluate the risk of infection to swine farm workers. Hemagglutination inhibition (HI) assays revealed that 11.17% (61/546) of the sera samples from swine farm residents in southern China were positive for antibodies against the avian-like A (H1N1) SIV. The difference in numbers of antibody-positive samples obtained from swine farm residents and a control group of healthy city residents was statistically significant (P = 0.031). In addition, 219 of the 1,180 serum samples from pigs were positive for the antibodies against an avian-like A (H1N1) SIV, A/swine/Guangdong/SS1/2013(H1N1), as assessed by HI. The data suggest that occupational exposure of swine farm residents and veterinarians in southern China to pigs may increase their risk of acquiring avian-like A (H1N1) SIV infection. According to a special pig farming model in southern China, the staff and residents are in close contact with infected pigs and may be among the first to become infected.

  4. Integrin β3 is required in infection and proliferation of classical swine fever virus.

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    Full Text Available Classical Swine Fever (CSF is a highly infectious fatal pig disease, resulting in huge economic loss to the swine industry. Integrins are membrane-bound signal mediators, expressed on a variety of cell surfaces and are known as receptors or co-receptors for many viruses. However, the role of integrin β3 in CSFV infection is unknown. Here, through quantitive PCR, immunofluorescence (IFC and immunocytohistochemistry (ICC, we revealed that ST (swine testicles epithelial cells have a prominent advantage in CSFV proliferation as compared to EC (swine umbilical vein endothelial cell, IEC (swine intestinal epithelial cell and PK (porcine kidney epithelial cells. Meanwhile, ST cells had remarkably more integrin β3 expression as compared to EC, IEC and PK cells, which was positively correlated with CSFV infection and proliferation. Integrin β3 was up-regulated post CSFV infection in all the four cell lines, while the CSFV proliferation rate was decreased in integrin β3 function-blocked cells. ShRNA1755 dramatically decreased integrin β3, with a deficiency of 96% at the mRNA level and 80% at the protein level. CSFV proliferation was dramatically reduced in integrin β3 constantly-defected cells (ICDC, with the deficiencies of 92.6%, 99% and 81.7% at 24 h, 48 h and 72 h post CSFV infection, respectively. These results demonstrate that integrin β3 is required in CSFV infection and proliferation, which provide a new insight into the mechanism of CSFV infection.

  5. Flu (Influenza): Information for Parents

    Science.gov (United States)

    ... No, flu vaccines do not cause flu. Flu vaccine protects your child from flu illness. However, flu shots can sometimes ... will take about 2 weeks after getting his vaccine for your child to build protection against flu. Why does my ...

  6. Expression Dynamics of Innate Immunity in Influenza Virus-Infected Swine

    Directory of Open Access Journals (Sweden)

    Massimo Amadori

    2017-04-01

    Full Text Available The current circulating swine influenza virus (IV subtypes in Europe (H1N1, H1N2, and H3N2 are associated with clinical outbreaks of disease. However, we showed that pigs could be susceptible to other IV strains that are able to cross the species barrier. In this work, we extended our investigations into whether different IV strains able to cross the species barrier might give rise to different innate immune responses that could be associated with pathological lesions. For this purpose, we used the same samples collected in a previous study of ours, in which healthy pigs had been infected with a H3N2 Swine IV and four different H3N8 IV strains circulating in different animal species. Pigs had been clinically inspected and four subjects/group were sacrificed at 3, 6, and 21 days post infection. In the present study, all groups but mock exhibited antibody responses to IV nucleoprotein protein. Pulmonary lesions and high-titered viral replication were observed in pigs infected with the swine-adapted virus. Interestingly, pigs infected with avian and seal H3N8 strains also showed moderate lesions and viral replication, whereas equine and canine IVs did not cause overt pathological signs, and replication was barely detectable. Swine IV infection induced interferon (IFN-alpha and interleukin-6 responses in bronchoalveolar fluids (BALF at day 3 post infection, as opposed to the other non-swine-adapted virus strains. However, IFN-alpha responses to the swine-adapted virus were not associated with an increase of the local, constitutive expression of IFN-alpha genes. Remarkably, the Equine strain gave rise to a Serum Amyloid A response in BALF despite little if any replication. Each virus strain could be associated with expression of cytokine genes and/or proteins after infection. These responses were observed well beyond the period of virus replication, suggesting a prolonged homeostatic imbalance of the innate immune system.

  7. Flu: What to Do If You Get Sick

    Science.gov (United States)

    ... do have it. What are the emergency warning signs of flu sickness? In children Fast breathing or ... type="submit" value="Submit" /> Archived Flu Emails Influenza Types Seasonal Avian Swine Variant Pandemic Other Language: English (US) Español ...

  8. Recoding structural glycoprotein E2 in classical swine fever virus (CSFV) produces complete virus attenuation in swine and protects infected animals against disease.

    Science.gov (United States)

    Velazquez-Salinas, Lauro; Risatti, Guillermo R; Holinka, Lauren G; O'Donnell, Vivian; Carlson, Jolene; Alfano, Marialexia; Rodriguez, Luis L; Carrillo, Consuelo; Gladue, Douglas P; Borca, Manuel V

    2016-07-01

    Controlling classical swine fever (CSF) mainly involves vaccination with live attenuated vaccines (LAV). Experimental CSFV LAVs has been lately developed through reverse genetics using several different approaches. Here we present that codon de-optimization in the major CSFV structural glycoprotein E2 coding region, causes virus attenuation in swine. Four different mutated constructs (pCSFm1-pCSFm4) were designed using various mutational approaches based on the genetic background of the highly virulent strain Brescia (BICv). Three of these constructs produced infectious viruses (CSFm2v, CSFm3v, and CSFm4v). Animals infected with CSFm2v presented a reduced and extended viremia but did not display any CSF-related clinical signs. Animals that were infected with CSFm2v were protected against challenge with virulent parental BICv. This is the first report describing the development of an attenuated CSFV experimental vaccine by codon usage de-optimization, and one of the few examples of virus attenuation using this methodology that is assessed in a natural host. Published by Elsevier Inc.

  9. Phylogenetic characterization of classical swine fever viruses isolated in Korea between 1988 and 2003.

    Science.gov (United States)

    Cha, Sang-Ho; Choi, Eun-Jin; Park, Jong-Hyun; Yoon, So-Ra; Kwon, Jun-Hun; Yoon, Kyoung-Jin; Song, Jae-Young

    2007-06-01

    Twenty-four isolates of classical swine fever (CSF) virus which were obtained from CSF outbreaks during 1988 and 2003 in the Republic of Korea were genetically characterized for partial E2 gene (190 nucleotides) and compared with CSF viruses reported by other countries. Phylogenetic analyses classified Korean field isolates between1988 and 1999 into subgroup 3.2, forming an independent clade distinct from CSF viruses identified in other countries. In contrast, the viruses isolated during 2002-2003 CSF epidemics were classified into a different subgroup (2.1). The 2.1 viruses showed a close genetic relationship (92.1-100% nucleotide similarity) with CSF viruses reported from China and Taiwan in 1998-2001. As no evidence of CSF virus infection was detected in the wild boar (Sus scrofa coreanus) population that inhabits Korea, the results of molecular characterization strongly suggest that CSF epidemic outbreaks in Korean swine populations during 2002-2003 were attributed to the introduction of a new strain or strains, likely from neighboring countries.

  10. FluView National Flu Activity Map

    Data.gov (United States)

    U.S. Department of Health & Human Services — The FluView National Flu Activity Map is a complementary widget to the state-by-state flu map widget introduced in the 2007-2008 flu season. This interactive map...

  11. Reassortment between swine H3N2 and 2009 pandemic H1N1 in the United States resulted in influenza A viruses with diverse genetic constellations with variable virulence in pigs

    Science.gov (United States)

    Repeated spillovers of the H1N1 pandemic virus (H1N1pdm09) from humans to pigs resulted in substantial evolution of swine influenza viruses, contributing to the genetic and antigenic diversity of influenza A virus (IAV) currently circulating in swine. The reassortment with endemic swine viruses and ...

  12. Genotyping of African swine fever virus (ASFV) isolates associated ...

    African Journals Online (AJOL)

    Four of these viruses were isolated directly from serum samples. All the viruses were classified within the ... To define virus relationships at higher resolution, typing was performed by analysis of tetrameric amino acid repeat regions within the central variable region (CVR) of the B602L gene. Ugandan isolates sequences ...

  13. Monitoring the determinants of efficient viral replication using Classical Swine Fever Virus-reporter replicons

    DEFF Research Database (Denmark)

    Risager, Peter Christian; Everett, Helen; Crooke, Helen

    2012-01-01

    Classical swine fever virus (CSFV) is the etiological agent of the severe porcine disease, classical swine fever. Unraveling the molecular determinants of efficient replication is crucial for gaining improved knowledge of the pathogenic features of this virus. Monitoring the replication competence...... of the CSFV genome within cells can be achieved using autonomously replicating constructs (replicons) containing a reporter gene that expresses a readily quantifiable enzyme. Here, a newly implemented cloning technique was applied to genome modification of the fulllength CSFV cDNA previously inserted...... proteins considered non-essential for RNA replication were constructed and these deletions were replaced with an in-frame insertion of the Renilla luciferase (Rluc) sequence. RNA transcripts from these replicons should be translated as a single functional open reading frame. Full-genome cDNAs (~10-12,3 kb...

  14. Evaluation of the molecular Xpert Xpress Flu/RSV assay vs. Alere i Influenza A & B assay for rapid detection of influenza viruses.

    Science.gov (United States)

    Chen, J H; Lam, H Y; Yip, C C; Cheng, V C; Chan, J F; Leung, T H; Sridhar, S; Chan, K H; Tang, B S; Yuen, K Y

    2018-03-01

    A new FDA-approved Xpert Xpress Flu/RSV assay has been released for rapid influenza virus detection. We collected 134 nasopharyngeal specimens to compare the diagnostic performance of the Xpert assay and the Alere i Influenza A & B assay for influenza A and B virus detection. The Xpert assay demonstrated 100% and 96.3% sensitivity to influenza A and influenza B virus respectively. Its specificity was 100% for both viruses. The Alere i assay demonstrated slightly lower sensitivity but similar specificity to the Xpert Xpress assay. Although the Xpert assay (30 min) required longer processing time than the Alere assay (15 min), the handling procedure of the Alere assay was more complicated than the Xpert assay. As the GenXpert system has higher throughput than the Alere system, it is more suitable for hospital clinical laboratories. Overall, the new Xpert Xpress Flu/RSV assay is a reliable and useful tool for rapid influenza detection. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Virological and serological study of human infection with swine influenza A H1N1 virus in China.

    Science.gov (United States)

    Zu, Rongqiang; Dong, Libo; Qi, Xian; Wang, Dayan; Zou, Shumei; Bai, Tian; Li, Ming; Li, Xiaodan; Zhao, Xiang; Xu, Cuiling; Huo, Xiang; Xiang, Nijuan; Yang, Shuai; Li, Zi; Xu, Zhen; Wang, Hua; Shu, Yuelong

    2013-11-01

    Pigs are considered to be "mixing vessels" for the emergence of influenza viruses with pandemic potential. 2009 Pandemic Influenza H1N1 further proved this hypothesis, and raised the needs for risk assessment of human cases caused by swine influenza virus. A field investigation was conducted after a case identified with infection of European avian-like swine influenza H1N1 virus. The diagnosis was confirmed by real-time PCR, virus isolation, whole genome sequencing and serological assays. Samples from local pigs and close contacts were tested to identify the source of infection and route of transmission. The virus from the index case was similar to viruses circulating in the local pigs. The case's grandfather was asymptomatic with sero-conversion. A total of 42.8% of swine sera were positive for European avian-like swine H1N1. This study highlighted the importance of performing surveillance on swine influenza to monitor new virus emergence in humans. © 2013 Elsevier Inc. All rights reserved.

  16. Coronavirus in Pigs: Significance and Presentation of Swine Epidemic Diarrhea Virus (PEDV in Colombia

    Directory of Open Access Journals (Sweden)

    Ricardo Piñeros

    2015-05-01

    Full Text Available The article seeks to study general aspects of the main coronaviruses affecting pigs, their presentation in Colombia, and particular aspects of porcine epidemic diarrhea virus (PEDV, emerging in different countries and generating a great impact on the health and economy of the swine industry. The main coronaviruses affecting swine are porcine transmissible gastroenteritis virus (TGEV, porcine respiratory coronavirus (PRCV, porcine hemagglutinating encephalomyelitis virus (PHEV, PEDV, and porcine deltacoronavirus (PDCoV. Long ago in Colombia there had been reports of TGEV and PRCV associated with the importation of animals from the United States, which was controlled in the infected farms and in quarantine units. PEDV was first detected in Colombia in mid-March 2014; the Colombian Agricultural Institute issued a health alert in Neiva (Huila, Fusagasugá and Silvania (Cundinamarca, and Puerto López (Meta due to the unusual presentation of epidemic vomiting and diarrhea in young and adult animals, abortion in pregnant sows, with high mortality rates (up to 100% in animals during the first week of age. At present the disease has been reported in other municipalities of the country as well as in different countries with similar clinical conditions and mortality rates in pigs with high economic losses for the swine sector.

  17. PRODUKSI KOLOSTRUM ANTIVIRUS AVIAN INFLUENZA DALAM RANGKA PENGENDALIAN INFEKSI VIRUS FLU BURUNG

    Directory of Open Access Journals (Sweden)

    A. Esfandari

    2008-08-01

    Full Text Available This experiment was conducted to study the prospect of bovine colostrum utilization to produce specific antibody as passive immunotherapy against avian influenza. Pregnant Frisian Holstein cows were injected with commercial killed Avian Influenza (AI vaccine given double doses subcutaneously three times every two weeks. Prior to vaccination, the cows were given immunomodulator 0.1 mg.kg-1 BW administered orally for three days. The animals then were injected by inactive H5N1 antigent without adjuvant intravenously to meet the dose of 104 HAU. Blood samples were collected to detect anti AI antibody using Enzyme Linked Jmmunosorbent Assay technique. Colostral samples were analysed to detect antibody against AI using Haemagglutination Inhibition technique. IgG stabilities were tested against enzyme, pH, and spray dried prosessing with inlet dan outlet temperature of 1400C and 520C.repectively. The colostral lgG efficacy on neutralizing H5N1 virus activity was determined in vitro (by using Serum Neutralization Test and protective titer measurement and in ovo (challenge test by using Embryonic Chicken Egg. The result indicated that serum antibody against H5N1 was detected one week after the second vaccination. Titer of colostral antibody against H5N1 was high (28 . Biological activity of colostral IgG remain stable at pH 5-7 and after spraying-drying prosessing, but decreased after treatment by trypsin and pepsin enzymes. The neutralization test showed that the fresh and spray dried colostral IgG against H5N1 were able to neutralize 107 EID50 AI virus H5N1 with neutralization index of 1.1 and 1.0, respectively. In conclusion, pregnant Frisian Holstein cows injected with commercial killed Avian Influenza (AI vaccine were able to produce colostral lgG against AI H5Nl

  18. Safety, immunogenicity, and efficacy of an alphavirus replicon-based swine influenza virus hemagglutinin vaccine.

    Science.gov (United States)

    Vander Veen, Ryan L; Loynachan, Alan T; Mogler, Mark A; Russell, Brandon J; Harris, D L Hank; Kamrud, Kurt I

    2012-03-02

    A single-cycle, propagation-defective replicon particle (RP) vaccine expressing a swine influenza virus hemagglutinin (HA) gene was constructed and evaluated in several different animal studies. Studies done in both the intended host (pigs) and non-host (mice) species demonstrated that the RP vaccine is not shed or spread by vaccinated animals to comingled cohorts, nor does it revert to virulence following vaccination. In addition, vaccinated pigs develop both specific humoral and IFN-γ immune responses, and young pigs are protected against homologous influenza virus challenge. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Transmission of African swine fever virus from infected pigs by direct contact and aerosol routes

    DEFF Research Database (Denmark)

    Olesen, Ann Sofie; Lohse, Louise; Boklund, Anette

    2017-01-01

    In 2014, African swine fever virus (ASFV) was introduced into the Baltic states and Poland. Since then, the disease has continued to spread within these regions, and recently, cases were reported in the Czech Republic and Romania. Currently, there is an increasing risk of ASFV introduction...... inoculation, by direct contact to infected animals and by aerosol developed acute disease characterized by viremia, fever and depression. Infectious virus was first detected in blood obtained from the inoculated pigs and then sequentially among the within-pen, between-pen and air-contact pigs. ASFV DNA...

  20. Novel reassortment of Eurasian avian-like and pandemic/2009 influenza viruses in swine: Infectious potential for humans

    OpenAIRE

    Webster, RG; Chen, X; Zhou, B; Zhu, H; Lam, TTY; Chen, H; Peiris, JSM; Guan, Y; Wang, J; Fan, X; Smith, DK; Webby, R; Chen, A

    2011-01-01

    Pigs are considered to be intermediate hosts and "mixing vessels," facilitating the genesis of pandemic influenza viruses, as demonstrated by the emergence of the 2009 H1N1 pandemic (pdm/09) virus. The prevalence and repeated introduction of the pdm/09 virus into pigs raises the possibility of generating novel swine influenza viruses with the potential to infect humans. To address this, an active influenza surveillance program was conducted with slaughtered pigs in abattoirs in southern China...

  1. Replication characteristics of swine influenza viruses in precision-cut lung slices reflect the virulence properties of the viruses.

    Science.gov (United States)

    Meng, Fandan; Punyadarsaniya, Darsaniya; Uhlenbruck, Sabine; Hennig-Pauka, Isabel; Schwegmann-Wessels, Christel; Ren, Xiaofeng; Dürrwald, Ralf; Herrler, Georg

    2013-11-13

    Precision-cut lung slices of pigs were infected with five swine influenza A viruses of different subtypes (A/sw/Potsdam/15/1981 H1N1, A/sw/Bad Griesbach/IDT5604/2006 H1N1, A/sw/Bakum/1832/2000 H1N2, A/sw/Damme/IDT5673/2006 H3N2, A/sw/Herford/IDT5932/2007 H3N2). The viruses were able to infect ciliated and mucus-producing cells. The infection of well-differentiated respiratory epithelial cells by swine influenza A viruses was analyzed with respect to the kinetics of virus release into the supernatant. The highest titres were determined for H3N2/2006 and H3N2/2007 viruses. H1N1/1981 and H1N2/2000 viruses replicated somewhat slower than the H3N2 viruses whereas a H1N1 strain from 2006 multiplied at significantly lower titres than the other strains. Regarding their ability to induce a ciliostatic effect, the two H3N2 strains were found to be most virulent. H1N1/1981 and H1N2/2000 were somewhat less virulent with respect to their effect on ciliary activity. The lowest ciliostatic effect was observed with H1N1/2006. In order to investigate whether this finding is associated with a corresponding virulence in the host, pigs were infected experimentally with H3N2/2006, H1N2/2000, H1N1/1981 and H1N1/2006 viruses. The H1N1/2006 virus was significantly less virulent than the other viruses in pigs which was in agreement with the results obtained by the in vitro-studies. These findings offer the possibility to develop an ex vivo-system that is able to assess virulence of swine influenza A viruses.

  2. The Inability to Screen Exhibition Swine for Influenza A Virus Using Body Temperature.

    Science.gov (United States)

    Bowman, A S; Nolting, J M; Workman, J D; Cooper, M; Fisher, A E; Marsh, B; Forshey, T

    2016-02-01

    Agricultural fairs create an unconventional animal-human interface that has been associated with swine-to-human transmission of influenza A virus (IAV) in recent years. Early detection of IAV-infected pigs at agricultural fairs would allow veterinarians to better protect swine and human health during these swine exhibitions. This study assessed the use of swine body temperature measurement, recorded by infrared and rectal thermometers, as a practical method to detect IAV-infected swine at agricultural fairs. In our first objective, infrared thermometers were used to record the body surface temperature of 1,092 pigs at the time of IAV nasal swab collection at the end of the exhibition period of 55 agricultural fairs. IAV was recovered from 212 (19.4%) pigs, and the difference in mean infrared body temperature measurement of IAV-positive and IAV-negative pigs was 0.83°C. In a second objective, snout wipes were collected from 1,948 pigs immediately prior to the unloading of the animals at a single large swine exhibition. Concurrent to the snout wipe collection, owners took the rectal temperatures of his/her pigs. In this case, 47 (2.4%) pigs tested positive for IAV before they entered the swine barn. The mean rectal temperatures differed by only 0.19°C between IAV-positive and IAV-negative pigs. The low prevalence of IAV among the pigs upon entry to the fair in the second objective provides evidence that limiting intraspecies spread of IAV during the fairs will likely have significant impacts on the zoonotic transmission. However, in both objectives, the high degree of similarity in the body temperature measurements between the IAV-positive and IAV-negative pigs made it impossible to set a diagnostically meaningful cut point to differentiate IAV status of the individual animals. Unfortunately, body temperature measurement cannot be used to accurately screen exhibition swine for IAV. © 2015 Blackwell Verlag GmbH.

  3. Optimal Use of Vaccines for Control of Influenza A Virus in Swine

    Science.gov (United States)

    Sandbulte, Matthew R.; Spickler, Anna R.; Zaabel, Pamela K.; Roth, James A.

    2015-01-01

    Influenza A virus in swine (IAV-S) is one of the most important infectious disease agents of swine in North America. In addition to the economic burden of IAV-S to the swine industry, the zoonotic potential of IAV-S sometimes leads to serious public health concerns. Adjuvanted, inactivated vaccines have been licensed in the United States for over 20 years, and there is also widespread usage of autogenous/custom IAV-S vaccines. Vaccination induces neutralizing antibodies and protection against infection with very similar strains. However, IAV-S strains are so diverse and prone to mutation that these vaccines often have disappointing efficacy in the field. This scientific review was developed to help veterinarians and others to identify the best available IAV-S vaccine for a particular infected herd. We describe key principles of IAV-S structure and replication, protective immunity, currently available vaccines, and vaccine technologies that show promise for the future. We discuss strategies to optimize the use of available IAV-S vaccines, based on information gathered from modern diagnostics and surveillance programs. Improvements in IAV-S immunization strategies, in both the short term and long term, will benefit swine health and productivity and potentially reduce risks to public health. PMID:26344946

  4. Optimal Use of Vaccines for Control of Influenza A Virus in Swine

    Directory of Open Access Journals (Sweden)

    Matthew R. Sandbulte

    2015-01-01

    Full Text Available Influenza A virus in swine (IAV-S is one of the most important infectious disease agents of swine in North America. In addition to the economic burden of IAV-S to the swine industry, the zoonotic potential of IAV-S sometimes leads to serious public health concerns. Adjuvanted, inactivated vaccines have been licensed in the United States for over 20 years, and there is also widespread usage of autogenous/custom IAV-S vaccines. Vaccination induces neutralizing antibodies and protection against infection with very similar strains. However, IAV-S strains are so diverse and prone to mutation that these vaccines often have disappointing efficacy in the field. This scientific review was developed to help veterinarians and others to identify the best available IAV-S vaccine for a particular infected herd. We describe key principles of IAV-S structure and replication, protective immunity, currently available vaccines, and vaccine technologies that show promise for the future. We discuss strategies to optimize the use of available IAV-S vaccines, based on information gathered from modern diagnostics and surveillance programs. Improvements in IAV-S immunization strategies, in both the short term and long term, will benefit swine health and productivity and potentially reduce risks to public health.

  5. Approaches and Perspectives for Development of African Swine Fever Virus Vaccines

    Directory of Open Access Journals (Sweden)

    Marisa Arias

    2017-10-01

    Full Text Available African swine fever (ASF is a complex disease of swine, caused by a large DNA virus belonging to the family Asfarviridae. The disease shows variable clinical signs, with high case fatality rates, up to 100%, in the acute forms. ASF is currently present in Africa and Europe where it circulates in different scenarios causing a high socio-economic impact. In most affected regions, control has not been effective in part due to lack of a vaccine. The availability of an effective and safe ASFV vaccines would support and enforce control–eradication strategies. Therefore, work leading to the rational development of protective ASF vaccines is a high priority. Several factors have hindered vaccine development, including the complexity of the ASF virus particle and the large number of proteins encoded by its genome. Many of these virus proteins inhibit the host’s immune system thus facilitating virus replication and persistence. We review previous work aimed at understanding ASFV–host interactions, including mechanisms of protective immunity, and approaches for vaccine development. These include live attenuated vaccines, and “subunit” vaccines, based on DNA, proteins, or virus vectors. In the shorter to medium term, live attenuated vaccines are the most promising and best positioned candidates. Gaps and future research directions are evaluated.

  6. Deteksi Virus Classical Swine Fever di Bali dengan RT-PCR

    Directory of Open Access Journals (Sweden)

    I Wayan Wirata

    2010-09-01

    Full Text Available Classical Swine Fever (CSF virus has been confirmed for the first time in pig in Bali. The object of thisstudy was suspected CSF cases diagnosed at the diagnostic laboratory assistantship of the Faculty ofVeterinary Medicine, Udayana University, in 2007-2008. Total number of cases was 12. Case recordsincluded the signalment of case (breed, age, body weight, and the origin of respective case, clinical signs,post-mortem lesions, and histological pictures. CSF virus was confirmed using the standardized reversetranscriptase-polymerase chain reaction (RT-PCR for CSF from European Union. One RT-PCR productwas sequenced. CSF virus was confirmed in seven out of 12 cases (58%. The cDNA sequence wasconfirmed to be specific of CSF E2 protein coding region with 98% homology to one isolate from China thatwas available in GeneBank. Further works are recommended to elucidate the sensitivity of RT-PCR, toclarify some differential diagnose, and to find out the genetic variation of CSF virus in Bali.Key words: classical swine fever virus, Bali, RT-PCR

  7. Serum neutralization as a differential serological test for classical swine fever virus and other pestivirus infections

    Directory of Open Access Journals (Sweden)

    Paredes J.C.M.

    1999-01-01

    Full Text Available Serum neutralization tests (SN were performed against classical swine fever virus (CSFV, bovine viral diarrhea virus (BVDV and border disease virus (BDV on samples of swine serum collected for screening of antibodies to CSFV, in order to determine the SN value as a differential serological test. Ninety-nine sera out of a sample of 16,664 were positive for antibodies to pestiviruses in an ELISA test which did not distinguish antibodies to different pestiviruses. When submitted to SN, 81 sera were positive for CSFV antibodies only. In 17 sera, crossreactive antibodies to either CSFV, BVDV or BDV were detected. In most of these sera (13 out of 17 the differences between SN titres against the three viruses were not sufficient to estimate which was the most likely antibody-inducing virus. It was concluded that, for the SN to be useful in such differentiation, it is essential to examine a sample which must include a representative number of sera from the same farm where suspect animals were detected. When isolated serum samples are examined, such as those obtained with the sampling strategy adopted here, the SN may give rise to inconclusive results.

  8. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian 'avian-like' H1N1 swine viruses in mice.

    Science.gov (United States)

    Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

    2014-05-01

    To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. © 2013 The Authors Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  9. First Aid: Influenza (Flu)

    Science.gov (United States)

    ... for Educators Search English Español First Aid: The Flu KidsHealth / For Parents / First Aid: The Flu Print ... tiredness What to Do If Your Child Has Flu Symptoms: Call your doctor. Encourage rest. Keep your ...

  10. Avian influenza A (H5N1) virus antibodies in pigs and residents of swine farms, southern China.

    Science.gov (United States)

    Cao, Nan; Zhu, Wanjun; Chen, Ye; Tan, Likai; Zhou, Pei; Cao, Zhenpeng; Ke, Changwen; Li, Yugu; Wu, Jie; Qi, Wenbao; Jiao, Peirong; Zhang, Guihong

    2013-12-01

    Since 1997, the H5 avian influenza viruses (AIVs) circulating in China have become an international concern. Clade 2.3.2 of H5N1 AIVs is genetically distinct from the viruses isolated before 2007 and antigenically different from the vaccine strains widely used in China. Swine farms in rural China are thought to play an important role in AIVs ecology. A seroepidemiological study was undertaken among swine farm residents and pigs to understand the prevalence of antibodies against H5N1 AIVs in southern China. During the period March 24, 2008 to December 25, 2012,serum samples were collected from 1606 swine farm residents on 40 swine farms in southern China. A total of 1980 pigs' serum samples were collected in the same swine farms where swine workers' serum samples were collected from March 2009 to March 2013. For a control group, 104 serum samples were collected from healthy city residents in Nanchang. All the serum samples were collected to perform hemagglutination inhibition (HI) and (neutralization) NT assays to investigate the prevalence of H5N1 AIV infections in southern China. Sixteen human samples were positive by HI assay and 10 of these were also positive by NT assay against H5N1. No serum samples from human control and pigs were HI positive for H5N1 AIV. Our results demonstrate minimal transmission H5N1 AIV from birds to pigs in the swine farms studied and the risk of poultry-to-human and poultry-to-pig transmission for at least clades 2.3.2 seemed very low. This study provides the first data regarding antibodies against H5N1 AIV in humans and pigs on swine farms in China. The findings of this study can serve as a baseline for additional serologic studies to assess transmission of H5N1 viruses between avian species, pigs and swine workers. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Redistribution of Endosomal Membranes to the African Swine Fever Virus Replication Site

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Cuesta-Geijo

    2017-06-01

    Full Text Available African swine fever virus (ASFV infection causes endosomal reorganization. Here, we show that the virus causes endosomal congregation close to the nucleus as the infection progresses, which is necessary to build a compact viral replication organelle. ASFV enters the cell by the endosomal pathway and reaches multivesicular late endosomes. Upon uncoating and fusion, the virus should exit to the cytosol to start replication. ASFV remodels endosomal traffic and redistributes endosomal membranes to the viral replication site. Virus replication also depends on endosomal membrane phosphoinositides (PtdIns synthesized by PIKfyve. Endosomes could act as platforms providing membranes and PtdIns, necessary for ASFV replication. Our study has revealed that ASFV reorganizes endosome dynamics, in order to ensure a productive infection.

  12. New reassortant and enzootic European swine influenza 1 viruses transmits efficiently through direct contact in the ferret model

    DEFF Research Database (Denmark)

    Fobian, Kristina; P. Fabrizio, Thomas; Yoon, Sun-Woo

    2015-01-01

    The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs...... and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titers in nasal wash- and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics...... using a differentiated human bronchial epithelial cell line showed that all four viruses were able to replicate to high titers. Further, the viruses revealed preferential binding to the α2,6-silalylated glycans and investigation of the antiviral susceptibility of the viruses revealed that all were...

  13. Swine influenza virus vaccine serologic cross-reactivity to contemporary U.S. swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011-2012 H3N2v

    Science.gov (United States)

    Background: Swine influenza A virus (IAV) reassortment with 2009 H1N1 pandemic (H1N1pdm09) virus has been documented and new genotypes and sub-clusters of H3N2 have since expanded in the U.S. swine population. An H3N2 variant (H3N2v) virus with the H1N1pdm09 matrix gene and the remaining genes of sw...

  14. PROSPEK PEMANFAATAN TELUR AYAM BERKHASIAT ANTI VIRUS AVIAN INFLUENZA DALAM USAHA PENGENDALIAN INFEKSI VIRUS FLU BURUNG DENGAN PENDEKATAN PENGEBALAN PASIF

    Directory of Open Access Journals (Sweden)

    Wibawan IWT

    2008-12-01

    Full Text Available Production of polyclonal antibody against avian influenza type H5H1 and H5N2 was done in horse, cavia and chicken using respective commercial avian influenza vaccine. The presence of specific antibody in sera as well as egg yolk was detected with haemagglutination inhibition test (HI and agar gell precipitation test (AGPT. One week after first vaccination the presence of specific antibody in chicken sera could be detected in HI test with titer 2-2 using homolog antigen. The titer value discrepancy of1-2 digits was detected using heterlog antigen. The titer of antibody increase significantly after booster treatment, in horse sera with HI value 2,2-2 in cavia and 2-2 in chicken sera.the purification of IgG and IgY was done using affinity chromatography technique . cavia Ig G had neutralization ability to AI virus H%H1 isolate 2005 with the titer of 10 EID 50 was 1,3. This indicated that by the dilution of sera 10,could neutralize all viral particles used in the assay (100%.using spray dried egg yolk containing antibody with titer 10 could neutralize 50% of AI virus 10 EID 50, and titer antibody of 10 neutralized 80% of AI virus 10 EID 50. These result indicaed a good prospect of using chicken egg for the production specific antibody (IgY AI virus and could be used in the passive immunazition

  15. In vitro reassortment between endemic H1N2 and 2009 H1N1 pandemic swine influenza viruses generates attenuated viruses.

    Directory of Open Access Journals (Sweden)

    Ben M Hause

    Full Text Available The pandemic H1N1 (pH1N1 influenza virus was first reported in humans in the spring of 2009 and soon thereafter was identified in numerous species, including swine. Reassortant viruses, presumably arising from the co-infection of pH1N1 and endemic swine influenza virus (SIV, were subsequently identified from diagnostic samples collected from swine. In this study, co-infection of swine testicle (ST cells with swine-derived endemic H1N2 (MN745 and pH1N1 (MN432 yielded two reassortant H1N2 viruses (R1 and R2, both possessing a matrix gene derived from pH1N1. In ST cells, the reassortant viruses had growth kinetics similar to the parental H1N2 virus and reached titers approximately 2 log(10 TCID(50/mL higher than the pH1N1 virus, while in A549 cells these viruses had similar growth kinetics. Intranasal challenge of pigs with H1N2, pH1N1, R1 or R2 found that all viruses were capable of infecting and transmitting between direct contact pigs as measured by real time reverse transcription PCR of nasal swabs. Lung samples were also PCR-positive for all challenge groups and influenza-associated microscopic lesions were detected by histology. Interestingly, infectious virus was detected in lung samples for pigs challenged with the parental H1N2 and pH1N1 at levels significantly higher than either reassortant virus despite similar levels of viral RNA. Results of our experiment suggested that the reassortant viruses generated through in vitro cell culture system were attenuated without gaining any selective growth advantage in pigs over the parental lineages. Thus, reassortant influenza viruses described in this study may provide a good system to study genetic basis of the attenuation and its mechanism.

  16. Identification of a new genotype of African swine fever Virus in domestic pigs from Ethiopia

    International Nuclear Information System (INIS)

    Achenbach, J.E.; Gallardo, C.; Nieto-Pelegrín, E.; Rivera-Arroyo, B.; Degefa-Negi, T.; Arias, M.; Jenberie, S.; Mulisa, D.D.; Gizaw, D.; Gelaye, E.; Chibssa, T.R.; Belaye, A.; Loitsch, A.; Forsa, M.; Yami, M.; Diallo, A.; Soler, A.; Lamien, C.E.

    2016-01-01

    Full text: African swine fever (ASF) is an important emerging transboundary animal disease (TAD), which currently has an impact on many countries in Africa, Eastern Europe, the Caucasus and the Russian Federation. The current situation in Europe shows the ability of the virus to rapidly spread, which stands to threaten the global swine industry. At present, there is no viable vaccine to minimize spread of the disease and stamping out is the main source of control. In February 2011, Ethiopia had reported its first suspected outbreaks of ASF. Genomic analyses of the collected ASF virus (ASFV) strains were undertaken using 23 tissue samples collected from domestic swine in Ethiopia from 2011 to 2014. The analysis of Ethiopian ASFVs partial p72 gene sequence showed the identification of a new genotype, genotype XXIII that shares a common ancestor with genotypes IX and X, which comprise isolates circulating in Eastern African countries and the Republic of Congo. Analysis of the p54 gene also followed the p72 pattern and the deduced amino acid sequence of the central variable region (CVR) of the B602L gene showed novel tetramer repeats not previously characterized. (author)

  17. Identification of a New Genotype of African Swine Fever Virus in Domestic Pigs from Ethiopia.

    Science.gov (United States)

    Achenbach, J E; Gallardo, C; Nieto-Pelegrín, E; Rivera-Arroyo, B; Degefa-Negi, T; Arias, M; Jenberie, S; Mulisa, D D; Gizaw, D; Gelaye, E; Chibssa, T R; Belaye, A; Loitsch, A; Forsa, M; Yami, M; Diallo, A; Soler, A; Lamien, C E; Sánchez-Vizcaíno, J M

    2017-10-01

    African swine fever (ASF) is an important emerging transboundary animal disease (TAD), which currently has an impact on many countries in Africa, Eastern Europe, the Caucasus and the Russian Federation. The current situation in Europe shows the ability of the virus to rapidly spread, which stands to threaten the global swine industry. At present, there is no viable vaccine to minimize spread of the disease and stamping out is the main source of control. In February 2011, Ethiopia had reported its first suspected outbreaks of ASF. Genomic analyses of the collected ASF virus (ASFV) strains were undertaken using 23 tissue samples collected from domestic swine in Ethiopia from 2011 to 2014. The analysis of Ethiopian ASFVs partial p72 gene sequence showed the identification of a new genotype, genotype XXIII, that shares a common ancestor with genotypes IX and X, which comprise isolates circulating in Eastern African countries and the Republic of Congo. Analysis of the p54 gene also followed the p72 pattern and the deduced amino acid sequence of the central variable region (CVR) of the B602L gene showed novel tetramer repeats not previously characterized. © 2016 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  18. Novel reassortment of Eurasian avian-like and pandemic/2009 influenza viruses in swine: infectious potential for humans.

    Science.gov (United States)

    Zhu, Huachen; Zhou, Boping; Fan, Xiaohui; Lam, Tommy T Y; Wang, Jia; Chen, Antony; Chen, Xinchun; Chen, Honglin; Webster, Robert G; Webby, Richard; Peiris, Joseph S M; Smith, David K; Guan, Yi

    2011-10-01

    Pigs are considered to be intermediate hosts and "mixing vessels," facilitating the genesis of pandemic influenza viruses, as demonstrated by the emergence of the 2009 H1N1 pandemic (pdm/09) virus. The prevalence and repeated introduction of the pdm/09 virus into pigs raises the possibility of generating novel swine influenza viruses with the potential to infect humans. To address this, an active influenza surveillance program was conducted with slaughtered pigs in abattoirs in southern China. Over 50% of the pigs tested were found to be seropositive for one or more H1 influenza viruses, most commonly pdm/09-like viruses. Out of 36 virus isolates detected, one group of novel reassortants had Eurasian avian-like swine H1N1 surface genes and pdm/09 internal genes. Animal experiments showed that this virus transmitted effectively from pig to pig and from pig to ferret, and it could also replicate in ex vivo human lung tissue. Immunization against the 2009 pandemic virus gave only partial protection to ferrets. The continuing prevalence of the pdm/09 virus in pigs could lead to the genesis of novel swine reassortant viruses with the potential to infect humans.

  19. Molecular characterization of African swine fever virus in apparently ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Dixon et al., 2000). Outbreaks of. ASF have been sporadic in the different regions .... information provided by the traders at the slaughterhouse. One ASF virus was obtained during field surveillance in Kibaale district in Western ...

  20. Flu season and trehalose

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2018-01-01

    Full Text Available Most of us who are practicing medicine know that we are in a very active flu season. This was brought home to me when last week trying to admit a patient to the hospital from the office. She was a bone marrow transplant patient who had severe diarrhea and dehydration probably secondary to C. difficile. Hospital admissions said the patient had to be sent to the Emergency Room because the hospital was full due to the flu epidemic. Nationwide there has been a dramatic increase in the number of hospitalizations due to influenza over the past week from 13.7 to 22.7 per 100,000 (1. Influenza A(H3N2 has been the most common form of influenza reported this season. These viruses are often linked to more severe illness, especially in children and people age 65 years and older. Fortunately, the CDC also says that the flu cases may be peaking. However, at ...

  1. Hepatitis E Virus (Genotype 3) in Slurry Samples from Swine Farming Activities in Italy.

    Science.gov (United States)

    La Rosa, G; Della Libera, S; Brambilla, M; Bisaglia, C; Pisani, G; Ciccaglione, A R; Bruni, R; Taffon, S; Equestre, M; Iaconelli, M

    2017-06-01

    Hepatitis E virus (HEV) is an emergent causative agent of acute hepatitis, transmitted by fecal-oral route. Infection with HEV is a global cause for morbidity and mortality throughout the world: it mainly causes large outbreaks in endemic areas and sporadic autochthonous cases in industrialized countries where HEV infections seem to be an emergent zoonotic disease. Infection of porcine livestock and its relationship with the human cases have been demonstrated. The present study describes an investigation on the prevalence and diversity of HEV in pig slurry in Italy. Slurry samples (24) were collected from ten farms located in North Italy during 2015 and analyzed for HEV, using four broad-range nested PCR assays targeting ORF1 (MTase), ORF2 (capsid) genes, and ORF2/3 regions. Overall, 18 samples (75%) were positive for HEV RNA, and characterized as genotype 3. Nine samples could be subtyped by ORF2 sequencing: Eight belonged to subtype 3f, while one sequence could not be characterized by blast analysis and phylogenetic analysis and may actually represent a new subtype. Furthermore, similarity of 99% was found between 3f Italian HEV sequences of human and swine origins. Real-Time PCR assay was also performed, in order to obtain quantitative data on positive samples. Two swine slurry samples were positive, containing 600 and 1000 UI per mL of sewage. The results of this study show that HEV strains belonging to zoonotic genotype 3 are widely present in swine excreta, and have high degree of identity with strains detected in autochthonous HEV cases. Improving swine farming operations safety and increasing operators' awareness of the zoonotic potential connected with the handling of swine effluents turn out to be key points in order to reduce the environmental and sanitary problem represented by the possible dissemination of HEV to water bodies.

  2. Real-time reverse transcription-PCR assay for differentiating the Pandemic H1N1 2009 influenza virus from swine influenza viruses.

    Science.gov (United States)

    Hiromoto, Yasuaki; Uchida, Yuko; Takemae, Nobuhiro; Hayashi, Tsuyoshi; Tsuda, Tomoyuki; Saito, Takehiko

    2010-12-01

    Since the Pandemic H1N1 2009 (H1N1pdm) influenza virus emerged in human in 2009, H1N1pdm, classical swine H1, Eurasian avian-like H1, human-like H1 and human-like H3 swine influenza viruses have circulated in pig populations, and avian H9N2 viruses have been isolated in pigs as well. In this study, TaqMan single-step real-time reverse transcription-PCR (rtRT-PCR) assays targeting the hemagglutinin gene were developed to differentiate H1N1pdm from other genetic lineages of the H1 subtype and other subtypes of influenza viruses circulating in human and pig populations for veterinary use. H1N1pdm rtRT-PCR detected H1N1pdm RNA and did not cross-react with classical swine H1, Eurasian avian-like H1, human-like H1, human-like H3 swine and avian H9 influenza viruses RNA. Classical swine H1, Eurasian avian-like H1, human-like H1 and H3 and avian H9 rtRT-PCR were reacted exclusively with viral RNA of their respective lineages and subtypes. The results demonstrate that these assays are useful for the diagnosis of the H1N1pdm virus in both human- and animal-health-related fields. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Genomic Analysis of Highly Virulent Georgia 2007/1 Isolate of African Swine Fever Virus

    Science.gov (United States)

    Chapman, David A.G.; Darby, Alistair C.; Da Silva, Melissa; Upton, Chris; Radford, Alan D.

    2011-01-01

    African swine fever is widespread in Africa but has occasionally been introduced into other continents. In June 2007, African swine fever was isolated in the Caucasus Region of the Republic of Georgia and subsequently in neighboring countries (Armenia, Azerbaijan, and 9 states of the Russian Federation). Previous data for sequencing of 3 genes indicated that the Georgia 2007/1 isolate is closely related to isolates of genotype II, which has been identified in Mozambique, Madagascar, and Zambia. We report the complete genomic coding sequence of the Georgia 2007/1 isolate and comparison with other isolates. A genome sequence of 189,344 bp encoding 166 open reading frames (ORFs) was obtained. Phylogeny based on concatenated sequences of 125 conserved ORFs showed that this isolate clustered most closely with the Mkuzi 1979 isolate. Some ORFs clustered differently, suggesting that recombination may have occurred. Results provide a baseline for monitoring genomic changes in this virus. PMID:21470447

  4. Surveillance programs in Denmark has revealed the circulation of novel reassortant influenza A viruses in swine

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2014-01-01

    by the combination of the gene segments hemagglutinin (HA) and neuraminidase (NA). In most European countries, the avian-like (av)H1N1, the 2009 pandemic variant (H1N1pdm09), H1N2 and H3N2 subtypes have constituted the dominating SIV subtypes during recent years. In Denmark, the H1N2 subtype is a reassortant between...... avH1N1 and H3N2 which is different from the dominating European H1N2 subtype (1). The prevalence of the H1N1pdm09 virus in swine has increased since 2009 in some countries including Denmark. Here we present the results of the national passive surveillance program on influenza in swine performed from...

  5. Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1 pandemic.

    Directory of Open Access Journals (Sweden)

    Samantha Cook

    Full Text Available BACKGROUND: Google Flu Trends (GFT uses anonymized, aggregated internet search activity to provide near-real time estimates of influenza activity. GFT estimates have shown a strong correlation with official influenza surveillance data. The 2009 influenza virus A (H1N1 pandemic [pH1N1] provided the first opportunity to evaluate GFT during a non-seasonal influenza outbreak. In September 2009, an updated United States GFT model was developed using data from the beginning of pH1N1. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the accuracy of each U.S. GFT model by comparing weekly estimates of ILI (influenza-like illness activity with the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet. For each GFT model we calculated the correlation and RMSE (root mean square error between model estimates and ILINet for four time periods: pre-H1N1, Summer H1N1, Winter H1N1, and H1N1 overall (Mar 2009-Dec 2009. We also compared the number of queries, query volume, and types of queries (e.g., influenza symptoms, influenza complications in each model. Both models' estimates were highly correlated with ILINet pre-H1N1 and over the entire surveillance period, although the original model underestimated the magnitude of ILI activity during pH1N1. The updated model was more correlated with ILINet than the original model during Summer H1N1 (r = 0.95 and 0.29, respectively. The updated model included more search query terms than the original model, with more queries directly related to influenza infection, whereas the original model contained more queries related to influenza complications. CONCLUSIONS: Internet search behavior changed during pH1N1, particularly in the categories "influenza complications" and "term for influenza." The complications associated with pH1N1, the fact that pH1N1 began in the summer rather than winter, and changes in health-seeking behavior each may have played a part. Both GFT models performed well prior to and during pH1

  6. Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandemic

    Science.gov (United States)

    Cook, Samantha; Conrad, Corrie; Fowlkes, Ashley L.; Mohebbi, Matthew H.

    2011-01-01

    Background Google Flu Trends (GFT) uses anonymized, aggregated internet search activity to provide near-real time estimates of influenza activity. GFT estimates have shown a strong correlation with official influenza surveillance data. The 2009 influenza virus A (H1N1) pandemic [pH1N1] provided the first opportunity to evaluate GFT during a non-seasonal influenza outbreak. In September 2009, an updated United States GFT model was developed using data from the beginning of pH1N1. Methodology/Principal Findings We evaluated the accuracy of each U.S. GFT model by comparing weekly estimates of ILI (influenza-like illness) activity with the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). For each GFT model we calculated the correlation and RMSE (root mean square error) between model estimates and ILINet for four time periods: pre-H1N1, Summer H1N1, Winter H1N1, and H1N1 overall (Mar 2009–Dec 2009). We also compared the number of queries, query volume, and types of queries (e.g., influenza symptoms, influenza complications) in each model. Both models' estimates were highly correlated with ILINet pre-H1N1 and over the entire surveillance period, although the original model underestimated the magnitude of ILI activity during pH1N1. The updated model was more correlated with ILINet than the original model during Summer H1N1 (r = 0.95 and 0.29, respectively). The updated model included more search query terms than the original model, with more queries directly related to influenza infection, whereas the original model contained more queries related to influenza complications. Conclusions Internet search behavior changed during pH1N1, particularly in the categories “influenza complications” and “term for influenza.” The complications associated with pH1N1, the fact that pH1N1 began in the summer rather than winter, and changes in health-seeking behavior each may have played a part. Both GFT models performed well prior to and during pH1N1

  7. The Molecular Determinants of Antibody Recognition and Antigenic Drift in the H3 Hemagglutinin of Swine Influenza A Virus

    Science.gov (United States)

    Abente, Eugenio J.; Santos, Jefferson; Lewis, Nicola S.; Gauger, Phillip C.; Stratton, Jered; Skepner, Eugene; Rajao, Daniela S.

    2016-01-01

    ABSTRACT Influenza A virus (IAV) of the H3 subtype is an important respiratory pathogen that affects both humans and swine. Vaccination to induce neutralizing antibodies against the surface glycoprotein hemagglutinin (HA) is the primary method used to control disease. However, due to antigenic drift, vaccine strains must be periodically updated. Six of the 7 positions previously identified in human seasonal H3 (positions 145, 155, 156, 158, 159, 189, and 193) were also indicated in swine H3 antigenic evolution. To experimentally test the effect on virus antigenicity of these 7 positions, substitutions were introduced into the HA of an isogenic swine lineage virus. We tested the antigenic effect of these introduced substitutions by using hemagglutination inhibition (HI) data with monovalent swine antisera and antigenic cartography to evaluate the antigenic phenotype of the mutant viruses. Combinations of substitutions within the antigenic motif caused significant changes in antigenicity. One virus mutant that varied at only two positions relative to the wild type had a >4-fold reduction in HI titers compared to homologous antisera. Potential changes in pathogenesis and transmission of the double mutant were evaluated in pigs. Although the double mutant had virus shedding titers and transmissibility comparable to those of the wild type, it caused a significantly lower percentage of lung lesions. Elucidating the antigenic effects of specific amino acid substitutions at these sites in swine H3 IAV has important implications for understanding IAV evolution within pigs as well as for improved vaccine development and control strategies in swine. IMPORTANCE A key component of influenza virus evolution is antigenic drift mediated by the accumulation of amino acid substitutions in the hemagglutinin (HA) protein, resulting in escape from prior immunity generated by natural infection or vaccination. Understanding which amino acid positions of the HA contribute to the ability

  8. Identification of swine influenza A virus and Stenotrophomonas maltophilia co-infection in Chinese pigs

    Directory of Open Access Journals (Sweden)

    Hou Dongjun

    2012-08-01

    Full Text Available Abstract Background Influenza virus virulence can be exacerbated by bacterial co-infections. Swine influenza virus (SIV infection together with some bacteria is found to enhance pathogenicity. Methods SIV-positive samples suspected of containing bacteria were used for bacterial isolation and identification. Antimicrobial susceptibility testing was performed by disc diffusion methods. To investigate the interaction of SIV and the bacteria in vitro, guinea pigs were used as mammalian hosts to determine the effect on viral susceptibility and transmissibility. Differences in viral titers between groups were compared using Student’s t-test. Results During surveillance for SIV in China from 2006 to 2009, seven isolates (24.14% of 29 influenza A viruses were co-isolated with Stenotrophomonas maltophilia from nasal and tracheal swab samples of pigs. Antimicrobial susceptibility testing showed that the bacteria possessed a high level of resistance towards clinically used antibiotics. To investigate the interaction between these two microorganisms in influencing viral susceptibility and transmission in humans, guinea pigs were used as an infection model. Animals were inoculated with SIV or S. maltophilia alone or co-infected with SIV and S. maltophilia. The results showed that although no transmission among guinea pigs was observed, virus–bacteria co-infections resulted in higher virus titers in nasal washes and trachea and a longer virus shedding period. Conclusions This is the first report of influenza virus co-infection with S. maltophilia in the Chinese swine population. Increased replication of virus by co-infection with multidrug resistant bacteria might increase the infection rate of SIV in humans. The control of S. maltophilia in clinics will contribute to reducing the spread of SIV in pigs and humans.

  9. Dynamic distribution and tissue tropism of classical swine fever virus in experimentally infected pigs

    Science.gov (United States)

    2011-01-01

    Background Classical swine fever (CSF), caused by the Classical swine fever virus (CSFV), is an Office International des Epizooties (OIE) notifiable disease. However, we are far from fully understand the distribution, tissue tropism, pathogenesis, replication and excretion of CSFV in pigs. In this report, we investigated the dynamic distribution and tissue tropism of the virus in internal organs of the experimentally infected pigs using real-time RT-PCR and immunohistochemistry (IHC). Results A relative quantification real-time PCR was established and used to detect the virus load in internal organs of the experimentally infected pigs. The study revealed that the virus was detected in all 21 of the internal organs and blood collected from pigs at day 1 to day 8 post infections, and had an increasing virus load from day 1 to day 8 post infections. However, there was irregular distribution virus load in most internal organs over the first 2 days post infection. Blood, lymphoid tissue, pancreas and ileum usually contain the highest viral loads, while heart, duodenum and brain show relatively low viral loads. Conclusions All the data suggest that CSFV had an increasing virus load from day 1 to day 8 post infections in experimentally infected pigs detected by real-time RT-PCR, which was in consistent with the result of the IHC staining. The data also show that CSFV was likely to reproduce in blood, lymphoid tissue, pancreas and the ileum, while unlikely to replicate in the heart, duodenum and brain. The results provide a foundation for further clarification of the pathogenic mechanism of CSFV in internal organs, and indicate that blood, lymphoid tissue, pancreas and ileum may be preferred sites of acute infection. PMID:21535885

  10. Dynamics of virus excretion via different routes in pigs experimentally infected with classical swine fever virus strains of high, moderate or low virulence

    NARCIS (Netherlands)

    Weesendorp, E.; Stegeman, A.; Loeffen, W.L.A.

    2009-01-01

    Classical swine fever virus (CSFV) is transmitted via secretions and excretions of infected pigs. The efficiency and speed of the transmission depends oil a multitude of parameters, like quantities Of Virus excreted by infected Pigs. ThiS study provides quantitative data oil excretion of CSFV over

  11. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses.

    Science.gov (United States)

    Balzli, Charles; Lager, Kelly; Vincent, Amy; Gauger, Phillip; Brockmeier, Susan; Miller, Laura; Richt, Juergen A; Ma, Wenjun; Suarez, David; Swayne, David E

    2016-07-01

    The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses and then generate mammalian adaptable influenza A viruses is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and possible epidemics among swine and/or humans. Assess susceptibility of pigs to LPAI viruses found within the United States and their direct contact transmission potential. Pigs were inoculated with one of ten H5 or H7 LPAI viruses selected from seven different bird species to test infectivity, virulence, pathogenesis, and potential to transmit virus to contact pigs through histological, RRT-PCR and seroconversion data. Although pigs were susceptible to infection with each of the LPAI viruses, no clinical disease was recognized in any pig. During the acute phase of the infection, minor pulmonary lesions were found in some pigs and one or more pigs in each group were RRT-PCR-positive in the lower respiratory tract, but no virus was detected in upper respiratory tract (negative nasal swabs). Except for one group, one or more pigs in each LPAI group developed antibody. No LPAI viruses transmitted to contact pigs. LPAI strains from various bird populations within the United States are capable of infecting pigs. Although adaptability and transmission of individual strains seem unlikely, the subclinical nature of the infections demonstrates the need to improve sampling and testing methods to more accurately measure incidence of LPAI virus infection in pigs, and their potential role in human-zoonotic LPAI virus dynamics. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  12. Antigenically diverse swine-origin H1N1 variant influenza viruses exhibit differential ferret pathogenesis and transmission phenotypes.

    Science.gov (United States)

    Pulit-Penaloza, Joanna A; Jones, Joyce; Sun, Xiangjie; Jang, Yunho; Thor, Sharmi; Belser, Jessica A; Zanders, Natosha; Creager, Hannah M; Ridenour, Callie; Wang, Li; Stark, Thomas J; Garten, Rebecca; Chen, Li-Mei; Barnes, John; Tumpey, Terrence M; Wentworth, David E; Maines, Taronna R; Davis, C Todd

    2018-03-14

    Influenza A(H1) viruses circulating in swine represent an emerging virus threat as zoonotic infections occur sporadically following exposure to swine. A fatal infection caused by an H1N1 variant (H1N1v) virus was detected in a patient with reported exposure to swine and who presented with pneumonia, respiratory failure, and cardiac arrest. To understand the genetic and phenotypic characteristics of the virus, genome sequence analysis, antigenic characterization, and ferret pathogenesis and transmissibility experiments were performed. Antigenic analysis of the virus isolated from the fatal case, A/Ohio/09/2015, demonstrated significant antigenic drift away from classical swine H1N1 variant viruses and H1N1 pandemic 2009 viruses. A substitution in the H1 hemagglutinin (G155E) was identified that likely impacted antigenicity, and reverse genetics was employed to understand the molecular mechanism of antibody escape. Reversion of the substitution to 155G, in a reverse genetics A/Ohio/09/2015 virus, showed that this residue was central to the loss of hemagglutination inhibition by ferret antisera raised against a prototypical H1N1 pandemic 2009 virus (A/California/07/2009), as well as gamma lineage classical swine H1N1 viruses, demonstrating the importance of this residue for antibody recognition of this H1 lineage. When analyzed in the ferret model, A/Ohio/09/2015 and another H1N1v virus (A/Iowa/39/2015), as well as A/California/07/2009, replicated efficiently in the respiratory tract of ferrets. The two H1N1v viruses transmitted efficiently among cohoused ferrets, but respiratory droplet transmission studies showed that A/California/07/2009 transmitted through the air more efficiently. Pre-existing immunity to A/California/07/2009 did not fully protect ferrets from challenge with A/Ohio/09/2015. IMPORTANCE Human infections with classical swine influenza A(H1N1) viruses that circulate in pigs continue to occur in the United States following exposure to swine. To

  13. Genetic drift of HA and NA in Danish swine influenza virus from the period 2003-2012

    DEFF Research Database (Denmark)

    Fobian, Kristina; Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane

    2012-01-01

    . Currently at least three influenza A subtypes (H1N1, H1N2 and H3N2) are endemic in the Danish swine population, and since 2010 the pandemic virus (H1N1pdm09) have also frequently been detected. The focus in this study will be on H1N1 and H1N2, since the prevalence of H3N2 have declined over the past years......-titers obtained by testing against a panel of reference swine influenza virus antisera are used for antigenic cartography. Preliminary phylogenetic analyses indicate a higher degree of drift for H1 genes than N1 genes. The antigenic and genetic characterization of the swine influenza virus isolates in this study...

  14. African swine fever virus introduction into the EU in 2014: Experience of Latvia.

    Science.gov (United States)

    Oļševskis, Edvīns; Guberti, Vittorio; Seržants, Mārtiņš; Westergaard, Jørgen; Gallardo, Carmina; Rodze, Ieva; Depner, Klaus

    2016-04-01

    African swine fever (ASF) virus was introduced in Latvia in June 2014. Thirty-two outbreaks in domestic pigs and 217 cases in wild boar were notified in 2014. Twenty-eight outbreaks (87.5%) were primary outbreaks. The contagiosity within pig herds was low. Failure to use simple biosecurity measures to reduce the chance of virus introduction, for example by inadvertent feeding of locally produced virus contaminated fodder were the main causes for the outbreaks in backyard holdings. The infection in wild boar survived locally in two different areas with a low prevalence and a slow spread. The persistence of the infection in wild boar within an area was most probably linked to wild boar scavenging the carcasses of infected wild boar. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Surveillance of illness associated with pandemic (H1N1) 2009 virus infection among adults using a global clinical site network approach: the INSIGHT FLU 002 and FLU 003 studies

    DEFF Research Database (Denmark)

    Dwyer, Dominic E; Gerstoft, Jan

    2011-01-01

    , with 1049 enrollments into the FLU 002 outpatient study and 316 into the FLU 003 hospitalization study. These 'in progress' INSIGHT influenza observational studies may act as a model for obtaining epidemiological, clinical and laboratory information in future international disease outbreaks....

  16. Immune evasion during foot-and-mouth disease virus infection of swine.

    Science.gov (United States)

    Golde, William T; Nfon, Charles K; Toka, Felix N

    2008-10-01

    The interface between successful pathogens and their hosts is often a tenuous balance. In acute viral infections, this balance involves induction and inhibition of innate responses. Foot-and-mouth disease virus (FMDV) is considered one of the most contagious viruses known and is characterized by rapid induction of clinical disease in cloven hoofed animals exposed to infection. Viral shedding is extensive before the equally rapid resolution of acute disease. This positive strand RNA virus is an extremely successful pathogen, due in part to the ability to interrupt the innate immune response. Previous reviews have described the inhibition of cellular innate responses in the infected cell both in vitro and in vivo. Here, we present a review of virus inhibition of cells that are a source of antiviral function in swine. Particularly in the case of dendritic cells and natural killer cells, the virus has evolved mechanisms to interrupt the normal function of these important mediators of innate function, even though these cells are not infected by the virus. Understanding how this virus subverts the innate response will provide valuable information for the development of rapidly acting biotherapeutics to use in response to an outbreak of FMDV.

  17. Carnosine markedly ameliorates H9N2 swine influenza virus-induced acute lung injury.

    Science.gov (United States)

    Xu, Tong; Wang, Cunlian; Zhang, Ruihua; Xu, Mingju; Liu, Baojian; Wei, Dong; Wang, Guohua; Tian, Shufei

    2015-10-01

    Oxidative stress injury is an important pathogenesis of influenza virus in critically ill patients. The present study investigated the efficacy of carnosine, an antioxidant and free radical scavenger, on a model of acute lung injury (ALI) induced by H9N2 swine influenza virus. Female specific-pathogen-free BALB/c mice were randomized into four groups and treated as follows: (1) H9N2 group, (2) mock control group, (3) H9N2+carnosine group and (4) carnosine control group. The H9N2 group mice were inoculated intranasally with A/Swine/Hebei/012/2008/ (H9N2) virus (100 μl) in allantoic fluid (AF), whilst mock-infected animals were intranasally inoculated with non-infectious AF. Carnosine [10 mg (kg body mass)- 1] was administered orally (100 μl) for 7 days consecutively. The survival rate, lung water content, TNF-α and IL-1β levels, lung histopathology, myeloperoxidase (MPO) activity, and Toll-like receptor (TLR)-4 levels were determined at 2, 4, 6, 8 and 14 days after inoculation. Carnosine treatment effectively decreased the mortality (43 versus 75 %, P lungs and decreased the lung wet/dry mass ratio (P lungs of infected mice (P < 0.05), which supported the use of carnosine for managing severe influenza cases.

  18. Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs.

    Science.gov (United States)

    Muñoz-González, Sara; Perez-Simó, Marta; Muñoz, Marta; Bohorquez, José Alejandro; Rosell, Rosa; Summerfield, Artur; Domingo, Mariano; Ruggli, Nicolas; Ganges, Llilianne

    2015-07-09

    Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.

  19. Genetic and antigenic characterization of influenza A virus circulating in Danish swine during the past decade

    DEFF Research Database (Denmark)

    Fobian, Kristina; Kirk, Isa Kristina; Breum, Solvej Østergaard

    . Phylogenetic analysis of the HA and NA genes revealed continuous evolutionary drift as expected for RNA viruses with low mutational selection pressure. Estimated selection pressures indicated that more purifying and less diversifying selection controlled the H1 evolution. The mean rates of synonymous and non......-synonymous substitutions for H1, N1 and N2 were found to be in agreement with previously observed values for Eurasian swine lineages. Calculation of possible glycosylation sites in the hemagglutinin gene revealed that the H1N2 and H1N1 subtypes had three well conserved glycosylation sites in common. The results of the HI...

  20. Analysis of classical swine fever virus RNA replication determinants using replicons

    DEFF Research Database (Denmark)

    Risager, Peter Christian; Fahnøe, Ulrik; Gullberg, Maria

    2013-01-01

    Self-replicating RNAs (replicons), with or without reporter gene sequences, derived from the genome of the Paderborn strain of classical swine fever virus (CSFV) have been produced. The full-length viral cDNA, propagated within a bacterial artificial chromosome (BAC), was modified by targeted......), as well as by detection of the CSFV NS3 protein production within the cells. Inclusion of the viral E2 coding region within the replicon was advantageous for the replication efficiency. Production of chimeric RNAs, substituting the NS2 and NS3 coding regions (as a unit) from the Paderborn strain...

  1. Viral meningitis epidemics and a single, recent, recombinant and anthroponotic origin of swine vesicular disease virus

    DEFF Research Database (Denmark)

    Bruhn, Christian Anders Wathne; Nielsen, Sandra Cathrine Abel; Samaniego Castruita, Jose Alfredo

    2015-01-01

    BACKGROUND AND OBJECTIVES: Swine vesicular disease virus (SVDV) is a close relative of the human Enterovirus B serotype, coxsackievirus B5. As the etiological agent of a significant emergent veterinary disease, several studies have attempted to explain its origin. However, several key questions r...... stating that SVDV originated through co-infection, recombination, and a single anthroponotic event, during large viral meningitis epidemics around 1960/1961 involving the ancestral serotypes. The exact geographical origin of SVDV may remain untestable due to historical aspects....

  2. Complete Genomes of Classical Swine Fever Virus Cloned into Bacterial Artificial Chromosomes

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, I.; Uttenthal, Åse

    Complete genome amplification of viral RNA provides a new tool for the generation of modified pestiviruses. We have used our full-genome amplification strategy for generation of amplicons representing complete genomes of classical swine fever virus. The amplicons were cloned directly into a stable...... single-copy bacterial artificial chromosome (BAC) generating full-length pestivirus DNAs from which infectious RNA transcripts could be also derived. Our strategy allows construction of stable infectious BAC DNAs from a single full-length PCR product....

  3. Comparative characterization analysis of synonymous codon usage bias in classical swine fever virus.

    Science.gov (United States)

    Xu, Xin; Fei, Dongliang; Han, Huansheng; Liu, Honggui; Zhang, Jiayong; Zhou, Yulong; Xu, Chuang; Wang, Hongbin; Cao, Hongwei; Zhang, Hua

    2017-06-01

    Classical swine fever virus (CSFV) is responsible for the highly contagious viral disease of swine, and causes great economic loss in the swine-raising industry. Considering the significance of CSFV, a systemic analysis was performed to study its codon usage patterns. In this study, using the complete genome sequences of 76 CSFV representing three genotypes, we firstly analyzed the relative nucleotide composition, effective number of codon (ENC) and synonymous codon usage in CSFV genomes. The results showed that CSFV is GC-moderate genome and the third-ended codons are not preferentially used. Every ENC values in CSFV genomes are >50, indicating that the codon usage bias is comparatively slight. Subsequently, we performed the correspondence analysis (COA) to investigate synonymous codon usage variation among all of the CSFV genomes. We found that codon usage bias in these CSFV genomes is greatly influenced by G + C mutation, which suggests that mutational pressure may be the main factor determining the codon usage biases. Moreover, most of the codon usage bias among different CSFV ORFs is directly related to the nucleotide composition. Other factors, such as hydrophobicity and aromaticity, also influence the codon usage variation among CSFV genomes. Our study represents the most comprehensive analysis of codon usage patterns in CSFV genome and provides a basic understanding of the mechanisms for its codon usage bias. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Swine influenza virus vaccine serologic cross-reactivity to contemporary US swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011-2012 H3N2v.

    Science.gov (United States)

    Kitikoon, Pravina; Gauger, Phillip C; Anderson, Tavis K; Culhane, Marie R; Swenson, Sabrina; Loving, Crystal L; Perez, Daniel R; Vincent, Amy L

    2013-12-01

    Swine influenza A virus (IAV) reassortment with 2009 H1N1 pandemic (H1N1pdm09) virus has been documented, and new genotypes and subclusters of H3N2 have since expanded in the US swine population. An H3N2 variant (H3N2v) virus with the H1N1pdm09 matrix gene and the remaining genes of swine triple reassortant H3N2 caused outbreaks at agricultural fairs in 2011-2012. To assess commercial swine IAV vaccines' efficacy against H3N2 viruses, including those similar to H3N2v, antisera to three vaccines were tested by hemagglutinin inhibition (HI) assay against contemporary H3N2. Vaccine 1, with high HI cross-reactivity, was further investigated for efficacy against H3N2 virus infection in pigs with or without maternally derived antibodies (MDA). In addition, efficacy of a vaccine derived from whole inactivated virus (WIV) was compared with live attenuated influenza virus (LAIV) against H3N2. Hemagglutinin inhibition cross-reactivity demonstrated that contemporary swine H3N2 viruses have drifted from viruses in current swine IAV vaccines. The vaccine with the highest level of HI cross-reactivity significantly protected pigs without MDA. However, the presence of MDA at vaccination blocked vaccine efficacy. The performance of WIV and LAIV was comparable in the absence of MDA. Swine IAV in the United States is complex and dynamic. Vaccination to minimize virus shedding can help limit transmission of virus among pigs and people. However, vaccines must be updated. A critical review of the use of WIV in sows is required in the context of the current IAV ecology and vaccine application in pigs with MDA. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  5. Comparative Pathogenesis of an Avian H5N2 and a Swine H1N1 Influenza Virus in Pigs

    DEFF Research Database (Denmark)

    De Vleeschauwer, Annebel; Atanasova, Kalina; Van Borm, Steven

    2009-01-01

    only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were......Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal......) to compare the pathogenesis of a low pathogenic (LP) H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused...

  6. Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Larsen, Lars Erik; Viuff, Birgitte M.

    2011-01-01

    Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses in the up......Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses...... acts as a mixing vessel between human and avian influenza viruses. Furthermore, it was shown that AIV prefers to infect alveolar type II epithelial cells in pigs. This corresponds with findings in humans emphasising the resemblance between the two species....

  7. Novel Reassortant Human-Like H3N2 and H3N1 Influenza A Viruses Detected in Pigs Are Virulent and Antigenically Distinct from Swine Viruses Endemic to the United States

    Science.gov (United States)

    Rajão, Daniela S.; Gauger, Phillip C.; Anderson, Tavis K.; Lewis, Nicola S.; Abente, Eugenio J.; Killian, Mary Lea; Sutton, Troy C.; Zhang, Jianqiang

    2015-01-01

    ABSTRACT Human-like swine H3 influenza A viruses (IAV) were detected by the USDA surveillance system. We characterized two novel swine human-like H3N2 and H3N1 viruses with hemagglutinin (HA) genes similar to those in human seasonal H3 strains and internal genes closely related to those of 2009 H1N1 pandemic viruses. The H3N2 neuraminidase (NA) was of the contemporary human N2 lineage, while the H3N1 NA was of the classical swine N1 lineage. Both viruses were antigenically distant from swine H3 viruses that circulate in the United States and from swine vaccine strains and also showed antigenic drift from human seasonal H3N2 viruses. Their pathogenicity and transmission in pigs were compared to those of a human H3N2 virus with a common HA ancestry. Both swine human-like H3 viruses efficiently infected pigs and were transmitted to indirect contacts, whereas the human H3N2 virus did so much less efficiently. To evaluate the role of genes from the swine isolates in their pathogenesis, reverse genetics-generated reassortants between the swine human-like H3N1 virus and the seasonal human H3N2 virus were tested in pigs. The contribution of the gene segments to virulence was complex, with the swine HA and internal genes showing effects in vivo. The experimental infections indicate that these novel H3 viruses are virulent and can sustain onward transmission in pigs, and the naturally occurring mutations in the HA were associated with antigenic divergence from H3 IAV from humans and swine. Consequently, these viruses could have a significant impact on the swine industry if they were to cause more widespread outbreaks, and the potential risk of these emerging swine IAV to humans should be considered. IMPORTANCE Pigs are important hosts in the evolution of influenza A viruses (IAV). Human-to-swine transmissions of IAV have resulted in the circulation of reassortant viruses containing human-origin genes in pigs, greatly contributing to the diversity of IAV in swine worldwide

  8. Novel Reassortant Human-Like H3N2 and H3N1 Influenza A Viruses Detected in Pigs Are Virulent and Antigenically Distinct from Swine Viruses Endemic to the United States.

    Science.gov (United States)

    Rajão, Daniela S; Gauger, Phillip C; Anderson, Tavis K; Lewis, Nicola S; Abente, Eugenio J; Killian, Mary Lea; Perez, Daniel R; Sutton, Troy C; Zhang, Jianqiang; Vincent, Amy L

    2015-11-01

    Human-like swine H3 influenza A viruses (IAV) were detected by the USDA surveillance system. We characterized two novel swine human-like H3N2 and H3N1 viruses with hemagglutinin (HA) genes similar to those in human seasonal H3 strains and internal genes closely related to those of 2009 H1N1 pandemic viruses. The H3N2 neuraminidase (NA) was of the contemporary human N2 lineage, while the H3N1 NA was of the classical swine N1 lineage. Both viruses were antigenically distant from swine H3 viruses that circulate in the United States and from swine vaccine strains and also showed antigenic drift from human seasonal H3N2 viruses. Their pathogenicity and transmission in pigs were compared to those of a human H3N2 virus with a common HA ancestry. Both swine human-like H3 viruses efficiently infected pigs and were transmitted to indirect contacts, whereas the human H3N2 virus did so much less efficiently. To evaluate the role of genes from the swine isolates in their pathogenesis, reverse genetics-generated reassortants between the swine human-like H3N1 virus and the seasonal human H3N2 virus were tested in pigs. The contribution of the gene segments to virulence was complex, with the swine HA and internal genes showing effects in vivo. The experimental infections indicate that these novel H3 viruses are virulent and can sustain onward transmission in pigs, and the naturally occurring mutations in the HA were associated with antigenic divergence from H3 IAV from humans and swine. Consequently, these viruses could have a significant impact on the swine industry if they were to cause more widespread outbreaks, and the potential risk of these emerging swine IAV to humans should be considered. Pigs are important hosts in the evolution of influenza A viruses (IAV). Human-to-swine transmissions of IAV have resulted in the circulation of reassortant viruses containing human-origin genes in pigs, greatly contributing to the diversity of IAV in swine worldwide. New human-like H3N2

  9. Comparative pathogenesis of an avian H5N2 and a swine H1N1 influenza virus in pigs.

    Directory of Open Access Journals (Sweden)

    Annebel De Vleeschauwer

    2009-08-01

    Full Text Available Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal to compare the pathogenesis of a low pathogenic (LP H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals.

  10. Is it a policy crisis or it is a health crisis? The Egyptian context--analysis of the Egyptian health policy for the H1N1 flu pandemic control.

    Science.gov (United States)

    Seef, Sameh; Jeppsson, Anders

    2013-01-01

    A new influenza virus that was first detected in people in April 2009, was initially referred to colloquially as "swine flu", since it contained genes from swine, avian and human influenza viruses. It can, however, not be transmitted by eating pork or dealing with pigs. In Egypt, several hundred thousand pigs were killed in May, in spite of advice from global health authorities that such an action was unnecessary. Pigs are raised and consumed mainly by the Christian minority, which constitute some 10% of the population. Health Ministry estimated there were between 300,000-350,000 pigs in Egypt. This paper will analyze the Egyptian health policy for controlling the pandemic H1N1 flu, exploring its context, content, process, and actors. The analysis is based on the Leichter Context, which refers to systemic factors-political, economic and social, both national and international-that may have an effect on health policy, and is based on data collected from literature review and policy documents. The International health officials said the swine flu virus that has caused worldwide fear is not transmitted by pigs, and that pig slaughters do nothing to stop its spread. The WHO stopped using the term "swine flu" to avoid confusion. In Egypt, even the editor of a pro-government newspaper criticized the order to slaughter: "Killing (pigs) is not a solution, otherwise, we should kill the people, because the virus spreads through them," wrote Abdullah Kamal of the daily Rose El-Youssef. The World Health organization also criticized the decision. The extinction of the Egyptian pigs is an example of how a health issue can be used to persecute a minority within a country. Although the current influenza has nothing whatsoever to do with pigs, the previous name of the epidemic was used as an argument to violate the rights of the Christian minority in Egypt.

  11. Reassortment between swine H3N2 and 2009 pandemic H1N1 generated diverse genetic constellations in influenza A viruses currently circulating in pigs in the United States

    Science.gov (United States)

    Introduction Influenza A virus (IAV) is a significant pathogen to the swine industry. Since its introduction in 2009, the H1N1 pandemic virus (H1N1pdm09) has been repeatedly transmitted from humans to swine, but onward transmission in U.S. swine was mostly restricted to its internal genes. Reassortm...

  12. Prior infection of pigs with a recent human H3N2 influenza virus confers minimal cross-protection against a European swine H3N2 virus.

    Science.gov (United States)

    Qiu, Yu; van der Meulen, Karen; Van Reeth, Kristien

    2013-11-01

    H3N2 influenza viruses circulating in humans and European pigs originate from the pandemic A/Hong Kong/68 virus. Because of slower antigenic drift in swine, the antigenic divergence between swine and human viruses has been increasing. It remains unknown to what extent this results in a reduced cross-protection between recent human and swine H3N2 influenza viruses. We examined whether prior infection of pigs with an old [A/Victoria/3/75 (A/Vic/75)] or a more recent [A/Wisconsin/67/05 (A/Wis/05)] human H3N2 virus protected against a European swine H3N2 virus [sw/Gent/172/08 (sw/Gent/08)]. Genetic and antigenic relationships between sw/Gent/08 and a selection of human H3N2 viruses were also assessed. After challenge with sw/Gent/08, all challenge controls had high virus titers in the entire respiratory tract at 3 days post-challenge and nasal virus excretion for 5-6 days. Prior infection with sw/Gent/08 or A/Vic/75 offered complete virological protection against challenge. Pigs previously inoculated with A/Wis/05 showed similar virus titers in the respiratory tract as challenge controls, but the mean duration of nasal shedding was 1·3 days shorter. Unlike sw/Gent/08- and A/Vic/75-inoculated pigs, A/Wis/05-inoculated pigs lacked cross-reactive neutralizing antibodies against sw/Gent/08 before challenge, but they showed a more rapid antibody response to sw/Gent/08 than challenge controls after challenge. Cross-protection and serological responses correlated with genetic and antigenic differences. Infection immunity to a recent human H3N2 virus confers minimal cross-protection against a European swine H3N2 virus. We discuss our findings with regard to the recent zoonotic infections of humans in the United States with a swine-origin H3N2 variant virus. © 2013 John Wiley & Sons Ltd.

  13. Disinfection of foot-and-mouth disease and African swine fever viruses with citric acid and sodium hypochlorite on birch wood carriers

    Science.gov (United States)

    Transboundary animal disease viruses such as foot-and-mouth disease virus (FMDV) and African swine fever virus (ASFV) are highly contagious and cause severe morbidity and mortality in livestock. Proper disinfection during an outbreak can help prevent virus spread and will shorten the time for contam...

  14. From where did the 2009 'swine-origin' influenza A virus (H1N1) emerge?

    Science.gov (United States)

    2009-01-01

    The swine-origin influenza A (H1N1) virus that appeared in 2009 and was first found in human beings in Mexico, is a reassortant with at least three parents. Six of the genes are closest in sequence to those of H1N2 'triple-reassortant' influenza viruses isolated from pigs in North America around 1999-2000. Its other two genes are from different Eurasian 'avian-like' viruses of pigs; the NA gene is closest to H1N1 viruses isolated in Europe in 1991-1993, and the MP gene is closest to H3N2 viruses isolated in Asia in 1999-2000. The sequences of these genes do not directly reveal the immediate source of the virus as the closest were from isolates collected more than a decade before the human pandemic started. The three parents of the virus may have been assembled in one place by natural means, such as by migrating birds, however the consistent link with pig viruses suggests that human activity was involved. We discuss a published suggestion that unsampled pig herds, the intercontinental live pig trade, together with porous quarantine barriers, generated the reassortant. We contrast that suggestion with the possibility that laboratory errors involving the sharing of virus isolates and cultured cells, or perhaps vaccine production, may have been involved. Gene sequences from isolates that bridge the time and phylogenetic gap between the new virus and its parents will distinguish between these possibilities, and we suggest where they should be sought. It is important that the source of the new virus be found if we wish to avoid future pandemics rather than just trying to minimize the consequences after they have emerged. Influenza virus is a very significant zoonotic pathogen. Public confidence in influenza research, and the agribusinesses that are based on influenza's many hosts, has been eroded by several recent events involving the virus. Measures that might restore confidence include establishing a unified international administrative framework coordinating

  15. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus.

    Science.gov (United States)

    Argilaguet, Jordi M; Pérez-Martín, Eva; López, Sergio; Goethe, Martin; Escribano, J M; Giesow, Katrin; Keil, Günther M; Rodríguez, Fernando

    2013-04-01

    Lack of vaccines and efficient control measures complicate the control and eradication of African swine fever (ASF). Limitations of conventional inactivated and attenuated virus-based vaccines against African swine fever virus (ASFV) highlight the need to use new technologies to develop efficient and safe vaccines against this virus. With this aim in mind, in this study we have constructed BacMam-sHAPQ, a baculovirus based vector for gene transfer into mammalian cells, expressing a fusion protein comprising three in tandem ASFV antigens: p54, p30 and the extracellular domain of the viral hemagglutinin (secretory hemagglutinin, sHA), under the control of the human cytomegalovirus immediate early promoter (CMVie). Confirming its correct in vitro expression, BacMam-sHAPQ induced specific T-cell responses directly after in vivo immunization. Conversely, no specific antibody responses were detectable prior to ASFV challenge. The protective potential of this recombinant vaccine candidate was tested by a homologous sublethal challenge with ASFV following immunization. Four out of six immunized pigs remained viremia-free after ASFV infection, while the other two pigs showed similar viremic titres to control animals. The protection afforded correlated with the presence of a large number of virus-specific IFNγ-secreting T-cells in blood at 17 days post-infection. In contrast, the specific antibody levels observed after ASFV challenge in sera from BacMam-sHAPQ immunized pigs were indistinguishable from those found in control pigs. These results highlight the importance of the cellular responses in protection against ASFV and point towards BacMam vectors as potential tools for future vaccine development. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. How Does Seasonal Flu Differ From Pandemic Flu?

    Science.gov (United States)

    ... Past Issues How Does Seasonal Flu Differ From Pandemic Flu? Past Issues / Fall 2006 Table of Contents ... this page please turn Javascript on. Seasonal Flu Pandemic Flu Outbreaks follow predictable seasonal patterns; occurs annually, ...

  17. Two years of surveillance of influenza a virus infection in a swine herd. Results of virological, serological and pathological studies.

    Science.gov (United States)

    Cappuccio, Javier; Dibarbora, Marina; Lozada, Inés; Quiroga, Alejandra; Olivera, Valeria; Dángelo, Marta; Pérez, Estefanía; Barrales, Hernán; Perfumo, Carlos; Pereda, Ariel; Pérez, Daniel R

    2017-02-01

    Swine farms provide a dynamic environment for the evolution of influenza A viruses (IAVs). The present report shows the results of a surveillance effort of IAV infection in one commercial swine farm in Argentina. Two cross-sectional serological and virological studies (n=480) were carried out in 2011 and 2012. Virus shedding was detected in nasal samples from pigs from ages 7, 21 and 42-days old. More than 90% of sows and gilts but less than 40% of 21-days old piglets had antibodies against IAV. In addition, IAV was detected in 8/17 nasal swabs and 10/15 lung samples taken from necropsied pigs. A subset of these samples was further processed for virus isolation resulting in 6 viruses of the H1N2 subtype (δ2 cluster). Pathological studies revealed an association between suppurative bronchopneumonia and necrotizing bronchiolitis with IAV positive samples. Statistical analyses showed that the degree of lesions in bronchi, bronchiole, and alveoli was higher in lungs positive to IAV. The results of this study depict the relevance of continuing long-term active surveillance of IAV in swine populations to establish IAV evolution relevant to swine and humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Development of a primer–probe energy transfer based real-time PCR for the detection of Swine influenza virus

    DEFF Research Database (Denmark)

    Kowalczyk, Andrzej; Markowska-Daniel, Iwona; Rasmussen, Thomas Bruun

    2013-01-01

    Swine influenza virus (SIV) causes a contagious and requiring official notification disease of pigs and humans. In this study, a real-time reverse transcription-polymerase chain reaction (RT-PCR) assay based on primer–probe energy transfer (PriProET) for the detection of SIV RNA was developed...

  19. Lack of evidence of porcine reproductive and respiratory syndrome virus (PRRSV infection in domestic swine in Brazil

    Directory of Open Access Journals (Sweden)

    Ciacci-Zanella Janice Reis

    2004-01-01

    Full Text Available This report describes the first prevalence of antibodies and experimental inoculation of suspected samples of porcine reproductive and respiratory syndrome virus (PRRSV from ELISA positive pigs from swine herds in Brazil. Based on the hypothesis that this agent is present in swine herds worldwide, the objective of this work was to establish a diagnostic methodology and to investigate the occurrence of PRRSV in Brazilian swine herds. Fifty-four swine herds, the total number which imported genetic material (live pigs or swine semen from countries where PRRS was endemic from 1990 to December 2000, from eight Brazilian States all included in this study. The sampling used was such as to detect a prevalence of infection of 5%, with a confidence level of 95%. A total of 3785 serum samples were tested for PRRSV antibodies by ELISA. Following the ELISA test, which was performed with two different commercial kits, all serum positive pigs were retested, examined and additional materials were collected. Viral isolation in permissive tissue culture cells and swine bioassays were performed. Additionally, reverse transcriptase polymerase chain reaction (RT-PCR and nested RT-PCR were also performed. We could not demonstrate the presence of PRRSV or RNA of PRRSV by viral isolation or RT-PCR (or nested RT-PCR, respectively in all of the analyzed samples. Furthermore, the pigs inoculated with PRRSV suspicion samples did not seroconvert nor produce characteristic PRRS lesions in the swine bioassay. Thus, our results indicate no evidence of PRRSV in the samples analyzed from swine herds in this study.

  20. Influenza A (H3N2) virus in swine at agricultural fairs and transmission to humans, Michigan and Ohio, USA, 2016

    Science.gov (United States)

    An 18 case outbreak of variant H3N2 influenza A occurred during 2016 after exposure to influenza-infected swine at seven agricultural fairs. Sixteen cases were infected with a reassortant between 2010-2011 human seasonal H3N2 strains and viruses endemic in North American swine, a viral lineage incre...

  1. The L83L ORF of African swine fever virus strain Georgia encodes for a non-essential gene that interacts with host protein IL-1ß

    Science.gov (United States)

    African swine fever virus (ASFV) causes a contagious and frequently lethal disease of pigs that produces significant economic consequences to the swine industry. ASFV genome encodes for more than 150 genes, but only a few of them have been studied in detail. Here we report the characterization of op...

  2. Duration of homologous porcine reproductive and respiratory syndrome virus immunity in pregnant swine.

    Science.gov (United States)

    Lager, K M; Mengeling, W L; Brockmeier, S L

    1997-11-01

    The duration of porcine reproductive and respiratory syndrome virus (PRRSV) homologous immunity was tested in this study and found to last for at least 604 days post experimental exposure to field PRRSV. Eleven gilts (group A) received a primary exposure to field PRRSV by either an oronasal (n = 6) or an intrauterine (n = 5) route. The gilts were naturally bred at selected times (143 to 514 days) after primary virus exposure. They were oronasally exposed a second time to the same strain of virus on or about gestation day 90. Ten age-matched control sows free of PRRSV-specific antibody from the same source farm (group B) were naturally bred and were oronasally exposed to aliquots of the homologous challenge virus on or about gestation day 90. Nine of the 11 gilts in group A and all animals in group B became pregnant following one breeding cycle. The two nonpregnant gilts in group A were each naturally bred during four additional estrus cycles and neither became pregnant. They were exposed to homologous challenge virus 562 and 604 days post primary exposure, respectively. All animals were necropsied 21 days post homologous challenge. Sera and alveolar macrophages from each dam, and sera from each fetus were tested for virus. Transplacental infection was detected in 0/9 and 8/10 litters in groups A and B, respectively. Virus was detected in 0/11 and 10/10 of the alveolar macrophage samples collected in groups A and B, respectively. Serum was harvested at selected times throughout the experiment and tested for PRRSV-specific antibody by indirect immunofluorescence microscopy. All gilts in group A were seropositive for the duration of the experiment, and all animals in group B seroconverted following exposure to field PRRSV. This study shows that adult swine can produce a homologous protective immunity after PRRSV exposure that may persist for the production life of the animal.

  3. Visualization of the African swine fever virus infection in living cells by incorporation into the virus particle of green fluorescent protein-p54 membrane protein chimera

    International Nuclear Information System (INIS)

    Hernaez, Bruno; Escribano, Jose M.; Alonso, Covadonga

    2006-01-01

    Many stages of African swine fever virus infection have not yet been studied in detail. To track the behavior of African swine fever virus (ASFV) in the infected cells in real time, we produced an infectious recombinant ASFV (B54GFP-2) that expresses and incorporates into the virus particle a chimera of the p54 envelope protein fused to the enhanced green fluorescent protein (EGFP). The incorporation of the fusion protein into the virus particle was confirmed immunologically and it was determined that p54-EGFP was fully functional by confirmation that the recombinant virus made normal-sized plaques and presented similar growth curves to the wild-type virus. The tagged virus was visualized as individual fluorescent particles during the first stages of infection and allowed to visualize the infection progression in living cells through the viral life cycle by confocal microscopy. In this work, diverse potential applications of B54GFP-2 to study different aspects of ASFV infection are shown. By using this recombinant virus it was possible to determine the trajectory and speed of intracellular virus movement. Additionally, we have been able to visualize for first time the ASFV factory formation dynamics and the cytophatic effect of the virus in live infected cells. Finally, we have analyzed virus progression along the infection cycle and infected cell death as time-lapse animations

  4. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine.

    Science.gov (United States)

    Erickson, A; Fisher, M; Furukawa-Stoffer, T; Ambagala, A; Hodko, D; Pasick, J; King, D P; Nfon, C; Ortega Polo, R; Lung, O

    2018-04-01

    Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional

  5. FKBP8 interact with classical swine fever virus NS5A protein and promote virus RNA replication.

    Science.gov (United States)

    Li, Helin; Zhang, Chengcheng; Cui, Hongjie; Guo, Kangkang; Wang, Fang; Zhao, Tianyue; Liang, Wulong; Lv, Qizhuang; Zhang, Yanming

    2016-02-01

    The non-structural 5A (NS5A) protein of classical swine fever virus (CSFV) is proven to be involved in viral replication and can also modulate cellular signaling and host cellular responses via to its ability to interact with various cellular proteins. FKBP8 is also reported to promote virus replication. Here, we show that NS5A specifically interacts with FKBP8 through coimmunoprecipitation and GST-pulldown studies. Additionally, confocal microscopy study showed that NS5A and FKBP8 colocalized in the cytoplasm. Overexpression of FKBP8 via the eukaryotic expression plasmid pDsRED N1 significantly promoted viral RNA synthesis. The cells knockdown of FKBP8 by lentivirus-mediated shRNA markedly decreased the virus replication when infected with CSFV. These data suggest that FKBP8 plays a critical role in the viral life cycle, particularly during the virus RNA replication period. The investigation of FKBP8 protein functions may be beneficial for developing new strategies to treat CSFV infection.

  6. Inactivation of classical swine fever virus in porcine casing preserved in salt.

    Science.gov (United States)

    Wijnker, J J; Depner, K R; Berends, B R

    2008-12-10

    Pig intestines used for the production of natural sausage casings may carry classical swine fever (CSF) virus. Feeding pigs with human food waste that contains pig casings may then spread the virus to CSF-free animals. Casings derived from a pig experimentally infected with CSF by dosing with 10(6) tissue culture infectious doses (TCID50) of the highly virulent CSF virus strain "Koslov", were treated with phosphate supplemented or citrate supplemented NaCl, instead of with NaCl alone, which is the standard preservation treatment for casings. Treated casings were stored for 30 days at either 4 degrees C or 20 degrees C. After storage the casings were fed to 16 susceptible pigs. CSF infection was confirmed in the four animals that had been fed casings treated with citrate supplemented salt and stored at 4 degrees C. All other animals remained healthy. It is therefore possible to avoid the inadvertent spread of CSF virus via porcine sausage casings by treating casings with phosphate supplemented salt and storing them for 30 days at temperatures over 4 degrees C.

  7. Google Flu Trends in Canada: a comparison of digital disease surveillance data with physician consultations and respiratory virus surveillance data, 2010-2014.

    Science.gov (United States)

    Martin, L J; Lee, B E; Yasui, Y

    2016-01-01

    The value of Google Flu Trends (GFT) remains unclear after it overestimated the proportion of physician visits related to influenza-like illness (ILI) in the United States in 2012-2013. However, GFT estimates (%GFT) have not been examined nationally in Canada nor compared with positivity for respiratory viruses other than influenza. For 2010-2014, we compared %GFT for Canada to Public Health Agency of Canada ILI consultation rates (%PHAC) and to positivity for influenza A and B, respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and rhinoviruses. %GFT correlated well with %PHAC (ρ = 0·77-0·90) and influenza A positivity (ρ = 0·64-0·96) and overestimated the 2012-2013 %PHAC peak by 0·99 percentage points. %GFT peaks corresponded temporally with peaks in positivity for influenza A and rhinoviruses (all seasons) and RSV and hMPV when their peaks preceded influenza peaks. In Canada, %GFT represented traditional surveillance data and corresponded temporally with patterns in circulating respiratory viruses.

  8. Detection of African swine fever, classical swine fever, and foot-and-mouth disease viruses in swine oral fluids by multiplex reverse transcription real-time polymerase chain reaction.

    Science.gov (United States)

    Grau, Frederic R; Schroeder, Megan E; Mulhern, Erin L; McIntosh, Michael T; Bounpheng, Mangkey A

    2015-03-01

    African swine fever (ASF), classical swine fever (CSF), and foot-and-mouth disease (FMD) are highly contagious animal diseases of significant economic importance. Pigs infected with ASF and CSF viruses (ASFV and CSFV) develop clinical signs that may be indistinguishable from other diseases. Likewise, various causes of vesicular disease can mimic clinical signs caused by the FMD virus (FMDV). Early detection is critical to limiting the impact and spread of these disease outbreaks, and the ability to perform herd-level surveillance for all 3 diseases rapidly and cost effectively using a single diagnostic sample and test is highly desirable. This study assessed the feasibility of simultaneous ASFV, CSFV, and FMDV detection by multiplex reverse transcription real-time polymerase chain reaction (mRT-qPCR) in swine oral fluids collected through the use of chewing ropes. Animal groups were experimentally infected independently with each virus, observed for clinical signs, and oral fluids collected and tested throughout the course of infection. All animal groups chewed on the ropes readily before and after onset of clinical signs and before onset of lameness or serious clinical signs. ASFV was detected as early as 3 days postinoculation (dpi), 2-3 days before onset of clinical disease; CSFV was detected at 5 dpi, coincident with onset of clinical disease; and FMDV was detected as early as 1 dpi, 1 day before the onset of clinical disease. Equivalent results were observed in 4 independent studies and demonstrate the feasibility of oral fluids and mRT-qPCR for surveillance of ASF, CSF, and FMD in swine populations. © 2015 The Author(s).

  9. Avoiding the Flu

    Science.gov (United States)

    ... on. Feature: Flu Avoiding the Flu Past Issues / Fall 2009 Table of Contents Children from six months of age and young people up to 24 years of age are particularly at risk this year from the 2009 H1N1 flu. They ...

  10. The Flu (For Kids)

    Science.gov (United States)

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body Works ... for Educators Search English Español Flu KidsHealth / For Kids / Flu What's in this article? What's the Flu? ...

  11. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  12. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S. Mark

    2015-01-01

    ABSTRACT Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza

  13. N-acetyl-l-cystine (NAC) protects against H9N2 swine influenza virus-induced acute lung injury.

    Science.gov (United States)

    Zhang, Rui-Hua; Li, Chun-Hong; Wang, Cun-Lian; Xu, Ming-Ju; Xu, Tong; Wei, Dong; Liu, Bao-Jian; Wang, Guo-Hua; Tian, Shu-Fei

    2014-09-01

    The antioxidant N-acetyl-l-cysteine (NAC) had been shown to inhibit replication of seasonal human influenza A viruses. Here, the effects of NAC on H9N2 swine influenza virus-induced acute lung injury (ALI) were investigated in mice. BALB/c mice were inoculated intranasally with 10(7) 50% tissue culture infective doses (TCID(50)) of A/swine/HeBei/012/2008/(H9N2) viruses with or without NAC treatments to induce ALI model. The result showed that pulmonary inflammation, pulmonary edema, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6, IL-1β and CXCL-10 in BALF were attenuated by NAC. Moreover, our data showed that NAC significantly inhibited the levels of TLR4 protein and TLR4 mRNA in the lungs. Pharmacological inhibitors of TLR4 (E5564) exerted similar effects like those determined for NAC in H9N2 swine influenza virus-infected mice. These results suggest that antioxidants like NAC represent a potential additional treatment option that could be considered in the case of an influenza A virus pandemic. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Host predilection and transmissibility of vesicular stomatitis New Jersey virus strains in domestic cattle (Bos taurus and swine (Sus scrofa

    Directory of Open Access Journals (Sweden)

    Smith Paul F

    2012-10-01

    Full Text Available Abstract Background Epidemiologic data collected during epidemics in the western United States combined with limited experimental studies involving swine and cattle suggest that host predilection of epidemic vesicular stomatitis New Jersey virus (VSNJV strains results in variations in clinical response, extent and duration of virus shedding and transmissibility following infection in different hosts. Laboratory challenge of livestock with heterologous VSNJV strains to investigate potential viral predilections for these hosts has not been thoroughly investigated. In separate trials, homologous VSNJV strains (NJ82COB and NJ82AZB, and heterologous strains (NJ06WYE and NJOSF [Ossabaw Island, sand fly] were inoculated into cattle via infected black fly bite. NJ82AZB and NJ06WYE were similarly inoculated into swine. Results Clinical scores among viruses infecting cattle were significantly different and indicated that infection with a homologous virus resulted in more severe clinical presentation and greater extent and duration of viral shedding. No differences in clinical severity or extent and duration of viral shedding were detected in swine. Conclusions Differences in clinical presentation and extent and duration of viral shedding may have direct impacts on viral spread during epidemics. Viral transmission via animal-to-animal contact and insect vectored transmission are likely to occur at higher rates when affected animals are presenting severe clinical signs and shedding high concentrations of virus. More virulent viral strains resulting in more severe disease in livestock hosts are expected to spread more rapidly and greater distances during epidemics than those causing mild or inapparent signs.

  15. Host predilection and transmissibility of vesicular stomatitis New Jersey virus strains in domestic cattle (Bos taurus) and swine (Sus scrofa).

    Science.gov (United States)

    Smith, Paul F; Howerth, Elizabeth W; Carter, Deborah; Gray, Elmer W; Noblet, Raymond; Berghaus, Roy D; Stallknecht, David E; Mead, Daniel G

    2012-10-03

    Epidemiologic data collected during epidemics in the western United States combined with limited experimental studies involving swine and cattle suggest that host predilection of epidemic vesicular stomatitis New Jersey virus (VSNJV) strains results in variations in clinical response, extent and duration of virus shedding and transmissibility following infection in different hosts. Laboratory challenge of livestock with heterologous VSNJV strains to investigate potential viral predilections for these hosts has not been thoroughly investigated. In separate trials, homologous VSNJV strains (NJ82COB and NJ82AZB), and heterologous strains (NJ06WYE and NJOSF [Ossabaw Island, sand fly]) were inoculated into cattle via infected black fly bite. NJ82AZB and NJ06WYE were similarly inoculated into swine. Clinical scores among viruses infecting cattle were significantly different and indicated that infection with a homologous virus resulted in more severe clinical presentation and greater extent and duration of viral shedding. No differences in clinical severity or extent and duration of viral shedding were detected in swine. Differences in clinical presentation and extent and duration of viral shedding may have direct impacts on viral spread during epidemics. Viral transmission via animal-to-animal contact and insect vectored transmission are likely to occur at higher rates when affected animals are presenting severe clinical signs and shedding high concentrations of virus. More virulent viral strains resulting in more severe disease in livestock hosts are expected to spread more rapidly and greater distances during epidemics than those causing mild or inapparent signs.

  16. Disruption of Nuclear Organization during the Initial Phase of African Swine Fever Virus Infection ▿

    Science.gov (United States)

    Ballester, Maria; Rodríguez-Cariño, Carolina; Pérez, Mónica; Gallardo, Carmina; Rodríguez, Javier M.; Salas, María L.; Rodriguez, Fernando

    2011-01-01

    African swine fever virus (ASFV), the causative agent of one of the most devastating swine diseases, has been considered exclusively cytoplasmic, even though some authors have shown evidence of an early stage of nuclear replication. In the present study, an increment of lamin A/C phosphorylation was observed in ASFV-infected cells as early as 4 h postinfection, followed by the disassembling of the lamina network close to the sites where the viral genome starts its replication. At later time points, this and other nuclear envelope markers were found in the cytoplasm of the infected cells. The effect of the infection on the cell nucleus was much more severe than previously expected, since a redistribution of other nuclear proteins, such as RNA polymerase II, the splicing speckle SC-35 marker, and the B-23 nucleolar marker, was observed from 4 h postinfection. All this evidence, together with the redistribution, dephosphorylation, and subsequent degradation of RNA polymerase II after ASFV infection, suggests the existence of sophisticated mechanisms to regulate the nuclear machinery during viral infection. PMID:21680527

  17. Prevalence of African swine fever virus in apparently healthy domestic pigs in Uganda.

    Science.gov (United States)

    Atuhaire, David Kalenzi; Afayoa, Mathias; Ochwo, Sylvester; Mwesigwa, Savannah; Mwiine, Frank Norbert; Okuni, Julius Boniface; Olaho-Mukani, William; Ojok, Lonzy

    2013-12-26

    African swine fever (ASF) is a contagious viral disease which can cause up to 100% mortality among domestic pigs leading to serious socio-economic impact on people's livelihoods. ASF is endemic in Uganda and there is paucity of information on the epidemiology of the disease. The major aim of this study was to determine the seroprevalence and prevalence of African swine fever virus (ASFV) in apparently healthy slaughter pigs at Wambizi slaughterhouse in Kampala city, Uganda. We also estimated the presence of ASFV antibodies and circulating viral antigens in pigs from selected districts of Uganda during targeted surveillance. We analysed 540 and 181 blood samples collected from slaughter pigs and pigs from targeted surveillance districts respectively. The prevalence of ASFV in slaughter pigs was 52.96% (95% CI, 48.75-57.14) and 11.5% (95% CI, 9.06-14.45) by ELISA and PCR respectively. In surveillance districts, the proportion of ASFV positive pigs was 53.59% (95% CI, 46.33-60.71) and 0.55% (95% CI, 0.1-3.06) by ELISA and PCR respectively. The study has found out a high seroprevalence of ASFV antibodies in apparently healthy slaughter pigs and also a high proportion of ASFV antibody seropositive pigs in surveyed districts in Uganda indicating exposure to ASFV. However, there was a lower prevalence of ASFV infection implying that there could be low virulent strains of ASFV circulating in domestic pigs in Uganda which requires further investigation.

  18. How has the flu virus infected the Web? 2010 influenza and vaccine information available on the Internet.

    Science.gov (United States)

    Covolo, Loredana; Mascaretti, Silvia; Caruana, Anna; Orizio, Grazia; Caimi, Luigi; Gelatti, Umberto

    2013-01-29

    The 2009-10 influenza pandemic was a major public health concern. Vaccination was recommended by the health authorities, but compliance was not optimal and perception of the presumed associated risks was high among the public. The Internet is increasingly being used as a source of health information and advice. The aim of the study was to investigate the characteristics of websites providing information about flu vaccine and the quality of the information provided. Website selection was performed in autumn 2010 by entering eight keywords in two of the most commonly used search engines (Google.com and Yahoo.com). The first three result pages were analysed for each search, giving a total of 480 occurrences. Page rank was evaluated to assess visibility. Websites based on Web 2.0 philosophy, websites merely displaying popular news/articles and single files were excluded from the subsequent analysis. We analysed the selected websites (using WHO criteria) as well as the information provided, using a codebook for pro/neutral websites and a qualitative approach for the adverse ones. Of the 89 websites selected, 54 dealt with seasonal vaccination, three with anti-H1N1 vaccination and 32 with both. Rank analysis showed that only classic websites (ones not falling in any other category) and one social network were provided on the first pages by Yahoo; 21 classic websites, six displaying popular news/articles and one blog by Google. Analysis of the selected websites revealed that the majority of them (88.8%) had a positive/neutral attitude to flu vaccination. Pro/neutral websites distinguished themselves from the adverse ones by some revealing features like greater transparency, credibility and privacy protection. We found that the majority of the websites providing information on flu vaccination were pro/neutral and gave sufficient information. We suggest that antivaccinationist information may have been spread by a different route, such as via Web 2.0 tools, which may be

  19. High frequency of hepatitis E virus infection in swine from South Brazil and close similarity to human HEV isolates

    Directory of Open Access Journals (Sweden)

    Ana Maria Passos-Castilho

    Full Text Available Abstract Hepatitis E virus is responsible for acute and chronic liver infections worldwide. Swine hepatitis E virus has been isolated in Brazil, and a probable zoonotic transmission has been described, although data are still scarce. The aim of this study was to investigate the frequency of hepatitis E virus infection in pigs from a small-scale farm in the rural area of Paraná State, South Brazil. Fecal samples were collected from 170 pigs and screened for hepatitis E virus RNA using a duplex real-time RT-PCR targeting a highly conserved 70 nt long sequence within overlapping parts of ORF2 and ORF3 as well as a 113 nt sequence of ORF2. Positive samples with high viral loads were subjected to direct sequencing and phylogenetic analysis. hepatitis E virus RNA was detected in 34 (20.0% of the 170 pigs following positive results in at least one set of screening real-time RT-PCR primers and probes. The swine hepatitis E virus strains clustered with the genotype hepatitis E virus-3b reference sequences in the phylogenetic analysis and showed close similarity to human hepatitis E virus isolates previously reported in Brazil.

  20. Virus load in pigs affected with different clinical forms of classical swine fever.

    Science.gov (United States)

    Rout, M; Saikumar, G

    2012-04-01

    Classical swine fever (CSF) is an endemic disease in India, but the real magnitude of the problem is not known as only outbreaks of acute CSF are reported and many cases of chronic and clinically inapparent forms of the disease, which manifest a confusing clinical picture, remain undiagnosed. The real status of classical swine fever virus (CSFV) infection can only be known by testing pigs with highly specific and sensitive diagnostic assays. To obtain the baseline prevalence of CSFV infection among pigs in an endemic region where no vaccination was being performed, a real-time PCR assay was used to detect viral genetic material in tissue samples collected from a slaughterhouse in the northern state of Uttar Pradesh in India. In total, 1120 slaughtered pigs were examined for the presence of CSF suggestive pathological lesions and tissues from suspected cases were tested for the presence of CSFV antigen and nucleic acids by indirect immuno-peroxidase test and real-time PCR, respectively. Based on the detection of viral genetic material in the tonsils, the prevalence of CSFV infection among slaughtered pigs was found to be 7.67%. Pigs detected positive for viral genome by quantitative real-time PCR assay when categorized into different forms of CSF, depending upon the pathological lesions observed, the viral load in the tonsils of some of the pigs with chronic or clinically inapparent form of the disease was similar to that detected in pigs with acute CSF. The results of the study suggested that the risk posed by pigs with chronic disease or those infected but showing no clinical disease may be relatively higher as they can transmit the virus to new susceptible hosts over a longer period of time. © 2011 Blackwell Verlag GmbH.

  1. Prevalence of hepatitis e virus in swine fed on kitchen residue.

    Science.gov (United States)

    Xiao, Peng; Li, Ruiwen; She, Ruiping; Yin, Jun; Li, Wengui; Mao, Jingjing; Sun, Quan

    2012-01-01

    The aim of this study was to investigate the prevalence of swine hepatitis E virus (HEV) in pigs fed different feedstuffs (kitchen residue or mixed feeds) and genetic identification of HEV isolated in Hebei province, China. Serum and fecal samples were collected from adult swine. Anti-HEV antibody was evaluated by double sandwich antigen enzyme immunoassay. HEV RNA was extracted from fecal samples and amplified by nested RT-PCR. The reaction products were sequenced, and the sequence analyzed. Virus-like particles were distinguishable by negative staining in the electron microscope. Histopathological observation and immunohistochemical localization were used in the animal models. Overall, the anti-HEV positive percentage of serum samples from pigs fed on kitchen residue was 87.10% (27/31), and 53.06% (130/245) from pigs fed on complete feed. The HEV RNA positivity rate of fecal samples from pigs fed on kitchen residue was 61.54% (8/13), but zero for pigs fed on complete feed. Sequence analysis of these eight samples and comparison with the published sequence showed that there were eight groups that belonged to genotype 4 d and the nucleotide identity was 95.6-99.3%. swHE11 is most closely related to strain CCC220, and the other seven HEV isolates were most closely related to strains swGX40, SwCH189 and V0008ORF3, which are isolates from human and pigs. Histopathological observation showed that there was liver damage in the experimental group, and immunohistochemistry indicated that the HEV antigens were strongly positive at 7 days after infection. The results demonstrated that the prevalence of HEV in pigs fed on kitchen residue was higher than in those fed on complete feed (P<0.05).

  2. H1N1 Flu & U.S. Schools: Answers to Frequently Asked Questions

    Science.gov (United States)

    US Department of Education, 2009

    2009-01-01

    A severe form of influenza known as H1N1, commonly being called swine flu, has health officials around the world concerned. In the United States, the outbreak of H1N1 has prompted school closures and cancellation of school-related events. As the flu spreads, the Department of Education encourages school leaders, parents and students to know how to…

  3. Immunization of pigs with an attenuated pseudorabies virus recombinant expressing the haemagglutinin of pandemic swine origin H1N1 influenza A virus.

    Science.gov (United States)

    Klingbeil, Katharina; Lange, Elke; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2014-04-01

    Pigs can be severely harmed by influenza, and represent important reservoir hosts, in which new human pathogens such as the recent pandemic swine-origin H1N1 influenza A virus can arise by mutation and reassortment of genome segments. To obtain novel, safe influenza vaccines for pigs, and to investigate the antigen-specific immune response, we modified an established live-virus vaccine against Aujeszky's disease of swine, pseudorabies virus (PrV) strain Bartha (PrV-Ba), to serve as vector for the expression of haemagglutinin (HA) of swine-origin H1N1 virus. To facilitate transgene insertion, the genome of PrV-Ba was cloned as a bacterial artificial chromosome. HA expression occurred under control of the human or murine cytomegalovirus immediate early promoters (P-HCMV, P-MCMV), but could be substantially enhanced by synthetic introns and adaptation of the codon usage to that of PrV. However, despite abundant expression, the heterologous glycoprotein was not detectably incorporated into mature PrV particles. Replication of HA-expressing PrV in cell culture was only slightly affected compared to that of the parental virus strain. A single immunization of pigs with the PrV vector expressing the codon-optimized HA gene under control of P-MCMV induced high levels of HA-specific antibodies. The vaccinated animals were protected from clinical signs after challenge with a related swine-origin H1N1 influenza A virus, and challenge virus shedding was significantly reduced.

  4. Genetic and virulence characterization of classical swine fever viruses isolated in Mongolia from 2007 to 2015.

    Science.gov (United States)

    Enkhbold, Bazarragchaa; Shatar, Munkhduuren; Wakamori, Shiho; Tamura, Tomokazu; Hiono, Takahiro; Matsuno, Keita; Okamatsu, Masatoshi; Umemura, Takashi; Damdinjav, Batchuluun; Sakoda, Yoshihiro

    2017-06-01

    Classical swine fever (CSF), a highly contagious viral disease affecting domestic and wild pigs in many developing countries, is now considered endemic in Mongolia, with 14 recent outbreaks in 2007, 2008, 2011, 2012, 2014, and 2015. For the first time, CSF viruses isolated from these 14 outbreaks were analyzed to assess their molecular epidemiology and pathogenicity in pigs. Based on the nucleotide sequences of their 5'-untranslated region, isolates were phylogenetically classified as either sub-genotypes 2.1b or 2.2, and the 2014 and 2015 isolates, which were classified as 2.1b, were closely related to isolates from China and Korea. In addition, at least three different viruses classified as 2.1b circulated in Mongolia. Experimental infection of the representative isolate in 2014 demonstrated moderate pathogenicity in 4-week-old pigs, with relatively mild clinical signs. Understanding the diversity of circulating CSF viruses gleans insight into disease dynamics and evolution, and may inform the design of effective CSF control strategies in Mongolia.

  5. Classical swine fever virus replicated poorly in cells from MxA transgenic pigs.

    Science.gov (United States)

    Zhao, Yicheng; Wang, Tiedong; Yao, Li; Liu, Bo; Teng, Chunbo; Ouyang, Hongsheng

    2016-08-17

    In addition to their value as livestock, pigs are susceptible to classical swine fever virus (CSFV) and can serve as reservoirs for CSFV, allowing it to develop into an epizootic. CSFV, a pestivirus of the Flaviviridae family, has a single-stranded RNA genome. Recent research has indicated that the human MxA protein inhibits the life cycles of certain RNA viruses, such as members of the Bunyaviridae family, the Flaviviridae family and others. To produce pigs with antiviral protection against CSFV, transgenic pigs expressing human MxA were generated by nuclear transplantation. Cells from three MxA transgenic piglets were used to investigate in vitro antiviral activity of MxA aganist CSFV, and the results of in vitro indirect immunofluorescence assays, virus titration and real-time PCR indicated that the MxA transgenic pig has an antiviral capacity against CSFV. Transgene with human MxA on pigs is feasible. High levels of MxA expression do inhibit CSFV in vitro at early time points post-infection at 60-96dpi.

  6. Transfection of RNA from organ samples of infected animals represents a highly sensitive method for virus detection and recovery of classical swine fever virus.

    Science.gov (United States)

    Meyer, Denise; Schmeiser, Stefanie; Postel, Alexander; Becher, Paul

    2015-01-01

    Translation and replication of positive stranded RNA viruses are directly initiated in the cellular cytoplasm after uncoating of the viral genome. Accordingly, infectious virus can be generated by transfection of RNA genomes into susceptible cells. In the present study, efficiency of conventional virus isolation after inoculation of cells with infectious sample material was compared to virus recovery after transfection of total RNA derived from organ samples of pigs infected with Classical swine fever virus (CSFV). Compared to the conventional method of virus isolation applied in three different porcine cell lines used in routine diagnosis of CSF, RNA transfection showed a similar efficiency for virus rescue. For two samples, recovery of infectious virus was only possible by RNA transfection, but not by the classical approach of virus isolation. Therefore, RNA transfection represents a valuable alternative to conventional virus isolation in particular when virus isolation is not possible, sample material is not suitable for virus isolation or when infectious material is not available. To estimate the potential risk of RNA prepared from sample material for infection of pigs, five domestic pigs were oronasally inoculated with RNA that was tested positive for virus rescue after RNA transfection. This exposure did not result in viral infection or clinical disease of the animals. In consequence, shipment of CSFV RNA can be regarded as a safe alternative to transportation of infectious virus and thereby facilitates the exchange of virus isolates among authorized laboratories with appropriate containment facilities.

  7. The survey of H5N1 flu virus in wild birds in 14 Provinces of China from 2004 to 2007.

    Directory of Open Access Journals (Sweden)

    Zheng Kou

    Full Text Available BACKGROUND: The highly pathogenic H5N1 avian influenza emerged in the year 1996 in Asia, and has spread to Europe and Africa recently. At present, effective monitoring and data analysis of H5N1 are not sufficient in Chinese mainland. METHODOLOGY/PRINCIPAL FINDINGS: During the period from April of 2004 to August of 2007, we collected 14,472 wild bird samples covering 56 species of 10 orders in 14 provinces of China and monitored the prevalence of flu virus based on RT-PCR specific for H5N1 subtype. The 149 positive samples involved six orders. Anseriformes had the highest prevalence while Passeriformes had the lowest prevalence (2.70% versus 0.36%. Among the 24 positive species, mallard (Anas platyrhynchos had the highest prevalence (4.37%. A difference of prevalence was found among 14 provinces. Qinghai had a higher prevalence than the other 13 provinces combined (3.88% versus 0.43%. The prevalence in three species in Qinghai province (Pintail (Anas acuta, Mallard (Anas platyrhynchos and Tufted Duck (Aythya fuligula were obviously higher than those in other 13 provinces. The results of sequence analysis indicated that the 17 strains isolated from wild birds were distributed in five clades (2.3.1, 2.2, 2.5, 6, and 7, which suggested that genetic diversity existed among H5N1 viruses isolated from wild birds. The five isolates from Qinghai came from one clade (2.2 and had a short evolutionary distance with the isolates obtained from Qinghai in the year 2005. CONCLUSIONS/SIGNIFICANCE: We have measured the prevalence of H5N1 virus in 56 species of wild birds in 14 provinces of China. Continuous monitoring in the field should be carried out to know whether H5N1 virus can be maintained by wild birds.

  8. Comparative Analysis of Avian and Swine Influenza Viruses Infections of Well Differentiated Lung Epithelial Cells of Turkey

    Directory of Open Access Journals (Sweden)

    Sahar Abd El Rahman

    2015-07-01

    Full Text Available Influenza viruses initiate infection by binding of the viral hemagglutinin to the cellular sialic acid residues. The precision-cut lung slice, as a valuable cultural tool of differentiated respiratory epithelial cells, is characterized by its ability to be viable for at least six days in-vitro, mimic in-vivo original cells and simply monitored by an inverted microscope. The aims of the study were to analyse the distribution of different sialic acid types in bronchus and parabronchial tissues of Turkey Precision Lung Slices (TPCLS, investigate the infection susceptibility of TPCLS by avian influenza (H9N2 and H7N7 and swine influenza (H3N2 viruses and evaluate the infection expression of TPCLS by different influenza viruses in correlation to the cellular sialic acids distribution after infection. The lectin stains and monoclonal antibodies prepared against nucleoprotein of influenza virus were used for analysing sialic acids distributions and viral antigen detection of TPCLS by immunoflourescent technique. The viral infective particles released from infected TPCLS by different avian and swine influenza viruses were titrated at different time intervals after infection. Both α2,3-linked and α2,6-linked sialic acids were expressed in the bronchus of TPCLS, while only α2,6-linked sialic acid was expressed in the parabronchial tissues. The indirect immunoflourescent technique showed variation of infection susceptibility of TPCLS parts by avian and swine influenza viruses. Infection was expressed in the bronchial epithelium by H9N2, H7N7 and H3N2, while in the parabronchial tissue by H9N2 and H3N2. Titration of the released infective viruses in the supernatant of infected TPCLS revealed that H9N2 could replicate faster than the other influenza viruses. TPCLS is a promising in-vitro model for viral infection study of turkey.

  9. Sequence adaptations during growth of rescued classical swine fever viruses in cell culture and within infected pigs.

    Science.gov (United States)

    Hadsbjerg, Johanne; Friis, Martin B; Fahnøe, Ulrik; Nielsen, Jens; Belsham, Graham J; Rasmussen, Thomas Bruun

    2016-08-30

    Classical swine fever virus (CSFV) causes an economically important disease of swine. Four different viruses were rescued from full-length cloned cDNAs derived from the Paderborn strain of CSFV. Three of these viruses had been modified by mutagenesis (with 7 or 8 nt changes) within stem 2 of the subdomain IIIf of the internal ribosome entry site (IRES) that directs the initiation of protein synthesis. Rescued viruses were inoculated into pigs. The rescued vPader10 virus, without modifications in the IRES, induced clinical disease in pigs that was very similar to that observed previously with the parental field strain and transmission to in-contact pigs occurred. Two sequence reversions, in the NS2 and NS5B coding regions, became dominant within the virus populations in these infected pigs. Rescued viruses, with mutant IRES elements, did not induce disease and only very limited circulation of viral RNA could be detected. However, the animals inoculated with these mutant viruses seroconverted against CSFV. Thus, these mutant viruses were highly attenuated in vivo. All 4 rescued viruses were also passaged up to 20 times in cell culture. Using full genome sequencing, the same two adaptations within each of four independent virus populations were observed that restored the coding sequence to that of the parental field strain. These adaptations occurred with different kinetics. The combination of reverse genetics and in depth, full genome sequencing provides a powerful approach to analyse virus adaptation and to identify key determinants of viral replication efficiency in cells and within host animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Vaccination with NS1-truncated H3N2 swine influenza virus primes T cells and confers cross-protection against an H1N1 heterosubtypic challenge in pigs

    Science.gov (United States)

    The diversity of contemporary swine influenza virus (SIV) strains impedes effective immunization of swine herds. Mucosally delivered, attenuated virus vaccines are one approach with potential to provide broad cross-protection. Reverse genetics-derived H3N2 SIV virus with truncated NS1 (NS1delta126 T...

  11. A Review of Classical Swine Fever Virus and Routes of Introduction into the United States and the Potential for Virus Establishment

    Directory of Open Access Journals (Sweden)

    Vienna R. Brown

    2018-03-01

    Full Text Available Classical swine fever (CSF is caused by CSF virus (CSFV which can be the source of substantial morbidity and mortality events in affected swine. The disease can take one of several forms (acute, chronic, or prenatal and depending on the virulence of the inoculating strain may result in a lethal infection irrespective of the form acquired. Because of the disease-free status of the United States and the high cost of a viral incursion, a summary of US vulnerabilities for viral introduction and persistence is provided. The legal importation of live animals as well as animal products, byproducts, and animal feed serve as a potential route of viral introduction. Current import regulations are described as are mitigation strategies that are commonly utilized to prevent pathogens, including CSFV, from entering the US. The illegal movement of suids and their products as well as an event of bioterrorism are both feasible routes of viral introduction but are difficult to restrict or regulate. Ultimately, recommendations are made for data that would be useful in the event of a viral incursion. Population and density mapping for feral swine across the United States would be valuable in the event of a viral introduction or spillover; density data could further contribute to understanding the risk of infection in domestic swine. Additionally, ecological and behavioral studies, including those that evaluate the effects of anthropogenic food sources that support feral swine densities far above the carrying capacity would provide invaluable insight to our understanding of how human interventions affect feral swine populations. Further analyses to determine the sampling strategies necessary to detect low levels of antibody prevalence in feral swine would also be valuable.

  12. Effect of serial pig passages on the adaptation of an avian H9N2 influenza virus to swine.

    Directory of Open Access Journals (Sweden)

    Jose Carlos Mancera Gracia

    Full Text Available H9N2 avian influenza viruses are endemic in poultry in Asia and the Middle East. These viruses sporadically cause dead-end infections in pigs and humans raising concerns about their potential to adapt to mammals or reassort with human or swine influenza viruses. We performed ten serial passages with an avian H9N2 virus (A/quail/Hong Kong/G1/1997 in influenza naïve pigs to assess the potential of this virus to adapt to swine. Virus replication in the entire respiratory tract and nasal virus excretion were examined after each passage and we deep sequenced viral genomic RNA of the parental and passage four H9N2 virus isolated from the nasal mucosa and lung. The parental H9N2 virus caused a productive infection in pigs with a predominant tropism for the nasal mucosa, whereas only 50% lung samples were virus-positive. In contrast, inoculation of pigs with passage four virus resulted in viral replication in the entire respiratory tract. Subsequent passages were associated with reduced virus replication in the lungs and infectious virus was no longer detectable in the upper and lower respiratory tract of inoculated pigs at passage ten. The broader tissue tropism after four passages was associated with an amino acid residue substitution at position 225, within the receptor-binding site of the hemagglutinin. We also compared the parental H9N2, passage four H9N2 and the 2009 pandemic H1N1 (pH1N1 virus in a direct contact transmission experiment. Whereas only one out of six contact pigs showed nasal virus excretion of the wild-type H9N2 for more than four days, all six contact animals shed the passage four H9N2 virus. Nevertheless, the amount of excreted virus was significantly lower when compared to that of the pH1N1, which readily transmitted and replicated in all six contact animals. Our data demonstrate that serial passaging of H9N2 virus in pigs enhances its replication and transmissibility. However, full adaptation of an avian H9N2 virus to pigs

  13. Early pathogenesis of classical swine fever virus (CSFV) strains in Danish pigs.

    Science.gov (United States)

    Lohse, Louise; Nielsen, Jens; Uttenthal, Ase

    2012-10-12

    Host-virus interactions play an important role for the clinical outcome of classical swine fever virus (CSFV) infections in pigs. Strain virulence, host characteristics and environment are all factors that markedly influence disease severity. We tested CSFV strains of varying virulence in an experimental set-up, reducing the influence of host and environmental factors. Thus, weaner pigs were inoculated with one of 4 CSFV strains in order to compare the pathogenesis for a 3-week-period after infection. CSFV strains selected were 2 new and 2 previously characterized. None of these strains had been tested in Danish outbred pigs before. Clinical observations grouped the infected pigs into two different categories reflecting either non-specific, mainly gastro-intestinal, problems, or severe disease including high fever within the first week after inoculation. Gross-pathological findings varied between strains, however, lymphoid atrophy and growth retardation represented a consistent finding for all 4 strains. Virus distribution, viral load and in particular virus persistence differed, but supported present practice that recommends lymphoid tissue, most optimal tonsil and lymph nodes, as target material to be applied for early laboratory diagnosis. The present study demonstrated constraints associated with early detection of infections with CSFV strains of low virulence. Since neither clinical symptoms nor pathological lesions observed with these strains constituted characteristic signs of CSF, the risk of neglecting a CSF suspicion is immediate. Therefore, topical information on new outbreaks and continuous enhancement of an efficient surveillance system is of great importance to prevent further spread of CSF within the pig population. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Characterization of co-circulating swine influenza A viruses in North America and the identification of a novel H1 genetic clade with antigenic significance.

    Science.gov (United States)

    Anderson, Tavis K; Campbell, Brian A; Nelson, Martha I; Lewis, Nicola S; Janas-Martindale, Alicia; Killian, Mary Lea; Vincent, Amy L

    2015-04-02

    Multiple genetically and antigenically distinct hemagglutinin genes of the H1 and H3 influenza A virus (IAV) subtypes co-circulate in North American swine. This diversity has evolved by repeated transmission of IAVs from humans to swine and subsequent antigenic drift in swine. To understand the evolutionary dynamics of these diverse HA lineages in North American swine, we undertook a phylogenetic analysis of 1576 H1 and 607 H3 HA gene segments, as well as 834 N1 and 1293 N2 NA gene segments, and 2126 M gene segments. These data revealed yearly co-circulation of H1N1, H1N2, and H3N2 viruses, with three HA clades representing the majority of the HA sequences: of the H1 viruses, 42% were classified as H1δ1 and 40.6% were classified as H1γ; and of the H3 viruses 53% were classified as cluster IV-A H3N2. We detected a genetically distinct minor clade consisting of 37 H1 viruses isolated between 2003 and 2013, which we classified as H1γ-2. We estimated that this clade circulated in swine since approximately 1995, but it was not detected in swine until 2003. Though this clade only represents 1.07% of swine H1 sequences reported over the past 10 years, hemagglutination inhibition (HI) assays demonstrated that representatives of this clade of viruses are antigenically distinct, and, when measured using antigenic cartography, were as many as 7 antigenic units from other H1γ viruses. Therefore vaccines against the contemporary H1γ viruses are not likely to cross-protect against γ-2 viruses. The long-term circulation of these γ-2 viruses suggests that minor populations of viruses may be underreported in the national dataset given the long branch lengths and gaps in detections. The identification of these γ-2 viruses demonstrates the need for robust surveillance to capture the full diversity IAVs in swine in the USA and the importance of antigenic drift in the diversification and emergence of new antigenic variants in swine, which complicates vaccine design. Published

  15. Influence of Age and Dose of African Swine Fever Virus Infections on Clinical Outcome and Blood Parameters in Pigs.

    Science.gov (United States)

    Post, Jacob; Weesendorp, Eefke; Montoya, Maria; Loeffen, Willie L

    African swine fever (ASF) is a fatal disease for domestic pigs, leading to serious economic losses in countries where ASF is endemic. Despite extensive research, efficient vaccines against ASF are lacking. Since peripheral blood cells are important mediators for vaccines, we study the impact of ASF on blood parameters in pigs with different ages and infected with different doses of ASF virus. Four different groups were studied: (1) 12 weeks of age/low virus dose; (2) 12 weeks of age/high virus dose; (3) 18 weeks of age/low virus dose; and (4) 18 weeks of age/high virus dose. By varying in age and/or ASFV inoculation dose, we monitor blood parameters during different degrees of disease. Thirty percent of the pigs survived the infection with a moderately virulent strain of African swine fever virus (ASFV). Animals that did survive infection were generally older, independent from the inoculation dose used. A firm reduction in many different cell types at 3-5 days postinfection (DPI) was accompanied by an increase in body temperature, followed by clinical signs and mortality from day 6 PI. While blood parameters generally normalized in survivors, γδ T cells and IL-10 levels could be related to mortality. These conclusions should be considered in new approaches for protection against ASF.

  16. Isolation and complete genomic characterization of pandemic H1N1/2009 influenza viruses from Cuban swine herds.

    Science.gov (United States)

    Pérez, Lester Josué; Perera, Carmen Laura; Vega, Armando; Frías, Maria T; Rouseaux, Dagmar; Ganges, Llilianne; Nuñez, José Ignacio; Díaz de Arce, Heidy

    2013-06-01

    The emergence of the pandemic H1N1/2009 influenza virus poses a potential global threat for human and animal health. In this study, we carried out pandemic H1N1/2009 influenza virus surveillance in swine herds in Cuba intending to determine whether the virus was circulating among pig populations. As a result we describe, for the first time, the detection of pandemic H1N1/2009 influenza virus in swine herds in Cuba. In addition, phylogenetic analysis and molecular characterization of three viral isolates were performed. Phylogenetic relationships confirmed that all of the eight genes of the three isolates were derived from the pandemic H1N1/2009 virus. The Cuban isolates, formed an independent cluster within the pandemic H1N1/2009 influenza strains. Different molecular markers, previously described in pandemic H1N1/2009 influenza viruses, related with adaptive evolution, viral evasion from the host-immune response, virulence and dissemination were also present in Cuban pandemic H1N1/2009 isolates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Transmission routes of African swine fever virus to domestic pigs: current knowledge and future research directions.

    Science.gov (United States)

    Guinat, Claire; Gogin, Andrey; Blome, Sandra; Keil, Guenther; Pollin, Reiko; Pfeiffer, Dirk U; Dixon, Linda

    2016-03-12

    African swine fever (ASF) is a major threat to the pig industry in Europe. Since 2007, ASF outbreaks have been ongoing in the Caucasus, Eastern Europe and the Baltic countries, causing severe economic losses for many pig farmers and pork producers. In addition, the number of ASF cases in wild boar populations has dramatically increased over the past few years. Evidence supports direct contact with infectious domestic pigs and wild boars, and consumption of contaminated feed, as the main transmission routes of ASF virus (ASFV) to domestic pigs. However, significant knowledge gaps highlight the urgent need for research to investigate the dynamics of indirect transmission via the environment, the minimal infective doses for contaminated feed ingestion, the probability of effective contacts between infectious wild boars and domestic pigs, the potential for recovered animals to become carriers and a reservoir for transmission, the potential virus persistence within wild boar populations and the influence of human behaviour for the spread of ASFV. This will provide an improved scientific basis to optimise current interventions and develop new tools and strategies to reduce the risk of ASFV transmission to domestic pigs. British Veterinary Association.

  18. Piezoresistive measurement of Swine H1N1 Hemagglutinin peptide binding with microcantilever arrays

    Science.gov (United States)

    Bajwa, N.; Maldonado, C. J.; Thundat, T.; Passian, A.

    2014-03-01

    Effective detection of Swine H1N1 Hemagglutinin peptide is crucial as it could be used as a positive control to screen for highly infectious flu strains such as Swine-Origin Influenza A (H1N1). Piezoresistive microcantilever arrays present a pathway towards highly sensitive and label-free detection of biomolecules by transducing the antigen-antibody binding into change in resistivity via induced surface stress variation. We demonstrate a mechanical transduction of Swine H1N1 Hemagglutinin peptide binding and suggest the employed technique may offer a potential platform for detection of the H1N1 virus, which could be clinically used to diagnose and provide subsequent relief.

  19. Know and Share the Facts about Flu Vaccination

    Science.gov (United States)

    Grohskopf, Lisa

    2012-01-01

    Flu is a contagious respiratory illness caused by influenza viruses that infect the nose, throat, and lungs. It can cause mild to severe illness, and sometimes can lead to death. Symptoms of flu can include fever or a feverish feeling, cough, sore throat, runny or stuffy nose, muscle or body aches, headache, fatigue, vomiting, and diarrhea. Flu…

  20. Short communication: Stability and integrity of classical swine fever virus RNA stored at room temperature

    Directory of Open Access Journals (Sweden)

    Damarys Relova

    2017-12-01

    Full Text Available Worldwide cooperation between laboratories working with classical swine fever virus (CSFV requires exchange of virus isolates. For this purpose, shipment of CSFV RNA is a safe alternative to the exchange of infectious material. New techniques using desiccation have been developed to store RNA at room temperature and are reported as effective means of preserving RNA integrity. In this study, we evaluated the stability and integrity of dried CSFV RNA stored at room temperature. First, we determined the stability of CSFV RNA covering CSFV genome regions used typically for the detection of viral RNA in diagnostic samples by reverse transcription-polymerase chain reaction (RT-PCR. To this end, different concentrations of in vitro-transcribed RNAs of the 5’-untranslated region and of the NS5B gene were stored as dried RNA at 4, 20, and 37oC for two months. Aliquots were analyzed every week by CSFV-specific quantitative real-time RT-PCR. Neither the RNA concentration nor the storage temperature did affect CSFV RNA yields at any of the time evaluated until the end of the experiment. Furthermore, it was possible to recover infectious CSFV after transfection of SK-6 cells with dried viral RNA stored at room temperature for one week. The full-length E2 of CSFV was amplified from all the recovered viruses, and nucleotide sequence analysis revealed 100% identity with the corresponding sequence obtained from RNA of the original material. These results show that CSFV RNA stored as dried RNA at room temperature is stable, maintaining its integrity for downstream analyses and applications.

  1. Third wave of African swine fever infection in Armenia: Virus demonstrates the reduction of pathogenicity

    Directory of Open Access Journals (Sweden)

    M. A. Sargsyan

    2018-01-01

    Full Text Available Aim: First cases of clinically uncommon African swine fever (ASF, caused by virus genotype II are described in this article. These cases occurred in Armenia, Tavush region, Dilijan municipality in 2011. The aim of this study was to identify and describe the new pathogenic forms of ASF in Armenia. Materials and Methods: The isolation and identification of ASF virus (ASFV were carried out using conventional techniques. Clinical signs of infection were recorded daily. Gross anatomical pathology characteristics were observed during routine postmortem examinations. Blood and serum were obtained by puncture of the jugular vein using a vacutainer system. Results: The presence of ASFV DNA in the spleens was confirmed by polymerase chain reaction. Sequenced sections of p72 showed phylogenetic identity to genotype 2. The pathology exhibits unusual manifestations of the main disease. The unusual form of ASF demonstrates characteristics of a subacute form of the disease, with the possibility of conversion to a chronic form. Decreased lethality, low level of hemorrhages, and absence of severe pancytopenia in smears from spleen, lymph nodes, and blood are common features of the new form of ASF. Unlike severe thrombocytopenia in the typical ASF, the unusual form exhibited moderate or minor decrease of this feature. Despite a moderate decrease in hemadsorption titers, the unusual pattern of the disease was characterized by viremia and the presence of the virus in the visceral organs, including the brain. Conclusion: Our data allow assuming that new nosological form of ASF (genotype II may present as a transitional form of the disease with the possibility of chronization.

  2. Postnatal persistent infection with classical Swine Fever virus and its immunological implications.

    Directory of Open Access Journals (Sweden)

    Sara Muñoz-González

    Full Text Available It is well established that trans-placental transmission of classical swine fever virus (CSFV during mid-gestation can lead to persistently infected offspring. The aim of the present study was to evaluate the ability of CSFV to induce viral persistence upon early postnatal infection. Two litters of 10 piglets each were infected intranasally on the day of birth with low and moderate virulence CSFV isolates, respectively. During six weeks after postnatal infection, most of the piglets remained clinically healthy, despite persistent high virus titres in the serum. Importantly, these animals were unable to mount any detectable humoral and cellular immune response. At necropsy, the most prominent gross pathological lesion was a severe thymus atrophy. Four weeks after infection, PBMCs from the persistently infected seronegative piglets were unresponsive to both, specific CSFV and non-specific PHA stimulation in terms of IFN-γ-producing cells. These results suggested the development of a state of immunosuppression in these postnatally persistently infected pigs. However, IL-10 was undetectable in the sera of the persistently infected animals. Interestingly, CSFV-stimulated PBMCs from the persistently infected piglets produced IL-10. Nevertheless, despite the addition of the anti-IL-10 antibody in the PBMC culture from persistently infected piglets, the response of the IFN-γ producing cells was not restored. Therefore, other factors than IL-10 may be involved in the general suppression of the T-cell responses upon CSFV and mitogen activation. Interestingly, bone marrow immature granulocytes were increased and targeted by the virus in persistently infected piglets. Taken together, we provided the first data demonstrating the feasibility of CSFV in generating a postnatal persistent disease, which has not been shown for other members of the Pestivirus genus yet. Since serological methods are routinely used in CSFV surveillance, persistently infected pigs

  3. Flublok Seasonal Influenza (Flu) Vaccination

    Science.gov (United States)

    ... Vaccine Safety and Pregnant Women Febrile Seizures Following Vaccination Flu Vaccine and People with Egg Allergies Guillain- ... Flu Vaccines Quadrivalent Influenza Vaccine Intradermal Influenza (Flu) Vaccination Fluzone High-Dose Seasonal Influenza Vaccine Cell-Based ...

  4. Porcine Epidemic Diarrhea Virus Shedding and Antibody Response in Swine Farms: a Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Cristina Bertasio

    2016-12-01

    Full Text Available The porcine epidemic diarrhea virus (PEDV causes an acute and highly contagious enteric disease characterized by severe enteritis, vomiting, watery diarrhea and a high mortality rate in seronegative neonatal piglets. In the last few years, PED had a large economic impact on the swine industries in Asia and the United States, and in 2014, the PEDV also re-emerged in Europe. Two main PEDV variants circulate worldwide but only the S INDEL variant, considered a mild strain, is spreading in Europe. To gain insights into the pathogenicity of this variant, its viral load and temporal shedding pattern were evaluated in piglets from infected farms. Quantitative real-time PCR (qPCR targeting the spike gene, was validated according to the minimum information for quantitative real-time PCR experiments guidelines. The qPCR was applied to longitudinal studies conducted in four swine farms naturally infected with the PEDV S INDEL variant. Clinical data, fecal swabs and blood samples were collected from 103 piglets at 15–30-day intervals for 2–5 months. On all four farms, diarrhea was observed in sows during gestation and in farrowing units, and the mortality rates of piglets were 18, 25, 30 and 35%. Different clinical pictures (0-50% of diarrhea positivity, viral titer levels (mean 5.3-7.2 log10 genome copies/mL and antibody conditions (30-80% of positivity were registered among sows on the four farms. The percentage of qPCR positive piglets varied greatly from the beginning (63–100% to the end (0% of the infection course. Clinical signs were present in 96% of the qPCR positive animals. Viral loads ranged from 8.5 log10 to 4 log10 genome copies/mL in suckling pigs at 3–6 days of age and were not statistically different among farms, despite the different patterns observed in sows. After 2–3 weeks, only a few piglets still showed detectable viral levels and clinical signs, and they developed antibody responses. Moreover, co-infections with other

  5. In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication.

    Science.gov (United States)

    Freitas, Ferdinando B; Frouco, Gonçalo; Martins, Carlos; Leitão, Alexandre; Ferreira, Fernando

    2016-10-01

    African swine fever virus (ASFV) is the etiological agent of a highly-contagious and fatal disease of domestic pigs, leading to serious socio-economic impact in affected countries. To date, neither a vaccine nor a selective anti-viral drug are available for prevention or treatment of African swine fever (ASF), emphasizing the need for more detailed studies at the role of ASFV proteins involved in viral DNA replication and transcription. Notably, ASFV encodes for a functional type II topoisomerase (ASFV-Topo II) and we recently showed that several fluoroquinolones (bacterial DNA topoisomerase inhibitors) fully abrogate ASFV replication in vitro. Here, we report that ASFV-Topo II gene is actively transcribed throughout infection, with transcripts being detected as early as 2 hpi and reaching a maximum peak concentration around 16 hpi, when viral DNA synthesis, transcription and translation are more active. siRNA knockdown experiments showed that ASFV-Topo II plays a critical role in viral DNA replication and gene expression, with transfected cells presenting lower viral transcripts (up to 89% decrease) and reduced cytopathic effect (-66%) when compared to the control group. Further, a significant decrease in the number of both infected cells (75.5%) and viral factories per cell and in virus yields (up to 99.7%, 2.5 log) was found only in cells transfected with siRNA targeting ASFV-Topo II. We also demonstrate that a short exposure to enrofloxacin during the late phase of infection (from 15 to 1 hpi) induces fragmentation of viral genomes, whereas no viral genomes were detected when enrofloxacin was added from the early phase of infection (from 2 to 16 hpi), suggesting that fluoroquinolones are ASFV-Topo II poisons. Altogether, our results demonstrate that ASFV-Topo II enzyme has an essential role during viral genome replication and transcription, emphasizing the idea that this enzyme can be a potential target for drug and vaccine development against ASF

  6. Comparison of the protective efficacy of recombinant pseudorabies viruses against pseudorabies and classical swine fever in pigs,, influence of different promoters on gene expression and on protection

    NARCIS (Netherlands)

    Hooft, van B.J.L.; Wind, de N.; Wensvoort, G.; Kimman, T.G.; Gielkens, A.L.J.; Moormann, R.J.M.

    1996-01-01

    The glycoprotein E (gE) locus in the genome of pseudorabies virus (PRV) was used as an insertion site for the expression of glycoprotein E1 of classical swine fever virus (CSFV). Transcription of E1 in the recombinants M401, M402 or M403 was regulated by the gD promoter of PRV, the immediate early

  7. Development of a real-time PCR assay based on primer-probe energy transfer for the detection of swine vesicular disease virus

    DEFF Research Database (Denmark)

    Hakhverdyan, M.; Rasmussen, Thomas Bruun; Thoren, P.

    2006-01-01

    A real-time PCR assay based on primer-probe energy transfer (PriProET) was developed to detect swine vesicular disease virus (SVDV). Specificity tests of SVDV and heterologous virus showed specific amplification of SVDV strains only. The amplification plot for the closely related Coxsackievirus B5...

  8. Storms and Water Usage; Swine Flu

    Science.gov (United States)

    Edwards, C. C.; Muttiah, Daniel

    2009-01-01

    This article offers a contemporary, authentic application of quantitative reasoning based on media clips. Students analyze items from the media to answer mathematical questions related to the article. Volumes, economics, and growth rates of a pandemic are featured in the two clips presented. (Contains 4 figures and 1 table.)

  9. Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs: a potential animal model for human H1N1 influenza virus.

    Science.gov (United States)

    Khatri, Mahesh; Dwivedi, Varun; Krakowka, Steven; Manickam, Cordelia; Ali, Ahmed; Wang, Leyi; Qin, Zhuoming; Renukaradhya, Gourapura J; Lee, Chang-Won

    2010-11-01

    Pigs are capable of generating reassortant influenza viruses of pandemic potential, as both the avian and mammalian influenza viruses can infect pig epithelial cells in the respiratory tract. The source of the current influenza pandemic is H1N1 influenza A virus, possibly of swine origin. This study was conducted to understand better the pathogenesis of H1N1 influenza virus and associated host mucosal immune responses during acute infection in humans. Therefore, we chose a H1N1 swine influenza virus, Sw/OH/24366/07 (SwIV), which has a history of transmission to humans. Clinically, inoculated pigs had nasal discharge and fever and shed virus through nasal secretions. Like pandemic H1N1, SwIV also replicated extensively in both the upper and lower respiratory tracts, and lung lesions were typical of H1N1 infection. We detected innate, proinflammatory, Th1, Th2, and Th3 cytokines, as well as SwIV-specific IgA antibody in lungs of the virus-inoculated pigs. Production of IFN-γ by lymphocytes of the tracheobronchial lymph nodes was also detected. Higher frequencies of cytotoxic T lymphocytes, γδ T cells, dendritic cells, activated T cells, and CD4+ and CD8+ T cells were detected in SwIV-infected pig lungs. Concomitantly, higher frequencies of the immunosuppressive T regulatory cells were also detected in the virus-infected pig lungs. The findings of this study have relevance to pathogenesis of the pandemic H1N1 influenza virus in humans; thus, pigs may serve as a useful animal model to design and test effective mucosal vaccines and therapeutics against influenza virus.

  10. "Stomach Flu" (For Kids)

    Science.gov (United States)

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body Works ... Educators Search English Español "Stomach Flu" KidsHealth / For Kids / "Stomach Flu" Print Many people talk about the " ...

  11. Prior infection of pigs with a genotype 3 swine hepatitis E virus (HEV) protects against subsequent challenges with homologous and heterologous genotypes 3 and 4 human HEV.

    Science.gov (United States)

    Sanford, Brenton J; Dryman, Barbara A; Huang, Yao-Wei; Feagins, Alicia R; Leroith, Tanya; Meng, Xiang-Jin

    2011-07-01

    Hepatitis E virus (HEV) is an important human pathogen. At least four recognized and two putative genotypes of mammalian HEV have been reported: genotypes 1 and 2 are restricted to humans whereas genotypes 3 and 4 are zoonotic. The current experimental vaccines are all based on a single strain of HEV, even though multiple genotypes of HEV are co-circulating in some countries and thus an individual may be exposed to more than one genotype. Genotypes 3 and 4 swine HEV is widespread in pigs and known to infect humans. Therefore, it is important to know if prior infection with a genotype 3 swine HEV will confer protective immunity against subsequent exposure to genotypes 3 and 4 human and swine HEV. In this study, specific-pathogen-free pigs were divided into 4 groups of 6 each. Pigs in the three treatment groups were each inoculated with a genotype 3 swine HEV, and 12 weeks later, challenged with the same genotype 3 swine HEV, a genotype 3 human HEV, and a genotype 4 human HEV, respectively. The control group was inoculated and challenged with PBS buffer. Weekly sera from all pigs were tested for HEV RNA and IgG anti-HEV, and weekly fecal samples were also tested for HEV RNA. The pigs inoculated with swine HEV became infected as evidenced by fecal virus shedding and viremia, and the majority of pigs also developed IgG anti-HEV prior to challenge at 12 weeks post-inoculation. After challenge, viremia was not detected and only two pigs challenged with swine HEV had 1-week fecal virus shedding, suggesting that prior infection with a genotype 3 swine HEV prevented pigs from developing viremia and fecal virus shedding after challenges with homologous and heterologous genotypes 3 and 4 HEV. The results from this study have important implications for future development of an effective HEV vaccine. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Enhancing expression of the classical swine fever virus glycoprotein E2 in yeast and its application to a blocking ELISA.

    Science.gov (United States)

    Cheng, Chih-Yuan; Wu, Ching-Wei; Lin, Guang-Jan; Lee, Wei-Cheng; Chien, Maw-Sheng; Huang, Chienjin

    2014-03-20

    Classical swine fever virus (CSFV) infection is a severe swine disease, often causing large economic losses. A Pichia pastoris yeast-expressed CSFV glycoprotein E2 (yE2) has been shown to induce a protective immune response against the virus. To improve the expression level of yE2, the first codon of E2 gene, Arg (CGG), which is the least used in P. pastoris, was optimized to the most favorite codon AGA. The yield of E2 protein was remarkably increased in the codon optimized strain (N342). Three truncated E2 subunits encoding the N-terminal 330 (N330), 301 (N301), and 190 (N190) residues, respectively, were also constructed. The immunogenicity of each recombinant E2 subunits was confirmed by immunization of pigs, and all immunized groups demonstrated high neutralizing antibody titers after boost immunization, which lasted for a long period of time. In addition, a monoclonal antibody (MAb), 1B6, specific to yE2, was generated and shown to recognize CSFV-infected cells. A panel of swine sera were tested by peroxidase-conjugated MAb 1B6-based blocking enzyme-linked immunosorbent assay (ELISA) using N330 as coated antigen, and the assay demonstrated high sensitivity and specificity. The recombinant yE2 subunits may provide potential subunit vaccine candidates and useful diagnostic reagents for CSFV with easy manipulation and low cost. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Interactive cellular proteins related to classical swine fever virus non-structure protein 2 by yeast two-hybrid analysis.

    Science.gov (United States)

    Kang, Kai; Guo, Kangkang; Tang, Qinhai; Zhang, Yanming; Wu, Jiang; Li, Weiwei; Lin, Zhi

    2012-12-01

    Classical swine fever is caused by the classical swine fever virus (CSFV), which has a special affinity to endothelial cells. This fever is characterized by hemorrhage and necrosis of vascular injury. Very little information is available on the interaction between vascular endothelial cells and CSFV. In the current report, the cDNA library of swine umbilical vein endothelial cell (SUVEC) was constructed by the switching mechanism at 5' end of the RNA transcript approach. The yeast two-hybrid (Y2H) system was adopted to screen non-structure 2 protein (NS2) interactive proteins in the SUVEC line. Alignment with the NCBI database revealed 11 interactive proteins: GOPC, HNRNPH1, DNAJA1, ATP6, CSDE1, CNDP2, FANCL, TMED4, DNAJA4, MOAP1, and PNMA1. These proteins were mostly related to apoptosis, stress response and oxidation reduction, or metabolism. In the protein interaction network constructed based on proteins with NS2, the more important proteins were MOAP1, DNAJA1, GOPC, FANCL, TMED4, and CSDE1. The interactions detected by the Y2H should be regarded only as preliminary indications. However, the CSFV NS2 interactive proteins in the SUVEC cDNA library obtained in the current study provides valuable information for gaining a better understanding of the host protein-virus interactions of the CSFV NS2 protein.

  14. Original Article: Real time reverse transcription (RRT)?polymerase chain reaction (PCR) methods for detection of pandemic (H1N1) 2009 influenza virus and European swine influenza A virus infections in pigs

    OpenAIRE

    Slomka, Marek J.; Densham, Anstice L. E.; Coward, Vivien J.; Essen, Steve; Brookes, Sharon M.; Irvine, Richard M.; Spackman, Erica; Ridgeon, Jonathan; Gardner, Rebecca; Hanna, Amanda; Suarez, David L.; Brown, Ian H.

    2010-01-01

    Please cite this paper as: Slomka et?al. (2010) Real time reverse transcription (RRT)?polymerase chain reaction (PCR) methods for detection of pandemic (H1N1) 2009 influenza virus and European swine influenza A virus infections in pigs. Influenza and Other Respiratory Viruses 4(5), 277?293. Background? There is a requirement to detect and differentiate pandemic (H1N1) 2009 (H1N1v) and established swine influenza A viruses (SIVs) by real time reverse transcription (RRT) PCR methods. Objectives...

  15. Pseudorabies Virus Induces Viability Changes and Oxidative Stress in Swine Testis Cell-Line

    Directory of Open Access Journals (Sweden)

    Xiao-Zhan Zhang§1, Ye Chen§1, Hong-Liang Huang§2, Dong-Lei Xu1, Chang-Bao Ren2, Bi-Tao Liu1, Shuo Su1 and Zhao-Xin Tang1, 2*

    2013-11-01

    Full Text Available In this study, we evaluated the association between pseudorabies (PRV virus-induced viability changes and oxidative stress in vitro cultivated swine testis (ST cells. The kinetic of 2, 12, 24, 36 and 48 h during the cell culture with PRV by using a multiplicity of infection (MOI of 1 TCID50 per cell were adopted. The results suggested a complex relation between cell viability and oxidative stress during PRV infection. In the early stages of PRV infection, the cell viability was higher than the control group, and the state of cellular oxidative stress remained relatively stable. After 24 h, the cell viability began to decrease, and the amount of the cellular malondialdehyde in ST cells increased significantly, and the activities of superoxide dismutase and catalase decreased significantly (P<0.05. Meanwhile, the rising concentrations of cellular hydrogen peroxide were detected prior to the changes in cell viability and oxidative stress. In conclusion, the PRV infection of ST cells leads to oxidative stress, and this stress could play a crucial role on the cell viability as the PRV infection time progresses.

  16. Evidence of hemolysis in pigs infected with highly virulent African swine fever virus

    Directory of Open Access Journals (Sweden)

    Zaven Karalyan

    2016-12-01

    Full Text Available Aim: The research was conducted to understand more profoundly the pathogenetic aspects of the acute form of the African swine fever (ASF. Materials and Methods: A total of 10 pigs were inoculated with ASF virus (ASFV (genotype II in the study of the red blood cells (RBCs, blood and urine biochemistry in the dynamics of disease. Results: The major hematological differences observed in ASFV infected pigs were that the mean corpuscular volume, mean corpuscular hemoglobin, and hematocrits were significantly decreased compared to controls, and the levels of erythropoietin were significantly increased. Also were detected the trends of decrease in RBC count at terminal stages of ASF. Analysis of blood biochemistry revealed that during ASF development, besides bilirubinemia significantly elevated levels of lactate dehydrogenase, and aspartate aminotransferase were detected. Analysis of urine biochemistry revealed the presence of bilirubinuria, proteinuria during ASF development. Proteinuria, especially at late stages of the disease reflects a severe kidney damage possible glomerulonefritis. Conclusion: The results of this study indicate the characteristics of developing hemolytic anemia observed in acute ASF (genotype II.

  17. Evidence of hemolysis in pigs infected with highly virulent African swine fever virus.

    Science.gov (United States)

    Karalyan, Zaven; Zakaryan, Hovakim; Arakelova, Elina; Aivazyan, Violeta; Tatoyan, Marina; Kotsinyan, Armen; Izmailyan, Roza; Karalova, Elena

    2016-12-01

    The research was conducted to understand more profoundly the pathogenetic aspects of the acute form of the African swine fever (ASF). A total of 10 pigs were inoculated with ASF virus (ASFV) (genotype II) in the study of the red blood cells (RBCs), blood and urine biochemistry in the dynamics of disease. The major hematological differences observed in ASFV infected pigs were that the mean corpuscular volume, mean corpuscular hemoglobin, and hematocrits were significantly decreased compared to controls, and the levels of erythropoietin were significantly increased. Also were detected the trends of decrease in RBC count at terminal stages of ASF. Analysis of blood biochemistry revealed that during ASF development, besides bilirubinemia significantly elevated levels of lactate dehydrogenase, and aspartate aminotransferase were detected. Analysis of urine biochemistry revealed the presence of bilirubinuria, proteinuria during ASF development. Proteinuria, especially at late stages of the disease reflects a severe kidney damage possible glomerulonefritis. The results of this study indicate the characteristics of developing hemolytic anemia observed in acute ASF (genotype II).

  18. Experimental infection of Bama miniature pigs with a highly virulent classical swine fever virus.

    Science.gov (United States)

    Sun, Yuan; Jiang, Qian; Tian, Da-Yong; Lin, Huan; Li, Hong; Han, Qiu-Ying; Han, Wen; Si, Chang-De; Hu, Shou-Ping; Zhang, Zhuo; Qu, Lian-Dong; Qiu, Hua-Ji

    2011-09-25

    Currently, larger domestic pigs are only animals widely used in vaccine evaluation and pathogenicity study of classical swine fever virus (CSFV). This study was aimed to create an alternative animal experimental infection model of CSFV. Twenty specific-pathogen-free Bama miniature pigs were randomly divided into two groups and rooms, infected and non-infected, and the pigs in the infected group were inoculated intramuscularly with 104, 105 or 106 TCID50 (median tissue culture infective dose) CSFV Shimen strain (n = 5 × 3) or left uninoculated to serve as in-contact pigs (n = 3). The uninfected control pigs (n = 2) were housed in a separate room. Clinical signs, body temperature, viraemia, tissue antigen distribution, pathological changes and seroconversion were monitored. Clinical signs were observed as early as 2 days post-inoculation (dpi) in all infected pigs (though mild in contact pigs), but not non-infected control pigs. All inoculated pigs showed viraemia by 6 dpi. The in-contact pigs showed lower levels of viraemia. At 10 dpi, seroconversion was noted in five of the 15 inoculated pigs. All inoculated or one in-contact pigs died by 15 dpi. These results show that Bama miniature pigs support productive CSFV infection and display clinical signs and pathological changes consistent with CSFV infections observed in larger domestic pigs.

  19. First report of seroprevalence of swine influenza A virus in Tibetan pigs in Tibet, China.

    Science.gov (United States)

    Liu, Guo-Hua; Zhou, Dong-Hui; Cong, Wei; Zhang, Xiao-Xuan; Shi, Xin-Chun; Danba, Ciren; Huang, Si-Yang; Zhu, Xing-Quan

    2014-01-01

    Swine influenza A virus (SIV) is zoonotic pathogen that can be acquired by food-borne transmission because food animals, for example pigs, are recognized as a reservoir. The objectives of this study were to determine the seroprevalence of anti-SIV (H1N1 and H3N2) in Tibetan pigs in Tibet Nationality Autonomous Region, China, a region with cold weather and high altitude. A total of 421 serum samples were randomly collected from Tibetan pigs in Tibet and were evaluated for antibodies against SIV using enzyme-linked immunosorbent assay. Overall, 52 % (219/421) of the animals was positive for H1N1, 16.9 % (71/421) positive for H3N2, and 8.8 % (37/421) positive for both H1N1 and H3N2. The results of the present survey indicated that SIV is highly prevalent among Tibetan pigs in Tibet, China. The results of the present investigation have implications for the ongoing control of SIV infection in Tibetan pigs in Tibet, China and elsewhere.

  20. [Serological detection of Brucella suis, influenza virus and Aujeszky's disease virus in backyard and small swine holders in Argentina].

    Science.gov (United States)

    Dibarbora, Marina; Cappuccio, Javier A; Aznar, María N; Bessone, Fernando A; Piscitelli, Hernán; Pereda, Ariel J; Pérez, Daniel R

    Farmers raising less than 100 sows represent more than 99% of swine producers in Argentina, although little is known about their sanitary status and productive characteristics in the country. Sanitary and productive information was obtained. Furthermore, samples for serological studies were taken to detect antibodies against Brucella suis (Bs), Aujeszky's disease virus (AV) and influenza virus (IV) in 68 backyard and small producers with less than 100 sows located in the north, central and south regions of Argentina. Antibodies against H1 pandemic were detected in 80% of the farms while 11%, 11.7% and 6.0% of the producers were positive to influenza H3 cluster 2, AV and Bs, respectively. None of the producers was aware of the risk factors concerning the transmission of diseases from pigs to humans. A percentage of 47% of them buy pigs for breeding from other farmers and markets. With regard to biosecurity measures, only 16% of the farms had perimeter fences. The results of this study demonstrate that productive characterization and disease surveys are important to improve productivity and to reduce the risk of disease transmission among animals and humans. The study of sanitary status and risk factors is necessary for better control and eradication of diseases in backyard or small producers. More representative studies at country level should be carried out to detect the pathogensthat circulate and, with this knowledge, to implement prevention and control measures. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. The untranslated regions of classic swine fever virus RNA trigger apoptosis.

    Directory of Open Access Journals (Sweden)

    Wei-Li Hsu

    Full Text Available Classical swine fever virus (CSFV causes a broad range of disease in pigs, from acute symptoms including high fever and hemorrhages, to chronic disease or unapparent infection, depending on the virus strain. CSFV belongs to the genus Pestivirus of the family Flaviviridae. It carries a single-stranded positive-sense RNA genome. An internal ribosomal entry site (IRES in the 5' untranslated region (UTR drives the translation of a single open reading frame encoding a 3898 amino acid long polypeptide chain. The open reading frame is followed by a 3' UTR comprising four highly structured stem-loops. In the present study, a synthetic RNA composed of the 5' and 3' UTRs of the CSFV genome devoid of any viral coding sequence and separated by a luciferase gene cassette (designated 5'UTR-Luc-3'UTR triggered apoptotic cell death as early as 4 h post-transfection. The apoptosis was measured by DNA laddering analysis, TUNEL assay, annexin-V binding determined by flow cytometry, and by analysis of caspase activation. Contrasting with this, only trace DNA laddering was observed in cells transfected with the individual 5' or 3' UTR RNA; even when the 5' UTR and 3' UTR were co-transfected as separate RNA molecules, DNA laddering did not reach the level induced by the chimeric 5'UTR-Luc-3'UTR RNA. Interestingly, RNA composed of the 5'UTR and of stem-loop I of the 3'UTR triggered much stronger apoptosis than the 5' or 3'UTR alone. These results indicate that the 5' and 3' UTRs act together in cis induce apoptosis. We furthered obtained evidence that the UTR-mediated apoptosis required double-stranded RNA and involved translation shutoff possibly through activation of PKR.

  2. Evaluation of classical swine fever virus antibody detection assays with an emphasis on the differentiation of infected from vaccinated animals

    DEFF Research Database (Denmark)

    Schroeder, S.; von Rosen, Tanya; Blome, S.

    2012-01-01

    vaccinated animals (DIVA). The Chekit* CSF-Sero and the HerdChek* CSFV Ab, both of which detect antibodies against the E2 protein of classical swine fever virus (CSFV), had the highest sensitivity. Both tests were practicable and showed good reproducibility. Comparable sensitivity was shown by the Chekit......The aim of this study was to evaluate the general characteristics of commercially available enzyme-linked immunosorbent assays (ELISAs) to detect antibody against classical swine fever (CSF), as well as to assess their potential use as accompanying marker tests able to differentiate infected from......* CSF-Marker, an Erns ELISA. However, this test does not allow differentiation between antibodies directed against ruminant pestiviruses and those against CSFV. Therefore, it is not suitable for use with the chimeric marker vaccines tested. The PrioCHECK® CSFV Erns was the only ELISA suitable for use...

  3. Influenza (Flu) vaccine (Live, Intranasal): What you need to know

    Science.gov (United States)

    ... nose. LAIV does not contain thimerosal or other preservatives. It is made from weakened flu virus and ... people should not get LAIV because of age, health conditions, or other reasons. Most of these people ...

  4. Transmission dynamics of pandemic influenza A(H1N1)pdm09 virus in humans and swine in backyard farms in Tumbes, Peru.

    Science.gov (United States)

    Tinoco, Yeny O; Montgomery, Joel M; Kasper, Mathew R; Nelson, Martha I; Razuri, Hugo; Guezala, Maria C; Azziz-Baumgartner, Eduardo; Widdowson, Marc-Alain; Barnes, John; Gilman, Robert H; Bausch, Daniel G; Gonzalez, Armando E

    2016-01-01

    We aimed to determine the frequency of pH1N1 transmission between humans and swine on backyard farms in Tumbes, Peru. Two-year serial cross-sectional study comprising four sampling periods: March 2009 (pre-pandemic), October 2009 (peak of the pandemic in Peru), April 2010 (1st post-pandemic period), and October 2011 (2nd post-pandemic period). Backyard swine serum, tracheal swabs, and lung sample were collected during each sampling period. We assessed current and past pH1N1 infection in swine through serological testing, virus culture, and RT-PCR and compared the results with human incidence data from a population-based active surveillance cohort study in Peru. Among 1303 swine sampled, the antibody prevalence to pH1N1 was 0% pre-pandemic, 8% at the peak of the human pandemic (October 2009), and 24% in April 2010 and 1% in October 2011 (post-pandemic sampling periods). Trends in swine seropositivity paralleled those seen in humans in Tumbes. The pH1N1 virus was isolated from three pigs during the peak of the pandemic. Phylogenetic analysis revealed that these viruses likely represent two separate human-to-swine transmission events in backyard farm settings. Our findings suggest that human-to-swine pH1N1 transmission occurred during the pandemic among backyard farms in Peru, emphasizing the importance of interspecies transmission in backyard pig populations. Continued surveillance for influenza viruses in backyard farms is warranted. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  5. FluKB: A Knowledge-Based System for Influenza Vaccine Target Discovery and Analysis of the Immunological Properties of Influenza Viruses

    DEFF Research Database (Denmark)

    Simon, Christian; Kudahl, Ulrich Johan; Sun, Jing

    2015-01-01

    responses. FluKB consists of more than 400,000 influenza protein sequences, known epitope data (357 verified T-cell epitopes, 685 HLA binders, and 16 naturally processed MHC ligands), and a collection of 28 influenza antibodies and their structurally defined B-cell epitopes. FluKB was built using amodular......FluKB is a knowledge-based system focusing on data and analytical tools for influenza vaccine discovery. The main goal of FluKB is to provide access to curated influenza sequence and epitope data and enhance the analysis of influenza sequence diversity and the analysis of targets of immune...... framework allowing the implementation of analytical workflows and includes standard search tools, such as keyword search and sequence similarity queries, as well as advanced tools for the analysis of sequence variability.The advanced analytical tools for vaccine discovery include visual mapping of T- and B...

  6. Analysis of T lymphocyte subsets proliferating in response to infective and UV-inactivated African swine fever viruses.

    Science.gov (United States)

    Canals, A; Alonso, F; Tomillo, J; Domínguez, J

    1992-11-01

    The proliferative response to infective and UV-inactivated African swine fever virus was analyzed in cells from pigs surviving an experimental infection with attenuated virus. All the pigs showed strong dose-dependent proliferative responses to both infective and UV-inactivated virus. This response was also observed when nitrocellulose-bound solubilized virus proteins were used in the assay. Heterologous isolates also induced proliferation, however it was significantly lower than that induced by the isolate used to infect the animals. The response to infective virus was blocked equally by anti-CD4 and anti-CD8 monoclonal antibodies (mAb); the response to UV-inactivated virus was almost abolished by anti-CD4 and 60% inhibited by anti-CD8 mAb. FACS analysis of 28-day T cell lines derived from peripheral blood mononuclear cells demonstrated the progressive increase of the CD8+ subset when the cells were stimulated with infective virus, whereas the stimulation with UV-inactivated virus induced the increase of both CD4+ and CD8+ subsets. In this case, the sum of CD4+ and CD8+ percentages was higher than the total percentage of T cells, suggesting the presence of cells positive for both CD4+ and CD8+.

  7. Vaccination-challenge studies with a Port Chalmers/73 (H3N2)-based swine influenza virus vaccine: Reflections on vaccine strain updates and on the vaccine potency test.

    Science.gov (United States)

    De Vleeschauwer, Annebel; Qiu, Yu; Van Reeth, Kristien

    2015-05-11

    The human A/Port Chalmers/1/73 (H3N2) influenza virus strain, the supposed ancestor of European H3N2 swine influenza viruses (SIVs), was used in most commercial SIV vaccines in Europe until recently. If manufacturers want to update vaccine strains, they have to perform laborious intratracheal (IT) challenge experiments and demonstrate reduced virus titres in the lungs of vaccinated pigs. We aimed to examine (a) the ability of a Port Chalmers/73-based commercial vaccine to induce cross-protection against a contemporary European H3N2 SIV and serologic cross-reaction against H3N2 SIVs from Europe and North America and (b) the validity of intranasal (IN) challenge and virus titrations of nasal swabs as alternatives for IT challenge and titrations of lung tissue in vaccine potency tests. Pigs were vaccinated with Suvaxyn Flu(®) and challenged by the IT or IN route with sw/Gent/172/08. Post-vaccination sera were examined in haemagglutination-inhibition assays against vaccine and challenge strains and additional H3N2 SIVs from Europe and North America, including an H3N2 variant virus. Tissues of the respiratory tract and nasal swabs were collected 3 days post challenge (DPCh) and from 0-7 DPCh, respectively, and examined by virus titration. Two vaccinations consistently induced cross-reactive antibodies against European H3N2 SIVs from 1998-2012, but minimal or undetectable antibody titres against North American viruses. Challenge virus titres in the lungs, trachea and nasal mucosa of the vaccinated pigs were significantly reduced after both IT and IN challenge. Yet the reduction of virus titres and nasal shedding was greater after IT challenge. The Port Chalmers/73-based vaccine still offered protection against a European H3N2 SIV isolated 35 years later and with only 86.9% amino acid homology in its HA1, but it is unlikely to protect against H3N2 SIVs that are endemic in North America. We use our data to reflect on vaccine strain updates and on the vaccine potency test

  8. Survival of classical swine fever virus at various temperatures in faeces and urine derived from experimentally infected pigs.

    Science.gov (United States)

    Weesendorp, Eefke; Stegeman, Arjan; Loeffen, Willie L A

    2008-12-10

    Indirect transmission of classical swine fever virus (CSFV) can occur through contact with mechanical vectors, like clothing and footwear or transport vehicles, contaminated with the secretions or excretions of infected pigs. A prerequisite for indirect transmission is survival of the virus on the mechanical vector. Consequently, to obtain more insight into these transmission routes, it is important to know how long the virus remains viable outside the host. In this study we examined the survival of classical swine fever virus in faeces and urine derived from pigs intranasally inoculated with a highly or moderately virulent CSFV strain. Faeces and urine were collected between days 5 and 36 post-inoculation, and stored at 5, 12, 20, and 30 degrees C. Next, the virus titres were determined in the samples by virus titration, and a random selection of these samples was also analyzed by quantitative real-time reverse transcription polymerase chain reaction (qRRT-PCR) to determine the viral RNA decay. Survival curves were generated, and it was shown that the inactivation rate was inversely related to the storage temperature. Average half-life values were between 2 and 4 days at 5 degrees C, and between 1 and 3h at 30 degrees C. Significant differences were observed in survival between virus strains in faeces, however, not in urine. The reduction in viral RNA during the entire study period was limited. This study provided detailed information on survival of CSFV in excretions of infected pigs, which can be used to improve control measures or risk-analysis models.

  9. Evolution of African swine fever virus genes related to evasion of host immune response.

    Science.gov (United States)

    Frączyk, Magdalena; Woźniakowski, Grzegorz; Kowalczyk, Andrzej; Bocian, Łukasz; Kozak, Edyta; Niemczuk, Krzysztof; Pejsak, Zygmunt

    2016-09-25

    African swine fever (ASF) is a notifiable and one of the most complex and devastating infectious disease of pigs, wild boars and other representatives of Suidae family. African swine fever virus (ASFV) developed various molecular mechanisms to evade host immune response including alteration of interferon production by multigene family protein (MGF505-2R), inhibition of NF-κB and nuclear activating factor in T-cells by the A238L protein, or modulation of host defense by CD2v lectin-like protein encoded by EP402R and EP153R genes. The current situation concerning ASF in Poland seems to be stable in comparison to other eastern European countries but up-to-date in total 106 ASF cases in wild boar and 5 outbreaks in pigs were identified. The presented study aimed to reveal and summarize the genetic variability of genes related to inhibition or modulation of infected host response among 67 field ASF isolates collected from wild boar and pigs. The nucleotide sequences derived from the analysed A238L and EP153R regions showed 100% identity. However, minor but remarkable genetic diversity was found within EP402R and MGF505-2R genes suggesting slow molecular evolution of circulating ASFV isolates and the important role of this gene in modulation of interferon I production and hemadsorption phenomenon. The obtained nucleotide sequences of Polish ASFV isolates were closely related to Georgia 2007/1 and Odintsovo 02/14 isolates suggesting their common Caucasian origin. In the case of EP402R and partially in MGF505-2R gene the identified genetic variability was related to spatio-temporal occurrence of particular cases and outbreaks what may facilitate evolution tracing of ASFV isolates. This is the first report indicating identification of genetic variability within the genes related to evasion of host immune system which may be used to trace the direction of ASFV isolates molecular evolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Simultaneous Deletion of the 9GL and UK Genes from the African Swine Fever Virus Georgia 2007 Isolate Offers Increased Safety and Protection against Homologous Challenge.

    Science.gov (United States)

    O'Donnell, Vivian; Risatti, Guillermo R; Holinka, Lauren G; Krug, Peter W; Carlson, Jolene; Velazquez-Salinas, Lauro; Azzinaro, Paul A; Gladue, Douglas P; Borca, Manuel V

    2017-01-01

    African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs that has significant economic consequences for the swine industry. The control of African swine fever (ASF) has been hampered by the unavailability of vaccines. Successful experimental vaccines have been derived from naturally occurring, cell culture-adapted, or genetically modified live attenuated ASFV. Recombinant viruses harboring engineered deletions of specific virulence-associated genes induce solid protection against challenge with parental viruses. Deletion of the 9GL (B119L) gene in the highly virulent ASFV isolates Malawi Lil-20/1 (Mal) and Pretoriuskop/96/4 (Δ9GL viruses) resulted in complete protection when challenged with parental isolates. When similar deletions were created within the ASFV Georgia 2007 (ASFV-G) genome, attenuation was achieved but the protective and lethal doses were too similar. To enhance attenuation of ASFV-G, we deleted another gene, UK (DP96R), which was previously shown to be involved in attenuation of the ASFV E70 isolate. Here, we report the construction of a double-gene-deletion recombinant virus, ASFV-G-Δ9GL/ΔUK. When administered intramuscularly (i.m.) to swine, there was no induction of disease, even at high doses (10 6 HAD 50 ). Importantly, animals infected with 10 4 50% hemadsorbing doses (HAD 50 ) of ASFV-G-Δ9GL/ΔUK were protected as early as 14 days postinoculation when challenged with ASFV-G. The presence of protection correlates with the appearance of serum anti-ASFV antibodies, but not with virus-specific circulating ASFV-specific gamma interferon (IFN-γ)-producing cells. ASFV-G-Δ9GL/ΔUK is the first rationally designed experimental ASFV vaccine that protects against the highly virulent ASFV Georgia 2007 isolate as early as 2 weeks postvaccination. Currently, there is no commercially available vaccine against African swine fever. Outbreaks of the disease are devastating to the swine

  11. Swine torque teno virus detection in pig commercial vaccines, enzymes for laboratory use and human drugs containing components of porcine origin.

    Science.gov (United States)

    Kekarainen, Tuija; Martínez-Guinó, Laura; Segalés, Joaquim

    2009-03-01

    Torque teno viruses (TTVs) are vertebrate infecting, single-stranded circular DNA viruses. Two genetically distinct TTV genogroups (TTV1 and TTV2) infect swine worldwide with high prevalence. Currently, swine TTVs are considered non-pathogenic, although TTV2 has been linked to post-weaning multisystemic wasting syndrome, a porcine circovirus disease. On the other hand, pig materials are an important source of components used in porcine vaccine manufacturing, human drugs and commercial enzyme products. However, there is little information about the possible existence of extraneous viruses in products containing porcine-derived components. In the present study, 26 commercial swine vaccines, seven human drugs and three enzyme products from porcine origin were tested for the presence of TTV1 and TTV2 genomes by PCR. Four vaccines against Mycoplasma hyopneumoniae were positive for TTV2 by PCR. Three M. hyopneumoniae, one porcine parvovirus and one porcine reproductive and respiratory syndrome virus vaccines were PCR positive for TTV1. One human drug contained TTV1 DNA as well as a trypsin enzyme; a porcine-derived elastase product was positive for both TTV genogroups. These results show that swine TTVs are contaminants not only of swine vaccines but also of human drugs containing porcine components and enzymes for laboratory use.

  12. Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence?

    Science.gov (United States)

    Pereda, Ariel; Rimondi, Agustina; Cappuccio, Javier; Sanguinetti, Ramon; Angel, Matthew; Ye, Jianqiang; Sutton, Troy; Dibárbora, Marina; Olivera, Valeria; Craig, Maria I.; Quiroga, Maria; Machuca, Mariana; Ferrero, Andrea; Perfumo, Carlos; Perez, Daniel R.

    2011-01-01

    Please cite this paper as: Pereda et al. (2011) Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence? Influenza and Other Respiratory Viruses 5(6), 409–412. In this report, we describe the occurrence of two novel swine influenza viruses (SIVs) in pigs in Argentina. These viruses are the result of two independent reassortment events between the H1N1 pandemic influenza virus (H1N1pdm) and human‐like SIVs, showing the constant evolution of influenza viruses at the human–swine interface and the potential health risk of H1N1pdm as it appears to be maintained in the swine population. It must be noted that because of the lack of information regarding the circulation of SIVs in South America, we cannot discard the possibility that ancestors of the H1N1pdm or other SIVs have been present in this part of the world. More importantly, these findings suggest an ever‐expanding geographic range of potential epicenters of influenza emergence with public health risks. PMID:21668680

  13. Remarkable sequence similarity between the dinoflagellate-infecting marine girus and the terrestrial pathogen African swine fever virus

    Directory of Open Access Journals (Sweden)

    Claverie Jean-Michel

    2009-10-01

    Full Text Available Abstract Heterocapsa circularisquama DNA virus (HcDNAV; previously designated as HcV is a giant virus (girus with a ~356-kbp double-stranded DNA (dsDNA genome. HcDNAV lytically infects the bivalve-killing marine dinoflagellate H. circularisquama, and currently represents the sole DNA virus isolated from dinoflagellates, one of the most abundant protists in marine ecosystems. Its morphological features, genome type, and host range previously suggested that HcDNAV might be a member of the family Phycodnaviridae of Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs, though no supporting sequence data was available. NCLDVs currently include two families found in aquatic environments (Phycodnaviridae, Mimiviridae, one mostly infecting terrestrial animals (Poxviridae, another isolated from fish, amphibians and insects (Iridoviridae, and the last one (Asfarviridae exclusively represented by the animal pathogen African swine fever virus (ASFV, the agent of a fatal hemorrhagic disease in domestic swine. In this study, we determined the complete sequence of the type B DNA polymerase (PolB gene of HcDNAV. The viral PolB was transcribed at least from 6 h post inoculation (hpi, suggesting its crucial function for viral replication. Most unexpectedly, the HcDNAV PolB sequence was found to be closely related to the PolB sequence of ASFV. In addition, the amino acid sequence of HcDNAV PolB showed a rare amino acid substitution within a motif containing highly conserved motif: YSDTDS was found in HcDNAV PolB instead of YGDTDS in most dsDNA viruses. Together with the previous observation of ASFV-like sequences in the Sorcerer II Global Ocean Sampling metagenomic datasets, our results further reinforce the ideas that the terrestrial ASFV has its evolutionary origin in marine environments.

  14. Control of African swine fever virus replication by small interfering RNA targeting the A151R and VP72 genes.

    Science.gov (United States)

    Keita, Djénéba; Heath, Livio; Albina, Emmanuel

    2010-01-01

    African swine fever virus (ASFV) is the unique member of the Asfarviridae family and Asfivirus genus. It is an enveloped double-stranded DNA arbovirus that replicates in the cell cytoplasm, similar to poxviruses. There is no vaccine and no treatment available to control this virus. We describe the use of small interfering RNA (siRNA) targeting the A151R and VP72 (B646L) genes to control the ASFV replication in vitro. Results suggest that siRNA targeting the A151R and VP72 genes can reduce both the virus replication and its levels of messenger RNA transcripts. The reduction was up to 4 log(10) copies on the virus titre and up to 3 log(10) copies on virus RNA transcripts levels. The combination of multiple siRNA did not improve the antiviral effect significantly, compared with use of individual siRNAs. The function of the A151R gene product in the virus replication cycle is yet unclear, but is essential. We also demonstrate that it is possible to inhibit, using small interfering RNA, a virus that replicates exclusively in the cell cytoplasm in specific viral factories.

  15. Efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the classical swine H1N1 subtype influenza virus in mice and pigs.

    Science.gov (United States)

    Wen, Feng; Yu, Hai; Yang, Fu-Ru; Huang, Meng; Yang, Sheng; Zhou, Yan-Jun; Li, Ze-Jun; Tong, Guang-Zhi

    2014-11-01

    Swine influenza (SI) is an acute, highly contagious respiratory disease caused by swine influenza A viruses (SwIVs), and it poses a potential global threat to human health. Classical H1N1 (cH1N1) SwIVs are still circulating and remain the predominant subtype in the swine population in China. In this study, a high-growth reassortant virus (GD/PR8) harboring the hemagglutinin (HA) and neuraminidase (NA) genes from a novel cH1N1 isolate in China, A/Swine/Guangdong/1/2011 (GD/11) and six internal genes from the high-growth A/Puerto Rico/8/34(PR8) virus was generated by plasmid-based reverse genetics and tested as a candidate seed virus for the preparation of an inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice and pigs challenged with GD/11 virus. Prime and boost inoculation of GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting (HI) antibodies and IgG antibodies for GD/11 in both mice and pigs. Complete protection of mice and pigs against cH1N1 SIV challenge was observed, with significantly fewer lung lesions and reduced viral shedding in vaccine-inoculated animals compared with unvaccinated control animals. Our data demonstrated that the GD/PR8 may serve as the seed virus for a promising SwIVs vaccine to protect the swine population.

  16. Detection and Isolation of Swine Influenza A Virus in Spiked Oral Fluid and Samples from Individually Housed, Experimentally Infected Pigs: Potential Role of Porcine Oral Fluid in Active Influenza A Virus Surveillance in Swine.

    Directory of Open Access Journals (Sweden)

    Inge Decorte

    Full Text Available The lack of seasonality of swine influenza A virus (swIAV in combination with the capacity of swine to harbor a large number of co-circulating IAV lineages, resulting in the risk for the emergence of influenza viruses with pandemic potential, stress the importance of swIAV surveillance. To date, active surveillance of swIAV worldwide is barely done because of the short detection period in nasal swab samples. Therefore, more sensitive diagnostic methods to monitor circulating virus strains are requisite.qRT-PCR and virus isolations were performed on oral fluid and nasal swabs collected from individually housed pigs that were infected sequentially with H1N1 and H3N2 swIAV strains. The same methods were also applied to oral fluid samples spiked with H1N1 to study the influence of conservation time and temperature on swIAV infectivity and detectability in porcine oral fluid.All swIAV infected animals were found qRT-PCR positive in both nasal swabs and oral fluid. However, swIAV could be detected for a longer period in oral fluid than in nasal swabs. Despite the high detectability of swIAV in oral fluid, virus isolation from oral fluid collected from infected pigs was rare. These results are supported by laboratory studies showing that the PCR detectability of swIAV remains unaltered during a 24 h incubation period in oral fluid, while swIAV infectivity drops dramatically immediately upon contact with oral fluid (3 log titer reduction and gets lost after 24 h conservation in oral fluid at ambient temperature.Our data indicate that porcine oral fluid has the potential to replace nasal swabs for molecular diagnostic purposes. The difficulty to isolate swIAV from oral fluid could pose a drawback for its use in active surveillance programs.

  17. Detection and Isolation of Swine Influenza A Virus in Spiked Oral Fluid and Samples from Individually Housed, Experimentally Infected Pigs: Potential Role of Porcine Oral Fluid in Active Influenza A Virus Surveillance in Swine

    Science.gov (United States)

    Decorte, Inge; Steensels, Mieke; Lambrecht, Bénédicte

    2015-01-01

    Background The lack of seasonality of swine influenza A virus (swIAV) in combination with the capacity of swine to harbor a large number of co-circulating IAV lineages, resulting in the risk for the emergence of influenza viruses with pandemic potential, stress the importance of swIAV surveillance. To date, active surveillance of swIAV worldwide is barely done because of the short detection period in nasal swab samples. Therefore, more sensitive diagnostic methods to monitor circulating virus strains are requisite. Methods qRT-PCR and virus isolations were performed on oral fluid and nasal swabs collected from individually housed pigs that were infected sequentially with H1N1 and H3N2 swIAV strains. The same methods were also applied to oral fluid samples spiked with H1N1 to study the influence of conservation time and temperature on swIAV infectivity and detectability in porcine oral fluid. Results All swIAV infected animals were found qRT-PCR positive in both nasal swabs and oral fluid. However, swIAV could be detected for a longer period in oral fluid than in nasal swabs. Despite the high detectability of swIAV in oral fluid, virus isolation from oral fluid collected from infected pigs was rare. These results are supported by laboratory studies showing that the PCR detectability of swIAV remains unaltered during a 24 h incubation period in oral fluid, while swIAV infectivity drops dramatically immediately upon contact with oral fluid (3 log titer reduction) and gets lost after 24 h conservation in oral fluid at ambient temperature. Conclusions Our data indicate that porcine oral fluid has the potential to replace nasal swabs for molecular diagnostic purposes. The difficulty to isolate swIAV from oral fluid could pose a drawback for its use in active surveillance programs. PMID:26431039

  18. Dynamics of virus excretion via different routes in pigs experimentally infected with classical swine fever virus strains of high, moderate or low virulence.

    Science.gov (United States)

    Weesendorp, Eefke; Stegeman, Arjan; Loeffen, Willie

    2009-01-01

    Classical swine fever virus (CSFV) is transmitted via secretions and excretions of infected pigs. The efficiency and speed of the transmission depends on a multitude of parameters, like quantities of virus excreted by infected pigs. This study provides quantitative data on excretion of CSFV over time from pigs infected with a highly, moderately or low virulent strain. For each strain, five individually housed pigs were infected. Virus excretion was quantified in oropharyngeal fluid, saliva, nasal fluid, lacrimal fluid, faeces, urine and skin scraping by virus titration and quantitative Real-Time Reverse Transcription Polymerase Chain Reaction (qRRT-PCR). Infectious virus was excreted in all secretions and excretions of pigs infected with the highly and moderately virulent strain, while excretion from pigs infected with the low virulent strain was mostly restricted to the oronasal route. Pigs infected with the highly virulent strain excreted significantly more virus in all their secretions and excretions over the entire infectious period than pigs infected with the moderately or low virulent strains. An exception were the pigs that developed the chronic form of infection after inoculation with the moderately virulent strain. During the entire infectious period, they excreted the largest amounts of virus via most secretions and excretions, as they excreted virus continuously and for a long duration. This study highlights the crucial role chronically infected pigs may play in the transmission of CSFV. Furthermore, it demonstrates the importance of discriminating between strains and the clinical appearance of infection when using excretion data for modelling.

  19. Mechanical transmission of vesicular stomatitis New Jersey virus by Simulium vittatum (Diptera: Simuliidae) to domestic swine (Sus scrofa).

    Science.gov (United States)

    Smith, Paul F; Howerth, Elizabeth W; Carter, Deborah; Gray, Elmer W; Noblet, Raymond; Mead, Daniel G

    2009-11-01

    Biting flies have been suggested as mechanical vectors of vesicular stomatitis New Jersey Virus (family Rhabdoviridae, genus Vesiculovirus, VSNJV) in livestock populations during epidemic outbreaks in the western United States. We conducted a proof-of-concept study to determine whether biting flies could mechanically transmit VSNJV to livestock by using a black fly, Simulium vittatum Zetterstedt (Diptera: Simuliidae), domestic swine, Sus scrofa L., model. Black flies mechanically transmitted VSNJV to a naive host after interrupted feeding on a vesicular lesion on a previously infected host. Transmission resulted in clinical disease in the naïve host. This is the first demonstration of mechanical transmission of VSNJV to livestock by insects.

  20. Sensitive detection of African swine fever virus using real-time PCR with a 5' conjugated minor groove binding probe

    DEFF Research Database (Denmark)

    McKillan, John; McMenamy, Michael; Hjertner, Bernt

    2010-01-01

    sensitive than the conventional PCR recommended by the OIE. Linear range was ten logs from 2 × 101 to 2 × 1010. The assay is rapid with an amplification time just over 2 h. The development of this assay provides a useful tool for the specific diagnosis of ASF in statutory or emergency testing programs......The design of a 5′ conjugated minor groove binder (MGB) probe real-time PCR assay is described for the rapid, sensitive and specific detection of African swine fever virus (ASFV) DNA. The assay is designed against the 9GL region and is capable of detecting 20 copies of a DNA standard. It does...

  1. Detection of swine-origin influenza A (H1N1) viruses using a paired surface plasma waves biosensor

    Science.gov (United States)

    Su, Li-Chen; Chang, Ying-Feng; Li, Ying-Chang; Hsieh, Jo-Ping; Lee, Cheng-Chung; Chou, Chien

    2010-08-01

    In order to enhance the sensitivity of conventional rapid test technique for the detection of swine-origin influenza A (H1N1) viruses (S-OIVs), we used a paired surface plasma waves biosensor (PSPWB) based on SPR in conjunction with an optical heterodyne technique. Experimentally, PSPWB showed a 125-fold improvement at least in the S-OIV detection as compared to conventional enzyme linked immunosorbent assay. Moreover, the detection limit of the PSPWB for the S-OIV detection was enhanced 250-fold in buffer at least in comparison with that of conventional rapid influenza diagnostic test.

  2. Spreading Of Avian Flu On Duck And Its Impact On Social Economy: Lesson Learnt From Avian Flu Cases On Chicken

    Directory of Open Access Journals (Sweden)

    Nyak Ilham

    2013-06-01

    Full Text Available Bird flu disease that attacks duck dismissed the notion of duck immune to bird flu disease. Learning from the experience of bird flu disease that attacks poultry in the year of 2004-2005, necessary to measure the spread of disease prevention bird flu in ducks. This paper aims to describe the business and trade patterns of duck associated with the spread of avian influenza and predict the socio-economic impact of bird flu on duck farms in Indonesia. Duck rearing patterns mostly are in the extensive and semi-intensive system, that have large potential disease transmission occured between duck and wild. Illegal trade in the crossborder region and imports from countries that re-export it, ias alo become potential as well as the entry point to the bird flu virus in Indonesia. Ducks trade between regions by land transportation is difficult to control as well becomes the potential media to spread of the virus to a wider area. The economic impact of bird flu on duck business occured due to the death of ducks, decline in production and loss of job opportunities, while that on demand reduction was not significant. Small scale farmers that were bankrupt as a result of bird flu outbreaks may require technical assistance and access to capital for recovery. In the future, development of ducks business should be directed at duck farms into a semi-intensive and intensive system to facilitate the control of epidemic diseases

  3. Hepatitis E virus infection in central China reveals no evidence of cross-species transmission between human and swine in this area.

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    Full Text Available Hepatitis E virus (HEV is a zoonotic pathogen of which several species of animal were reported as reservoirs. Swine stands out as the major reservoir for HEV infection in humans, as suggested by the close genetic relationship of swine and human virus. Since 2000, Genotype 4 HEV has become the dominant cause of hepatitis E disease in China. Recent reports showed that genotype 4 HEV is freely transmitted between humans and swine in eastern and southern China. However, the infection status of HEV in human and swine populations in central China is still unclear. This study was conducted in a rural area of central China, where there are many commercial swine farms. A total of 1476 serum and 554 fecal specimens were collected from the general human and swine populations in this area, respectively. The seroepidemiological study was conducted by enzyme-linked immunosorbent assay. Conserved genomic sequences of open reading frame 2 were detected using reverse transcription-PCR. The results indicated that the overall viral burden of the general human subjects was 0.95% (14/1476, while 7.0% (39/554 of the swine excreted HEV in stool. The positive rate of anti-HEV IgG and IgM in the serum samples was 7.9% (117/1476 and 1.6% (24/1476, respectively. Phylogenetic analysis based on the 150 nt partial sequence of the capsid protein gene showed that the 53 swine and human HEV isolates in the current study all belonged to genotype 4, clustering into three major groups. However, the HEV isolates prevalent in the human and swine populations were classified into known distinct subgenotypes, which suggested that no cross-species transmission between swine and humans had taken place in this area. This result was confirmed by cloning and phylogenetic analysis of the complete capsid protein gene sequence of three representative HEV strains in the three major groups. The cross reactivity between anti-HEV IgG from human sera and the two representative strains from swine in

  4. Influenza (the Flu)

    Science.gov (United States)

    ... About Us News Blog Chapters Facebook Twitter YouTube Instagram Email DONATE Breadcrumb Navigation Home Life With CF ... Flu Season Follow Us On Facebook Twitter YouTube Instagram Email Find Events Near You With more than ...

  5. Viral Gastroenteritis (Stomach Flu)

    Science.gov (United States)

    ... Viral gastroenteritis (stomach flu) Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  6. Fighting the Flu

    Centers for Disease Control (CDC) Podcasts

    2011-03-08

    Wes Studi, Hollywood actor, urges Native peoples to know the facts about the flu.  Created: 3/8/2011 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 3/8/2011.

  7. Flu & You: Preventive Steps

    Science.gov (United States)

    ... What are Flu Antiviral Drugs Antiviral Drug Resistance Mixing Oseltamivir Capsules For Children What to do if ... PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple Quicktime file RealPlayer file Text ...

  8. Flu - Multiple Languages

    Science.gov (United States)

    ... Care for Pandemic Flu - 简体中文 (Chinese, Simplified (Mandarin dialect)) Bilingual PDF Health Information Translations Influenza - 简体中文 (Chinese, Simplified (Mandarin dialect)) Bilingual PDF ...

  9. Flu Symptoms & Complications

    Science.gov (United States)

    ... in Long-Term Care Facilities Guidance: Use of Mask to Control Influenza Transmission Guidance: Prevention & Control in ... severe illness, and at times can lead to death. The flu is different from a cold. The ...

  10. Vaccination against seasonal flu

    CERN Multimedia

    2015-01-01

    The Medical Service once again recommends you to get your annual flu vaccination for the year.   Vaccination is the most effective way of avoiding the illness and any serious consequences and protecting those around you. The flu can have especially serious consequences for people with chronic conditions (diabetes, cardio-vascular disease, etc.), pregnant women, infants, and people over 65 years of age. Remember, anyone working on the CERN site who wishes to be vaccinated against seasonal flu should go to the Infirmary (Building 57, ground floor) with their vaccine. The Medical Service will issue a prescription on the day of the vaccination for the purposes of reimbursement by UNIQA. NB: The Medical Service cannot provide this vaccination service for family members or retired members of the personnel. For more information: • The "Seasonal flu" flyer by the Medical Service • Recommendations of the Swiss Federal Office of Public...

  11. A Mathematical Model that Simulates Control Options for African Swine Fever Virus (ASFV.

    Directory of Open Access Journals (Sweden)

    Mike B Barongo

    Full Text Available A stochastic model designed to simulate transmission dynamics of African swine fever virus (ASFV in a free-ranging pig population under various intervention scenarios is presented. The model was used to assess the relative impact of the timing of the implementation of different control strategies on disease-related mortality. The implementation of biosecurity measures was simulated through incorporation of a decay function on the transmission rate. The model predicts that biosecurity measures implemented within 14 days of the onset of an epidemic can avert up to 74% of pig deaths due to ASF while hypothetical vaccines that confer 70% immunity when deployed prior to day 14 of the epidemic could avert 65% of pig deaths. When the two control measures are combined, the model predicts that 91% of the pigs that would have otherwise succumbed to the disease if no intervention was implemented would be saved. However, if the combined interventions are delayed (defined as implementation from > 60 days only 30% of ASF-related deaths would be averted. In the absence of vaccines against ASF, we recommend early implementation of enhanced biosecurity measures. Active surveillance and use of pen-side diagnostic assays, preferably linked to rapid dissemination of this data to veterinary authorities through mobile phone technology platforms are essential for rapid detection and confirmation of ASF outbreaks. This prediction, although it may seem intuitive, rationally confirms the importance of early intervention in managing ASF epidemics. The modelling approach is particularly valuable in that it determines an optimal timing for implementation of interventions in controlling ASF outbreaks.

  12. Detection of Genotype 4 Swine Hepatitis E Virus in Systemic Tissues in Cross-Species Infected Rabbits.

    Directory of Open Access Journals (Sweden)

    Qiaoxing Wu

    Full Text Available Increasing evidence demonstrates that hepatitis E virus (HEV can be transmitted across species. According to previous reports, swine HEV has two genotypes, genotype 3 and 4, and both can infect humans by the fecal-oral route. Thus, it is crucial for the control of HEV zoonotic transmission to evaluate the dynamics of viral shedding and distribution in different tissues during cross-species infection by HEV. In this study, rabbits were infected with genotype 4 swine HEV by the intraperitoneal route. The results showed that HEV RNA not only shed in the feces but also in the saliva of some rabbits during infection with swine HEV. Viremia appeared late after infection, and anti-HEV IgG was not obvious until the appearance of high viremia levels. After the rabbits were euthanized, a histopathological examination showed that the livers developed overt hepatitis accompanied by an elevation of alanine aminotransferase (ALT and aspartate transaminase (AST. Furthermore, HEV RNA was detected in various tissues, especially in the salivary glands and tonsils. Subsequently, negative-stranded HEV RNA was practiced in tissues with positive HEV RNA, which demonstrated that HEV replicated in the tissues. Next, we harvested additional tissues from the liver, salivary gland, tonsil, spleen, thymus gland, lymph node and intestine, which are known as replication sites of swine HEV. Additionally, we also observed the HEV antigen distributed in the organs above through immunohistochemical staining. These results demonstrate that rabbits could be used as an animal model for researching cross-species infection of genotype 4 HEV. It is also noteworthy that HEV can shed in the saliva and presents the risk of droplet transmission. These new data provide valuable information for understanding cross-species infection by HEV.

  13. Detection of serum antibodies to hepatitis E virus in domestic pigs in Italy using a recombinant swine HEV capsid protein.

    Science.gov (United States)

    Ponterio, Eleonora; Di Bartolo, Ilaria; Orrù, Ginevra; Liciardi, Manuel; Ostanello, Fabio; Ruggeri, Franco Maria

    2014-06-16

    The hepatitis E virus (HEV) has been detected in both humans and animals, particularly pigs, worldwide. Several evidences, including human infection following consumption of raw contaminated meat, suggest a zoonotic transmission of HEV. In Italy, large circulation of genotype 3 HEV has been reported in swine, and recent studies have confirmed the involvement of this genotype in autochthonous human cases. In this study 111 sera collected from healthy pigs in two Italian regions were tested for anti-HEV IgG antibodies. For specific HEV antibody detection in swine, we developed ELISA and Western blotting methods, using a truncated capsid (ORF2) protein lacking the first 111 amino acids of a swine HEV genotype 3 strain. The ORF2-based ELISA revealed anti-HEV antibodies in 104 out of 111 pigs compared with 102 detected with a commercial ELISA kit. A lower number of sera reacted with the recombinant ORF2 protein in a Western blotting format (81/111). Using a Latent class analysis (LCA), the estimated sensitivities for ELISA-ORF2 and ELISA-kit tests were 0.961 and 0.936, respectively, whereas specificities were 0.599 and 0.475. The estimated sensitivity of Western blotting was 0.775, and the specificity was 0.944. The overall results confirm the high prevalence of HEV seropositive healthy pigs in Italy. Through comparisons with a commercial ELISA test, the swine genotype 3 HEV antigen produced in this study was proven suitable to detect anti-HEV antibodies in pig sera by both ELISA and Western Blotting.

  14. Isolation and complete genomic characterization of H1N1 subtype swine influenza viruses in southern China through the 2009 pandemic

    Directory of Open Access Journals (Sweden)

    Xue Chunyi

    2011-03-01

    Full Text Available Abstract Background The swine influenza (SI is an infectious disease of swine and human. The novel swine-origin influenza A (H1N1 that emerged from April 2009 in Mexico spread rapidly and caused a human pandemic globally. To determine whether the tremendous virus had existed in or transmitted to pigs in southern China, eight H1N1 influenza strains were identified from pigs of Guangdong province during 2008-2009. Results Based on the homology and phylogenetic analyses of the nucleotide sequences of each gene segments, the isolates were confirmed to belong to the classical SI group, with HA, NP and NS most similar to 2009 human-like H1N1 influenza virus lineages. All of the eight strains were low pathogenic influenza viruses, had the same host range, and not sensitive to class of antiviral drugs. Conclusions This study provides the evidence that there is no 2009 H1N1-like virus emerged in southern China, but the importance of swine influenza virus surveillance in China should be given a high priority.

  15. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2016-04-01

    Full Text Available African swine fever virus (ASFV is a nucleocytoplasmic large DNA virus (NCLDV that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.

  16. H1N1 Swine Influenza Viruses Differ from Avian Precursors by a Higher pH Optimum of Membrane Fusion

    Science.gov (United States)

    Baumann, Jan; Kouassi, Nancy Mounogou; Foni, Emanuela; Klenk, Hans-Dieter

    2015-01-01

    ABSTRACT The H1N1 Eurasian avian-like swine (EAsw) influenza viruses originated from an avian H1N1 virus. To characterize potential changes in the membrane fusion activity of the hemagglutinin (HA) during avian-to-swine adaptation of the virus, we studied EAsw viruses isolated in the first years of their circulation in pigs and closely related contemporary H1N1 viruses of wild aquatic birds. Compared to the avian viruses, the swine viruses were less sensitive to neutralization by lysosomotropic agent NH4Cl in MDCK cells, had a higher pH optimum of hemolytic activity, and were less stable at acidic pH. Eight amino acid substitutions in the HA were found to separate the EAsw viruses from their putative avian precursor; four substitutions—T492S, N722D, R752K, and S1132F—were located in the structural regions of the HA2 subunit known to play a role in acid-induced conformational transition of the HA. We also studied low-pH-induced syncytium formation by cell-expressed HA proteins and found that the HAs of the 1918, 1957, 1968, and 2009 pandemic viruses required a lower pH for fusion induction than did the HA of a representative EAsw virus. Our data show that transmission of an avian H1N1 virus to pigs was accompanied by changes in conformational stability and fusion promotion activity of the HA. We conclude that distinctive host-determined fusion characteristics of the HA may represent a barrier for avian-to-swine and swine-to-human transmission of influenza viruses. IMPORTANCE Continuing cases of human infections with zoonotic influenza viruses highlight the necessity to understand which viral properties contribute to interspecies transmission. Efficient binding of the HA to cellular receptors in a new host species is known to be essential for the transmission. Less is known about required adaptive changes in the membrane fusion activity of the HA. Here we show that adaptation of an avian influenza virus to pigs in Europe in 1980s was accompanied by mutations in

  17. Deletion of the African Swine Fever Virus Gene DP148R Does Not Reduce Virus Replication in Culture but Reduces Virus Virulence in Pigs and Induces High Levels of Protection against Challenge.

    Science.gov (United States)

    Reis, Ana L; Goatley, Lynnette C; Jabbar, Tamara; Sanchez-Cordon, Pedro J; Netherton, Christopher L; Chapman, David A G; Dixon, Linda K

    2017-12-15

    Many of the approximately 165 proteins encoded by the African swine fever virus (ASFV) genome do not have significant similarity to known proteins and have not been studied experimentally. One such protein is DP148R. We showed that the DP148R gene is transcribed at early times postinfection. Deletion of this gene did not reduce virus replication in macrophages, showing that it is not essential for replication in these cells. However, deletion of this gene from a virulent isolate, Benin 97/1, producing the BeninΔDP148R virus, dramatically reduced the virulence of the virus in vivo All pigs infected with the BeninΔDP148R virus survived infection, showing only transient mild clinical signs soon after immunization. Following challenge with the parental virulent virus, all pigs immunized by the intramuscular route (11/11) and all except one immunized by the intranasal route (5/6) survived. Mild or no clinical signs were observed after challenge. As expected, control nonimmune pigs developed signs of acute African swine fever (ASF). The virus genome and infectious virus were observed soon after immunization, coincident with the onset of clinical signs (∼10 6 genome copies or 50% tissue culture infective doses/ml). The levels of the virus genome declined over an extended period up to 60 days postimmunization. In contrast, infectious virus was no longer detectable by days 30 to 35. Gamma interferon (IFN-γ) was detected in serum between days 4 and 7 postimmunization, and IFN-γ-producing cells were detected in all pigs analyzed following stimulation of immune lymphocytes with whole virus. ASFV-specific antibodies were first detected from day 10 postimmunization. IMPORTANCE African swine fever (ASF) is endemic in Africa, parts of the Trans Caucasus, the Russian Federation, and several European countries. The lack of a vaccine hinders control. Many of the ASF virus genes lack similarity to known genes and have not been characterized. We have shown that one of these, DP

  18. Surveillance of illness associated with pandemic (H1N1) 2009 virus infection among adults using a global clinical site network approach: the INSIGHT FLU 002 and FLU 003 studies

    DEFF Research Database (Denmark)

    Dwyer, Dominic E; Gerstoft, Jan

    2011-01-01

    The novel pandemic influenza A (H1H1) 2009 virus spread rapidly around the world in 2009. The paucity of prospective international epidemiologic data on predictors of clinical outcomes with pandemic (H1N1) 2009 virus infection stimulated the INSIGHT network, an international network of community...... and hospital-based investigators, to commence two worldwide clinical observational studies to describe pandemic (H1N1) 2009 virus activity. The purpose of these two studies was to estimate the percent of adult patients with illness due to laboratory-confirmed pandemic (H1N1) 2009 virus infection...

  19. Immune and inflammatory response in pigs during acute influenza caused by H1N1 swine influenza virus.

    Science.gov (United States)

    Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona; Kwit, Krzysztof; Czyżewska, Ewelina; Dors, Arkadiusz; Rachubik, Jarosław; Pejsak, Zygmunt

    2014-10-01

    Swine influenza (SI) is an acute respiratory disease of pigs, caused by swine influenza virus (SIV). Little is known about the inflammatory response in the lung during acute SI and its correlation with clinical signs or lung pathology. Moreover, until now there has been a limited amount of data available on the relationship between the concentrations of pro- and anti-inflammatory cytokines in the lungs and the serum concentration of acute-phase proteins (APPs) in SIV-infected pigs. In the present study, the porcine inflammatory and immune responses during acute influenza caused by H1N1 SIV (SwH1N1) were studied. Nine pigs were infected intratracheally, and five served as controls. Antibodies against SIV were measured by haemagglutination inhibition assay, and the influenza-virus-specific T-cell response was measured using a proliferation assay. C-reactive protein (CRP), haptoglobin (Hp), serum amyloid A (SAA), and pig major acute-phase protein (Pig-MAP) the concentrations in serum and concentration of IL-1β, IL-6, IL-8, IL-10, TNF-α and IFN-γ in lung tissues were measured using commercial ELISAs.

  20. A novel bromodeoxyuridine-resistant wild boar lung cell line facilitates generation of African swine fever virus recombinants.

    Science.gov (United States)

    Keil, Günther M; Giesow, Katrin; Portugal, Raquel

    2014-09-01

    Manipulation of African swine fever virus (ASFV) genomes, in particular those from field strains, is still a challenge. We have shown recently that generation of a green-fluorescent-protein-expressing, thymidine-kinase-negative (TK-) mutant of the low-pathogenic African swine fever virus field strain NHV was supported by a TK- Vero cell line. Since NHV, like other ASFV field strains, does not replicate well in Vero cells, a bromodeoxyuridine (BrdU)- resistant cell line derived from wild boar lung (WSL) cells, named WSL-Bu, was selected. WSL cells were used because they are suitable for productive replication of NHV and other ASFV field strains. Here, we show that WSL-Bu cells enable positive selection of both TK- and TK+ ASFV recombinants, which allows for novel strategies for construction of ASFV mutants. We further demonstrate for a low-pathogenic ASFV strain that TK expression is required for infectious replication in macrophages infected at low multiplicity and that vaccinia TK fully complements ASFV TK in this respect.

  1. Post-Natal Persistent Infection With Classical Swine Fever Virus in Wild Boar: A Strategy for Viral Maintenance?

    Science.gov (United States)

    Cabezón, O; Colom-Cadena, A; Muñoz-González, S; Pérez-Simó, M; Bohórquez, J A; Rosell, R; Marco, I; Domingo, M; Lavín, S; Ganges, L

    2017-04-01

    In this study, fifteen wild boar piglets were intranasally inoculated classical swine fever virus (CSFV) strain Catalonia 01. At 5 days post-inoculation, seven other animals within 48 h of birth were put in contact with them. Viral replication and innate and specific immune responses were evaluated. Of the inoculated animals, 46.67% remained post-natally persistently infected and were apparently healthy with neither humoral nor cellular immunological responses specific to CSFV and with high viral loads in their blood, organs and body secretions. Moreover, the present data extend the time period to 48 h after birth when a moderately virulent CSFV strain could lead to post-natal persistent infection given the generation of persistently infected wild boars in the contact group (33.33%). The innate immune response to the virus, as measured by type I IFN-α in serum, was mostly not impaired in the persistently infected wild boars. Interestingly, a decrease and lack of IFN-γ-producing cells against CSFV and PHA was observed. In endemic countries where wild swine species are increasing and low and moderate virulence CSFV strains are prevalent, the possible generation of this form of disease cannot be ruled out. © 2015 Blackwell Verlag GmbH.

  2. Comprehensive analysis of the codon usage patterns in the envelope glycoprotein E2 gene of the classical swine fever virus.

    Directory of Open Access Journals (Sweden)

    Ye Chen

    Full Text Available The classical swine fever virus (CSFV, circulating worldwide, is a highly contagious virus. Since the emergence of CSFV, it has caused great economic loss in swine industry. The envelope glycoprotein E2 gene of the CSFV is an immunoprotective antigen that induces the immune system to produce neutralizing antibodies. Therefore, it is essential to study the codon usage of the E2 gene of the CSFV. In this study, 140 coding sequences of the E2 gene were analyzed. The value of effective number of codons (ENC showed low codon usage bias in the E2 gene. Our study showed that codon usage could be described mainly by mutation pressure ENC plot analysis combined with principal component analysis (PCA and translational selection-correlation analysis between the general average hydropathicity (Gravy and aromaticity (Aroma, and nucleotides at the third position of codons (A3s, T3s, G3s, C3s and GC3s. Furthermore, the neutrality analysis, which explained the relationship between GC12s and GC3s, revealed that natural selection had a key role compared with mutational bias during the evolution of the E2 gene. These results lay a foundation for further research on the molecular evolution of CSFV.

  3. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution

    Directory of Open Access Journals (Sweden)

    Nauwynck Hans J

    2010-02-01

    Full Text Available Abstract Background Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs. However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal and avian virus receptors (Siaα2-3Gal were identified with Sambucus Nigra and Maackia amurensis lectins respectively. Results Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium. Conclusions The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia

  4. Fatal disease associated with Swine Hepatitis E virus and Porcine circovirus 2 co-infection in four weaned pigs in China.

    Science.gov (United States)

    Yang, Yifei; Shi, Ruihan; She, Ruiping; Mao, Jingjing; Zhao, Yue; Du, Fang; Liu, Can; Liu, Jianchai; Cheng, Minheng; Zhu, Rining; Li, Wei; Wang, Xiaoyang; Soomro, Majid Hussain

    2015-03-26

    In recent decades, Porcine circovirus 2 (PCV2) infection has been recognized as the causative agent of postweaning multisystemic wasting syndrome, and has become a threat to the swine industry. Hepatitis E virus (HEV) is another high prevalent pathogen in swine in many regions of the world. PCV2 and HEV are both highly prevalent in pig farms in China. In this study, we characterized the HEV and PCV2 co-infection in 2-3 month-old piglets, based on pathogen identification and the pathological changes observed, in Hebei Province, China. The pathological changes were severe, and general hyperemia, hemorrhage, inflammatory cell infiltration, and necrosis were evident in the tissues of dead swine. PCR was used to identify the pathogen and we tested for eight viruses (HEV, Porcine reproductive and respiratory syndrome virus, PCV2, Classical swine fever virus, Porcine epidemic diarrhea virus, Transmissible gastroenteritis coronavirus, Porcine parvovirus and Pseudorabies virus) that are prevalent in Chinese pig farms. The livers, kidneys, spleens, and other organs of the necropsied swine were positive for HEV and/or PCV2. Immunohistochemical staining showed HEV- and PCV2-antigen-positive signals in the livers, kidneys, lungs, lymph nodes, and intestine. HEV and PCV2 co-infection in piglets was detected in four out of seven dead pigs from two pig farms in Hebei, China, producing severe pathological changes. The natural co-infection of HEV and PCV2 in pigs in China has rarely been reported. We speculate that co-infection with PCV2 and HEV may bring some negative effect on pig production and recommend that more attention should be paid to this phenomenon.

  5. assessment of the economic and social implications of the avian flu ...

    African Journals Online (AJOL)

    Admin

    2006-01-22

    Jan 22, 2006 ... KEYWORDS: Assessment, Economic, Social Implications, Avian Flu, Nigerian Poultry. INTRODUCTION. Avian flu is a highly infectious, contagious and zoonotic disease of man, poultry and other birds caused by the avian influenza type A virus, Emmanuel et.al. (2006). The avian influenza virus belongs to ...

  6. Colds and flu – an overview of the management | Ismail | South ...

    African Journals Online (AJOL)

    The common cold and flu are two very different viruses that share very similar symptoms. The common cold is a self-limiting upper respiratory tract infection and it is caused by the rhinovirus, coronavirus or the adenovirus. It usually resolves within 7-10 days. The flu is caused by the influenza virus and usually presents with ...

  7. Live virus immunization (LVI) with a recent 1-7-4 PRRSV isolate elicits broad protection against PRRSV challenge in finishing age swine

    Science.gov (United States)

    PRRSV infection is the most economically important disease affecting domestic swine herds in the United States and in many countries. Commercially available vaccines are often based on older viral strains and offer limited efficacy against heterologous challenge. Live virus immunization (LVI), a for...

  8. When can a veterinarian be expected to detect classical swine fever virus among breeding sows in a herd during an outbreak?

    NARCIS (Netherlands)

    Engel, B.; Bouma, A.; Stegeman, J.A.; Buist, W.; Elbers, A.R.W.; Kogut, J.; Döpfer, D.; Jong, de M.C.M.

    2005-01-01

    The herd sensitivity (HSe) and herd specificity (Hsp) of clinical diagnosis of an infection with classical swine fever (CSF) virus during veterinary inspection of breeding sows in a herd was evaluated. Data gathered from visits to herds during the CSF outbreak in 1997¿1998 in The Netherlands were

  9. Effects of mutations in the VP2/VP4 cleavage site of Swine vesicular disease virus on RNA encapsidation and viral infectivity

    NARCIS (Netherlands)

    Rebel, J.M.J.; Leendertse, C.H.; Dekker, A.; Moormann, R.J.M.

    2003-01-01

    We studied VP0 cleavage of Swine vesicular disease virus (SVDV), a member of the Picornaviridae using a full-length cDNA copy of the Dutch SVDV isolate. The influences of mutations, introduced at the cleavage site of SVDV, on VP0 cleavage, RNA encapsidation and viral infection were studied. Double

  10. Classical swine fever virus infection modulates serum levels of INF-α, IL-8 and TNF-α in 6-month-old pigs

    DEFF Research Database (Denmark)

    von Rosen, Tanya; Lohse, Louise; Nielsen, Jens

    2013-01-01

    Several studies have highlighted the important role of cytokines in disease development of classical swine fever virus (CSFV) infection. In the present study, we examined the kinetics of 7 porcine cytokines in serum from pigs infected with 3 different CSFV strains. Based on the clinical picture i...

  11. Determination of the sequence of the complete open reading frame and the 5 ' NTR of the Paderborn isolate of classical swine fever virus

    DEFF Research Database (Denmark)

    Oleksiewicz, Martin B.; Rasmussen, Thomas Bruun; Normann, Preben

    2003-01-01

    The classical swine fever (CSF) epidemic in the Netherlands in 1997-1998 lasted 14 months, during which 429 infected and 1300 at risk herds were culled, at an estimated economical cost of 2 billion US dollars. Despite the overwhelming scale of the epizootic, the CSF virus (CSFV) strain causing th...

  12. Use of automated real-time reverse transcription-polymerase chain reaction (RT-PCR) to monitor experimental swine vesicular disease virus infection in pigs

    DEFF Research Database (Denmark)

    Reid, S.M.; Paton, D.J.; Wilsden, G.

    2004-01-01

    Automated real-time RT-PCR was evaluated as a diagnostic tool for swine vesicular disease virus (SVDV) infection on a range of samples (vesicular epithelium, serum, nasal swabs, faeces) from four inoculated and three in-contact pigs over a period of 28 days. Traditional diagnostic procedures (vir...

  13. Within- and between-pen transmission of Classical Swine Fever Virus: a new method to estimate the basic reproduction ratio from transmission experiments

    NARCIS (Netherlands)

    Klinkenberg, D.; Bree, de J.; Laevens, H.; Jong, de M.C.M.

    2002-01-01

    We present a method to estimate basic reproduction ratio R0 from transmission experiments. By using previously published data of experiments with Classical Swine Fever Virus more extensively, we obtained smaller confidence intervals than the martingale method used in the original papers. Moreover,

  14. Role of picornaviruses in flu-like illnesses of adults enrolled in an oseltamivir treatment study who had no evidence of influenza virus infection

    NARCIS (Netherlands)

    G. Boivin (Guy); A.D.M.E. Osterhaus (Albert); A. Gaudreau (Annie); H.C. Jackson (Helen); J. Groen (Jan); P. Ward (Penelope)

    2002-01-01

    textabstractThe primary objective of this study was to determine the role of picornavirus in flu-like episodes (temperature of > or =38.0 degrees C plus one respiratory and one constitutional symptom) among otherwise healthy adults enrolled in a placebo-controlled, double-blind, randomized

  15. Specific Inhibitory Effect of κ-Carrageenan Polysaccharide on Swine Pandemic 2009 H1N1 Influenza Virus.

    Directory of Open Access Journals (Sweden)

    Qiang Shao

    Full Text Available The 2009 influenza A H1N1 pandemic placed unprecedented demands on antiviral drug resources and the vaccine industry. Carrageenan, an extractive of red algae, has been proven to inhibit infection and multiplication of various enveloped viruses. The aim of this study was to examine the ability of κ-carrageenan to inhibit swine pandemic 2009 H1N1 influenza virus to gain an understanding of antiviral ability of κ-carrageenan. It was here demonstrated that κ-carrageenan had no cytotoxicity at concentrations below 1000 μg/ml. Hemagglutination, 50% tissue culture infectious dose (TCID50 and cytopathic effect (CPE inhibition assays showed that κ-carrageenan inhibited A/Swine/Shandong/731/2009 H1N1 (SW731 and A/California/04/2009 H1N1 (CA04 replication in a dose-dependent fashion. Mechanism studies show that the inhibition of SW731 multiplication and mRNA expression was maximized when κ-carrageenan was added before or during adsorption. The result of Hemagglutination inhibition assay indicate that κ-carrageenan specifically targeted HA of SW731 and CA04, both of which are pandemic H1N/2009 viruses, without effect on A/Pureto Rico/8/34 H1N1 (PR8, A/WSN/1933 H1N1 (WSN, A/Swine/Beijing/26/2008 H1N1 (SW26, A/Chicken/Shandong/LY/2008 H9N2 (LY08, and A/Chicken/Shandong/ZB/2007 H9N2 (ZB07 viruses. Immunofluorescence assay and Western blot showed that κ-carrageenan also inhibited SW731 protein expression after its internalization into cells. These results suggest that κ-carrageenan can significantly inhibit SW731 replication by interfering with a few replication steps in the SW731 life cycles, including adsorption, transcription, and viral protein expression, especially interactions between HA and cells. In this way, κ-carrageenan might be a suitable alternative approach to therapy meant to address anti-IAV, which contains an HA homologous to that of SW731.

  16. In vitro and ex vivo analyses of co-infections with swine influenza and porcine reproductive and respiratory syndrome viruses.

    Science.gov (United States)

    Dobrescu, I; Levast, B; Lai, K; Delgado-Ortega, M; Walker, S; Banman, S; Townsend, H; Simon, G; Zhou, Y; Gerdts, V; Meurens, F

    2014-02-21

    Viral respiratory diseases remain problematic in swine. Among viruses, porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus (SIV), alone or in combination, are the two main known contributors to lung infectious diseases. Previous studies demonstrated that experimental dual infections of pigs with PRRSV followed by SIV can cause more severe disease than the single viral infections. However, our understanding of the impact of one virus on the other at the molecular level is still extremely limited. Thus, the aim of the current study was to determine the influence of dual infections, compared to single infections, in porcine alveolar macrophages (PAMs) and precision cut lung slices (PCLS). PAMs were isolated and PCLS were acquired from the lungs of healthy 8-week-old pigs. Then, PRRSV (ATCC VR-2385) and a local SIV strain of H1N1 subtype (A/Sw/Saskatchewan/18789/02) were applied simultaneously or with 3h apart on PAMs and PCLS for a total of 18 h. Immuno-staining for both viruses and beta-tubulin, real-time quantitative PCR and ELISA assays targeting various genes (pathogen recognition receptors, interferons (IFN) type I, cytokines, and IFN-inducible genes) and proteins were performed to analyze the cell and the tissue responses. Interference caused by the first virus on replication of the second virus was observed, though limited. On the host side, a synergistic effect between PRRSV and SIV co-infections was observed for some transcripts such as TLR3, RIG-I, and IFNβ in PCLS. The PRRSV infection 3h prior to SIV infection reduced the response to SIV while the SIV infection prior to PRRSV infection had limited impact on the second infection. This study is the first to show an impact of PRRSV/SIV co-infection and superinfections in the cellular and tissue immune response at the molecular level. It opens the door to further research in this exciting and intriguing field. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Co-expression of Erns and E2 genes of classical swine fever virus by replication-defective recombinant adenovirus completely protects pigs against virulent challenge with classical swine fever virus.

    Science.gov (United States)

    Sun, Yongke; Yang, Yuai; Zheng, Huanli; Xi, Dongmei; Lin, Mingxing; Zhang, Xiaomin; Yang, Linfu; Yan, Yulin; Chu, Xiaohui; Bi, Baoliang

    2013-04-01

    The objective of this study was to construct a recombinant adenovirus for future CSFV vaccines used in the pig industry for the reduction of losses involved in CSF outbreaks. The Erns and E2 genes of classical swine fever virus (CSFV), which encode the two main protective glycoproteins from the "Shimen" strain of CSFV, were combined and inserted into the replication-defective human adenovirus type-5 and named the rAd-Erns-E2. Nine pigs were randomly assigned to three treatment groups (three pigs in each group) including the rAd-Erns-E2, hAd-CMV control and DMEM control. Intramuscular vaccination with 2×10(6) TCID(50) of the rAd-Erns-E2 was administered two times with an interval of 21 days. At 42 days post inoculation, pigs in all groups were challenged with a lethal dose of 1×10(3) TCID(50) CSFV "Shimen" strain. Observation of clinical signs was made and the existence of CSFV RNA was detected. Animals in the hAd-CMV and DMEM groups showed severe clinical CSF symptoms and were euthanized from 7 to 10 days after the challenge. However, no adverse clinical CSF signs were observed in vaccinated pigs after the administration of rAd-Erns-E2 and even after CSFV challenge. Neither CSFV RNA nor pathological changes were detected in the tissues of interest of the above vaccinated pigs. These results implied that the recombination adenovirus carrying the Erns-E2 genes could be used to prevent swine from classical swine fever. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The effect of vaccination with the PAV-250 strain classical swine fever (CSF) virus on the airborne transmission of CSF virus.

    Science.gov (United States)

    Gonzalez, C; Pijoan, C; Ciprian, A; Correa, P; Mendoza, S

    2001-09-01

    The airborne transmission of Classical Swine Fever (CSF) virus to susceptible pigs, as well as the effect of vaccination with the CSF virus PAV-250 strain was investigated on this mode of transmission. Experiment I: four pigs were inoculated with the ALD CSFV strain (10(4.3) 50% TCID) by the intramuscular route, and at the onset of fever, they were introduced into an enclosed chamber. At the end of the experiment surviving pigs were sedated, anesthetized and euthanatized. Experiment II: four pigs were previously vaccinated with the CSF virus PAV-250 strain, and at 14 days post-vaccination they were challenged with the CSF virus ALD strain. In both experiments, four susceptible pigs were exposed to infectious aerosols by placing them in a chamber connected by a duct to the adjacent pen containing the infected animals and were kept there for 86 hs. In Experiment I, pigs exposed to contaminated air died as a result of infection with CSF virus on days 14, 21 and 28 post-inhalation. These four pigs seroconverted from day 12 post-inhalation. CSF virus was isolated from these animals, and the fluorescent antibody test on tonsils was positive. In Experiment II, a vaccinated pig exposed to contaminated air did not seroconvert, nor was CSF virus isolated from lymphoid tissues. However, mild fluorescence in tonsil sections from these pigs was observed. In conclusion, CSF virus was shown to be transmitted by air at a distance of 1 m to susceptible pigs. Vaccination with the PAV-250 CSF virus strain protected the pigs from clinical disease under the same conditions.

  19. European Surveillance Network for Influenza in Pigs: Surveillance Programs, Diagnostic Tools and Swine Influenza Virus Subtypes Identified in 14 European Countries from 2010 to 2013

    DEFF Research Database (Denmark)

    Simon, Gaelle; Larsen, Lars Erik; Duerrwald, Ralf

    2014-01-01

    : avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence....... For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some...... countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time...

  20. Generation and Efficacy Evaluation of a Recombinant Pseudorabies Virus Variant Expressing the E2 Protein of Classical Swine Fever Virus in Pigs.

    Science.gov (United States)

    Wang, Yimin; Yuan, Jin; Cong, Xin; Qin, Hua-Yang; Wang, Chun-Hua; Li, Yongfeng; Li, Su; Luo, Yuzi; Sun, Yuan; Qiu, Hua-Ji

    2015-10-01

    Classical swine fever (CSF) is an economically important infectious disease of pigs caused by classical swine fever virus (CSFV). Pseudorabies (PR), which is caused by pseudorabies virus (PRV), is another important infectious disease of pigs and other animals. Coinfections of pigs with PRV and CSFV occur occasionally in the field. The modified live vaccine Bartha-K61 strain has played an important role in the control of PR in many countries, including China. Since late 2011, however, increasing PR outbreaks caused by an emerging PRV variant have been reported in Bartha-K61-vaccinated swine populations on many farms in China. Previously, we generated a gE/gI-deleted PRV (rPRVTJ-delgE) based on this PRV variant, which was shown to be safe and can provide rapid and complete protection against lethal challenge with the PRV variant in pigs. Here, we generated a new recombinant PRV variant expressing the E2 gene of CSFV (rPRVTJ-delgE/gI-E2) and evaluated its immunogenicity and efficacy in pigs. The results showed that rPRVTJ-delgE/gI-E2 was safe for pigs, induced detectable anti-PRV and anti-CSFV neutralizing antibodies, and provided complete protection against the lethal challenge with either the PRV TJ strain or the CSFV Shimen strain. The data indicate that rPRVTJ-delgE/gI-E2 is a promising candidate bivalent vaccine against PRV and CSFV coinfections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Development, optimization, and validation of a Classical swine fever virus real-time reverse transcription polymerase chain reaction assay.

    Science.gov (United States)

    Eberling, August J; Bieker-Stefanelli, Jill; Reising, Monica M; Siev, David; Martin, Barbara M; McIntosh, Michael T; Beckham, Tammy R

    2011-09-01

    Classical swine fever (CSF) is an economically devastating disease of pigs. Instrumental to the control of CSF is a well-characterized assay that can deliver a rapid, accurate diagnosis prior to the onset of clinical signs. A real-time fluorogenic-probe hydrolysis (TaqMan) reverse transcription polymerase chain reaction (RT-PCR) for CSF was developed by the United States Department of Agriculture (USDA) at the Plum Island Animal Disease Center (CSF PIADC assay) and evaluated for analytical and diagnostic sensitivity and specificity. A well-characterized panel including Classical swine fever virus (CSFV), Bovine viral diarrhea virus (BVDV), and Border disease virus (BDV) isolates was utilized in initial feasibility and optimization studies. The assay was initially designed and validated for use on the ABI 7900HT using the Qiagen QuantiTect® Probe RT-PCR chemistry. However, demonstrating equivalency with multiple one-step RT-PCR chemistries and PCR platforms increased the versatility of the assay. Limit of detection experiments indicated that the Qiagen QuantiTect® Multiplex (NoROX) and the Invitrogen SuperScript® III RT-PCR kits were consistently the most sensitive one-step chemistries for use with the CSF PIADC primer/probe set. Analytical sensitivity of the CSF PIADC assay ranged from <1-2.95 log(10) TCID(50)/ml on both the ABI 7900HT and ABI 7500 platforms. The CSF PIADC assay had 100% diagnostic sensitivity and specificity when tested on a panel of 152 clinical samples from the Dominican Republic and Colombia. The ability to perform this newly developed assay in 96-well formats provides an increased level of versatility for use in CSF surveillance programs.

  2. Reassortment between Swine H3N2 and 2009 Pandemic H1N1 in the United States Resulted in Influenza A Viruses with Diverse Genetic Constellations with Variable Virulence in Pigs

    Science.gov (United States)

    Rajão, Daniela S.; Walia, Rasna R.; Campbell, Brian; Gauger, Phillip C.; Janas-Martindale, Alicia; Killian, Mary Lea

    2016-01-01

    ABSTRACT Repeated spillovers of the H1N1 pandemic virus (H1N1pdm09) from humans to pigs resulted in substantial evolution of influenza A viruses infecting swine, contributing to the genetic and antigenic diversity of influenza A viruses (IAV) currently circulating in swine. The reassortment with endemic swine viruses and maintenance of some of the H1N1pdm09 internal genes resulted in the circulation of different genomic constellations in pigs. Here, we performed a whole-genome phylogenetic analysis of 368 IAV circulating in swine from 2009 to 2016 in the United States. We identified 44 different genotypes, with the most common genotype (32.33%) containing a clade IV-A HA gene, a 2002-lineage NA gene, an M-pdm09 gene, and remaining gene segments of triple reassortant internal gene (TRIG) origin. To understand how different genetic constellations may relate to viral fitness, we compared the pathogenesis and transmission in pigs of six representative genotypes. Although all six genotypes efficiently infected pigs, they resulted in different degrees of pathology and viral shedding. These results highlight the vast H3N2 genetic diversity circulating in U.S. swine after 2009. This diversity has important implications in the control of this disease by the swine industry, as well as a potential risk for public health if swine-adapted viruses with H1N1pdm09 genes have an increased risk to humans, as occurred in the 2011-2012 and 2016 human variant H3N2v cases associated with exhibition swine. IMPORTANCE People continue to spread the 2009 H1N1 pandemic (H1N1pdm09) IAV to pigs, allowing H1N1pdm09 to reassort with endemic swine IAV. In this study, we determined the 8 gene combinations of swine H3N2 IAV detected from 2009 to 2016. We identified 44 different genotypes of H3N2, the majority of which contained at least one H1N1pdm09 gene segment. We compared six representative genotypes of H3N2 in pigs. All six genotypes efficiently infected pigs, but they resulted in different

  3. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ocana-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland); Stech, Juergen; Stech, Olga [Friedrich-Loeffler Institut, Greifswald-Insel Riems (Germany); Summerfield, Artur, E-mail: artur.summerfield@ivi.admin.ch [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland)

    2012-05-25

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-{kappa}B translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  4. African swine fever outbreak on a medium-sized farm in Uganda: biosecurity breaches and within-farm virus contamination.

    Science.gov (United States)

    Chenais, Erika; Sternberg-Lewerin, Susanna; Boqvist, Sofia; Liu, Lihong; LeBlanc, Neil; Aliro, Tonny; Masembe, Charles; Ståhl, Karl

    2017-02-01

    In Uganda, a low-income country in east Africa, African swine fever (ASF) is endemic with yearly outbreaks. In the prevailing smallholder subsistence farming systems, farm biosecurity is largely non-existent. Outbreaks of ASF, particularly in smallholder farms, often go unreported, creating significant epidemiological knowledge gaps. The continuous circulation of ASF in smallholder settings also creates biosecurity challenges for larger farms. In this study, an on-going outbreak of ASF in an endemic area was investigated on farm level, including analyses of on-farm environmental virus contamination. The study was carried out on a medium-sized pig farm with 35 adult pigs and 103 piglets or growers at the onset of the outbreak. Within 3 months, all pigs had died or were slaughtered. The study included interviews with farm representatives as well as biological and environmental sampling. ASF was confirmed by the presence of ASF virus (ASFV) genomic material in biological (blood, serum) and environmental (soil, water, feed, manure) samples by real-time PCR. The ASFV-positive biological samples confirmed the clinical assessment and were consistent with known virus characteristics. Most environmental samples were found to be positive. Assessment of farm biosecurity, interviews, and the results from the biological and environmental samples revealed that breaches and non-compliance with biosecurity protocols most likely led to the introduction and within-farm spread of the virus. The information derived from this study provides valuable insight regarding the implementation of biosecurity measures, particularly in endemic areas.

  5. Haemagglutinin and nucleoprotein replicon particle vaccination of swine protects against the pandemic H1N1 2009 virus.

    Science.gov (United States)

    Vander Veen, R L; Mogler, M A; Russell, B J; Loynachan, A T; Harris, D L H; Kamrud, K I

    2013-10-12

    The recent emergence of the pandemic H1N1 (pH1N1) and H3N2 variant influenza A viruses (IAV) in 2009 and 2011-2012, respectively, highlight the zoonotic potential of influenza viruses and the need for vaccines capable of eliciting heterosubtypic protection. In these studies, single-cycle, propagation-defective replicon particle (RP) vaccines expressing IAV haemagglutinin (HA) and nucleoprotein (NP) genes were constructed and efficacy was evaluated in homologous and heterologous pig challenge studies with the pH1N1 2009 influenza virus (A/California/04/2009). Homologous HA RP vaccination eliminated virus shedding and decreased pulmonary pathology in pigs following pH1N1 2009 challenge. An RP vaccine expressing an H3N2-derived NP gene was able to decrease nasal shedding and viral load following heterosubtypic pH1N1 2009 challenge in pigs. These studies indicate that although homologous vaccination of swine remains the most effective means of preventing IAV infection, other vaccine alternatives do offer a level of heterosubtypic protection, and should continue to be evaluated for their ability to provide broader protection.

  6. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    International Nuclear Information System (INIS)

    Ocaña-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert; Stech, Jürgen; Stech, Olga; Summerfield, Artur

    2012-01-01

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-κB translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  7. Overcoming maternal antibody interference by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of swine influenza virus.

    Science.gov (United States)

    Wesley, Ronald D; Lager, Kelly M

    2006-11-26

    Sows and gilts lack immunity to human adenovirus 5 (Ad-5) vectored vaccines so immunogens of swine pathogens can be expressed with these vaccines in order to immunize suckling piglets that have interfering, maternally derived antibodies. In this study 7-day-old piglets, that had suckled H3N2 infected gilts, were sham-inoculated with a non-expressing Ad-5 vector or given a primary vaccination with replication-defective Ad-5 viruses expressed the H3 hemagglutinin and the nucleoprotein of swine influenza virus (SIV) subtype H3N2. The hemagglutination inhibition (HI) titer of the sham-inoculated group (n = 12) showed continued antibody decay whereas piglets vaccinated with Ad-5 SIV (n = 23) developed an active immune response by the second week post-vaccination. At 4 weeks-of-age when the HI titer of the sham-inoculated group had decayed to 45, the sham-inoculated group and half of the Ad-5 SIV vaccinated pigs were boosted with a commercial inactivated SIV vaccine. The boosted pigs that had been primed in the presence of maternal interfering antibodies had a strong anamnestic response while sham-inoculated pigs did not respond to the commercial vaccine. Two weeks after the booster vaccination the pigs were challenged with a non-homologous H3N2 virulent SIV. The efficacy of the vaccination protocol was demonstrated by abrogation of clinical signs, by clearance of challenge virus from pulmonary lavage fluids, by markedly reduced virus shedding in nasal secretions, and by the absence of moderate or severe SIV-induced lung lesions. These recombinant Ad-5 SIV vaccines are useful for priming the immune system to override the effects of maternally derived antibodies which interfere with conventional SIV vaccines.

  8. The avian-origin H3N2 canine influenza virus has limited replication in swine

    Science.gov (United States)

    A genetically and antigenically distinct H3N2 canine influenza of avian-origin was detected in March of 2015 in Chicago, Illinois. A subsequent outbreak was reported with over 1,000 dogs in the Midwest affected. The potential for canine-to-swine transmission was unknown. Experimental infection in pi...

  9. Reassortment process after co-infection of pigs with avian H1N1 and swine H3N2 influenza viruses.

    Science.gov (United States)

    Urbaniak, Kinga; Markowska-Daniel, Iwona; Kowalczyk, Andrzej; Kwit, Krzysztof; Pomorska-Mól, Małgorzata; Frącek, Barbara; Pejsak, Zygmunt

    2017-07-08

    The influenza A virus is highly variable, which, to some degree, is caused by the reassortment of viral genetic material. This process plays a major role in the generation of novel influenza virus strains that can emerge in a new host population. Due to the susceptibility of pigs to infections with avian, swine and human influenza viruses, they are considered intermediate hosts for the adaptation of the avian influenza virus to humans. In order to test the reassortment process in pigs, they were co-infected with H3N2 A/swine/Gent/172/2008 (Gent/08) and H1N1 A/duck/Italy/1447/2005 (Italy/05) and co-housed with a group of naïve piglets. The Gent/08 strains dominated over Italy/05, but reassortment occurred. The reassortant strains of the H1N1 subtype (12.5%) with one gene (NP or M) of swine-origin were identified in the nasal discharge of the contact-exposed piglets. These results demonstrate that despite their low efficiency, genotypically and phenotypically different influenza A viruses can undergo genetic exchange during co-infection of pigs.

  10. Detection of African swine fever virus from formalin fixed and non-fixed tissues by polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    P. D. Luka

    2014-10-01

    Full Text Available Aim: Formalin fixing and paraffin embedding of tissue samples is one of the techniques for preserving the structural integrity of cells for a very long time. However, extraction and analysis of genomic material from formalin fixed tissue (FFT remains a challenge despite numerous attempts to develop a more effective method. The success of polymerase chain reaction (PCR depends on the quality of DNA extract. Materials and Methods: Here we assessed the conventional method of DNA extraction from FFT for African swine fever virus (ASFV detection. The modified conventional method gave a higher quality DNA when compared with commercially available DNA extraction kits (QIAamp® DNA Mini Kit, DNeasy® Blood and Tissue Kit, and ZR Genomic DNA™ Tissue MiniPrep. Results: An average A260/A280 DNA purity of 0.86-1.68 and 3.22-5.32 μg DNA/mg for formalin fixed and non-fixed tissues, respectively using a conventional method. In a reproducible and three times repeat PCR, the ASFV DNA expected product size of 278 bp was obtained from the DNA extract of the conventional method but not from the DNA extract of the commercial kits. Conclusion: The present study has demonstrated that the conventional method extracts ASFV genome better than commercial kit. In summary, the commercial kit extraction appeared not suitable to purify ASFV DNA from FFT. We, therefore, recommend that the use of the conventional method be considered for African swine fever DNA extraction from FFT.

  11. An avirulent chimeric Pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus

    International Nuclear Information System (INIS)

    Reimann, Ilona; Depner, Klaus; Trapp, Sascha; Beer, Martin

    2004-01-01

    A chimeric Pestivirus was constructed using an infectious cDNA clone of bovine viral diarrhea virus (BVDV) [J. Virol. 70 (1996) 8606]. After deletion of the envelope protein E2-encoding region, the respective sequence of classical swine fever virus (CSFV) strain Alfort 187 was inserted in-frame resulting in plasmid pA/CP7 E 2alf. After transfection of in vitro-transcribed CP7 E 2alf RNA, autonomous replication of chimeric RNA in bovine and porcine cell cultures was observed. Efficient growth of chimeric CP7 E 2alf virus, however, could only be demonstrated on porcine cells, and in contrast to the parental BVDV strain CP7, CP7 E 2alf only inefficiently infected and propagated in bovine cells. The virulence, immunogenicity, and 'marker vaccine' properties of the generated chimeric CP7 E 2alf virus were determined in an animal experiment using 27 pigs. After intramuscular inoculation of 1 x 10 7 TCID 50 , CP7 E 2alf proved to be completely avirulent, and neither viremia nor virus transmission to contact animals was observed; however, CSFV-specific neutralizing antibodies were detected from day 11 after inoculation. In addition, sera from all animals reacted positive in an E2-specific CSFV-antibody ELISA, but were negative for CSFV-E RNS -specific antibodies as determined with a CSFV marker ELISA. After challenge infection with highly virulent CSFV strain Eystrup, pigs immunized with CP7 E 2alf were fully protected against clinical signs of CSFV infection, viremia, and shedding of challenge virus, and almost all animals scored positive in a CSFV marker ELISA. From our results, we conclude that chimeric CP7 E 2alf may not only serve as a tool for a better understanding of Pestivirus attachment, entry, and assembly, but also represents an innocuous and efficacious modified live CSFV 'marker vaccine'

  12. Warning Signs: Seasonal Flu

    Centers for Disease Control (CDC) Podcasts

    2010-09-29

    In this podcast, Dr. Joe Bresee describes the main symptoms of seasonal flu and when it is serious enough to seek medical help.  Created: 9/29/2010 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/29/2010.

  13. Take Three: Seasonal Flu

    Centers for Disease Control (CDC) Podcasts

    2010-09-29

    In this podcast, Dr. Joe Bresee describes how to keep from getting seasonal flu and spreading it to others by taking these three steps.  Created: 9/29/2010 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/29/2010.

  14. Colds and the Flu

    Science.gov (United States)

    ... child’s toys, door handles, and bathroom facilities with anti-bacterial disinfectant. This can help stop the spread of germs. The best way to avoid getting the flu is to get the influenza vaccine. You should get the vaccine when it becomes ...

  15. Flu and Holiday Travel

    Centers for Disease Control (CDC) Podcasts

    2010-12-13

    This podcast explains the ways people can stay healthy and avoid the flu when traveling this winter.  Created: 12/13/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/13/2010.

  16. Antiviral Drugs: Seasonal Flu

    Centers for Disease Control (CDC) Podcasts

    2010-09-29

    In this podcast, Dr. Joe Bresee explains the nature of antiviral drugs and how they are used for seasonal flu.  Created: 9/29/2010 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/29/2010.

  17. Oseltamivir-Resistant Flu

    Centers for Disease Control (CDC) Podcasts

    2012-04-13

    Dr. Aaron Storms, an Epidemic Intelligence Service (EIS) officer at CDC, discusses his paper about oseltamivir-resistant H1N1flu.  Created: 4/13/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/17/2012.

  18. Penentuan Secara Imunopatologi Organ Target Virus Flu Burung Menggunakan Streptavidin Biotin (DETERMINATION OF TARGET ORGANS OF AVIAN INFLUENZA VIRUS USING IMMUNOPATHOLOGICAL IMMUNOHISTOCHEMISTRY STREPTAVIDIN-BIOTIN

    Directory of Open Access Journals (Sweden)

    Niken Yunita

    2018-01-01

    Full Text Available Avian influenza is a viral disease in poultry caused by avian influenza virus (AIV subtype H5N1 with varying clinical signs are often similar to the clinical signs of other viral infections, such as Newcastle disease virus (NDV. The mechanism of disease pathogenesis to express clinical signs tightly correlated to the determination of the target organ seen from AIV H5N1 antigens distribution in organs, such as respiratory tract, brain and gastrointestinal tract. Immunopathological immunohistochemistry streptavidin-biotin (IHC SB is a method for sensitive and accurate in detecting antigens of AIV on the tissues. In the present study, it was determined whether in laying hens with clinical signs of torticollis and curled toe paralysis, and pathologic anatomic lesions in the form of petechial and foci necrotic hemorrhages tested with immunopathological IHC SB is positive AIV H5N1 infection. IHC SB study results showed that the AIV H5N1 antigen were found in tissues of the lung, brain, duodenum and proventriculus. Based on these results, we can conclude that the IHC SB is a method that is highly sensitive and accurate to detect H5N1 antigens and its distribution in the host.

  19. Mathematical model for bird flu disease transmission | Yusuf ...

    African Journals Online (AJOL)

    Bird flu (Avian influenza) is a contagious disease of animals caused by viruses that normally infect only birds and, less commonly, pigs. These viruses are highly species-specific, but have, on rare occasions, crossed the species barrier to infect humans. The world at large never considered it a serious threat to mankind until ...

  20. Protection of mice against lethal challenge with 2009 H1N1 influenza A virus by 1918-like and classical swine H1N1 based vaccines.

    Directory of Open Access Journals (Sweden)

    Balaji Manicassamy

    2010-01-01

    Full Text Available The recent 2009 pandemic H1N1 virus infection in humans has resulted in nearly 5,000 deaths worldwide. Early epidemiological findings indicated a low level of infection in the older population (>65 years with the pandemic virus, and a greater susceptibility in people younger than 35 years of age, a phenomenon correlated with the presence of cross-reactive immunity in the older population. It is unclear what virus(es might be responsible for this apparent cross-protection against the 2009 pandemic H1N1 virus. We describe a mouse lethal challenge model for the 2009 pandemic H1N1 strain, used together with a panel of inactivated H1N1 virus vaccines and hemagglutinin (HA monoclonal antibodies to dissect the possible humoral antigenic determinants of pre-existing immunity against this virus in the human population. By hemagglutinination inhibition (HI assays and vaccination/challenge studies, we demonstrate that the 2009 pandemic H1N1 virus is antigenically similar to human H1N1 viruses that circulated from 1918-1943 and to classical swine H1N1 viruses. Antibodies elicited against 1918-like or classical swine H1N1 vaccines completely protect C57B/6 mice from lethal challenge with the influenza A/Netherlands/602/2009 virus isolate. In contrast, contemporary H1N1 vaccines afforded only partial protection. Passive immunization with cross-reactive monoclonal antibodies (mAbs raised against either 1918 or A/California/04/2009 HA proteins offered full protection from death. Analysis of mAb antibody escape mutants, generated by selection of 2009 H1N1 virus with these mAbs, indicate that antigenic site Sa is one of the conserved cross-protective epitopes. Our findings in mice agree with serological data showing high prevalence of 2009 H1N1 cross-reactive antibodies only in the older population, indicating that prior infection with 1918-like viruses or vaccination against the 1976 swine H1N1 virus in the USA are likely to provide protection against the 2009

  1. Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, Georgia 2007/1.

    Science.gov (United States)

    Popescu, Luca; Gaudreault, Natasha N; Whitworth, Kristen M; Murgia, Maria V; Nietfeld, Jerome C; Mileham, Alan; Samuel, Melissa; Wells, Kevin D; Prather, Randall S; Rowland, Raymond R R

    2017-01-15

    African swine fever is a highly contagious, often fatal disease of swine for which there is no vaccine or other curative treatment. The macrophage marker, CD163, is a putative receptor for African swine fever virus (ASFV). Pigs possessing a complete knockout of CD163 on macrophages were inoculated with Georgia 2007/1, a genotype 2 isolate. Knockout and wild type pen mates became infected and showed no differences in clinical signs, mortality, pathology or viremia. There was also no difference following in vitro infection of macrophages. The results do not rule out the possibility that other ASFV strains utilize CD163, but demonstrate that CD163 is not necessary for infection with the Georgia 2007/1 isolate. This work rules out a significant role for CD163 in ASFV infection and creates opportunities to focus on alternative receptors and entry mechanisms. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Extracorporeal Membrane Oxygenation and Modern Detoxification Techniques in a Puerpera with Viral and Bacterial Pneumonia Caused by Flu A(H1N1 Virus

    Directory of Open Access Journals (Sweden)

    R. A. Kornelyuk

    2017-01-01

    Full Text Available Outbreaks of viral infections have become a global healthcare challenge over the last decade. The 2009—2010 flu A (H1N1 outbreak resulted in global pandemia, associated with high morbidity and mortality reaching 31%. Another flu A (H1N1 outbreak occurred in 2015—2016. There is a strong probability that it may be repeated in the future. This infection is associated with its high incidence among pregnant women. There are some published reports describing the efficacy and safety of veno%venous extracorporeal membrane oxygenation (ECMO in patients with severe acute respiratory distress syndrome that is refractory to standard therapeutic options. The article presents a clinical case of a successful use of extracorporeal membrane oxygenation and intermittent renal replacement therapy in a puerpera with acute respiratory distress syndrome caused by flu A (H1N1-related severe viral and bacterial pneumonia. The positive effects of the combination of veno%venous extracorporeal membrane oxygenation and modern detoxification techniques have been demonstrated. Revealed organizational problemswere related to selection criteria for prescription of extracorporeal gas exchange, as well as to carrying out the procedure in an institution in the deficiency of the experienced staff and corresponding equipment.

  3. Outbreak of swine-origin influenza A (H1N1) virus infection - Mexico, March-April 2009.

    Science.gov (United States)

    2009-05-08

    In March and early April 2009, Mexico experienced outbreaks of respiratory illness and increased reports of patients with influenza-like illness (ILI) in several areas of the country. On April 12, the General Directorate of Epidemiology (DGE) reported an outbreak of ILI in a small community in the state of Veracruz to the Pan American Health Organization (PAHO) in accordance with International Health Regulations. On April 17, a case of atypical pneumonia in Oaxaca State prompted enhanced surveillance throughout Mexico. On April 23, several cases of severe respiratory illness laboratory confirmed as swine-origin influenza A (H1N1) virus (S-OIV) infection were communicated to the PAHO. Sequence analysis revealed that the patients were infected with the same S-OIV strain detected in two children residing in California. This report describes the initial and ongoing investigation of the S-OIV outbreak in Mexico.

  4. A corn-based delivery system for animal vaccines: an oral transmissible gastroenteritis virus vaccine boosts lactogenic immunity in swine.

    Science.gov (United States)

    Lamphear, Barry J; Jilka, Joseph M; Kesl, Lyle; Welter, Mark; Howard, John A; Streatfield, Stephen J

    2004-06-23

    Recombinant plant expression systems offer a means to produce large quantities of selected antigens for subunit vaccines. Cereals are particularly well-suited expression vehicles since the expressed proteins can be stored at relatively high concentrations for extended periods of time without degradation and dry seed can be formulated into oral vaccines suitable for commercial applications. A subunit vaccine candidate directed against porcine transmissible gastroenteritis virus and expressed in corn seed has been developed for oral delivery to swine. Here, we show that this vaccine, when administered to previously sensitized gilts, can boost neutralizing antibody levels in the animals' serum, colostrum and milk. Thus, this vaccine candidate is effective at boosting lactogenic immunity and is appropriate to pursue through large-scale field trials preceding commercialization.

  5. European surveillance network for influenza in pigs: surveillance programs, diagnostic tools and Swine influenza virus subtypes identified in 14 European countries from 2010 to 2013.

    Directory of Open Access Journals (Sweden)

    Gaëlle Simon

    Full Text Available Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010-2013 aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%, human-like reassortant swine H1N2 (13% and human-like reassortant swine H3N2 (9.1%, as well as pandemic A/H1N1 2009 (H1N1pdm virus (10.3%. Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections.

  6. European Surveillance Network for Influenza in Pigs: Surveillance Programs, Diagnostic Tools and Swine Influenza Virus Subtypes Identified in 14 European Countries from 2010 to 2013

    Science.gov (United States)

    Simon, Gaëlle; Larsen, Lars E.; Dürrwald, Ralf; Foni, Emanuela; Harder, Timm; Van Reeth, Kristien; Markowska-Daniel, Iwona; Reid, Scott M.; Dan, Adam; Maldonado, Jaime; Huovilainen, Anita; Billinis, Charalambos; Davidson, Irit; Agüero, Montserrat; Vila, Thaïs; Hervé, Séverine; Breum, Solvej Østergaard; Chiapponi, Chiara; Urbaniak, Kinga; Kyriakis, Constantinos S.; Brown, Ian H.; Loeffen, Willie

    2014-01-01

    Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010–2013) aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections. PMID:25542013

  7. European surveillance network for influenza in pigs: surveillance programs, diagnostic tools and Swine influenza virus subtypes identified in 14 European countries from 2010 to 2013.

    Science.gov (United States)

    Simon, Gaëlle; Larsen, Lars E; Dürrwald, Ralf; Foni, Emanuela; Harder, Timm; Van Reeth, Kristien; Markowska-Daniel, Iwona; Reid, Scott M; Dan, Adam; Maldonado, Jaime; Huovilainen, Anita; Billinis, Charalambos; Davidson, Irit; Agüero, Montserrat; Vila, Thaïs; Hervé, Séverine; Breum, Solvej Østergaard; Chiapponi, Chiara; Urbaniak, Kinga; Kyriakis, Constantinos S; Brown, Ian H; Loeffen, Willie

    2014-01-01

    Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010-2013) aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections.

  8. Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Michael Albin

    2017-01-01

    This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detec...

  9. Single-step multiplex reverse transcription-polymerase chain reaction assay for detection and differentiation of the 2009 (H1N1) influenza A virus pandemic in Thai swine populations

    Science.gov (United States)

    A recently emerged H1N1 Influenza A virus (pandemic 1 H1N1: pH1N1) with a Swine influenza virus (SIV) genetic background spread globally from human-to-human causing the first influenza virus pandemic of the 21st century. In a short period reverse zoonotic cases in pigs followed by a wide spread of t...

  10. Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission.

    Science.gov (United States)

    Guinat, Claire; Reis, Ana Luisa; Netherton, Christopher L; Goatley, Lynnette; Pfeiffer, Dirk U; Dixon, Linda

    2014-09-26

    African swine fever virus (ASFV) is a highly virulent swine pathogen that has spread across Eastern Europe since 2007 and for which there is no effective vaccine or treatment available. The dynamics of shedding and excretion is not well known for this currently circulating ASFV strain. Therefore, susceptible pigs were exposed to pigs intramuscularly infected with the Georgia 2007/1 ASFV strain to measure those dynamics through within- and between-pen transmission scenarios. Blood, oral, nasal and rectal fluid samples were tested for the presence of ASFV by virus titration (VT) and quantitative real-time polymerase chain reaction (qPCR). Serum was tested for the presence of ASFV-specific antibodies. Both intramuscular inoculation and contact transmission resulted in development of acute disease in all pigs although the experiments indicated that the pathogenesis of the disease might be different, depending on the route of infection. Infectious ASFV was first isolated in blood among the inoculated pigs by day 3, and then chronologically among the direct and indirect contact pigs, by day 10 and 13, respectively. Close to the onset of clinical signs, higher ASFV titres were found in blood compared with nasal and rectal fluid samples among all pigs. No infectious ASFV was isolated in oral fluid samples although ASFV genome copies were detected. Only one animal developed antibodies starting after 12 days post-inoculation. The results provide quantitative data on shedding and excretion of the Georgia 2007/1 ASFV strain among domestic pigs and suggest a limited potential of this isolate to cause persistent infection.

  11. The immunosuppressive impact of PRRS virus on the immune response following anti - erysipelas vaccination in swine from various farms

    Directory of Open Access Journals (Sweden)

    Viorica Chiurciu

    2014-12-01

    Full Text Available PRRS virus, the etiologic agent of Porcine Reproductive and Respiratory Syndrome by immunosuppressive action can significantly affect the immune response after vaccination. It was intended the following of the immunological reaction induced by the Erysipelothrix rhusopathiae vaccination from pigs from intensive system and from households. The biological material studied was provided from clinically healthy pigs of different ages. The animals were from four different locations. Serological examinations were performed by blood sampling [gathered from the confluence of jugular vein] before and after the vaccination. The investigations were performed by ELISA method. In the industrial breeding system, seroprevalence of anti PRRS presented high levels, in contrast to the low level of postvaccinal E. rhusopathiae antibodies. In households the incidence of PRRS virus was low and the seroconversion after the vaccination was raised. The morphopathological and bacteriological examinations performed from the lesions in various organs [lungs, lymph nodes, liver, spleen and intestine] has revealed the presence of germ association, pathogenic or potentially pathogenic. The results point the link between the existence of PRRS virus in the swine populations and post-vaccinal response, its presence interfering significantly with the vaccination protocols efficacy.

  12. Pathogenicity and Transmission in Pigs of the Novel A(H3N2)v Influenza Virus Isolated from Humans and Characterization of Swine H3N2 Viruses Isolated in 2010-2011

    Science.gov (United States)

    Kitikoon, Pravina; Gauger, Phillip C.; Schlink, Sarah N.; Bayles, Darrell O.; Gramer, Marie R.; Darnell, Daniel; Webby, Richard J.; Lager, Kelly M.; Swenson, Sabrina L.; Klimov, Alexander

    2012-01-01

    Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in Unites States since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the United States was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotypes (rH3N2p). Between July and December 2011, 12 cases of human infections with swine-lineage H3N2 viruses containing the pandemic matrix (pM) gene [A(H3N2)v] were detected. Whole-genome analysis of H3N2 viruses isolated from pigs from 2009 to 2011 sequenced in this study and other available H3N2 sequences showed six different rH3N2p genotypes present in the U.S. swine population since 2009. The presence of the pM gene was a common feature among all rH3N2p genotypes, but no specific genotype appeared to predominate in the swine population. We compared the pathogenic, transmission, genetic, and antigenic properties of a human A(H3N2)v isolate and two swine H3N2 isolates, H3N2-TRIG and rH3N2p. Our in vivo study detected no increased virulence in A(H3N2)v or rH3N2p viruses compared to endemic H3N2-TRIG virus. Antibodies to cluster IV H3N2-TRIG and rH3N2p viruses had reduced cross-reactivity to A(H3N2)v compared to other cluster IV H3N2-TRIG and rH3N2p viruses. Genetic analysis of the hemagglutinin gene indicated that although rH3N2p and A(H3N2)v are related to cluster IV of H3N2-TRIG, some recent rH3N2p isolates appeared to be forming a separate cluster along with the human isolates of A(H3N2)v. Continued monitoring of these H3N2 viruses is necessary to evaluate the evolution and potential loss of population immunity in swine and humans. PMID:22491461

  13. Evaluation of a modified live-virus vaccine for the prevention of porcine parvovirus-induced reproductive disease in swine.

    Science.gov (United States)

    Paul, P S; Mengeling, W L

    1980-12-01

    Each of 5 gilts was vaccinated IM with modified live-virus (MLV) vaccine for porcine parvovirus (PPV), and 5 gilts were used as nonvaccinated controls. Vaccinated gilts developed hemagglutination-inhibiting (HI) antibodies to PPV (titer of 320 to 1,280) by 2 weeks after vaccination. All gilts wee bred, and at about 40 days of gestation their immunity was challenged by intranasal and oral administration of a virulent strain of PPV. Gilts were killed at about 84 days of gestation and their litters were examined. Litters from vaccinated gilts comprised 59 live and 2 dead fetuses. Neither the virus nor antibodies to the virus were detected in any of the fetuses. In contrast, litters from nonvaccinated gilts comprised 25 live and 29 dead fetuses, and PPV was isolated from all dead and 9 live fetuses. Viral antigen was detected by direct immunofluorescence in the lungs of all PPV-infected fetuses, and 7 of the live infected fetuses had HI antibodies. Modified live virus did not cause transplacental fetal infection in 3 seronegative gilts inoculated at about 40 days of gestation. All 3 gilts had antibodies to PPV (80 to 640) when killed at about 84 days of gestation, and neither HI antibodies nor PPV were detected in any of the 20 live and 1 dead fetuses from these gilts. Modified live virus replicated in the tissues of fetuses of 2 gilts inoculated in utero. Seven of 8 fetuses inoculated with MLV died and were infected. These results demonstrated the efficacy of MLV vaccine for the prevention of PPV-induced reproductive disease in swine. Although MLV did not cross the placental barrier in pregnant animals, its pathogenicity for porcine fetuses after direct in utero inoculation indicates that its use should be limited to nonpregnant animals.

  14. Real time reverse transcription (RRT)-polymerase chain reaction (PCR) methods for detection of pandemic (H1N1) 2009 influenza virus and European swine influenza A virus infections in pigs

    Science.gov (United States)

    BACKGROUND. Requirement to detect pandemic (H1N1) 2009 (H1N1v) and established swine influenza A viruses (SIVs) by RealTime real time reverse transcription (RRT) PCR methods. Objectives. First, modify an existing M gene RRT PCR for sensitive generic detection of H1N1v and other European SIVs. S...

  15. African swine fever virus: current state and future perspectives in vaccine and antiviral research.

    Science.gov (United States)

    Zakaryan, Hovakim; Revilla, Yolanda

    2016-03-15

    African swine fever (ASF) is among the most significant of swine diseases for which no effective vaccines and antivirals are available. The disease, which is endemic in Africa, was introduced to Trans-Caucasian countries and the Russian Federation in 2007, where it remains prevalent today among domestic pigs and wild boars. Although some measures were implemented, ASF continues to pose a global risk for all countries, and thereby highlighting the importance of vaccine and antiviral research. In this review, an overview of research efforts toward the development of effective vaccines during the past decades is presented. As an alternative to vaccine development, the current state in antiviral research against ASFV is also presented. Finally, future perspectives in vaccine and antiviral research giving emphasis on some strategies that may allow researchers to develop effective countermeasures against ASF are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. PA-X protein contributes to virulence of triple-reassortant H1N2 influenza virus by suppressing early immune responses in swine.

    Science.gov (United States)

    Xu, Guanlong; Zhang, Xuxiao; Liu, Qinfang; Bing, Guoxia; Hu, Zhe; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua; Sun, Yipeng

    2017-08-01

    Previous studies have identified a functional role of PA-X for influenza viruses in mice and avian species; however, its role in swine remains unknown. Toward this, we constructed PA-X deficient virus (Sw-FS) in the background of a Triple-reassortment (TR) H1N2 swine influenza virus (SIV) to assess the impact of PA-X in viral virulence in pigs. Expression of PA-X in TR H1N2 SIV enhanced viral replication and host protein synthesis shutoff, and inhibited the mRNA levels of type I IFNs and proinflammatory cytokines in porcine cells. A delay of proinflammatory responses was observed in lungs of pigs infected by wild type SIV (Sw-WT) compared to Sw-FS. Furthermore, Sw-WT virus replicated and transmitted more efficiently than Sw-FS in pigs. These results highlight the importance of PA-X in the moderation of virulence and immune responses of TR SIV in swine, which indicated that PA-X is a pro-virulence factor in TR SIV in pigs. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Protection of pigs against pandemic swine origin H1N1 influenza A virus infection by hemagglutinin- or neuraminidase-expressing attenuated pseudorabies virus recombinants.

    Science.gov (United States)

    Klingbeil, Katharina; Lange, Elke; Blohm, Ulrike; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2015-03-02

    Influenza is an important respiratory disease of pigs, and may lead to novel human pathogens like the 2009 pandemic H1N1 swine-origin influenza virus (SoIV). Therefore, improved influenza vaccines for pigs are required. Recently, we demonstrated that single intranasal immunization with a hemagglutinin (HA)-expressing pseudorabies virus recombinant of vaccine strain Bartha (PrV-Ba) protected pigs from H1N1 SoIV challenge (Klingbeil et al., 2014). Now we investigated enhancement of efficacy by prime-boost vaccination and/or intramuscular administration. Furthermore, a novel PrV-Ba recombinant expressing codon-optimized N1 neuraminidase (NA) was included. In vitro replication of this virus was only slightly affected compared to parental virus. Unlike HA, the abundantly expressed NA was efficiently incorporated into PrV particles. Immunization of pigs with the two PrV recombinants, either singly or in combination, induced B cell proliferation and the expected SoIV-specific antibodies, whose titers increased substantially after boost vaccination. After immunization of animals with either PrV recombinant H1N1 SoIV challenge virus replication was significantly reduced compared to PrV-Ba vaccinated or naïve controls. Protective efficacy of HA-expressing PrV was higher than of NA-expressing PrV, and not significantly enhanced by combination. Despite higher serum antibody titers obtained after intramuscular immunization, transmission of challenge virus to naïve contact animals was only prevented after intranasal prime-boost vaccination with HA-expressing PrV-Ba. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Enzyme Linked Immunosorbent Assay Test for Antibody of Classical Swine Fever Virus In Timor-Leste (UJI ENZYME LINKED IMMUNOSORBENT ASSAY TERHADAP ANTIBODI VIRUS CLASSICAL SWINE FEVER DI TIMOR-LESTE

    Directory of Open Access Journals (Sweden)

    Rui Daniel de Carvalho

    2017-01-01

    Full Text Available The objective of this study was to evaluate the implementation of Classical Swine Fever (CSFvaccination on pigs in Timor-Leste. The study was conducted by analyzing the percentage of CSF antibodyin pigs sera that obtained from pigs in four districts which were located in the hills and coast of Timor-Leste. Evaluation was also carried out by observing the dominant factor that affecting the increase ofantibody titers in the sera. A total of 240 pigs sera were taken before and after vaccination and thenchecked for antibodies against of CSF virus by using PrioCheck CSFV Ab ELISA kits (Prionics Ag. Twohundred and forty serums obtained from non-vaccinated pigs and 240 other serum obtained from the samepigs, after being vaccinated with CSF vaccine. Time interval from the first and the second serum collectionwas at least 14 days post-vaccination. The results showed there was a significant difference (P<0.01 forthe presence of antibody in vaccinated pigs compared with the unvaccinated. A total of 75% serum fromvaccinated pigs was found positive for the antibody containing, while only 16.7% of serum from nonvaccinatedpigs was positive. The odd ratio analysis showed that the most influential factor for theincrease of antibody titer against CSF virus was vaccination status. among the other factors of age, sexand geographical study.

  19. Early assessment of anxiety and behavioral response to novel swine-origin influenza A(H1N1.

    Directory of Open Access Journals (Sweden)

    James Holland Jones

    Full Text Available BACKGROUND: Since late April, 2009, a novel influenza virus A (H1N1, generally referred to as the "swine flu," has spread around the globe and infected hundreds of thousands of people. During the first few days after the initial outbreak in Mexico, extensive media coverage together with a high degree of uncertainty about the transmissibility and mortality rate associated with the virus caused widespread concern in the population. The spread of an infectious disease can be strongly influenced by behavioral changes (e.g., social distancing during the early phase of an epidemic, but data on risk perception and behavioral response to a novel virus is usually collected with a substantial delay or after an epidemic has run its course. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the results from an online survey that gathered data (n = 6,249 about risk perception of the Influenza A(H1N1 outbreak during the first few days of widespread media coverage (April 28-May 5, 2009. We find that after an initially high level of concern, levels of anxiety waned along with the perception of the virus as an immediate threat. Overall, our data provide evidence that emotional status mediates behavioral response. Intriguingly, principal component analysis revealed strong clustering of anxiety about swine flu, bird flu and terrorism. All three of these threats receive a great deal of media attention and their fundamental uncertainty is likely to generate an inordinate amount of fear vis-a-vis their actual threat. CONCLUSIONS/SIGNIFICANCE: Our results suggest that respondents' behavior varies in predictable ways. Of particular interest, we find that affective variables, such as self-reported anxiety over the epidemic, mediate the likelihood that respondents will engage in protective behavior. Understanding how protective behavior such as social distancing varies and the specific factors that mediate it may help with the design of epidemic control strategies.

  20. Expression of myeloperoxidase in swine influenza virus (SIV)-infected neutrophils in lungs from pigs experimentally infected with SIV subtype H1N2.

    Science.gov (United States)

    Kim, Bongtae; Shin, Jeoung Hwa; Han, Kiwon; Seo, Hwi Won; Oh, Yeonsu; Kang, Ikjae; Park, Changhoon; Lee, Bog-Hieu; Jang, Jin Sil; Kim, Sung-Hoon; Chae, Chanhee

    2011-10-01

    The expression of myeloperoxidase (MPO) was examined in the swine influenza virus (SIV)-infected neutrophils in the lungs of pigs experimentally infected with swine influenza virus (SIV) subtype H1N2 by immunohistochemistry. Five pigs each from the infected and non-infected group were euthanized 1, 3, 5, 7, and 10 days post-inoculation (dpi). Immunohistochemical reactivity was mainly seen in neutrophils. The score for pulmonary histopathological lesions correlated with the score for MPO immunohistochemical reactivity (r ( s ) = 0.962, P < 0.01). In addition, the score for in situ hybridization of SIV nucleic acid correlated with the score for MPO immunohistochemical reactivity (r ( s ) = 0.976, P < 0.01). These results suggest neutrophils are one of the primary effector cells in the early phase of SIV infection in pigs.

  1. Molecular tracing of classical swine fever viruses isolated from wild boars and pigs in France from 2002 to 2011.

    Science.gov (United States)

    Simon, Gaëlle; Le Dimna, Mireille; Le Potier, Marie-Frédérique; Pol, Françoise

    2013-10-25

    There were three outbreaks of classical swine fever (CSF) in north-eastern France between 2002 and 2011. The first two occurred in April 2002 in the Moselle department, in a wild boar and pig herd, respectively, while the third occurred in April 2003, in the Bas-Rhin department, in a wild boar. A survey was subsequently implemented in wild boar and domestic pig populations, during which 43 CSF viruses (CSFVs) were genetically characterized to provide information on virus sources, trace virus evolution and help in the monitoring of effective control measures. Phylogenetic analyses, based on fragments of the 5'NTR, E2 and NS5B genes, showed that all French CSFVs could be assigned to genotype 2, subgenotype 2.3. CSFVs isolated in Moselle were classified in the "Rostock" lineage, a strain first described in 2001 in wild boar populations in the Eifel region of north-western Rhineland-Palatinate in Germany, and in Luxemburg. In contrast, the CSFVs isolated in Bas-Rhin were homologous to strains from the "Uelzen" lineage, a strain previously isolated from wild boars in south-eastern Rhineland-Palatinate, Germany, as well as in Vosges du Nord, France, during a previous outbreak that had occurred in wild boars between 1992 and 2001. The outbreak in Moselle domestic pigs was quickly resolved as it concerned only one herd. The infection in wild boars from Moselle was extinguished after a few months whereas wild boars from Bas-Rhin remained infected until 2007. Molecular tracing showed that the Bas-Rhin index virus strain evolved slightly during the period but that no strain from a novel lineage was introduced until this outbreak ended after application of a vaccination scheme for six years. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Efficient purification of cell culture-derived classical swine fever virus by ultrafiltration and size-exclusion chromatography

    Directory of Open Access Journals (Sweden)

    Ruining WANG,Yubao ZHI,Junqing GUO,Qingmei LI,Li WANG,Jifei YANG,Qianyue JIN,Yinbiao WANG,Yanyan YANG,Guangxu XING,Songlin QIAO,Mengmeng ZHAO,Ruiguang DENG,Gaiping ZHANG

    2015-09-01

    Full Text Available Large-scale production of cell culture-based classical swine fever virus (CSFV vaccine is hampered by the adverse reactions caused by contaminants from host cell and culture medium. Hence, we have developed an efficient method for purifying CSFV from cell-culture medium. Pure viral particles were obtained with two steps of tangential-flow filtration (TFF and size-exclusion chromatography (SEC, and were compared with particles from ultracentrifugation by transmission electron microscopy (TEM, infectivity and recovery test, and real time fluorescent quantitative PCR (FQ-PCR. TFF concentrated the virus particles effectively with a retention rate of 98.5%, and 86.2% of viral particles were obtained from the ultrafiltration retentate through a Sepharose 4 F F column on a biological liquid chromatography system. CSFV purified by TFF-SEC or ultracentrifugation were both biologically active from 1.0×10-4.25 TCID50·mL-1 to 3.0×10-6.25 TCID50·mL-1, but the combination of TFF and SEC produced more pure virus particles than by ultracentrifugation alone. In addition, pure CSFV particles with the expected diameter of 40—60 nm were roughly spherical without any visible contamination. Mice immunized with CSFV purified by TFF-SEC produced higher antibody levels compared with immunization with ultracentrifugation-purified CSFV (P<0.05. The purification procedures in this study are reliable technically and feasible for purification of large volumes of viruses.

  3. Sequence-based comparative study of classical swine fever virus genogroup 2.2 isolate with pestivirus reference strains.

    Science.gov (United States)

    Kumar, Ravi; Rajak, Kaushal Kishor; Chandra, Tribhuwan; Muthuchelvan, Dhanavelu; Saxena, Arpit; Chaudhary, Dheeraj; Kumar, Ajay; Pandey, Awadh Bihari

    2015-09-01

    This study was undertaken with the aim to compare and establish the genetic relatedness between classical swine fever virus (CSFV) genogroup 2.2 isolate and pestivirus reference strains. The available complete genome sequences of CSFV/IND/UK/LAL-290 strain and other pestivirus reference strains were retrieved from GenBank. The complete genome sequence, complete open reading frame, 5' and 3' non-coding region (NCR) sequences were analyzed and compared with reference pestiviruses strains. Clustal W model in MegAlign program of Lasergene 6.0 software was used for analysis of genetic heterogeneity. Phylogenetic analysis was carried out using MEGA 6.06 software package. The complete genome sequence alignment of CSFV/IND/UK/LAL-290 isolate and reference pestivirus strains showed 58.9-72% identities at the nucleotide level and 50.3-76.9% at amino acid level. Sequence homology of 5' and 3' NCRs was found to be 64.1-82.3% and 22.9-71.4%, respectively. In phylogenetic analysis, overall tree topology was found similar irrespective of sequences used in this study; however, whole genome phylogeny of pestivirus formed two main clusters, which further distinguished into the monophyletic clade of each pestivirus species. CSFV/IND/UK/LAL-290 isolate placed with the CSFV Eystrup strain in the same clade with close proximity to border disease virus and Aydin strains. CSFV/IND/UK/LAL-290 exhibited the analogous genomic organization to those of all reference pestivirus strains. Based on sequence identity and phylogenetic analysis, the isolate showed close homology to Aydin/04-TR virus and distantly related to Bungowannah virus.

  4. Sodium phenylbutyrate abrogates African swine fever virus replication by disrupting the virus-induced hypoacetylation status of histone H3K9/K14.

    Science.gov (United States)

    Frouco, Gonçalo; Freitas, Ferdinando B; Martins, Carlos; Ferreira, Fernando

    2017-10-15

    African swine fever virus (ASFV) causes a highly lethal disease in swine for which neither a vaccine nor treatment are available. Recently, a new class of drugs that inhibit histone deacetylases enzymes (HDACs) has received an increasing interest as antiviral agents. Considering studies by others showing that valproic acid, an HDAC inhibitor (HDACi), blocks the replication of enveloped viruses and that ASFV regulates the epigenetic status of the host cell by promoting heterochromatinization and recruitment of class I HDACs to viral cytoplasmic factories, the antiviral activity of four HDACi against ASFV was evaluated in this study. Results showed that the sodium phenylbutyrate fully abrogates the ASFV replication, whereas the valproic acid leads to a significant reduction of viral progeny at 48h post-infection (-73.9%, p=0.046), as the two pan-HDAC inhibitors tested (Trichostatin A: -82.2%, p=0.043; Vorinostat: 73.9%, p=0.043). Further evaluation showed that protective effects of NaPB are dose-dependent, interfering with the expression of late viral genes and reversing the ASFV-induced histone H3 lysine 9 and 14 (H3K9K14) hypoacetylation status, compatible to an open chromatin state and possibly enabling the expression of host genes non-beneficial to infection progression. Additionally, a synergic antiviral effect was detected when NaPB is combined with an ASFV-topoisomerase II poison (Enrofloxacin). Altogether, our results strongly suggest that cellular HDACs are involved in the establishment of ASFV infection and emphasize that further in vivo studies are needed to better understand the antiviral activity of HDAC inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Infecção pelo vírus Influenza A (H1N1 de origem suína: como reconhecer, diagnosticar e prevenir How to prevent, recognize and diagnose infection with the swine-origin Influenza A (H1N1 virus in humans

    Directory of Open Access Journals (Sweden)

    Alcyone Artioli Machado

    2009-05-01

    Full Text Available Em março de 2009, houve o início de uma epidemia de gripe no México que, em pouco tempo, levou ao surgimento de casos semelhantes em outros países, alertando as autoridades sanitárias para o risco de uma pandemia. Neste artigo, descrevemos os principais sinais e sintomas da infecção pelo vírus Influenza A (H1N1 de origem suína, as medidas a serem tomadas para os casos suspeitos ou confirmados e como proceder em relação aos contactantes. Comentamos também quais drogas são utilizadas para o tratamento e profilaxia.In March of 2009, a flu epidemic began in Mexico. Shortly thereafter, similar cases appeared in other countries, alerting authorities to the risk of a pandemic. This article details the principal signs and symptoms of infection with the swine-origin Influenza A (H1N1 virus. In addition, the measures to be taken in suspected or confirmed cases are addressed, as are the procedures to follow in relation to contacts. Furthermore, the drugs used in the prophylaxis against and the treatment of infection with the H1N1 virus are described.

  6. Positive Selection in CD8+ T-Cell Epitopes of Influenza Virus Nucleoprotein Revealed by a Comparative Analysis of Human and Swine Viral Lineages.

    Science.gov (United States)

    Machkovech, Heather M; Bedford, Trevor; Suchard, Marc A; Bloom, Jesse D

    2015-11-01

    Numerous experimental studies have demonstrated that CD8(+) T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8(+) T cells. Here we use a novel computational approach to test for selection in CD8(+) T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8(+) T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8(+) T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8(+) T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint. There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8(+) T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal

  7. Transmission of classical swine fever virus depends on the clinical course of infection which is associated with high and low levels of virus excretion.

    Science.gov (United States)

    Weesendorp, Eefke; Backer, Jantien; Stegeman, Arjan; Loeffen, Willie

    2011-01-27

    Infection with moderately virulent strains of classical swine fever virus (CSFV) can lead to different courses of disease: either (sub)acute, resulting in death or recovery, or chronic disease. The virus excretion dynamics between these courses are quite dissimilar, but it is not known if this also results in differences in virus transmission. In this study, the excretion and transmission dynamics of the moderately virulent Paderborn strain were studied in 15 one-to-one experiments. In these experiments, a single inoculated pig was housed with a single susceptible contact pig from day 1 post-inoculation (p.i.). Each contact pig that became infected was removed and replaced by a new contact pig at day 17 p.i. and day 26 p.i. Infection of contact pigs was monitored by reverse transcription quantitative real-time PCR on oropharyngeal fluid samples. Five of the inoculated pigs developed the chronic form or died during the acute phase (high excreting pigs), while 10 pigs recovered from the infection (low excreting pigs). In the first contact period, there was no significant difference in virus excretion between the high and low excreting pigs, while in the second and third contact period, high excreting pigs excreted significantly higher quantities of virus. Over the entire study period, the reproduction ratio differed significantly between the high (143 [56.3-373]) and low excreting pigs (23.1 [11.5-45.0]). This indicates the importance of high excreting pigs in transmission of CSFV. Furthermore, this study showed the rate of CSFV infections from a contaminated environment. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. African swine fever virus is enveloped by a two-membraned collapsed cisterna derived from the endoplasmic reticulum.

    Science.gov (United States)

    Andrés, G; García-Escudero, R; Simón-Mateo, C; Viñuela, E

    1998-11-01

    During the cytoplasmic maturation of African swine fever virus (ASFV) within the viral factories, the DNA-containing core becomes wrapped by two shells, an inner lipid envelope and an outer icosahedral capsid. We have previously shown that the inner envelope is derived from precursor membrane-like structures on which the capsid layer is progressively assembled. In the present work, we analyzed the origin of these viral membranes and the mechanism of envelopment of ASFV. Electron microscopy studies on permeabilized infected cells revealed the presence of two tightly apposed membranes within the precursor membranous structures as well as polyhedral assembling particles. Both membranes could be detached after digestion of intracellular virions with proteinase K. Importantly, membrane loop structures were observed at the ends of open intermediates, which suggests that the inner envelope is derived from a membrane cisterna. Ultraestructural and immunocytochemical analyses showed a close association and even direct continuities between the endoplasmic reticulum (ER) and assembling virus particles at the bordering areas of the viral factories. Such interactions become evident with an ASFV recombinant that inducibly expresses the major capsid protein p72. In the absence of the inducer, viral morphogenesis was arrested at a stage at which partially and fully collapsed ER cisternae enwrapped the core material. Together, these results indicate that ASFV, like the poxviruses, becomes engulfed by a two-membraned collapsed cisterna derived from the ER.

  9. High Prevalence of Hepatitis E in Humans and Pigs and Evidence of Genotype-3 Virus in Swine, Madagascar

    Science.gov (United States)

    Temmam, Sarah; Besnard, Lydia; Andriamandimby, Soa Fy; Foray, Coralie; Rasamoelina-Andriamanivo, Harentsoaniaina; Héraud, Jean-Michel; Cardinale, Eric; Dellagi, Koussay; Pavio, Nicole; Pascalis, Hervé; Porphyre, Vincent

    2013-01-01

    Hepatitis E virus (HEV) causes an orofecal disease transmitted through poor hygiene environments, contaminated food (mainly pork products), or by contacts with infected animals. Very little data are currently available regarding the disease in the Southwestern Indian Ocean Islands. We report the first sero- and viro-survey for HEV in human and swine in Madagascar. A seroprevalence rate of 14.1% (60 of 427) was measured in slaughterhouse workers. Seroprevalence to HEV in pigs was estimated to 71.2% (178 of 250), strongly suggesting the existence of a zoonotic cycle. Three out of 250 pig livers (1.2%) tested HEV RNA-positive by quantitative polymerase chain reaction. Phylogenetic analyses based on 1-kb sequences of the ORF 2-3 identified these viruses as HEV genotype 3. Sequences clustered in a distinct Malagasy sub-clade, possibly representative of a new sub-genotype, for which the date of emergence was estimated around 1989. Further studies are needed to confirm other transmission routes of HEV to humans, especially through non-zoonotic cycles. PMID:23208879

  10. Chest Radiographic Findings of Novel Swine-Origin Influenza A (H1N1) Virus Infection in Children

    Energy Technology Data Exchange (ETDEWEB)

    Bae, So Young; Hong, Eun Sook; Paik, Sang Hyun; Park, Seong Jin; Cha, Jang Gyu; Lee, Hae Kyung [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Jang, Yun Woo [Dept. of Radiology, Soonchunhyang University Hospital, Seoul (Korea, Republic of)

    2011-06-15

    To analyze chest radiographic findings in children infected with laboratory confirmed novel swine-origin influenza A (H1N1) virus. Three hundred seventy-two out of 2,014 children with laboratory confirmed H1N1 infection and who also underwent a chest radiograph from September to November 2009 were enrolled in this study. Patients were divided into in-patients, out-patients, and patients with co-infections and further subdivided into with underlying disease and without underlying disease as well as age (<2 years old, 2-5 years, 5-10 years, 10-18 years old). The initial radiographs were evaluated for radiographic findings and the anatomic distribution of abnormalities. The initial radiographs were abnormal in 154 (41.39%) patients. The predominant radiographic findings were peribronchial wall opacity found in 85 (22.84%) patients and hyperinflation observed in 69 (18.54%) patients. Further, 75 (71.42%) patients exhibited central predominance and the right lower lung zone was also commonly involved. There were statistically significant differences in the radiological findings between in-patient and out-patient groups. However, there were no significant differences in the radiographic findings between in-patients and the co-infection group with respect the presence of underlying disease and age. Initial radiographs of children with laboratory confirmed H1N1 virus were abnormal in 41.39% of cases. The common radiographic findings included peribronchial opacities, hyperinflation, lower lung zonal distribution, and central predominance

  11. Chest Radiographic Findings of Novel Swine-Origin Influenza A (H1N1) Virus Infection in Children

    International Nuclear Information System (INIS)

    Bae, So Young; Hong, Eun Sook; Paik, Sang Hyun; Park, Seong Jin; Cha, Jang Gyu; Lee, Hae Kyung; Jang, Yun Woo

    2011-01-01

    To analyze chest radiographic findings in children infected with laboratory confirmed novel swine-origin influenza A (H1N1) virus. Three hundred seventy-two out of 2,014 children with laboratory confirmed H1N1 infection and who also underwent a chest radiograph from September to November 2009 were enrolled in this study. Patients were divided into in-patients, out-patients, and patients with co-infections and further subdivided into with underlying disease and without underlying disease as well as age (<2 years old, 2-5 years, 5-10 years, 10-18 years old). The initial radiographs were evaluated for radiographic findings and the anatomic distribution of abnormalities. The initial radiographs were abnormal in 154 (41.39%) patients. The predominant radiographic findings were peribronchial wall opacity found in 85 (22.84%) patients and hyperinflation observed in 69 (18.54%) patients. Further, 75 (71.42%) patients exhibited central predominance and the right lower lung zone was also commonly involved. There were statistically significant differences in the radiological findings between in-patient and out-patient groups. However, there were no significant differences in the radiographic findings between in-patients and the co-infection group with respect the presence of underlying disease and age. Initial radiographs of children with laboratory confirmed H1N1 virus were abnormal in 41.39% of cases. The common radiographic findings included peribronchial opacities, hyperinflation, lower lung zonal distribution, and central predominance

  12. First detection of African Swine Fever Virus in Ornithodoros porcinus in Madagascar and new insights into tick distribution and taxonomy.

    Science.gov (United States)

    Ravaomanana, Julie; Michaud, Vincent; Jori, Ferran; Andriatsimahavandy, Abel; Roger, François; Albina, Emmanuel; Vial, Laurence

    2010-11-30

    African Swine Fever Virus has devastated more than the half of the domestic pig population in Madagascar since its introduction, probably in 1997-1998. One of the hypotheses to explain its persistence on the island is its establishment in local Ornithodoros soft ticks, whose presence has been reported in the past from the north-western coast to the Central Highlands. The aim of the present study was to verify such hypothesis by conducting tick examinations in three distinct zones of pig production in Madagascar where African Swine Fever outbreaks have been regularly reported over the past decade and then to improve our knowledge on the tick distribution and taxonomy. Ornithodoros ticks were only found in one pig farm in the village of Mahitsy, north-west of Antananarivo in the Central Highlands, whereas the tick seemed to be absent from the two other study zones near Ambatondrazaka and Marovoay. Using 16SrDNA PCR amplification and sequencing, it was confirmed that the collected ticks belonged to the O. porcinus species and is closely related to the O. p. domesticus sub-species Walton, 1962. ASFV was detected in 7.14% (13/182) of the field ticks through the amplification of part of the viral VP72 gene, and their ability to maintain long-term infections was confirmed since all the ticks came from a pig building where no pigs or any other potential vertebrate hosts had been introduced for at least four years. Considering these results, O. porcinus is a reservoir for ASFV and most likely acts as vector for ASFV in Madagascar, but its apparent restricted distribution may limit its role in the epidemiology of the disease in domestic pigs.

  13. First detection of African Swine Fever Virus in Ornithodoros porcinus in Madagascar and new insights into tick distribution and taxonomy

    Directory of Open Access Journals (Sweden)

    Albina Emmanuel

    2010-11-01

    Full Text Available Abstract Background African Swine Fever Virus has devastated more than the half of the domestic pig population in Madagascar since its introduction, probably in 1997-1998. One of the hypotheses to explain its persistence on the island is its establishment in local Ornithodoros soft ticks, whose presence has been reported in the past from the north-western coast to the Central Highlands. The aim of the present study was to verify such hypothesis by conducting tick examinations in three distinct zones of pig production in Madagascar where African Swine Fever outbreaks have been regularly reported over the past decade and then to improve our knowledge on the tick distribution and taxonomy. Results Ornithodoros ticks were only found in one pig farm in the village of Mahitsy, north-west of Antananarivo in the Central Highlands, whereas the tick seemed to be absent from the two other study zones near Ambatondrazaka and Marovoay. Using 16SrDNA PCR amplification and sequencing, it was confirmed that the collected ticks belonged to the O. porcinus species and is closely related to the O. p. domesticus sub-species Walton, 1962. ASFV was detected in 7.14% (13/182 of the field ticks through the amplification of part of the viral VP72 gene, and their ability to maintain long-term infections was confirmed since all the ticks came from a pig building where no pigs or any other potential vertebrate hosts had been introduced for at least four years. Conclusions Considering these results, O. porcinus is a reservoir for ASFV and most likely acts as vector for ASFV in Madagascar, but its apparent restricted distribution may limit its role in the epidemiology of the disease in domestic pigs.

  14. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine.

    Science.gov (United States)

    Chen, Yang; Guo, Wanzhu; Xu, Zhiwen; Yan, Qigui; Luo, Yan; Shi, Qian; Chen, Dishi; Zhu, Ling; Wang, Xiaoyu

    2011-06-16

    Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  15. 2009 pandemic H1N1 influenza virus elicits similar clinical course but differential host transcriptional response in mouse, macaque, and swine infection models

    Science.gov (United States)

    2012-01-01

    Background The 2009 pandemic H1N1 influenza virus emerged in swine and quickly became a major global health threat. In mouse, non human primate, and swine infection models, the pH1N1 virus efficiently replicates in the lung and induces pro-inflammatory host responses; however, whether similar or different cellular pathways were impacted by pH1N1 virus across independent infection models remains to be further defined. To address this we have performed a comparative transcriptomic analysis of acute phase responses to a single pH1N1 influenza virus, A/California/04/2009 (CA04), in the lung of mice, macaques and swine. Results Despite similarities in the clinical course, we observed differences in inflammatory molecules elicited, and the kinetics of their gene expression changes across all three species. We found genes associated with the retinoid X receptor (RXR) signaling pathway known to control pro-inflammatory and metabolic processes that were differentially regulated during infection in each species, though the heterodimeric RXR partner, pathway associated signaling molecules, and gene expression patterns varied among the three species. Conclusions By comparing transcriptional changes in the context of clinical and virological measures, we identified differences in the host transcriptional response to pH1N1 virus across independent models of acute infection. Antiviral resistance and the emergence of new influenza viruses have placed more focus on developing drugs that target the immune system. Underlying overt clinical disease are molecular events that suggest therapeutic targets identified in one host may not be appropriate in another. PMID:23153050

  16. Pregnant Women Need a Flu Shot

    Science.gov (United States)

    Pregnant? You Need a Flu Shot! Information for pregnant women Because you are pregnant, CDC and your ob- ... more likely to get severely ill from flu. Pregnant women who get flu are at high risk of ...

  17. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    OpenAIRE

    Chen, Yang; Guo, Wanzhu; Xu, Zhiwen; Yan, Qigui; Luo, Yan; Shi, Qian; Chen, Dishi; Zhu, Ling; Wang, Xiaoyu

    2011-01-01

    Abstract Background Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and...

  18. Children, the Flu and the Flu Vaccine. Fact Sheet

    Science.gov (United States)

    Centers for Disease Control and Prevention, 2008

    2008-01-01

    Flu is more dangerous than the common cold for children. Each year, flu places a large burden on the health and well-being of children and families. Children commonly need medical care because of influenza, especially before they turn 5 years old. Each year an average of 20,000 children under the age of 5 are hospitalized because of influenza…

  19. Complete Genome Sequencing of Influenza A Viruses within Swine Farrow-to-Wean Farms Reveals the Emergence, Persistence, and Subsidence of Diverse Viral Genotypes.

    Science.gov (United States)

    Diaz, Andres; Marthaler, Douglas; Culhane, Marie; Sreevatsan, Srinand; Alkhamis, Moh; Torremorell, Montserrat

    2017-09-15

    Influenza A viruses (IAVs) are endemic in swine and represent a public health risk. However, there is limited information on the genetic diversity of swine IAVs within farrow-to-wean farms, which is where most pigs are born. In this longitudinal study, we sampled 5 farrow-to-wean farms for a year and collected 4,190 individual nasal swabs from three distinct pig subpopulations. Of these, 207 (4.9%) samples tested PCR positive for IAV, and 124 IAVs were isolated. We sequenced the complete genomes of 123 IAV isolates and found 31 H1N1, 26 H1N2, 63 H3N2, and 3 mixed IAVs. Based on the IAV hemagglutinin, seven different influenza A viral groups (VGs) were identified. Most of the remaining IAV gene segments allowed us to differentiate the same VGs, although an additional viral group was identified for gene segment 3 (PA). Moreover, the codetection of more than one IAV VG was documented at different levels (farm, subpopulation, and individual pigs), highlighting the environment for potential IAV reassortment. Additionally, 3 out of 5 farms contained IAV isolates ( n = 5) with gene segments from more than one VG, and 79% of all the IAVs sequenced contained a signature mutation (S31N) in the matrix gene that has been associated with resistance to the antiviral amantadine. Within farms, some IAVs were detected only once, while others were detected for 283 days. Our results illustrate the maintenance and subsidence of different IAVs within swine farrow-to-wean farms over time, demonstrating that pig subpopulation dynamics are important to better understand the diversity and epidemiology of swine IAVs. IMPORTANCE On a global scale, swine are one of the main reservoir species for influenza A viruses (IAVs) and play a key role in the transmission of IAVs between species. Additionally, the 2009 IAV pandemics highlighted the role of pigs in the emergence of IAVs with pandemic potential. However, limited information is available regarding the diversity and distribution of swine

  20. Detection of genotype 1 Porcine Reproductive and Respiratory Syndrome virus in swine, using one-step Real-Time PCR for the ORF7 gene

    Directory of Open Access Journals (Sweden)

    Mihaela Zaulet

    2014-10-01

    Full Text Available Porcine Reproductive and Respiratory Syndrome (PRRS is the most devastating and economically challenging disease to the swine industry worldwide due to reproductive failure. The main objective of the current study was to evaluate the sensitivity and accuracy of Real-Time RT-PCR method in the detection of PRRS virus and also estimation of the pathogen load in samples with clinical signs. The primers used for the detection of PRRS virus were represented by primers with a specific sequence for the ORF7 gene of the PRRS virus. More important, the primers attachment process was influenced by punctual mutations of the viral strand belonging to the ORF7 gene. 114 samples were tested to identify the presence of PRRS virus, genotype I and 14 of them were found to be positive, using OneStep PCR. Those samples were used to test the specificity of the TaqMan probe and robustness of Real-Time RT-PCR reaction. According to the results, only the samples which presented some specific punctual mutations (4 in total, all from one particular region of Romania at the genome level of ORF7, were positive, due to primer sequence specificity and complementarity. The Real-Time RT-PCR method has been increasingly adopted by swine producers and veterinarian laboratories as one of the most trustful techniques, combining rapidity, specificity and efficiency for detecting and monitoring the spread of PRRS virus.

  1. Immune Evasion During Foot-and-Mouth Disease Virus (FMDV) Infection of Swine

    Science.gov (United States)

    The interface between successful pathogens and their hosts is often a tenuous balance. In acute viral infections, this involves induction and inhibition of innate responses. Foot-and-mouth disease virus (FMDV) is considered one of the most contagious viruses known and is characterized by rapid induc...

  2. Investigation of Pathogenesis of H1N1 Influenza Virus and Swine Streptococcus suis Serotype 2 Co-Infection in Pigs by Microarray Analysis.

    Directory of Open Access Journals (Sweden)

    Xian Lin

    Full Text Available Swine influenza virus and Streptococcus suis are two important contributors to the porcine respiratory disease complex, and both have significant economic impacts. Clinically, influenza virus and Streptococcus suis co-infections in pigs are very common, which often contribute to severe pneumonia and can increase the mortality. However, the co-infection pathogenesis in pigs is unclear. In the present study, co-infection experiments were performed using swine H1N1 influenza virus and Streptococcus suis serotype 2 (SS2. The H1N1-SS2 co-infected pigs exhibited more severe clinical symptoms, serious pathological changes, and robust apoptosis of lungs at 6 days post-infection compared with separate H1N1 and SS2 infections. A comprehensive gene expression profiling using a microarray approach was performed to investigate the global host responses of swine lungs against the swine H1N1 infection, SS2 infection, co-infection, and phosphate-buffered saline control. Results showed 457, 411, and 844 differentially expressed genes in the H1N1, SS2, and H1N1-SS2 groups, respectively, compared with the control. Noticeably, genes associated with the immune, inflammatory, and apoptosis responses were highly overexpressed in the co-infected group. Pathway analysis indicated that the cytokine-cytokine receptor interactions, MAPK, toll-like receptor, complement and coagulation cascades, antigen processing and presentation, and apoptosis pathway were significantly regulated in the co-infected group. However, the genes related to these were less regulated in the separate H1N1 and SS2 infection groups. This observation suggested that a certain level of synergy was induced by H1N1 and SS2 co-infection with significantly stronger inflammatory and apoptosis responses, which may lead to more serious respiratory disease syndrome and pulmonary pathological lesion.

  3. Investigation of Pathogenesis of H1N1 Influenza Virus and Swine Streptococcus suis Serotype 2 Co-Infection in Pigs by Microarray Analysis.

    Science.gov (United States)

    Lin, Xian; Huang, Canhui; Shi, Jian; Wang, Ruifang; Sun, Xin; Liu, Xiaokun; Zhao, Lianzhong; Jin, Meilin

    2015-01-01

    Swine influenza virus and Streptococcus suis are two important contributors to the porcine respiratory disease complex, and both have significant economic impacts. Clinically, influenza virus and Streptococcus suis co-infections in pigs are very common, which often contribute to severe pneumonia and can increase the mortality. However, the co-infection pathogenesis in pigs is unclear. In the present study, co-infection experiments were performed using swine H1N1 influenza virus and Streptococcus suis serotype 2 (SS2). The H1N1-SS2 co-infected pigs exhibited more severe clinical symptoms, serious pathological changes, and robust apoptosis of lungs at 6 days post-infection compared with separate H1N1 and SS2 infections. A comprehensive gene expression profiling using a microarray approach was performed to investigate the global host responses of swine lungs against the swine H1N1 infection, SS2 infection, co-infection, and phosphate-buffered saline control. Results showed 457, 411, and 844 differentially expressed genes in the H1N1, SS2, and H1N1-SS2 groups, respectively, compared with the control. Noticeably, genes associated with the immune, inflammatory, and apoptosis responses were highly overexpressed in the co-infected group. Pathway analysis indicated that the cytokine-cytokine receptor interactions, MAPK, toll-like receptor, complement and coagulation cascades, antigen processing and presentation, and apoptosis pathway were significantly regulated in the co-infected group. However, the genes related to these were less regulated in the separate H1N1 and SS2 infection groups. This observation suggested that a certain level of synergy was induced by H1N1 and SS2 co-infection with significantly stronger inflammatory and apoptosis responses, which may lead to more serious respiratory disease syndrome and pulmonary pathological lesion.

  4. Investigation of Pathogenesis of H1N1 Influenza Virus and Swine Streptococcus suis Serotype 2 Co-Infection in Pigs by Microarray Analysis

    Science.gov (United States)

    Shi, Jian; Wang, Ruifang; Sun, Xin; Liu, Xiaokun; Zhao, Lianzhong; Jin, Meilin

    2015-01-01

    Swine influenza virus and Streptococcus suis are two important contributors to the porcine respiratory disease complex, and both have significant economic impacts. Clinically, influenza virus and Streptococcus suis co-infections in pigs are very common, which often contribute to severe pneumonia and can increase the mortality. However, the co-infection pathogenesis in pigs is unclear. In the present study, co-infection experiments were performed using swine H1N1 influenza virus and Streptococcus suis serotype 2 (SS2). The H1N1-SS2 co-infected pigs exhibited more severe clinical symptoms, serious pathological changes, and robust apoptosis of lungs at 6 days post-infection compared with separate H1N1 and SS2 infections. A comprehensive gene expression profiling using a microarray approach was performed to investigate the global host responses of swine lungs against the swine H1N1 infection, SS2 infection, co-infection, and phosphate-buffered saline control. Results showed 457, 411, and 844 differentially expressed genes in the H1N1, SS2, and H1N1-SS2 groups, respectively, compared with the control. Noticeably, genes associated with the immune, inflammatory, and apoptosis responses were highly overexpressed in the co-infected group. Pathway analysis indicated that the cytokine–cytokine receptor interactions, MAPK, toll-like receptor, complement and coagulation cascades, antigen processing and presentation, and apoptosis pathway were significantly regulated in the co-infected group. However, the genes related to these were less regulated in the separate H1N1 and SS2 infection groups. This observation suggested that a certain level of synergy was induced by H1N1 and SS2 co-infection with significantly stronger inflammatory and apoptosis responses, which may lead to more serious respiratory disease syndrome and pulmonary pathological lesion. PMID:25906258

  5. Co-infection of classic swine H1N1 influenza virus in pigs persistently infected with porcine rubulavirus.

    Science.gov (United States)

    Rivera-Benitez, José Francisco; De la Luz-Armendáriz, Jazmín; Saavedra-Montañez, Manuel; Jasso-Escutia, Miguel Ángel; Sánchez-Betancourt, Ivan; Pérez-Torres, Armando; Reyes-Leyva, Julio; Hernández, Jesús; Martínez-Lara, Atalo; Ramírez-Mendoza, Humberto

    2016-02-29

    Porcine rubulavirus (PorPV) and swine influenza virus infection causes respiratory disease in pigs. PorPV persistent infection could facilitate the establishment of secondary infections. The aim of this study was to analyse the pathogenicity of classic swine H1N1 influenza virus (swH1N1) in growing pigs persistently infected with porcine rubulavirus. Conventional six-week-old pigs were intranasally inoculated with PorPV, swH1N1, or PorPV/swH1N1. A mock-infected group was included. The co-infection with swH1N1 was at 44 days post-infection (DPI), right after clinical signs of PorPV infection had stopped. The pigs of the co-infection group presented an increase of clinical signs compared to the simple infection groups. In all infected groups, the most recurrent lung lesion was hyperplasia of the bronchiolar-associated lymphoid tissue and interstitial pneumonia. By means of immunohistochemical evaluation it was possible to demonstrate the presence of the two viral agents infecting simultaneously the bronchiolar epithelium. Viral excretion of PorPV in nasal and oral fluid was recorded at 28 and 52 DPI, respectively. PorPV persisted in several samples from respiratory tissues (RT), secondary lymphoid organs (SLO), and bronchoalveolar lavage fluid (BALF). For swH1N1, the viral excretion in nasal fluids was significantly higher in single-infected swH1N1 pigs than in the co-infected group. However, the co-infection group exhibited an increase in the presence of swH1N1 in RT, SLO, and BALF at two days after co-infection. In conclusion, the results obtained confirm an increase in the clinical signs of infection, and PorPV was observed to impact the spread of swH1N1 in analysed tissues in the early stage of co-infection, although viral shedding was not enhanced. In the present study, the interaction of swH1N1 infection is demonstrated in pigs persistently infected with PorPV. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Pigs immunized with a novel E2 subunit vaccine are protected from subgenotype heterologous classical swine fever virus challenge.

    Science.gov (United States)

    Madera, Rachel; Gong, Wenjie; Wang, Lihua; Burakova, Yulia; Lleellish, Karen; Galliher-Beckley, Amy; Nietfeld, Jerome; Henningson, Jamie; Jia, Kaimin; Li, Ping; Bai, Jianfa; Schlup, John; McVey, Scott; Tu, Changchun; Shi, Jishu

    2016-09-09

    Classical swine fever (CSF) or hog cholera is a highly contagious swine viral disease. CSF endemic countries have to use routine vaccination with modified live virus (MLV) vaccines to prevent and control CSF. However, it is impossible to serologically differentiate MLV vaccinated pigs from those infected with CSF virus (CSFV). The aim of this study is to develop a one-dose E2-subunit vaccine that can provide protection against CSFV challenge. We hypothesize that a vaccine consisting of a suitable adjuvant and recombinant E2 with natural conformation may induce a similar level of protection as the MLV vaccine. Our experimental vaccine KNB-E2 was formulated with the recombinant E2 protein (Genotype 1.1) expressed by insect cells and an oil-in-water emulsion based adjuvant. 10 pigs (3 weeks old, 5 pigs/group) were immunized intramuscularly with one dose or two doses (3 weeks apart) KNB-E2, and 10 more control pigs were administered normal saline solution only. Two weeks after the second vaccination, all KNB-E2 vaccinated pigs and 5 control pigs were challenged with 5 × 10(5) TCID50 CSFV Honduras/1997 (Genotype 1.3, 1 ml intramuscular, 1 ml intranasal). It was found that while control pigs infected with CSFV stopped growing and developed high fever (>40 °C), high level CSFV load in blood and nasal fluid, and severe leukopenia 3-14 days post challenge, all KNB-E2 vaccinated pigs continued to grow as control pigs without CSFV exposure, did not show any fever, had low or undetectable level of CSFV in blood and nasal fluid. At the time of CSFV challenge, only pigs immunized with KNB-E2 developed high levels of E2-specific antibodies and anti-CSFV neutralizing antibodies. Our studies provide direct evidence that pigs immunized with one dose KNB-E2 can be protected clinically from CSFV challenge. This protection is likely mediated by high levels of E2-specific and anti-CSFV neutralizing antibodies.

  7. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    Science.gov (United States)

    2011-01-01

    Background Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Results Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. Conclusions In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection. PMID:21679423

  8. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    Directory of Open Access Journals (Sweden)

    Chen Dishi

    2011-06-01

    Full Text Available Abstract Background Porcine parvovirus (PPV VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs with similar morphology to the native capsid. Here, a pseudorabies virus (PRV system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Results Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28 following virulent PPV challenge compared with the control (7 of 31. Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. Conclusions In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  9. Strain-dependent effects of PB1-F2 of triple-reassortant H3N2 influenza viruses in swine.

    Science.gov (United States)

    Pena, Lindomar; Vincent, Amy L; Loving, Crystal L; Henningson, Jamie N; Lager, Kelly M; Li, Weizhong; Perez, Daniel R

    2012-10-01

    The PB1-F2 protein of the influenza A viruses (IAVs) can act as a virulence factor in mice. Its contribution to the virulence of IAV in swine, however, remains largely unexplored. In this study, we chose two genetically related H3N2 triple-reassortant IAVs to assess the impact of PB1-F2 in virus replication and virulence in pigs. Using reverse genetics, we disrupted the PB1-F2 ORF of A/swine/Wisconsin/14094/99 (H3N2) (Sw/99) and A/turkey/Ohio/313053/04 (H3N2) (Ty/04). Removing the PB1-F2 ORF led to increased expression of PB1-N40 in a strain-dependent manner. Ablation of the PB1-F2 ORF (or incorporation of the N66S mutation in the PB1-F2 ORF, Sw/99 N66S) affected the replication in porcine alveolar macrophages of only the Sw/99 KO (PB1-F2 knockout) and Sw/99 N66S variants. The Ty/04 KO strain showed decreased virus replication in swine respiratory explants, whereas no such effect was observed in Sw/99 KO, compared with the wild-type (WT) counterparts. In pigs, PB1-F2 did not affect virus shedding or viral load in the lungs for any of these strains. Upon necropsy, PB1-F2 had no effect on the lung pathology caused by Sw/99 variants. Interestingly, the Ty/04 KO-infected pigs showed significantly increased lung pathology at 3 days post-infection compared with pigs infected with the Ty/04 WT strain. In addition, the pulmonary levels of interleukin (IL)-6, IL-8 and gamma interferon were regulated differentially by the expression of PB1-F2. Taken together, these results indicate that PB1-F2 modulates virus replication, virulence and innate immune responses in pigs in a strain-dependent fashion.

  10. Third generation DIVA vaccine towards classical swine fever virus. Efficacy in face of maternal immunity

    DEFF Research Database (Denmark)

    Rangelova, Desislava Yordanova

    a new DIVA vaccine candidate. The vaccine candidate “CP7E2alf” is intended for either intramuscular vaccination of domestic pig or for bait vaccination of wild boar. In this thesis as part of the clinical testing of the injection vaccine the efficacy of “CP7E2alf” was evaluated in young piglets...... that were positive for maternally derived antibodies (MDA). These antibodies were obtained with colostrum from their mothers vaccinated with traditional live attenuated vaccine C-strain (Riems). The promising results concerning the safety and the efficacy of the candidate DIVA vaccine showed new......General purpose and objectives Classical swine fever (CSF) is a highly contagious disease that causes huge economical losses and animal welfare concerns worldwide. Generally, vaccination is an effective and safe method to control the disease. Following vaccination the pig’s immune system develops...

  11. Experimental inoculation study indicates swine as a potential host for Hendra virus

    Science.gov (United States)

    Li, Mingyi; Embury-Hyatt, Carissa; Weingartl, Hana M.

    2010-01-01

    Hendra virus (HeV) is a zoonotic virus from the family Paramyxoviridae causing fatal disease in humans and horses. Five-week-old Landrace pigs and 5-month-old Gottingen minipigs were inoculated with approximately 107 plaque forming units per animal. In addition to fever and depression exhibited in all infected pigs, one of the two Landrace pigs developed respiratory signs at 5 days post-inoculation (dpi) and one of the Gottingen minipigs developed respiratory signs at 5 dpi and mild neurological signs at 7 dpi. Virus was detected in all infected pigs at 2–5 dpi from oral, nasal, and rectal swabs and at 3–5 dpi from ocular swabs by real-time RT-PCR targeting the HeV M gene. Virus titers in nasal swab samples were as high as 104.6 TCID50/mL. The viral RNA was mainly distributed in tissues from respiratory and lymphoid systems at an early stage of infection and the presence of virus was confirmed by virus isolation. Pathological changes and immunohistochemical staining for viral antigen were consistent with the tissue distribution of the virus. This new finding indicates that pigs are susceptible to HeV infections and could potentially play a role as an intermediate host in transmission to humans. PMID:20167195

  12. Influenza Virus Coinfection with Bordetella bronchiseptica Enhances Bacterial Colonization and Host Responses Exacerbating Pulmonary Lesions

    Science.gov (United States)

    Influenza virus (Flu) infection and secondary complications are a leading cause of morbidity and mortality worldwide. The increasing number of annual Flu cases, coupled with the recent Flu pandemic, has amplified concerns about the impact of Flu on human and animal health. Similar to humans, Flu i...

  13. Novel poly-uridine insertion in the 3'UTR and E2 amino acid substitutions in a low virulent classical swine fever virus.

    Science.gov (United States)

    Coronado, Liani; Liniger, Matthias; Muñoz-González, Sara; Postel, Alexander; Pérez, Lester Josue; Pérez-Simó, Marta; Perera, Carmen Laura; Frías-Lepoureau, Maria Teresa; Rosell, Rosa; Grundhoff, Adam; Indenbirken, Daniela; Alawi, Malik; Fischer, Nicole; Becher, Paul; Ruggli, Nicolas; Ganges, Llilianne

    2017-03-01

    In this study, we compared the virulence in weaner pigs of the Pinar del Rio isolate and the virulent Margarita strain. The latter caused the Cuban classical swine fever (CSF) outbreak of 1993. Our results showed that the Pinar del Rio virus isolated during an endemic phase is clearly of low virulence. We analysed the complete nucleotide sequence of the Pinar del Rio virus isolated after persistence in newborn piglets, as well as the genome sequence of the inoculum. The consensus genome sequence of the Pinar del Rio virus remained completely unchanged after 28days of persistent infection in swine. More importantly, a unique poly-uridine tract was discovered in the 3'UTR of the Pinar del Rio virus, which was not found in the Margarita virus or any other known CSFV sequences. Based on RNA secondary structure prediction, the poly-uridine tract results in a long single-stranded intervening sequence (SS) between the stem-loops I and II of the 3'UTR, without major changes in the stem- loop structures when compared to the Margarita virus. The possible implications of this novel insertion on persistence and attenuation remain to be investigated. In addition, comparison of the amino acid sequence of the viral proteins E rns , E1, E2 and p7 of the Margarita and Pinar del Rio viruses showed that all non-conservative amino acid substitutions acquired by the Pinar del Rio isolate clustered in E2, with two of them being located within the B/C domain. Immunisation and cross-neutralisation experiments in pigs and rabbits suggest differences between these two viruses, which may be attributable to the amino acid differences observed in E2. Altogether, these data provide fresh insights into viral molecular features which might be associated with the attenuation and adaptation of CSFV for persistence in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Inhibition of IL-2R and SLA class II expression on stimulated lymphocytes by a suppressor activity found in homogenates of African swine fever virus infected cultures.

    Science.gov (United States)

    Canals, A; Domínquez, J; Tomillo, J; Babín, M; Alonso, F

    1995-01-01

    Virus free supernatants (VFS) obtained by ultracentrifugation of homogenates of African swine fever (ASF) virus infected cultures inhibited the proliferative response and the expression in peripheral blood mononuclear cells of two activation molecules, the IL-2 receptor (IL-2R) and the swine MHC class II antigens (SLA II), induced by several stimuli (lectins, PMA plus the calcium ionophore A23187 or specific antigen). This inhibition was time dependent: no effect was seen on IL-2R expression when VFS was added after 48 h, when the expression of this molecule reached its maximum. However at this time the proliferative response was still inhibited. The presence of VFS in the cultures was necessary to inhibit both the IL-2R expression and the proliferation of cells. In these conditions the addition of exogenous IL-2 to the cultures failed to restore the IL-2R expression and the proliferation shown by control stimulated cells. Furthermore, the IL-2 activity found in supernatants from cell cultures stimulated with Con A in the presence of VFS was even higher than in cultures stimulated without VFS. The inhibition observed suggests an important impairment of host immunocompetence in ASF infected swine.

  15. Early pathogenesis of classical swine fever virus (CSFV) strains in Danish pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Nielsen, Jens; Uttenthal, Åse

    2012-01-01

    between strains, however, lymphoid atrophy and growth retardation represented a consistent finding for all 4 strains. Virus distribution, viral load and in particular virus persistence differed, but supported present practice that recommends lymphoid tissue, most optimal tonsil and lymph nodes, as target...... material to be applied for early laboratory diagnosis. The present study demonstrated constraints associated with early detection of infections with CSFV strains of low virulence. Since neither clinical symptoms nor pathological lesions observed with these strains constituted characteristic signs of CSF...

  16. U.S. and International Responses to the Global Spread of Avian Flu: Issues for Congress

    National Research Council Canada - National Science Library

    Salaam-Blyther, Tiaji

    2006-01-01

    .... In February 2006, the virus spread from Asia and central Europe to western Europe. By March 2006, health experts had confirmed new bird flu cases among more than 20 countries across Europe, Asia, and Africa...

  17. A study of lymphoid organs and serum proinflammatory cytokines in pigs infected with African swine fever virus genotype II.

    Science.gov (United States)

    Zakaryan, Hovakim; Cholakyans, Victorya; Simonyan, Lusine; Misakyan, Alla; Karalova, Elena; Chavushyan, Andranik; Karalyan, Zaven

    2015-06-01

    African swine fever virus (ASFV), the causative agent of one of the most important viral diseases of domestic pigs for which no vaccine is available, causes immune system disorders in infected animals. In this study, the serum levels of proinflammatory cytokines, as well as the histological and cellular constitution of lymphoid organs of pigs infected with ASFV genotype II were investigated. The results showed a high degree of lymphocyte depletion in the lymphoid organs, particularly in the spleen and lymph nodes, where ASFV infection led to a twofold decrease in the number of lymphocytes on the final day of infection. Additionally, ASFV-infected pigs had atypical forms of lymphocytes found in all lymphoid organs. In contrast to lymphocytes, the number of immature immune cells, particularly myelocytes, increased dramatically and reached a maximum on day 7 postinfection. The serum levels of TNF-α, IL-1β, IL-6, and IL-8 were evaluated. Proinflammatory cytokines showed increased levels after ASFV infection, with peak values at 7 days postinfection, and this highlights their role in the pathogenesis of ASFV. In conclusion, this study showed that ASFV genotype II, like other highly virulent strains, causes severe pathological changes in the immune system of pigs.

  18. HuR binding to AU-rich elements present in the 3' untranslated region of Classical swine fever virus

    Directory of Open Access Journals (Sweden)

    Huang Chin-Cheng

    2011-07-01

    Full Text Available Abstract Background Classical swine fever virus (CSFV is the member of the genus Pestivirus under the family Flaviviridae. The 5' untranslated region (UTR of CSFV contains the IRES, which is a highly structured element that recruits the translation machinery. The 3' UTR is usually the recognition site of the viral replicase to initiate minus-strand RNA synthesis. Adenosine-uridine rich elements (ARE are instability determinants present in the 3' UTR of short-lived mRNAs. However, the presence of AREs in the 3' UTR of CSFV conserved in all known strains has never been reported. This study inspects a possible role of the ARE in the 3' UTR of CSFV. Results Using RNA pull-down and LC/MS/MS assays, this study identified at least 32 possible host factors derived from the cytoplasmic extracts of PK-15 cells that bind to the CSFV 3' UTR, one of which is HuR. HuR is known to bind the AREs and protect the mRNA from degradation. Using recombinant GST-HuR, this study demonstrates that HuR binds to the ARE present in the 3' UTR of CSFV in vitro and that the binding ability is conserved in strains irrespective of virulence. Conclusions This study identified one of the CSFV 3' UTR binding proteins HuR is specifically binding to in the ARE region.

  19. Acute phase protein response during subclinical infection of pigs with H1N1 swine influenza virus.

    Science.gov (United States)

    Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona; Pejsak, Zygmunt

    2012-10-12

    In the present study acute phase proteins (APPs) responses in pigs after subclinical infection with H1N1 swine influenza virus (SwH1N1) were evaluated. Fourteen 5 weeks old, seronegative piglets, both sexes were used. Ten of them were infected intranasally with SwH1N1. C-reactive protein (CRP), haptoglobin (Hp), serum amyloid A (SAA) and pig major acute phase protein (Pig-MAP) concentrations in serum were measured using commercial ELISAs. No significant clinical signs were observed in any of the infected pigs, however, all infected animals developed specific antibodies against SwH1N1 and viral shedding was observed from 2 to 5 dpi. Only concentrations of Hp and SAA were significantly induced after infection, with mean maximum levels from days 1 to 2 post infection (dpi). The concentrations of CRP and Pig-MAP remained generally unchanged, however in half of infected pigs the concentration of CRP tended to increase at 1 dpi (but without statistical significance). The results of our study confirmed that monitoring of APPs may be useful for detection of subclinically infected pigs. The use of SAA or Hp and Pig-MAP may be a valuable in combination [i.e. Hp (increased concentration) and Pig-MAP (unchanged concentration)] to detect subclinically SIV infected pigs, or to identify pigs actually producing a large amount of virus. Additional studies need to be done in order to confirm these findings. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Introduction of a Novel Swine-Origin Influenza A (H1N1 Virus into Milwaukee, Wisconsin in 2009

    Directory of Open Access Journals (Sweden)

    Swati Kumar

    2009-06-01

    Full Text Available On 17 April 2009, novel swine origin influenza A virus (S-OIV cases appeared within the United States. Most influenza A diagnostic assays currently utilized in local clinical laboratories do not allow definitive subtype determination. Detailed subtype analysis of influenza A positive samples in our laboratory allowed early confirmation of a large outbreak of S-OIV in southeastern Wisconsin (SEW. The initial case of S-OIV in SEW was detected on 28 April 2009. All influenza A samples obtained during the 16 week period prior to 28 April 2009, and the first four weeks of the subsequent epidemic were sub typed. Four different multiplex assays were employed, utilizing real time PCR and end point PCR to fully subtype human and animal influenza viral components. Specific detection of S-OIV was developed within days. Data regarding patient demographics and other concurrently circulating viruses were analyzed. During the first four weeks of the epidemic, 679 of 3726 (18.2% adults and children tested for influenza A were identified with S-OIV infection. Thirteen patients (0.34% tested positive for seasonal human subtypes of influenza A during the first two weeks and none in the subsequent 2 weeks of the epidemic. Parainfluenza viruses were the most prevalent seasonal viral agents circulating during the epidemic (of those tested, with detection rates of 12% followed by influenza B and RSV at 1.9% and 0.9% respectively. S-OIV was confirmed on day 2 of instituting subtype testing and within 4 days of report of national cases of S-OIV. Novel surge capacity diagnostic infrastructure exists in many specialty and research laboratories around the world. The capacity for broader influenza A sub typing at the local laboratory level allows timely and accurate detection of novel strains as they emerge in the community, despite the presence of other circulating viruses producing identical illness. This is likely to become increasingly important given the need for

  1. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response

    Directory of Open Access Journals (Sweden)

    Wei Jian-Chao

    2011-07-01

    Full Text Available Abstract Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV. Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865 and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716, were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine than that of mono-epitope peptide(rE2-a or rE2-b. Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.

  2. SERO SURVEI DAN ANALISA PENGETAHUAN SIKAP PENJAMAH UNGGAS TERHADAP PENYAKIT FLU BURUNG DI INDONESIA TAHUN 2008

    Directory of Open Access Journals (Sweden)

    Noer Endah Pracoyo

    2013-02-01

    Full Text Available Abstract The bird flu in Indonesia actually is Avian Influenza Virus H5N1 type. Is known bird flu virus in Humans occur if direct contact with infected poultry or through contact with environmental enclosure, and the carcasses of infected poultry products. The absence of the data if the handlers of poultry in the cases of bird flu virus has been exposed to the research conducted sero survey of bird flu antibody titers in handlers poultry  attitudes and knowledge of poultry against bird flu incident. The research objective measure antibodies against respondents tirer AI H5N1 virus, assess knowledge and attitudes against bird flu handlers through the interview. The study design was cross sectional. Handlers of poultry population in the region is ever going Extraordinary Cases of bird flu. Samples were responders/poultry handlers venous blood taken for H5N1 antibody titer by Ellisa, H5N1 conducted interviews using a questionnaire. The study used the respondents informed consent agreement. Research time in February to November 2007 in the island of Java. The number of samples of 80 samples of respondents. The results obtained are not found of H5N1 avian influenza antibody titer in responders. The results of the interview most of the handlers to wash Their hands after doing Their job (82.1%. A total of 52.9% residential handlers is more than a mile from where the management of poultry, (69% lived outside market handlers/Abattoir of poultry.Handler to act entered correctly (53.3%% and almost all handlers (97% would bring the patient/patient ill with signs of bird flu infection to health facilities. Keywords: poultry handlers, bird flu virus, knowledge and attitudes of poultry handlers Abstrak Yang dimaksud Flu burung di Indonesia sebetulnya adalah Virus Avian Influenza dengan tipe H5N1. Selama ini diketahui penularan virus flu burung pada manusia terjadi jika kontak langsung dengan unggas yang terinfeksi atau melalui kontak dengan lingkungan kandang

  3. Inhibition of influenza A virus replication by influenza B virus nucleoprotein: an insight into interference between influenza A and B viruses.

    Science.gov (United States)

    Wanitchang, Asawin; Narkpuk, Jaraspim; Jaru-ampornpan, Peera; Jengarn, Juggagarn; Jongkaewwattana, Anan

    2012-10-10

    Given that co-infection of cells with equivalent titers of influenza A and B viruses (FluA and FluB) has been shown to result in suppression of FluA growth, it is possible that FluB-specific proteins might hinder FluA polymerase activity and replication. We addressed this possibility by individually determining the effect of each gene of FluB on the FluA polymerase assay and found that the nucleoprotein of FluB (NP(FluB)) inhibits polymerase activity of FluA in a dose-dependent manner. Mutational analyses of NP(FluB) suggest that functional NP(FluB) is necessary for this inhibition. Slower growth of FluA was also observed in MDCK cells stably expressing NP(FluB). Further analysis of NP(FluB) indicated that it does not affect nuclear import of NP(FluA). Taken together, these findings suggest a novel role of NP(FluB) in inhibiting replication of FluA, providing more insights into the mechanism of interference between FluA and FluB and the lack of reassortants between them. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Comprehensive phylogenetic reconstructions of African swine fever virus: proposal for a new classification and molecular dating of the virus.

    Science.gov (United States)

    Michaud, Vincent; Randriamparany, Tantely; Albina, Emmanuel

    2013-01-01

    African swine fever (ASF) is a highly lethal disease of domestic pigs caused by the only known DNA arbovirus. It was first described in Kenya in 1921 and since then many isolates have been collected worldwide. However, although several phylogenetic studies have been carried out to understand the relationships between the isolates, no molecular dating analyses have been achieved so far. In this paper, comprehensive phylogenetic reconstructions were made using newly generated, publicly available sequences of hundreds of ASFV isolates from the past 70 years. Analyses focused on B646L, CP204L, and E183L genes from 356, 251, and 123 isolates, respectively. Phylogenetic analyses were achieved using maximum likelihood and Bayesian coalescence methods. A new lineage-based nomenclature is proposed to designate 35 different clusters. In addition, dating of ASFV origin was carried out from the molecular data sets. To avoid bias, diversity due to positive selection or recombination events was neutralized. The molecular clock analyses revealed that ASFV strains currently circulating have evolved over 300 years, with a time to the most recent common ancestor (TMRCA) in the early 18(th) century.

  5. Signifiance of Arginine 20 in the 2A protease for swine vesicular disease virus pathogenicity

    DEFF Research Database (Denmark)

    Inoue, Toru; Zhang, Zhidong; Wang, Leyuan

    2007-01-01

    of the 2A protease is particularly significant. Inoculation of pigs with mutant viruses containing single amino acid substitutions at this residue leads to the appearance of revertants, often containing an arginine at this position encoded by an AGA codon, one of six codons for this residue. The properties...

  6. swine fever virus (asfv) from natural infection in a nigerian baby

    African Journals Online (AJOL)

    A single, discrete and specific band of expected size (278bp) when measured against 200bp (base pair) DNA molecular ... er al., 2000), The virus multiplies in the cytoplasm of the infected cells. In“ nature ... The ASFV genome comprised of a linear double stranded DNA molecule which are covalently closed at both ends by ...

  7. Polymorphisms in the hemagglutinin gene influenced the viral shedding of pandemic 2009 influenza virus in swine

    Science.gov (United States)

    The contribution of influenza virus quasi-species for transmission efficiency and replication is poorly understood. In the present study we show that naturally occurring polymorphisms present in the hemagglutinin (HA) gene of two 2009 pandemic H1N1 isolates, A/California/04/2009 (Ca/09) and A/Mexico...

  8. Homologous challenge of porcine reproductive and respiratory syndrome virus immunity in pregnant swine.

    Science.gov (United States)

    Lager, K M; Mengeling, W L; Brockmeier, S L

    1997-11-01

    The clinical consequences of single or multiple exposure of pregnant gilts to porcine reproductive and respiratory syndrome virus (PRRSV) at various stages of gestation were determined. Thirty-three pregnant gilts were allotted to 6 experimental groups (5 to 7 gilts/group). Gilts of groups 1 to 5 were exposed to strain NADC-8 of PRRSV at the following times: group 1, gestation day (GD) 1; group 2, GDs 1 and 90; group 3, GD 30; group 4, GDs 30 and 90; group 5, GD 90. Virus exposure was by either intrauterine (GD 1) or oronasal (GDs 30 and 90) inoculation. Gilts of group 6 were kept as nonexposed controls. Gilts were either necropsied on or about GD 111 (groups 1 to 5) or were allowed to farrow (group 6). The detection of PRRSV in serum of fetuses and piglets (within 12 hof birth) was considered evidence of transplacental infection. Transplacental infection and virus-induced death were and were not confirmed for groups 3, 4, and 5 and for groups 1, 2, and 6, respectively. Collectively, the results indicated that intrauterine exposure to PRRSV at GD 1 was without clinical effect (groups 1 and 2) and provided protection against subsequent exposure to the same strain of virus at GD 90 (group 2). The highest incidence of transplacental infection and fetal death followed a single exposure to PRRSV at GD 90 (group 5).

  9. A Single-Amino-Acid Substitution at Position 225 in Hemagglutinin Alters the Transmissibility of Eurasian Avian-Like H1N1 Swine Influenza Virus in Guinea Pigs.

    Science.gov (United States)

    Wang, Zeng; Yang, Huanliang; Chen, Yan; Tao, Shiyu; Liu, Liling; Kong, Huihui; Ma, Shujie; Meng, Fei; Suzuki, Yasuo; Qiao, Chuanling; Chen, Hualan

    2017-11-01

    Efficient transmission from human to human is the prerequisite for an influenza virus to cause a pandemic; however, the molecular determinants of influenza virus transmission are still largely unknown. In this study, we explored the molecular basis for transmission of Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses by comparing two viruses that are genetically similar but differ in their transmissibility in guinea pigs: the A/swine/Guangxi/18/2011 virus (GX/18) is highly transmissible by respiratory droplet in guinea pigs, whereas the A/swine/Heilongjiang/27/2012 virus (HLJ/27) does not transmit in this animal model. We used reverse genetics to generate a series of reassortants and mutants in the GX/18 background and tested their transmissibility in guinea pigs. We found that a single-amino-acid substitution of glycine (G) for glutamic acid (E) at position 225 (E225G) in the HA1 protein completely abolished the respiratory droplet transmission of GX/18, whereas the substitution of E for G at the same position (G225E) in HA1 enabled HLJ/27 to transmit in guinea pigs. We investigated the underlying mechanism and found that viruses bearing 225E in HA1 replicated more rapidly than viruses bearing 225G due to differences in assembly and budding efficiencies. Our study indicates that the amino acid 225E in HA1 plays a key role in EAH1N1 swine influenza virus transmission and provides important information for evaluating the pandemic potential of field influenza virus strains. IMPORTANCE Efficient transmission among humans is a prerequisite for a novel influenza virus to cause a human pandemic. Transmissibility of influenza viruses is a polygenic trait, and understanding the genetic determinants for transmissibility will provide useful insights for evaluating the pandemic potential of influenza viruses in the field. Several amino acids in the hemagglutinin (HA) protein of influenza viruses have been shown to be important for transmissibility, usually by

  10. Mutation from arginine to lysine at the position 189 of hemagglutinin contributes to the antigenic drift in H3N2 swine influenza viruses.

    Science.gov (United States)

    Ye, Jianqiang; Xu, Yifei; Harris, Jillian; Sun, Hailiang; Bowman, Andrew S; Cunningham, Fred; Cardona, Carol; Yoon, Kyoungjin J; Slemons, Richard D; Wan, Xiu-Feng

    2013-11-01

    Two distinct antigenic clusters were previously identified among the H3N2 swine influenza A viruses (IAVs) and were designated H3N2SIV-alpha and H3N2SIV-beta (Feng et al., 2013. Journal of Virology 87 (13), 7655-7667). A consistent mutation was observed at the position 189 of hemagglutinin (R189K) between H3N2SIV-alpha and H3N2SIV-beta fair isolates. To evaluate the contribution of R189K mutation to the antigenic drift from H3N2SIV-alpha to H3N2SIV-beta, four reassortant viruses with 189R or 189K were generated. The antigenic cartography demonstrated that the R189K mutation in the hemagglutinin of H3N2 IAV contributed to the antigenic drift, separating these viruses into H3N2SIV-alpha to H3N2SIV-beta. This R189K mutation was also found to contribute to the cross-reaction with several ferret sera raised against historical human IAVs with hemagglutinin carrying 189K. This study suggests that the R189K mutation plays a vital role in the antigenicity of swine and human H3N2 IAVs and identification of this antigenic determinant will help us rapidly identify antigenic variants in influenza surveillance. © 2013 Elsevier Inc. All rights reserved.

  11. Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs.

    Science.gov (United States)

    Xu, Guanlong; Zhang, Xuxiao; Sun, Yipeng; Liu, Qinfang; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua

    2016-02-25

    The PA-X protein is a fusion protein incorporating the N-terminal 191 amino acids of the PA protein with a short C-terminal sequence encoded by an overlapping ORF (X-ORF) in segment 3 that is accessed by + 1 ribosomal frameshifting, and this X-ORF exists in either full length or a truncated form (either 61-or 41-condons). Genetic evolution analysis indicates that all swine influenza viruses (SIVs) possessed full-length PA-X prior to 1985, but since then SIVs with truncated PA-X have gradually increased and become dominant, implying that truncation of this protein may contribute to the adaptation of influenza virus in pigs. To verify this hypothesis, we constructed PA-X extended viruses in the background of a "triple-reassortment" H1N2 SIV with truncated PA-X, and evaluated their biological characteristics in vitro and in vivo. Compared with full-length PA-X, SIV with truncated PA-X had increased viral replication in porcine cells and swine respiratory tissues, along with enhanced pathogenicity, replication and transmissibility in pigs. Furthermore, we found that truncation of PA-X improved the inhibition of IFN-I mRNA expression. Hereby, our results imply that truncation of PA-X may contribute to the adaptation of SIV in pigs.

  12. Immunization of African Indigenous Pigs with Attenuated Genotype I African Swine Fever Virus OURT88/3 Induces Protection Against Challenge with Virulent Strains of Genotype I.

    Science.gov (United States)

    Mulumba-Mfumu, L K; Goatley, L C; Saegerman, C; Takamatsu, H-H; Dixon, L K

    2016-10-01

    The attenuated African swine fever virus genotype I strain OURT88/3 has previously been shown to induce protection of European breeds of domestic pigs against challenge with virulent isolates. To determine whether protective immune responses could also be induced in indigenous breeds of pigs from the Kinshassa region in Democratic Republic of Congo, we immunized a group of eight pigs with OURT88/3 strain and challenged the pigs 3 weeks later with virulent genotype I strain OURT88/1. Four of the pigs were protected against challenge. Three of the eight pigs died from African swine fever virus and a fourth from an unknown cause. The remaining four pigs all survived challenge with a recent virulent genotype I strain from the Democratic Republic of Congo, DRC 085/10. Control groups of non-immune pigs challenged with OURT88/1 or DRC 085/10 developed signs of acute ASFV as expected and had high levels of virus genome in blood. © 2015 Blackwell Verlag GmbH.

  13. Genetic Diversity of PRRS Virus Collected from Air Samples in Four Different Regions of Concentrated Swine Production during a High Incidence Season

    Directory of Open Access Journals (Sweden)

    Barbara Brito

    2014-11-01

    Full Text Available Porcine Reproductive and Respiratory Syndrome (PRRS is one of the most relevant swine diseases in the US, costing the industry millions of dollars per year. Unfortunately, disease control is difficult because of the virus dynamics, as PRRS virus (PRRSV can be transmitted by air between farms, especially, in regions with high density of swine operations. While long distance airborne transport of PRRSV has been reported, there is little information regarding the dynamics of PRRSV airborne challenge in concentrated regions. The objective of this study was to describe the frequency of detection, dose and diversity of PRRSV in air samples collected across four concentrated production regions during the PRRS-high risk season in the Midwestern US (October–December in 2012. Between 29% and 42% of the air samples were positive in all four sampling sites. Sequencing of the recovered virus showed a wide diversity of field and vaccine variants. Higher frequency, dose, and diversity of PRRSV were observed in air at locations with higher pig density. These findings suggest that regional spread of PRRSV due to aerosol transmission of PRRSV represents a significant risk to susceptible herds in concentrated regions of domestic pig production where PRRSV is endemic.

  14. Innate immune response to a H3N2 subtype swine influenza virus in newborn porcine trachea cells, alveolar macrophages, and precision-cut lung slices.

    Science.gov (United States)

    Delgado-Ortega, Mario; Melo, Sandrine; Punyadarsaniya, Darsaniya; Ramé, Christelle; Olivier, Michel; Soubieux, Denis; Marc, Daniel; Simon, Gaëlle; Herrler, Georg; Berri, Mustapha; Dupont, Joëlle; Meurens, François

    2014-04-09

    Viral respiratory diseases remain of major importance in swine breeding units. Swine influenza virus (SIV) is one of the main known contributors to infectious respiratory diseases. The innate immune response to swine influenza viruses has been assessed in many previous studies. However most of these studies were carried out in a single-cell population or directly in the live animal, in all its complexity. In the current study we report the use of a trachea epithelial cell line (newborn pig trachea cells - NPTr) in comparison with alveolar macrophages and lung slices for the characterization of innate immune response to an infection by a European SIV of the H3N2 subtype. The expression pattern of transcripts involved in the recognition of the virus, interferon type I and III responses, and the host-response regulation were assessed by quantitative PCR in response to infection. Some significant differences were observed between the three systems, notably in the expression of type III interferon mRNA. Then, results show a clear induction of JAK/STAT and MAPK signaling pathways in infected NPTr cells. Conversely, PI3K/Akt signaling pathways was not activated. The inhibition of the JAK/STAT pathway clearly reduced interferon type I and III responses and the induction of SOCS1 at the transcript level in infected NPTr cells. Similarly, the inhibition of MAPK pathway reduced viral replication and interferon response. All together, these results contribute to an increased understanding of the innate immune response to H3N2 SIV and may help identify strategies to effectively control SIV infection.

  15. Your child and the flu

    Science.gov (United States)

    ... of Wheat. Fruit juices that are diluted by mixing half water and half juice. Do not give ... nose, vomiting, and some wheezing. Although these symptoms sound like symptoms of the flu, the side effects ...

  16. Seasonal Flu and Staph Infection

    Science.gov (United States)

    ... What are Flu Antiviral Drugs Antiviral Drug Resistance Mixing Oseltamivir Capsules For Children What to do if ... PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple Quicktime file RealPlayer file Text ...

  17. Caring for Someone Sick (Flu)

    Science.gov (United States)

    ... What are Flu Antiviral Drugs Antiviral Drug Resistance Mixing Oseltamivir Capsules For Children What to do if ... PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple Quicktime file RealPlayer file Text ...

  18. Pregnant Women and Influenza (Flu)

    Science.gov (United States)

    ... What are Flu Antiviral Drugs Antiviral Drug Resistance Mixing Oseltamivir Capsules For Children What to do if ... PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple Quicktime file RealPlayer file Text ...

  19. Reassortment between Swine H3N2 and 2009 Pandemic H1N1 in the United States Resulted in Influenza A Viruses with Diverse Genetic Constellations with Variable Virulence in Pigs.

    Science.gov (United States)

    Rajão, Daniela S; Walia, Rasna R; Campbell, Brian; Gauger, Phillip C; Janas-Martindale, Alicia; Killian, Mary Lea; Vincent, Amy L

    2017-02-15

    Repeated spillovers of the H1N1 pandemic virus (H1N1pdm09) from humans to pigs resulted in substantial evolution of influenza A viruses infecting swine, contributing to the genetic and antigenic diversity of influenza A viruses (IAV) currently circulating in swine. The reassortment with endemic swine viruses and maintenance of some of the H1N1pdm09 internal genes resulted in the circulation of different genomic constellations in pigs. Here, we performed a whole-genome phylogenetic analysis of 368 IAV circulating in swine from 2009 to 2016 in the United States. We identified 44 different genotypes, with the most common genotype (32.33%) containing a clade IV-A HA gene, a 2002-lineage NA gene, an M-pdm09 gene, and remaining gene segments of triple reassortant internal gene (TRIG) origin. To understand how different genetic constellations may relate to viral fitness, we compared the pathogenesis and transmission in pigs of six representative genotypes. Although all six genotypes efficiently infected pigs, they resulted in different degrees of pathology and viral shedding. These results highlight the vast H3N2 genetic diversity circulating in U.S. swine after 2009. This diversity has important implications in the control of this disease by the swine industry, as well as a potential risk for public health if swine-adapted viruses with H1N1pdm09 genes have an increased risk to humans, as occurred in the 2011-2012 and 2016 human variant H3N2v cases associated with exhibition swine. People continue to spread the 2009 H1N1 pandemic (H1N1pdm09) IAV to pigs, allowing H1N1pdm09 to reassort with endemic swine IAV. In this study, we determined the 8 gene combinations of swine H3N2 IAV detected from 2009 to 2016. We identified 44 different genotypes of H3N2, the majority of which contained at least one H1N1pdm09 gene segment. We compared six representative genotypes of H3N2 in pigs. All six genotypes efficiently infected pigs, but they resulted in different degrees of lung damage

  20. Oct4+ stem/progenitor swine lung epithelial cells are targets for influenza virus replication.

    Science.gov (United States)

    Khatri, Mahesh; Goyal, Sagar M; Saif, Yehia M

    2012-06-01

    We isolated stem/progenitor epithelial cells from the lungs of 4- to 6-week-old pigs. The epithelial progenitor colony cells were surrounded by mesenchymal stromal cells. The progenitor epithelial colony cells expressed stem cell markers such as octamer binding transcription factor 4 (Oct4) and stage-specific embryonic antigen 1 (SSEA-1), as well as the epithelial markers pancytokeratin, cytokeratin-18, and occludin, but not mesenchymal (CD44, CD29, and CD90) and hematopoietic (CD45) markers. The colony cells had extensive self-renewal potential and had the capacity to undergo differentiation to alveolar type I- and type II-like pneumocytes. Additionally, these cells expressed sialic acid receptors and supported the active replication of influenza virus, which was accompanied by cell lysis. The lysis of progenitor epithelial cells by influenza virus may cause a marked reduction in the potential of progenitor cells for self renewal and for their ability to differentiate into specialized cells of the lung. These observations suggest the possible involvement of lung stem/progenitor cells in influenza virus infection.

  1. Development of a reverse-transcription polymerase chain reaction assay with fluorogenic probes to discriminate Korean wild-type and vaccine isolates of Classical swine fever virus

    OpenAIRE

    Cho, Ho-Seong; Park, Suk-Jun; Park, Nam-Yong

    2006-01-01

    A 1-step reverse-transcription polymerase chain reaction (RT-PCR) assay using TaqMan minor-groove-binding (MGB) probes was developed to distinguish between vaccine-type and wild-type strains of Classical swine fever virus (CSFV) in Korea. Because attenuated Korean LOM strains have been used in animal vaccination in Korea for some time but CSF remains a serious problem, there was a need for a practical approach to differentiating vaccine and field strains. We examined the fluorescence of 5 vac...

  2. Swine and rabbits are the main reservoirs of hepatitis E virus in China: detection of HEV RNA in feces of farmed and wild animals.

    Science.gov (United States)

    Xia, Junke; Zeng, Hang; Liu, Lin; Zhang, Yulin; Liu, Peng; Geng, Jiabao; Wang, Lin; Wang, Ling; Zhuang, Hui

    2015-11-01

    Hepatitis E virus (HEV) infection is recognized as a zoonosis. The prevalence of HEV RNA and anti-HEV antibodies in many animal species has been reported, but the host range of HEV is unclear. The aims of this study were to investigate HEV infection in various animal species and to determine the reservoirs of HEV. Eight hundred twenty-two fecal samples from 17 mammal species and 67 fecal samples from 24 avian species were collected in China and tested for HEV RNA by RT-nPCR. The products of PCR were sequenced and analyzed phylogenetically. The positive rates of HEV RNA isolated from pigs in Beijing, Shandong, and Henan were 33%, 30%, and 92%, respectively, and that from rabbits in Beijing was 5%. HEV RNA was not detectable in farmed foxes, sheep or sika deer, or in wild animals in zoos, including wild boars, yaks, camels, Asiatic black bears, African lions, red pandas, civets, wolves, jackals and primates. Sequence analysis revealed that swine isolates had 97.8%-98.4% nucleotide sequence identity to genotype 4d isolates from patients in Shandong and Jiangsu of China. Phylogenetic analysis showed that swine HEV isolates belong to genotype 4, including subgenotype 4h in Henan and 4d in Beijing and Shandong. The rabbit HEV strains shared 93%-99% nucleotide sequence identity with rabbit strains isolated from Inner Mongolia. In conclusion, swine and rabbits have been confirmed to be the main reservoirs of HEV in China.

  3. A single dose of the novel chimeric subunit vaccine E2-CD154 confers early full protection against classical swine fever virus.

    Science.gov (United States)

    Suárez, Marisela; Sordo, Yusmel; Prieto, Yanet; Rodríguez, María P; Méndez, Lídice; Rodríguez, Elsa M; Rodríguez-Mallon, Alina; Lorenzo, Elianet; Santana, Elaine; González, Nemecio; Naranjo, Paula; Frías, María Teresa; Carpio, Yamila; Estrada, Mario Pablo

    2017-08-03

    Classical swine fever is an economically important, highly contagious disease of swine worldwide. Subunit vaccines are a suitable alternative for the control of classical swine fever. However, such vaccines have as the main drawback the relatively long period of time required to induce a protective response, which hampers their use under outbreak conditions. In this work, a lentivirus-based gene delivery system is used to obtain a stable recombinant HEK 293 cell line for the expression of E2-CSFV antigen fused to porcine CD154 as immunostimulant molecule. The E2-CD154 chimeric protein was secreted into the medium by HEK293 cells in a concentration around 50mg/L in suspension culture conditions using spinner bottles. The E2-CD154 immunized animals were able to overcome the challenge with a high virulent CSF virus strain performed 7days after a unique dose of the vaccine without clinical manifestations of the disease. Specific anti-CSFV neutralizing antibodies and IFN-γ were induced 8days after challenge equivalent to 14days post-vaccination. The present work constitutes the first report of a subunit vaccine able to confer complete protection by the end of the first week after a single vaccination. These results suggest that the E2-CD154 antigen could be potentially used under outbreak conditions to stop CSFV spread and for eradication programs in CSF enzootic areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Identification of peptides from foot‐and‐mouth disease virus structural proteins bound by class I swine leukocyte antigen (SLA) alleles, SLA‐1*0401 and SLA‐2*0401

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Harndahl, M.; Nielsen, Morten

    2013-01-01

    Characterization of the peptide‐binding specificity of swine leukocyte antigen (SLA) class I and II molecules is critical to the understanding of adaptive immune responses of swine toward infectious pathogens. Here, we describe the complete binding motif of the SLA‐2*0401 molecule based on a posi......Characterization of the peptide‐binding specificity of swine leukocyte antigen (SLA) class I and II molecules is critical to the understanding of adaptive immune responses of swine toward infectious pathogens. Here, we describe the complete binding motif of the SLA‐2*0401 molecule based...... within the structural proteins of foot‐and‐mouth disease virus (FMDV), strain A24 were analyzed as candidate T‐cell epitopes. Peptides predicted by the NetMHCpan were tested in ELISA for binding to the SLA‐1*0401 and SLA‐2*0401 major histocompatibility complex class I proteins. Four of the 10 predicted...

  5. Porcine circovirus type 2 (PCV2 infection decreases the efficacy of an attenuated classical swine fever virus (CSFV vaccine

    Directory of Open Access Journals (Sweden)

    Huang Yu-Liang

    2011-12-01

    Full Text Available Abstract The Lapinized Philippines Coronel (LPC vaccine, an attenuated strain of classical swine fever virus (CSFV, is an important tool for the prevention and control of CSFV infection and is widely and routinely used in most CSF endemic areas, including Taiwan. The aim of this study was to investigate whether PCV2 infection affects the efficacy of the LPC vaccine. Eighteen 6-week-old, cesarean-derived and colostrum-deprived (CDCD, crossbred pigs were randomly assigned to four groups. A total of 105.3 TCID50 of PCV2 was experimentally inoculated into pigs through both intranasal and intramuscular routes at 0 days post-inoculation (dpi followed by LPC vaccination 12 days later. All the animals were challenged with wild-type CSFV (ALD stain at 27 dpi and euthanized at 45 dpi. Following CSFV challenge, the LPC-vaccinated pigs pre-inoculated with PCV2 showed transient fever, viremia, and viral shedding in the saliva and feces. The number of IgM+, CD4+CD8-CD25+, CD4+CD8+CD25+, and CD4-CD8+CD25+ lymphocyte subsets and the level of neutralizing antibodies against CSFV were significantly higher in the animals with LPC vaccination alone than in the pigs with PCV2 inoculation/LPC vaccination. In addition, PCV2-derived inhibition of the CSFV-specific cell proliferative response of peripheral blood mononuclear cells (PBMCs was demonstrated in an ex vivo experiment. These findings indicate that PCV2 infection decreases the efficacy of the LPC vaccine. This PCV2-derived interference may not only allow the invasion of wild-type CSFV in pig farms but also increases the difficulty of CSF prevention and control in CSF endemic areas.

  6. Development and validation of a genotype 3 recombinant protein-based immunoassay for hepatitis E virus serology in swine

    Directory of Open Access Journals (Sweden)

    W.H.M. van der Poel

    2014-04-01

    Full Text Available Hepatitis E virus (HEV is classified within the family Hepeviridae, genus Hepevirus. HEV genotype 3 (Gt3 infections are endemic in pigs in Western Europe and in North and South America and cause zoonotic infections in humans. Several serological assays to detect HEV antibodies in pigs have been developed, at first mainly based on HEV genotype 1 (Gt1 antigens. To develop a sensitive HEV Gt3 ELISA, a recombinant baculovirus expression product of HEV Gt3 open reading frame-2 was produced and coated onto polystyrene ELISA plates. After incubation of porcine sera, bound HEV antibodies were detected with anti-porcine anti-IgG and anti-IgM conjugates. For primary estimation of sensitivity and specificity of the assay, sets of sera were used from pigs experimentally infected with HEV Gt3. For further validation of the assay and to set the cutoff value, a batch of 1100 pig sera was used. All pig sera were tested using the developed HEV Gt3 assay and two other serologic assays based on HEV Gt1 antigens. Since there is no gold standard available for HEV antibody testing, further validation and a definite setting of the cutoff of the developed HEV Gt3 assay were performed using a statistical approach based on Bayes' theorem. The developed and validated HEV antibody assay showed effective detection of HEV-specific antibodies. This assay can contribute to an improved detection of HEV antibodies and enable more reliable estimates of the prevalence of HEV Gt3 in swine in different regions.

  7. An investigation of classical swine fever virus seroprevalence and risk factors in pigs in Timor-Leste.

    Science.gov (United States)

    Sawford, Kate; do Karmo, Antonino; da Conceicao, Felisiano; Geong, Maria; Tenaya, I Wayan Masa; Hartawan, Dinar H W; Toribio, Jenny-Ann L M L

    2015-11-01

    Classical swine fever virus (CSFV) is a highly infectious pathogen of pigs and believed to be a major constraint to pig production in Timor-Leste. The Ministry of Agriculture and Fisheries conducts vaccination campaigns in an attempt to control clinical disease, however, there is no empirical data available concerning the seroprevalence and distribution of CSFV in Timor-Leste. To help address this knowledge deficit, a cross-sectional study to determine seroprevalence was conducted in the three districts that border Indonesia. Data on farmer- and pig-level factors were also collected to look at their impact on CSFV serological status. Overall, true CSFV seroprevalence was estimated at 34.4%. Seroprevalence estimates varied widely between and within districts, subdistricts, and villages. Older pigs and pigs that had been vaccinated for CSFV were more likely to test positive for CSFV antibody. Pigs owned by farmers that experienced the sudden death of pigs in the 12 months prior to the survey were more likely to test positive for CSFV antibody, while pigs that had been sick in the previous three months were less likely to test positive for CSFV antibody. The final multivariable model accounted for a large amount of variation in the data, however, much of this variation was explained by the random effects with less than one percent of the variation explained by the fixed effects. This work further supports the need for a collaborative approach to whole-island CSFV control between West Timor, Indonesia and Timor-Leste. Further work is needed to better understand the risk factors for CSFV serological status in order to allocate resources for control. As CSFV is now endemic in Timor-Leste research involving a combination of serology, antigen detection and in-depth investigation of suspect cases over a period of time may be required. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Pneumonia in novel swine-origin influenza A (H1N1) virus infection: High-resolution CT findings

    International Nuclear Information System (INIS)

    Li Ping; Su Dongju; Zhang Jifeng; Xia Xudong; Sui Hong; Zhao Donghui

    2011-01-01

    Objective: The purpose of our study was to review the initial high-resolution CT (HRCT) findings in pneumonia patients with presumed/laboratory-confirmed novel swine-origin influenza A (H1N1) virus (S-OIV) infection and detect pneumonia earlier. Materials and methods: High-resolution CT (HRCT) findings of 106 patients with presumed/laboratory-confirmed novel S-OIV (H1N1) infection were reviewed. The 106 patients were divided into two groups according to the serious condition of the diseases. The pattern (consolidation, ground-glass, nodules, and reticulation), distribution, and extent of abnormality on the HRCT were evaluated in both groups. The dates of the onset of symptoms of the patients were recorded. Results: The predominant CT findings in the patients at presentation were unilateral or bilateral multifocal asymmetric ground-glass opacities alone (n = 29, 27.4%), with unilateral or bilateral consolidation (n = 50, 47.2%). The consolidation had peribronchovascular and subpleural predominance. The areas of consolidation were found mainly in the posterior, middle and lower regions of the lungs. Reticular opacities were found in 6 cases of the initial MDCT scan. The extent of disease was greater in group 1 patients requiring advanced mechanical ventilation, with diffuse involvement in 19 patients (63.3%) of group 1 patients, and only 15/76 (19.7%) of group 2 patients (p 2 test). 20 cases (19%) of the 106 patients had small bilateral or unilateral pleural effusions. None had evidence of hilar or mediastinal lymph node enlargement on CT performed at admission or later. Conclusions: The most common radiographic and CT findings in patients with S-OIV infection are unilateral or bilateral ground-glass opacities with or without associated focal or multifocal areas of consolidation. On HRCT, the ground-glass opacities had a predominant peribronchovascular and subpleural distribution. CT plays an important role in the early recognition of severe S-OIV (H1N1).

  9. The influence of age and maternal antibodies on the postvaccinal response against swine influenza viruses in pigs.

    Science.gov (United States)

    Markowska-Daniel, Iwona; Pomorska-Mól, Małgorzata; Pejsak, Zygmunt

    2011-07-15

    The influence of age and maternal immunity on the development and duration of postvaccinal humoral response against swine influenza viruses (SIV) were investigated under experimental conditions. Piglets born to immune and non-immune sows were vaccinated twice with bivalent inactivated vaccine. Vaccination was done according to 5 different schedules: 1+4, 1+8, 4+8, 8+10 or 8+12 weeks of age. Antibodies to the haemagglutinin type 1 and 3 were determined using the haemagglutination inhibition (HI) test. Maternally derived antibodies (MDA) against H1N1 and H3N2 in the serum of unvaccinated piglets born to immune sows were above the positive level until about 13-14 and 9-10 weeks of life, respectively. No serological responses were seen in any of the groups after the first vaccination. After the second dose of vaccine production of antibodies was observed even before the complete disappearance of maternal antibodies. MDA, however, were associated with reduced antibody response. In MDA-negative piglets, an active humoral postvaccinal response was developed in all vaccinated pigs. The age at which the vaccine was given was associated with the differences in the magnitude of antibody response to SIV. In general those pigs that were vaccinated for the first time at the age of 1 week, developed lower maximum titres after the second vaccination, and become seronegative earlier than pigs that were vaccinated for the first time at 4 or 8 weeks of age. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Distinct regulation of host responses by ERK and JNK MAP kinases in swine macrophages infected with pandemic (H1N1 2009 influenza virus.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available Swine influenza is an acute respiratory disease in pigs caused by swine influenza virus (SIV. Highly virulent SIV strains cause mortality of up to 10%. Importantly, pigs have long been considered "mixing vessels" that generate novel influenza viruses with pandemic potential, a constant threat to public health. Since its emergence in 2009 and subsequent pandemic spread, the pandemic (H1N1 2009 (H1N1pdm has been detected in pig farms, creating the risk of generating new reassortants and their possible infection of humans. Pathogenesis in SIV or H1N1pdm-infected pigs remains poorly characterized. Proinflammatory and antiviral cytokine responses are considered correlated with the intensity of clinical signs, and swine macrophages are found to be indispensible in effective clearance of SIV from pig lungs. In this study, we report a unique pattern of cytokine responses in swine macrophages infected with H1N1pdm. The roles of mitogen-activated protein (MAP kinases in the regulation of the host responses were examined. We found that proinflammatory cytokines IL-6, IL-8, IL-10, and TNF-α were significantly induced and their induction was ERK1/2-dependent. IFN-β and IFN-inducible antiviral Mx and 2'5'-OAS were sharply induced, but the inductions were effectively abolished when ERK1/2 was inhibited. Induction of CCL5 (RANTES was completely inhibited by inhibitors of ERK1/2 and JNK1/2, which appeared also to regulate FasL and TNF-α, critical for apoptosis in pig macrophages. We found that NFκB was activated in H1N1pdm-infected cells, but the activation was suppressed when ERK1/2 was inhibited, indicating there is cross-talk between MAP kinase and NFκB responses in pig macrophages. Our data suggest that MAP kinase may activate NFκB through the induction of RIG-1, which leads to the induction of IFN-β in swine macrophages. Understanding host responses and their underlying mechanisms may help identify venues for effective control of SIV and assist in

  11. Evaluation of the efficacy and cross-protectivity of recent human and swine vaccines against the pandemic (H1N1 2009 virus infection.

    Directory of Open Access Journals (Sweden)

    Philippe Noriel Q Pascua

    Full Text Available The current pandemic (H1N1 2009 virus remains transmissible among humans worldwide with cases of reverse zoonosis, providing opportunities to produce more pathogenic variants which could pose greater human health concerns. To investigate whether recent seasonal human or swine H1N1 vaccines could induce cross-reactive immune responses against infection with the pandemic (H1N1 2009 virus, mice, ferrets or mini-pigs were administered with various regimens (once or twice and antigen content (1.77, 3.5 or 7.5 microg HA of a-Brsibane/59/07, a-CAN01/04 or RgCA/04/09xPR8 vaccine. Receipt of a-CAN01/04 (2-doses but not a-Brisbane/59/07 induced detectable but modest (20-40 units cross-reactive serum antibody against CA/04/09 by hemagglutinin inhibition (HI assays in mice. Only double administration (7.5 microg HA of both vaccine in ferrets could elicit cross-reactivity (30-60 HI titers. Similar antigen content of a-CAN01/04 in mini-pigs also caused a modest approximately 30 HI titers (twice vaccinated. However, vaccine-induced antibody titers could not suppress active virus replication in the lungs (mice or virus shedding (ferrets and pigs of immunized hosts intranasally challenged with CA/04/09. Furthermore, neither ferrets nor swine could abrogate aerosol transmission of the virus into naïve contact animals. Altogether, these results suggest that neither recent human nor animal H1N1 vaccine could provide complete protectivity in all animal models. Thus, this study warrants the need for strain-specific vaccines that could yield the optimal protection desired for humans and/or animals.

  12. Experimental transmission of avian-like swine H1N1 influenza virus between immunologically naïve and vaccinated pigs.

    Science.gov (United States)

    Lloyd, Lucy E; Jonczyk, Magdalena; Jervis, Carley M; Flack, Deborah J; Lyall, John; Foote, Alasdair; Mumford, Jennifer A; Brown, Ian H; Wood, James L; Elton, Debra M

    2011-09-01

    Infection of pigs with swine influenza has been studied experimentally and in the field; however, little information is available on the natural transmission of this virus in pigs. Two studies in an experimental transmission model are presented here, one in immunologically naïve and one in a combination of vaccinated and naïve pigs. To investigate the transmission of a recent 'avian-like' swine H1N1 influenza virus in naive piglets, to assess the antibody response to a commercially available vaccine and to determine the efficiency of transmission in pigs after vaccination. Transmission chains were initiated by intranasal challenge of two immunologically naïve pigs. Animals were monitored daily for clinical signs and virus shedding. Pairs of pigs were sequentially co-housed, and once virus was detected in recipients, prior donors were removed. In the vaccination study, piglets were vaccinated and circulating antibody levels were monitored by haemagglutination inhibition assay. To study transmission in vaccinates, a pair of infected immunologically naïve animals was co-housed with vaccinated recipient pigs and further pairs of vaccinates were added sequentially as above. The chain was completed by the addition of naive pigs. Transmission of the H1N1 virus was achieved through a chain of six pairs of naïve piglets and through four pairs of vaccinated animals. Transmission occurred with minimal clinical signs and, in vaccinates, at antibody levels higher than previously reported to protect against infection. © 2011 Blackwell Publishing Ltd.

  13. Evaluation of the efficacy and cross-protectivity of recent human and swine vaccines against the pandemic (H1N1) 2009 virus infection.

    Science.gov (United States)

    Pascua, Philippe Noriel Q; Song, Min-Suk; Lee, Jun Han; Park, Kuk Jin; Kwon, Hyeok-Il; Baek, Yun Hee; Hong, Seung-Pyo; Rho, Jong-Bok; Kim, Chul-Joong; Poo, Haryoung; Ryoo, Thomas S; Sung, Moon-Hee; Choi, Young Ki

    2009-12-23

    The current pandemic (H1N1) 2009 virus remains transmissible among humans worldwide with cases of reverse zoonosis, providing opportunities to produce more pathogenic variants which could pose greater human health concerns. To investigate whether recent seasonal human or swine H1N1 vaccines could induce cross-reactive immune responses against infection with the pandemic (H1N1) 2009 virus, mice, ferrets or mini-pigs were administered with various regimens (once or twice) and antigen content (1.77, 3.5 or 7.5 microg HA) of a-Brsibane/59/07, a-CAN01/04 or RgCA/04/09xPR8 vaccine. Receipt of a-CAN01/04 (2-doses) but not a-Brisbane/59/07 induced detectable but modest (20-40 units) cross-reactive serum antibody against CA/04/09 by hemagglutinin inhibition (HI) assays in mice. Only double administration (7.5 microg HA) of both vaccine in ferrets could elicit cross-reactivity (30-60 HI titers). Similar antigen content of a-CAN01/04 in mini-pigs also caused a modest approximately 30 HI titers (twice vaccinated). However, vaccine-induced antibody titers could not suppress active virus replication in the lungs (mice) or virus shedding (ferrets and pigs) of immunized hosts intranasally challenged with CA/04/09. Furthermore, neither ferrets nor swine could abrogate aerosol transmission of the virus into naïve contact animals. Altogether, these results suggest that neither recent human nor animal H1N1 vaccine could provide complete protectivity in all animal models. Thus, this study warrants the need for strain-specific vaccines that could yield the optimal protection desired for humans and/or animals.

  14. Next Generation Sequencing of Classical Swine Fever Virus and Border Disease virus cloned in Bacterial Artificial Chromosomes

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Höper, Dirk; Beer, martin

    2012-01-01

    be rescued only from some of our BAC constructs whereas others are not replication competent. To further analyze this discrepancy we have completely sequenced selected pestivirus BAC DNAs using a 454 Genome Sequencer FLX to evaluate the number/kind of deviations in the cloned genome sequences. In addition......, we have sequenced the full genome cDNA fragments used for the BACs by the same approach. This enables us to evaluate in more detail the nature of nucleotide changes in the pestivirus BACs that lead to lack of replicationcompetence and/or virus rescue. Additionally, detailed knowledge of the genomic...

  15. [Comparative investigations of practice-oriented methods for the detection of viruses in food with Aujeszky infection in swine as an example].

    Science.gov (United States)

    Mayr, A

    1997-11-01

    In order to detect contamination in foodstuffs originating from animals, three different diagnostic methods were tested in comparison: cultivation in permissive cell cultures, microparticle antigen capture system per FACS (MAS) and polymerase chain reaction (PCR). Assessment implied relevance for health, sensitivity and specificity. Aujeszky infection in swine served as a model. The blood and organs of healthy, but persistently infected as well as specifically diseased animals were examined. In addition, artificially Aujeszky-contaminated milk, black pudding and minced meat were included in the comparison of methods. Basically, all three methods of detecting contamination in raw foodstuffs originating from animals were useful. The virus detection in cell cultures as well as the efficacy of MAS were inhibited by meat products according to their preparation (e.g., virus protein denaturation). PCR turned out to be the only reliable method to confirm the contamination in foodstuffs. Using PCR, viral contamination in foodstuffs originating from healthy but persistently infected animals could be detected. Each of the three virus detection systems has various advantages and disadvantages. They are listed and discussed in detail. With regard to the relevance of health, virus detection in raw meat via cell culture remains the preferred method. Besides the detection of an individual virus, routine examinations of foodstuffs for unknown zoonotic virus contamination, sets based on permissive cell cultures, primer sets for the PCR as well as sets based on various monoclonal antibodies for MAS have to be developed and made available at the diagnostic laboratories.

  16. Short time window for transmissibility of African swine fever virus from a contaminated environment

    DEFF Research Database (Denmark)

    Olesen, A S; Lohse, L; Boklund, A.

    2018-01-01

    contaminated with excretions from ASFV-infected pigs was investigated. Following euthanasia of pigs that were infected with an isolate of ASFV from Poland (POL/2015/Podlaskie/Lindholm), healthy pigs were introduced into the pens, in which the ASFV-infected pigs had been housed. Introduction was performed at 1......, 3, 5 or 7 days, following euthanasia of the infected pig groups. Pigs, that were introduced into the contaminated environment after 1 day, developed clinical disease within 1 week, and both ASFV DNA and infectious virus were isolated from their blood. However, pigs introduced into the contaminated...

  17. Influenza A virus in swine breeding herds: Combination of vaccination and biosecurity practices can reduce likelihood of endemic piglet reservoir.

    Science.gov (United States)

    White, L A; Torremorell, M; Craft, M E

    2017-03-01

    Recent modelling and empirical work on influenza A virus (IAV) suggests that piglets play an important role as an endemic reservoir. The objective of this study is to test intervention strategies aimed at reducing the incidence of IAV in piglets and ideally, preventing piglets from becoming exposed in the first place. These interventions include biosecurity measures, vaccination, and management options that swine producers may employ individually or jointly to control IAV in their herds. We have developed a stochastic Susceptible-Exposed-Infectious-Recovered-Vaccinated (SEIRV) model that reflects the spatial organization of a standard breeding herd and accounts for the different production classes of pigs therein. Notably, this model allows for loss of immunity for vaccinated and recovered animals, and for vaccinated animals to have different latency and infectious periods from unvaccinated animals as suggested by the literature. The interventions tested include: (1) varied timing of gilt introductions to the breeding herd, (2) gilt separation (no indirect transmission to or from the gilt development unit), (3) gilt vaccination upon arrival to the farm, (4) early weaning, and (5) vaccination strategies of sows with different timing (mass and pre-farrow) and efficacy (homologous vs. heterologous). We conducted a Latin Hypercube Sampling and Partial Rank Correlation Coefficient (LHS-PRCC) analysis combined with a random forest analysis to assess the relative importance of each epidemiological parameter in determining epidemic outcomes. In concert, mass vaccination, early weaning of piglets (removal 0-7days after birth), gilt separation, gilt vaccination, and longer periods between introductions of gilts (6 months) were the most effective at reducing prevalence. Endemic prevalence overall was reduced by 51% relative to the null case; endemic prevalence in piglets was reduced by 74%; and IAV was eliminated completely from the herd in 23% of all simulations. Importantly

  18. FluBreaks: early epidemic detection from Google flu trends.

    Science.gov (United States)

    Pervaiz, Fahad; Pervaiz, Mansoor; Abdur Rehman, Nabeel; Saif, Umar

    2012-10-04

    The Google Flu Trends service was launched in 2008 to track changes in the volume of online search queries related to flu-like symptoms. Over the last few years, the trend data produced by this service has shown a consistent relationship with the actual number of flu reports collected by the US Centers for Disease Control and Prevention (CDC), often identifying increases in flu cases weeks in advance of CDC records. However, contrary to popular belief, Google Flu Trends is not an early epidemic detection system. Instead, it is designed as a baseline indicator of the trend, or changes, in the number of disease cases. To evaluate whether these trends can be used as a basis for an early warning system for epidemics. We present the first detailed algorithmic analysis of how Google Flu Trends can be used as a basis for building a fully automated system for early warning of epidemics in advance of methods used by the CDC. Based on our work, we present a novel early epidemic detection system, called FluBreaks (dritte.org/flubreaks), based on Google Flu Trends data. We compared the accuracy and practicality of three types of algorithms: normal distribution algorithms, Poisson distribution algorithms, and negative binomial distribution algorithms. We explored the relative merits of these methods, and related our findings to changes in Internet penetration and population size for the regions in Google Flu Trends providing data. Across our performance metrics of percentage true-positives (RTP), percentage false-positives (RFP), percentage overlap (OT), and percentage early alarms (EA), Poisson- and negative binomial-based algorithms performed better in all except RFP. Poisson-based algorithms had average values of 99%, 28%, 71%, and 76% for RTP, RFP, OT, and EA, respectively, whereas negative binomial-based algorithms had average values of 97.8%, 17.8%, 60%, and 55% for RTP, RFP, OT, and EA, respectively. Moreover, the EA was also affected by the region's population size

  19. Serological and Molecular Investigation of Swine Hepatitis E Virus in Pigs Raised in Southern Italy.

    Science.gov (United States)

    Costanzo, Nicola; Sarno, Eleonora; Peretti, Vincenzo; Ciambrone, Lucia; Casalinuovo, Francesco; Santoro, Adriano

    2015-11-01

    Hepatitis E virus (HEV) infection is a common acute hepatitis transmitted by the fecal-oral route. In developed countries, the virus has a zoonotic potential, and domestic pigs and wild boars are considered main reservoirs. To assess the prevalence of HEV-positive animals in the Calabria region (southern Italy) on a serological and molecular level, a total of 216 autochthonous healthy pigs (Apulo-Calabrese breed) were sampled. Both sera and feces were collected. Pigs were grouped based on age: 117 pigs pigs >6 months. By using a commercial enzyme-linked immunosorbent assay system, a total of 173 (80%) of the 216 pigs tested seropositive. In all sampled farms (n = 8), pigs with antibodies (immunoglobulin G) against HEV were detected at a level higher than 60%, with a significant difference among age groups (P pigs were found to be nested reverse transcription PCR positive and thus to shed viral genomes in their feces. These positive findings resulted in a prevalence of 48.4% on the farm level (16 of 35 pigs) and an overall prevalence of 7.4% at the animal level (16 of 216 pigs). Based on the present study, HEV seems to circulate among the autochthonous domestic pig population of southern Italy with a low sharing rate. Further studies exploring the origin of infection are needed to minimize the risk of human exposure and to reduce consequences for public health.

  20. Mathematical modeling of porcine epidemic diarrhea virus dynamics within a farrow-to-finish swine farm to investigate the effects of control measures.

    Science.gov (United States)

    Murai, Kiyokazu; Moriguchi, Sachiko; Hayama, Yoko; Kobayashi, Sota; Miyazaki, Ayako; Tsutsui, Toshiyuki; Yamamoto, Takehisa

    2018-01-01

    Porcine epidemic diarrhea (PED) is a highly contagious enteric disease in swine that can cause devastating economic damage to pig producers. Japan was severely affected by PED epidemics from 2013 through 2015, with over 1000 farms were affected during this period. Although many studies have unraveled pathological and molecular characteristics of PED virus (PEDV), the mechanism for within-farm spread is largely unknown. Here, we constructed a deterministic compartmental model to quantitatively describe the infection dynamics in a farm setting and to investigate effective control measures. The model consisted of three separate houses and four swine populations framed in a standard commercial farrow-to-finish swine operation in Japan, with a special focus on the role of indirect transmission via the on-farm environment contaminated by feces of infected pigs. Some model parameters were estimated using the Japanese empirical outbreak data. Model outputs over a 90-day period showed that the number of infected sows in a dry sow house peaked within a week after disease introduction, and PEDV was retained on the farm. In the farrowing house,