WorldWideScience

Sample records for swine flu virus

  1. Swine Flu -A Comprehensive View

    Science.gov (United States)

    Singh, Vandana; Sood, Meenakshi

    2012-07-01

    The present article is aimed on comprehensive view of Swine flu. It was first isolated from pigs in 1930 in USA. Pandemic caused by H1N1 in 2009 brought it in limelight. Itís a viral respiratory disease caused by viruses that infects pigs, resulting in nasal secretions, barking cough, decreased appetite, and listless behavior. Swine virus consist of eight RNA strands, one strand derived from human flu strains, two from avian (bird) strains, and five from swine strains. Swine flu spreads from infected person to healthy person by inhalation or ingestion of droplets contaminated with virus while sneezing or coughing. Two antiviral agents have been reported to help prevent or reduce the effects of swine flu, flu shot and nasal spray. WHO recommended for pandemic period to prevent its future outbreaks through vaccines or non-vaccines means. Antiviral drugs effective against this virus are Tamiflu and Relenza. Rapid antigen testing (RIDT), DFA testing, viral culture, and molecular testing (RT-PCR) are used for its diagnosis in laboratory

  2. H1N1 influenza (Swine flu)

    Science.gov (United States)

    Swine flu; H1N1 type A influenza ... The H1N1 virus is now considered a regular flu virus. It is one of the three viruses included in the regular (seasonal) flu vaccine . You cannot get H1N1 flu virus from ...

  3. Influenza (Flu) Viruses

    Science.gov (United States)

    ... Types Seasonal Avian Swine Variant Pandemic Other Influenza (Flu) Viruses Language: English (US) Español Recommend on Facebook ... influenza circulate and cause illness. More Information about Flu Viruses Types of Influenza Viruses Influenza A and ...

  4. Deciphering the Swine-Flu Pandemics of 1918 and 2009

    Science.gov (United States)

    Goldstein, Richard; Dos Reis, Mario; Tamuri, Asif; Hay, Alan

    The devastating "Spanish flu" of 1918 killed an estimated 50 million people worldwide, ranking it as the deadliest pandemic in recorded human history. It is generally believed that the virus transferred from birds directly to humans shortly before the start of the pandemic, subsequently jumping from humans to swine. By developing 'non-homogeneous' substitution models that consider that substitution patterns may be different in human, avian, and swine hosts, we can determine the timing of the host shift to mammals. We find it likely that the Spanish flu of 1918, like the current 2009 pandemic, was a 'swine-origin' influenza virus. Now that we are faced with a new pandemic, can we understand how influenza is able to change hosts? Again by modelling the evolutionary process, considering the different selective constraints for viruses in the different hosts, we can identify locations that seem to be under different selective constraints in humans and avian hosts. This allows us to identify changes that may have facilitated the establishment of the 2009 swine-origin flu in humans.

  5. Swine flu

    Directory of Open Access Journals (Sweden)

    Manish Sinha

    Full Text Available Summary: The recent outbreak of human infection with a novel Swine-Origin Influenza A (H1N1 virus is spreading rapidly through sustained human-to-human transmission in multiple countries. Human-to-human transmission occurs by inhalation of infectious droplets and droplet nuclei, and by direct contact, which is facilitated by air and land travel and social gatherings. The most frequently reported symptoms are fever, cough, myalgia, and sore throat. Detailed contact and travel histories and knowledge of viral activity in community are essential for prompt case detection by the health personnel. Real-time Reverse Transcriptase-Polymerase Chain Reaction analysis of throat swabs or lower respiratory samples is a sensitive means of diagnosis. Use of oral oseltamivir may be warranted for the treatment of severe illness. Keywords: Swine influenza, H1N1, Swine flu, Oseltamivir

  6. Swine flu (H1N1 influenza): awareness profile of visitors of swine flu screening booths in Belgaum city, Karnataka.

    Science.gov (United States)

    Viveki, R G; Halappanavar, A B; Patil, M S; Joshi, A V; Gunagi, Praveena; Halki, Sunanda B

    2012-06-01

    The 2009 flu pandemic was a global outbreak of a new strain of H1N1 influenza virus often referred colloquially as "swine flu". The objectives of the study were: (1) To know the sociodemographic and awareness profile of visitors attending swine flu screening booths. (2) To reveal sources of information. The present cross-sectional study was undertaken among the visitors (18 years and above) attending swine flu screening booths organised within the Belgaum city during Ganesh festival from 28-08-2009 to 03-09-2009 by interviewing them using predesigned, pretested structured questionnaire on swine flu. The data was collected and analysed using SPSS software programme for windows (version 16). Chi-square test was applied. Out of 206 visitors, 132 (64.1%) were males and 107 (51.9%) were in the age group of 30-49 years; 183 (88.8%) had heard about swine flu. More than a third of the visitors (38.3%) disclosed that there was a vaccine to prevent swine flu. Majority responded that it could be transmitted by being in close proximity to pigs (49.0%) and by eating pork (51.5%). Newspaper/magazine (64.6%), television (61.7%), and public posters/pamphlets (44.2%) were common sources of information. The present study revealed that doctors/public health workers have played little role in creating awareness in the community. The improved communication between doctors and the community would help to spread correct information about the disease and the role that the community can play in controlling the spread of the disease.

  7. Swine flu - A pandemic outbreak

    Directory of Open Access Journals (Sweden)

    Jini George

    Full Text Available Hippocrates had described influenza like outbreak in 412 B.C. and since then repeated influenza like epidemics and pandemics have been recorded in recent times. One of the greatest killers of all time was the pandemic of swine flu (Spanish flu of 1918-1919, when 230 million people died. Annual influenza epidemics are estimated to affect 5–15% of the global population, resulting in severe illness in 3–5 million patients causing 250,000–500,000 deaths worldwide. Severe illness and deaths occur mainly in the high-risk populations of infants, the elderly and chronically ill patients. The 2009 outbreak of swine flu is thought to be a mutation more specifically a reassortment of four known strains of influenza A virus subtype H1N1; one endemic in humans, one endemic in birds, and two endemic in pigs. WHO officially declared the outbreak to be a pandemic on June 11, 2009, but stressed that the new designation was a result of the global "spread of the virus," not its severity. [Vet World 2009; 2(12.000: 472-474

  8. The neuropsychiatric aspects of influenza/swine flu: A selective review

    Directory of Open Access Journals (Sweden)

    Narayana Manjunatha

    2011-01-01

    Full Text Available The world witnessed the influenza virus during the seasonal epidemics and pandemics. The current strain of H1N1 (swine flu pandemic is believed to be the legacy of the influenza pandemic (1918-19. The influenza virus has been implicated in many neuropsychiatric disorders. In view of the recent pandemic, it would be interesting to review the neuropsychiatric aspects of influenza, specifically swine flu. Author used popular search engine ′PUBMED′ to search for published articles with different MeSH terms using Boolean operator (AND. Among these, a selective review of the published literature was done. Acute manifestations of swine flu varied from behavioral changes, fear of misdiagnosis during outbreak, neurological features like seizures, encephalopathy, encephalitis, transverse myelitis, aseptic meningitis, multiple sclerosis, and Guillian-Barre Syndrome. Among the chronic manifestations, schizophrenia, Parkinson′s disease, mood disorder, dementia, and mental retardation have been hypothesized. Further research is required to understand the etiological hypothesis of the chronic manifestations of influenza. The author urges neuroscientists around the world to make use of the current swine flu pandemic as an opportunity for further research.

  9. Swine Influenza (Swine Flu) in Pigs

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Influenza Types Seasonal Avian Swine Variant Pandemic Other Key Facts about Swine Influenza (Swine Flu) in Pigs Language: English (US) Español ...

  10. Burden of pediatric influenza A virus infection post swine-flu H1N1 pandemic in Egypt.

    Science.gov (United States)

    Khattab, Adel; Shaheen, Malak; Kamel, Terez; El Faramay, Amel; El Rahman, Safaa Abd; Nabil, Dalia; Gouda, Mohamed

    2013-09-01

    To screen children with influenza like illness or with symptoms of acute respiratory tract infections for influenza A virus infection - post swine flu pandemic era - using rapid influenza diagnostic tests. During two years (2010 & 2011), 1 200 children with influenza like illness or acute respiratory tract infections (according to World Health Organization criteria) were recruited. Their ages ranged from 2-60 months. Nasopharyngeal aspirates specimens were collected from all children for rapid influenza A diagnostic test. Influenza A virus rapid test was positive in 47.5% of the children; the majority (89.6%) were presented with lower respiratory tract infections. Respiratory rate and temperature were significantly higher among positive rapid influenza test patients. Influenza A virus infection is still a major cause of respiratory tract infections in Egyptian children. It should be considered in all cases with cough and febrile episodes and influenza like symptoms even post swine flu pandemic. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  11. Design and performance of the CDC real-time reverse transcriptase PCR swine flu panel for detection of 2009 A (H1N1) pandemic influenza virus.

    Science.gov (United States)

    Shu, Bo; Wu, Kai-Hui; Emery, Shannon; Villanueva, Julie; Johnson, Roy; Guthrie, Erica; Berman, LaShondra; Warnes, Christine; Barnes, Nathelia; Klimov, Alexander; Lindstrom, Stephen

    2011-07-01

    Swine influenza viruses (SIV) have been shown to sporadically infect humans and are infrequently identified by the Influenza Division of the Centers for Disease Control and Prevention (CDC) after being received as unsubtypeable influenza A virus samples. Real-time reverse transcriptase PCR (rRT-PCR) procedures for detection and characterization of North American lineage (N. Am) SIV were developed and implemented at CDC for rapid identification of specimens from cases of suspected infections with SIV. These procedures were utilized in April 2009 for detection of human cases of 2009 A (H1N1) pandemic (pdm) influenza virus infection. Based on genetic sequence data derived from the first two viruses investigated, the previously developed rRT-PCR procedures were optimized to create the CDC rRT-PCR Swine Flu Panel for detection of the 2009 A (H1N1) pdm influenza virus. The analytical sensitivity of the CDC rRT-PCR Swine Flu Panel was shown to be 5 copies of RNA per reaction and 10(-1.3 - -0.7) 50% infectious doses (ID(50)) per reaction for cultured viruses. Cross-reactivity was not observed when testing human clinical specimens or cultured viruses that were positive for human seasonal A (H1N1, H3N2) and B influenza viruses. The CDC rRT-PCR Swine Flu Panel was distributed to public health laboratories in the United States and internationally from April 2009 until June 2010. The CDC rRT-PCR Swine Flu Panel served as an effective tool for timely and specific detection of 2009 A (H1N1) pdm influenza viruses and facilitated subsequent public health response implementation.

  12. Finding a new drug and vaccine for emerging swine flu: What is the concept?

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2009-08-01

    Full Text Available Viroj WiwanitkitWiwanitkit House, Bangkhae, Bangkok 10160Abstract: Influenza is a well known infection of the respiratory system. The main clinical manifestations of influenza include fever, sore throat, headache, cough, coryza, and malaise. Apart from the well known classical influenza, there are also groups of influenza virus infections that are called “atypical infection”. These infections are usually due to a novel influenza virus infection. In early 2009, an emerging novel influenza originating from Mexico called swine flu was reported. The World Health Organization noted a level VI precaution, the highest level precaution possible, for this newest influenza virus infection. As of June 2009, it is not known if this disease will be successfully controlled. Finding new drugs and vaccine for the emerging swine flu is still required to cope with this emerging worldwide problem.Keywords: swine flu, drug, vaccine, concept

  13. Public views of the uk media and government reaction to the 2009 swine flu pandemic

    Directory of Open Access Journals (Sweden)

    Smith Emily

    2010-11-01

    Full Text Available Abstract Background The first cases of influenza A/H1N1 (swine flu were confirmed in the UK on 27th April 2009, after a novel virus first identified in Mexico rapidly evolved into a pandemic. The swine flu outbreak was the first pandemic in more than 40 years and for many, their first encounter with a major influenza outbreak. This study examines public understandings of the pandemic, exploring how people deciphered the threat and perceived they could control the risks. Methods Purposive sampling was used to recruit seventy three people (61 women and 12 men to take part in 14 focus group discussions around the time of the second wave in swine flu cases. Results These discussions showed that there was little evidence of the public over-reacting, that people believed the threat of contracting swine flu was inevitable, and that they assessed their own self-efficacy for protecting against it to be low. Respondents assessed a greater risk to their health from the vaccine than from the disease. Such findings could have led to apathy about following the UK Governments recommended health protective behaviours, and a sub-optimal level of vaccine uptake. More generally, people were confused about the difference between seasonal influenza and swine flu and their vaccines. Conclusions This research suggests a gap in public understandings which could hinder attempts to communicate about novel flu viruses in the future. There was general support for the government's handling of the pandemic, although its public awareness campaign was deemed ineffectual as few people changed their current hand hygiene practices. There was less support for the media who were deemed to have over-reported the swine flu pandemic.

  14. CDC Recommendations to Reduce the Risk of H3N2v Flu Virus Infection for Fairgoers and Swine Exhibitors

    Centers for Disease Control (CDC) Podcasts

    2012-09-10

    In this podcast, Dr. Lyn Finelli discusses CDC’s recommendations for reducing the risk of infection with H3N2v flu viruses for fairgoers and swine exhibitors.  Created: 9/10/2012 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/10/2012.

  15. Knowledge, Attitude and Practices regarding Swine Flu among adult population

    Directory of Open Access Journals (Sweden)

    Harjot Kaur

    2015-09-01

    Full Text Available Introduction: Prevention is the most appropriate measure to control H1N1 flu pandemic and awareness of H1N1 flu is ranked very high in preventive measures. Keeping this in view, study was designed to assess the awareness level and to compare it among urban and rural participants. Aims and objectives: To assess the knowledge, attitude and practices regarding swine flu among adult population, to assess whether there is any difference among rural and urban population and to assess the response generated by the media coverage and the Government efforts.Methods: This cross-sectional study was done from April to July 2015 on 300 houses from the urban area and 150 houses from rural area, chosen from study population by random sampling. Mean and standard deviation for continuous variables and percentages for categorical were calculated. Results: 94% of urban and 91.3% of the rural participants had previously heard about swine flu, main source being TV. 46% of urban and 74% of rural participants had myth about spread of swine flu by eating pork. 41.3% of urban and 8.7% of rural population thought that government measures are sufficient for controlling swine flu. Conclusion: Knowledge regarding swine flu pandemic is good among study participants but role of health care providers is minimal and requires more dedicated effort. Lack of awareness among study population regarding some key focus areas like health promoting habits, vaccination and myths regarding the spread is of serious concern and needs to be addressed by the media, health workers and the Government efforts

  16. Pandemic H1N1 2009 ('swine flu'): diagnostic and other challenges.

    Science.gov (United States)

    Burkardt, Hans-Joachim

    2011-01-01

    Pandemic H1N1 2009 ('swine flu') virus was 'the virus of the year 2009' because it affected the lives of many people in this year. H1N1 was first described in California in April 2009 and spread very rapidly all over the globe. The fast global penetration of the swine flu caused the WHO in Geneva to call the infection with H1N1 a new pandemic with a rapid escalation of the different pandemic phases that ended on 11 June 2009, with the declaration of phase 6 (full-blown pandemic). This had far-reaching consequences for the local health authorities in the different affected countries and created awareness in the public and fear in the experts and even more so in many lay people. The consequences were: setting up reliable diagnostic tests as soon as possible; enhanced production, distribution and stock creation of the few drugs that were available to treat newly infected persons; and development, production, distribution and stock creation of new and appropriate anti-H1N1 swine flu vaccines. This all resulted in enormous costs in the local healthcare systems and also required smart and diligent logistics, because demand for all this was, in most cases, much higher than availability. Fortunately, the pandemic ended quite quickly (there was no 'second wave' as had been anticipated by some experts) and the death toll was moderate, compared with other influenza pandemic in the past and even to the regular annual appearance of the seasonal flu. This favorable outcome, however, provoked some harsh criticism that the WHO and healthcare systems in general had over-reacted and by doing so, a lot of money was thrown out of the window. This article describes the history of the H1N1 pandemic, the diagnostic challenges and resolutions, touches on treatment and vaccination very briefly and also comments on the criticism and arguments that came up immediately at the end and following the termination of the pandemic situation.

  17. Design and Performance of the CDC Real-Time Reverse Transcriptase PCR Swine Flu Panel for Detection of 2009 A (H1N1) Pandemic Influenza Virus▿†‡

    Science.gov (United States)

    Shu, Bo; Wu, Kai-Hui; Emery, Shannon; Villanueva, Julie; Johnson, Roy; Guthrie, Erica; Berman, LaShondra; Warnes, Christine; Barnes, Nathelia; Klimov, Alexander; Lindstrom, Stephen

    2011-01-01

    Swine influenza viruses (SIV) have been shown to sporadically infect humans and are infrequently identified by the Influenza Division of the Centers for Disease Control and Prevention (CDC) after being received as unsubtypeable influenza A virus samples. Real-time reverse transcriptase PCR (rRT-PCR) procedures for detection and characterization of North American lineage (N. Am) SIV were developed and implemented at CDC for rapid identification of specimens from cases of suspected infections with SIV. These procedures were utilized in April 2009 for detection of human cases of 2009 A (H1N1) pandemic (pdm) influenza virus infection. Based on genetic sequence data derived from the first two viruses investigated, the previously developed rRT-PCR procedures were optimized to create the CDC rRT-PCR Swine Flu Panel for detection of the 2009 A (H1N1) pdm influenza virus. The analytical sensitivity of the CDC rRT-PCR Swine Flu Panel was shown to be 5 copies of RNA per reaction and 10−1.3∼−0.7 50% infectious doses (ID50) per reaction for cultured viruses. Cross-reactivity was not observed when testing human clinical specimens or cultured viruses that were positive for human seasonal A (H1N1, H3N2) and B influenza viruses. The CDC rRT-PCR Swine Flu Panel was distributed to public health laboratories in the United States and internationally from April 2009 until June 2010. The CDC rRT-PCR Swine Flu Panel served as an effective tool for timely and specific detection of 2009 A (H1N1) pdm influenza viruses and facilitated subsequent public health response implementation. PMID:21593260

  18. Isolation of a Reassortant H1N2 Swine Flu Strain of Type “Swine-Human-Avian” and Its Genetic Variability Analysis

    Directory of Open Access Journals (Sweden)

    Long-Bai Wang

    2018-01-01

    Full Text Available We isolated an influenza strain named A/Swine/Fujian/F1/2010 (H1N2 from a pig suspected to be infected with swine flu. The results of electron microscopy, hemagglutination (HA assay, hemagglutination inhibition (HI assay, and whole genome sequencing analysis suggest that it was a reassortant virus of swine (H1N1 subtype, human (H3N2 subtype, and avian influenza viruses. To further study the genetic evolution of A/Swine/Fujian/F1/2010 (H1N2, we cloned its whole genome fragments using RT-PCR and performed phylogenetic analysis on the eight genes. As a result, the nucleotide sequences of HA, NA, PB1, PA, PB2, NP, M, and NS gene are similar to those of A/Swine/Shanghai/1/2007(H1N2 with identity of 98.9%, 98.9%, 99.0%, 98.6%, 99.0%, 98.9%, 99.3%, and 99.3%, respectively. Similar to A/Swine/Shanghai/1/2007(H1N2, we inferred that the HA, NP, M, and NS gene fragments of A/Swine/Fujian/F1/2010 (H1N2 strain were derived from classical swine influenza H3N2 subtype, NA and PB1 were derived from human swine influenza H3N2 subtype, and PB2 and PA genes were derived from avian influenza virus. This further validates the role of swine as a “mixer” for influenza viruses.

  19. Population dynamics of swine influenza virus in finishing pigs

    NARCIS (Netherlands)

    Loeffen, W.L.A.

    2008-01-01

    Influenza virus infections in swine were first noticed in the US in 1918, during the human pandemic of the Spanish flu. In Europe, seroprevalences for the three most common swine influenza strains at the moment, H1N1, H3N2 and H1N2, range from 20-80% in finishing pigs at the end of the finishing

  20. Swine-Flu Plans Put E-Learning in the Spotlight

    Science.gov (United States)

    Davis, Michelle R.; Ash, Katie

    2009-01-01

    Last school year, many educators were caught unprepared when schools closed in response to cases of swine flu. This time around, both the federal government and school districts are putting specific online-learning measures in place to get ready for possible closures or waves of teacher and student absences because of a flu outbreak. To prepare…

  1. A study of the swine flu (H1N1 epidemic among health care providers of a medical college hospital of Delhi

    Directory of Open Access Journals (Sweden)

    Om Prakash Rajoura

    2011-01-01

    Full Text Available Background: Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. Understanding the role of specific perceptions in motivating people to engage in precautionary behavior may help health communicators to improve their messages about outbreaks of new infectious disease generally and swine flu specifically. Objectives: To study the knowledge and practices of health care providers regarding swine flu and to study the attitudes and practices of health care providers toward the prevention of the swine flu epidemic. Materials and Methods: The present study was a cross-sectional (descriptive study and was conducted in the month of September, 2009, among doctors and nurses. A maximum of 40% of the total health care providers of GTB Hospital were covered because of feasibility and logistics, and, therefore, the sample size was 334. Results: Around 75% of the health care providers were aware about the symptoms of swine flu. Mostly, all study subjects were aware that it is transmitted through droplet infection. Correct knowledge of the incubation period of swine flu was known to 80% of the doctors and 69% of the nurses. Knowledge about high-risk groups (contacts, travelers, health care providers was observed among 88% of the doctors and 78.8% of the nurses. Practice of wearing mask during duty hours was observed among 82.6% of doctors and 85% of nurses, whereas of the total study population, only 40% were correctly using mask during duty hours. Conclusions: Significant gaps observed between knowledge and actual practice of the Health Care Provider regarding swine flu need to be filled by appropriate training. Data indicate that the health care providers are very intellectual, but they do not themselves practice what they preach.

  2. Modelling the Growth of Swine Flu

    Science.gov (United States)

    Thomson, Ian

    2010-01-01

    The spread of swine flu has been a cause of great concern globally. With no vaccine developed as yet, (at time of writing in July 2009) and given the fact that modern-day humans can travel speedily across the world, there are fears that this disease may spread out of control. The worst-case scenario would be one of unfettered exponential growth.…

  3. Acute necrotizing encephalopathy of childhood: a fatal complication of swine flu

    International Nuclear Information System (INIS)

    Khan, M.R.; Maheshwari, P.K.; Haque, A.

    2010-01-01

    Acute necrotizing encephalopathy of childhood (ANEC) is a rare condition characterized by the presence of multifocal symmetrical brain lesions involving mainly thalami, brainstem, cerebellum and white matter. ANEC is a serious and life threatening complication of simple viral infections. We present a case of a young child who developed this condition with classical clinical and radiological findings consistent with ANEC, secondary to swine flu (H1N1). He needed ventilatory support and had profound motor and intellectual deficit on discharge. We report this case with aim of raising awareness about this fatal complication of swine flu which has become a global health care issue these days. (author)

  4. Initial psychological responses to Influenza A, H1N1 ("Swine flu"

    Directory of Open Access Journals (Sweden)

    Neto Felix

    2009-10-01

    Full Text Available Abstract Background The outbreak of the pandemic flu, Influenza A H1N1 (Swine Flu in early 2009, provided a major challenge to health services around the world. Previous pandemics have led to stockpiling of goods, the victimisation of particular population groups, and the cancellation of travel and the boycotting of particular foods (e.g. pork. We examined initial behavioural and attitudinal responses towards Influenza A, H1N1 ("Swine flu" in the six days following the WHO pandemic alert level 5, and regional differences in these responses. Methods 328 respondents completed a cross-sectional Internet or paper-based questionnaire study in Malaysia (N = 180 or Europe (N = 148. Measures assessed changes in transport usage, purchase of preparatory goods for a pandemic, perceived risk groups, indicators of anxiety, assessed estimated mortality rates for seasonal flu, effectiveness of seasonal flu vaccination, and changes in pork consumption Results 26% of the respondents were 'very concerned' about being a flu victim (42% Malaysians, 5% Europeans, p Conclusion Initial responses to Influenza A show large regional differences in anxiety, with Malaysians more anxious and more likely to reduce travel and to buy masks and food. Discussions with family and friends may reinforce existing anxiety levels. Particular groups (homosexuals, prostitutes, the homeless are perceived as at greater risk, potentially leading to increased prejudice during a pandemic. Europeans underestimated mortality of seasonal flu, and require more information about the protection given by seasonal flu inoculation.

  5. Molecular epidemiology of novel swine origin influenza virus (S-OIV from Gwalior, India, 2009

    Directory of Open Access Journals (Sweden)

    Shukla Jyoti

    2011-06-01

    Full Text Available Abstract Background The H1N1pandemic virus is a newly emergent human influenza A virus that is closely related to a number of currently circulating pig viruses in the 'classic North American' and 'Eurasian' swine influenza virus lineages and thus referred as S-OIV. Since the first reports of the virus in humans in April 2009, H1N1 virus has spread to 168 countries and overseas territories. India also witnessed severe H1N1 pandemic virus epidemic with considerable morbidity and mortality in different parts starting from May 2009. Findings The suspected swine flu outbreak from Gwalior India during October- December 2009 was confirmed through S-OIV HA gene specific RT-LAMP and real time RT-PCR. Positive samples through CDC real time and Lamp assay were further processed for isolation of the virus. Full HA gene sequencing of the H1N1 isolates of Gwalior, India revealed 99% homology with California and other circulating novel swine flu viruses. Three major changes were observed at nucleotide level, while two major amino acid shifts were observed at the position C9W and I30M corresponding to the ORF with prototype strain. The HA gene sequence phylogeny revealed the circulation of two genetically distinct lineages belonging to Clade VII and Clade I of S-OIV. Conclusions Our findings also supported the earlier report about circulation of mixed genogroups of S-OIV in India. Therefore continuous monitoring of the genetic makeup of this newly emergent virus is essential to understand its evolution within the country.

  6. Key Facts about Influenza (Flu) and Flu Vaccine

    Science.gov (United States)

    ... Swine Variant Pandemic Other Key Facts About Influenza (Flu) Language: English (US) Español Recommend on Facebook Tweet ... Flu Treating Flu What is Influenza (also called Flu)? The flu is a contagious respiratory illness caused ...

  7. Crying wolf? Biosecurity and metacommunication in the context of the 2009 swine flu pandemic.

    Science.gov (United States)

    Nerlich, Brigitte; Koteyko, Nelya

    2012-07-01

    This article explores how the 2009 pandemic of swine flu (H1N1) intersected with issues of biosecurity in the context of an increasing entanglement between the spread of disease and the spread of information. Drawing on research into metacommunication, the article studies the rise of communication about ways in which swine flu was communicated, both globally and locally, during the pandemic. It examines and compares two corpora of texts, namely UK newspaper articles and blogs, written between 28 March and 11 June 2009, that is, the period from the start of the outbreak till the WHO announcement of the pandemic. Findings show that the interaction between traditional and digital media as well as the interaction between warnings about swine flu and previous warnings about other epidemics contributed to a heightened discourse of blame and counter-blame but also, more surprisingly, self-blame and reflections about the role the media in pandemic communication. The consequences of this increase in metacommunication for research into crisis communication are explored. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Insights from investigating the interactions of adamantane-based drugs with the M2 proton channel from the H1N1 swine virus

    International Nuclear Information System (INIS)

    Wang, Jing-Fang; Wei, Dong-Qing; Chou, Kuo-Chen

    2009-01-01

    The M2 proton channel is one of indispensable components for the influenza A virus that plays a vital role in its life cycle and hence is an important target for drug design against the virus. In view of this, the three-dimensional structure of the H1N1-M2 channel was developed based on the primary sequence taken from a patient recently infected by the H1N1 (swine flu) virus. With an explicit water-membrane environment, molecular docking studies were performed for amantadine and rimantadine, the two commercial drugs generally used to treat influenza A infection. It was found that their binding affinity to the H1N1-M2 channel is significantly lower than that to the H5N1-M2 channel, fully consistent with the recent report that the H1N1 swine virus was resistant to the two drugs. The findings and the relevant analysis reported here might provide useful structural insights for developing effective drugs against the new swine flu virus.

  9. Swine-Flu Scare Offers Lessons for Study-Abroad Programs

    Science.gov (United States)

    Fischer, Karin

    2009-01-01

    Reports of swine flu have led some colleges to pull students and faculty members out of Mexico, the epicenter of the outbreak, and to cancel study-abroad programs there. But even as the number of new cases appears to be falling, the health scare offers some lasting lessons for colleges, says Gary Rhodes, director of the Center for Global Education…

  10. [Differentiation of influenza (Flu) type A, type B, and respiratory syncytial virus (RSV) by QuickNavi™-Flu+RSV].

    Science.gov (United States)

    Kohiyama, Risa; Miyazawa, Takashi; Shibano, Nobuko; Inano, Koichi

    2014-01-01

    Because it is not easy to differentiate Influenza virus (Flu) from RS virus (RSV) just by clinical symptoms, to accurately diagnose those viruses in conjunction with patient's clinical symptoms, rapid diagnostic kits has been used separately for each of those viruses. In our new study, we have developed a new rapid diagnostic kit, QuickNavi™-Flu+RSV. The kit can detect Flu A, Flu B, and RSV antigens with a single sample collection and an assay. Total of 2,873 cases (including nasopharyngeal swabs and nasopharyngeal aspirates specimens) in 2010/2011 and 2011/2012 seasons were evaluated with QuickNavi™-Flu+RSV and a commercially available kit. Sensitivity, specificity, and accuracy of Flu type A, type B, and RSV were above 95% when compared to commercially available kits (QuickNavi™-Flu and QuickNavi™-RSV) and considered to be equivalent to the commercially available kits. In 2011/2012 season, RSV infections increased prior to Flu season and continued during the peak of the Flu season. The kit can contribute to accurate diagnosis of Flu and RSV infections since co-infection cases have also been reported during the 2011/2012 season. QuickNavi™-Flu+RSV is useful for differential diagnosis of respiratory infectious diseases since it can detect Flu type A, type B, and RSV virus antigens with a single sample collection.

  11. Genetic Reassortment Among the Influenza Viruses (Avian Influenza, Human Influenza and Swine Influenza in Pigs

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2012-12-01

    Full Text Available Influenza A virus is a hazardous virus and harm to respiratory tract. The virus infect birds, pigs, horses, dogs, mammals and humans. Pigs are important hosts in ecology of the influenza virus because they have two receptors, namely NeuAc 2,3Gal and NeuAc 2,6Gal which make the pigs are sensitive to infection of influenza virus from birds and humans and genetic reassortment can be occurred. Classical swine influenza H1N1 viruses had been circulated in pigs in North America and other countries for 80 years. In 1998, triple reassortant H3N2 swine influenza viruses that contains genes of human influenza A virus (H3N2, swine influenza virus (H1N1 and avian influenza are reported as cause an outbreaks in pigs in North America. Furthermore, the circulation of triple reassortant H3N2 swine influenza virus resulting reassortant H1N1 swine influenza and reassortant H1N2 swine influenza viruses cause infection in humans. Humans who were infected by triple reassortant swine influenza A virus (H1N1 usually made direct contact with pigs. Although without any clinical symptoms, pigs that are infected by triple reassortant swine influenza A (H1N1 can transmit infection to the humans around them. In June 2009, WHO declared that pandemic influenza of reassortant H1N1 influenza A virus (novel H1N1 has reached phase 6. In Indonesia until 2009, there were 1005 people were infected by H1N1 influenza A and 5 of them died. Novel H1N1 and H5N1 viruses have been circulated in humans and pigs in Indonesia. H5N1 reassortant and H1N1 viruses or the seasonal flu may could arise because of genetic reassortment between avian influenza and humans influenza viruses that infect pigs together.

  12. Diagnosing Flu

    Science.gov (United States)

    ... Types Seasonal Avian Swine Variant Pandemic Other Diagnosing Flu Questions & Answers Language: English (US) Español Recommend on ... How do I know if I have the flu? Your respiratory illness might be the flu if ...

  13. A rapid method for assessing social versus independent interest in health issues: a case study of 'bird flu' and 'swine flu'.

    Science.gov (United States)

    Bentley, R Alexander; Ormerod, Paul

    2010-08-01

    Effective communication strategies regarding health issues are affected by the way in which the public obtain their knowledge, particularly whether people become interested independently, or through their social networks. This is often investigated through localized ethnography or surveys. In rapidly-evolving situations, however, there may also be a need for swift, case-specific assessment as a guide to initial strategy development. With this aim, we analyze real-time online data, provided by the new 'Google Trends' tool, concerning Internet search frequency for health-related issues. To these data we apply a simple model to characterise the effective degree of social transmission versus decisions made individually. As case examples, we explore two rapidly-evolved issues, namely the world-wide interest in avian influenza, or 'bird flu', in 2005, and in H1N1, or 'swine flu', from late April to early May 2009. The 2005 'bird flu' scare demonstrated almost pure imitation for two months initially, followed by a spike of independent decision that corresponded with an announcement by US president George Bush. For 'swine flu' in 2009, imitation was the more prevalent throughout. Overall, the results show how interest in health scares can spread primarily by social means, and that engaging more independent decisions at the population scale may require a dramatic announcement to push a populace over the 'tipping point'. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Potential of Complementary and Alternative Medicine in Preventive Management of Novel H1N1 Flu (Swine Flu Pandemic: Thwarting Potential Disasters in the Bud

    Directory of Open Access Journals (Sweden)

    Rajesh Arora

    2011-01-01

    Full Text Available The emergence of novel H1N1 has posed a situation that warrants urgent global attention. Though antiviral drugs are available in mainstream medicine for treating symptoms of swine flu, currently there is no preventive medicine available. Even when available, they would be in short supply and ineffective in a pandemic situation, for treating the masses worldwide. Besides the development of drug resistance, emergence of mutant strains of the virus, emergence of a more virulent strain, prohibitive costs of available drugs, time lag between vaccine developments, and mass casualties would pose difficult problems. In view of this, complementary and alternative medicine (CAM offers a plethora of interesting preventive possibilities in patients. Herbs exhibit a diverse array of biological activities and can be effectively harnessed for managing pandemic flu. Potentially active herbs can serve as effective anti influenza agents. The role of CAM for managing novel H1N1 flu and the mode of action of these botanicals is presented here in an evidence-based approach that can be followed to establish their potential use in the management of influenza pandemics. The complementary and alternative medicine approach deliberated in the paper should also be useful in treating the patients with serious influenza in non pandemic situations.

  15. Flu Vaccine Safety Information

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other Flu Vaccine Safety Information Questions & Answers Language: English (US) ... safety of flu vaccines monitored? Egg Allergy Are flu vaccines safe? Flu vaccines have good safety record. ...

  16. Flu Symptoms & Complications

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other Flu Symptoms & Complications Language: English (US) Español Recommend on ... not everyone with flu will have a fever. Flu Complications Most people who get influenza will recover ...

  17. Swine Flu, in the Spanish Press/La ‘gripe A’, en la prensa española

    Directory of Open Access Journals (Sweden)

    Dra. Idoia Camacho Markina

    2009-01-01

    Full Text Available Abstract: Mass media are faced with an exceptional challenge when they cover an epidemic, since the role of the media is to offer the most complete and accurate information in order to avoid spreading panic. However, many media outlets have been guided by financial reasons rather than public service criteria when they have covered the latest epidemic outbreak, which has resulted in a sensationalist coverage. The goal of this paper is to analyze the news coverage given by Spanish dailies to the outbreak and spread of the Novel H1N1 Virus, commonly known as the Swine Flu. This research points to the role played by print media in the coverage of this particular issue after a content analysis of the news articles published by the main five Spanish dailies during the first week after the Swine Flu outbreak.Resumen: Informar sobre epidemias constituye una situación excepcional para los medios de comunicación, cuya función debe ser ofrecer al público la información más completa posible para evitar que se extienda el pánico. Sin embargo, en las últimas epidemias muchos medios se han guiado más por criterios económicos, buscando el sensacionalismo, que por criterios de servicio público. El presente trabajo tiene como objetivo estudiar el tratamiento informativo que la prensa escrita diaria española ha hecho del brote de epidemia del virus de influenza A (H1/N1. El análisis de contenido de las noticias publicadas por los cinco diarios españoles de mayor difusión en la primera semana desde que se conoció la epidemia nos indica qué papel ha adoptado la prensa en esta ocasión.

  18. MODEL SEIR UNTUK EPIDEMI FLU BABI PADA POPULASI BABI DENGAN LAJU KONTAK JENUH

    Directory of Open Access Journals (Sweden)

    M Kharis

    2012-09-01

    Full Text Available Babi merupakan inang alami dari virus influensa yang secara anatomis, fisiologis, dan imunitas mirip (similar dengan yang ada pada manusia. Virus influenza subtipe A yang ada pada manusia yaitu H1N1, H3N2 dan H1N2 merupakan enzootic pada populasi babi di dunia. babi dapat terinfeksi oleh turunan-turunan virus influenza tipe A dari manusia maupun dari burung dan dalam hal ini dianggap sebagai inang sementara (Intermediate hosts dari turunan-turunan virus flu babi yang berpotensi menyebabkan epidemi bahkan pandemi. Evolusi antigenik dari virus influenza pada babi terjadi dengan laju sekitar 6 kali lebih lambat dibandingkan dengan virus influenza pada manusia. Dalam tulisan ini akan dikaji model matematika untuk epidemi flu babi pada populasi babi. Model yang diberikan merupakan model deterministik dengan laju kontak jenuh yang merupakan perumuman dari laju kontak standar. Perumuman ini dinyatakan dengan adanya probabilitas suatu individu melakukan kontak yang dinyatakan sebagai suatu fungsi dari populasi. Pengkajian yang dilakukan meliputi penentuan titik ekuilibrium model matematika dan analisa kestabilannya. Diharapkan hasil kajian ini dapat bermanfaat dalam penanggulangan wabah flu babi pada sumber utama yaitu populasi babi sehingga dapat dilakukan pencegahan sebelum mewabah di populasi manusia. Pigs are a natural host of influenza virus that are similar anatomically, physiologically, and immunity which in humans. Influenza viruses of A subtype in humans are H1N1, H3N2 and H1N2. They are enzootic in the swine population in the world. Pigs can be infected by strains of type A influenza viruses from humans or from birds. Pigs are considered as a temporary host (intermediate hosts of the derivatives of the swine flu virus that has the potential to cause epidemics and even pandemics. Antigenic evolution of influenza viruses in pigs occurred at rate about 6 times slower than the influenza viruses in humans. In this paper the mathematical model

  19. Swine Flu: Knowledge, Attitude, and Practices Survey of Medical and Dental Students of Karachi.

    Science.gov (United States)

    Hasan, Fariha; Khan, Mohammad O; Ali, Mukarram

    2018-01-09

    Introduction Pakistan is extremely susceptible to an influenza outbreak, as it shares borders with the most affected countries, namely China and India. The medical and dental students come into direct contact with the affected population and should be aware of the risk factors and signs and symptoms pertaining to swine influenza virus (SIV). Hence, this survey was conducted to assess the knowledge, perceptions and self-care practices of the medical and dental students with regards to this pandemic. Methods A descriptive, cross-sectional study was conducted to evaluate the swine flu-related knowledge, attitudes and practices of the medical and dental students at various institutions in Karachi, Pakistan. We approached 613 students that were available on the dates of this survey, keeping a medical to dental student ratio of 75:25. All students from first to final year comprised of the study population, and no internists or medical personnel were included. The questionnaire was divided into three sections, namely knowledge, attitudes and, practices. All questions were based on a multiple choice format. The data were entered and interpreted using the IBM Statistical Package for the Social Sciences 23.0 (IBM Corp., Armonk, New York). Results The majority of the students were aware that the swine flu is a transmittable disease (n=485, 80.8%). Most students identified the signs and symptoms correctly; however, diarrhea (15.5%) and vomiting (32.2%) were the least correct answers (n=93, n=193 respectively). Most of the preventative measures were reported accurately by the participants. Despite this, only 15.5% students (n=93) reported the use of a facemask when suffering from fever, cough and a runny nose. Conclusion There is a dire need for the routine integration of the awareness and management programs in the medical and dental schools. There exists a gap between the policy and practice, and it is high time we bridge the divide. The students should also be vaccinated

  20. Pathogenesis of swine influenza virus (Thai isolates in weanling pigs: an experimental trial

    Directory of Open Access Journals (Sweden)

    Kitikoon Pravina

    2009-03-01

    Full Text Available Abstract Background The objective of this study is to investigate the pathogenesis of swine influenza virus (SIV subtype H1N1 and H3N2 (Thai isolates in 22-day-old SPF pigs. Results The study found that all pigs in the infected groups developed typical signs of flu-like symptoms on 1–4 days post- infection (dpi. The H1N1-infected pigs had greater lung lesion scores than those of the H3N2-infected pigs. Histopathological lesions related to swine influenza-induced lesions consisting of epithelial cells damage, airway plugging and peribronchial and perivascular mononuclear cell infiltration were present in both infected groups. Immunofluorescence and immunohistochemistry using nucleoprotein specific monoclonal antibodies revealed positive staining cells in lung sections of both infected groups at 2 and 4 dpi. Virus shedding was detected at 2 dpi from both infected groups as demonstrated by RT-PCR and virus isolation. Conclusion The results demonstrated that both SIV subtypes were able to induce flu-like symptoms and lung lesions in weanling pigs. However the severity of the diseases with regards to lung lesions both gross and microscopic lesions was greater in the H1N1-infected pigs. Based on phylogenetic analysis, haemagglutinin gene of subtype H1N1 from Thailand clustered with the classical H1 SIV sequences and neuraminidase gene clustered with virus of avian origin, whereas, both genes of H3N2 subtype clustered with H3N2 human-like SIV from the 1970s.

  1. FluReF, an automated flu virus reassortment finder based on phylogenetic trees.

    Science.gov (United States)

    Yurovsky, Alisa; Moret, Bernard M E

    2011-01-01

    Reassortments are events in the evolution of the genome of influenza (flu), whereby segments of the genome are exchanged between different strains. As reassortments have been implicated in major human pandemics of the last century, their identification has become a health priority. While such identification can be done "by hand" on a small dataset, researchers and health authorities are building up enormous databases of genomic sequences for every flu strain, so that it is imperative to develop automated identification methods. However, current methods are limited to pairwise segment comparisons. We present FluReF, a fully automated flu virus reassortment finder. FluReF is inspired by the visual approach to reassortment identification and uses the reconstructed phylogenetic trees of the individual segments and of the full genome. We also present a simple flu evolution simulator, based on the current, source-sink, hypothesis for flu cycles. On synthetic datasets produced by our simulator, FluReF, tuned for a 0% false positive rate, yielded false negative rates of less than 10%. FluReF corroborated two new reassortments identified by visual analysis of 75 Human H3N2 New York flu strains from 2005-2008 and gave partial verification of reassortments found using another bioinformatics method. FluReF finds reassortments by a bottom-up search of the full-genome and segment-based phylogenetic trees for candidate clades--groups of one or more sampled viruses that are separated from the other variants from the same season. Candidate clades in each tree are tested to guarantee confidence values, using the lengths of key edges as well as other tree parameters; clades with reassortments must have validated incongruencies among segment trees. FluReF demonstrates robustness of prediction for geographically and temporally expanded datasets, and is not limited to finding reassortments with previously collected sequences. The complete source code is available from http://lcbb.epfl.ch/software.html.

  2. Flu Vaccine Safety and Pregnancy

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other Flu Vaccine Safety and Pregnancy Questions & Answers Language: English ( ... flu vaccine? Why should pregnant women get a flu shot? Flu is more likely to cause severe ...

  3. Determining symptoms for chest radiographs in patients with swine flu (H1N1)

    International Nuclear Information System (INIS)

    Al-Nakshabandi, Nizar A.

    2011-01-01

    The question arises about the chest X-ray findings and clinical symptoms in swine flu and about the most important clinical finding when correlated with the chest radiograph. Should physicians order a chest X-ray in each patient suspected of having swine flu? There were 179 patients with a high suspicion of swine flu. All 179 patients had an initial chest radiograph. As many as 65 males (representing 56% of the projected study population) had a normal chest radiograph, while 35 males (representing 55.6% of the study population) had an abnormal chest X-ray. As many as 51 females (representing 44% of the population) had a normal chest X-ray, while 20 females (representing 44% of the study population) had abnormal chest X-rays. Polymerase chain reaction (PCR) was not a determining factor for normal vs. abnormal chest X-ray (CXR). Rapid antigen test was not a determining factor for normal vs. abnormal CXR. Fever was not a determining factor for normal vs. abnormal CXR. Cough appears to be a determining factor for normal vs. abnormal CXR. Sore throat appears to be a determining factor for normal vs. abnormal CXR. Chest pain was not a determining factor for normal vs. abnormal CXR. Presence of cough with PCR was statistically significant. In my opinion, chest radiographs in patients with suspected H1N1 should only be obtained if there is a cough or sore throat. Other symptoms associated with H1N1 do not warrant a chest radiograph unless absolutely necessary

  4. Thimerosal in Flu Vaccine

    Science.gov (United States)

    ... Seasonal Avian Swine Variant Pandemic Other Thimerosal in Flu Vaccine Questions & Answers Language: English (US) Español Recommend ... and/or fungi from contaminating the vaccine. Do flu vaccines contain thimerosal? Flu vaccines in multi-dose ...

  5. Efficacy of influenza vaccination and tamiflu® treatment--comparative studies with Eurasian Swine influenza viruses in pigs.

    Directory of Open Access Journals (Sweden)

    Ralf Duerrwald

    Full Text Available Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain in two independent trials. In each trial (i 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection, (ii another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters. In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs.

  6. Efficacy of influenza vaccination and tamiflu® treatment--comparative studies with Eurasian Swine influenza viruses in pigs.

    Science.gov (United States)

    Duerrwald, Ralf; Schlegel, Michael; Bauer, Katja; Vissiennon, Théophile; Wutzler, Peter; Schmidtke, Michaela

    2013-01-01

    Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain) and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain) in two independent trials. In each trial (i) 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection), (ii) another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii) 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters. In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs.

  7. The impact of communications about swine flu (influenza A H1N1v) on public responses to the outbreak: results from 36 national telephone surveys in the UK.

    Science.gov (United States)

    Rubin, G J; Potts, H W W; Michie, S

    2010-07-01

    To assess the association between levels of worry about the possibility of catching swine flu and the volume of media reporting about it; the role of psychological factors in predicting likely uptake of the swine flu vaccine; and the role of media coverage and advertising in predicting other swine flu-related behaviours. Data from a series of random-digit-dial telephone surveys were analysed. A time series analysis tested the association between levels of worry and the volume of media reporting on the start day of each survey. Cross-sectional regression analyses assessed the relationships between likely vaccine uptake or behaviour and predictor variables. Thirty-six surveys were run at, on average, weekly intervals across the UK between 1 May 2009 and 10 January 2010. Five surveys (run between 14 August and 13 September) were used to assess likely vaccine uptake. Five surveys (1-17 May) provided data relating to other behaviours. Between 1047 and 1173 people aged 16 years or over took part in each survey: 5175 participants provided data about their likely uptake of the swine flu vaccine; 5419 participants provided data relating to other behaviours. All participants were asked to state how worried they were about the possibility of personally catching swine flu. Subsets were asked how likely they were to take up a swine flu vaccination if offered it and whether they had recently carried tissues with them, bought sanitising hand gel, avoided using public transport or had been to see a general practitioner, visited a hospital or called NHS Direct for a flu-related reason. The percentage of 'very' or 'fairly' worried participants fluctuated between 9.6% and 32.9%. This figure was associated with the volume of media reporting, even after adjusting for the changing severity of the outbreak [chi2(1) = 6.6, p = 0.010, coefficient for log-transformed data = 2.6]. However, this effect only occurred during the UK's first summer wave of swine flu. In total, 56.1% of

  8. Efficacy of Influenza Vaccination and Tamiflu® Treatment – Comparative Studies with Eurasian Swine Influenza Viruses in Pigs

    Science.gov (United States)

    Duerrwald, Ralf; Schlegel, Michael; Bauer, Katja; Vissiennon, Théophile; Wutzler, Peter; Schmidtke, Michaela

    2013-01-01

    Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebulisation with high doses of influenza virus A/swine/Potsdam/15/1981 (H1N1/1981, heterologous challenge to H1N1 vaccine strain) and A/swine/Bakum/1832/2000 (H1N2/2000, homologous challenge to H1N2 vaccine strain) in two independent trials. In each trial (i) 10 pigs were vaccinated twice with a trivalent vaccine (RESPIPORC® FLU3; 28 and 7 days before infection), (ii) another 10 pigs received 150 mg/day of Tamiflu® for 5 days starting 12 h before infection, and (iii) 12 virus-infected pigs were left unvaccinated and untreated and served as controls. Both viruses replicated efficiently in porcine respiratory organs causing influenza with fever, dyspnoea, and pneumonia. Tamiflu® treatment as well as vaccination prevented clinical signs and significantly reduced virus shedding. Whereas after homologous challenge with H1N2/2000 no infectious virus in lung and hardly any lung inflammation were detected, the virus titre was not and the lung pathology was only partially reduced in H1N1/1981, heterologous challenged pigs. Tamiflu® application did not affect these study parameters. In conclusion, all tested preventive measures provided protection against disease. Vaccination additionally prevented virus replication and histopathological changes in the lung of homologous challenged pigs. PMID:23630601

  9. Pathogens gone wild? Medical anthropology and the "swine flu" pandemic.

    Science.gov (United States)

    Singer, Merrill

    2009-07-01

    Beginning in April 2009, global attention began focusing on the emergence in Mexico of a potentially highly lethal new influenza strain of porcine origin that has successfully jumped species barriers and is now being transmitted around the world. Reported on extensively by the mass media, commented on by public health and government officials across the globe, and focused on with nervous attention by the general public, the so-called swine flu pandemic raises important questions, addressed here, concerning the capacity of medical anthropology to respond usefully to such disease outbreaks and their health and social consequences.

  10. Flublok Seasonal Influenza (Flu) Vaccination

    Science.gov (United States)

    ... type="submit" value="Submit" /> Archived Flu Emails Influenza Types Seasonal Avian Swine Variant Pandemic Other Flublok Seasonal Influenza (Flu) Vaccine Questions & Answers Language: English (US) Español ...

  11. Key Facts about Seasonal Flu Vaccine

    Science.gov (United States)

    ... Swine Variant Pandemic Other Key Facts About Seasonal Flu Vaccine Language: English (US) Español Recommend on Facebook ... the flu is to get vaccinated each year. Flu Vaccination Why should people get vaccinated against the ...

  12. H1N1 influenza ('swine 'flu') in the paediatric ICU in South Africa

    African Journals Online (AJOL)

    Schoub B. Swine flu – implications for South Africa. Communicable Diseases Surveillance. Bulletin 2009;7(3):5-7. 5. Ahrens JO, Morrow BM, Argent AC. Influenza A(H1N1)pdm09 in critically ill children admitted to a paediatric intensive care unit, South Africa. S Afr J Crit Care 2015;31(1):4-7. 6. Cox CM, Blanton L, Dhara R, ...

  13. Flu and People with Asthma

    Science.gov (United States)

    ... Swine Variant Pandemic Other Flu and People with Asthma Language: English (US) Español Recommend on Facebook Tweet ... Take Steps to Fight the Flu What is Asthma? Asthma is a lung disease that is caused ...

  14. Attitudinal Modeling of Affect, Behavior and Cognition: Semantic Mining of Disaster Text Corpus

    Science.gov (United States)

    2010-10-01

    known as H1N1, H1N2 , H3N1, H3N2, and H2N3. Swine influenza virus is common throughout pig populations worldwide. Transmission of the virus from pigs to...large region, for instance a continent, or even worldwide. Swine Flu Swine influenza (also called pig influenza , swine flu, hog flu and pig flu) is an...infection by any one of several types of swine influenza virus. Swine influenza virus (SIV) or S-OIV (swine- origin influenza virus) is any strain

  15. Swine influenza virus: zoonotic potential and vaccination strategies for the control of avian and swine influenzas.

    Science.gov (United States)

    Thacker, Eileen; Janke, Bruce

    2008-02-15

    Influenza viruses are able to infect humans, swine, and avian species, and swine have long been considered a potential source of new influenza viruses that can infect humans. Swine have receptors to which both avian and mammalian influenza viruses bind, which increases the potential for viruses to exchange genetic sequences and produce new reassortant viruses in swine. A number of genetically diverse viruses are circulating in swine herds throughout the world and are a major cause of concern to the swine industry. Control of swine influenza is primarily through the vaccination of sows, to protect young pigs through maternally derived antibodies. However, influenza viruses continue to circulate in pigs after the decay of maternal antibodies, providing a continuing source of virus on a herd basis. Measures to control avian influenza in commercial poultry operations are dictated by the virulence of the virus. Detection of a highly pathogenic avian influenza (HPAI) virus results in immediate elimination of the flock. Low-pathogenic avian influenza viruses are controlled through vaccination, which is done primarily in turkey flocks. Maintenance of the current HPAI virus-free status of poultry in the United States is through constant surveillance of poultry flocks. Although current influenza vaccines for poultry and swine are inactivated and adjuvanted, ongoing research into the development of newer vaccines, such as DNA, live-virus, or vectored vaccines, is being done. Control of influenza virus infection in poultry and swine is critical to the reduction of potential cross-species adaptation and spread of influenza viruses, which will minimize the risk of animals being the source of the next pandemic.

  16. Swine Influenza/Variant Influenza Viruses

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Influenza Types Seasonal Avian Swine Variant Pandemic Other Information on Swine Influenza/Variant Influenza Virus Language: English (US) Español Recommend ...

  17. STUDY OF FACTORS INFLUENCING EARLY SYMPTOMATIC IMPROVEMENT, RETURN TO NORMOXIA AND RADIOLOGICAL RESOLUTION IN SWINE FLU PATIENTS WITH RESPIRATORY FAILURE IN RICU

    Directory of Open Access Journals (Sweden)

    Vamsidhar Reddy Manne

    2017-05-01

    Full Text Available BACKGROUND Since 2009, swine influenza outbreaks have been recorded virtually every year, although their extent and severity have varied widely. Localised outbreaks are taking place at variable intervals, usually every 1-3 years. The most recent outbreak has been from December 2016 through April 2017. We still are in the midst of one. This study of factors influencing early clinical and radiological improvement and reversion to normoxia in swine flu patients with respiratory failure helps in saving precious lives. MATERIALS AND METHODS This is a cross-sectional study conducted at RICU, Department of Pulmonary Medicine, S.V.R.R. Government General Hospital/S.V. Medical College, Tirupathi, Andhra Pradesh, between January 2017 and April 2017. Study sample was the total number of swine flu patients admitted to the RICU of the Department of Pulmonary Medicine with respiratory failure. RESULTS Out of 42 patients who tested positive for swine flu, 37 had respiratory failure and were immediately admitted in RICU. Oxygen support, oseltamivir and higher antibiotics were immediately started, injectable steroids given where necessary. Comorbidities were meticulously managed. 19 were males and 18 were females. 21 patients (>50% were above 50 years. Cough and breathlessness were present in all patients (100%. At admission, all 37 showed SpO2 <85% and at discharge all of them were normoxic. 18 patients had either multilobar pneumonia or ARDS on CXR, which had resolved by the time of discharge. The shortest duration of stay was 7 days and the longest duration of stay was 11 days. 35 patients were discharged and 2 patients died. CONCLUSION Good oxygenation, starting of oseltamivir on day 1 of admission prevents further complications and hastens recovery. Swine flu patients with normal chest x-ray and no comorbidities can still end up with respiratory failure. Steroids decrease cough and breathlessness, but have no role in hastening recovery. No residual symptoms

  18. Mitigation approaches to combat the flu pandemic.

    Science.gov (United States)

    Chawla, Raman; Sharma, Rakesh Kumar; Madaan, Deepali; Dubey, Neha; Arora, Rajesh; Goel, Rajeev; Singh, Shefali; Kaushik, Vinod; Singh, Pankaj Kumar; Chabbra, Vivek; Bhardwaj, Janak Raj

    2009-07-01

    Management of flu pandemic is a perpetual challenge for the medical fraternity since time immemorial. Animal to human transmission has been observed thrice in the last century within an average range of 11-39 years of antigenic recycling. The recent outbreak of influenza A (H1N1, also termed as swine flu), first reported in Mexico on April 26, 2009, occurred in the forty first year since last reported flu pandemic (July 1968). Within less than 50 days, it has assumed pandemic proportions (phase VI) affecting over 76 countries with 163 deaths/35,928 cases (as on 15(th) June 2009). It indicated the re-emergence of genetically reassorted virus having strains endemic to humans, swine and avian (H5N1). The World Health Organisation (WHO) member states have already pulled up their socks and geared up to combat such criticalities. Earlier outbreaks of avian flu (H5N1) in different countries led WHO to develop pandemic preparedness strategies with national/regional plans on pandemic preparedness. Numerous factors related to climatic conditions, socio-economic strata, governance and sharing of information/logistics at all levels have been considered critical indicators in monitoring the dynamics of escalation towards a pandemic situation.The National Disaster Management Authority (NDMA), Government of India, with the active cooperation of UN agencies and other stakeholders/experts has formulated a concept paper on role of nonhealth service providers during pandemics in April 2008 and released national guidelines - management of biological disasters in July 2008. These guidelines enumerate that the success of medical management endeavors like pharmaceutical (anti-viral Oseltamivir and Zanamivir therapies), nonpharmaceutical interventions and vaccination development etc., largely depends on level of resistance offered by mutagenic viral strain and rationale use of pharmaco therapeutic interventions. This article describes the mitigation approach to combat flu pandemic with

  19. Pandemic Flu

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other Pandemic Influenza Language: English (US) Español Recommend on Facebook ... Planning State and Local Government Planning More 1918 Pandemic Flu Commemoration 100 years later, read about the ...

  20. The global antigenic diversity of swine influenza A viruses

    DEFF Research Database (Denmark)

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled...... with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential...

  1. Is it a policy crisis or it is a health crisis? The Egyptian context--analysis of the Egyptian health policy for the H1N1 flu pandemic control.

    Science.gov (United States)

    Seef, Sameh; Jeppsson, Anders

    2013-01-01

    A new influenza virus that was first detected in people in April 2009, was initially referred to colloquially as "swine flu", since it contained genes from swine, avian and human influenza viruses. It can, however, not be transmitted by eating pork or dealing with pigs. In Egypt, several hundred thousand pigs were killed in May, in spite of advice from global health authorities that such an action was unnecessary. Pigs are raised and consumed mainly by the Christian minority, which constitute some 10% of the population. Health Ministry estimated there were between 300,000-350,000 pigs in Egypt. This paper will analyze the Egyptian health policy for controlling the pandemic H1N1 flu, exploring its context, content, process, and actors. The analysis is based on the Leichter Context, which refers to systemic factors-political, economic and social, both national and international-that may have an effect on health policy, and is based on data collected from literature review and policy documents. The International health officials said the swine flu virus that has caused worldwide fear is not transmitted by pigs, and that pig slaughters do nothing to stop its spread. The WHO stopped using the term "swine flu" to avoid confusion. In Egypt, even the editor of a pro-government newspaper criticized the order to slaughter: "Killing (pigs) is not a solution, otherwise, we should kill the people, because the virus spreads through them," wrote Abdullah Kamal of the daily Rose El-Youssef. The World Health organization also criticized the decision. The extinction of the Egyptian pigs is an example of how a health issue can be used to persecute a minority within a country. Although the current influenza has nothing whatsoever to do with pigs, the previous name of the epidemic was used as an argument to violate the rights of the Christian minority in Egypt.

  2. Influenza D Virus Infection in Feral Swine Populations, United States.

    Science.gov (United States)

    Ferguson, Lucas; Luo, Kaijian; Olivier, Alicia K; Cunningham, Fred L; Blackmon, Sherry; Hanson-Dorr, Katie; Sun, Hailiang; Baroch, John; Lutman, Mark W; Quade, Bianca; Epperson, William; Webby, Richard; DeLiberto, Thomas J; Wan, Xiu-Feng

    2018-06-01

    Influenza D virus (IDV) has been identified in domestic cattle, swine, camelid, and small ruminant populations across North America, Europe, Asia, South America, and Africa. Our study investigated seroprevalence and transmissibility of IDV in feral swine. During 2012-2013, we evaluated feral swine populations in 4 US states; of 256 swine tested, 57 (19.1%) were IDV seropositive. Among 96 archived influenza A virus-seropositive feral swine samples collected from 16 US states during 2010-2013, 41 (42.7%) were IDV seropositive. Infection studies demonstrated that IDV-inoculated feral swine shed virus 3-5 days postinoculation and seroconverted at 21 days postinoculation; 50% of in-contact naive feral swine shed virus, seroconverted, or both. Immunohistochemical staining showed viral antigen within epithelial cells of the respiratory tract, including trachea, soft palate, and lungs. Our findings suggest that feral swine might serve an important role in the ecology of IDV.

  3. African Swine Fever Virus Biology and Vaccine Approaches.

    Science.gov (United States)

    Revilla, Yolanda; Pérez-Núñez, Daniel; Richt, Juergen A

    2018-01-01

    African swine fever (ASF) is an acute and often fatal disease affecting domestic pigs and wild boar, with severe economic consequences for affected countries. ASF is endemic in sub-Saharan Africa and the island of Sardinia, Italy. Since 2007, the virus emerged in the republic of Georgia, and since then spread throughout the Caucasus region and Russia. Outbreaks have also been reported in Belarus, Ukraine, Lithuania, Latvia, Estonia, Romania, Moldova, Czech Republic, and Poland, threatening neighboring West European countries. The causative agent, the African swine fever virus (ASFV), is a large, enveloped, double-stranded DNA virus that enters the cell by macropinocytosis and a clathrin-dependent mechanism. African Swine Fever Virus is able to interfere with various cellular signaling pathways resulting in immunomodulation, thus making the development of an efficacious vaccine very challenging. Inactivated preparations of African Swine Fever Virus do not confer protection, and the role of antibodies in protection remains unclear. The use of live-attenuated vaccines, although rendering suitable levels of protection, presents difficulties due to safety and side effects in the vaccinated animals. Several African Swine Fever Virus proteins have been reported to induce neutralizing antibodies in immunized pigs, and vaccination strategies based on DNA vaccines and recombinant proteins have also been explored, however, without being very successful. The complexity of the virus particle and the ability of the virus to modulate host immune responses are most likely the reason for this failure. Furthermore, no permanent cell lines able to sustain productive virus infection by both virulent and naturally attenuated African Swine Fever Virus strains exist so far, thus impairing basic research and the commercial production of attenuated vaccine candidates. © 2018 Elsevier Inc. All rights reserved.

  4. Protecting Against Influenza (Flu): Advice for Caregivers of Young Children

    Science.gov (United States)

    ... Avian Swine Variant Pandemic Other Protecting Against Influenza (Flu): Advice for Caregivers of Young Children Language: English ( ... from the flu. Advice on How to Prevent Flu for Caregivers of Young Children 1. Take Time ...

  5. Flu Shot

    Science.gov (United States)

    Flu is a respiratory infection caused by a number of viruses. Most people with the flu get better on their own. But it can ... cause complications and sometimes even death. Getting the flu vaccine every year is the best way to ...

  6. Avian Influenza (Bird Flu)

    Science.gov (United States)

    ... type="submit" value="Submit" /> Archived Flu Emails Influenza Types Seasonal Avian Swine Variant Pandemic Other Information on Avian Influenza Language: English (US) Español Recommend on Facebook Tweet ...

  7. Mitigation Approaches to Combat the Flu Pandemic

    Science.gov (United States)

    Chawla, Raman; Sharma, Rakesh Kumar; Madaan, Deepali; Dubey, Neha; Arora, Rajesh; Goel, Rajeev; Singh, Shefali; Kaushik, Vinod; Singh, Pankaj Kumar; Chabbra, Vivek; Bhardwaj, Janak Raj

    2009-01-01

    Management of flu pandemic is a perpetual challenge for the medical fraternity since time immemorial. Animal to human transmission has been observed thrice in the last century within an average range of 11-39 years of antigenic recycling. The recent outbreak of influenza A (H1N1, also termed as swine flu), first reported in Mexico on April 26, 2009, occurred in the forty first year since last reported flu pandemic (July 1968). Within less than 50 days, it has assumed pandemic proportions (phase VI) affecting over 76 countries with 163 deaths/35,928 cases (as on 15th June 2009). It indicated the re-emergence of genetically reassorted virus having strains endemic to humans, swine and avian (H5N1). The World Health Organisation (WHO) member states have already pulled up their socks and geared up to combat such criticalities. Earlier outbreaks of avian flu (H5N1) in different countries led WHO to develop pandemic preparedness strategies with national/regional plans on pandemic preparedness. Numerous factors related to climatic conditions, socio-economic strata, governance and sharing of information/logistics at all levels have been considered critical indicators in monitoring the dynamics of escalation towards a pandemic situation. The National Disaster Management Authority (NDMA), Government of India, with the active cooperation of UN agencies and other stakeholders/experts has formulated a concept paper on role of nonhealth service providers during pandemics in April 2008 and released national guidelines - management of biological disasters in July 2008. These guidelines enumerate that the success of medical management endeavors like pharmaceutical (anti-viral Oseltamivir and Zanamivir therapies), nonpharmaceutical interventions and vaccination development etc., largely depends on level of resistance offered by mutagenic viral strain and rationale use of pharmaco therapeutic interventions. This article describes the mitigation approach to combat flu pandemic with its

  8. Influenza A Viruses of Human Origin in Swine, Brazil.

    Science.gov (United States)

    Nelson, Martha I; Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-08-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil's swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009-2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance.

  9. Guillain-Barré Syndrome (GBS) and Flu Vaccine

    Science.gov (United States)

    ... Swine Variant Pandemic Other Guillain-Barré syndrome and Flu Vaccine Questions & Answers Language: English (US) Español Recommend ... it among people who have been vaccinated against flu? The background rate for GBS in the Unites ...

  10. [An overview on swine influenza viruses].

    Science.gov (United States)

    Yang, Shuai; Zhu, Wen-Fei; Shu, Yue-Long

    2013-05-01

    Swine influenza viruses (SIVs) are respiratory pathogens of pigs. They cause both economic bur den in livestock-dependent industries and serious global public health concerns in humans. Because of their dual susceptibility to human and avian influenza viruses, pigs are recognized as intermediate hosts for genetic reassortment and interspecies transmission. Subtypes H1N1, H1N2, and H3N2 circulate in swine populations around the world, with varied origin and genetic characteristics among different continents and regions. In this review, the role of pigs in evolution of influenza A viruses, the genetic evolution of SIVs and interspecies transmission of SIVs are described. Considering the possibility that pigs might produce novel influenza viruses causing more outbreaks and pandemics, routine epidemiological surveillance of influenza viruses in pig populations is highly recommended.

  11. Swine Influenza Virus Antibodies in Humans, Western Europe, 2009

    Science.gov (United States)

    Gerloff, Nancy A.; Kremer, Jacques R.; Charpentier, Emilie; Sausy, Aurélie; Olinger, Christophe M.; Weicherding, Pierre; Schuh, John; Van Reeth, Kristien

    2011-01-01

    Serologic studies for swine influenza viruses (SIVs) in humans with occupational exposure to swine have been reported from the Americas but not from Europe. We compared levels of neutralizing antibodies against 3 influenza viruses—pandemic (H1N1) 2009, an avian-like enzootic subtype H1N1 SIV, and a 2007–08 seasonal subtype H1N1—in 211 persons with swine contact and 224 matched controls in Luxembourg. Persons whose profession involved contact with swine had more neutralizing antibodies against SIV and pandemic (H1N1) 2009 virus than did the controls. Controls also had antibodies against these viruses although exposure to them was unlikely. Antibodies against SIV and pandemic (H1N1) 2009 virus correlated with each other but not with seasonal subtype H1N1 virus. Sequential exposure to variants of seasonal influenza (H1N1) viruses may have increased chances for serologic cross-reactivity with antigenically distinct viruses. Further studies are needed to determine the extent to which serologic responses correlate with infection. PMID:21392430

  12. Design of multiligand inhibitors for the swine flu H1N1 neuraminidase binding site

    Directory of Open Access Journals (Sweden)

    Narayanan MM

    2013-08-01

    Full Text Available Manoj M Narayanan,1,2 Chandrasekhar B Nair,2 Shilpa K Sanjeeva,2 PV Subba Rao,2 Phani K Pullela,1,2 Colin J Barrow11Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia; 2Bigtec Pvt Ltd, Rajajinagar, Bangalore, IndiaAbstract: Viral neuraminidase inhibitors such as oseltamivir and zanamivir prevent early virus multiplication by blocking sialic acid cleavage on host cells. These drugs are effective for the treatment of a variety of influenza subtypes, including swine flu (H1N1. The binding site for these drugs is well established and they were designed based on computational docking studies. We show here that some common natural products have moderate inhibitory activity for H1N1 neuraminidase under docking studies. Significantly, docking studies using AutoDock for biligand and triligand forms of these compounds (camphor, menthol, and methyl salicylate linked via methylene bridges indicate that they may bind in combination with high affinity to the H1N1 neuraminidase active site. These results also indicate that chemically linked biligands and triligands of these natural products could provide a new class of drug leads for the prevention and treatment of influenza. This study also highlights the need for a multiligand docking algorithm to understand better the mode of action of natural products, wherein multiple active ingredients are present.Keywords: neuraminidase, influenza, H1N1, multiligand, binding energy, molecular docking, virus

  13. Clinical accuracy of a PLEX-ID flu device for simultaneous detection and identification of influenza viruses A and B.

    Science.gov (United States)

    Tang, Yi-Wei; Lowery, Kristin S; Valsamakis, Alexandra; Schaefer, Virginia C; Chappell, James D; White-Abell, Jill; Quinn, Criziel D; Li, Haijing; Washington, Cicely A; Cromwell, Jenna; Giamanco, Chantel M; Forman, Michael; Holden, Jeffery; Rothman, Richard E; Parker, Michelle L; Ortenberg, Elaine V; Zhang, Lei; Lin, Yea-Lin; Gaydos, Charlotte A

    2013-01-01

    Respiratory tract infections caused by influenza A and B viruses often present nonspecifically, and a rapid, high-throughput laboratory technique that can identify influenza viruses is clinically and epidemiologically desirable. The PLEX-ID Flu assay (Abbott Molecular Inc., Des Plaines, IL) incorporates multilocus PCR and electrospray ionization-mass spectrometry to detect and differentiate influenza A 2009 H1N1 (H1N1-p), seasonal H1N1 (H1N1-s), influenza A H3N2, and influenza B viruses in nasopharyngeal swab (NPS) specimens. The clinical performance characteristics of the PLEX-ID Flu assay in symptomatic patients were determined in this multicenter trial. A total of 2,617 prospectively and retrospectively collected NPS specimens from patients with influenza-like illness between February 2008 and 28 May 2010 were eligible for inclusion in the study. Each specimen was tested in parallel by the PLEX-ID Flu assay and by the Prodesse ProFLU+ assay (Prodesse Inc., Madison, WI), to detect influenza A and B viruses. Specimens testing positive for influenza A virus by ProFLU+ were subtyped as H1N1-p, H1N1-s, or H3N2 by using the ProFAST+ assay (Gen-Probe Prodesse Inc.). The reproducibility of the PLEX-ID Flu assay ranged from 98.3 to 100.0%, as determined by testing a nine-specimen panel at three clinical sites on each of 5 days. Positive percent agreements (PPAs) and negative percent agreements (NPAs) of the PLEX-ID Flu assay were 94.5% and 99.0% for influenza A virus and 96.0% and 99.9% for influenza B virus, respectively. For the influenza A virus subtyping characterization, the PLEX-ID Flu assay had PPAs and NPAs of 98.3% and 97.5% for H1N1-p, 88.6% and 100.0% for H1N1-s, and 98.0% and 99.9% for H3N2, respectively. The overall agreements between the PLEX-ID and Prodesse ProFLU+/ProFAST+ assays were 97.1 to 100.0%. Bidirectional Sanger sequencing analysis revealed that 87.5% of 96 discrepant results between the PLEX-ID Flu and ProFLU+/ProFAST+ assays were found upon

  14. Feral Swine in the United States Have Been Exposed to both Avian and Swine Influenza A Viruses.

    Science.gov (United States)

    Martin, Brigitte E; Sun, Hailiang; Carrel, Margaret; Cunningham, Fred L; Baroch, John A; Hanson-Dorr, Katie C; Young, Sean G; Schmit, Brandon; Nolting, Jacqueline M; Yoon, Kyoung-Jin; Lutman, Mark W; Pedersen, Kerri; Lager, Kelly; Bowman, Andrew S; Slemons, Richard D; Smith, David R; DeLiberto, Thomas; Wan, Xiu-Feng

    2017-10-01

    Influenza A viruses (IAVs) in swine can cause sporadic infections and pandemic outbreaks among humans, but how avian IAV emerges in swine is still unclear. Unlike domestic swine, feral swine are free ranging and have many opportunities for IAV exposure through contacts with various habitats and animals, including migratory waterfowl, a natural reservoir for IAVs. During the period from 2010 to 2013, 8,239 serum samples were collected from feral swine across 35 U.S. states and tested against 45 contemporary antigenic variants of avian, swine, and human IAVs; of these, 406 (4.9%) samples were IAV antibody positive. Among 294 serum samples selected for antigenic characterization, 271 cross-reacted with ≥1 tested virus, whereas the other 23 did not cross-react with any tested virus. Of the 271 IAV-positive samples, 236 cross-reacted with swine IAVs, 1 with avian IAVs, and 16 with avian and swine IAVs, indicating that feral swine had been exposed to both swine and avian IAVs but predominantly to swine IAVs. Our findings suggest that feral swine could potentially be infected with both avian and swine IAVs, generating novel IAVs by hosting and reassorting IAVs from wild birds and domestic swine and facilitating adaptation of avian IAVs to other hosts, including humans, before their spillover. Continued surveillance to monitor the distribution and antigenic diversities of IAVs in feral swine is necessary to increase our understanding of the natural history of IAVs. IMPORTANCE There are more than 5 million feral swine distributed across at least 35 states in the United States. In contrast to domestic swine, feral swine are free ranging and have unique opportunities for contact with wildlife, livestock, and their habitats. Our serological results indicate that feral swine in the United States have been exposed to influenza A viruses (IAVs) consistent with those found in both domestic swine and wild birds, with the predominant infections consisting of swine-adapted IAVs

  15. Preparing for swine flu: 10 questions that all nurses need to ask themselves.

    Science.gov (United States)

    Robinson, Susan; Sutherland, Holly; Spooner, Daniel

    Human swine flu is spreading rapidly and it is timely to reflect on how well we as individuals are prepared for a pandemic. Being prepared includes nurses not only being confident they have a mask that fits but also being practised at putting on and removing personal protective equipment safely. It also involves being familiar with the latest guidance from the Department of Health, having an understanding of the processes in their workplace and an appreciation of some of the ethical challenges if numbers of affected patients overwhelm the health system's resources. This article suggests staff ask themselves 10 questions to assess their level of preparedness.

  16. The Evaluations of Swine Flu Magnitudes in TV News: A Comparative Analysis of Paired Influenza Pandemics.

    Science.gov (United States)

    Pan, Po-Lin; Meng, Juan

    2015-01-01

    This study examined how major TV news networks covered two flu pandemics in 1976 and 2009 in terms of news frames, mortality exemplars, mortality subject attributes, vaccination, evaluation approaches, and news sources. Results showed that the first pandemic was frequently framed with the medical/scientific and political/legal issues, while the second pandemic was emphasized with the health risk issue in TV news. Both flu pandemics were regularly reported with mortality exemplars, but the focus in the first pandemic was on the flu virus threat and vaccination side effects, while the vaccination shortage was frequently revealed in the second outbreak.

  17. Swine flu. Mexico's handling of A/H1N1 in comparative perspective.

    Science.gov (United States)

    Ear, Sophal

    2012-01-01

    Emerging infectious diseases (EIDs) pose international security threats because of their potential to inflict harm upon humans, crops, livestock, health infrastructure, and economies. Despite the scale of this threat, there are inherent limitations in preventing and controlling EIDs, including the scope of current disease surveillance efforts. All of this leads to the following questions in the context of Mexico's recent swine flu experience: What were the cultural, political, and economic challenges to Influenza A/H1N1 virus response in Mexico? By way of comparison, what can we learn from the U.S. experience in 1976 with A/New Jersey/76 (Hsw1N1), later referred to as H1N1? This article explores the comparative political economy of Mexico's handling of influenza virus A/H1N1 outbreak in 2009. Research provides notable observations-based on the strengths and weaknesses of each country's response--that can be used as a starting point of discussion for the design of effective EIDs surveillance programs in developing and middle-income countries. In the U.S., the speed and efficiency of the 1976 U.S. mobilization against H1N1 was laudable. Although the U.S. response to the outbreak is seldom praised, the unity of the scientific and political communities demonstrated the national ability to respond to the situation. Mexico's strongest characteristics were its transparency, as well as the cooperation the country exhibited with other nations, particularly the U.S. and Canada. While Mexico showed savvy in its effective management of public and media relations, as the article details, political, economic, and cultural problems persisted.

  18. Influenza A Viruses of Human Origin in Swine, Brazil

    Science.gov (United States)

    Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-01-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil’s swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009–2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance. PMID:26196759

  19. History of Swine influenza viruses in Asia.

    Science.gov (United States)

    Zhu, Huachen; Webby, Richard; Lam, Tommy T Y; Smith, David K; Peiris, Joseph S M; Guan, Yi

    2013-01-01

    The pig is one of the main hosts of influenza A viruses and plays important roles in shaping the current influenza ecology. The occurrence of the 2009 H1N1 pandemic influenza virus demonstrated that pigs could independently facilitate the genesis of a pandemic influenza strain. Genetic analyses revealed that this virus was derived by reassortment between at least two parent swine influenza viruses (SIV), from the northern American triple reassortant H1N2 (TR) and European avian-like H1N1 (EA) lineages. The movement of live pigs between different continents and subsequent virus establishment are preconditions for such a reassortment event to occur. Asia, especially China, has the largest human and pig populations in the world, and seems to be the only region frequently importing pigs from other continents. Virological surveillance revealed that not only classical swine H1N1 (CS), and human-origin H3N2 viruses circulated, but all of the EA, TR and their reassortant variants were introduced into and co-circulated in pigs in this region. Understanding the long-term evolution and history of SIV in Asia would provide insights into the emergence of influenza viruses with epidemic potential in swine and humans.

  20. Flu and People with Diabetes

    Science.gov (United States)

    ... Seasonal Avian Swine Variant Pandemic Other Flu and People with Diabetes Language: English (US) Español Recommend on Facebook Tweet Share Compartir People with diabetes (type 1 or type 2), even ...

  1. Mathematical modeling of Avian Influenza epidemic with bird vaccination in constant population

    Science.gov (United States)

    Kharis, M.; Amidi

    2018-03-01

    The development of the industrial world and human life is increasingly modern and less attention to environmental sustainability causes the virus causes the epidemic has a high tendency to mutate so that the virus that initially only attack animals, is also found to have the ability to attack humans. The epidemics that lasted some time were bird flu epidemics and swine flu epidemics. The flu epidemic led to several deaths and many people admitted to the hospital. Strain (derivatives) of H5N1 virus was identified as the cause of the bird flu epidemic while the H1N1 strain of the virus was identified as the cause of the swine flu epidemic. The symptoms are similar to seasonal flu caused by H3N2 strain of the virus. Outbreaks of bird flu and swine flu initially only attacked animals, but over time some people were found to be infected with the virus.

  2. HIV/AIDS and the Flu

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other HIV/AIDS and the Flu Questions & Answers Language: English ( ... people with HIV and AIDS. Should people with HIV/AIDS receive the inactivated influenza vaccine? People with ...

  3. [Swine influenza virus: evolution mechanism and epidemic characterization--a review].

    Science.gov (United States)

    Qi, Xian; Lu, Chengping

    2009-09-01

    Pigs may play an important role in the evolution and ecology of influenza A virus. The tracheal epithelium of pigs contain both SA alpha 2,6 Gal and SA alpha 2,3 Gal receptors and can be infected with swine, human and avian viruses, therefore, pigs have been considered as an intermediate host for the adaptation of avian influenza viruses to humans or as mixing vessels for the generation of genetically reassortant viruses. Evolution patterns among swine influenza viruses including evolution of host adaptation, antigenic drift and genetic reassortment, and the latter is the main one. Unlike human influenza viruses, swine viruses have different epizootiological patterns in different areas of world, which is enzootic and geographic dependence. Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2, and these include classical swine H1N1, avian-like H1N1, human-like H3N2, reassortant H3N2 and various genotype H1N2 viruses. In Europe, North America and China, influenza A viruses circulating in pigs are distinct in the genetic characteristics and genetic sources. Since 1979, three subtypes, avian-like H1N1, reassortant H1N2 and H3N2 viruses, have been co-circulating in European swine. Before 1998, classical H1N1 viruses were the exclusive cause of swine influenza in North America. However, after that, three triple-reassortant H1N2, H3N2 and H1N1 viruses with genes of human, swine and avian virus began to emerge in pigs. Genetically, the pandemic viruses emerging in human, so called influenza A (H1N1) viruses, contain genes from both Europe and North American SIV lineages. SIV is not the same as Europe and the United States in the prevalence and genetic background in China, mainly classical swine H1N1 and human-like H3N2 type virus. However, in recent years, SIV from Europe and North America have been introduced into Chinese pig herds, so more attention should be given on the evolutionary of SIV in China

  4. E-Learning's Potential Scrutinized in Flu Crisis

    Science.gov (United States)

    Ash, Katie; Davis, Michelle R.

    2009-01-01

    The closing of hundreds of U.S. schools in recent weeks because of concerns about swine flu underscores the need for administrators to make plans for continuing their students' education during any extended shutdown, emergency experts and federal officials say. Fears about a severe flu pandemic had eased as of late last week, but experts say…

  5. Virus survival in slurry: Analysis of the stability of foot-and-mouth disease, classical swine fever, bovine viral diarrhoea and swine influenza viruses

    DEFF Research Database (Denmark)

    Bøtner, Anette; Belsham, Graham

    2012-01-01

    of an outbreak of disease before it has been recognized. The survival of foot-and-mouth disease virus, classical swine fever virus, bovine viral diarrhoea virus and swine influenza virus, which belong to three different RNA virus families plus porcine parvovirus (a DNA virus) was examined under controlled...... conditions. For each RNA virus, the virus survival in farm slurry under anaerobic conditions was short (generally ≤1h) when heated (to 55°C) but each of these viruses could retain infectivity at cool temperatures (5°C) for many weeks. The porcine parvovirus survived considerably longer than each of the RNA...... viruses under all conditions tested. The implications for disease spread are discussed....

  6. Novel reassortant swine influenza viruses are circulating in Danish pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    of the reassortant viruses comprised a HA gene similar to H1 of H1N1 avian-like swine influenza virus (SIV) and a NA gene most closely related to N2 gene of human H3N2 influenza virus that circulated in humans in the mid 1990s. The internal genes of this reassortant virus with the subtype H1avN2hu all belonged...... to the H1N1 avian-like SIV lineages. Until now this novel virus H1avN2hu has only been detected in Danish swine. The other novel reassortant virus contained the HA gene from H1N1pdm09 virus and a NA gene similar to the N2 gene of H3N2 SIV that have been circulating in European swine since the mid 1980s...

  7. Bird Flu (Avian Influenza)

    Science.gov (United States)

    Bird flu (avian influenza) Overview Bird flu is caused by a type of influenza virus that rarely infects humans. More than a ... for Disease Control and Prevention estimates that seasonal influenza is responsible for ... heat destroys avian viruses, cooked poultry isn't a health threat. ...

  8. Prospective surveillance for influenza. virus in Chinese swine farms.

    Science.gov (United States)

    Anderson, Benjamin D; Ma, Mai-Juan; Wang, Guo-Lin; Bi, Zhen-Qiang; Lu, Bing; Wang, Xian-Jun; Wang, Chuang-Xin; Chen, Shan-Hui; Qian, Yan-Hua; Song, Shao-Xia; Li, Min; Zhao, Teng; Wu, Meng-Na; Borkenhagen, Laura K; Cao, Wu-Chun; Gray, Gregory C

    2018-05-16

    Pork production in China is rapidly increasing and swine production operations are expanding in size and number. However, the biosecurity measures necessary to prevent swine disease transmission, particularly influenza. viruses (IAV) that can be zoonotic, are often inadequate. Despite this risk, few studies have attempted to comprehensively study IAV ecology in swine production settings. Here, we present environmental and animal sampling data collected in the first year of an ongoing five-year prospective epidemiological study to assess IAV ecology as it relates to swine workers, their pigs, and the farm environment. From March 2015 to February 2016, we collected 396 each of environmental swab, water, bioaerosol, and fecal/slurry samples, as well as 3300 pig oral secretion samples from six farms in China. The specimens were tested with molecular assays for IAV. Of these, 46 (11.6%) environmental swab, 235 (7.1%) pig oral secretion, 23 (5.8%) water, 20 (5.1%) bioaerosol, and 19 (4.8%) fecal/slurry specimens were positive for influenza. by qRT-PCR. Risk factors for IAV detection among collected samples were identified using bivariate logistic regression. Overall, these first year data suggest that IAV is quite ubiquitous in the swine production environment and demonstrate an association between the different types of environmental sampling used. Given the mounting evidence that some of these viruses freely move between pigs and swine workers, and that mixing of these viruses can yield progeny viruses with pandemic potential, it seems imperative that routine surveillance for novel IAVs be conducted in commercial swine farms.

  9. Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Dang, Thai Trung; Nguyen, Phi Hung

    2012-01-01

    The emergence of the H1N1 swine flu pandemic has the possibility to develop the occurrence of disaster- or drug-resistant viruses by additional reassortments in novel influenza A virus. In the course of an anti-influenza screening program for natural products, 10 xanthone derivatives (1-10) were ...

  10. Pandemic swine influenza virus: Preparedness planning | Ojogba ...

    African Journals Online (AJOL)

    The novel H1N1 influenza virus that emerged in humans in Mexico in early 2009 and transmitted efficiently in the human population with global spread was declared a pandemic strain. The introduction of different avian and human influenza virus genes into swine influenza viruses often result in viruses of increased fitness ...

  11. Effect of radiation on certain animal viruses in liquid swine manure

    International Nuclear Information System (INIS)

    Simon, J.; Mocsari, E.; di Gleria, M.; Felkai, V.

    1983-01-01

    The virucidal effect of 60 Co gamma radiation was studied in cell culture medium and in liquid swine manure involving the most important porcine viruses that can be spread by liquid manure. The radiation doses (20 kGy and 30 kGy) were determined in preliminary experiments employing a porcine enterovirus from the serogroup 1 (Teschen group). In the main experiment, the following viruses were employed: swine vesicular disease (SVD) virus, type C foot-and-mouth disease (FMD) virus, a field strain of Aujeszky's disease (AD) virus, transmissible gastroenteritis (TGE) virus, as well as bovine viral diarrhoea (BVD) virus. The latter strain served as a model for hog cholera virus. The results of the experiments indicate that safe disinfection of the virus infected liquid swine manure by ionizing radiation requires a radiation dose of 30 kGy. (author)

  12. Effect of radiation on certain animal viruses in liquid swine manure

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.; Mocsari, E.; di Gleria, M.; Felkai, V. (Phylaxia Oltoanyag- es Tapszertermeloe Vallalat, Budapest (Hungary); Orszagos Allategeszseguegyi Intezet, Budapest (Hungary))

    1983-03-01

    The virucidal effect of /sup 60/Co gamma radiation was studied in cell culture medium and in liquid swine manure involving the most important porcine viruses that can be spread by liquid manure. The radiation doses (20 kGy and 30 kGy) were determined in preliminary experiments employing a porcine enterovirus from the serogroup 1 (Teschen group). In the main experiment, the following viruses were employed: swine vesicular disease (SVD) virus, type C foot-and-mouth disease (FMD) virus, a field strain of Aujeszky's disease (AD) virus, transmissible gastroenteritis (TGE) virus, as well as bovine viral diarrhea (BVD) virus. The latter strain served as a model for hog cholera virus. The results of the experiments indicate that safe disinfection of the virus infected liquid swine manure by ionizing radiation requires a radiation dose of 30 kGy.

  13. Effect of radiation on certain animal viruses in liquid swine manure

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J; Mocsari, E; di Gleria, M; Felkai, V [Phylaxia Oltoanyag- es Tapszertermeloe Vallalat, Budapest (Hungary); Orszagos Allategeszseguegyi Intezet, Budapest [Hungary

    1983-03-01

    The virucidal effect of /sup 60/Co gamma radiation was studied in cell culture medium and in liquid swine manure involving the most important porcine viruses that can be spread by liquid manure. The radiation doses (20 kGy and 30 kGy) were determined in preliminary experiments employing a porcine enterovirus from the serogroup 1 (Teschen group). In the main experiment, the following viruses were employed: swine vesicular disease (SVD) virus, type C foot-and-mouth disease (FMD) virus, a field strain of Aujeszky's disease (AD) virus, transmissible gastroenteritis (TGE) virus, as well as bovine viral diarrhea (BVD) virus. The latter strain served as a model for hog cholera virus. The results of the experiments indicate that safe disinfection of the virus infected liquid swine manure by ionizing radiation requires a radiation dose of 30 kGy.

  14. Educating youth swine exhibitors on influenza A virus transmission at agricultural fairs.

    Science.gov (United States)

    Nolting, J M; Midla, J; Whittington, M S; Scheer, S D; Bowman, A S

    2018-02-01

    Influenza A virus (IAV) is a major zoonotic pathogen that threatens global public health. Novel strains of influenza A viruses pose a significant risk to public health due to their pandemic potential, and transmission of influenza A viruses from animals to humans is an important mechanism in the generation and introduction of IAVs that threaten human health. The purpose of this descriptive correlational study was to develop real-life training scenarios to better inform swine exhibitors of the risks they may encounter when influenza A viruses are present in swine. Educational activities were implemented in five Ohio counties where exhibition swine had historically been shedding influenza A viruses during the county fair. A total of 146 youth swine exhibitors participated in the educational programme, and an increase in the knowledge base of these youth was documented. It is expected that educating youth exhibitors about exposure to influenza A virus infections in the swine they are exhibiting will result in altered behaviours and animal husbandry practices that will improve both human and animal health. © 2017 Blackwell Verlag GmbH.

  15. Proteomic analysis of swine serum following highly virulent classical swine fever virus infection

    Directory of Open Access Journals (Sweden)

    Guo Huan-cheng

    2011-03-01

    Full Text Available Abstract Background Classical swine fever virus (CSFV belongs to the genus Pestivirus within the family Flaviviridae. Virulent strains of classical swine fever virus (CSFV cause severe disease in pigs characterized by immunosuppression, thrombocytopenia and disseminated intravascular coagulation, which causes significant economic losses to the pig industry worldwide. Methods To reveal proteomic changes in swine serum during the acute stage of lethal CSFV infection, 5 of 10 pigs were inoculated with the virulent CSFV Shimen strain, the remainder serving as uninfected controls. A serum sample was taken at 3 days post-infection from each swine, at a stage when there were no clinical symptoms other than increased rectal temperatures (≥40°C. The samples were treated to remove serum albumin and immunoglobulin (IgG, and then subjected to two-dimension differential gel electrophoresis. Results Quantitative intensity analysis revealed 17 protein spots showing at least 1.5-fold quantitative alteration in expression. Ten spots were successfully identified by MALDI-TOF MS or LTQ MS. Expression of 4 proteins was increased and 6 decreased in CSFV-infected pigs. Functions of these proteins included blood coagulation, anti-inflammatory activity and angiogenesis. Conclusion These proteins with altered expression may have important implications in the pathogenesis of classical swine fever and provide a clue for identification of biomarkers for classical swine fever early diagnosis.

  16. Effect of radiation on certain animal viruses in liquid swine manure

    International Nuclear Information System (INIS)

    Simon, J.; Mocsari, E.; Di Gleria, M.; Felkai, V.

    1983-01-01

    The virucidal effect of 60 Co γ-radiation was studied in cell culture medium and in liquid swine manure involving the most important porcine viruses that can be spread by liquid manure. The radiation doses, 20 and 30 kGy, were determined in preliminary experiments. At a radiation dose of 30 kGy, the activity of extracellular and cell-associated test viruses, except swine vesicular disease virus (SVDV), was completely destroyed both in cell culture medium and in liquid swine manure. The infectivity of SVDV decreased significantly (P 10 TCID 50 , both in cell culture medium and in liquid manure and this value corresponded to the international effectiveness demand for a disinfectant. The results showed that the safe disinfection virus in liquid swine manure by ionizing radiation requires a radiation dose of 30 kGy. (author)

  17. Flu and Heart Disease and Stroke

    Science.gov (United States)

    ... Seasonal Avian Swine Variant Pandemic Other Flu and Heart Disease & Stroke Language: English (US) Español Recommend on Facebook Tweet Share Compartir People with Heart Disease* and Those Who Have Had a Stroke Are ...

  18. Two genotypes of H1N2 swine influenza viruses appeared among pigs in China.

    Science.gov (United States)

    Xu, Chuantian; Zhu, Qiyun; Yang, Huanliang; Zhang, Xiumei; Qiao, Chuanling; Chen, Yan; Xin, Xiaoguang; Chen, Hualan

    2009-10-01

    H1N2 is one of the main subtypes of influenza, which circulates in swine all over the world. To investigate the prevalence and genetic of H1N2 in swine of China. Two H1N2 swine influenza viruses were isolated from Tianjin and Guangdong province of China in 2004 and 2006, respectively. The molecular evolution of eight gene segments was analyzed. A/Swine/Tianjin/1/2004 has low identity with A/Swine/Guangdong/2006; in the phylogenetic tree of PA gene, A/Swine/Guangdong/1/2006 and A/Swine/Guangxi/1/2006 along with the H1N2 swine isolates of North America formed a cluster; and A/Swine/Tianjin/2004 and A/Swine/Zhejiang/2004, along with the classical H1N1 swine isolates formed another cluster; except that NA gene of A/Swine/Tianjin/1/2004 fell into the cluster of the H3N2 human influenza virus, indicating the reassortment between H3N2 human and H1N1 swine influenza viruses. Two different genotypes of H1N2 appeared among pigs in China. A/swine/Guangdong/1/06 was probably from H1N2 swine influenza viruses of North America; while A/swine/Tianjin/1/04 maybe come from reassortments of classical H1N1 swine and H3N2 human viruses prevalent in North America.

  19. Inactivation of Viruses and Bacteriophages as Models for Swine Hepatitis E Virus in Food Matrices.

    Science.gov (United States)

    Emmoth, Eva; Rovira, Jordi; Rajkovic, Andreja; Corcuera, Elena; Wilches Pérez, Diego; Dergel, Irene; Ottoson, Jakob R; Widén, Frederik

    2017-03-01

    Hepatitis E virus has been recognised as a food-borne virus hazard in pork products, due to its zoonotic properties. This risk can be reduced by adequate treatment of the food to inactivate food-borne viruses. We used a spectrum of viruses and bacteriophages to evaluate the effect of three food treatments: high pressure processing (HPP), lactic acid (LA) and intense light pulse (ILP) treatments. On swine liver at 400 MPa for 10 min, HPP gave log 10 reductions of ≥4.2, ≥5.0 and 3.4 for feline calicivirus (FCV) 2280, FCV wildtype (wt) and murine norovirus 1 (MNV 1), respectively. Escherichia coli coliphage ϕX174 displayed a lower reduction of 1.1, while Escherichia coli coliphage MS2 was unaffected. For ham at 600 MPa, the corresponding reductions were 4.1, 4.4, 2.9, 1.7 and 1.3 log 10 . LA treatment at 2.2 M gave log 10 reductions in the viral spectrum of 0.29-2.1 for swine liver and 0.87-3.1 for ham, with ϕX174 and MNV 1, respectively, as the most stable microorganisms. The ILP treatment gave log 10 reductions of 1.6-2.8 for swine liver, 0.97-2.2 for ham and 1.3-2.3 for sausage, at 15-60 J cm -2 , with MS2 as the most stable microorganism. The HPP treatment gave significantly (p virus reduction on swine liver than ham for the viruses at equivalent pressure/time combinations. For ILP treatment, reductions on swine liver were significantly (p virus contamination and in advice to food producers. Conservative model indicators for the pathogenic viruses could be suggested.

  20. Swine influenza viruses isolated in 1983, 2002 and 2009 in Sweden exemplify different lineages

    Directory of Open Access Journals (Sweden)

    Metreveli Giorgi

    2010-12-01

    Full Text Available Abstract Swine influenza virus isolates originating from outbreaks in Sweden from 1983, 2002 and 2009 were subjected to nucleotide sequencing and phylogenetic analysis. The aim of the studies was to obtain an overview on their potential relatedness as well as to provide data for broader scale studies on swine influenza epidemiology. Nonetheless, analyzing archive isolates is justified by the efforts directed to the comprehension of the appearance of pandemic H1N1 influenza virus. Interestingly, this study illustrates the evolution of swine influenza viruses in Europe, because the earliest isolate belonged to 'classical' swine H1N1, the subsequent ones to Eurasian 'avian-like' swine H1N1 and reassortant 'avian-like' swine H1N2 lineages, respectively. The latter two showed close genetic relatedness regarding their PB2, HA, NP, and NS genes, suggesting common ancestry. The study substantiates the importance of molecular surveillance for swine influenza viruses.

  1. No evidence of African swine fever virus replication in hard ticks

    NARCIS (Netherlands)

    Carvalho Ferreira, de H.C.; Zúquete, S.T.; Wijnveld, M.; Weesendorp, E.; Jongejan, F.; Stegeman, J.A.; Loeffen, W.L.A.

    2014-01-01

    African swine fever (ASF) is caused by African swine fever virus (ASFV), a tick-borne DNA virus. Soft ticks of the genus Ornithodoros are the only biological vectors of ASFV recognized so far. Although other hard ticks have been tested for vector competence, two commonly found tick species in

  2. No evidence of African swine fever virus replication in hard ticks

    NARCIS (Netherlands)

    de Carvalho Ferreira, Helena C; Tudela Zúquete, Sara; Wijnveld, Michiel; Weesendorp, Eefke; Jongejan, Frans; Stegeman, Arjan; Loeffen, Willie L A

    African swine fever (ASF) is caused by African swine fever virus (ASFV), a tick-borne DNA virus. Soft ticks of the genus Ornithodoros are the only biological vectors of ASFV recognized so far. Although other hard ticks have been tested for vector competence, two commonly found tick species in

  3. The Spanish flu in Denmark

    DEFF Research Database (Denmark)

    Kolte, Ida Viktoria; Skinhøj, Peter; Keiding, Niels

    2008-01-01

    The spread of H5N1 influenza and the similarity between this avian virus and the Spanish flu virus causes fear of a new influenza pandemic, but data from the Spanish flu may also be of guidance in planning for preventive measures. Using data on influenza cases, influenza deaths and total deaths...

  4. Genotype I of Japanese Encephalitis Virus Virus-like Particles Elicit Sterilizing Immunity against Genotype I and III Viral Challenge in Swine.

    Science.gov (United States)

    Fan, Yi-Chin; Chen, Jo-Mei; Lin, Jen-Wei; Chen, Yi-Ying; Wu, Guan-Hong; Su, Kuan-Hsuan; Chiou, Ming-Tang; Wu, Shang-Rung; Yin, Ji-Hang; Liao, Jiunn-Wang; Chang, Gwong-Jen J; Chiou, Shyan-Song

    2018-05-10

    Swine are a critical amplifying host involved in human Japanese encephalitis (JE) outbreaks. Cross-genotypic immunogenicity and sterile protection are important for the current genotype III (GIII) virus-derived vaccines in swine, especially now that emerging genotype I (GI) JE virus (JEV) has replaced GIII virus as the dominant strain. Herein, we aimed to develop a system to generate GI JEV virus-like particles (VLPs) and evaluate the immunogenicity and protection of the GI vaccine candidate in mice and specific pathogen-free swine. A CHO-heparan sulfate-deficient (CHO-HS(-)) cell clone, named 51-10 clone, stably expressing GI-JEV VLP was selected and continually secreted GI VLPs without signs of cell fusion. 51-10 VLPs formed a homogeneously empty-particle morphology and exhibited similar antigenic activity as GI virus. GI VLP-immunized mice showed balanced cross-neutralizing antibody titers against GI to GIV viruses (50% focus-reduction micro-neutralization assay titers 71 to 240) as well as potent protection against GI or GIII virus infection. GI VLP-immunized swine challenged with GI or GIII viruses showed no fever, viremia, or viral RNA in tonsils, lymph nodes, and brains as compared with phosphate buffered saline-immunized swine. We thus conclude GI VLPs can provide sterile protection against GI and GIII viruses in swine.

  5. Antibody levels to hepatitis E virus in North Carolina swine workers, non-swine workers, swine, and murids.

    Science.gov (United States)

    Withers, Mark R; Correa, Maria T; Morrow, Morgan; Stebbins, Martha E; Seriwatana, Jitvimol; Webster, W David; Boak, Marshall B; Vaughn, David W

    2002-04-01

    In a cross-sectional serosurvey, eastern North Carolina swine workers (n = 165) were compared with non-swine workers (127) for the presence of antibodies to hepatitis E virus as measured by a quantitative immunoglobulin enzyme-linked immunosorbent assay. Using a cutoff of 20 Walter Reed U/ml, swine-exposed subjects had a 4.5-fold higher antibody prevalence (10.9%) than unexposed subjects (2.4%). No evidence of past clinical hepatitis E or unexplained jaundice could be elicited. Swine (84) and mice (61), from farm sites in the same region as exposed subjects, were also tested. Antibody prevalence in swine (overall = 34.5%) varied widely (10.0-91.7%) according to site, but no antibody was detected in mice. Our data contribute to the accumulating evidence that hepatitis E may be a zoonosis and specifically to the concept of it as an occupational infection of livestock workers.

  6. Swine Influenza Virus (H1N2) Characterization and Transmission in Ferrets, Chile.

    Science.gov (United States)

    Bravo-Vasquez, Nicolás; Karlsson, Erik A; Jimenez-Bluhm, Pedro; Meliopoulos, Victoria; Kaplan, Bryan; Marvin, Shauna; Cortez, Valerie; Freiden, Pamela; Beck, Melinda A; Hamilton-West, Christopher; Schultz-Cherry, Stacey

    2017-02-01

    Phylogenetic analysis of the influenza hemagglutinin gene (HA) has suggested that commercial pigs in Chile harbor unique human seasonal H1-like influenza viruses, but further information, including characterization of these viruses, was unavailable. We isolated influenza virus (H1N2) from a swine in a backyard production farm in Central Chile and demonstrated that the HA gene was identical to that in a previous report. Its HA and neuraminidase genes were most similar to human H1 and N2 viruses from the early 1990s and internal segments were similar to influenza A(H1N1)pdm09 virus. The virus replicated efficiently in vitro and in vivo and transmitted in ferrets by respiratory droplet. Antigenically, it was distinct from other swine viruses. Hemagglutination inhibition analysis suggested that antibody titers to the swine Chilean H1N2 virus were decreased in persons born after 1990. Further studies are needed to characterize the potential risk to humans, as well as the ecology of influenza in swine in South America.

  7. Expression Dynamics of Innate Immunity in Influenza Virus-Infected Swine

    Directory of Open Access Journals (Sweden)

    Massimo Amadori

    2017-04-01

    Full Text Available The current circulating swine influenza virus (IV subtypes in Europe (H1N1, H1N2, and H3N2 are associated with clinical outbreaks of disease. However, we showed that pigs could be susceptible to other IV strains that are able to cross the species barrier. In this work, we extended our investigations into whether different IV strains able to cross the species barrier might give rise to different innate immune responses that could be associated with pathological lesions. For this purpose, we used the same samples collected in a previous study of ours, in which healthy pigs had been infected with a H3N2 Swine IV and four different H3N8 IV strains circulating in different animal species. Pigs had been clinically inspected and four subjects/group were sacrificed at 3, 6, and 21 days post infection. In the present study, all groups but mock exhibited antibody responses to IV nucleoprotein protein. Pulmonary lesions and high-titered viral replication were observed in pigs infected with the swine-adapted virus. Interestingly, pigs infected with avian and seal H3N8 strains also showed moderate lesions and viral replication, whereas equine and canine IVs did not cause overt pathological signs, and replication was barely detectable. Swine IV infection induced interferon (IFN-alpha and interleukin-6 responses in bronchoalveolar fluids (BALF at day 3 post infection, as opposed to the other non-swine-adapted virus strains. However, IFN-alpha responses to the swine-adapted virus were not associated with an increase of the local, constitutive expression of IFN-alpha genes. Remarkably, the Equine strain gave rise to a Serum Amyloid A response in BALF despite little if any replication. Each virus strain could be associated with expression of cytokine genes and/or proteins after infection. These responses were observed well beyond the period of virus replication, suggesting a prolonged homeostatic imbalance of the innate immune system.

  8. Colds and the Flu

    Science.gov (United States)

    ... disease (COPD). What medicines can I give my child? There is no cure for the cold or the flu, and antibiotics do not work against the viruses that cause colds and the flu. Pain relievers such as ...

  9. Grid attacks avian flu

    CERN Multimedia

    2006-01-01

    During April, a collaboration of Asian and European laboratories analysed 300,000 possible drug components against the avian flu virus H5N1 using the EGEE Grid infrastructure. Schematic presentation of the avian flu virus.The distribution of the EGEE sites in the world on which the avian flu scan was performed. The goal was to find potential compounds that can inhibit the activities of an enzyme on the surface of the influenza virus, the so-called neuraminidase, subtype N1. Using the Grid to identify the most promising leads for biological tests could speed up the development process for drugs against the influenza virus. Co-ordinated by CERN and funded by the European Commission, the EGEE project (Enabling Grids for E-sciencE) aims to set up a worldwide grid infrastructure for science. The challenge of the in silico drug discovery application is to identify those molecules which can dock on the active sites of the virus in order to inhibit its action. To study the impact of small scale mutations on drug r...

  10. New influenza A virus reassortments have been found in Danish swine in 2011

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2012-01-01

    viruses which have been circulating in Danish pigs since it was found for the first time in 1981. ii) H1N2 reassortant viruses which comprise HA from “avian like” H1N1 and NA from swine H3N2. The reassortant H1N2 virus was discovered in Danish pig for the first time in 2003 and is now well established......In 2011 a passive surveillance for influenza A virus was conducted in Danish swine. Tested samples were clinical samples from affected pigs submitted to the Danish National Veterinary Institute for swine influenza virus detection. In total 713 samples from 276 herds were analysed and about 24......% of the samples were positive for swine influenza virus. All influenza positive samples were tested for the H1N1pdm09 virus by a real time RT-PCR assay specific for the pandemic HA gene and 26% of the samples were positive. Subtyping of 90 samples by sequencing revealed the presence of; i) H1N1 “avian like...

  11. Reassortant swine influenza viruses isolated in Japan contain genes from pandemic A(H1N1) 2009.

    Science.gov (United States)

    Kanehira, Katsushi; Takemae, Nobuhiro; Uchida, Yuko; Hikono, Hirokazu; Saito, Takehiko

    2014-06-01

    In 2013, three reassortant swine influenza viruses (SIVs)-two H1N2 and one H3N2-were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human-like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human-like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human-lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human-lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  12. H1N1 influenza viruses varying widely in hemagglutinin stability transmit efficiently from swine to swine and to ferrets.

    Directory of Open Access Journals (Sweden)

    Marion Russier

    2017-03-01

    Full Text Available A pandemic-capable influenza virus requires a hemagglutinin (HA surface glycoprotein that is immunologically unseen by most people and is capable of supporting replication and transmission in humans. HA stabilization has been linked to 2009 pH1N1 pandemic potential in humans and H5N1 airborne transmissibility in the ferret model. Swine have served as an intermediate host for zoonotic influenza viruses, yet the evolutionary pressure exerted by this host on HA stability was unknown. For over 70 contemporary swine H1 and H3 isolates, we measured HA activation pH to range from pH 5.1 to 5.9 for H1 viruses and pH 5.3 to 5.8 for H3 viruses. Thus, contemporary swine isolates vary widely in HA stability, having values favored by both avian (pH >5.5 and human and ferret (pH ≤5.5 species. Using an early 2009 pandemic H1N1 (pH1N1 virus backbone, we generated three viruses differing by one HA residue that only altered HA stability: WT (pH 5.5, HA1-Y17H (pH 6.0, and HA2-R106K (pH 5.3. All three replicated in pigs and transmitted from pig-to-pig and pig-to-ferret. WT and R106 viruses maintained HA genotype and phenotype after transmission. Y17H (pH 6.0 acquired HA mutations that stabilized the HA protein to pH 5.8 after transmission to pigs and 5.5 after transmission to ferrets. Overall, we found swine support a broad range of HA activation pH for contact transmission and many recent swine H1N1 and H3N2 isolates have stabilized (human-like HA proteins. This constitutes a heightened pandemic risk and underscores the importance of ongoing surveillance and control efforts for swine viruses.

  13. Molecular characterization of African swine fever virus in apparently ...

    African Journals Online (AJOL)

    African swine fever (ASF) is a highly lethal and economically significant disease of domestic pigs in Uganda where outbreaks regularly occur. There is neither a vaccine nor treatment available for ASF control. Twenty two African swine fever virus (ASFV) genotypes (I - XXII) have been identified based on partial sequencing ...

  14. Functional analysis of replication determinantsin classical swine fever virus

    DEFF Research Database (Denmark)

    Hadsbjerg, Johanne

    and animal pathogens should facilitate finding new approaches for efficient disease control. The principal aim of this thesis is to characterise determinants involved in the replication of classical swine fever virus (CSFV). Classical swine fever is a highly contagious virus disease of domestic pigs and wild...... in cell culture. Knowledge of these sequence variations and putative long-range interactions will provide valuable insights into mechanisms underlying virustranslation and replication. In manuscript 3, a selection marker has been inserted into a CSFV-based replicon making it suitable for screening...

  15. Replication of swine and human influenza viruses in juvenile and layer turkey hens.

    Science.gov (United States)

    Ali, Ahmed; Yassine, Hadi; Awe, Olusegun O; Ibrahim, Mahmoud; Saif, Yehia M; Lee, Chang-Won

    2013-04-12

    Since the first reported isolation of swine influenza viruses (SIVs) in turkeys in the 1980s, transmission of SIVs to turkeys was frequently documented. Recently, the 2009 pandemic H1N1 virus, that was thought to be of swine origin, was detected in turkeys with a severe drop in egg production. In this study, we assessed the infectivity of different mammalian influenza viruses including swine, pandemic H1N1 and seasonal human influenza viruses in both juvenile and layer turkeys. In addition, we investigated the potential influenza virus dissemination in the semen of experimentally infected turkey toms. Results showed that all mammalian origin influenza viruses tested can infect turkeys. SIVs were detected in respiratory and digestive tracts of both juvenile and layer turkeys. Variations in replication efficiencies among SIVs were observed especially in the reproductive tract of layer turkeys. Compared to SIVs, limited replication of seasonal human H1N1 and no detectable replication of recent human-like swine H1N2, pandemic H1N1 and seasonal human H3N2 viruses was noticed. All birds seroconverted to all tested viruses regardless of their replication level. In turkey toms, we were able to detect swine H3N2 virus in semen and reproductive tract of infected toms by real-time RT-PCR although virus isolation was not successful. These data suggest that turkey hens could be affected by diverse influenza strains especially SIVs. Moreover, the differences in the replication efficiency we demonstrated among SIVs and between SIV and human influenza viruses in layer turkeys suggest a possible use of turkeys as an animal model to study host tropism and pathogenesis of influenza viruses. Our results also indicate a potential risk of venereal transmission of influenza viruses in turkeys. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The swine flu vaccine, public attitudes, and researcher interpretations: a systematic review of qualitative research.

    Science.gov (United States)

    Carlsen, Benedicte; Glenton, Claire

    2016-06-24

    During pandemics, health authorities may be uncertain about the spread and severity of the disease and the effectiveness and safety of available interventions. This was the case during the swine flu (H1N1) pandemic of 2009-2010, and governments were forced to make decisions despite these uncertainties. While many countries chose to implement wide scale vaccination programmes, few accomplished their vaccination goals. Many research studies aiming to explore barriers and facilitators to vaccine uptake have been conducted in the aftermath of the pandemic, including several qualitative studies. 1. To explore public attitudes to the swine flu vaccine in different countries through a review of qualitative primary studies. 2. To describe and discuss the implications drawn by the primary study authors. Systematic review of qualitative research studies, using a broadly comparative cross case-study approach. Study quality was appraised using an adaptation of the Critical Appraisal Skills Programme (CASP) quality assessment tool. The review indicates that the public had varying opinions about disease risk and prevalence and had concerns about vaccine safety. Most primary study authors concluded that participants were uninformed, and that more information about the disease and the vaccine would have led to an increase in vaccine uptake. We find these conclusions problematic. We suggest instead that people's questions and concerns were legitimate given the uncertainties of the situation at the time and the fact that the authorities did not have the necessary information to convince the public. Our quality assessment of the included studies points to a lack of reflexivity and a lack of information about study context. We suggest that these study weaknesses are tied to primary study authors' lack of acknowledgement of the uncertainties surrounding the disease and the vaccine. While primary study authors suggest that authorities could increase vaccine uptake through increased

  17. Genetic and pathogenic characteristics of H1 avian and swine influenza A viruses.

    Science.gov (United States)

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jeong, Jipseol; Kim, Hye-Ryoung; Choi, Eun-Jin; Shin, Yeun-Kyung; Lee, Hee-Soo; Lee, Youn-Jeong

    2014-10-01

    This study examined the potential for cross-species transmission of influenza viruses by comparing the genetic and pathogenic characteristics of H1 avian influenza viruses (AIVs) with different host origins in Korea. Antigenic and phylogenetic analyses of H1 AIVs circulating in Korea provided evidence of genetic similarity between viruses that infect domestic ducks and those that infect wild birds, although there was no relationship between avian and swine viruses. However, there were some relationships between swine and human viral genes. The replication and pathogenicity of the H1 viruses was assessed in chickens, domestic ducks and mice. Viral shedding in chickens was relatively high. Virus was recovered from both oropharyngeal and cloacal swabs up to 5-10 days post-inoculation. The titres of domestic duck viruses in chickens were much higher than those of wild-bird viruses. Both domestic duck and wild-bird viruses replicated poorly in domestic ducks. None of the swine viruses replicated in chickens or domestic ducks; however, six viruses showed relatively high titres in mice, regardless of host origin, and induced clinical signs such as ruffled fur, squatting and weight loss. Thus, although the phylogenetic and antigenic analyses showed no evidence of interspecies transmission between birds and swine, the results suggest that Korean H1 viruses have the potential to cause disease in mammals. Therefore, we should intensify continuous monitoring of avian H1 viruses in mammals and seek to prevent interspecies transmission. © 2014 The Authors.

  18. Efficacy of Influenza Vaccination and Tamiflu? Treatment ? Comparative Studies with Eurasian Swine Influenza Viruses in Pigs

    OpenAIRE

    Duerrwald, Ralf; Schlegel, Michael; Bauer, Katja; Vissiennon, Th?ophile; Wutzler, Peter; Schmidtke, Michaela

    2013-01-01

    Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebu...

  19. Estimation of the transmission dynamics of African swine fever virus within a swine house

    DEFF Research Database (Denmark)

    Nielsen, J. P.; Larsen, T. S.; Hisham Beshara Halasa, Tariq

    2017-01-01

    The spread of African swine fever virus (ASFV) threatens to reach further parts of Europe. In countries with a large swine production, an outbreak of ASF may result in devastating economic consequences for the swine industry. Simulation models can assist decision makers setting up contingency plans......·00 (95% CI 0-1). Furthermore, we simulated the spread of ASFV within a pig house using a modified SEIR-model to establish the time from infection of one animal until ASFV is detected in the herd. Based on a chosen detection limit of 2·55% equivalent to 10 dead pigs out of 360, the disease would...

  20. Pre-infection of pigs with Mycoplasma hyopneumoniae modifies outcomes of infection with European swine influenza virus of H1N1, but not H1N2, subtype.

    Science.gov (United States)

    Deblanc, C; Gorin, S; Quéguiner, S; Gautier-Bouchardon, A V; Ferré, S; Amenna, N; Cariolet, R; Simon, G

    2012-05-25

    Swine influenza virus (SIV) and Mycoplasma hyopneumoniae (Mhp) are widespread in farms and are major pathogens involved in the porcine respiratory disease complex (PRDC). The aim of this experiment was to compare the pathogenicity of European avian-like swine H1N1 and European human-like reassortant swine H1N2 viruses in naïve pigs and in pigs previously infected with Mhp. Six groups of SPF pigs were inoculated intra-tracheally with either Mhp, or H1N1, or H1N2 or Mhp+H1N1 or Mhp+H1N2, both pathogens being inoculated at 21 days intervals in these two last groups. A mock-infected group was included. Although both SIV strains induced clinical signs when singly inoculated, results indicated that the H1N2 SIV was more pathogenic than the H1N1 virus, with an earlier shedding and a greater spread in lungs. Initial infection with Mhp before SIV inoculation increased flu clinical signs and pathogenesis (hyperthermia, loss of appetite, pneumonia lesions) due to the H1N1 virus but did not modify significantly outcomes of H1N2 infection. Thus, Mhp and SIV H1N1 appeared to act synergistically, whereas Mhp and SIV H1N2 would compete, as H1N2 infection led to the elimination of Mhp in lung diaphragmatic lobes. In conclusion, SIV would be a risk factor for the severity of respiratory disorders when associated with Mhp, depending on the viral subtype involved. This experimental model of coinfection with Mhp and avian-like swine H1N1 is a relevant tool for studying the pathogenesis of SIV-associated PRDC and testing intervention strategies for the control of the disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. People at High Risk of Developing Flu-Related Complications

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other People at High Risk of Developing Flu–Related Complications ... related complications if they get sick with influenza. People at High Risk for Developing Flu-Related Complications ...

  2. Virulence and transmissibility of H1N2 influenza virus in ferrets imply the continuing threat of triple-reassortant swine viruses.

    Science.gov (United States)

    Pascua, Philippe Noriel Q; Song, Min-Suk; Lee, Jun Han; Baek, Yun Hee; Kwon, Hyeok-il; Park, Su-Jin; Choi, Eun Hye; Lim, Gyo-Jin; Lee, Ok-Jun; Kim, Si-Wook; Kim, Chul-Joong; Sung, Moon Hee; Kim, Myung Hee; Yoon, Sun-Woo; Govorkova, Elena A; Webby, Richard J; Webster, Robert G; Choi, Young-Ki

    2012-09-25

    Efficient worldwide swine surveillance for influenza A viruses is urgently needed; the emergence of a novel reassortant pandemic H1N1 (pH1N1) virus in 2009 demonstrated that swine can be the direct source of pandemic influenza and that the pandemic potential of viruses prevalent in swine populations must be monitored. We used the ferret model to assess the pathogenicity and transmissibility of predominant Korean triple-reassortant swine (TRSw) H1N2 and H3N2 influenza viruses genetically related to North American strains. Although most of the TRSw viruses were moderately pathogenic, one [A/Swine/Korea/1204/2009; Sw/1204 (H1N2)] was virulent in ferrets, causing death within 10 d of inoculation, and was efficiently transmitted to naive contact ferrets via respiratory droplets. Although molecular analysis did not reveal known virulence markers, the Sw/1204 virus acquired mutations in hemagglutinin (HA) (Asp-225-Gly) and neuraminidase (NA) (Ser-315-Asn) proteins during the single ferret passage. The contact-Sw/1204 virus became more virulent in mice, replicated efficiently in vitro, extensively infected human lung tissues ex vivo, and maintained its ability to replicate and transmit in swine. Reverse-genetics studies further indicated that the HA(225G) and NA(315N) substitutions contributed substantially in altering virulence and transmissibility. These findings support the continuing threat of some field TRSw viruses to human and animal health, reviving concerns on the capacity of pigs to create future pandemic viruses. Apart from warranting continued and enhanced global surveillance, this study also provides evidence on the emerging roles of HA(225G) and NA(315N) as potential virulence markers in mammals.

  3. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian 'avian-like' H1N1 swine viruses in mice.

    Science.gov (United States)

    Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

    2014-05-01

    To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. © 2013 The Authors Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  4. Assessment of zoonotic potential of four European swine influenza viruses in the ferret model

    DEFF Research Database (Denmark)

    Fobian, Kristina; P. Fabrizio, Thomas; Yoon, Sun-Woo

    herds and enhanced focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Of the four viruses, two were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2 and two were new reassortants, one with avian......The reverse zoonotic events that introduced the 2009 pandemic influenza virus into swine herds have drastically increased the diversity of reassortants throughout Europe. The pandemic potential of these novel reassortments is unknown, hence necessitating enhanced surveillance of European swine...... to neuraminidase inhibitors. These findings suggest that the investigated viruses have the potential to infect humans and further underline the need for continued surveillance as well as pandemic and zoonotic assessment of new influenza reassortants....

  5. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses

    Science.gov (United States)

    African swine fever is a contagious and often lethal disease for domestic pigs with a significant economic impact on the swine industry. The etiological agent, African swine fever virus (ASFV), is a highly structurally complex double stranded DNA virus. No effective vaccines or antiviral treatment ...

  6. Are Swine Workers in the United States at Increased Risk of Infection with Zoonotic Influenza Virus?

    Science.gov (United States)

    Myers, Kendall P.; Olsen, Christopher W.; Setterquist, Sharon F.; Capuano, Ana W.; Donham, Kelley J.; Thacker, Eileen L.; Merchant, James A.; Gray, Gregory C.

    2006-01-01

    Background Pandemic influenza strains originate in nonhuman species. Pigs have an important role in interspecies transmission of the virus. We examined multiple swine-exposed human populations in the nation's number 1 swine-producing state for evidence of previous swine influenza virus infection. Methods We performed controlled, cross-sectional seroprevalence studies among 111 farmers, 97 meat processing workers, 65 veterinarians, and 79 control subjects using serum samples collected during the period of 2002–2004. Serum samples were tested using a hemagglutination inhibition assay against the following 6 influenza A virus isolates collected recently from pigs and humans: A/Swine/WI/238/97 (H1N1), A/Swine/WI/R33F/01 (H1N2), A/Swine/Minnesota/593/99 (H3N2), A/New Caledonia/20/99 (H1N1), A/Panama/2007/99 (H3N2), and A/Nanchang/933/95 (H3N2). Results Using multivariable proportional odds modeling, all 3 exposed study groups demonstrated markedly elevated titers against the H1N1 and H1N2 swine influenza virus isolates, compared with control subjects. Farmers had the strongest indication of exposure to swine H1N1 virus infection (odds ratio [OR], 35.3; 95% confidence interval [CI], 7.7–161.8), followed by veterinarians (OR, 17.8; 95% CI, 3.8–82.7), and meat processing workers (OR, 6.5; 95% CI, 1.4–29.5). Similarly, farmers had the highest odds for exposure to swine H1N2 virus (OR, 13.8; 95% CI, 5.4–35.4), followed by veterinarians (OR, 9.5; 95% CI, 3.6–24.6) and meat processing workers (OR, 2.7; 95% CI, 1.1–6.7). Conclusions Occupational exposure to pigs greatly increases workers' risk of swine influenza virus infection. Swine workers should be included in pandemic surveillance and in antiviral and immunization strategies. PMID:16323086

  7. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses.

    Science.gov (United States)

    Borca, Manuel V; Holinka, Lauren G; Berggren, Keith A; Gladue, Douglas P

    2018-02-16

    African swine fever virus (ASFV) causes a highly contagious disease called African swine fever. This disease is often lethal for domestic pigs, causing extensive losses for the swine industry. ASFV is a large and complex double stranded DNA virus. Currently there is no commercially available treatment or vaccine to prevent this devastating disease. Development of recombinant ASFV for producing live-attenuated vaccines or studying the involvement of specific genes in virus virulence has relied on the relatively rare event of homologous recombination in primary swine macrophages, causing difficulty to purify the recombinant virus from the wild-type parental ASFV. Here we present the use of the CRISPR-Cas9 gene editing system as a more robust and efficient system to produce recombinant ASFVs. Using CRISPR-Cas9 a recombinant virus was efficiently developed by deleting the non-essential gene 8-DR from the genome of the highly virulent field strain Georgia07 using swine macrophages as cell substrate.

  8. Analyzing the interaction of a herbal compound Andrographolide from Andrographis paniculata as a folklore against swine flu (H1N1

    Directory of Open Access Journals (Sweden)

    Chandrabhan Seniya

    2014-09-01

    Full Text Available Objective: To find new bioactive molecules for the treatment of swine flu. Methods: The present study is an attempt to elucidate inhibition potential of andrographolide and its derivatives along with an associated binding mechanism through virtual screening and molecular docking simulation studies. Results: Our findings revealed structural conformation changes in 150 loop, secondary sialic acid binding site residues of ACZ97474 {Neuraminidase (A/Blore/NIV236/2009(H1N1}. Andrographolide have been identified as the highest binging energy of -1 0.88 Kcal/mol, 3 hydrogen bond interactions (Arg152, Lys150, and Gly197, total intermolecular energy of -12.07 Kcal/mol with bioactivity value (Ki of 10.59 nmol/L, while the Food and Drug Admistraton approved drug Oseltamivir and Zanamivir have shown 2 and 4 hydrogen bond interactions with binding energies of -6.28 Kcal/mol and -7.73Kcal/mol, respectively, which is higher than andrographolide. The guanidine group of Arg152 has binding affinities to the hydrophilic nature of the inhibitors (-OH and =O groups, as identified by docking of andrographolide (CID: 5318517 on neuraminidase. Conclusions: Hence, andrographolide has the potential to inhibit neuraminidase activity of H1N1 and may be used as an alternative medicinal therapy for swine flu positive patient. With potent antiviral activity and a potentially new mechanism of action, andrographolide may warrant further evaluation as a possible therapy for influenza.

  9. Molucular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013

    NARCIS (Netherlands)

    Watson, S.J.; Langat, P.; Reid, S.; Lam, T.; Cotten, M.; Kelly, M.; Reeth, Van K.; Qiu, Y.; Simon, G.; Bonin, E.; Foni, E.; Chiapponi, C.; Larsen, L.; Hjulsager, C.; Markowska-Daniel, I.; Urbaniak, K.; Durrwald, R.; Schlegel, M.; Huovilainen, A.; Davidson, I.; Dan, A.; Loeffen, W.L.A.; Edwards, S.; Bublot, M.; Vila, T.; Maldonado, J.; Valls, L.; Brown, I.H.; Pybus, O.G.; Kellam, P.

    2015-01-01

    The emergence in humans of the A(H1N1)pdm09 influenza virus, a complex reassortant virus of swine origin, highlighted the importance of worldwide influenza virus surveillance in swine. To date, large-scale surveillance studies have been reported for southern China and North America, but such data

  10. DETECTION OF CLASSICAL SWINE FEVER VIRUS BY RT-PCR IN WEST BENGAL, INDIA

    Directory of Open Access Journals (Sweden)

    Sumit Chowdhury

    2016-12-01

    Full Text Available Classical swine fever is a deadly disease of swine, caused by a RNA virus. The present study has identified presence of the classical swine fever virus (CSFV in pigs of West Bengal by one step reverse transcriptase PCR (RT-PCR performed using 5’ NTR specific primers. Internal organs from clinically affected pigs were examined from three districts of West Bengal. RT-PCT has identified presence of CSFV in all the tissues examined confirming presence of CSFV in different parts of the state.

  11. Swine-origin influenza A (H3N2) virus infection in two children--Indiana and Pennsylvania, July-August 2011.

    Science.gov (United States)

    2011-09-09

    Influenza A viruses are endemic in many animal species, including humans, swine, and wild birds, and sporadic cases of transmission of influenza A viruses between humans and animals do occur, including human infections with avian-origin influenza A viruses (i.e., H5N1 and H7N7) and swine-origin influenza A viruses (i.e., H1N1, H1N2, and H3N2). Genetic analysis can distinguish animal origin influenza viruses from the seasonal human influenza viruses that circulate widely and cause annual epidemics. This report describes two cases of febrile respiratory illness caused by swine-origin influenza A (H3N2) viruses identified on August 19 and August 26, 2011, and the current investigations. No epidemiologic link between the two cases has been identified, and although investigations are ongoing, no additional confirmed human infections with this virus have been detected. These viruses are similar to eight other swine-origin influenza A (H3N2) viruses identified from previous human infections over the past 2 years, but are unique in that one of the eight gene segments (matrix [M] gene) is from the 2009 influenza A (H1N1) virus. The acquisition of the M gene in these two swine-origin influenza A (H3N2) viruses indicates that they are "reassortants" because they contain genes of the swine-origin influenza A (H3N2) virus circulating in North American pigs since 1998 and the 2009 influenza A (H1N1) virus that might have been transmitted to pigs from humans during the 2009 H1N1 pandemic. However, reassortments of the 2009 influenza A (H1N1) virus with other swine influenza A viruses have been reported previously in swine. Clinicians who suspect influenza virus infection in humans with recent exposure to swine should obtain a nasopharyngeal swab from the patient for timely diagnosis at a state public health laboratory and consider empiric neuraminidase inhibitor antiviral treatment to quickly limit potential human transmission.

  12. Alteration of a second putative fusion peptide of structural glycoprotein E2 of Classical Swine Fever Virus alters virus replication and virulence in swine

    Science.gov (United States)

    E2, the major envelope glycoprotein of Classical Swine Fever Virus (CSFV), is involved in several critical virus functions including cell attachment, host range susceptibility, and virulence in natural hosts. Functional structural analysis of E2 based on Wimley-White interfacial hydrophobicity dis...

  13. How to Boost Flu Vaccination Rates among Employees in Your Program

    Science.gov (United States)

    de Perio, Marie A.; Wiegand, Douglas M.; Evans, Stefanie M.; Niemeier, Maureen T.

    2012-01-01

    Flu viruses are typically spread by droplets, when people who are sick with flu cough, sneeze, or talk. Less often, a person may get flu from touching a surface or object that has the virus on it and then touching his own mouth, eyes, or nose. Flu can cause mild to severe illness and may even lead to death. Child care providers are at risk of…

  14. Close Relationship of Ruminant Pestiviruses and Classical Swine Fever Virus

    Science.gov (United States)

    Postel, Alexander; Schmeiser, Stefanie; Oguzoglu, Tuba Cigdem; Indenbirken, Daniela; Alawi, Malik; Fischer, Nicole; Grundhoff, Adam

    2015-01-01

    To determine why serum from small ruminants infected with ruminant pestiviruses reacted positively to classical swine fever virus (CSFV)–specific diagnostic tests, we analyzed 2 pestiviruses from Turkey. They differed genetically and antigenically from known Pestivirus species and were closely related to CSFV. Cross-reactions would interfere with classical swine fever diagnosis in pigs. PMID:25811683

  15. Roles of African swine fever virus structural proteins in viral infection

    Directory of Open Access Journals (Sweden)

    Jia Ning

    2017-06-01

    Full Text Available African swine fever virus (ASFV is a large, double-stranded DNA virus and the sole member of the Asfarviridae family. ASFV infects domestic pigs, wild boars, warthogs, and bush pigs, as well as soft ticks (Ornithodoros erraticus, which likely act as a vector. The major target is swine monocyte-macrophage cells. The virus can cause high fever, haemorrhagic lesions, cyanosis, anorexia, and even fatalities in domestic pigs. Currently, there is no vaccine and effective disease control strategies against its spread are culling infected pigs and maintaining high biosecurity standards. African swine fever (ASF spread to Europe from Africa in the middle of the 20th century, and later also to South America and the Caribbean. Since then, ASF has spread more widely and thus is still a great challenge for swine breeding. The genome of ASFV ranges in length from about 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames (ORFs. The ASFV genome encodes 150 to 200 proteins, around 50 of them structural. The roles of virus structural proteins in viral infection have been described. These proteins, such as pp220, pp62, p72, p54, p30, and CD2v, serve as the major component of virus particles and have roles in attachment, entry, and replication. All studies on ASFV proteins lay a good foundation upon which to clarify the infection mechanism and develop vaccines and diagnosis methods. In this paper, the roles of ASFV structural proteins in viral infection are reviewed.

  16. EVIDENCE OF PSEUDORABIES VIRUS SHEDDING IN FERAL SWINE ( SUS SCROFA) POPULATIONS OF FLORIDA, USA.

    Science.gov (United States)

    Hernández, Felipe A; Sayler, Katherine A; Bounds, Courtney; Milleson, Michael P; Carr, Amanda N; Wisely, Samantha M

    2018-01-01

    :  Feral swine ( Sus scrofa) are a pathogen reservoir for pseudorabies virus (PrV). The virus can be fatal to wildlife and contributes to economic losses in the swine industry worldwide. National surveillance efforts in the US use serology to detect PrV-specific antibodies in feral swine populations, but PrV exposure is not a direct indicator of pathogen transmission among conspecifics or to non-suid wildlife species. We measured antibody production and the presence of PrV DNA in four tissue types from feral swine populations of Florida, US. We sampled blood, nasal, oral, and genital swabs from 551 individuals at 39 sites during 2014-16. Of the animals tested for antibody production, 224 of 436 (51%) feral swine were antibody positive while 38 of 549 feral swine (7%) tested for viral shedding were quantitative polymerase chain reaction (qPCR)-positive for PrV. The detection of PrV DNA across all the collected sample types (blood, nasal, oral, and genital [vaginal] swabs) suggested viral shedding via direct (oronasal or venereal), and potentially indirect (through carcass consumption), routes of transmission among infected and susceptible animals. Fourteen of 212 seronegative feral swine were qPCR-positive, indicating 7% false negatives in the serologic assay. Our findings suggest that serology may underestimate the actual infection risk posed by feral swine to other species and that feral swine populations in Florida are capable of shedding the virus through multiple routes.

  17. Genetic drift of HA and NA in Danish swine influenza virus from the period 2003-2012

    DEFF Research Database (Denmark)

    Fobian, Kristina; Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane

    2012-01-01

    . Currently at least three influenza A subtypes (H1N1, H1N2 and H3N2) are endemic in the Danish swine population, and since 2010 the pandemic virus (H1N1pdm09) have also frequently been detected. The focus in this study will be on H1N1 and H1N2, since the prevalence of H3N2 have declined over the past years...... will provide a more complete picture of the molecular epidemiology of the H1N1 and H1N2 swine influenza viruses in Denmark. A thorough knowledge of the antigenic drift in surface genes is very important concerning evaluation of the zoonotic potential of existing and future swine influenza virus strains......The aim of this study is to analyze; the genetic drift in hemagglutinin (HA) and neuraminidase (NA) genes from influenza viruses isolated from Danish swine over the past decade; the antigenic evolution and relatedness between swine influenza virus strains of the H1 subtype by antigenic cartography...

  18. Cold And Flu: Conventional vs Botanical & Nutritional Therapy

    OpenAIRE

    KALRA M; KHATAK M; KHATAK S

    2011-01-01

    Cold and flu (or Influenza) are both respiratory illnesses and the terms are used interchangeably. However, they are both caused by different viruses. There are two main types of flu viruses: influenza A and influenza B. The most serious and deadly flu outbreaks are caused by influenza A because of its ability to genetically shift into new forms against which no person has developed immunity. Influenza B generally causes less severe infection. Outbreaks of influenza B commonly occur in school...

  19. Evidence for Cross-species Influenza A Virus Transmission Within Swine Farms, China: A One Health, Prospective Cohort Study.

    Science.gov (United States)

    Ma, Mai-Juan; Wang, Guo-Lin; Anderson, Benjamin D; Bi, Zhen-Qiang; Lu, Bing; Wang, Xian-Jun; Wang, Chuang-Xin; Chen, Shan-Hui; Qian, Yan-Hua; Song, Shao-Xia; Li, Min; Lednicky, John A; Zhao, Teng; Wu, Meng-Na; Cao, Wu-Chun; Gray, Gregory C

    2018-02-01

    Our understanding of influenza A virus transmission between humans and pigs is limited. Beginning in 2015, we used a One Health approach and serial sampling to prospectively study 299 swine workers and 100 controls, their 9000 pigs, and 6 pig farm environments in China for influenza A viruses (IAVs) using molecular, culture, and immunological techniques. Study participants were closely monitored for influenza-like illness (ILI) events. Upon enrollment, swine workers had higher serum neutralizing antibody titers against swine H1N1 and higher nasal wash total immunoglobulin A (IgA) and specific IgA titers against swine H1N1 and H3N2 viruses. Over a period of 12 months, IAVs were detected by quantitative reverse-transcription polymerase chain reaction in 46 of 396 (11.6%) environmental swabs, 235 of 3300 (7.1%) pig oral secretion, 23 of 396 (5.8%) water, 20 of 396 (5.1%) aerosol, and 19 of 396 (4.8%) fecal-slurry specimens. Five of 32 (15.6%) participants with ILI events had nasopharyngeal swab specimens that were positive for IAV, and 17 (53.1%) demonstrated 4-fold rises in neutralization titers against a swine virus. Reassorted Eurasian avian-lineage H1N1, A(H1N1)pdm09-like, and swine-lineage H3N2 viruses were identified in pig farms. The A(H1N1)pdm09-like H1N1 viruses identified in swine were nearly genetically identical to the human H1N1 viruses isolated from the participants with ILI. There was considerable evidence of A(H1N1)pdm09-like, swine-lineage H1N1, and swine-lineage H3N2 viruses circulating, likely reassorting, and likely crossing species within the pig farms. These data suggest that stronger surveillance for novel influenza virus emergence within swine farms is imperative. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  20. Virulence determinants within the E2 glycoprotein of Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Johnston, Camille Melissa; Fahnøe, Ulrik; Lohse, Louise

    Classical Swine Fever is a highly contagious disease of pigs caused by Classical Swine Fever Virus (CSFV), a member of the pestivirus genus within the family Flaviviridae. The E2 glycoprotein of CSFV has been shown to be an important factor for the virulence of the virus. In a recent study, we have......Kos (with the SL motif). The results indicate that the E2 residues 763-64 play an important role in CSFV virulence....

  1. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model.

    Science.gov (United States)

    Carlson, Jolene; O'Donnell, Vivian; Alfano, Marialexia; Velazquez Salinas, Lauro; Holinka, Lauren G; Krug, Peter W; Gladue, Douglas P; Higgs, Stephen; Borca, Manuel V

    2016-10-22

    African swine fever (ASF) is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV). There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4) virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus) is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi) showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi). This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN)-γ responses, or specific cytokine profiles) and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  2. Live poultry market workers are susceptible to both avian and swine influenza viruses, Guangdong Province, China.

    Science.gov (United States)

    Chen, Jidang; Ma, Jun; White, Sarah K; Cao, Zhenpeng; Zhen, Yun; He, Shuyi; Zhu, Wanjun; Ke, Changwen; Zhang, Yongbiao; Su, Shuo; Zhang, Guihong

    2015-12-31

    Guangdong Province is recognized for dense populations of humans, pigs, poultry and pets. In order to evaluate the threat of viral infection faced by those working with animals, a cross-sectional, sero-epidemiological study was conducted in Guangdong between December 2013 and January 2014. Individuals working with swine, at poultry farms, or live poultry markets (LPM), and veterinarians, and controls not exposed to animals were enrolled in this study and 11 (4 human, 3 swine, 3 avian, and 1 canine) influenza A viruses were used in hemagglutination inhibition (HI) assays (7 strains) and the cross-reactivity test (9 strains) in which 5 strains were used in both tests. Univariate analysis was performed to identify which variables were significantly associated with seropositivity. Odds ratios (OR) revealed that swine workers had a significantly higher risk of elevated antibodies against A/swine/Guangdong/L6/2009(H1N1), a classical swine virus, and A/swine/Guangdong/SS1/2012(H1N1), a Eurasian avian-like swine virus than non-exposed controls. Poultry farm workers were at a higher risk of infection with avian influenza H7N9 and H9N2. LPM workers were at a higher risk of infection with 3 subtypes of avian influenza, H5N1, H7N9, and H9N2. Interestingly, the OR also indicated that LPM workers were at risk of H1N1 swine influenza virus infection, perhaps due to the presence of pigs in the LPM. While partial confounding by cross-reactive antibodies against human viruses or vaccines cannot be ruled out, our data suggests that animal exposed people as are more likely to have antibodies against animal influenza viruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. H1N1 Flu & U.S. Schools: Answers to Frequently Asked Questions

    Science.gov (United States)

    US Department of Education, 2009

    2009-01-01

    A severe form of influenza known as H1N1, commonly being called swine flu, has health officials around the world concerned. In the United States, the outbreak of H1N1 has prompted school closures and cancellation of school-related events. As the flu spreads, the Department of Education encourages school leaders, parents and students to know how to…

  4. Presence of influenza viruses in backyard poultry and swine in El Yali wetland, Chile.

    Science.gov (United States)

    Bravo-Vasquez, N; Di Pillo, F; Lazo, A; Jiménez-Bluhm, P; Schultz-Cherry, S; Hamilton-West, C

    2016-11-01

    In South America little is known regarding influenza virus circulating in backyard poultry and swine populations. Backyard productive systems (BPS) that breed swine and poultry are widely distributed throughout Chile with high density in the central zone, and several BPS are located within the "El Yali" (EY) ecosystem, which is one of the most important wetlands in South America. Here, 130 different wild bird species have been described, of them, at least 22 species migrate yearly from North America for nesting. For this reason, EY is considered as a high-risk zone for avian influenza virus. This study aims to identify if backyard poultry and swine bred in the EY ecosystem have been exposed to influenza A virus and if so, to identify influenza virus subtypes. A biosecurity and handling survey was applied and samples were collected from BPS in two seasons (spring 2013 and fall 2014) for influenza seroprevalence, and in one season (fall 2014) for virus presence. Seroprevalence at BPS level was 42% (95% CI:22-49) during spring 2013 and 60% (95% CI 43-72) in fall 2014. rRT-PCR for the influenza A matrix gene indicated a viral prevalence of 27% (95% CI:14-39) at BPS level in fall 2014. Eight farms (73% of rRT-PCR positive farms) were also positive to the Elisa test at the same time. One BPS was simultaneously positive (rRT-PCR) in multiple species (poultry, swine and geese) and a H1N2 virus was identified from swine, exemplifying the risk that these BPS may pose for generation of novel influenza viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice.

    Science.gov (United States)

    Metreveli, Giorgi; Gao, Qinshan; Mena, Ignacio; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A; García-Sastre, Adolfo

    2014-08-08

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Prevalence of African swine fever virus and classical swine fever virus antibodies in pigs in Benue State, Nigeria.

    Science.gov (United States)

    Asambe, A; Sackey, A K B; Tekdek, L B

    2018-03-01

    This study investigated the prevalence of African swine fever virus (ASFV) and classical swine fever virus (CSFV) antibodies in pigs in Benue State, Nigeria. Serum samples were collected from a total of 460 pigs, including 416 from 74 piggeries and 44 from Makurdi slaughter slab. The samples were analysed using indirect enzyme-linked immunosorbent assay (ELISA) test kit to detect the presence of ASFV antibodies, while competitive ELISA test kit was used to detect antibodies to CSFV. Our findings showed a total ASF prevalence of 13 (2.8%), while prevalences of 7 (1.7%) and 6 (13.6%) were observed in piggeries and in Makurdi slaughter slab, respectively. However, no CSFV antibody sera were detected in this study. Relatively higher ASFV antibody-positive pigs were detected in the slaughter slab than in piggeries. The difference in prevalence of ASF between the two locations was significantly associated (p = 0.017). These findings suggest the presence of ASFV antibody-positive pig in Benue State, Nigeria. Continuous surveillance and monitoring of these diseases among pigs in Nigeria to prevent any fulminating outbreak are recommended.

  7. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  8. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model

    Directory of Open Access Journals (Sweden)

    Jolene Carlson

    2016-10-01

    Full Text Available African swine fever (ASF is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV. There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4 virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi. This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN-γ responses, or specific cytokine profiles and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  9. Surveillance programs in Denmark has revealed the circulation of novel reassortant influenza A viruses in swine

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2014-01-01

    avH1N1 and H3N2 which is different from the dominating European H1N2 subtype (1). The prevalence of the H1N1pdm09 virus in swine has increased since 2009 in some countries including Denmark. Here we present the results of the national passive surveillance program on influenza in swine performed from...... by the combination of the gene segments hemagglutinin (HA) and neuraminidase (NA). In most European countries, the avian-like (av)H1N1, the 2009 pandemic variant (H1N1pdm09), H1N2 and H3N2 subtypes have constituted the dominating SIV subtypes during recent years. In Denmark, the H1N2 subtype is a reassortant between......Swine influenza is a respiratory disease caused by multiple subtypes of influenza A virus. Swine influenza virus (SIV) is enzootic in swine populations in Europe, Asia, North and South America. The influenza A virus genome consist of eight distinct gene segments and SIV subtypes are defined...

  10. Adaptive evolution during the establishment of European avian-like H1N1 influenza A virus in swine.

    Science.gov (United States)

    Joseph, Udayan; Vijaykrishna, Dhanasekaran; Smith, Gavin J D; Su, Yvonne C F

    2018-04-01

    An H1N1 subtype influenza A virus with all eight gene segments derived from wild birds (including mallards), ducks and chickens, caused severe disease outbreaks in swine populations in Europe beginning in 1979 and successfully adapted to form the European avian-like swine (EA-swine) influenza lineage. Genes of the EA-swine lineage that are clearly segregated from its closest avian relatives continue to circulate in swine populations globally and represent a unique opportunity to study the adaptive process of an avian-to-mammalian cross-species transmission. Here, we used a relaxed molecular clock model to test whether the EA-swine virus originated through the introduction of a single avian ancestor as an entire genome, followed by an analysis of host-specific selection pressures among different gene segments. Our data indicated independent introduction of gene segments via transmission of avian viruses into swine followed by reassortment events that occurred at least 1-4 years prior to the EA-swine outbreak. All EA-swine gene segments exhibit greater selection pressure than avian viruses, reflecting both adaptive pressures and relaxed selective constraints that are associated with host switching. Notably, we identified key amino acid mutations in the viral surface proteins (H1 and N1) that play a role in adaptation to new hosts. Following the establishment of EA-swine lineage, we observed an increased frequency of intrasubtype reassortment of segments compared to the earlier strains that has been associated with adaptive amino acid replacements, disease severity and vaccine escape. Taken together, our study provides key insights into the adaptive changes in viral genomes following the transmission of avian influenza viruses to swine and the early establishment of the EA-swine lineage.

  11. Early assessment of anxiety and behavioral response to novel swine-origin influenza A(H1N1.

    Directory of Open Access Journals (Sweden)

    James Holland Jones

    Full Text Available BACKGROUND: Since late April, 2009, a novel influenza virus A (H1N1, generally referred to as the "swine flu," has spread around the globe and infected hundreds of thousands of people. During the first few days after the initial outbreak in Mexico, extensive media coverage together with a high degree of uncertainty about the transmissibility and mortality rate associated with the virus caused widespread concern in the population. The spread of an infectious disease can be strongly influenced by behavioral changes (e.g., social distancing during the early phase of an epidemic, but data on risk perception and behavioral response to a novel virus is usually collected with a substantial delay or after an epidemic has run its course. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the results from an online survey that gathered data (n = 6,249 about risk perception of the Influenza A(H1N1 outbreak during the first few days of widespread media coverage (April 28-May 5, 2009. We find that after an initially high level of concern, levels of anxiety waned along with the perception of the virus as an immediate threat. Overall, our data provide evidence that emotional status mediates behavioral response. Intriguingly, principal component analysis revealed strong clustering of anxiety about swine flu, bird flu and terrorism. All three of these threats receive a great deal of media attention and their fundamental uncertainty is likely to generate an inordinate amount of fear vis-a-vis their actual threat. CONCLUSIONS/SIGNIFICANCE: Our results suggest that respondents' behavior varies in predictable ways. Of particular interest, we find that affective variables, such as self-reported anxiety over the epidemic, mediate the likelihood that respondents will engage in protective behavior. Understanding how protective behavior such as social distancing varies and the specific factors that mediate it may help with the design of epidemic control strategies.

  12. In vitro reassortment between endemic H1N2 and 2009 H1N1 pandemic swine influenza viruses generates attenuated viruses.

    Directory of Open Access Journals (Sweden)

    Ben M Hause

    Full Text Available The pandemic H1N1 (pH1N1 influenza virus was first reported in humans in the spring of 2009 and soon thereafter was identified in numerous species, including swine. Reassortant viruses, presumably arising from the co-infection of pH1N1 and endemic swine influenza virus (SIV, were subsequently identified from diagnostic samples collected from swine. In this study, co-infection of swine testicle (ST cells with swine-derived endemic H1N2 (MN745 and pH1N1 (MN432 yielded two reassortant H1N2 viruses (R1 and R2, both possessing a matrix gene derived from pH1N1. In ST cells, the reassortant viruses had growth kinetics similar to the parental H1N2 virus and reached titers approximately 2 log(10 TCID(50/mL higher than the pH1N1 virus, while in A549 cells these viruses had similar growth kinetics. Intranasal challenge of pigs with H1N2, pH1N1, R1 or R2 found that all viruses were capable of infecting and transmitting between direct contact pigs as measured by real time reverse transcription PCR of nasal swabs. Lung samples were also PCR-positive for all challenge groups and influenza-associated microscopic lesions were detected by histology. Interestingly, infectious virus was detected in lung samples for pigs challenged with the parental H1N2 and pH1N1 at levels significantly higher than either reassortant virus despite similar levels of viral RNA. Results of our experiment suggested that the reassortant viruses generated through in vitro cell culture system were attenuated without gaining any selective growth advantage in pigs over the parental lineages. Thus, reassortant influenza viruses described in this study may provide a good system to study genetic basis of the attenuation and its mechanism.

  13. Molecular characterization of a novel reassortant H1N2 influenza virus containing genes from the 2009 pandemic human H1N1 virus in swine from eastern China.

    Science.gov (United States)

    Peng, Xiuming; Wu, Haibo; Xu, Lihua; Peng, Xiaorong; Cheng, Linfang; Jin, Changzhong; Xie, Tiansheng; Lu, Xiangyun; Wu, Nanping

    2016-06-01

    Pandemic outbreaks of H1N1 swine influenza virus have been reported since 2009. Reassortant H1N2 viruses that contain genes from the pandemic H1N1 virus have been isolated in Italy and the United States. However, there is limited information regarding the molecular characteristics of reassortant H1N2 swine influenza viruses in eastern China. Active influenza surveillance programs in Zhejiang Province identified a novel H1N2 influenza virus isolated from pigs displaying clinical signs of influenza virus infection. Whole-genome sequencing was performed and this strain was compared with other influenza viruses available in GenBank. Phylogenetic analysis suggested that the novel strain contained genes from the 2009 pandemic human H1N1 and swine H3N2 viruses. BALB/c mice were infected with the isolated virus to assess its virulence in mice. While the novel H1N2 isolate replicated well in mice, it was found to be less virulent. These results provide additional evidence that swine serve as intermediate hosts or 'mixing vessels' for novel influenza viruses. They also emphasize the importance of surveillance in the swine population for use as an early warning system for influenza outbreaks in swine and human populations.

  14. The PB2-K627E mutation attenuates H3N2 swine influenza virus in cultured cells and in mice.

    Science.gov (United States)

    Gong, Xiao-Qian; Ruan, Bao-Yang; Liu, Xiao-Min; Zhang, Peng; Wang, Xiu-Hui; Wang, Qi; Shan, Tong-Ling; Tong, Wu; Zhou, Yan-Jun; Li, Guo-Xin; Zheng, Hao; Tong, Guang-Zhi; Yu, Hai

    2018-04-01

    PB2-627K is an important amino acid that determines the virulence of some influenza A viruses. However, it has not been experimentally investigated in the H3N2 swine influenza virus. To explore the potential role of PB2-K627E substitution in H3N2 swine influenza virus, the growth properties and pathogenicity between H3N2 swine influenza virus and its PB2-K627E mutant were compared. For the first time, our results showed that PB2-K627E mutation attenuates H3N2 swine influenza virus in mammalian cells and in mice, suggesting that PB2-627K is required for viral replication and pathogenicity of H3N2 swine influenza virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Propidium Monoazide Coupled with PCR Predicts Infectivity of Enteric Viruses in Swine Manure and Biofertilized Soil.

    Science.gov (United States)

    Fongaro, Gislaine; Hernández, Marta; García-González, María Cruz; Barardi, Célia Regina Monte; Rodríguez-Lázaro, David

    2016-03-01

    The use of propidium monoazide (PMA) coupled with real-time PCR (RT-qPCR or qPCR for RNA or DNA viruses, respectively) was assessed to discriminate infectious enteric viruses in swine raw manure, swine effluent from anaerobic biodigester (AB) and biofertilized soils. Those samples were spiked either with infectious and heat-inactivated human adenovirus-2 (HAdV-2) or mengovirus (vMC0), and PMA-qPCR/RT-qPCR allowed discriminating inactivated viruses from the infective particles, with significant reductions (>99.9%). Then, the procedure was further assayed to evaluate the presence and stability of two non-cultivable viruses (porcine adenovirus and rotavirus A) in natural samples (swine raw manure, swine effluent from AB and biofertilized soils); it demonstrated viral inactivation during the storage period at 23 °C. As a result, the combination of PMA coupled to real-time PCR can be a promising alternative for prediction of viral infectivity in comparison to more labour-intensive and costly techniques such as animal or tissue-culture infectivity methods, and for those viruses that do not have currently available cell culture techniques.

  16. Complex Virus-Host Interactions Involved in the Regulation of Classical Swine Fever Virus Replication: A Minireview.

    Science.gov (United States)

    Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji

    2017-07-05

    Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV-host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus-host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding.

  17. Novel reassortant of swine influenza H1N2 virus in Germany.

    Science.gov (United States)

    Zell, Roland; Motzke, Susann; Krumbholz, Andi; Wutzler, Peter; Herwig, Volker; Dürrwald, Ralf

    2008-01-01

    European porcine H1N2 influenza viruses arose after multiple reassortment steps involving a porcine influenza virus with avian-influenza-like internal segments and human H1N1 and H3N2 viruses in 1994. In Germany, H1N2 swine influenza viruses first appeared in 2000. Two German H1N2 swine influenza virus strains isolated from pigs with clinical symptoms of influenza are described. They were characterized by the neutralization test, haemagglutination inhibition (HI) test and complete sequencing of the viral genomes. The data demonstrate that these viruses represent a novel H1N2 reassortant. The viruses showed limited neutralization by sera raised against heterologous A/sw/Bakum/1,832/00-like H1N2 viruses. Sera pools from recovered pigs showed a considerably lower HI reaction, indicative of diagnostic difficulties in using the HI test to detect these viruses with A/sw/Bakum/1,832/00-like H1N2 antigens. Genome sequencing revealed the novel combination of the human-like HAH1 gene of European porcine H1N2 influenza viruses and the NAN2 gene of European porcine H3N2 viruses.

  18. Identification of swine influenza virus epitopes and analysis of multiple specificities expressed by cytotoxic T cell subsets

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Breum, Solvej Østergaard; Riber, Ulla

    2014-01-01

    Background: Major histocompatibility complex (MHC) class I peptide binding and presentation are essential for antigen-specific activation of cytotoxic T lymphocytes (CTLs) and swine MHC class I molecules, also termed swine leukocyte antigens (SLA), thus play a crucial role in the process that leads...... to elimination of viruses such as swine influenza virus (SwIV). This study describes the identification of SLA-presented peptide epitopes that are targets for a swine CTL response, and further analyses multiple specificities expressed by SwIV activated CTL subsets. Findings: Four SwIV derived peptides were...

  19. Guidance for Schools on the Recent Flu Outbreak

    Science.gov (United States)

    US Department of Education, 2009

    2009-01-01

    The document provides a transcript of a conference call moderated by Bill Modzeleski, Director of the Office of Safe and Drug-Free Schools. The focus of the call was the recent outbreak of swine flu in Mexico and the United States. Centers for Disease Control (CDC) actions and recommendations to the education community were discussed. A comparison…

  20. Onset of a pandemic: characterizing the initial phase of the swine flu (H1N1 epidemic in Israel

    Directory of Open Access Journals (Sweden)

    Mendelson Ella

    2011-04-01

    Full Text Available Abstract Background The swine influenza H1N1 first identified in Mexico, spread rapidly across the globe and is considered the fastest moving pandemic in history. The early phase of an outbreak, in which data is relatively scarce, presents scientific challenges on key issues such as: scale, severity and immunity which are fundamental for establishing sound and rapid policy schemes. Our analysis of an Israeli dataset aims at understanding the spatio-temporal dynamics of H1N1 in its initial phase. Methods We constructed and analyzed a unique dataset from Israel on all confirmed cases (between April 26 to July 7, 2009, representing most swine flu cases in this period. We estimated and characterized fundamental epidemiological features of the pandemic in Israel (e.g. effective reproductive number, age-class distribution, at-risk social groups, infections between sexes, and spatial dynamics. Contact data collected during this stage was used to estimate the generation time distribution of the pandemic. Results We found a low effective reproductive number (Re = 1.06, an age-class distribution of infected individuals (skewed towards ages 18-25, at-risk social groups (soldiers and ultra Orthodox Jews, and significant differences in infections between sexes (skewed towards males. In terms of spatial dynamics, the pandemic spread from the central coastal plain of Israel to other regions, with higher infection rates in more densely populated sub-districts with higher income households. Conclusions Analysis of high quality data holds much promise in reducing uncertainty regarding fundamental aspects of the initial phase of an outbreak (e.g. the effective reproductive number Re, age-class distribution, at-risk social groups. The formulation for determining the effective reproductive number Re used here has many advantages for studying the initial phase of the outbreak since it neither assumes exponential growth of infectives and is independent of the

  1. Recoding structural glycoprotein E2 in classical swine fever virus (CSFV) produces complete virus attenuation in swine and protects infected animals against disease.

    Science.gov (United States)

    Velazquez-Salinas, Lauro; Risatti, Guillermo R; Holinka, Lauren G; O'Donnell, Vivian; Carlson, Jolene; Alfano, Marialexia; Rodriguez, Luis L; Carrillo, Consuelo; Gladue, Douglas P; Borca, Manuel V

    2016-07-01

    Controlling classical swine fever (CSF) mainly involves vaccination with live attenuated vaccines (LAV). Experimental CSFV LAVs has been lately developed through reverse genetics using several different approaches. Here we present that codon de-optimization in the major CSFV structural glycoprotein E2 coding region, causes virus attenuation in swine. Four different mutated constructs (pCSFm1-pCSFm4) were designed using various mutational approaches based on the genetic background of the highly virulent strain Brescia (BICv). Three of these constructs produced infectious viruses (CSFm2v, CSFm3v, and CSFm4v). Animals infected with CSFm2v presented a reduced and extended viremia but did not display any CSF-related clinical signs. Animals that were infected with CSFm2v were protected against challenge with virulent parental BICv. This is the first report describing the development of an attenuated CSFV experimental vaccine by codon usage de-optimization, and one of the few examples of virus attenuation using this methodology that is assessed in a natural host. Published by Elsevier Inc.

  2. Guinea pig model for evaluating the potential public health risk of swine and avian influenza viruses.

    Science.gov (United States)

    Sun, Yipeng; Bi, Yuhai; Pu, Juan; Hu, Yanxin; Wang, Jingjing; Gao, Huijie; Liu, Linqing; Xu, Qi; Tan, Yuanyuan; Liu, Mengda; Guo, Xin; Yang, Hanchun; Liu, Jinhua

    2010-11-23

    The influenza viruses circulating in animals sporadically transmit to humans and pose pandemic threats. Animal models to evaluate the potential public health risk potential of these viruses are needed. We investigated the guinea pig as a mammalian model for the study of the replication and transmission characteristics of selected swine H1N1, H1N2, H3N2 and avian H9N2 influenza viruses, compared to those of pandemic (H1N1) 2009 and seasonal human H1N1, H3N2 influenza viruses. The swine and avian influenza viruses investigated were restricted to the respiratory system of guinea pigs and shed at high titers in nasal tracts without prior adaptation, similar to human strains. None of the swine and avian influenza viruses showed transmissibility among guinea pigs; in contrast, pandemic (H1N1) 2009 virus transmitted from infected guinea pigs to all animals and seasonal human influenza viruses could also horizontally transmit in guinea pigs. The analysis of the receptor distribution in the guinea pig respiratory tissues by lectin histochemistry indicated that both SAα2,3-Gal and SAα2,6-Gal receptors widely presented in the nasal tract and the trachea, while SAα2,3-Gal receptor was the main receptor in the lung. We propose that the guinea pig could serve as a useful mammalian model to evaluate the potential public health threat of swine and avian influenza viruses.

  3. Antigenically Diverse Swine Origin H1N1 Variant Influenza Viruses Exhibit Differential Ferret Pathogenesis and Transmission Phenotypes.

    Science.gov (United States)

    Pulit-Penaloza, Joanna A; Jones, Joyce; Sun, Xiangjie; Jang, Yunho; Thor, Sharmi; Belser, Jessica A; Zanders, Natosha; Creager, Hannah M; Ridenour, Callie; Wang, Li; Stark, Thomas J; Garten, Rebecca; Chen, Li-Mei; Barnes, John; Tumpey, Terrence M; Wentworth, David E; Maines, Taronna R; Davis, C Todd

    2018-06-01

    Influenza A(H1) viruses circulating in swine represent an emerging virus threat, as zoonotic infections occur sporadically following exposure to swine. A fatal infection caused by an H1N1 variant (H1N1v) virus was detected in a patient with reported exposure to swine and who presented with pneumonia, respiratory failure, and cardiac arrest. To understand the genetic and phenotypic characteristics of the virus, genome sequence analysis, antigenic characterization, and ferret pathogenesis and transmissibility experiments were performed. Antigenic analysis of the virus isolated from the fatal case, A/Ohio/09/2015, demonstrated significant antigenic drift away from the classical swine H1N1 variant viruses and H1N1 pandemic 2009 viruses. A substitution in the H1 hemagglutinin (G155E) was identified that likely impacted antigenicity, and reverse genetics was employed to understand the molecular mechanism of antibody escape. Reversion of the substitution to 155G, in a reverse genetics A/Ohio/09/2015 virus, showed that this residue was central to the loss of hemagglutination inhibition by ferret antisera raised against a prototypical H1N1 pandemic 2009 virus (A/California/07/2009), as well as gamma lineage classical swine H1N1 viruses, demonstrating the importance of this residue for antibody recognition of this H1 lineage. When analyzed in the ferret model, A/Ohio/09/2015 and another H1N1v virus, A/Iowa/39/2015, as well as A/California/07/2009, replicated efficiently in the respiratory tract of ferrets. The two H1N1v viruses transmitted efficiently among cohoused ferrets, but respiratory droplet transmission studies showed that A/California/07/2009 transmitted through the air more efficiently. Preexisting immunity to A/California/07/2009 did not fully protect ferrets from challenge with A/Ohio/09/2015. IMPORTANCE Human infections with classical swine influenza A(H1N1) viruses that circulate in pigs continue to occur in the United States following exposure to swine. To

  4. Spreading Of Avian Flu On Duck And Its Impact On Social Economy: Lesson Learnt From Avian Flu Cases On Chicken

    Directory of Open Access Journals (Sweden)

    Nyak Ilham

    2013-06-01

    Full Text Available Bird flu disease that attacks duck dismissed the notion of duck immune to bird flu disease. Learning from the experience of bird flu disease that attacks poultry in the year of 2004-2005, necessary to measure the spread of disease prevention bird flu in ducks. This paper aims to describe the business and trade patterns of duck associated with the spread of avian influenza and predict the socio-economic impact of bird flu on duck farms in Indonesia. Duck rearing patterns mostly are in the extensive and semi-intensive system, that have large potential disease transmission occured between duck and wild. Illegal trade in the crossborder region and imports from countries that re-export it, ias alo become potential as well as the entry point to the bird flu virus in Indonesia. Ducks trade between regions by land transportation is difficult to control as well becomes the potential media to spread of the virus to a wider area. The economic impact of bird flu on duck business occured due to the death of ducks, decline in production and loss of job opportunities, while that on demand reduction was not significant. Small scale farmers that were bankrupt as a result of bird flu outbreaks may require technical assistance and access to capital for recovery. In the future, development of ducks business should be directed at duck farms into a semi-intensive and intensive system to facilitate the control of epidemic diseases

  5. Genetic analysis of human and swine influenza A viruses isolated in Northern Italy during 2010-2015.

    Science.gov (United States)

    Chiapponi, C; Ebranati, E; Pariani, E; Faccini, S; Luppi, A; Baioni, L; Manfredi, R; Carta, V; Merenda, M; Affanni, P; Colucci, M E; Veronesi, L; Zehender, G; Foni, E

    2018-02-01

    Influenza A virus (IAV) infection in swine plays an important role in the ecology of influenza viruses. The emergence of new IAVs comes through different mechanisms, with the genetic reassortment of genes between influenza viruses, also originating from different species, being common. We performed a genetic analysis on 179 IAV isolates from humans (n. 75) and pigs (n. 104) collected in Northern Italy between 2010 and 2015, to monitor the genetic exchange between human and swine IAVs. No cases of human infection with swine strains were noticed, but direct infections of swine with H1N1pdm09 strains were detected. Moreover, we pointed out a continuous circulation of H1N1pdm09 strains in swine populations evidenced by the introduction of internal genes of this subtype. These events contribute to generating new viral variants-possibly endowed with pandemic potential-and emphasize the importance of continuous surveillance at both animal and human level. © 2017 The Authors. Zoonoses and Public Health published by Blackwell Verlag GmbH.

  6. Evaluation of the Cepheid Xpert Flu Assay for rapid identification and differentiation of influenza A, influenza A 2009 H1N1, and influenza B viruses.

    Science.gov (United States)

    Novak-Weekley, S M; Marlowe, E M; Poulter, M; Dwyer, D; Speers, D; Rawlinson, W; Baleriola, C; Robinson, C C

    2012-05-01

    The Xpert Flu Assay cartridge is a next-generation nucleic acid amplification system that provides multiplexed PCR detection of the influenza A, influenza A 2009 H1N1, and influenza B viruses in approximately 70 min with minimal hands-on time. Six laboratories participated in a clinical trial comparing the results of the new Cepheid Xpert Flu Assay to those of culture or real-time PCR with archived and prospectively collected nasal aspirate-wash (NA-W) specimens and nasopharyngeal (NP) swabs from children and adults. Discrepant results were resolved by DNA sequence analysis. After discrepant-result analysis, the sensitivities of the Xpert Flu Assay for prospective NA-W specimens containing the influenza A, influenza A 2009 H1N1, and influenza B viruses compared to those of culture were 90.0%, 100%, and 100%, respectively, while the sensitivities of the assay for prospective NP swabs compared to those of culture were 100%, 100%, and 100%, respectively. The sensitivities of the Xpert Flu Assay for archived NA-W specimens compared to those of Gen-Probe ProFlu+ PCR for the influenza A, influenza A 2009 H1N1, and influenza B viruses were 99.4%, 98.4%, and 100%, respectively, while the sensitivities of the Xpert Flu Assay for archived NP swabs compared to those of ProFlu+ were 98.1%, 100%, and 93.8%, respectively. The sensitivities of the Xpert Flu Assay with archived NP specimens compared to those of culture for the three targets were 97.5%, 100%, and 93.8%, respectively. We conclude that the Cepheid Xpert Flu Assay is an accurate and rapid method that is suitable for on-demand testing for influenza viral infection.

  7. The progressive adaptation of a georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome.

    Science.gov (United States)

    Krug, Peter W; Holinka, Lauren G; O'Donnell, Vivian; Reese, Bo; Sanford, Brenton; Fernandez-Sainz, Ignacio; Gladue, Douglas P; Arzt, Jonathan; Rodriguez, Luis; Risatti, Guillermo R; Borca, Manuel V

    2015-02-01

    African swine fever virus (ASFV) causes a contagious and often lethal disease of feral and domestic swine. Experimental vaccines derived from naturally occurring, genetically modified, or cell culture-adapted ASFV have been evaluated, but no commercial vaccine is available to control African swine fever (ASF). We report here the genotypic and phenotypic analysis of viruses obtained at different passages during the process of adaptation of a virulent ASFV field isolate from the Republic of Georgia (ASFV-G) to grow in cultured cell lines. ASFV-G was successively passaged 110 times in Vero cells. Viruses obtained at passages 30, 60, 80, and 110 were evaluated in vitro for the ability to replicate in Vero cells and primary swine macrophages cultures and in vivo for assessing virulence in swine. Replication of ASFV-G in Vero cells increased with successive passages, corresponding to a decreased replication in primary swine macrophages cultures. In vivo, progressive loss of virus virulence was observed with increased passages in Vero cells, and complete attenuation of ASFV-G was observed at passage 110. Infection of swine with the fully attenuated virus did not confer protection against challenge with virulent parental ASFV-G. Full-length sequence analysis of each of these viruses revealed significant deletions that gradually accumulated in specific areas at the right and left variable ends of the genome. Mutations that result in amino acid substitutions and frameshift mutations were also observed, though in a rather limited number of genes. The potential importance of these genetic changes in virus adaptation/attenuation is discussed. The main problem in controlling ASF is the lack of vaccines. Attempts to produce vaccines by adaptation of ASFV to cultured cell lines have been made. These attempts led to the production of attenuated viruses that conferred only homologous protection. Specifics regarding adaptation of these isolates to cell cultures have been

  8. Interaction between Mycoplasma hyopneumoniae and Swine Influenza Virus

    Science.gov (United States)

    Thacker, Eileen L.; Thacker, Brad J.; Janke, Bruce H.

    2001-01-01

    An experimental respiratory model was used to investigate the interaction between Mycoplasma hyopneumoniae and swine influenza virus (SIV) in the induction of pneumonia in susceptible swine. Previous studies demonstrated that M. hyopneumoniae, which produces a chronic bronchopneumonia in swine, potentiates a viral pneumonia induced by the porcine reproductive and respiratory syndrome virus (PRRSV). In this study, pigs were inoculated with M. hyopneumoniae 21 days prior to inoculation with SIV. Clinical disease as characterized by the severity of cough and fever was evaluated daily. Percentages of lung tissue with visual lesions and microscopic lesions were assessed upon necropsy at 3, 7, 14, and 21 days following SIV inoculation. Clinical observations revealed that pigs infected with both SIV and M. hyopneumoniae coughed significantly more than pigs inoculated with a single agent. Macroscopic pneumonia on necropsy at days 3 and 7 was greatest in both SIV-infected groups, with minimal levels of pneumonia in the M. hyopneumoniae-only-infected pigs. At 14 days post-SIV inoculation, pneumonia was significantly more severe in pigs infected with both pathogens. However, by 21 days postinoculation, the level of pneumonia in the dual-infected pigs was similar to that of the M. hyopneumoniae-only-infected group, and the pneumonia in the pigs inoculated with only SIV was nearly resolved. Microscopically, there was no apparent increase in the severity of pneumonia in pigs infected with both agents compared to that of single-agent-challenged pigs. The results of this study found that while pigs infected with both agents exhibited more severe clinical disease, the relationship between the two pathogens lacked the profound potentiation found with dual infection with M. hyopneumoniae and PRRSV. These findings demonstrate that the relationship between mycoplasmas and viruses varies with the individual agent. PMID:11427564

  9. Guinea pig model for evaluating the potential public health risk of swine and avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Yipeng Sun

    Full Text Available BACKGROUND: The influenza viruses circulating in animals sporadically transmit to humans and pose pandemic threats. Animal models to evaluate the potential public health risk potential of these viruses are needed. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the guinea pig as a mammalian model for the study of the replication and transmission characteristics of selected swine H1N1, H1N2, H3N2 and avian H9N2 influenza viruses, compared to those of pandemic (H1N1 2009 and seasonal human H1N1, H3N2 influenza viruses. The swine and avian influenza viruses investigated were restricted to the respiratory system of guinea pigs and shed at high titers in nasal tracts without prior adaptation, similar to human strains. None of the swine and avian influenza viruses showed transmissibility among guinea pigs; in contrast, pandemic (H1N1 2009 virus transmitted from infected guinea pigs to all animals and seasonal human influenza viruses could also horizontally transmit in guinea pigs. The analysis of the receptor distribution in the guinea pig respiratory tissues by lectin histochemistry indicated that both SAα2,3-Gal and SAα2,6-Gal receptors widely presented in the nasal tract and the trachea, while SAα2,3-Gal receptor was the main receptor in the lung. CONCLUSIONS/SIGNIFICANCE: We propose that the guinea pig could serve as a useful mammalian model to evaluate the potential public health threat of swine and avian influenza viruses.

  10. assessment of the economic and social implications of the avian flu ...

    African Journals Online (AJOL)

    Admin

    2006-01-22

    Jan 22, 2006 ... KEYWORDS: Assessment, Economic, Social Implications, Avian Flu, Nigerian Poultry. INTRODUCTION. Avian flu is a highly infectious, contagious and zoonotic disease of man, poultry and other birds caused by the avian influenza type A virus, Emmanuel et.al. (2006). The avian influenza virus belongs to ...

  11. Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States.

    Science.gov (United States)

    Rajao, Daniela S; Anderson, Tavis K; Kitikoon, Pravina; Stratton, Jered; Lewis, Nicola S; Vincent, Amy L

    2018-05-01

    Several lineages of influenza A viruses (IAV) currently circulate in North American pigs. Genetic diversity is further increased by transmission of IAV between swine and humans and subsequent evolution. Here, we characterized the genetic and antigenic evolution of contemporary swine H1N1 and H1N2 viruses representing clusters H1-α (1A.1), H1-β (1A.2), H1pdm (1A.3.3.2), H1-γ (1A.3.3.3), H1-δ1 (1B.2.2), and H1-δ2 (1B.2.1) currently circulating in pigs in the United States. The δ1-viruses diversified into two new genetic clades, H1-δ1a (1B.2.2.1) and H1-δ1b (1B.2.2.2), which were also antigenically distinct from the earlier H1-δ1-viruses. Further characterization revealed that a few key amino acid changes were associated with antigenic divergence in these groups. The continued genetic and antigenic evolution of contemporary H1 viruses might lead to loss of vaccine cross-protection that could lead to significant economic impact to the swine industry, and represents a challenge to public health initiatives that attempt to minimize swine-to-human IAV transmission. Published by Elsevier Inc.

  12. Genetic characterization of H1N2 influenza a virus isolated from sick pigs in Southern China in 2010.

    Science.gov (United States)

    Kong, Wei Li; Huang, Liang Zong; Qi, Hai Tao; Cao, Nan; Zhang, Liang Quan; Wang, Heng; Guan, Shang Song; Qi, Wen Bao; Jiao, Pei Rong; Liao, Ming; Zhang, Gui Hong

    2011-10-13

    In China H3N2 and H1N1 swine influenza viruses have been circulating for many years. In January 2010, before swine were infected with foot and mouth disease in Guangdong, some pigs have shown flu-like symptoms: cough, sneeze, runny nose and fever. We collected the nasopharyngeal swab of all sick pigs as much as possible. One subtype H1N2 influenza viruses were isolated from the pig population. The complete genome of one isolate, designated A/swine/Guangdong/1/2010(H1N2), was sequenced and compared with sequences available in GenBank. The nucleotide sequences of all eight viral RNA segments were determined, and then phylogenetic analysis was performed using the neighbor-joining method. HA, NP, M and NS were shown to be closely to swine origin. PB2 and PA were close to avian origin, but NA and PB1were close to human origin. It is a result of a multiple reassortment event. In conclusion, our finding provides further evidence about the interspecies transmission of avian influenza viruses to pigs and emphasizes the importance of reinforcing swine influenza virus (SIV) surveillance, especially before the emergence of highly pathogenic FMDs in pigs in Guangdong.

  13. Genetic characterization of H1N2 influenza a virus isolated from sick pigs in Southern China in 2010

    Directory of Open Access Journals (Sweden)

    Kong Wei

    2011-10-01

    Full Text Available Abstract In China H3N2 and H1N1 swine influenza viruses have been circulating for many years. In January 2010, before swine were infected with foot and mouth disease in Guangdong, some pigs have shown flu-like symptoms: cough, sneeze, runny nose and fever. We collected the nasopharyngeal swab of all sick pigs as much as possible. One subtype H1N2 influenza viruses were isolated from the pig population. The complete genome of one isolate, designated A/swine/Guangdong/1/2010(H1N2, was sequenced and compared with sequences available in GenBank. The nucleotide sequences of all eight viral RNA segments were determined, and then phylogenetic analysis was performed using the neighbor-joining method. HA, NP, M and NS were shown to be closely to swine origin. PB2 and PA were close to avian origin, but NA and PB1were close to human origin. It is a result of a multiple reassortment event. In conclusion, our finding provides further evidence about the interspecies transmission of avian influenza viruses to pigs and emphasizes the importance of reinforcing swine influenza virus (SIV surveillance, especially before the emergence of highly pathogenic FMDs in pigs in Guangdong.

  14. [Influenza A/H5N1 virus outbreaks and prepardness to avert flu pandemic].

    Science.gov (United States)

    Haque, A; Lucas, B; Hober, D

    2007-01-01

    This review emphasizes the need to improve the knowledge of the biology of H5N1 virus, a candidate for causing the next influenza pandemic. In-depth knowledge of mode of infection, mechanisms of pathogenesis and immune response will help in devising an efficient and practical control strategy against this flu virus. We have discussed limitations of currently available vaccines and proposed novel approaches for making better vaccines against H5N1 influenza virus. They include cell-culture system, reverse genetics, adjuvant development. Our review has also underscored the concept of therapeutic vaccine (anti-disease vaccine), which is aimed at diminishing 'cytokine storm' seen in acute respiratory distress syndrome and/or hemophagocytosis.

  15. New reassortant and enzootic European swine influenza 1 viruses transmits efficiently through direct contact in the ferret model

    DEFF Research Database (Denmark)

    Fobian, Kristina; P. Fabrizio, Thomas; Yoon, Sun-Woo

    2015-01-01

    The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs...... with additional focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Two of the four viruses were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2 and two were new reassortants, one with avian-like H1...... and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titers in nasal wash- and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics...

  16. Influenza A virus infection dynamics in swine farms in Belgium, France, Italy and Spain 2006-2008

    NARCIS (Netherlands)

    Kyriakis, C.S.; Rose, N.; Foni, E.; Maldonado, J.; Loeffen, W.L.A.; Madec, F.; Simon, G.; Reeth, K.

    2013-01-01

    Avian-like H1N1 and reassortant H3N2 and H1N2 influenza A viruses with a human-like haemagglutinin have been co-circulating in swine in Europe for more than a decade. We aimed to examine the infection dynamics of the three swine influenza virus (SIV) lineages at the farm level, and to identify

  17. Genetic characterization of H1N2 swine influenza virus isolated in China and its pathogenesis and inflammatory responses in mice.

    Science.gov (United States)

    Zhang, Yan; Wang, Nan; Cao, Jiyue; Chen, Huanchun; Jin, Meilin; Zhou, Hongbo

    2013-09-01

    In 2009, two H1N2 influenza viruses were isolated from trachea swabs of pigs in Hubei in China. We compared these sequences with the other 18 complete genome sequences of swine H1N2 isolates from China during 2004 to 2010 and undertook extensive analysis of their evolutionary patterns. Six different genotypes - two reassortants between triple reassortant (TR) H3N2 and classical swine (CS) H1N1 virus, three reassortants between TR H1N2, Eurasian avian-like H1N1 swine virus and H9N2 swine virus, and one reassortant between H1N1, H3N2 human virus and CS H1N1 virus - were observed in these 20 swine H1N2 isolates. The TR H1N2 swine virus is the predominant genotype, and the two Hubei H1N2 isolates were located in this cluster. We also used a mouse model to examine the pathogenesis and inflammatory responses of the two isolates. The isolates replicated efficiently in the lung, and exhibited a strong inflammatory response, serious pathological changes and mortality in infected mice. Given the role that swine can play as putative "genetic mixing vessels" and the observed transmission of TR H1N2 in ferrets, H1N2 influenza surveillance in pigs should be increased to minimize the potential threat to public health.

  18. Protocol: Transmission and prevention of influenza in Hutterites: Zoonotic transmission of influenza A: swine & swine workers

    Directory of Open Access Journals (Sweden)

    Loeb Mark

    2009-11-01

    Full Text Available Abstract Background Among swine, reassortment of influenza virus genes from birds, pigs, and humans could generate influenza viruses with pandemic potential. Humans with acute infection might also be a source of infection for swine production units. This article describes the study design and methods being used to assess influenza A transmission between swine workers and pigs. We hypothesize that transmission of swine influenza viruses to humans, transmission of human influenza viruses to swine, and reassortment of human and swine influenza A viruses is occurring. The project is part of a Team Grant; all Team Grant studies include active surveillance for influenza among Hutterite swine farmers in Alberta, Canada. This project also includes non-Hutterite swine farms that are experiencing swine respiratory illness. Methods/Design Nurses conduct active surveillance for influenza-like-illness (ILI, visiting participating communally owned and operated Hutterite swine farms twice weekly. Nasopharyngeal swabs and acute and convalescent sera are obtained from persons with any two such symptoms. Swabs are tested for influenza A and B by a real time RT-PCR (reverse transcriptase polymerase chain reaction at the Alberta Provincial Laboratory for Public Health (ProvLab. Test-positive participants are advised that they have influenza. The occurrence of test-positive swine workers triggers sampling (swabbing, acute and convalescent serology of the swine herd by veterinarians. Specimens obtained from swine are couriered to St. Jude Children's Research Hospital, Memphis, TN for testing. Veterinarians and herd owners are notified if animal specimens are test-positive for influenza. If swine ILI occurs, veterinarians obtain samples from the pigs; test-positives from the animals trigger nurses to obtain specimens (swabbing, acute and convalescent serology from the swine workers. ProvLab cultures influenza virus from human specimens, freezes these cultures and

  19. Shedding of Japanese Encephalitis Virus in Oral Fluid of Infected Swine.

    Science.gov (United States)

    Lyons, Amy C; Huang, Yan-Jang S; Park, So Lee; Ayers, Victoria B; Hettenbach, Susan M; Higgs, Stephen; McVey, D Scott; Noronha, Leela; Hsu, Wei-Wen; Vanlandingham, Dana L

    2018-05-09

    Japanese encephalitis virus (JEV) is a zoonotic mosquito-borne flavivirus endemic in the Asia-Pacific region. Maintenance of JEV in nature involves enzootic transmission by competent Culex mosquitoes among susceptible avian and swine species. Historically, JEV has been regarded as one of the most important arthropod-borne viruses in Southeast Asia. Oronasal shedding of JEV from infected amplification hosts was not recognized until the recent discovery of vector-free transmission of JEV among domestic pigs. In this study, oral shedding of JEV was characterized in domestic pigs and miniature swine representing the feral phenotype. A rope-based sampling method followed by the detection of viral RNA using RT-qPCR allowed the collection and detection of JEV in oral fluid samples collected from intradermally challenged animals. The results suggest that the shedding of JEV in oral fluid can be readily detected by molecular diagnostic assays at the acute phase of infection. It also demonstrates the feasibility of this technique for the diagnosis and surveillance of JEV in swine species.

  20. Evidence of infection with avian, human, and swine influenza viruses in pigs in Cairo, Egypt.

    Science.gov (United States)

    Gomaa, Mokhtar R; Kandeil, Ahmed; El-Shesheny, Rabeh; Shehata, Mahmoud M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2018-02-01

    The majority of the Egyptian swine population was culled in the aftermath of the 2009 H1N1 pandemic, but small-scale growing remains. We sampled pigs from piggeries and an abattoir in Cairo. We found virological evidence of infection with avian H9N2 and H5N1 viruses as well as human pandemic H1N1 influenza virus. Serological evidence suggested previous exposure to avian H5N1 and H9N2, human pandemic H1N1, and swine avian-like and human-like viruses. This raises concern about potential reassortment of influenza viruses in pigs and highlights the need for better control and prevention of influenza virus infection in pigs.

  1. Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate results in virus attenuation and may be a potential virus vaccine strain

    Science.gov (United States)

    African Swine Fever Virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs that has significant economic consequences for the swine industry. The control of African Swine Fever (ASF) has been hampered by the unavailability of vaccines. Successful experi...

  2. Colds and flu – an overview of the management | Ismail | South ...

    African Journals Online (AJOL)

    The common cold and flu are two very different viruses that share very similar symptoms. The common cold is a self-limiting upper respiratory tract infection and it is caused by the rhinovirus, coronavirus or the adenovirus. It usually resolves within 7-10 days. The flu is caused by the influenza virus and usually presents with ...

  3. MANAGEMENT PATIENT OF SWINE INFLUENZA

    Directory of Open Access Journals (Sweden)

    Endra Gunawan

    2015-05-01

    Full Text Available Influenza is an acute respiratory diseases caused by various influenza virus which infect the upper and lower respiratory tract and often accompanied by systemic symptoms such as fever, headache and muscle pain. Influenza spreads through the air. Swine influenza comes from swine and can cause an outbreaks in pig flocks. Even this is a kind of a rare case but the swine influenza could be transmitted to human by direct contact with infected swine or through environment that already being contaminated by swine influenza virus. There are 3 types of swine influenza virus namely H1N1, H3N2 and H1N2. Type H1N1 swine-virus had been known since 1918. Avian influenza virus infection is transmitted from one person to another through secret containing virus. Virus is binded into the mucous cells of respiratory tract before it is finally infecting the cells itself. Management patients with H1N1 influenza is based on the complications and the risk. Besides, it is also need to consider the clinical criteria of the patient. Therapy medicamentosa is applied to the patients by giving an antiviral, antibiotics and symptomatic therapy. Prevention can be done by avoid contact with infected animal or environment, having antiviral prophylaxis and vaccination.

  4. SERO SURVEI DAN ANALISA PENGETAHUAN SIKAP PENJAMAH UNGGAS TERHADAP PENYAKIT FLU BURUNG DI INDONESIA TAHUN 2008

    Directory of Open Access Journals (Sweden)

    Noer Endah Pracoyo

    2013-02-01

    Full Text Available Abstract The bird flu in Indonesia actually is Avian Influenza Virus H5N1 type. Is known bird flu virus in Humans occur if direct contact with infected poultry or through contact with environmental enclosure, and the carcasses of infected poultry products. The absence of the data if the handlers of poultry in the cases of bird flu virus has been exposed to the research conducted sero survey of bird flu antibody titers in handlers poultry  attitudes and knowledge of poultry against bird flu incident. The research objective measure antibodies against respondents tirer AI H5N1 virus, assess knowledge and attitudes against bird flu handlers through the interview. The study design was cross sectional. Handlers of poultry population in the region is ever going Extraordinary Cases of bird flu. Samples were responders/poultry handlers venous blood taken for H5N1 antibody titer by Ellisa, H5N1 conducted interviews using a questionnaire. The study used the respondents informed consent agreement. Research time in February to November 2007 in the island of Java. The number of samples of 80 samples of respondents. The results obtained are not found of H5N1 avian influenza antibody titer in responders. The results of the interview most of the handlers to wash Their hands after doing Their job (82.1%. A total of 52.9% residential handlers is more than a mile from where the management of poultry, (69% lived outside market handlers/Abattoir of poultry.Handler to act entered correctly (53.3%% and almost all handlers (97% would bring the patient/patient ill with signs of bird flu infection to health facilities. Keywords: poultry handlers, bird flu virus, knowledge and attitudes of poultry handlers Abstrak Yang dimaksud Flu burung di Indonesia sebetulnya adalah Virus Avian Influenza dengan tipe H5N1. Selama ini diketahui penularan virus flu burung pada manusia terjadi jika kontak langsung dengan unggas yang terinfeksi atau melalui kontak dengan lingkungan kandang

  5. Genetic and antigenic characterization of influenza A virus circulating in Danish swine during the past decade

    DEFF Research Database (Denmark)

    Fobian, Kristina; Kirk, Isa Kristina; Breum, Solvej Østergaard

    Influenza A virus has been endemic in Danish swine for the last 30 years, with H1N1 and H1N2 being the dominating subtypes. The purpose of this study was to investigate the genetic and antigenic evolution of the influenza viruses found in Danish swine during the last 10 years. A total of 78 samples...... to the complex epidemiology of circulating swine influenza virus in Denmark and indicates that vaccine development targeted against Danish H1N1 and H1N2 need only to include few components for the induction of cross protection against the predominant strains. The study was supported by grants from “European......-synonymous substitutions for H1, N1 and N2 were found to be in agreement with previously observed values for Eurasian swine lineages. Calculation of possible glycosylation sites in the hemagglutinin gene revealed that the H1N2 and H1N1 subtypes had three well conserved glycosylation sites in common. The results of the HI...

  6. Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes

    Directory of Open Access Journals (Sweden)

    Lin Na-Sheng

    2007-09-01

    Full Text Available Abstract Background Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV, that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects. Methods We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s of the capsid protein VP1 of foot-and-mouth disease virus (FMDV. The recombinant BaMV plasmid (pBVP1 was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164 of FMDV VP1. Results The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-γ. Furthermore, all BVP1-immunized swine were protected against FMDV challenge. Conclusion Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.

  7. Prospective and retrospective evaluation of the Cepheid Xpert® Flu/RSV XC assay for rapid detection of influenza A, influenza B, and respiratory syncytial virus.

    Science.gov (United States)

    Salez, Nicolas; Nougairede, Antoine; Ninove, Laetitia; Zandotti, Christine; de Lamballerie, Xavier; Charrel, Remi N

    2015-04-01

    A total of 281 clinical specimens (nasal swabs and nasopharyngeal aspirates) were tested with the Xpert® Flu/RSV XC. The results were compared to those obtained with the real-time retro transcriptase-polymerase chain reaction assays routinely used in our laboratory. The Xpert® Flu/RSV XC showed sensitivity/specificity of 97.8%/100% and 97.9%/100% for flu and respiratory syncytial virus, respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Approaches and Perspectives for Development of African Swine Fever Virus Vaccines

    Directory of Open Access Journals (Sweden)

    Marisa Arias

    2017-10-01

    Full Text Available African swine fever (ASF is a complex disease of swine, caused by a large DNA virus belonging to the family Asfarviridae. The disease shows variable clinical signs, with high case fatality rates, up to 100%, in the acute forms. ASF is currently present in Africa and Europe where it circulates in different scenarios causing a high socio-economic impact. In most affected regions, control has not been effective in part due to lack of a vaccine. The availability of an effective and safe ASFV vaccines would support and enforce control–eradication strategies. Therefore, work leading to the rational development of protective ASF vaccines is a high priority. Several factors have hindered vaccine development, including the complexity of the ASF virus particle and the large number of proteins encoded by its genome. Many of these virus proteins inhibit the host’s immune system thus facilitating virus replication and persistence. We review previous work aimed at understanding ASFV–host interactions, including mechanisms of protective immunity, and approaches for vaccine development. These include live attenuated vaccines, and “subunit” vaccines, based on DNA, proteins, or virus vectors. In the shorter to medium term, live attenuated vaccines are the most promising and best positioned candidates. Gaps and future research directions are evaluated.

  9. Detection of African swine fever, classical swine fever, and foot-and-mouth disease viruses in swine oral fluids by multiplex reverse transcription real-time polymerase chain reaction.

    Science.gov (United States)

    Grau, Frederic R; Schroeder, Megan E; Mulhern, Erin L; McIntosh, Michael T; Bounpheng, Mangkey A

    2015-03-01

    African swine fever (ASF), classical swine fever (CSF), and foot-and-mouth disease (FMD) are highly contagious animal diseases of significant economic importance. Pigs infected with ASF and CSF viruses (ASFV and CSFV) develop clinical signs that may be indistinguishable from other diseases. Likewise, various causes of vesicular disease can mimic clinical signs caused by the FMD virus (FMDV). Early detection is critical to limiting the impact and spread of these disease outbreaks, and the ability to perform herd-level surveillance for all 3 diseases rapidly and cost effectively using a single diagnostic sample and test is highly desirable. This study assessed the feasibility of simultaneous ASFV, CSFV, and FMDV detection by multiplex reverse transcription real-time polymerase chain reaction (mRT-qPCR) in swine oral fluids collected through the use of chewing ropes. Animal groups were experimentally infected independently with each virus, observed for clinical signs, and oral fluids collected and tested throughout the course of infection. All animal groups chewed on the ropes readily before and after onset of clinical signs and before onset of lameness or serious clinical signs. ASFV was detected as early as 3 days postinoculation (dpi), 2-3 days before onset of clinical disease; CSFV was detected at 5 dpi, coincident with onset of clinical disease; and FMDV was detected as early as 1 dpi, 1 day before the onset of clinical disease. Equivalent results were observed in 4 independent studies and demonstrate the feasibility of oral fluids and mRT-qPCR for surveillance of ASF, CSF, and FMD in swine populations. © 2015 The Author(s).

  10. Hepatitis E Virus Genotype 3 in Humans and Swine, Bolivia

    Science.gov (United States)

    Cavallo, Annalisa; Gonzales, José Luis; Bonelli, Sara Irene; Valda, Ybar; Pieri, Angela; Segundo, Higinio; Ibañez, Ramón; Mantella, Antonia; Bartalesi, Filippo; Tolari, Francesco; Bartoloni, Alessandro

    2011-01-01

    We determined the seroprevalence of hepatitis E virus (HEV) in persons in 2 rural communities in southeastern Bolivia and the presence of HEV in human and swine fecal samples. HEV seroprevalence was 6.3%, and HEV genotype 3 strains with high sequence homology were detected. PMID:21801630

  11. Characterization of an artificial swine-origin influenza virus with the same gene combination as H1N1/2009 virus: a genesis clue of pandemic strain.

    Science.gov (United States)

    Zhao, Xueli; Sun, Yipeng; Pu, Juan; Fan, Lihong; Shi, Weimin; Hu, Yanxin; Yang, Jun; Xu, Qi; Wang, Jingjing; Hou, Dongjun; Ma, Guangpeng; Liu, Jinhua

    2011-01-01

    Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1) with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus). Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus.

  12. Characterization of an artificial swine-origin influenza virus with the same gene combination as H1N1/2009 virus: a genesis clue of pandemic strain.

    Directory of Open Access Journals (Sweden)

    Xueli Zhao

    Full Text Available Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1 with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus. Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus.

  13. Two different genotypes of H1N2 swine influenza virus isolated in northern China and their pathogenicity in animals.

    Science.gov (United States)

    Yang, Huanliang; Chen, Yan; Qiao, Chuanling; Xu, Chuantian; Yan, Minghua; Xin, Xiaoguang; Bu, Zhigao; Chen, Hualan

    2015-02-25

    During 2006 and 2007, two swine-origin triple-reassortant influenza A (H1N2) viruses were isolated from pigs in northern China, and the antigenic characteristics of the hemagglutinin protein of the viruses were examined. Genotyping and phylogenetic analyses demonstrated different emergence patterns for the two H1N2 viruses, Sw/Hebei/10/06 and Sw/Tianjin/1/07. Sequences for the other genes encoding the internal proteins were compared with the existing data to determine their origins and establish the likely mechanisms of genetic reassortment. Sw/Hebei/10/06 is an Sw/Indiana/9K035/99-like virus, whereas Sw/Tianjin/1/07 represents a new H1N2 genotype with surface genes of classic swine and human origin and internal genes originating from the Eurasian avian-like swine H1N1 virus. Six-week-old female BALB/c mice infected with the Sw/HeB/10/06 and Sw/TJ/1/07 viruses showed an average weight loss of 12.8% and 8.1%, respectively. Healthy six-week-old pigs were inoculated intranasally with either the Sw/HeB/10/06 or Sw/TJ/1/07 virus. No considerable changes in the clinical presentation were observed post-inoculation in any of the virus-inoculated groups, and the viruses effectively replicated in the nasal cavity and lung tissue. Based on the results, it is possible that the new genotype of the swine H1N2 virus that emerged in China may become widespread in the swine population and pose a potential threat to public health. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. New reassortant and enzootic European swine influenza viruses transmit efficiently through direct contact in the ferret model.

    Science.gov (United States)

    Fobian, Kristina; Fabrizio, Thomas P; Yoon, Sun-Woo; Hansen, Mette Sif; Webby, Richard J; Larsen, Lars E

    2015-07-01

    The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs with additional focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Two of the four viruses were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2, and two were new reassortants, one with avian-like H1 and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titres in nasal wash and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics using a differentiated human bronchial epithelial cell line showed that all four viruses were able to replicate to high titres. Further, the viruses revealed preferential binding to the 2,6-α-silalylated glycans and investigation of the antiviral susceptibility of the viruses revealed that all were sensitive to neuraminidase inhibitors. These findings suggested that these viruses have the potential to infect humans and further underline the need for continued surveillance as well as biological characterization of new influenza A viruses.

  15. A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses

    Science.gov (United States)

    Macken, Catherine A.; Lewis, Nicola S.; Van Reeth, Kristien; Brown, Ian H.; Swenson, Sabrina L.; Simon, Gaëlle; Saito, Takehiko; Berhane, Yohannes; Ciacci-Zanella, Janice; Pereda, Ariel; Davis, C. Todd; Donis, Ruben O.; Webby, Richard J.

    2016-01-01

    ABSTRACT The H1 subtype of influenza A viruses (IAVs) has been circulating in swine since the 1918 human influenza pandemic. Over time, and aided by further introductions from nonswine hosts, swine H1 viruses have diversified into three genetic lineages. Due to limited global data, these H1 lineages were named based on colloquial context, leading to a proliferation of inconsistent regional naming conventions. In this study, we propose rigorous phylogenetic criteria to establish a globally consistent nomenclature of swine H1 virus hemagglutinin (HA) evolution. These criteria applied to a data set of 7,070 H1 HA sequences led to 28 distinct clades as the basis for the nomenclature. We developed and implemented a web-accessible annotation tool that can assign these biologically informative categories to new sequence data. The annotation tool assigned the combined data set of 7,070 H1 sequences to the correct clade more than 99% of the time. Our analyses indicated that 87% of the swine H1 viruses from 2010 to the present had HAs that belonged to 7 contemporary cocirculating clades. Our nomenclature and web-accessible classification tool provide an accurate method for researchers, diagnosticians, and health officials to assign clade designations to HA sequences. The tool can be updated readily to track evolving nomenclature as new clades emerge, ensuring continued relevance. A common global nomenclature facilitates comparisons of IAVs infecting humans and pigs, within and between regions, and can provide insight into the diversity of swine H1 influenza virus and its impact on vaccine strain selection, diagnostic reagents, and test performance, thereby simplifying communication of such data. IMPORTANCE A fundamental goal in the biological sciences is the definition of groups of organisms based on evolutionary history and the naming of those groups. For influenza A viruses (IAVs) in swine, understanding the hemagglutinin (HA) genetic lineage of a circulating strain aids

  16. Hepatitis E virus infection in North Italy: high seroprevalence in swine herds and increased risk for swine workers.

    NARCIS (Netherlands)

    Mughini-Gras, L; Angeloni, G; Salata, C; Vonesch, N; D'Amico, W; Campagna, G; Natale, A; Zuliani, F; Ceglie, L; Monne, I; Vascellari, M; Capello, K; DI Martino, G; Inglese, N; Palù, G; Tomao, P; Bonfanti, L

    2017-01-01

    We determined the hepatitis E virus (HEV) seroprevalence and detection rate in commercial swine herds in Italy's utmost pig-rich area, and assessed HEV seropositivity risk in humans as a function of occupational exposure to pigs, diet, foreign travel, medical history and hunting activities. During

  17. Hepatitis E virus infection in North Italy : high seroprevalence in swine herds and increased risk for swine workers

    NARCIS (Netherlands)

    Mughini-Gras, L|info:eu-repo/dai/nl/413306046; Angeloni, Giorgia; Salata, C; Vonesch, N; D'Amico, W; Campagna, G; Natale, Alda; Zuliani, Federica; Ceglie, Letizia; Monne, Isabella; Vascellari, M; Capello, Katia; DI Martino, G; Inglese, N; Palù, G; Tomao, P; Bonfanti, L.

    2017-01-01

    We determined the hepatitis E virus (HEV) seroprevalence and detection rate in commercial swine herds in Italy's utmost pig-rich area, and assessed HEV seropositivity risk in humans as a function of occupational exposure to pigs, diet, foreign travel, medical history and hunting activities. During

  18. Know and Share the Facts about Flu Vaccination

    Science.gov (United States)

    Grohskopf, Lisa

    2012-01-01

    Flu is a contagious respiratory illness caused by influenza viruses that infect the nose, throat, and lungs. It can cause mild to severe illness, and sometimes can lead to death. Symptoms of flu can include fever or a feverish feeling, cough, sore throat, runny or stuffy nose, muscle or body aches, headache, fatigue, vomiting, and diarrhea. Flu…

  19. Modulation of Translation Initiation Efficiency in Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Rasmussen, Thomas Bruun; Belsham, Graham

    2012-01-01

    Modulation of translation initiation efficiency on classical swine fever virus (CSFV) RNA can be achieved by targeted mutations within the internal ribosome entry site (IRES). In this study, cDNAs corresponding to the wild type (wt) or mutant forms of the IRES of CSFV strain Paderborn were...... in vitro and electroporated into porcine PK15 cells. Rescued mutant viruses were obtained from RNAs that contained mutations within domain IIIf which retained more than 75% of wt translation efficiency. Sequencing of cDNA generated from these rescued viruses verified the maintenance of the introduced...... changes within the IRES. The growth characteristics of each rescued mutant virus were compared to that of the wt virus. It was shown that viable mutant viruses with reduced translation initiation efficiency can be designed and generated and that viruses containing mutations within domain IIIf of the IRES...

  20. The performance of Luminex ARIES® Flu A/B & RSV and Cepheid Xpert® Flu/RSV XC for the detection of influenza A, influenza B, and respiratory syncytial virus in prospective patient samples.

    Science.gov (United States)

    McMullen, Phillip; Boonlayangoor, Sue; Charnot-Katsikas, Angella; Beavis, Kathleen G; Tesic, Vera

    2017-10-01

    The demand for rapid, accurate viral testing has increased the number of assays available for the detection of viral pathogens. One of the newest FDA cleared platforms is the Luminex ARIES ® Flu A/B & RSV, which is a fully automated, real-time PCR-based assay used for detection of influenza A, influenza B, and respiratory syncytial virus (RSV). We sought to compare the performance of Luminex ARIES ® Flu A/B & RSV assay to the Cepheid Xpert ® Flu/RSV XC assay for rapid Flu and RSV testing. A series of consecutive nasopharyngeal specimens received in the clinical microbiology laboratory during peak influenza season at a major academic center in Chicago, IL, were prospectively tested, using both the ARIES ® Flu A/B & RSV and Xpert ® Flu/RSV XC assays, side by side. Discrepant results were tested on the BioFire FilmArray ® Respiratory Panel for resolution. A total of 143 consecutive nasopharyngeal specimens, obtained from patients ranging from six months to ninety-three years in age were received between January 1st, 2017 and March 21st, 2017. There was 96.6% agreement between the two assays for detection influenza A, 100% agreement for detection influenza B and RSV, and 98.9% agreement for negative results. The Xpert ® Flu/RSV XC performed with an average turn-around time of approximately 60min, compared to the ARIES ® Flu A/B & RSV of approximately 120min. Both assays were equally easy to perform, with a similar amount of hands-on technologist time for each platform. Overall, these results indicate that both tests are comparable in terms of result agreement and technical ease-of-use. The Xpert ® Flu/RSV XC assay did produce results with less turn-around-time, approximately 60min quicker than the ARIES ® Flu A/B & RSV. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Sequence adaptations during growth of rescued classical swine fever viruses in cell culture and within infected pigs

    DEFF Research Database (Denmark)

    Hadsbjerg, Johanne; Friis, Martin Barfred; Fahnøe, Ulrik

    2016-01-01

    RNA could be detected. However, the animals inoculated with these mutant viruses seroconverted against CSFV. Thus, these mutant viruses were highly attenuated in vivo. All 4 rescued viruses were also passaged up to 20 times in cell culture. Using full genome sequencing, the same two adaptations within......Classical swine fever virus (CSFV) causes an economically important disease of swine. Four different viruses were rescued from full-length cloned cDNAs derived from the Paderborn strain of CSFV. Three of these viruses had been modified by mutagenesis (with 7 or 8 nt changes) within stem 2...... each of four independent virus populations were observed that restored the coding sequence to that of the parental field strain. These adaptations occurred with different kinetics. The combination of reverse genetics and in depth, full genome sequencing provides a powerful approach to analyse virus...

  2. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant

    OpenAIRE

    Renström Lena HM; Isaksson Mats; Berg Mikael; Zohari Siamak; Widén Frederik; Metreveli Giorgi; Bálint Ádám; Wallgren Per; Belák Sándor; Segall Thomas; Kiss István

    2009-01-01

    Abstract The European swine influenza viruses (SIVs) show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority o...

  3. Canadian Acute Respiratory Illness and Flu Scale (CARIFS) for clinical detection of influenza in children.

    Science.gov (United States)

    Fischer, Jason B; Prasad, Priya A; Coffin, Susan E; Alpern, Elizabeth R; Mistry, Rakesh D

    2014-10-01

    Validated clinical scales, such as the Canadian Acute Respiratory Illness and Flu Scale (CARIFS), have not been used to differentiate influenza (FLU) from other respiratory viruses. Secondary analysis of a prospective cohort presenting to the emergency department (ED) with an influenza-like infection from 2008 to 2010. Subjects were children aged 0 to 19 years who had a venipuncture and respiratory virus polymerase chain reaction. Demographics and CARIFS items were assessed during the ED visit; comparisons were made between FLU and non-FLU subjects. The 203 subjects had median age 30.5 months; 61.6% were male. Comorbid conditions (51.2%) were common. FLU was identified in 26.6%, and were older than non-FLU patients (69.7 vs 47.9 months, P = .02). Demographic, household factors, and mean CARIFS score did not differ between FLU (33.7), and non-FLU (32.0) (mean difference 1.6, 95% CI: -2.0 to 5.2) groups. CARIFS cannot discriminate between FLU and non-FLU infection in ED children with influenza-like infection. © The Author(s) 2014.

  4. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine.

    Science.gov (United States)

    Erickson, A; Fisher, M; Furukawa-Stoffer, T; Ambagala, A; Hodko, D; Pasick, J; King, D P; Nfon, C; Ortega Polo, R; Lung, O

    2018-04-01

    Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional

  5. FluView National Flu Activity Map

    Data.gov (United States)

    U.S. Department of Health & Human Services — The FluView National Flu Activity Map is a complementary widget to the state-by-state flu map widget introduced in the 2007-2008 flu season. This interactive map...

  6. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    Science.gov (United States)

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains. © INRA, EDP Sciences, 2010.

  7. Identification of swine H1N2/pandemic H1N1 reassortant influenza virus in pigs, United States.

    Science.gov (United States)

    Ali, Ahmed; Khatri, Mahesh; Wang, Leyi; Saif, Yehia M; Lee, Chang-Won

    2012-07-06

    In October and November 2010, novel H1N2 reassortant influenza viruses were identified from pigs showing mild respiratory signs that included cough and depression. Sequence and phylogenetic analysis showed that the novel H1N2 reassortants possesses HA and NA genes derived from recent H1N2 swine isolates similar to those isolated from Midwest. Compared to the majority of reported reassortants, both viruses preserved human-like host restrictive and putative antigenic sites in their HA and NA genes. The four internal genes, PB2, PB1, PA, and NS were similar to the contemporary swine triple reassortant viruses' internal genes (TRIG). Interestingly, NP and M genes of the novel reassortants were derived from the 2009 pandemic H1N1. The NP and M proteins of the two isolates demonstrated one (E16G) and four (G34A, D53E, I109T, and V313I) amino acid changes in the M2 and NP proteins, respectively. Similar amino acid changes were also noticed upon incorporation of the 2009 pandemic H1N1 NP in other reassortant viruses reported in the U.S. Thus the role of those amino acids in relation to host adaptation need to be further investigated. The reassortments of pandemic H1N1 with swine influenza viruses and the potential of interspecies transmission of these reassortants from swine to other species including human indicate the importance of systematic surveillance of swine population to determine the origin, the prevalence of similar reassortants in the U.S. and their impact on both swine production and public health. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Flu season and trehalose

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2018-01-01

    Full Text Available Most of us who are practicing medicine know that we are in a very active flu season. This was brought home to me when last week trying to admit a patient to the hospital from the office. She was a bone marrow transplant patient who had severe diarrhea and dehydration probably secondary to C. difficile. Hospital admissions said the patient had to be sent to the Emergency Room because the hospital was full due to the flu epidemic. Nationwide there has been a dramatic increase in the number of hospitalizations due to influenza over the past week from 13.7 to 22.7 per 100,000 (1. Influenza A(H3N2 has been the most common form of influenza reported this season. These viruses are often linked to more severe illness, especially in children and people age 65 years and older. Fortunately, the CDC also says that the flu cases may be peaking. However, at ...

  9. Avian Flu

    International Nuclear Information System (INIS)

    Eckburg, Paul

    2006-01-01

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  10. Comparison of Directigen Flu A+B with Real Time PCR in the Diagnosis of Influenza.

    Science.gov (United States)

    Bosevska, Golubinka; Panovski, Nikola; Janceska, Elizabeta; Mikik, Vladimir; Topuzovska, Irena Kondova; Milenkovik, Zvonko

    2015-01-01

    Early diagnosis and treatment of patients with influenza is the reason why physicians need rapid high-sensitivity influenza diagnostic tests that require no complex lab equipment and can be performed and interpreted within 15 min. The Aim of this study was to compare the rapid Directigen Flu A+B test with real time PCR for detection of influenza viruses in the Republic of Macedonia. One-hundred-eight respiratory samples (combined nose and throat swabs) were routinely collected for detection of influenza virus during influenza seasons. Forty-one patients were pediatric cases and 59 were adult. Their mean age was 23 years. The patients were allocated into 6 age groups: 0-4 yrs, 5-9 yrs, 10-14 yrs, 15-19 yrs, 20-64 yrs and > 65 yrs. Each sample was tested with Directigen Flu A+B and CDC real time PCR kit for detection and typisation/subtypisation of influenza according to the lab diagnostic protocol. Directigen Flu A+B identified influenza A virus in 20 (18.5%) samples and influenza B virus in two 2 (1.9%) samples. The high specificity (100%) and PPV of Directigen Flu A+B we found in our study shows that the positive results do not need to be confirmed. The overall sensitivity of Directigen Flu A+B is 35.1% for influenza A virus and 33.0% for influenza B virus. The sensitivity for influenza A is higher among children hospitalized (45.0%) and outpatients (40.0%) versus adults. Directigen Flu A+B has relatively low sensitivity for detection of influenza viruses in combined nose and throat swabs. Negative results must be confirmed.

  11. Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States.

    Science.gov (United States)

    Vincent, Amy L; Ma, Wenjun; Lager, Kelly M; Gramer, Marie R; Richt, Juergen A; Janke, Bruce H

    2009-10-01

    H1 influenza A viruses that were distinct from the classical swine H1 lineage were identified in pigs in Canada in 2003–2004; antigenic and genetic characterization identified the hemagglutinin (HA) as human H1 lineage. The viruses identified in Canadian pigs were human lineage in entirety or double (human–swine) reassortants. Here, we report the whole genome sequence analysis of four human-like H1 viruses isolated from U.S. swine in 2005 and 2007. All four isolates were characterized as triple reassortants with an internal gene constellation similar to contemporary U.S. swine influenza virus (SIV), with HA and neuraminidase (NA) most similar to human influenza virus lineages. A 2007 human-like H1N1 was evaluated in a pathogenesis and transmission model and compared to a 2004 reassortant H1N1 SIV isolate with swine lineage HA and NA. The 2007 isolate induced disease typical of influenza virus and was transmitted to contact pigs; however, the kinetics and magnitude differed from the 2004 H1N1 SIV. This study indicates that the human-like H1 SIV can efficiently replicate and transmit in the swine host and now co-circulates with contemporary SIVs as a distinct genetic cluster of H1 SIV.

  12. Genetic analysis and antigenic characterization of swine origin influenza viruses isolated from humans in the United States, 1990-2010.

    Science.gov (United States)

    Shu, Bo; Garten, Rebecca; Emery, Shannon; Balish, Amanda; Cooper, Lynn; Sessions, Wendy; Deyde, Varough; Smith, Catherine; Berman, LaShondra; Klimov, Alexander; Lindstrom, Stephen; Xu, Xiyan

    2012-01-05

    Swine influenza viruses (SIV) have been recognized as important pathogens for pigs and occasional human infections with swine origin influenza viruses (SOIV) have been reported. Between 1990 and 2010, a total of twenty seven human cases of SOIV infections have been identified in the United States. Six viruses isolated from 1990 to 1995 were recognized as classical SOIV (cSOIV) A(H1N1). After 1998, twenty-one SOIV recovered from human cases were characterized as triple reassortant (tr_SOIV) inheriting genes from classical swine, avian and human influenza viruses. Of those twenty-one tr_SOIV, thirteen were of A(H1N1), one of A(H1N2), and seven of A(H3N2) subtype. SOIV characterized were antigenically and genetically closely related to the subtypes of influenza viruses circulating in pigs but distinct from contemporary influenza viruses circulating in humans. The diversity of subtypes and genetic lineages in SOIV cases highlights the importance of continued surveillance at the animal-human interface. Copyright © 2011. Published by Elsevier Inc.

  13. Serological and molecular epidemiology of Japanese encephalitis virus infections in swine herds in China, 2006-2012.

    Science.gov (United States)

    Chai, Chunxia; Wang, Qiao; Cao, Sanjie; Zhao, Qin; Wen, Yiping; Huang, Xiaobo; Wen, Xintian; Yan, Qiguai; Ma, Xiaoping; Wu, Rui

    2018-01-31

    Japanese encephalitis virus (JEV) is a mosquito-borne, zoonotic flavivirus causing viral encephalitis in humans and reproductive disorder in swine. JEV is prevalent throughout China in human; however, spatiotemporal analysis of JEV in Chinese swine herds has not been reported previously. Herein, we present serological and molecular epidemiological results and estimates of prevalence of JEV infections among swine herds in various regions of China. The results suggest that JEV infections are widespread and genotype I and III strains co-exist in the same regions. Therefore, there is an urgent need to monitor JEV infection status among swine herds in China.

  14. Pathogenic characteristics of a novel triple-reasserted H1N2 swine influenza virus.

    Science.gov (United States)

    Liu, Huili; Tao, Jie; Zhang, Pengchao; Yin, Xiuchen; Ha, Zhuo; Zhang, Chunling

    2016-07-01

    A novel triple reasserted H1N2 virus A/swine/Shanghai/1/2007 (SH07) was isolated from nasal swabs of weaned pig showing clinical symptoms of coughing and sneezing. To explore the virus characteristics, mice, chickens and pigs were selected for pathogenicity study. Pigs inoculated intranasally with 10(6) TCID50 SH07 showed clinical symptoms with coughing and sneezing, but no death. The virus nuclear acid was detected in many tissues using real-time PCR, which was mainly distributed in respiratory system particularly in the lungs. The virus was low-pathogenic to chickens with 10(6) TCID50 dose inoculation either via intramuscular or intranasal routes. However virus nuclear acid detection and virus isolation confirmed that the virus can also be found in nasal and rectum. When virus was inoculated into mice by intramuscular or intranasal routes we observed 100% and 80% lethality respectively. The third generation of samples passaged on MDCK cell were SIV positive in indirect immunofluorescence assay (IFA) using antiserum against H1N2 SIV. Furthermore, the lungs of mice showed obvious lesion with interstitial pneumonia. Data in our study suggest that SH07 is preferentially pathogenic to mammals rather than birds although it is a reasserting virus with the fragments from swine, human and avian origin. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  15. Immunofluorescence Plaque Assay for African Swine Fever Virus

    Science.gov (United States)

    Tessler, J.; Hess, W. R.; Pan, I. C.; Trautman, R.

    1974-01-01

    Suitably diluted cell culture adapted African swine fever virus preparations were inoculated on VERO cell monolayers and grown on coverslips. Gum tragacanth was used as an overlay. After three days incubation at 37°C the infected cultures were fixed with acetone and stained with fluorescent antibody conjugate. Fluorescing plaques consisted of 20-30 infected cells. Three statistical criteria for a quantitatively reliable assay were met: the Poisson distribution for plaque counts, linearity of the relationship between the concentration of virus and the plaque count and reproducibility of replicate titrations. The method is suitable for counts up to at least 70 plaques per 5 cm2 coverslip and computed titers are reproducible within 0.16 log units with a total of 300 plaques enumerated. PMID:4279763

  16. Coronavirus in Pigs: Significance and Presentation of Swine Epidemic Diarrhea Virus (PEDV in Colombia

    Directory of Open Access Journals (Sweden)

    Ricardo Piñeros

    2015-05-01

    Full Text Available The article seeks to study general aspects of the main coronaviruses affecting pigs, their presentation in Colombia, and particular aspects of porcine epidemic diarrhea virus (PEDV, emerging in different countries and generating a great impact on the health and economy of the swine industry. The main coronaviruses affecting swine are porcine transmissible gastroenteritis virus (TGEV, porcine respiratory coronavirus (PRCV, porcine hemagglutinating encephalomyelitis virus (PHEV, PEDV, and porcine deltacoronavirus (PDCoV. Long ago in Colombia there had been reports of TGEV and PRCV associated with the importation of animals from the United States, which was controlled in the infected farms and in quarantine units. PEDV was first detected in Colombia in mid-March 2014; the Colombian Agricultural Institute issued a health alert in Neiva (Huila, Fusagasugá and Silvania (Cundinamarca, and Puerto López (Meta due to the unusual presentation of epidemic vomiting and diarrhea in young and adult animals, abortion in pregnant sows, with high mortality rates (up to 100% in animals during the first week of age. At present the disease has been reported in other municipalities of the country as well as in different countries with similar clinical conditions and mortality rates in pigs with high economic losses for the swine sector.

  17. Complete genome sequence of a novel influenza A H1N2 virus circulating in swine from Central Bajio region, Mexico.

    Science.gov (United States)

    Sánchez-Betancourt, J I; Cervantes-Torres, J B; Saavedra-Montañez, M; Segura-Velázquez, R A

    2017-12-01

    The aim of this study was to perform the complete genome sequence of a swine influenza A H1N2 virus strain isolated from a pig in Guanajuato, México (A/swine/Mexico/GtoDMZC01/2014) and to report its seroprevalence in 86 counties at the Central Bajio zone. To understand the evolutionary dynamics of the isolate, we undertook a phylogenetic analysis of the eight gene segments. These data revealed that the isolated virus is a reassortant H1N2 subtype, as its genes are derived from human (HA, NP, PA) and swine (M, NA, PB1, PB2 and NS) influenza viruses. Pig serum samples were analysed by the hemagglutination inhibition test, using wild H1N2 and H3N2 strains (A/swine/México/Mex51/2010 [H3N2]) as antigen sources. Positive samples to the H1N2 subtype were processed using the field-isolated H1N1 subtype (A/swine/México/Ver37/2010 [H1N1]). Seroprevalence to the H1N2 subtype was 26.74% in the sampled counties, being Jalisco the state with highest seroprevalence to this subtype (35.30%). The results herein reported demonstrate that this new, previously unregistered influenza virus subtype in México that shows internal genes from other swine viral subtypes isolated in the past 5 years, along with human virus-originated genes, is widely distributed in this area of the country. © 2017 Blackwell Verlag GmbH.

  18. A novel monoclonal antibody effective against lethal challenge with swine-lineage and 2009 pandemic H1N1 influenza viruses in mice

    Science.gov (United States)

    The HA protein of the 2009 pandemic H1N1viruses (14 H1N1pdm) is antigenically closely related to the HA of classical North American swine H1N1 influenza viruses (cH1N1). Since 1998, through reassortment and incorporation of HA genes from human H3N2 and H1N1 influenza viruses, swine influenza strains...

  19. [Phylogenetic analysis of human/swine/avian gene reassortant H1N2 influenza A virus isolated from a pig in China].

    Science.gov (United States)

    Chen, Yixiang; Meng, Xueqiong; Liu, Qi; Huang, Xia; Huang, Shengbin; Liu, Cuiquan; Shi, Kaichuang; Guo, Jiangang; Chen, Fangfang; Hu, Liping

    2008-04-01

    Our aim in this study was to determine the genetic characterization and probable origin of the H1N2 swine influenza virus (A/Swine/Guangxi/13/2006) (Sw/GX/13/06) from lung tissue of a pig in Guangxi province, China. Eight genes of Sw/GX/13/06 were cloned and genetically analyzed. The hemagglutinin (HA), nucleoprotein (NP), matrix (M) and non-structural (NS) genes of Sw/GX/13/06 were most closely related to genes from the classical swine H1N1 influenza virus lineage. The neuraminidase (NA) and PB1 genes were most closely related to the corresponding genes from the human influenza H3N2 virus lineage. The remaining two genes PA and PB2 polymerase genes were most closely related to the genes from avian influenza virus lineage. Phylogenetic analyses revealed that Sw/GX/13/06 was a human/swine/avian H1N2 virus, and closely related to H1N2 viruses isolated from pigs in United States (1999-2001) and Korea (2002). To our knowledge, Sw/GX/13/06 was the first triple-reassortant H1N2 influenza A virus isolated from a pig in China. Whether the Sw/GX/13/06 has a potential threat to breeding farm and human health remains to be further investigated.

  20. Oronasal and intramuscular vaccination of swine with a modified live porcine parvovirus vaccine: multiplication and transmission of the vaccine virus.

    Science.gov (United States)

    Paul, P S; Mengeling, W L

    1984-12-01

    An attenuated strain NADL-2 of porcine parvovirus (PPV) has been used at the 54th cell culture passage as a modified live-virus (MLV) vaccine. The present study was conducted to determine the minimum immunizing dose of MLV, the extent of MLV multiplication in swine tissues, and its transmission from swine administered MLV oronasally or intramuscularly. Immune response to MLV was dose dependent and swine responded to as little as 10(2) median cell-culture infective doses (CCID50). A 10(5) CCID50 of MLV, the largest dose given, induced the best immune response and was used in subsequent experiments. Route of MLV administration also was found to be important. The MLV replicated in tissues of swine after IM inoculation; however, viral antigen in tissues was less, as measured by immunofluorescence, and serum hemagglutination-inhibition titers for PPV were lower in MLV-inoculated swine than we have previously observed in virulent PPV-inoculated swine. In contrast, oronasal inoculation with MLV did not consistently result in infection of pigs; only 5 of 23 swine had virologic and/or serologic evidence of infection. Virus transmission studies indicated that MLV is shed in feces, but shedding occurs later than that in virulent-PPV-inoculated swine and is inconsistent. Delayed transmission of MLV was observed in contact pigs, which were seronegative at 2 weeks, but became seropositive at 4 weeks--indicating that perhaps a virus population capable of infecting pigs by oronasal route was selected by passage through the pig.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Transmission dynamics of pandemic influenza A(H1N1)pdm09 virus in humans and swine in backyard farms in Tumbes, Peru.

    Science.gov (United States)

    Tinoco, Yeny O; Montgomery, Joel M; Kasper, Mathew R; Nelson, Martha I; Razuri, Hugo; Guezala, Maria C; Azziz-Baumgartner, Eduardo; Widdowson, Marc-Alain; Barnes, John; Gilman, Robert H; Bausch, Daniel G; Gonzalez, Armando E

    2016-01-01

    We aimed to determine the frequency of pH1N1 transmission between humans and swine on backyard farms in Tumbes, Peru. Two-year serial cross-sectional study comprising four sampling periods: March 2009 (pre-pandemic), October 2009 (peak of the pandemic in Peru), April 2010 (1st post-pandemic period), and October 2011 (2nd post-pandemic period). Backyard swine serum, tracheal swabs, and lung sample were collected during each sampling period. We assessed current and past pH1N1 infection in swine through serological testing, virus culture, and RT-PCR and compared the results with human incidence data from a population-based active surveillance cohort study in Peru. Among 1303 swine sampled, the antibody prevalence to pH1N1 was 0% pre-pandemic, 8% at the peak of the human pandemic (October 2009), and 24% in April 2010 and 1% in October 2011 (post-pandemic sampling periods). Trends in swine seropositivity paralleled those seen in humans in Tumbes. The pH1N1 virus was isolated from three pigs during the peak of the pandemic. Phylogenetic analysis revealed that these viruses likely represent two separate human-to-swine transmission events in backyard farm settings. Our findings suggest that human-to-swine pH1N1 transmission occurred during the pandemic among backyard farms in Peru, emphasizing the importance of interspecies transmission in backyard pig populations. Continued surveillance for influenza viruses in backyard farms is warranted. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  2. European Surveillance Network for Influenza in Pigs: Surveillance Programs, Diagnostic Tools and Swine Influenza Virus Subtypes Identified in 14 European Countries from 2010 to 2013

    DEFF Research Database (Denmark)

    Simon, Gaelle; Larsen, Lars Erik; Duerrwald, Ralf

    2014-01-01

    : avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence....... For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some......Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs...

  3. H1N1 Swine Influenza Viruses Differ from Avian Precursors by a Higher pH Optimum of Membrane Fusion.

    Science.gov (United States)

    Baumann, Jan; Kouassi, Nancy Mounogou; Foni, Emanuela; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2016-02-01

    The H1N1 Eurasian avian-like swine (EAsw) influenza viruses originated from an avian H1N1 virus. To characterize potential changes in the membrane fusion activity of the hemagglutinin (HA) during avian-to-swine adaptation of the virus, we studied EAsw viruses isolated in the first years of their circulation in pigs and closely related contemporary H1N1 viruses of wild aquatic birds. Compared to the avian viruses, the swine viruses were less sensitive to neutralization by lysosomotropic agent NH4Cl in MDCK cells, had a higher pH optimum of hemolytic activity, and were less stable at acidic pH. Eight amino acid substitutions in the HA were found to separate the EAsw viruses from their putative avian precursor; four substitutions-T492S, N722D, R752K, and S1132F-were located in the structural regions of the HA2 subunit known to play a role in acid-induced conformational transition of the HA. We also studied low-pH-induced syncytium formation by cell-expressed HA proteins and found that the HAs of the 1918, 1957, 1968, and 2009 pandemic viruses required a lower pH for fusion induction than did the HA of a representative EAsw virus. Our data show that transmission of an avian H1N1 virus to pigs was accompanied by changes in conformational stability and fusion promotion activity of the HA. We conclude that distinctive host-determined fusion characteristics of the HA may represent a barrier for avian-to-swine and swine-to-human transmission of influenza viruses. Continuing cases of human infections with zoonotic influenza viruses highlight the necessity to understand which viral properties contribute to interspecies transmission. Efficient binding of the HA to cellular receptors in a new host species is known to be essential for the transmission. Less is known about required adaptive changes in the membrane fusion activity of the HA. Here we show that adaptation of an avian influenza virus to pigs in Europe in 1980s was accompanied by mutations in the HA, which decreased

  4. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant

    Directory of Open Access Journals (Sweden)

    Renström Lena HM

    2009-10-01

    Full Text Available Abstract The European swine influenza viruses (SIVs show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority of the European H1N2 swine influenza viruses described so far possess haemagglutinin (HA of the human-like H1N2 SIV viruses and the neuraminidase (NA of either the European H1N2 or H3N2 SIV-like viruses. The Swedish isolate has an avian-like SIV HA and a H3N2 SIV-like NA, which is phylogenetically more closely related to H3N2 SIV NAs from isolates collected in the early '80s than to the NA of H3N2 origin of the H1N2 viruses isolated during the last decade, as depicted by some German strains, indicative of independent acquisition of the NA genes for these two types of reassortants. The internal genes proved to be entirely of avian-like SIV H1N1 origin. The prevalence of this SIV variant in pig populations needs to be determined, as well as the suitability of the routinely used laboratory reagents to analyze this strain. The description of this H1N2 SIV adds further information to influenza epidemiology and supports the necessity of surveillance for influenza viruses in pigs.

  5. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant.

    Science.gov (United States)

    Bálint, Adám; Metreveli, Giorgi; Widén, Frederik; Zohari, Siamak; Berg, Mikael; Isaksson, Mats; Renström, Lena Hm; Wallgren, Per; Belák, Sándor; Segall, Thomas; Kiss, István

    2009-10-28

    The European swine influenza viruses (SIVs) show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority of the European H1N2 swine influenza viruses described so far possess haemagglutinin (HA) of the human-like H1N2 SIV viruses and the neuraminidase (NA) of either the European H1N2 or H3N2 SIV-like viruses. The Swedish isolate has an avian-like SIV HA and a H3N2 SIV-like NA, which is phylogenetically more closely related to H3N2 SIV NAs from isolates collected in the early '80s than to the NA of H3N2 origin of the H1N2 viruses isolated during the last decade, as depicted by some German strains, indicative of independent acquisition of the NA genes for these two types of reassortants. The internal genes proved to be entirely of avian-like SIV H1N1 origin. The prevalence of this SIV variant in pig populations needs to be determined, as well as the suitability of the routinely used laboratory reagents to analyze this strain.The description of this H1N2 SIV adds further information to influenza epidemiology and supports the necessity of surveillance for influenza viruses in pigs.

  6. Serological and molecular epidemiology of Japanese encephalitis virus infections in swine herds in China, 2006–2012

    Science.gov (United States)

    Chai, Chunxia; Wang, Qiao; Cao, Sanjie; Zhao, Qin; Wen, Yiping; Huang, Xiaobo; Wen, Xintian; Yan, Qiguai; Ma, Xiaoping

    2018-01-01

    Japanese encephalitis virus (JEV) is a mosquito-borne, zoonotic flavivirus causing viral encephalitis in humans and reproductive disorder in swine. JEV is prevalent throughout China in human; however, spatiotemporal analysis of JEV in Chinese swine herds has not been reported previously. Herein, we present serological and molecular epidemiological results and estimates of prevalence of JEV infections among swine herds in various regions of China. The results suggest that JEV infections are widespread and genotype I and III strains co-exist in the same regions. Therefore, there is an urgent need to monitor JEV infection status among swine herds in China. PMID:28693301

  7. A phylogeny-based global nomenclature system and automated annotation tool for H1 hemagglutinin genes from swine influenza A viruses

    Science.gov (United States)

    The H1 subtype of influenza A viruses (IAV) has been circulating in swine since the 1918 human influenza pandemic. Over time, and aided by further introductions from non-swine hosts, swine H1 have diversified into three genetic lineages. Due to limited global data, these H1 lineages were named based...

  8. Interspecies Interactions and Potential Influenza A Virus Risk in Small Swine Farms in Peru

    Science.gov (United States)

    2012-03-15

    and swine influenza viruses : our current understanding of the zoonotic risk. Vet Res 2007, 38(2):243–260. 4. Wertheim JO: When pigs fly: the avian ...first authors. Abstract Background The recent avian influenza epidemic in Asia and the H1N1 pandemic demonstrated that influenza A viruses pose a...prime “mixing vessels” due to the dual receptivity of their trachea to human and avian strains. Additionally, avian and human influenza viruses

  9. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus

    Science.gov (United States)

    African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs. There are no vaccines to control Africa swine fever (ASF). Experimental vaccines have been developed using genetically modified live attenuated ASFVs obtained by specifically de...

  10. The Romanian Swine Market in the EU Context

    Directory of Open Access Journals (Sweden)

    Silvius STANCIU

    2014-12-01

    Full Text Available Pork is a traditional food product for Romania, representing more than half of the annual meat consumption per capita. Swine farming is an activity mainly at full time households, ensuring subsistence, representing a source for commercial exchanges, ensuring workforce stability in the rural areas. The Romanian pork production has presented a slightly fluctuating evolution in recent years. The paper proposes a review of the domestic production, consumption, origin and price of swine sold in the Romanian market. The comunity competitive conditions, the export limitation and food crisis (horse meat scandal, spoiled meat scandal, swine fever or swine flu affected domestic production and exports. Data used in this paper represent statistical information provided by specialized national, European or global institutions, information presented in the media, journals, food industry treatises/dissertations or official information submitted by the Ministry of Agriculture.

  11. Rheumatoid arthritis and Swine influenza vaccine: a case report.

    Science.gov (United States)

    Basra, Gurjot; Jajoria, Praveen; Gonzalez, Emilio

    2012-01-01

    Rheumatoid arthritis (RA) is the most common chronic inflammatory joint disease. Multiple scientific articles have documented that vaccinations for influenza, MMR, and HBV, to name a few, could be triggers of RA in genetically predisposed individuals. However, there is limited data regarding the association of swine flu vaccine (H1N1) and RA. We report the case of a Mexican American female who developed RA right after vaccination with H1N1 vaccine. Genetically, RA has consistently been associated with an epitope in the third hypervariable region of the HLA-DR β chains, known as the "shared epitope", which is found primarily in DR4 and DR1 regions. The presence of HLA-DRB1 alleles is associated with susceptibility to RA in Mexican Americans. Hence, certain individuals with the presence of the "shared epitope" may develop RA following specific vaccinations. To our knowledge, this is the first reported case of RA following vaccination with the swine flu vaccine.

  12. Rheumatoid Arthritis and Swine Influenza Vaccine: A Case Report

    Directory of Open Access Journals (Sweden)

    Gurjot Basra

    2012-01-01

    Full Text Available Rheumatoid arthritis (RA is the most common chronic inflammatory joint disease. Multiple scientific articles have documented that vaccinations for influenza, MMR, and HBV, to name a few, could be triggers of RA in genetically predisposed individuals. However, there is limited data regarding the association of swine flu vaccine (H1N1 and RA. We report the case of a Mexican American female who developed RA right after vaccination with H1N1 vaccine. Genetically, RA has consistently been associated with an epitope in the third hypervariable region of the HLA-DR chains, known as the “shared epitope”, which is found primarily in DR4 and DR1 regions. The presence of HLA-DRB1 alleles is associated with susceptibility to RA in Mexican Americans. Hence, certain individuals with the presence of the “shared epitope” may develop RA following specific vaccinations. To our knowledge, this is the first reported case of RA following vaccination with the swine flu vaccine.

  13. Development of a primer–probe energy transfer based real-time PCR for the detection of Swine influenza virus

    DEFF Research Database (Denmark)

    Kowalczyk, Andrzej; Markowska-Daniel, Iwona; Rasmussen, Thomas Bruun

    2013-01-01

    Swine influenza virus (SIV) causes a contagious and requiring official notification disease of pigs and humans. In this study, a real-time reverse transcription-polymerase chain reaction (RT-PCR) assay based on primer–probe energy transfer (PriProET) for the detection of SIV RNA was developed...... of the specific product amplification. The assay is specific for influenza virus with a sensitivity of detection limit of approximately 10 copies of RNA by PCR. Based on serial dilutions of SIV, the detection limit of the assay was approximately 0.003 TCID50/ml for H1N1 A/Swine/Poland/KPR9/2004 virus. The Pri...

  14. How Does Seasonal Flu Differ From Pandemic Flu?

    Science.gov (United States)

    ... Past Issues How Does Seasonal Flu Differ From Pandemic Flu? Past Issues / Fall 2006 Table of Contents ... this page please turn Javascript on. Seasonal Flu Pandemic Flu Outbreaks follow predictable seasonal patterns; occurs annually, ...

  15. Determinants of individuals' risks to 2009 pandemic influenza virus infection at household level amongst Djibouti city residents--a CoPanFlu cross-sectional study.

    Science.gov (United States)

    Andayi, Fred; Crepey, Pascal; Kieffer, Alexia; Salez, Nicolas; Abdo, Ammar A; Carrat, Fabrice; Flahault, Antoine; de Lamballerie, Xavier

    2014-01-27

    Following the 2009 swine flu pandemic, a cohort for pandemic influenza (CoPanFlu) study was established in Djibouti, the Horn of Africa, to investigate its case prevalence and risk predictors' at household level. From the four city administrative districts, 1,045 subjects from 324 households were included during a face-to-face encounter between 11th November 2010 and 15th February 2011. Socio-demographic details were collected and blood samples were analysed in haemagglutination inhibition (HI) assays. Risk assessments were performed in a generalised estimating equation model. In this study, the indicator of positive infection status was set at an HI titre of ≥ 80, which was a relevant surrogate to the seroconversion criterion. All positive cases were considered to be either recent infections or past contact with an antigenically closely related virus in humans older than 65 years. An overall sero-prevalence of 29.1% and a geometrical mean titre (GMT) of 39.5% among the residents was observed. Youths, ≤ 25 years and the elderly, ≥65 years had the highest titres, with values of 35.9% and 29.5%, respectively. Significantly, risk was high amongst youths ≤ 25 years, (OR 1.5-2.2), residents of District 4(OR 2.9), students (OR 1.4) and individuals living near to river banks (OR 2.5). Belonging to a large household (OR 0.6), being employed (OR 0.5) and working in open space-outdoor (OR 0.4) were significantly protective. Only 1.4% of the cohort had vaccination against the pandemic virus and none were immunised against seasonal influenza. Despite the limited number of incident cases detected by the surveillance system, A(H1N1)pdm09 virus circulated broadly in Djibouti in 2010 and 2011. Age-group distribution of cases was similar to what has been reported elsewhere, with youths at the greatest risk of infection. Future respiratory infection control should therefore be tailored to reach specific and vulnerable individuals such as students and those working

  16. Determinants of individuals’ risks to 2009 pandemic influenza virus infection at household level amongst Djibouti city residents - A CoPanFlu cross-sectional study

    Science.gov (United States)

    2014-01-01

    Background Following the 2009 swine flu pandemic, a cohort for pandemic influenza (CoPanFlu) study was established in Djibouti, the Horn of Africa, to investigate its case prevalence and risk predictors’ at household level. Methods From the four city administrative districts, 1,045 subjects from 324 households were included during a face-to-face encounter between 11th November 2010 and 15th February 2011. Socio-demographic details were collected and blood samples were analysed in haemagglutination inhibition (HI) assays. Risk assessments were performed in a generalised estimating equation model. Results In this study, the indicator of positive infection status was set at an HI titre of ≥ 80, which was a relevant surrogate to the seroconversion criterion. All positive cases were considered to be either recent infections or past contact with an antigenically closely related virus in humans older than 65 years. An overall sero-prevalence of 29.1% and a geometrical mean titre (GMT) of 39.5% among the residents was observed. Youths, ≤ 25 years and the elderly, ≥65 years had the highest titres, with values of 35.9% and 29.5%, respectively. Significantly, risk was high amongst youths ≤ 25 years, (OR 1.5-2.2), residents of District 4(OR 2.9), students (OR 1.4) and individuals living near to river banks (OR 2.5). Belonging to a large household (OR 0.6), being employed (OR 0.5) and working in open space-outdoor (OR 0.4) were significantly protective. Only 1.4% of the cohort had vaccination against the pandemic virus and none were immunised against seasonal influenza. Conclusion Despite the limited number of incident cases detected by the surveillance system, A(H1N1)pdm09 virus circulated broadly in Djibouti in 2010 and 2011. Age-group distribution of cases was similar to what has been reported elsewhere, with youths at the greatest risk of infection. Future respiratory infection control should therefore be tailored to reach specific and vulnerable

  17. African Swine Fever Virus Georgia 2007 with a Deletion of Virulence-Associated Gene 9GL (B119L), when Administered at Low Doses, Leads to Virus Attenuation in Swine and Induces an Effective Protection against Homologous Challenge.

    Science.gov (United States)

    O'Donnell, Vivian; Holinka, Lauren G; Krug, Peter W; Gladue, Douglas P; Carlson, Jolene; Sanford, Brenton; Alfano, Marialexia; Kramer, Edward; Lu, Zhiqiang; Arzt, Jonathan; Reese, Bo; Carrillo, Consuelo; Risatti, Guillermo R; Borca, Manuel V

    2015-08-01

    African swine fever virus (ASFV) is the etiological agent of an often lethal disease of domestic pigs. Disease control strategies have been hampered by the unavailability of vaccines against ASFV. Since its introduction in the Republic of Georgia, a highly virulent virus, ASFV Georgia 2007 (ASFV-G), has caused an epizootic that spread rapidly into Eastern European countries. Currently no vaccines are available or under development to control ASFV-G. In the past, genetically modified ASFVs harboring deletions of virulence-associated genes have proven attenuated in swine, inducing protective immunity against challenge with homologous parental viruses. Deletion of the gene 9GL (open reading frame [ORF] B119L) in highly virulent ASFV Malawi-Lil-20/1 produced an attenuated phenotype even when administered to pigs at 10(6) 50% hemadsorption doses (HAD50). Here we report the construction of a genetically modified ASFV-G strain (ASFV-G-Δ9GLv) harboring a deletion of the 9GL (B119L) gene. Like Malawi-Lil-20/1-Δ9GL, ASFV-G-Δ9GL showed limited replication in primary swine macrophages. However, intramuscular inoculation of swine with 10(4) HAD50 of ASFV-G-Δ9GL produced a virulent phenotype that, unlike Malawi-Lil-20/1-Δ9GL, induced a lethal disease in swine like parental ASFV-G. Interestingly, lower doses (10(2) to 10(3) HAD50) of ASFV-G-Δ9GL did not induce a virulent phenotype in swine and when challenged protected pigs against disease. A dose of 10(2) HAD50 of ASFV-G-Δ9GLv conferred partial protection when pigs were challenged at either 21 or 28 days postinfection (dpi). An ASFV-G-Δ9GL HAD50 of 10(3) conferred partial and complete protection at 21 and 28 dpi, respectively. The information provided here adds to our recent report on the first attempts toward experimental vaccines against ASFV-G. The main problem for controlling ASF is the lack of vaccines. Studies on ASFV virulence lead to the production of genetically modified attenuated viruses that induce protection

  18. Two years of surveillance of influenza a virus infection in a swine herd. Results of virological, serological and pathological studies.

    Science.gov (United States)

    Cappuccio, Javier; Dibarbora, Marina; Lozada, Inés; Quiroga, Alejandra; Olivera, Valeria; Dángelo, Marta; Pérez, Estefanía; Barrales, Hernán; Perfumo, Carlos; Pereda, Ariel; Pérez, Daniel R

    2017-02-01

    Swine farms provide a dynamic environment for the evolution of influenza A viruses (IAVs). The present report shows the results of a surveillance effort of IAV infection in one commercial swine farm in Argentina. Two cross-sectional serological and virological studies (n=480) were carried out in 2011 and 2012. Virus shedding was detected in nasal samples from pigs from ages 7, 21 and 42-days old. More than 90% of sows and gilts but less than 40% of 21-days old piglets had antibodies against IAV. In addition, IAV was detected in 8/17 nasal swabs and 10/15 lung samples taken from necropsied pigs. A subset of these samples was further processed for virus isolation resulting in 6 viruses of the H1N2 subtype (δ2 cluster). Pathological studies revealed an association between suppurative bronchopneumonia and necrotizing bronchiolitis with IAV positive samples. Statistical analyses showed that the degree of lesions in bronchi, bronchiole, and alveoli was higher in lungs positive to IAV. The results of this study depict the relevance of continuing long-term active surveillance of IAV in swine populations to establish IAV evolution relevant to swine and humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Uncovering of Classical Swine Fever Virus adaptive response to vaccination by Next Generation Sequencing

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Orton, Richard; Höper, Dirk

    Next Generation Sequencing (NGS) has rapidly become the preferred technology in nucleotide sequencing, and can be applied to unravel molecular adaptation of RNA viruses such as Classical Swine Fever Virus (CSFV). However, the detection of low frequency variants within viral populations by NGS...... is affected by errors introduced during sample preparation and sequencing, and so far no definitive solution to this problem has been presented....

  20. The nonadaptive nature of the H1N1 2009 Swine Flu pandemic contrasts with the adaptive facilitation of transmission to a new host

    Directory of Open Access Journals (Sweden)

    Abdussamad Juwaeriah

    2011-01-01

    Full Text Available Abstract Background The emergence of the 2009 H1N1 Influenza pandemic followed a multiple reassortment event from viruses originally circulating in swines and humans, but the adaptive nature of this emergence is poorly understood. Results Here we base our analysis on 1180 complete genomes of H1N1 viruses sampled in North America between 2000 and 2010 in swine and human hosts. We show that while transmission to a human host might require an adaptive phase in the HA and NA antigens, the emergence of the 2009 pandemic was essentially nonadaptive. A more detailed analysis of the NA protein shows that the 2009 pandemic sequence is characterized by novel epitopes and by a particular substitution in loop 150, which is responsible for a nonadaptive structural change tightly associated with the emergence of the pandemic. Conclusions Because this substitution was not present in the 1918 H1N1 pandemic virus, we posit that the emergence of pandemics is due to epistatic interactions between sites distributed over different segments. Altogether, our results are consistent with population dynamics models that highlight the epistatic and nonadaptive rise of novel epitopes in viral populations, followed by their demise when the resulting virus is too virulent.

  1. Evaluation of the zoonotic potential of a novel reassortant H1N2 swine influenza virus with gene constellation derived from multiple viral sources.

    Science.gov (United States)

    Lee, Jee Hoon; Pascua, Philippe Noriel Q; Decano, Arun G; Kim, Se Mi; Park, Su-Jin; Kwon, Hyeok-Il; Kim, Eun-Ha; Kim, Young-Il; Kim, HyongKyu; Kim, Seok-Yong; Song, Min-Suk; Jang, Hyung-Kwan; Park, Bong Kyun; Choi, Young Ki

    2015-08-01

    In 2011-2012, contemporary North American-like H3N2 swine influenza viruses (SIVs) possessing the 2009 pandemic H1N1 matrix gene (H3N2pM-like virus) were detected in domestic pigs of South Korea where H1N2 SIV strains are endemic. More recently, we isolated novel reassortant H1N2 SIVs bearing the Eurasian avian-like swine H1-like hemagglutinin and Korean swine H1N2-like neuraminidase in the internal gene backbone of the H3N2pM-like virus. In the present study, we clearly provide evidence on the genetic origins of the novel H1N2 SIVs virus through genetic and phylogenetic analyses. In vitro studies demonstrated that, in comparison with a pre-existing 2012 Korean H1N2 SIV [A/swine/Korea/CY03-11/2012 (CY03-11/2012)], the 2013 novel reassortant H1N2 isolate [A/swine/Korea/CY0423/2013 (CY0423-12/2013)] replicated more efficiently in differentiated primary human bronchial epithelial cells. The CY0423-12/2013 virus induced higher viral titers than the CY03-11/2012 virus in the lungs and nasal turbinates of infected mice and nasal wash samples of ferrets. Moreover, the 2013 H1N2 reassortant, but not the intact 2012 H1N2 virus, was transmissible to naïve contact ferrets via respiratory-droplets. Noting that the viral precursors have the ability to infect humans, our findings highlight the potential threat of a novel reassortant H1N2 SIV to public health and underscore the need to further strengthen influenza surveillance strategies worldwide, including swine populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Larsen, Lars Erik; Viuff, Birgitte M.

    2011-01-01

    Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses in the up......Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses...... and AIV virus was found, and this difference was in accordance with the distribution of the SA-alpha-2,6 and SA-alpha-2,3 receptor, respectively. The results indicated that the distribution of influenza A virus receptors in pigs are similar to that of humans and therefore challenge the theory that the pig...

  3. Misconceptions about Seasonal Flu and Flu Vaccines

    Science.gov (United States)

    ... Vaccine (LAIV) Misconceptions about Flu Vaccines Vaccine Supply & Distribution Vaccine Supply for 2017-2018 Season Frequently Asked ... conditions. Flu vaccination has been associated with lower rates of some cardiac ... a baby after birth from flu. (Mom passes antibodies onto the developing ...

  4. Planning for avian flu disruptions on global operations: a DMAIC case study.

    Science.gov (United States)

    Kumar, Sameer

    2012-01-01

    The author aims to assess the spread of avian flu, its impact on businesses operating in the USA and overseas, and the measures required for corporate preparedness. Six Sigma DMAIC process is used to analyze avian flu's impact and how an epidemic could affect large US business operations worldwide. Wal-Mart and Dell Computers were chosen as one specializes in retail and the other manufacturing. The study identifies avian flu pandemic risks including failure modes on Wal-Mart and Dell Computers global operations. It reveals the factors that reinforce avian-flu pandemic's negative impact on company global supply chains. It also uncovers factors that balance avian-flu pandemic's impact on their global supply chains. Avian flu and its irregularity affect the research outcomes because its spread could fluctuate based on so many factors that could come into play. Further, the potential cost to manufacturers and other supply chain partners is relatively unknown. As a relatively new phenomenon, quantitative data were not available to determine immediate costs. In this decade, the avian influenza H5N1 virus has killed millions of poultry in Asia, Europe and Africa. This flu strain can infect and kill humans who come into contact with this virus. An avian influenza H5N1 outbreak could lead to a devastating effect on global food supply, business services and business operations. The study provides guidance on what global business operation managers can do to prepare for such events, as well as how avian flu progression to a pandemic can disrupt such operations. This study raises awareness about avian flu's impact on businesses and humans and also highlights the need to create contingency plans for corporate preparedness to avoid incurring losses.

  5. Identification of Human H1N2 and Human-Swine Reassortant H1N2 and H1N1 Influenza A Viruses among Pigs in Ontario, Canada (2003 to 2005)†

    OpenAIRE

    Karasin, Alexander I.; Carman, Suzanne; Olsen, Christopher W.

    2006-01-01

    Since 2003, three novel genotypes of H1 influenza viruses have been recovered from Canadian pigs, including a wholly human H1N2 virus and human-swine reassortants. These isolates demonstrate that human-lineage H1N2 viruses are infectious for pigs and that viruses with a human PB1/swine PA/swine PB2 polymerase complex can replicate in pigs.

  6. Novel reassortant influenza A(H1N2) virus derived from A(H1N1)pdm09 virus isolated from swine, Japan, 2012.

    Science.gov (United States)

    Kobayashi, Miho; Takayama, Ikuyo; Kageyama, Tsutomu; Tsukagoshi, Hiroyuki; Saitoh, Mika; Ishioka, Taisei; Yokota, Yoko; Kimura, Hirokazu; Tashiro, Masato; Kozawa, Kunihisa

    2013-12-01

    We isolated a novel influenza virus A(H1N2) strain from a pig on January 13, 2012, in Gunma Prefecture, Japan. Phylogenetic analysis showed that the strain was a novel type of double-reassortant virus derived from the swine influenza virus strains H1N1pdm09 and H1N2, which were prevalent in Gunma at that time.

  7. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    Science.gov (United States)

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Comparative pathogenesis of an avian H5N2 and a swine H1N1 influenza virus in pigs.

    Directory of Open Access Journals (Sweden)

    Annebel De Vleeschauwer

    2009-08-01

    Full Text Available Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal to compare the pathogenesis of a low pathogenic (LP H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals.

  9. Serum neutralization as a differential serological test for classical swine fever virus and other pestivirus infections

    Directory of Open Access Journals (Sweden)

    Paredes J.C.M.

    1999-01-01

    Full Text Available Serum neutralization tests (SN were performed against classical swine fever virus (CSFV, bovine viral diarrhea virus (BVDV and border disease virus (BDV on samples of swine serum collected for screening of antibodies to CSFV, in order to determine the SN value as a differential serological test. Ninety-nine sera out of a sample of 16,664 were positive for antibodies to pestiviruses in an ELISA test which did not distinguish antibodies to different pestiviruses. When submitted to SN, 81 sera were positive for CSFV antibodies only. In 17 sera, crossreactive antibodies to either CSFV, BVDV or BDV were detected. In most of these sera (13 out of 17 the differences between SN titres against the three viruses were not sufficient to estimate which was the most likely antibody-inducing virus. It was concluded that, for the SN to be useful in such differentiation, it is essential to examine a sample which must include a representative number of sera from the same farm where suspect animals were detected. When isolated serum samples are examined, such as those obtained with the sampling strategy adopted here, the SN may give rise to inconclusive results.

  10. Surfing the web during pandemic flu: availability of World Health Organization recommendations on prevention.

    Science.gov (United States)

    Gesualdo, Francesco; Romano, Mariateresa; Pandolfi, Elisabetta; Rizzo, Caterina; Ravà, Lucilla; Lucente, Daniela; Tozzi, Alberto E

    2010-09-20

    People often search for information on influenza A(H1N1)v prevention on the web. The extent to which information found on the Internet is consistent with recommendations issued by the World Health Organization is unknown. We conducted a search for "swine flu" accessing 3 of the most popular search engines through different proxy servers located in 4 English-speaking countries (Australia, Canada, UK, USA). We explored each site resulting from the searches, up to 4 clicks starting from the search engine page, analyzing availability of World Health Organization recommendations for swine flu prevention. Information on hand cleaning was reported on 79% of the 147 websites analyzed; staying home when sick was reported on 77.5% of the websites; disposing tissues after sneezing on 75.5% of the websites. Availability of other recommendations was lower. The probability of finding preventative recommendations consistent with World Health Organization varied by country, type of website, and search engine. Despite media coverage on H1N1 influenza, relevant information for prevention is not easily found on the web. Strategies to improve information delivery to the general public through this channel should be improved.

  11. Modulation of Translation Initiation Efficiency in Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Rasmussen, Thomas Bruun; Belsham, Graham J.

    Modulation of translation initiation efficiency on classical swine fever virus (CSFV) RNA can be achieved by targeted mutations within the internal ribosome entry site (IRES). In this study, the nucleotides 47 to 427, including the IRES region of the wt CSFV strain Paderborn, were amplified...... and inserted, under T7 promoter control, into mono- and dicistronic plasmids containing the reporter genes rLuc and fLuc. Mutant fragments of the IRES sequence were generated by overlap PCR and inserted into the reporter plasmids. To evaluate IRES functionality, translation of the rLUC was placed under...... viruses were obtained after one cell culture passage from constructs with more than 75 % translation efficiency compared to the wildtype IRES. cDNA was generated from these clones and sequenced to verify the maintenance of the changes in the IRES. These results show that full-length viable mutant viruses...

  12. Identification of a new genotype of African swine fever Virus in domestic pigs from Ethiopia

    International Nuclear Information System (INIS)

    Achenbach, J.E.; Gallardo, C.; Nieto-Pelegrín, E.; Rivera-Arroyo, B.; Degefa-Negi, T.; Arias, M.; Jenberie, S.; Mulisa, D.D.; Gizaw, D.; Gelaye, E.; Chibssa, T.R.; Belaye, A.; Loitsch, A.; Forsa, M.; Yami, M.; Diallo, A.; Soler, A.; Lamien, C.E.

    2016-01-01

    Full text: African swine fever (ASF) is an important emerging transboundary animal disease (TAD), which currently has an impact on many countries in Africa, Eastern Europe, the Caucasus and the Russian Federation. The current situation in Europe shows the ability of the virus to rapidly spread, which stands to threaten the global swine industry. At present, there is no viable vaccine to minimize spread of the disease and stamping out is the main source of control. In February 2011, Ethiopia had reported its first suspected outbreaks of ASF. Genomic analyses of the collected ASF virus (ASFV) strains were undertaken using 23 tissue samples collected from domestic swine in Ethiopia from 2011 to 2014. The analysis of Ethiopian ASFVs partial p72 gene sequence showed the identification of a new genotype, genotype XXIII that shares a common ancestor with genotypes IX and X, which comprise isolates circulating in Eastern African countries and the Republic of Congo. Analysis of the p54 gene also followed the p72 pattern and the deduced amino acid sequence of the central variable region (CVR) of the B602L gene showed novel tetramer repeats not previously characterized. (author)

  13. Optimal Use of Vaccines for Control of Influenza A Virus in Swine

    Directory of Open Access Journals (Sweden)

    Matthew R. Sandbulte

    2015-01-01

    Full Text Available Influenza A virus in swine (IAV-S is one of the most important infectious disease agents of swine in North America. In addition to the economic burden of IAV-S to the swine industry, the zoonotic potential of IAV-S sometimes leads to serious public health concerns. Adjuvanted, inactivated vaccines have been licensed in the United States for over 20 years, and there is also widespread usage of autogenous/custom IAV-S vaccines. Vaccination induces neutralizing antibodies and protection against infection with very similar strains. However, IAV-S strains are so diverse and prone to mutation that these vaccines often have disappointing efficacy in the field. This scientific review was developed to help veterinarians and others to identify the best available IAV-S vaccine for a particular infected herd. We describe key principles of IAV-S structure and replication, protective immunity, currently available vaccines, and vaccine technologies that show promise for the future. We discuss strategies to optimize the use of available IAV-S vaccines, based on information gathered from modern diagnostics and surveillance programs. Improvements in IAV-S immunization strategies, in both the short term and long term, will benefit swine health and productivity and potentially reduce risks to public health.

  14. Comparison of the usefulness of the CACO-2 cell line with standard substrates for isolation of swine influenza A viruses.

    Science.gov (United States)

    Chiapponi, Chiara; Zanni, Irene; Garbarino, Chiara; Barigazzi, Giuseppe; Foni, Emanuela

    2010-01-01

    Influenza A virus isolation is undertaken routinely in embryonated chicken eggs, but to improve virus detection various cell lines can be used. The CACO-2 cell line was compared to the MDCK cell line and embryonated chicken eggs for the isolation of H1N1, H1N2, H3N2 swine influenza A virus subtypes from clinical specimens. From 2006 to 2008, 104 influenza A samples found positive by PCR from 42 respiratory outbreaks in Italian swine farms were examined by virus isolation. Sixty swine influenza A viruses were isolated (16 H1N1, 28 H1N2 and 16 H3N2) and their growth behaviour on the different substrates was examined. 16/16 H1N1, 28/28 H1N2 and 8/16 of H3N2 viruses were isolated from the CACO-2 cell line, while 7/16 H1N1, 3/28 H1N2 and 16/16 H3N2 viruses were isolated using embryonated chicken eggs. Only 9/16 H1N1, 1/28 H1N2 and 6/16 H3N2 viruses replicated in MDCK cells. A link was found between viral hemagglutinin and the isolation rate on the various substrates. The CACO-2 line was statistically more sensitive (Fisher's exact test, pH1N2 subtypes. In contrast influenza A H3N2 virus was isolated more readily in embryonated chicken eggs than in cultured cells (Fisher's exact test, p<0.01).

  15. Intradermal immunization with inactivated swine influenza virus and adjuvant polydi(sodium carboxylatoethylphenoxy)phosphazene (PCEP) induced humoral and cell-mediated immunity and reduced lung viral titres in pigs.

    Science.gov (United States)

    Magiri, Royford; Lai, Ken; Chaffey, Alyssa; Zhou, Yan; Pyo, Hyun-Mi; Gerdts, Volker; Wilson, Heather L; Mutwiri, George

    2018-03-14

    Swine influenza virus is endemic worldwide and it is responsible for significant economic losses to the swine industry. A vaccine that stimulates a rapid and long-lasting protective immune response to prevent this infection is highly sought. Poly[di(sodium carboxylatoethylphenoxy)-phosphazene (PCEP) has demonstrated adjuvant activity when formulated as part of multiple vaccines in mice and pigs. In this study we examined the magnitude and type of immune response induced in pigs vaccinated via the intramuscular or intradermal routes with inactivated swine influenza virus (SIV) H1N1 vaccine formulated with PCEP. Intradermal administration of PCEP-adjuvanted inactivated SIV vaccine stimulated significant anti-SIV antibody titres, increased neutralizing antibodies, and significantly reduced lung virus load with limited reduction of gross lung lesions after challenge with virulent H1N1 relative to control animals. These results indicate that PCEP may be effective as a vaccine adjuvant against swine influenza viruses in pigs and should be considered a potential candidate adjuvant for future swine intradermal influenza vaccines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Detection of Genotype 4 Swine Hepatitis E Virus in Systemic Tissues in Cross-Species Infected Rabbits

    OpenAIRE

    Wu, Qiaoxing; An, Junqing; She, Ruiping; Shi, Ruihan; Hao, Wenzhuo; Soomro, MajidHussain; Yuan, Xuerui; Yang, Jinling; Wang, Jingyuan

    2017-01-01

    Increasing evidence demonstrates that hepatitis E virus (HEV) can be transmitted across species. According to previous reports, swine HEV has two genotypes, genotype 3 and 4, and both can infect humans by the fecal-oral route. Thus, it is crucial for the control of HEV zoonotic transmission to evaluate the dynamics of viral shedding and distribution in different tissues during cross-species infection by HEV. In this study, rabbits were infected with genotype 4 swine HEV by the intraperitoneal...

  17. Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence?

    Science.gov (United States)

    Pereda, Ariel; Rimondi, Agustina; Cappuccio, Javier; Sanguinetti, Ramon; Angel, Matthew; Ye, Jianqiang; Sutton, Troy; Dibárbora, Marina; Olivera, Valeria; Craig, Maria I.; Quiroga, Maria; Machuca, Mariana; Ferrero, Andrea; Perfumo, Carlos; Perez, Daniel R.

    2011-01-01

    Please cite this paper as: Pereda et al. (2011) Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence? Influenza and Other Respiratory Viruses 5(6), 409–412. In this report, we describe the occurrence of two novel swine influenza viruses (SIVs) in pigs in Argentina. These viruses are the result of two independent reassortment events between the H1N1 pandemic influenza virus (H1N1pdm) and human‐like SIVs, showing the constant evolution of influenza viruses at the human–swine interface and the potential health risk of H1N1pdm as it appears to be maintained in the swine population. It must be noted that because of the lack of information regarding the circulation of SIVs in South America, we cannot discard the possibility that ancestors of the H1N1pdm or other SIVs have been present in this part of the world. More importantly, these findings suggest an ever‐expanding geographic range of potential epicenters of influenza emergence with public health risks. PMID:21668680

  18. [Establishment of chemiluminescent enzyme immunoassay for detecting antibodies against foot-and-mouth disease virus serotype O in swine].

    Science.gov (United States)

    Cui, Chen; Huang, Ligang; Li, Jing; Zou, Xingqi; Zhu, Yuanyuan; Xie, Lei; Zhao, Qizu; Yang, Limin; Liu, Wenjun

    2016-11-25

    Recombinant structural protein VP1 of foot-and-mouth disease virus serotype O was expressed in Escherichia coli and then purified using Nickel affinity chromatography. A chemiluminescent enzyme immunoassay (CLEIA) method was established using the purified recombinant protein as coating antigen to detect antibody of foot-and-mouth disease virus serotype O in swine. The specificity of VP1-CLEIA method is 100%. The coefficients of variation in the plate and between plates are 1.10%-6.70% and 0.66%-4.80%, respectively. Comparing with the commercial indirect ELISA kit or liquid phase block ELISA kit, the calculated coincidence rate is 93.50% or 94.00%. The high specificity and stability suggested this detection method can be used to monitor the antibody level of foot-and-mouth disease virus serotype O in swine.

  19. Disinfection of foot-and-mouth disease and African swine fever viruses with citric acid and sodium hypochlorite on birch wood carriers

    Science.gov (United States)

    Transboundary animal disease viruses such as foot-and-mouth disease virus (FMDV) and African swine fever virus (ASFV) are highly contagious and cause severe morbidity and mortality in livestock. Proper disinfection during an outbreak can help prevent virus spread and will shorten the time for contam...

  20. Seroprevalence of hepatitis E in swine abattoir workers.

    African Journals Online (AJOL)

    The disease poses economic ... III and IV infect both swine and humans; and are re- ... associated with transmission in swine abattoir workers in ..... tal evidence for cross-species infection by swine hepatitis ... A novel virus in swine is closely.

  1. Monitoring influenza activity in the United States: a comparison of traditional surveillance systems with Google Flu Trends.

    Directory of Open Access Journals (Sweden)

    Justin R Ortiz

    2011-04-01

    Full Text Available Google Flu Trends was developed to estimate US influenza-like illness (ILI rates from internet searches; however ILI does not necessarily correlate with actual influenza virus infections.Influenza activity data from 2003-04 through 2007-08 were obtained from three US surveillance systems: Google Flu Trends, CDC Outpatient ILI Surveillance Network (CDC ILI Surveillance, and US Influenza Virologic Surveillance System (CDC Virus Surveillance. Pearson's correlation coefficients with 95% confidence intervals (95% CI were calculated to compare surveillance data. An analysis was performed to investigate outlier observations and determine the extent to which they affected the correlations between surveillance data. Pearson's correlation coefficient describing Google Flu Trends and CDC Virus Surveillance over the study period was 0.72 (95% CI: 0.64, 0.79. The correlation between CDC ILI Surveillance and CDC Virus Surveillance over the same period was 0.85 (95% CI: 0.81, 0.89. Most of the outlier observations in both comparisons were from the 2003-04 influenza season. Exclusion of the outlier observations did not substantially improve the correlation between Google Flu Trends and CDC Virus Surveillance (0.82; 95% CI: 0.76, 0.87 or CDC ILI Surveillance and CDC Virus Surveillance (0.86; 95%CI: 0.82, 0.90.This analysis demonstrates that while Google Flu Trends is highly correlated with rates of ILI, it has a lower correlation with surveillance for laboratory-confirmed influenza. Most of the outlier observations occurred during the 2003-04 influenza season that was characterized by early and intense influenza activity, which potentially altered health care seeking behavior, physician testing practices, and internet search behavior.

  2. Monitoring Influenza Activity in the United States: A Comparison of Traditional Surveillance Systems with Google Flu Trends

    Science.gov (United States)

    Ortiz, Justin R.; Zhou, Hong; Shay, David K.; Neuzil, Kathleen M.; Fowlkes, Ashley L.; Goss, Christopher H.

    2011-01-01

    Background Google Flu Trends was developed to estimate US influenza-like illness (ILI) rates from internet searches; however ILI does not necessarily correlate with actual influenza virus infections. Methods and Findings Influenza activity data from 2003–04 through 2007–08 were obtained from three US surveillance systems: Google Flu Trends, CDC Outpatient ILI Surveillance Network (CDC ILI Surveillance), and US Influenza Virologic Surveillance System (CDC Virus Surveillance). Pearson's correlation coefficients with 95% confidence intervals (95% CI) were calculated to compare surveillance data. An analysis was performed to investigate outlier observations and determine the extent to which they affected the correlations between surveillance data. Pearson's correlation coefficient describing Google Flu Trends and CDC Virus Surveillance over the study period was 0.72 (95% CI: 0.64, 0.79). The correlation between CDC ILI Surveillance and CDC Virus Surveillance over the same period was 0.85 (95% CI: 0.81, 0.89). Most of the outlier observations in both comparisons were from the 2003–04 influenza season. Exclusion of the outlier observations did not substantially improve the correlation between Google Flu Trends and CDC Virus Surveillance (0.82; 95% CI: 0.76, 0.87) or CDC ILI Surveillance and CDC Virus Surveillance (0.86; 95%CI: 0.82, 0.90). Conclusions This analysis demonstrates that while Google Flu Trends is highly correlated with rates of ILI, it has a lower correlation with surveillance for laboratory-confirmed influenza. Most of the outlier observations occurred during the 2003–04 influenza season that was characterized by early and intense influenza activity, which potentially altered health care seeking behavior, physician testing practices, and internet search behavior. PMID:21556151

  3. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs

    DEFF Research Database (Denmark)

    Henritzi, Dinah; Zhao, Na; Starick, Elke

    2016-01-01

    diagnostic methods which allow for cost-effective large-scale analysis. Methods New SIV haemagglutinin (HA) and neuraminidase (NA) subtype- and lineage-specific multiplex real-time RT-PCRs (RT-qPCR) have been developed and validated with reference virus isolates and clinical samples. Results A diagnostic....... Swine influenza viruses (SIV) are widespread in European domestic pig populations and evolve dynamically. Knowledge regarding occurrence, spread and evolution of potentially zoonotic SIV in Europe is poorly understood. Objectives Efficient SIV surveillance programmes depend on sensitive and specific......Background A diversifying pool of mammalian-adapted influenza A viruses (IAV) with largely unknown zoonotic potential is maintained in domestic swine populations worldwide. The most recent human influenza pandemic in 2009 was caused by a virus with genes originating from IAV isolated from swine...

  4. Bioinformatics prediction of swine MHC class I epitopes from Porcine Reproductive and Respiratory Syndrome Virus

    DEFF Research Database (Denmark)

    Welner, Simon; Nielsen, Morten; Lund, Ole

    an effective CTL response against PRRSV, we have taken a bioinformatics approach to identify common PRRSV epitopes predicted to react broadly with predominant swine MHC (SLA) alleles. First, the genomic integrity and sequencing method was examined for 334 available complete PRRSV type 2 genomes leaving 104...... by the PopCover algorithm, providing a final list of 54 epitopes prioritized according to maximum coverage of PRRSV strains and SLA alleles. This bioinformatics approach provides a rational strategy for selecting peptides for a CTL-activating vaccine with broad coverage of both virus and swine diversity...

  5. Visualization of the African swine fever virus infection in living cells by incorporation into the virus particle of green fluorescent protein-p54 membrane protein chimera

    International Nuclear Information System (INIS)

    Hernaez, Bruno; Escribano, Jose M.; Alonso, Covadonga

    2006-01-01

    Many stages of African swine fever virus infection have not yet been studied in detail. To track the behavior of African swine fever virus (ASFV) in the infected cells in real time, we produced an infectious recombinant ASFV (B54GFP-2) that expresses and incorporates into the virus particle a chimera of the p54 envelope protein fused to the enhanced green fluorescent protein (EGFP). The incorporation of the fusion protein into the virus particle was confirmed immunologically and it was determined that p54-EGFP was fully functional by confirmation that the recombinant virus made normal-sized plaques and presented similar growth curves to the wild-type virus. The tagged virus was visualized as individual fluorescent particles during the first stages of infection and allowed to visualize the infection progression in living cells through the viral life cycle by confocal microscopy. In this work, diverse potential applications of B54GFP-2 to study different aspects of ASFV infection are shown. By using this recombinant virus it was possible to determine the trajectory and speed of intracellular virus movement. Additionally, we have been able to visualize for first time the ASFV factory formation dynamics and the cytophatic effect of the virus in live infected cells. Finally, we have analyzed virus progression along the infection cycle and infected cell death as time-lapse animations

  6. Bilateral Pulmonary Thromboembolism: An Unusual Presentation of Infection with Influenza A (H1N1 Virus

    Directory of Open Access Journals (Sweden)

    Parviz Saleh

    2010-06-01

    Full Text Available AbstractSwine flue is a highly contagious acute respiratory diseasecaused by a subtype of influenza A virus. Herein we presentthree patients with H1N1 infection complicated with pulmonarythromboembolism. The patients had chest pain and unexplaineddyspnea. Imaging studies showed bilateral hilar predominance.Computed tomographic angiography confirmed bilateral thromboembolism(an unusual presentation of H1N1 infection. We didnot find any predisposing factor including endothelial damage,stasis, or hypercoagulable state in these patients. They did notreceive any medication. After anticoagulation and treatment withoseltamivir, all the patients were discharged in good condition.To the best of our knowledge bilateral pulmonary thromboembolismhas not been reported in English language literature inpatients with swine flu infection. Appropriate diagnosis andtreatment will be life saving in this condition.Iran J Med Sci 2010; 35(2: 149-153.

  7. Should we fear "flu fear" itself? Effects of H1N1 influenza fear on ED use.

    Science.gov (United States)

    McDonnell, William M; Nelson, Douglas S; Schunk, Jeff E

    2012-02-01

    Surges in patient volumes compromise emergency departments' (EDs') ability to deliver care, as shown by the recent H1N1 influenza (flu) epidemic. Media reports are important in informing the public about health threats, but the effects of media-induced anxiety on ED volumes are unclear. The aim of this study is to examine the effect of widespread public concern about flu on ED use. We reviewed ED data from an integrated health system operating 18 hospital EDs. We compared ED visits during three 1-week periods: (a) a period of heightened public concern regarding flu before the disease was present ("Fear Week"), (b) a subsequent period of active disease ("Flu Week"), and (c) a week before widespread concern ("Control Week"). Fear Week was identified from an analysis of statewide Google electronic searches for "swine flu" and from media announcements about flu. Flu Week was identified from statewide epidemiological data. Data were reviewed from 22 608 visits during the study periods. Fear Week (n = 7712) and Flu Week (n = 7687) were compared to Control Week (n = 7209). Fear Week showed a 7.0% increase in visits (95% confidence interval, 6-8). Pediatric visits increased by 19.7%, whereas adult visits increased by 1%. Flu Week showed an increase over Control Week of 6.6% (95% confidence interval, 6-7). Pediatric visits increased by 10.6%, whereas adult visits increased by 4.8%. At a time of heightened public concern regarding flu but little disease prevalence, EDs experienced substantial increases in patient volumes. These increases were significant and comparable to the increases experienced during the subsequent epidemic of actual disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. African Swine Fever Virus, Siberia, Russia, 2017.

    Science.gov (United States)

    Kolbasov, Denis; Titov, Ilya; Tsybanov, Sodnom; Gogin, Andrey; Malogolovkin, Alexander

    2018-04-01

    African swine fever (ASF) is arguably the most dangerous and emerging swine disease worldwide. ASF is a serious problem for the swine industry. The first case of ASF in Russia was reported in 2007. We report an outbreak of ASF in Siberia, Russia, in 2017.

  9. Non-hydrolyzed in digestive tract and blood natural L-carnosine peptide ("bioactivated Jewish penicillin") as a panacea of tomorrow for various flu ailments: signaling activity attenuating nitric oxide (NO) production, cytostasis, and NO-dependent inhibition of influenza virus replication in macrophages in the human body infected with the virulent swine influenza A (H1N1) virus.

    Science.gov (United States)

    Babizhayev, Mark A; Deyev, Anatoliy I; Yegorov, Yegor E

    2013-01-01

    Influenza (flu) is caused by a highly contagious virus that is spread by coughs and sneezes. Flu symptoms include high fever, chills and sweating, sore throat, weakness, headache, muscle and joint pains, and cough. Older people and those with an underlying medical condition are more likely to develop serious complications, including secondary bacterial pneumonia, primary influenza pneumonia, and inflammation of the brain or heart. There are three types of flu virus: A, B, and C. The flu virus has a unique ability to change its surface structure. This allows it to escape recognition by the body's immune system and cause widespread illness (epidemics and pandemics). Most cases of influenza occur within a 6- to 8-week period during winter and spring. Epidemics occur when there are minor changes in the nature of the virus so that more people within a community are susceptible. Influenza A is more likely to cause epidemics. Pandemics (worldwide epidemics) occur when there are major changes in the virus so that the disease affects a large proportion of people in a geographic region or on more than one continent. The findings presented in this article have many important implications for understanding the influenza A (H1N1) viral pathogenesis, prevention, and treatment. Direct viral cytotoxicity (referred cytopathic effect) is only a fraction of several types of events induced by virus infection. Nitric oxide and oxygen free radicals such as superoxide anion (O2-·) are generated markedly in influenza A (including H1N1) virus-infected host boosts, and these molecular species are identified as the potent pathogenic agents. The mutual interaction of nitric oxide (NO) with O2-· resulting in the formation of peroxynitrite is operative in the pathogenic mechanism of influenza virus pneumonia. Influenza virus infection involves pathological events in which oxygen free radicals play an important role in the pathogenesis. The toxicity and reactivity of oxygen radicals generated

  10. PA-X protein contributes to virulence of triple-reassortant H1N2 influenza virus by suppressing early immune responses in swine.

    Science.gov (United States)

    Xu, Guanlong; Zhang, Xuxiao; Liu, Qinfang; Bing, Guoxia; Hu, Zhe; Sun, Honglei; Xiong, Xin; Jiang, Ming; He, Qiming; Wang, Yu; Pu, Juan; Guo, Xin; Yang, Hanchun; Liu, Jinhua; Sun, Yipeng

    2017-08-01

    Previous studies have identified a functional role of PA-X for influenza viruses in mice and avian species; however, its role in swine remains unknown. Toward this, we constructed PA-X deficient virus (Sw-FS) in the background of a Triple-reassortment (TR) H1N2 swine influenza virus (SIV) to assess the impact of PA-X in viral virulence in pigs. Expression of PA-X in TR H1N2 SIV enhanced viral replication and host protein synthesis shutoff, and inhibited the mRNA levels of type I IFNs and proinflammatory cytokines in porcine cells. A delay of proinflammatory responses was observed in lungs of pigs infected by wild type SIV (Sw-WT) compared to Sw-FS. Furthermore, Sw-WT virus replicated and transmitted more efficiently than Sw-FS in pigs. These results highlight the importance of PA-X in the moderation of virulence and immune responses of TR SIV in swine, which indicated that PA-X is a pro-virulence factor in TR SIV in pigs. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface.

    Science.gov (United States)

    Nelson, Martha I; Vincent, Amy L

    2015-03-01

    The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to swine is far more frequent than swine-to-human zoonosis, and is central in seeding swine globally with new viral diversity. The scale of global human-to-swine transmission represents the largest 'reverse zoonosis' of a pathogen documented to date. Overcoming the bias towards perceiving swine as sources of human viruses, rather than recipients, is key to understanding how the bidirectional nature of the human-animal interface produces influenza threats to both hosts. Published by Elsevier Ltd.

  12. The Inability to Screen Exhibition Swine for Influenza A Virus Using Body Temperature.

    Science.gov (United States)

    Bowman, A S; Nolting, J M; Workman, J D; Cooper, M; Fisher, A E; Marsh, B; Forshey, T

    2016-02-01

    Agricultural fairs create an unconventional animal-human interface that has been associated with swine-to-human transmission of influenza A virus (IAV) in recent years. Early detection of IAV-infected pigs at agricultural fairs would allow veterinarians to better protect swine and human health during these swine exhibitions. This study assessed the use of swine body temperature measurement, recorded by infrared and rectal thermometers, as a practical method to detect IAV-infected swine at agricultural fairs. In our first objective, infrared thermometers were used to record the body surface temperature of 1,092 pigs at the time of IAV nasal swab collection at the end of the exhibition period of 55 agricultural fairs. IAV was recovered from 212 (19.4%) pigs, and the difference in mean infrared body temperature measurement of IAV-positive and IAV-negative pigs was 0.83°C. In a second objective, snout wipes were collected from 1,948 pigs immediately prior to the unloading of the animals at a single large swine exhibition. Concurrent to the snout wipe collection, owners took the rectal temperatures of his/her pigs. In this case, 47 (2.4%) pigs tested positive for IAV before they entered the swine barn. The mean rectal temperatures differed by only 0.19°C between IAV-positive and IAV-negative pigs. The low prevalence of IAV among the pigs upon entry to the fair in the second objective provides evidence that limiting intraspecies spread of IAV during the fairs will likely have significant impacts on the zoonotic transmission. However, in both objectives, the high degree of similarity in the body temperature measurements between the IAV-positive and IAV-negative pigs made it impossible to set a diagnostically meaningful cut point to differentiate IAV status of the individual animals. Unfortunately, body temperature measurement cannot be used to accurately screen exhibition swine for IAV. © 2015 Blackwell Verlag GmbH.

  13. European surveillance network for influenza in pigs: surveillance programs, diagnostic tools and Swine influenza virus subtypes identified in 14 European countries from 2010 to 2013.

    Directory of Open Access Journals (Sweden)

    Gaëlle Simon

    Full Text Available Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010-2013 aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%, human-like reassortant swine H1N2 (13% and human-like reassortant swine H3N2 (9.1%, as well as pandemic A/H1N1 2009 (H1N1pdm virus (10.3%. Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections.

  14. Comparison of the Simplexa™ Flu A/B & RSV kit (nucleic acid extraction-dependent assay) and the Prodessa ProFlu+™ assay for detecting influenza and respiratory syncytial viruses.

    Science.gov (United States)

    Selvaraju, Suresh B; Bambach, Adrienne V; Leber, Amy L; Patru, Maria-Magdalena; Patel, Anami; Menegus, Marilyn A

    2014-09-01

    The relative performance of 2 widely used reverse transcription polymerase chain reaction (RT-PCR) assays, the Focus diagnostics Simplexa™ Flu A/B & RSV kit (nucleic acid extraction-dependent assay) and the Prodessa Proflu+™ assay, was evaluated using 735 prospectively and retrospectively collected nasopharyngeal swab specimens. Overall, the assays showed positive and negative agreements of 100% and 99.7% for influenza A, 98.1% and 99.9% for influenza B, and 99.3% and 99.5% for respiratory syncytial virus. The relative analytical sensitivity of the 2 assays was also similar. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Surfing the web during pandemic flu: availability of World Health Organization recommendations on prevention

    Directory of Open Access Journals (Sweden)

    Ravà Lucilla

    2010-09-01

    Full Text Available Abstract Background People often search for information on influenza A(H1N1v prevention on the web. The extent to which information found on the Internet is consistent with recommendations issued by the World Health Organization is unknown. Methods We conducted a search for "swine flu" accessing 3 of the most popular search engines through different proxy servers located in 4 English-speaking countries (Australia, Canada, UK, USA. We explored each site resulting from the searches, up to 4 clicks starting from the search engine page, analyzing availability of World Health Organization recommendations for swine flu prevention. Results Information on hand cleaning was reported on 79% of the 147 websites analyzed; staying home when sick was reported on 77.5% of the websites; disposing tissues after sneezing on 75.5% of the websites. Availability of other recommendations was lower. The probability of finding preventative recommendations consistent with World Health Organization varied by country, type of website, and search engine. Conclusions Despite media coverage on H1N1 influenza, relevant information for prevention is not easily found on the web. Strategies to improve information delivery to the general public through this channel should be improved.

  16. [Swine flu: epidemiology, diagnostics, treatment, and prophylaxis].

    Science.gov (United States)

    Fisun, A Ia; Kuchmin, A N; Akimkin, V G; Korotchenko, S I; Nikitin, A E; Volzhanin, V M; Ogarkov, P I; Obukhov, Iu I

    2009-07-01

    Virus of piggy grippe is a virus of type A, which has greatly changed in it's antigenic structure. As a result, has appeared a new variant of germ (syb-type), in relation to which vaccines, used for period 2008-2009, are unsuccessful. Virus represents a real risk for life and health of millions of people. Experts of World Health Organization are sure, that eruption can lead to a global expansion of virus. To the group of high risk refer: children younger then 5 years old, full-growns of 50 years old and older, children and teen-agers (from 6 months to 18 years), treated for a long time by aspirin, gravidas, full-growns with several chronic diseases, persons in nursing homes, hospices, requiring a long-termed hipurgia, compulsory-duty servicemen. Latent period is from 1 to 7 days (2-3 days on the average). Accountancy of clinical data: acute beginning, hyperpyretic fever, predominance of damages of upper respiratory tracts. The article presents a detailed characteristic of therapeutic and prophylactic measures in the Army and NAVY.

  17. Influenza A (H3N2) virus in swine at agricultural fairs and transmission to humans, Michigan and Ohio, USA, 2016

    Science.gov (United States)

    An 18 case outbreak of variant H3N2 influenza A occurred during 2016 after exposure to influenza-infected swine at seven agricultural fairs. Sixteen cases were infected with a reassortant between 2010-2011 human seasonal H3N2 strains and viruses endemic in North American swine, a viral lineage incre...

  18. Flued head replacement alternatives

    International Nuclear Information System (INIS)

    Smetters, J.L.

    1987-01-01

    This paper discusses flued head replacement options. Section 2 discusses complete flued head replacement with a design that eliminates the inaccessible welds. Section 3 discusses alternate flued head support designs that can drastically reduce flued head installation costs. Section 4 describes partial flued head replacement designs. Finally, Section 5 discusses flued head analysis methods. (orig./GL)

  19. Human temperatures for syndromic surveillance in the emergency department: data from the autumn wave of the 2009 swine flu (H1N1) pandemic and a seasonal influenza outbreak.

    Science.gov (United States)

    Bordonaro, Samantha F; McGillicuddy, Daniel C; Pompei, Francesco; Burmistrov, Dmitriy; Harding, Charles; Sanchez, Leon D

    2016-03-09

    The emergency department (ED) increasingly acts as a gateway to the evaluation and treatment of acute illnesses. Consequently, it has also become a key testing ground for systems that monitor and identify outbreaks of disease. Here, we describe a new technology that automatically collects body temperatures during triage. The technology was tested in an ED as an approach to monitoring diseases that cause fever, such as seasonal flu and some pandemics. Temporal artery thermometers that log temperature measurements were placed in a Boston ED and used for initial triage vital signs. Time-stamped measurements were collected from the thermometers to investigate the performance a real-time system would offer. The data were summarized in terms of rates of fever (temperatures ≥100.4 °F [≥38.0 °C]) and were qualitatively compared with regional disease surveillance programs in Massachusetts. From September 2009 through August 2011, 71,865 body temperatures were collected and included in our analysis, 2073 (2.6 %) of which were fevers. The period of study included the autumn-winter wave of the 2009-2010 H1N1 (swine flu) pandemic, during which the weekly incidence of fever reached a maximum of 5.6 %, as well as the 2010-2011 seasonal flu outbreak, during which the maximum weekly incidence of fever was 6.6 %. The periods of peak fever rates corresponded with the periods of regionally elevated flu activity. Temperature measurements were monitored at triage in the ED over a period of 2 years. The resulting data showed promise as a potential surveillance tool for febrile disease that could complement current disease surveillance systems. Because temperature can easily be measured by non-experts, it might also be suitable for monitoring febrile disease activity in schools, workplaces, and transportation hubs, where many traditional syndromic indicators are impractical. However, the system's validity and generalizability should be evaluated in additional years and

  20. Airborne detection and quantification of swine influenza a virus in air samples collected inside, outside and downwind from swine barns.

    Directory of Open Access Journals (Sweden)

    Cesar A Corzo

    Full Text Available Airborne transmission of influenza A virus (IAV in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m³ of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m³ of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m³. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions.

  1. Colds and flu – an overview of the management

    African Journals Online (AJOL)

    However, the flu is a viral illness that is caused by the influenza virus and has a high mortality .... However, not enough high-quality trials support the .... action and are combined in cold medicines to help patients sleep. Literature has stated that ...

  2. Signifiance of Arginine 20 in the 2A protease for swine vesicular disease virus pathogenicity

    DEFF Research Database (Denmark)

    Inoue, Toru; Zhang, Zhidong; Wang, Leyuan

    2007-01-01

    Pathogenic and attenuated strains of swine vesicular disease virus (SVDV), an enterovirus, have been characterized previously and, by using chimeric infectious cDNA clones, the key determinants of pathogenicity in pigs have been mapped to the coding region for 1D–2A. Within this region, residue 20...

  3. A Review of Classical Swine Fever Virus and Routes of Introduction into the United States and the Potential for Virus Establishment.

    Science.gov (United States)

    Brown, Vienna R; Bevins, Sarah N

    2018-01-01

    Classical swine fever (CSF) is caused by CSF virus (CSFV) which can be the source of substantial morbidity and mortality events in affected swine. The disease can take one of several forms (acute, chronic, or prenatal) and depending on the virulence of the inoculating strain may result in a lethal infection irrespective of the form acquired. Because of the disease-free status of the United States and the high cost of a viral incursion, a summary of US vulnerabilities for viral introduction and persistence is provided. The legal importation of live animals as well as animal products, byproducts, and animal feed serve as a potential route of viral introduction. Current import regulations are described as are mitigation strategies that are commonly utilized to prevent pathogens, including CSFV, from entering the US. The illegal movement of suids and their products as well as an event of bioterrorism are both feasible routes of viral introduction but are difficult to restrict or regulate. Ultimately, recommendations are made for data that would be useful in the event of a viral incursion. Population and density mapping for feral swine across the United States would be valuable in the event of a viral introduction or spillover; density data could further contribute to understanding the risk of infection in domestic swine. Additionally, ecological and behavioral studies, including those that evaluate the effects of anthropogenic food sources that support feral swine densities far above the carrying capacity would provide invaluable insight to our understanding of how human interventions affect feral swine populations. Further analyses to determine the sampling strategies necessary to detect low levels of antibody prevalence in feral swine would also be valuable.

  4. A Review of Classical Swine Fever Virus and Routes of Introduction into the United States and the Potential for Virus Establishment

    Directory of Open Access Journals (Sweden)

    Vienna R. Brown

    2018-03-01

    Full Text Available Classical swine fever (CSF is caused by CSF virus (CSFV which can be the source of substantial morbidity and mortality events in affected swine. The disease can take one of several forms (acute, chronic, or prenatal and depending on the virulence of the inoculating strain may result in a lethal infection irrespective of the form acquired. Because of the disease-free status of the United States and the high cost of a viral incursion, a summary of US vulnerabilities for viral introduction and persistence is provided. The legal importation of live animals as well as animal products, byproducts, and animal feed serve as a potential route of viral introduction. Current import regulations are described as are mitigation strategies that are commonly utilized to prevent pathogens, including CSFV, from entering the US. The illegal movement of suids and their products as well as an event of bioterrorism are both feasible routes of viral introduction but are difficult to restrict or regulate. Ultimately, recommendations are made for data that would be useful in the event of a viral incursion. Population and density mapping for feral swine across the United States would be valuable in the event of a viral introduction or spillover; density data could further contribute to understanding the risk of infection in domestic swine. Additionally, ecological and behavioral studies, including those that evaluate the effects of anthropogenic food sources that support feral swine densities far above the carrying capacity would provide invaluable insight to our understanding of how human interventions affect feral swine populations. Further analyses to determine the sampling strategies necessary to detect low levels of antibody prevalence in feral swine would also be valuable.

  5. Polymerase Discordance in Novel Swine Influenza H3N2v Constellations Is Tolerated in Swine but Not Human Respiratory Epithelial Cells

    Science.gov (United States)

    Powell, Joshua D.; Dlugolenski, Daniel; Nagy, Tamas; Gabbard, Jon; Lee, Christopher; Tompkins, Stephen M.; Tripp, Ralph A.

    2014-01-01

    Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09) in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA) segment occurred within swine H3N2 with ∼80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA) showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection. PMID:25330303

  6. Characterization of Three Novel Linear Neutralizing B-Cell Epitopes in the Capsid Protein of Swine Hepatitis E Virus.

    Science.gov (United States)

    Chen, Yiyang; Liu, Baoyuan; Sun, Yani; Li, Huixia; Du, Taofeng; Nan, Yuchen; Hiscox, Julian A; Zhou, En-Min; Zhao, Qin

    2018-04-18

    Hepatitis E virus (HEV) causes liver disease in humans and is thought to be a zoonotic infection with domestic animals being a reservoir including swine and rabbits. One of the proteins encoded by the virus is the capsid protein. This is likely the major immune-dominant protein and a target for vaccination. Four monoclonal antibodies (MAbs); three novel; 1E4, 2C7, 2G9, and one previously characterized (1B5), were evaluated for binding to the capsid protein from genotype 4 (swine) hepatitis E virus (HEV). The results indicated that 625 DFCP 628 , 458 PSRPF 462 , and 407 EPTV 410 peptides on the capsid protein comprised minimal amino acid sequence motifs recognized by 1E4, 2C7, and 2G9, respectively. The data suggested that 2C7 and 2G9 epitopes were partially exposed on the surface of the capsid protein. Truncated genotype 4 swine HEV capsid protein (sp239, amino acids 368-606), can exist in multimeric forms. Pre-incubation of swine HEV with 2C7, 2G9, or 1B5 before addition to HepG2 cells partially blocked sp239 cell binding and inhibited swine HEV infection. The study indicated that 2C7, 2G9, and 1B5 partially blocked swine HEV infection of rabbits better than 1E4 or normal mouse IgG. The cross reactivity of antibodies suggested that capsid epitopes recognized by 2C7 and 2G9 are common to HEV strains infecting most host species. Collectively, MAbs 2C7, 2G9, and 1B5 were shown to recognize three novel linear neutralizing B-cell epitopes of genotype 4 HEV capsid protein. These results enhance understanding of HEV capsid protein structure to guide vaccine and anti-viral design. IMPORTANCE Genotype 3 and 4 HEVs are zoonotic viruses. Here, genotype 4 HEV was studied due to its prevalence in human populations and pig herds in China. To improve HEV disease diagnosis and prevention, a better understanding of antigenic structure and neutralizing epitopes of HEV capsid protein are needed. In this study, the locations of three novel linear B-cell recognition epitopes within

  7. Evolution and molecular epidemiology of classical swine fever virus during a multi-annual outbreak amongst European wild boar.

    Science.gov (United States)

    Goller, Katja V; Gabriel, Claudia; Dimna, Mireille Le; Le Potier, Marie-Frédérique; Rossi, Sophie; Staubach, Christoph; Merboth, Matthias; Beer, Martin; Blome, Sandra

    2016-03-01

    Classical swine fever is a viral disease of pigs that carries tremendous socio-economic impact. In outbreak situations, genetic typing is carried out for the purpose of molecular epidemiology in both domestic pigs and wild boar. These analyses are usually based on harmonized partial sequences. However, for high-resolution analyses towards the understanding of genetic variability and virus evolution, full-genome sequences are more appropriate. In this study, a unique set of representative virus strains was investigated that was collected during an outbreak in French free-ranging wild boar in the Vosges-du-Nord mountains between 2003 and 2007. Comparative sequence and evolutionary analyses of the nearly full-length sequences showed only slow evolution of classical swine fever virus strains over the years and no impact of vaccination on mutation rates. However, substitution rates varied amongst protein genes; furthermore, a spatial and temporal pattern could be observed whereby two separate clusters were formed that coincided with physical barriers.

  8. FluBreaks: early epidemic detection from Google flu trends.

    Science.gov (United States)

    Pervaiz, Fahad; Pervaiz, Mansoor; Abdur Rehman, Nabeel; Saif, Umar

    2012-10-04

    The Google Flu Trends service was launched in 2008 to track changes in the volume of online search queries related to flu-like symptoms. Over the last few years, the trend data produced by this service has shown a consistent relationship with the actual number of flu reports collected by the US Centers for Disease Control and Prevention (CDC), often identifying increases in flu cases weeks in advance of CDC records. However, contrary to popular belief, Google Flu Trends is not an early epidemic detection system. Instead, it is designed as a baseline indicator of the trend, or changes, in the number of disease cases. To evaluate whether these trends can be used as a basis for an early warning system for epidemics. We present the first detailed algorithmic analysis of how Google Flu Trends can be used as a basis for building a fully automated system for early warning of epidemics in advance of methods used by the CDC. Based on our work, we present a novel early epidemic detection system, called FluBreaks (dritte.org/flubreaks), based on Google Flu Trends data. We compared the accuracy and practicality of three types of algorithms: normal distribution algorithms, Poisson distribution algorithms, and negative binomial distribution algorithms. We explored the relative merits of these methods, and related our findings to changes in Internet penetration and population size for the regions in Google Flu Trends providing data. Across our performance metrics of percentage true-positives (RTP), percentage false-positives (RFP), percentage overlap (OT), and percentage early alarms (EA), Poisson- and negative binomial-based algorithms performed better in all except RFP. Poisson-based algorithms had average values of 99%, 28%, 71%, and 76% for RTP, RFP, OT, and EA, respectively, whereas negative binomial-based algorithms had average values of 97.8%, 17.8%, 60%, and 55% for RTP, RFP, OT, and EA, respectively. Moreover, the EA was also affected by the region's population size

  9. Quantitative evaluation of infection control models in the prevention of nosocomial transmission of SARS virus to healthcare workers: implication to nosocomial viral infection control for healthcare workers.

    Science.gov (United States)

    Yen, Muh-Yong; Lu, Yun-Ching; Huang, Pi-Hsiang; Chen, Chen-Ming; Chen, Yee-Chun; Lin, Yusen E

    2010-07-01

    Healthcare workers (HCWs) are at high risk of acquiring emerging infections while caring for patients, as has been shown in the recent SARS and swine flu epidemics. Using SARS as an example, we determined the effectiveness of infection control measures (ICMs) by logistic regression and structural equation modelling (SEM), a quantitative methodology that can test a hypothetical model and validates causal relationships among ICMs. Logistic regression showed that installing hand wash stations in the emergency room (p = 0.012, odds ratio = 1.07) was the only ICM significantly associated with the protection of HCWs from acquiring the SARS virus. The structural equation modelling results showed that the most important contributing factor (highest proportion of effectiveness) was installation of a fever screening station outside the emergency department (51%). Other measures included traffic control in the emergency department (19%), availability of an outbreak standard operation protocol (12%), mandatory temperature screening (9%), establishing a hand washing setup at each hospital checkpoint (3%), adding simplified isolation rooms (3%), and a standardized patient transfer protocol (3%). Installation of fever screening stations outside of the hospital and implementing traffic control in the emergency department contributed to 70% of the effectiveness in the prevention of SARS transmission. Our approach can be applied to the evaluation of control measures for other epidemic infectious diseases, including swine flu and avian flu.

  10. Swine enteric coronavirus disease: A review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada.

    Science.gov (United States)

    Niederwerder, M C; Hesse, R A

    2018-06-01

    Swine enteric coronaviruses, including porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV), have emerged and spread throughout the North American swine industry over the last four years. These diseases cause significant losses within the pork industry and within the first year after PEDV introduction, approximately 10% of the US herd died due to the disease. Similar to other enteric coronaviruses, such as transmissible gastroenteritis virus (TGEV), these emerging swine enteric coronavirus diseases (SECD) are age-dependent, with high morbidity and mortality in neonatal pigs. Since the introduction of SECD, research has focused on investigating viral pathogenesis through experimental inoculation, increasing maternal antibody for neonatal protection, understanding transmission risks through feed and transportation, and outlining the importance of biosecurity in preventing SECD introduction and spread. A survey of swine professionals conducted for this review revealed that the majority of respondents (75%) believe SECD can be eradicated and that most herds have been successful at long-term elimination of SECD after exposure (80%). However, unique properties of SECD, such as ineffective immunity through parenteral vaccination and a low oral infectious dose, play a major role in management of SECD. This review serves to describe the current knowledge of SECD and the characteristics of these viruses which provide both opportunities and challenges for long-term disease control and potential eradication from the US swine population. © 2018 Blackwell Verlag GmbH.

  11. Hepatitis E virus infection in central China reveals no evidence of cross-species transmission between human and swine in this area.

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    Full Text Available Hepatitis E virus (HEV is a zoonotic pathogen of which several species of animal were reported as reservoirs. Swine stands out as the major reservoir for HEV infection in humans, as suggested by the close genetic relationship of swine and human virus. Since 2000, Genotype 4 HEV has become the dominant cause of hepatitis E disease in China. Recent reports showed that genotype 4 HEV is freely transmitted between humans and swine in eastern and southern China. However, the infection status of HEV in human and swine populations in central China is still unclear. This study was conducted in a rural area of central China, where there are many commercial swine farms. A total of 1476 serum and 554 fecal specimens were collected from the general human and swine populations in this area, respectively. The seroepidemiological study was conducted by enzyme-linked immunosorbent assay. Conserved genomic sequences of open reading frame 2 were detected using reverse transcription-PCR. The results indicated that the overall viral burden of the general human subjects was 0.95% (14/1476, while 7.0% (39/554 of the swine excreted HEV in stool. The positive rate of anti-HEV IgG and IgM in the serum samples was 7.9% (117/1476 and 1.6% (24/1476, respectively. Phylogenetic analysis based on the 150 nt partial sequence of the capsid protein gene showed that the 53 swine and human HEV isolates in the current study all belonged to genotype 4, clustering into three major groups. However, the HEV isolates prevalent in the human and swine populations were classified into known distinct subgenotypes, which suggested that no cross-species transmission between swine and humans had taken place in this area. This result was confirmed by cloning and phylogenetic analysis of the complete capsid protein gene sequence of three representative HEV strains in the three major groups. The cross reactivity between anti-HEV IgG from human sera and the two representative strains from swine in

  12. Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013

    DEFF Research Database (Denmark)

    J. Watson, Simon; Langat, Pinky; M. Reid, Scott

    2015-01-01

    )pdm09 becoming established at a mean frequency of 8% across European countries. Notably, swine in the United Kingdom have largely had a replacement of the endemic Eurasian avian virus-like (“avian-like”) genotypes with A(H1N1)pdm09-derived genotypes. The high number of reassortant genotypes observed...

  13. Xpert Flu for point-of-care diagnosis of human influenza in industrialized countries.

    Science.gov (United States)

    Salez, Nicolas; Nougairede, Antoine; Ninove, Laetitia; Zandotti, Christine; de Lamballerie, Xavier; Charrel, Rémi N

    2014-05-01

    Respiratory infections, particularly those caused by influenza viruses, represent the third-most important cause of death in the world due to infectious diseases. Nevertheless, despite the enormous publicity attracted by epidemics due to these viruses, laboratory diagnosis, documentation and recording of respiratory diseases is still unsatisfactory. Available diagnostic tests capable of providing results rapidly are either limited and insufficiently sensitive or highly sensitive and specific but insufficiently rapid. Considerable investment and research efforts have been made towards the development of new diagnostics for influenza A and B viruses and the Xpert(®) Flu assay (Cepheid(®), CA, USA) has emerged as one of the most promising. In this article, we review current knowledge of the Xpert Flu test, discuss its potential value as a point-of-care test and outline the potential leads for future development.

  14. Propagation of classical swine fever virus in vitro circumventing heparan sulfate-adaptation.

    Science.gov (United States)

    Eymann-Häni, Rita; Leifer, Immanuel; McCullough, Kenneth C; Summerfield, Artur; Ruggli, Nicolas

    2011-09-01

    Amplification of natural virus isolates in permanent cell lines can result in adaptation, in particular enhanced binding to heparan sulfate (HS)-containing glycosaminoglycans present on most vertebrate cells. This has been reported for several viruses, including the pestivirus classical swine fever virus (CSFV), the causative agent of a highly contagious hemorrhagic disease in pigs. Propagation of CSFV in cell culture is essential in virus diagnostics and research. Adaptation of CSFV to HS-binding has been related to amino acid changes in the viral E(rns) glycoprotein, resulting in viruses with altered replication characteristics in vitro and in vivo. Consequently, a compound blocking the HS-containing structures on cell surfaces was employed to monitor conversion from HS-independency to HS-dependency. It was shown that the porcine PEDSV.15 cell line permitted propagation of CSFV within a limited number of passages without adaptation to HS-binding. The selection of HS-dependent CSFV mutants was also prevented by propagation of the virus in the presence of DSTP 27. The importance of these findings can be seen from the altered ratio of cell-associated to secreted virus upon acquisition of enhanced HS-binding affinity, a phenotype proposed previously to be related to virulence in the natural host. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Polymerase discordance in novel swine influenza H3N2v constellations is tolerated in swine but not human respiratory epithelial cells.

    Directory of Open Access Journals (Sweden)

    Joshua D Powell

    Full Text Available Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09 in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA segment occurred within swine H3N2 with ∼ 80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection.

  16. Bird flu, influenza and 1918: the case for mutant Avian tuberculosis.

    Science.gov (United States)

    Broxmeyer, Lawrence

    2006-01-01

    Influenza is Italian for "influence", Latin: influentia. It used to be thought that the disease was caused by a bad influence from the heavens. Influenza was called a virus long, long before it was proven to be one. In 2005, an article in the New England Journal of Medicine estimated that a recurrence of the 1918 influenza epidemic could kill between 180 million and 360 million people worldwide. A large part of the current bird-flu hysteria is fostered by a distrust among the lay and scientific community regarding the actual state of our knowledge regarding the bird flu or H5N1 and the killer "Influenza" Pandemic of 1918 that it is compared to. And this distrust is not completely unfounded. Traditionally, "flu" does not kill. Experts, including Peter Palese of the Mount School of Medicine in Manhattan, remind us that even in 1992, millions in China already had antibodies to H5N1, meaning that they had contracted it and that their immune system had little trouble fending it off. Dr. Andrew Noymer and Michel Garenne, UC Berkely demographers, reported in 2000 convincing statistics showing that undetected tuberculosis may have been the real killer in the 1918 flu epidemic. Aware of recent attempts to isolate the "Influenza virus" on human cadavers and their specimens, Noymer and Garenne summed that: "Frustratingly, these findings have not answered the question why the 1918 virus was so virulent, nor do they offer an explanation for the unusual age profile of deaths". Bird flu would certainly be diagnosed in the hospital today as Acute Respiratory Distress Syndrome (ARDS). Roger and others favor suspecting tuberculosis in all cases of acute respiratory failure of unknown origin. By 1918, it could be said, in so far as tuberculosis was concerned, that the world was a supersaturated sponge ready to ignite and that among its most vulnerable parts was the very Midwest where the 1918 unknown pandemic began. It is theorized that the lethal pig epidemic that began in Kansas

  17. Control of African swine fever epidemics in industrialized swine populations

    DEFF Research Database (Denmark)

    Hisham Beshara Halasa, Tariq; Bøtner, Anette; Mortensen, Sten

    2016-01-01

    , it is important to explore strategies that can effectively control an epidemic of ASF. In this study, the epidemiological and economic effects of strategies to control the spread of ASF between domestic swine herds were examined using a published model (DTU-DADS-ASF). The control strategies were the basic EU...... and national strategy (Basic), the basic strategy plus pre-emptive depopulation of neighboring swine herds, and intensive surveillance of herds in the control zones, including testing live or dead animals. Virus spread via wild boar was not modelled. Under the basic control strategy, the median epidemic......African swine fever (ASF) is a notifiable infectious disease with a high impact on swine health. The disease is endemic in certain regions in the Baltic countries and has spread to Poland constituting a risk of ASF spread toward Western Europe. Therefore, as part of contingency planning...

  18. Restoration of glycoprotein Erns dimerization via pseudoreversion partially restores virulence of classical swine fever virus.

    Science.gov (United States)

    Tucakov, Anna Katharina; Yavuz, Sabine; Schürmann, Eva-Maria; Mischler, Manjula; Klingebeil, Anne; Meyers, Gregor

    2018-01-01

    The classical swine fever virus (CSFV) represents one of the most important pathogens of swine. The CSFV glycoprotein E rns is an essential structural protein and an important virulence factor. The latter is dependent on the RNase activity of this envelope protein and, most likely, its secretion from the infected cell. A further important feature with regard to its function as a virulence factor is the formation of disulfide-linked E rns homodimers that are found in virus-infected cells and virions. Mutant CSFV lacking cysteine (Cys) 171, the residue responsible for intermolecular disulfide bond formation, were found to be attenuated in pigs (Tews BA, Schürmann EM, Meyers G. J Virol 2009;83:4823-4834). In the course of an animal experiment with such a dimerization-negative CSFV mutant, viruses were reisolated from pigs that contained a mutation of serine (Ser) 209 to Cys. This mutation restored the ability to form disulphide-linked E rns homodimers. In transient expression studies E rns mutants carrying the S209C change were found to form homodimers with about wt efficiency. Also the secretion level of the mutated proteins was equivalent to that of wt E rns . Virus mutants containing the Cys171Ser/Ser209Cys configuration exhibited wt growth rates and increased virulence when compared with the Cys171Ser mutant. These results provide further support for the connection between CSFV virulence and E rns dimerization.

  19. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses

    OpenAIRE

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-01-01

    Background The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. Findings The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decrease...

  20. Avoiding the Flu

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Flu Avoiding the Flu Past Issues / Fall 2009 Table of Contents Children ... should still get the 2009 H1N1 vaccine. H1N1 Flu: Who Should Be Vaccinated First The Centers for ...

  1. Induction of Robust Immune Responses in Swine by Using a Cocktail of Adenovirus-Vectored African Swine Fever Virus Antigens.

    Science.gov (United States)

    Lokhandwala, Shehnaz; Waghela, Suryakant D; Bray, Jocelyn; Martin, Cameron L; Sangewar, Neha; Charendoff, Chloe; Shetti, Rashmi; Ashley, Clay; Chen, Chang-Hsin; Berghman, Luc R; Mwangi, Duncan; Dominowski, Paul J; Foss, Dennis L; Rai, Sharath; Vora, Shaunak; Gabbert, Lindsay; Burrage, Thomas G; Brake, David; Neilan, John; Mwangi, Waithaka

    2016-11-01

    The African swine fever virus (ASFV) causes a fatal hemorrhagic disease in domestic swine, and at present no treatment or vaccine is available. Natural and gene-deleted, live attenuated strains protect against closely related virulent strains; however, they are yet to be deployed and evaluated in the field to rule out chronic persistence and a potential for reversion to virulence. Previous studies suggest that antibodies play a role in protection, but induction of cytotoxic T lymphocytes (CTLs) could be the key to complete protection. Hence, generation of an efficacious subunit vaccine depends on identification of CTL targets along with a suitable delivery method that will elicit effector CTLs capable of eliminating ASFV-infected host cells and confer long-term protection. To this end, we evaluated the safety and immunogenicity of an adenovirus-vectored ASFV (Ad-ASFV) multiantigen cocktail formulated in two different adjuvants and at two immunizing doses in swine. Immunization with the cocktail rapidly induced unprecedented ASFV antigen-specific antibody and cellular immune responses against all of the antigens. The robust antibody responses underwent rapid isotype switching within 1 week postpriming, steadily increased over a 2-month period, and underwent rapid recall upon boost. Importantly, the primed antibodies strongly recognized the parental ASFV (Georgia 2007/1) by indirect fluorescence antibody (IFA) assay and Western blotting. Significant antigen-specific gamma interferon-positive (IFN-γ + ) responses were detected postpriming and postboosting. Furthermore, this study is the first to demonstrate induction of ASFV antigen-specific CTL responses in commercial swine using Ad-ASFV multiantigens. The relevance of the induced immune responses in regard to protection needs to be evaluated in a challenge study. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Surfing the web during pandemic flu: availability of World Health Organization recommendations on prevention

    OpenAIRE

    Gesualdo, Francesco; Romano, Mariateresa; Pandolfi, Elisabetta; Rizzo, Caterina; Rav?, Lucilla; Lucente, Daniela; Tozzi, Alberto E

    2010-01-01

    Abstract Background People often search for information on influenza A(H1N1)v prevention on the web. The extent to which information found on the Internet is consistent with recommendations issued by the World Health Organization is unknown. Methods We conducted a search for "swine flu" accessing 3 of the most popular search engines through different proxy servers located in 4 English-speaking countries (Australia, Canada, UK, USA). We explored each site resulting from the searches, up to 4 c...

  3. Complete Genomes of Classical Swine Fever Virus Cloned into Bacterial Artificial Chromosomes

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, I.; Uttenthal, Åse

    Complete genome amplification of viral RNA provides a new tool for the generation of modified pestiviruses. We have used our full-genome amplification strategy for generation of amplicons representing complete genomes of classical swine fever virus. The amplicons were cloned directly into a stabl...... single-copy bacterial artificial chromosome (BAC) generating full-length pestivirus DNAs from which infectious RNA transcripts could be also derived. Our strategy allows construction of stable infectious BAC DNAs from a single full-length PCR product....

  4. Your baby and the flu

    Science.gov (United States)

    Babies and the flu; Your infant and the flu; Your toddler and the flu ... FLU SYMPTOMS IN INFANTS AND TODDLERS The flu is an infection of the nose, throat, and (sometimes) lungs. Call your baby's provider if ...

  5. Characterization of Viral Load, Viability and Persistence of Influenza A Virus in Air and on Surfaces of Swine Production Facilities.

    Directory of Open Access Journals (Sweden)

    Victor Neira

    Full Text Available Indirect transmission of influenza A virus (IAV in swine is poorly understood and information is lacking on levels of environmental exposure encountered by swine and people during outbreaks of IAV in swine barns. We characterized viral load, viability and persistence of IAV in air and on surfaces during outbreaks in swine barns. IAV was detected in pigs, air and surfaces from five confirmed outbreaks with 48% (47/98 of oral fluid, 38% (32/84 of pen railing and 43% (35/82 of indoor air samples testing positive by IAV RT-PCR. IAV was isolated from air and oral fluids yielding a mixture of subtypes (H1N1, H1N2 and H3N2. Detection of IAV RNA from air was sustained during the outbreaks with maximum levels estimated between 7 and 11 days from reported onset. Our results indicate that during outbreaks of IAV in swine, aerosols and surfaces in barns contain significant levels of IAV potentially representing an exposure hazard to both swine and people.

  6. A Single-Amino-Acid Substitution at Position 225 in Hemagglutinin Alters the Transmissibility of Eurasian Avian-Like H1N1 Swine Influenza Virus in Guinea Pigs.

    Science.gov (United States)

    Wang, Zeng; Yang, Huanliang; Chen, Yan; Tao, Shiyu; Liu, Liling; Kong, Huihui; Ma, Shujie; Meng, Fei; Suzuki, Yasuo; Qiao, Chuanling; Chen, Hualan

    2017-11-01

    Efficient transmission from human to human is the prerequisite for an influenza virus to cause a pandemic; however, the molecular determinants of influenza virus transmission are still largely unknown. In this study, we explored the molecular basis for transmission of Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses by comparing two viruses that are genetically similar but differ in their transmissibility in guinea pigs: the A/swine/Guangxi/18/2011 virus (GX/18) is highly transmissible by respiratory droplet in guinea pigs, whereas the A/swine/Heilongjiang/27/2012 virus (HLJ/27) does not transmit in this animal model. We used reverse genetics to generate a series of reassortants and mutants in the GX/18 background and tested their transmissibility in guinea pigs. We found that a single-amino-acid substitution of glycine (G) for glutamic acid (E) at position 225 (E225G) in the HA1 protein completely abolished the respiratory droplet transmission of GX/18, whereas the substitution of E for G at the same position (G225E) in HA1 enabled HLJ/27 to transmit in guinea pigs. We investigated the underlying mechanism and found that viruses bearing 225E in HA1 replicated more rapidly than viruses bearing 225G due to differences in assembly and budding efficiencies. Our study indicates that the amino acid 225E in HA1 plays a key role in EAH1N1 swine influenza virus transmission and provides important information for evaluating the pandemic potential of field influenza virus strains. IMPORTANCE Efficient transmission among humans is a prerequisite for a novel influenza virus to cause a human pandemic. Transmissibility of influenza viruses is a polygenic trait, and understanding the genetic determinants for transmissibility will provide useful insights for evaluating the pandemic potential of influenza viruses in the field. Several amino acids in the hemagglutinin (HA) protein of influenza viruses have been shown to be important for transmissibility, usually by

  7. Outbreaks of influenza A virus in farmed mink (Neovison vison) in Denmark: molecular characterization of the viruses

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Breum, Solvej Østergaard; Trebbien, Ramona

    2012-01-01

    that the virus was a human/swine reassortant, with the H and N gene most related to human H3N2 viruses circulating in 2005. The remaining 6 genes were most closely related to H1N2 influenza viruses circulating in Danish swine. This virus had not previously been described in swine, mink or humans. PCRs assays...... specifically targeting the new reassortant were developed and used to screen influenza positive samples from humans and swine in Denmark with negative results. Thus, there was no evidence that this virus had spread to humans or was circulating in Danish pigs. In 2010 and 2011, influenza virus was again...... diagnosed in diseased mink in a few farms. The genetic typing showed that the virus was similar to the pandemic H1N1 virus circulating in humans and swine. The H3N2 virus was not detected in 2010 and 2011. Taken together, these findings indicate that mink is highly susceptible for influenza A virus of human...

  8. Treating Influenza (Flu)

    Science.gov (United States)

    ... Diabetes (type 1 and 2) can make the immune system less able to fight the flu. Also, flu illness can raise blood sugar levels. ... of age on long-term aspirin therapy • Weakened immune system due to disease or ... risk from the flu: • Adults 65 years and older • Children younger than ...

  9. Near-complete genome sequencing of swine vesicular disease virus using the Roche GS FLX sequencing platform

    DEFF Research Database (Denmark)

    Nielsen, Sandra Cathrine Abel; Bruhn, Christian Anders Wathne; Samaniego Castruita, Jose Alfredo

    2014-01-01

    Swine vesicular disease virus (SVDV) is an enterovirus that is both genetically and antigenically closely related to human coxsackievirus B5 within the Picornaviridae family. SVDV is the causative agent of a highly contagious (though rarely fatal) vesicular disease in pigs. We report a rapid method...... with significant genetic distances within the same species of viruses. All reference mappings used an iterative method to avoid bias. Further verification was achieved through phylogenetic analysis against published SVDV genomes and additional Enterovirus B sequences. This approach allows high confidence...

  10. Changing human mobility and the spreading rate of global influenza outbreaks

    NARCIS (Netherlands)

    Slaa, Jan Willem

    2010-01-01

    Influenza, commonly called the flu, is an infectious disease which causes up to 500,000 deaths annually during seasonal epidemics. Influenza viruses circulate in many different types and in many species, such as birds, swines and humans. When a new human

  11. Inhibition of influenza A virus replication by influenza B virus nucleoprotein: An insight into interference between influenza A and B viruses

    Energy Technology Data Exchange (ETDEWEB)

    Wanitchang, Asawin; Narkpuk, Jaraspim; Jaru-ampornpan, Peera; Jengarn, Juggagarn [Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120 (Thailand); Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th [Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120 (Thailand)

    2012-10-10

    Given that co-infection of cells with equivalent titers of influenza A and B viruses (FluA and FluB) has been shown to result in suppression of FluA growth, it is possible that FluB-specific proteins might hinder FluA polymerase activity and replication. We addressed this possibility by individually determining the effect of each gene of FluB on the FluA polymerase assay and found that the nucleoprotein of FluB (NP{sub FluB}) inhibits polymerase activity of FluA in a dose-dependent manner. Mutational analyses of NP{sub FluB} suggest that functional NP{sub FluB} is necessary for this inhibition. Slower growth of FluA was also observed in MDCK cells stably expressing NP{sub FluB}. Further analysis of NP{sub FluB} indicated that it does not affect nuclear import of NP{sub FluA}. Taken together, these findings suggest a novel role of NP{sub FluB} in inhibiting replication of FluA, providing more insights into the mechanism of interference between FluA and FluB and the lack of reassortants between them.

  12. Cancer, the Flu, and You

    Science.gov (United States)

    ... Flu Publications Stay Informed Cancer Home Cancer, the Flu, and You What Cancer Patients, Survivors, and Caregivers ... Spanish) Recommend on Facebook Tweet Share Compartir Prevent Flu! Get a Flu Vaccine and Take Preventive Actions ...

  13. Outbreaks of Influenza A Virus in Farmed Mink (Neovison vison) in Denmark: Molecular characterization of the involved viruses

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Breum, Solvej Østergaard; Trebbien, Ramona

    mink farms with respiratory symptoms. Full-genome sequencing showed that the virus was a human/swine reassortant, with the H and N gene most related to human H3N2 viruses circulating in 2005. The remaining 6 genes were most closely related to H1N2 influenza viruses circulating in Danish swine....... This virus had not previously been described in swine, mink nor humans. PCRs assays specifically targeting the new reassortant were developed and used to screen influenza positive samples from humans and swine in Denmark with negative results. Thus, there was no evidence that this virus had spread to humans...... or was circulating in Danish pigs. In 2010 and 2011, influenza virus was again diagnosed in diseased mink in a few farms. The genetic typing showed that the virus was similar to the pandemic H1N1 virus circulating in humans and swine. The H3N2 virus was not detected in 2010 and 2011. Taken together, these findings...

  14. First Aid: Influenza (Flu)

    Science.gov (United States)

    ... for Educators Search English Español First Aid: The Flu KidsHealth / For Parents / First Aid: The Flu Print ... tiredness What to Do If Your Child Has Flu Symptoms: Call your doctor. Encourage rest. Keep your ...

  15. Detection of antibodies to transmissible gastroenteritis virus of swine by modified autoradiographic test

    Energy Technology Data Exchange (ETDEWEB)

    Stepanek, J; Hampl, J; Franz, J; Mensik, P; Skrobak, F [Vyzkumny Ustav Veterinarniho Lekarstvi, Brno-Medlanky (Czechoslovakia)

    1982-08-01

    A modified method of autoradiographic determination of virus antibodies of gastroenteritis of swine was developed. It is based on the actual reaction between antigen bound in cells of the infected cell cultures and antibodies in tested sera, which is visualized by rabbit antibodies labelled with /sup 125/I (/sup 125/I RaSw IgG antibody) to porcine IgG, on a sensitive radiograph and evaluated by darkening at the point of positive immunological reaction. Specificity of the test and mutual comparability and reproducibility of the results were confirmed by examining the known positive and negative sera and by a comparison with the results of the virus-neutralization test. Of the 36 examined porcine blood sera, antibodies were only proved autoradiographically in the samples positive also by virus-neutralization. In experimentally infected pigs, the same dynamics of antibody production was recorded by the two tests. They were, however, demonstrated autoradiographically the eighth day after infection, while by virus neutralization test as late as 14th day. Their level increased gradually till 35th day after infection.

  16. Mayaro virus: the jungle flu

    Directory of Open Access Journals (Sweden)

    Izurieta RO

    2018-04-01

    Full Text Available Ricardo O Izurieta,1 David A DeLacure,1 Andres Izurieta,2 Ismael A Hoare,1 Miguel Reina Ortiz,1,3 1Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, USA; 2Department of Computer Science and Engineering, College of Engineering, University of South Florida, Tampa, FL, USA; 3Fundación Raíces, Esmeraldas, Ecuador Abstract: Mayaro fever is an emerging acute viral disease endemic in Central and South America. Mayaro virus (MAYV is classified in the Semliki Forest virus antigenic complex and shares similarities with the alphavirus Chikungunya virus and the flavivirus Dengue virus. MAYV is an arbovirus transmitted by Haemagogus janthinomys, with competence also demonstrated in Aedes aegypti, Aedes scapularis, and Anopheles quadrimaculatus. Outbreaks and small epidemics of Mayaro fever have occurred in several countries in northern South America and the Caribbean. In addition, travel-associated cases have been reported in European nationals returning from endemic areas. Clinical features of Mayaro fever include fever, chills, persistent arthralgia, retro-orbital pain, maculopapular rash, itching, dizziness, and, rarely, lymphadenopathy. Methods of control for MAYV are similar to those used for other sylvatic arboviruses. Although MAYV was discovered as long ago as the 1950s and continues to be prevalent in the tropical areas of the Americas, it remains neglected and under-studied. This paper provides a thorough and current review of the published MAYV literature ranging from its original description to modern outbreaks, and from the basic virus characteristics to the clinical and epidemiological aspects of this disease. Keywords: Mayaro virus, emerging arbovirus, dengue-like virus, arthrogenic virus

  17. The Flu (For Kids)

    Science.gov (United States)

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body Works ... for Educators Search English Español Flu KidsHealth / For Kids / Flu What's in this article? What's the Flu? ...

  18. Specific Inhibitory Effect of κ-Carrageenan Polysaccharide on Swine Pandemic 2009 H1N1 Influenza Virus.

    Directory of Open Access Journals (Sweden)

    Qiang Shao

    Full Text Available The 2009 influenza A H1N1 pandemic placed unprecedented demands on antiviral drug resources and the vaccine industry. Carrageenan, an extractive of red algae, has been proven to inhibit infection and multiplication of various enveloped viruses. The aim of this study was to examine the ability of κ-carrageenan to inhibit swine pandemic 2009 H1N1 influenza virus to gain an understanding of antiviral ability of κ-carrageenan. It was here demonstrated that κ-carrageenan had no cytotoxicity at concentrations below 1000 μg/ml. Hemagglutination, 50% tissue culture infectious dose (TCID50 and cytopathic effect (CPE inhibition assays showed that κ-carrageenan inhibited A/Swine/Shandong/731/2009 H1N1 (SW731 and A/California/04/2009 H1N1 (CA04 replication in a dose-dependent fashion. Mechanism studies show that the inhibition of SW731 multiplication and mRNA expression was maximized when κ-carrageenan was added before or during adsorption. The result of Hemagglutination inhibition assay indicate that κ-carrageenan specifically targeted HA of SW731 and CA04, both of which are pandemic H1N/2009 viruses, without effect on A/Pureto Rico/8/34 H1N1 (PR8, A/WSN/1933 H1N1 (WSN, A/Swine/Beijing/26/2008 H1N1 (SW26, A/Chicken/Shandong/LY/2008 H9N2 (LY08, and A/Chicken/Shandong/ZB/2007 H9N2 (ZB07 viruses. Immunofluorescence assay and Western blot showed that κ-carrageenan also inhibited SW731 protein expression after its internalization into cells. These results suggest that κ-carrageenan can significantly inhibit SW731 replication by interfering with a few replication steps in the SW731 life cycles, including adsorption, transcription, and viral protein expression, especially interactions between HA and cells. In this way, κ-carrageenan might be a suitable alternative approach to therapy meant to address anti-IAV, which contains an HA homologous to that of SW731.

  19. Early warning: Avian flu and nuclear science

    International Nuclear Information System (INIS)

    Belak, S.

    2006-01-01

    Avian flu has spread to 51 countries, 36 this year alone, many of which are densely populated and deprived. The joint FAO/IAEA programme is working on the rapid detection of emerging diseases, including bird flu, and using nuclear and radiation techniques in the process. The problems are serious and challenging, but nuclear technologies may offer a solution. For most developing countries, TAD (transboundary animal diseases) detection is still vital. The bottleneck is their inability to rapidly detect the virus and to determine early enough whether it is H5N1 or another subtype, so that authorities can take appropriate control measures. Serious efforts are focused on the early detection of the agents. Timely recognition of such viral infections would prevent the spread of the diseases to large animal populations in huge geographic areas. Thus, the development of novel, powerful diagnostic nuclear and nuclear-related assays is a crucial issue today in veterinary research and animal health care. Molecular virology offers a range of new methods, which are able to accelerate and improve the diagnosis of infectious diseases in animals and in man. The molecular detection assays, like the polymerase chain reaction (PCR) technologies, provide possibilities for a very rapid diagnosis. The detection of viruses can be completed within hours or hopefully even within minutes with a sensitivity level of less than one pathogenic organism. Molecular approaches have contributed significantly to the rapid detection of well-established, as well as newly emerging, infectious agents such as Nipah and Hendra viruses or corona viruses in the SARS scenario and the detection and molecular characterisation of the highly pathogenic avian influenza H5N1 subtype that threatens the world today. The nucleic acid amplification assays, although they were at first expensive and cumbersome, have become relatively cheap and user-friendly tools in the diagnostic laboratories

  20. Antiviral activity of maca (Lepidium meyenii) against human influenza virus

    OpenAIRE

    Del Valle Mendoza, Juana; Pumarola, Tomas; Alzamora Gonzales, Libertad; Valle Mendoza, Luis Javier del

    2014-01-01

    Objective To investigate antiviral activity of maca to reduce viral load in Madin-Darby canine kidney (MDCK) cells infected with influenza type A and B viruses (Flu-A and Flu-B, respectively). Methods Maca were extracted with methanol (1:2, v/v). The cell viability and toxicity of the extracts were evaluated on MDCK cells using method MTT assay. Antiviral activity of compounds against Flu-A and Flu-B viruses was assayed using a test for determining the inhibition of the cytopathic ...

  1. Antiviral activity of maca (Lepidium meyenii) against human influenza virus.

    Science.gov (United States)

    Del Valle Mendoza, Juana; Pumarola, Tomàs; Gonzales, Libertad Alzamora; Del Valle, Luis J

    2014-09-01

    To investigate antiviral activity of maca to reduce viral load in Madin-Darby canine kidney (MDCK) cells infected with influenza type A and B viruses (Flu-A and Flu-B, respectively). Maca were extracted with methanol (1:2, v/v). The cell viability and toxicity of the extracts were evaluated on MDCK cells using method MTT assay. Antiviral activity of compounds against Flu-A and Flu-B viruses was assayed using a test for determining the inhibition of the cytopathic effect on cell culture and multiplex RT-PCR. The methanol extract of maca showed low cytotoxicity and inhibited influenza-induced cytopathic effect significantly, while viral load was reduced via inhibition of viral growth in MDCK infected cells. Maca contains potent inhibitors of Flu-A and Flu-B with a selectivity index [cytotoxic concentration 50%/IC50] of 157.4 and 110.5, respectively. In vitro assays demonstrated that maca has antiviral activity not only against Flu-A (like most antiviral agents) but also Flu-B viruses, providing remarkable therapeutic benefits. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  2. Fatal disease associated with Swine Hepatitis E virus and Porcine circovirus 2 co-infection in four weaned pigs in China

    OpenAIRE

    Yang, Yifei; Shi, Ruihan; She, Ruiping; Mao, Jingjing; Zhao, Yue; Du, Fang; Liu, Can; Liu, Jianchai; Cheng, Minheng; Zhu, Rining; Li, Wei; Wang, Xiaoyang; Soomro, Majid Hussain

    2015-01-01

    Background In recent decades, Porcine circovirus 2 (PCV2) infection has been recognized as the causative agent of postweaning multisystemic wasting syndrome, and has become a threat to the swine industry. Hepatitis E virus (HEV) is another high prevalent pathogen in swine in many regions of the world. PCV2 and HEV are both highly prevalent in pig farms in China. Case presentation In this study, we characterized the HEV and PCV2 co-infection in 2?3 month-old piglets, based on pathogen identifi...

  3. A recombinant influenza A virus expressing domain III of West Nile virus induces protective immune responses against influenza and West Nile virus.

    Science.gov (United States)

    Martina, Byron E E; van den Doel, Petra; Koraka, Penelope; van Amerongen, Geert; Spohn, Gunther; Haagmans, Bart L; Provacia, Lisette B V; Osterhaus, Albert D M E; Rimmelzwaan, Guus F

    2011-04-26

    West Nile virus (WNV) continues to circulate in the USA and forms a threat to the rest of the Western hemisphere. Since methods for the treatment of WNV infections are not available, there is a need for the development of safe and effective vaccines. Here, we describe the construction of a recombinant influenza virus expressing domain III of the WNV glycoprotein E (Flu-NA-DIII) and its evaluation as a WNV vaccine candidate in a mouse model. FLU-NA-DIII-vaccinated mice were protected from severe body weight loss and mortality caused by WNV infection, whereas control mice succumbed to the infection. In addition, it was shown that one subcutaneous immunization with 10(5) TCID(50) Flu-NA-DIII provided 100% protection against challenge. Adoptive transfer experiments demonstrated that protection was mediated by antibodies and CD4+T cells. Furthermore, mice vaccinated with FLU-NA-DIII developed protective influenza virus-specific antibody titers. It was concluded that this vector system might be an attractive platform for the development of bivalent WNV-influenza vaccines.

  4. A recombinant influenza A virus expressing domain III of West Nile virus induces protective immune responses against influenza and West Nile virus.

    Directory of Open Access Journals (Sweden)

    Byron E E Martina

    Full Text Available West Nile virus (WNV continues to circulate in the USA and forms a threat to the rest of the Western hemisphere. Since methods for the treatment of WNV infections are not available, there is a need for the development of safe and effective vaccines. Here, we describe the construction of a recombinant influenza virus expressing domain III of the WNV glycoprotein E (Flu-NA-DIII and its evaluation as a WNV vaccine candidate in a mouse model. FLU-NA-DIII-vaccinated mice were protected from severe body weight loss and mortality caused by WNV infection, whereas control mice succumbed to the infection. In addition, it was shown that one subcutaneous immunization with 10(5 TCID(50 Flu-NA-DIII provided 100% protection against challenge. Adoptive transfer experiments demonstrated that protection was mediated by antibodies and CD4+T cells. Furthermore, mice vaccinated with FLU-NA-DIII developed protective influenza virus-specific antibody titers. It was concluded that this vector system might be an attractive platform for the development of bivalent WNV-influenza vaccines.

  5. Performance of the inFLUenza Patient-Reported Outcome (FLU-PRO) diary in patients with influenza-like illness (ILI)

    Science.gov (United States)

    Bacci, Elizabeth D.; Leidy, Nancy K.; Poon, Jiat-Ling; Stringer, Sonja; Memoli, Matthew J.; Han, Alison; Fairchok, Mary P.; Coles, Christian; Owens, Jackie; Chen, Wei-Ju; Arnold, John C.; Danaher, Patrick J.; Lalani, Tahaniyat; Burgess, Timothy H.; Millar, Eugene V.; Ridore, Michelande; Hernández, Andrés; Rodríguez-Zulueta, Patricia; Ortega-Gallegos, Hilda; Galindo-Fraga, Arturo; Ruiz-Palacios, Guillermo M.; Pett, Sarah; Fischer, William; Gillor, Daniel; Moreno Macias, Laura; DuVal, Anna; Rothman, Richard; Dugas, Andrea; Guerrero, M. Lourdes

    2018-01-01

    Background The inFLUenza Patient Reported Outcome (FLU-PRO) measure is a daily diary assessing signs/symptoms of influenza across six body systems: Nose, Throat, Eyes, Chest/Respiratory, Gastrointestinal, Body/Systemic, developed and tested in adults with influenza. Objectives This study tested the reliability, validity, and responsiveness of FLU-PRO scores in adults with influenza-like illness (ILI). Methods Data from the prospective, observational study used to develop and test the FLU-PRO in influenza virus positive patients were analyzed. Adults (≥18 years) presenting with influenza symptoms in outpatient settings in the US, UK, Mexico, and South America were enrolled, tested for influenza virus, and asked to complete the 37-item draft FLU-PRO daily for up to 14-days. Analyses were performed on data from patients testing negative. Reliability of the final, 32-item FLU-PRO was estimated using Cronbach’s alpha (α; Day 1) and intraclass correlation coefficients (ICC; 2-day reproducibility). Convergent and known-groups validity were assessed using patient global assessments of influenza severity (PGA). Patient report of return to usual health was used to assess responsiveness (Day 1–7). Results The analytical sample included 220 ILI patients (mean age = 39.3, 64.1% female, 88.6% white). Sixty-one (28%) were hospitalized at some point in their illness. Internal consistency reliability (α) of FLU-PRO Total score was 0.90 and ranged from 0.72–0.86 for domain scores. Reproducibility (Day 1–2) was 0.64 for Total, ranging from 0.46–0.78 for domain scores. Day 1 FLU-PRO scores correlated (≥0.30) with the PGA (except Gastrointestinal) and were significantly different across PGA severity groups (Total: F = 81.7, pFLU-PRO scores are reliable, valid, and responsive in adults with influenza-like illness. PMID:29566007

  6. Hepatitis E Virus (Genotype 3) in Slurry Samples from Swine Farming Activities in Italy.

    Science.gov (United States)

    La Rosa, G; Della Libera, S; Brambilla, M; Bisaglia, C; Pisani, G; Ciccaglione, A R; Bruni, R; Taffon, S; Equestre, M; Iaconelli, M

    2017-06-01

    Hepatitis E virus (HEV) is an emergent causative agent of acute hepatitis, transmitted by fecal-oral route. Infection with HEV is a global cause for morbidity and mortality throughout the world: it mainly causes large outbreaks in endemic areas and sporadic autochthonous cases in industrialized countries where HEV infections seem to be an emergent zoonotic disease. Infection of porcine livestock and its relationship with the human cases have been demonstrated. The present study describes an investigation on the prevalence and diversity of HEV in pig slurry in Italy. Slurry samples (24) were collected from ten farms located in North Italy during 2015 and analyzed for HEV, using four broad-range nested PCR assays targeting ORF1 (MTase), ORF2 (capsid) genes, and ORF2/3 regions. Overall, 18 samples (75%) were positive for HEV RNA, and characterized as genotype 3. Nine samples could be subtyped by ORF2 sequencing: Eight belonged to subtype 3f, while one sequence could not be characterized by blast analysis and phylogenetic analysis and may actually represent a new subtype. Furthermore, similarity of 99% was found between 3f Italian HEV sequences of human and swine origins. Real-Time PCR assay was also performed, in order to obtain quantitative data on positive samples. Two swine slurry samples were positive, containing 600 and 1000 UI per mL of sewage. The results of this study show that HEV strains belonging to zoonotic genotype 3 are widely present in swine excreta, and have high degree of identity with strains detected in autochthonous HEV cases. Improving swine farming operations safety and increasing operators' awareness of the zoonotic potential connected with the handling of swine effluents turn out to be key points in order to reduce the environmental and sanitary problem represented by the possible dissemination of HEV to water bodies.

  7. Vaccination-challenge studies with a Port Chalmers/73 (H3N2)-based swine influenza virus vaccine: Reflections on vaccine strain updates and on the vaccine potency test.

    Science.gov (United States)

    De Vleeschauwer, Annebel; Qiu, Yu; Van Reeth, Kristien

    2015-05-11

    The human A/Port Chalmers/1/73 (H3N2) influenza virus strain, the supposed ancestor of European H3N2 swine influenza viruses (SIVs), was used in most commercial SIV vaccines in Europe until recently. If manufacturers want to update vaccine strains, they have to perform laborious intratracheal (IT) challenge experiments and demonstrate reduced virus titres in the lungs of vaccinated pigs. We aimed to examine (a) the ability of a Port Chalmers/73-based commercial vaccine to induce cross-protection against a contemporary European H3N2 SIV and serologic cross-reaction against H3N2 SIVs from Europe and North America and (b) the validity of intranasal (IN) challenge and virus titrations of nasal swabs as alternatives for IT challenge and titrations of lung tissue in vaccine potency tests. Pigs were vaccinated with Suvaxyn Flu(®) and challenged by the IT or IN route with sw/Gent/172/08. Post-vaccination sera were examined in haemagglutination-inhibition assays against vaccine and challenge strains and additional H3N2 SIVs from Europe and North America, including an H3N2 variant virus. Tissues of the respiratory tract and nasal swabs were collected 3 days post challenge (DPCh) and from 0-7 DPCh, respectively, and examined by virus titration. Two vaccinations consistently induced cross-reactive antibodies against European H3N2 SIVs from 1998-2012, but minimal or undetectable antibody titres against North American viruses. Challenge virus titres in the lungs, trachea and nasal mucosa of the vaccinated pigs were significantly reduced after both IT and IN challenge. Yet the reduction of virus titres and nasal shedding was greater after IT challenge. The Port Chalmers/73-based vaccine still offered protection against a European H3N2 SIV isolated 35 years later and with only 86.9% amino acid homology in its HA1, but it is unlikely to protect against H3N2 SIVs that are endemic in North America. We use our data to reflect on vaccine strain updates and on the vaccine potency test

  8. Seroprevalence and risk factors for the presence of ruminant pestviruses in the Dutch swine population

    NARCIS (Netherlands)

    Loeffen, W.L.A.; Beuningen, van A.R.; Quak, J.; Elbers, A.R.W.

    2009-01-01

    Swine can be infected with classical swine fever virus (CSFV), as well as ruminant pestiviruses: bovine viral diarrhoea virus (BVDV), and Border disease virus (BDV). Cross-reactions between pestiviruses occur, both regarding protective immunity and in diagnostic tests. The presence of BVDV and BDV

  9. Serological and molecular evidence of hepadnavirus infection in swine

    Directory of Open Access Journals (Sweden)

    Yasmine R Vieira

    2015-02-01

    Full Text Available [b]Introduction and objective[/b]. Recently, investigations in a swine herd identified evidence of the existence of a novel member of the Hepadnavirus family endemic in swine. The aim of this study was to investigate the serological and molecular markers of Hepadnavirus circulation in Brazilian domestic swine and wild boar herds, and to evaluate the identity with HBV and other Hepadnaviruses reported previously. [b]Materials and methods[/b]. For the study, 376 swine were screened for hepatitis B virus serological markers. Analyses were performed in serum samples using commercial enzyme-linked immunosorbent assay (ELISA kits (DiaSorin® for anti-HBc, HBsAg and anti-HBs. Reactive and undetermined swine serum samples were selected to perform DNA viral extraction (QIAamp DNA Mini Kit, Qiagen®, partial genome amplification and genome sequencing. [b]Results[/b]. From 376 swine samples analysed, 28 (7.45% were reactive to anti-HBc, 3 (0.80% to HBsAg and 6 (1.6% to anti-HBs. Besides, more 17 (4.52% swine samples analyzed were classified in the grey zone of the EIA test to anti-HBc and 2 (0.53% to HBsAg. From 49 samples molecularly analyzed after serological trial, 4 samples showed a positive result for the qualitative PCR for Hepadnavirus. Phylogenetic reconstruction using partial genome sequencing (360 bp of 3 samples showed similarity with HBV with 90.8–96.3% of identity. [b]Conclusions.[/b] Serological and molecular data showed evidence of the circulation of a virus similar to hepatitis B virus in swine.

  10. The molecular determinants of antibody recognition and antigenic drift in the H3 hemagglutinin of swine influenza A virus

    Science.gov (United States)

    Influenza A virus (IAV) of the H3 subtype is an important pathogen that affects both humans and swine. The main intervention strategy for preventing infection is vaccination to induce neutralizing antibodies against the surface glycoprotein hemagglutinin (HA). However, due to antigenic drift, vaccin...

  11. Simulating the spread of classical swine fever virus between a hypothetical wild-boar population and domestic pig herds in Denmark

    DEFF Research Database (Denmark)

    Boklund, Anette; Goldbach, Stine G.; Uttenthal, Åse

    2008-01-01

    of CSFV between the hypothetical wild-boar population and the domestic population. Furthermore, the economic impact is assessed taking the perspective of the Danish national budget and the Danish pig industry. We used InterSpreadPlus to model the differential classical swine fever (CSF) risk due to wild......Denmark has no free-range wild-boar population. However, Danish wildlife organizations have suggested that wild boar should be reintroduced into the wild to broaden national biodiversity. Danish pig farmers fear that this would lead to a higher risk of introduction of classical swine fever virus...

  12. Remarkable sequence similarity between the dinoflagellate-infecting marine girus and the terrestrial pathogen African swine fever virus

    Directory of Open Access Journals (Sweden)

    Claverie Jean-Michel

    2009-10-01

    Full Text Available Abstract Heterocapsa circularisquama DNA virus (HcDNAV; previously designated as HcV is a giant virus (girus with a ~356-kbp double-stranded DNA (dsDNA genome. HcDNAV lytically infects the bivalve-killing marine dinoflagellate H. circularisquama, and currently represents the sole DNA virus isolated from dinoflagellates, one of the most abundant protists in marine ecosystems. Its morphological features, genome type, and host range previously suggested that HcDNAV might be a member of the family Phycodnaviridae of Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs, though no supporting sequence data was available. NCLDVs currently include two families found in aquatic environments (Phycodnaviridae, Mimiviridae, one mostly infecting terrestrial animals (Poxviridae, another isolated from fish, amphibians and insects (Iridoviridae, and the last one (Asfarviridae exclusively represented by the animal pathogen African swine fever virus (ASFV, the agent of a fatal hemorrhagic disease in domestic swine. In this study, we determined the complete sequence of the type B DNA polymerase (PolB gene of HcDNAV. The viral PolB was transcribed at least from 6 h post inoculation (hpi, suggesting its crucial function for viral replication. Most unexpectedly, the HcDNAV PolB sequence was found to be closely related to the PolB sequence of ASFV. In addition, the amino acid sequence of HcDNAV PolB showed a rare amino acid substitution within a motif containing highly conserved motif: YSDTDS was found in HcDNAV PolB instead of YGDTDS in most dsDNA viruses. Together with the previous observation of ASFV-like sequences in the Sorcerer II Global Ocean Sampling metagenomic datasets, our results further reinforce the ideas that the terrestrial ASFV has its evolutionary origin in marine environments.

  13. Evidence of cross-reactive immunity to 2009 pandemic influenza A virus in workers seropositive to swine H1N1 influenza viruses circulating in Italy.

    Directory of Open Access Journals (Sweden)

    Maria A De Marco

    Full Text Available BACKGROUND: Pigs play a key epidemiologic role in the ecology of influenza A viruses (IAVs emerging from animal hosts and transmitted to humans. Between 2008 and 2010, we investigated the health risk of occupational exposure to swine influenza viruses (SIVs in Italy, during the emergence and spread of the 2009 H1N1 pandemic (H1N1pdm virus. METHODOLOGY/PRINCIPAL FINDINGS: Serum samples from 123 swine workers (SWs and 379 control subjects (Cs, not exposed to pig herds, were tested by haemagglutination inhibition (HI assay against selected SIVs belonging to H1N1 (swH1N1, H1N2 (swH1N2 and H3N2 (swH3N2 subtypes circulating in the study area. Potential cross-reactivity between swine and human IAVs was evaluated by testing sera against recent, pandemic and seasonal, human influenza viruses (H1N1 and H3N2 antigenic subtypes. Samples tested against swH1N1 and H1N1pdm viruses were categorized into sera collected before (n. 84 SWs; n. 234 Cs and after (n. 39 SWs; n. 145 Cs the pandemic peak. HI-antibody titers ≥10 were considered positive. In both pre-pandemic and post-pandemic peak subperiods, SWs showed significantly higher swH1N1 seroprevalences when compared with Cs (52.4% vs. 4.7% and 59% vs. 9.7%, respectively. Comparable HI results were obtained against H1N1pdm antigen (58.3% vs. 7.7% and 59% vs. 31.7%, respectively. No differences were found between HI seroreactivity detected in SWs and Cs against swH1N2 (33.3% vs. 40.4% and swH3N2 (51.2 vs. 55.4% viruses. These findings indicate the occurrence of swH1N1 transmission from pigs to Italian SWs. CONCLUSION/SIGNIFICANCE: A significant increase of H1N1pdm seroprevalences occurred in the post-pandemic peak subperiod in the Cs (p<0.001 whereas SWs showed no differences between the two subperiods, suggesting a possible occurrence of cross-protective immunity related to previous swH1N1 infections. These data underline the importance of risk assessment and occupational health surveillance activities aimed

  14. Seroepidemiology and molecular characterization of hepatitis E virus infection in swine and occupationally exposed workers in Punjab, India.

    Science.gov (United States)

    Bansal, M; Kaur, S; Deka, D; Singh, R; Gill, J P S

    2017-12-01

    Hepatitis E virus (HEV) has two discrete epidemiological patterns: waterborne epidemics in developing countries only, caused by HEV genotype I, and sporadic zoonotic outbreaks in developing and developed countries caused by genotypes III and IV. This study was designed to investigate seroprevalence, molecular detection and the characterization of HEV by nested RT-PCR in swine as well as the occupational risk to exposed human population in Punjab state of north-western India. The occupational risk-exposed group comprised of swine farmers (organized - mixed feed feeders and unorganized - swill feeders), slaughterhouse workers, sewage workers and veterinary internes. During the study period, blood and faecal samples were collected from 320 swine and 360 humans with both high and low occupational exposure risks. The overall seroprevalence of swine HEV was 65.00%, with a significantly higher seropositivity in growing pigs (2-8 months of age). The prevalence of HEV RNA in swine faecal samples by nRT-PCR was 8.75% with a significantly higher detection in swill-fed pigs. With humans in the high occupational exposure risk population, significantly higher anti-HEV IgG seropositivity was observed (60.48%) as compared to control population (10.71%). Strong evidence of association between human anti-HEV IgG seropositivity and certain occupational exposure risk groups was observed (p workers and sewage workers have higher odds of HEV infection in this study region. Percentage of nucleotide similarity between swine and human HEV isolates was less than that found in countries with zoonotic HEV outbreaks. Molecular characterization revealed the circulation of G IV and G I genotypes among swine and human population in Punjab state, respectively. © 2017 Blackwell Verlag GmbH.

  15. Identification of Wild Boar-Habitat Epidemiologic Cycle in African Swine Fever Epizootic.

    Science.gov (United States)

    Chenais, Erika; Ståhl, Karl; Guberti, Vittorio; Depner, Klaus

    2018-04-01

    The African swine fever epizootic in central and eastern European Union member states has a newly identified component involving virus transmission by wild boar and virus survival in the environment. Insights led to an update of the 3 accepted African swine fever transmission models to include a fourth cycle: wild boar-habitat.

  16. Comparison of two H1N2 swine influenza A viruses from disease outbreaks in pigs in Sweden during 2009 and 2010.

    Science.gov (United States)

    Metreveli, Giorgi; Emmoth, Eva; Zohari, Siamak; Bálint, Adám; Widén, Frederik; Muradrasoli, Shaman; Wallgren, Per; Belák, Sándor; Leblanc, Neil; Berg, Mikael; Kiss, István

    2011-04-01

    The influenza A virus subtypes H1N1, H1N2 and H3N2 are prevalent in pig populations worldwide. In the present study, two relatively uncommon swine influenza virus (SIV) H1N2 subtypes, isolated in Sweden in 2009 and 2010, were compared regarding their molecular composition and biological characteristics. The differences regarding markers purportedly related to pathogenicity, host adaptation or replication efficiency. They included a truncated PB1-F2 protein in the earlier isolate but a full length version in the more recent one; differences in the number of haemagglutinin glycosylation sites, including a characteristic human one; and a nuclear export protein with altered export signal. Of particular interest, the NS1 amino acid sequence of swine H1N2-2009 and 2010 has a 'unique or very unusual' PDZ binding domain (RPKV) at the C-terminal of the protein, a motif that has been implicated as a virulence marker. Concerning biological properties, these viruses reached lower titre and showed reduced cytopathogenicity in MDCK cells compared with an avian-like H1N1 isolate A/swine/Lidkoping/1193/2002 belonging to the same lineage as the 2009 and 2010 isolates. The findings should contribute to better understanding of factors related to the survival/extinction of this uncommon reassortant variant.

  17. Appearance of reassortant European avian-origin H1 influenza A viruses of swine in Vietnam.

    Science.gov (United States)

    Takemae, N; Nguyen, P T; Le, V T; Nguyen, T N; To, T L; Nguyen, T D; Pham, V P; Vo, H V; Le, Q V T; Do, H T; Nguyen, D T; Uchida, Y; Saito, T

    2018-03-06

    Three subtypes-H1N1, H1N2 and H3N2-of influenza A viruses of swine (IAVs-S) are currently endemic in swine worldwide, but there is considerable genotypic diversity among each subtype and limited geographical distribution. Through IAVs-S monitoring in Vietnam, two H1N2 influenza A viruses were isolated from healthy pigs in Ba Ria-Vung Tau Province, Southern Vietnam, on 2 December 2016. BLAST and phylogenetic analyses revealed that their HA and NA genes were derived from those of European avian-like H1N2 IAVs-S that contained avian-origin H1 and human-like N2 genes, and were particularly closely related to those of IAVs-S circulating in the Netherlands, Germany or Denmark. In addition, the internal genes of these Vietnamese isolates were derived from human A(H1N1)pdm09 viruses, suggesting that the Vietnamese H1N2 IAVs-S are reassortants between European H1N2 IAVs-S and human A(H1N1)pdm09v. The appearance of European avian-like H1N2 IAVs-S in Vietnam marks their first transmission outside Europe. Our results and statistical analyses of the number of live pigs imported into Vietnam suggest that the European avian-like H1N2 IAVs-S may have been introduced into Vietnam with their hosts through international trade. These findings highlight the importance of quarantining imported pigs to impede the introduction of new IAVs-S. © 2018 Blackwell Verlag GmbH.

  18. Identification of Wild Boar–Habitat Epidemiologic Cycle in African Swine Fever Epizootic

    Science.gov (United States)

    Ståhl, Karl; Guberti, Vittorio; Depner, Klaus

    2018-01-01

    The African swine fever epizootic in central and eastern European Union member states has a newly identified component involving virus transmission by wild boar and virus survival in the environment. Insights led to an update of the 3 accepted African swine fever transmission models to include a fourth cycle: wild boar–habitat. PMID:29553337

  19. Flu (Influenza): Information for Parents

    Science.gov (United States)

    ... PARENTS | DISEASES and the VACCINES THAT PREVENT THEM | Flu (Influenza) and the Vaccine to Prevent It Last updated October 2017 The best way to protect against flu is by getting a flu vaccine. Doctors recommend ...

  20. PB1-F2 Protein Does Not Impact the Virulence of Triple-Reassortant H3N2 Swine Influenza Virus in Pigs but Alters Pathogenicity and Transmission in Turkeys.

    Science.gov (United States)

    Deventhiran, Jagadeeswaran; Kumar, Sandeep R P; Raghunath, Shobana; Leroith, Tanya; Elankumaran, Subbiah

    2016-01-01

    PB1-F2 protein, the 11th influenza A virus (IAV) protein, is considered to play an important role in primary influenza virus infection and postinfluenza secondary bacterial pneumonia in mice. The functional role of PB1-F2 has been reported to be a strain-specific and host-specific phenomenon. Its precise contribution to the pathogenicity and transmission of influenza virus in mammalian host, such as swine, and avian hosts, such as turkeys, remain largely unknown. In this study, we explored the role of PB1-F2 protein of triple-reassortant (TR) H3N2 swine influenza virus (SIV) in pigs and turkeys. Using the eight-plasmid reverse genetics system, we rescued wild-type SIV A/swine/Minnesota/1145/2007 (H3N2) (SIV 1145-WT), a PB1-F2 knockout mutant (SIV 1145-KO), and its N66S variant (SIV 1145-N66S). The ablation of PB1-F2 in SIV 1145 modulated early-stage apoptosis but did not affect the viral replication in swine alveolar macrophage cells. In pigs, PB1-F2 expression did not affect nasal shedding, lung viral load, immunophenotypes, and lung pathology. On the other hand, in turkeys, SIV 1145-KO infected poults, and its in-contacts developed clinical signs earlier than SIV 1145-WT groups and also displayed more extensive histopathological changes in intestine. Further, turkeys infected with SIV 1145-N66S displayed poor infectivity and transmissibility. The more extensive histopathologic changes in intestine and relative transmission advantage observed in turkeys infected with SIV 1145-KO need to be further explored. Taken together, these results emphasize the host-specific roles of PB1-F2 in the pathogenicity and transmission of IAV. Novel triple-reassortant H3N2 swine influenza virus emerged in 1998 and spread rapidly among the North American swine population. Subsequently, it showed an increased propensity to reassort, generating a range of reassortants. Unlike classical swine influenza virus, TR SIV produces a full-length PB1-F2 protein, which is considered an important

  1. The risk of the introduction of classical swine fever virus at regional level in the European Union: a conceptual framework

    NARCIS (Netherlands)

    Vos, de C.J.; Saatkamp, H.W.; Huirne, R.B.M.; Dijkhuizen, A.A.

    2003-01-01

    Recent classical swine fever (CSF) epidemics in the European Union (EU) have clearly shown that preventing the introduction of CSF virus (CSFV) deserves high priority. Insight into all the factors contributing to the risk of CSFV introduction is a prerequisite for deciding which preventive actions

  2. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China.

    Science.gov (United States)

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are "mixing vessels," and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses.

  3. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses.

    Science.gov (United States)

    Xu, Jiarong; Yang, Deji; Huang, Dongyan; Xu, Jiaping; Liu, Shichao; Lin, Huixing; Zhu, Haodan; Liu, Bao; Lu, Chengping

    2013-03-01

    Swine influenza (SI) is an acute respiratory infectious disease of swine caused by swine influenza virus (SIV). SIV is not only an important respiratory pathogen in pigs but also a potent threat to human health. Here, we report the construction of a recombinant swinepox virus (rSPV/H3-2A-H1) co-expressing hemagglutinin (HA1) of SIV subtypes H1N1 and H3N2. Immune responses and protection efficacy of the rSPV/H3-2A-H1 were evaluated in guinea pigs. Inoculation of rSPV/H3-2A-H1 yielded neutralizing antibodies against SIV H1N1 and H3N2. The IFN-γ and IL-4 concentrations in the supernatant of lymphocytes stimulated with purified SIV HA1 antigen were significantly higher (P guinea pigs against SIV H1N1 or H3N2 challenge was observed. No SIV shedding was detected from guinea pigs vaccinated with rSPV/H3-2A-H1 after challenge. Most importantly, the guinea pigs immunized with rSPV/H3-2A-H1 did not show gross and micrographic lung lesions. However, the control guinea pigs experienced distinct gross and micrographic lung lesions at 7 days post-challenge. Our data suggest that the recombinant swinepox virus encoding HA1 of SIV H1N1 and H3N2 might serve as a promising candidate vaccine for protection against SIV H1N1 and H3N2 infections.

  4. Interaction of CSFV E2 protein with swine host factors as detected by yeast two-hybrid system

    Science.gov (United States)

    E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV). E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. Howev...

  5. Molecular dynamics simulations suggest that electrostatic funnel directs binding of Tamiflu to influenza N1 neuraminidases.

    Directory of Open Access Journals (Sweden)

    Ly Le

    2010-09-01

    Full Text Available Oseltamivir (Tamiflu is currently the frontline antiviral drug employed to fight the flu virus in infected individuals by inhibiting neuraminidase, a flu protein responsible for the release of newly synthesized virions. However, oseltamivir resistance has become a critical problem due to rapid mutation of the flu virus. Unfortunately, how mutations actually confer drug resistance is not well understood. In this study, we employ molecular dynamics (MD and steered molecular dynamics (SMD simulations, as well as graphics processing unit (GPU-accelerated electrostatic mapping, to uncover the mechanism behind point mutation induced oseltamivir-resistance in both H5N1 "avian" and H1N1pdm "swine" flu N1-subtype neuraminidases. The simulations reveal an electrostatic binding funnel that plays a key role in directing oseltamivir into and out of its binding site on N1 neuraminidase. The binding pathway for oseltamivir suggests how mutations disrupt drug binding and how new drugs may circumvent the resistance mechanisms.

  6. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses.

    Science.gov (United States)

    Balzli, Charles; Lager, Kelly; Vincent, Amy; Gauger, Phillip; Brockmeier, Susan; Miller, Laura; Richt, Juergen A; Ma, Wenjun; Suarez, David; Swayne, David E

    2016-07-01

    The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses and then generate mammalian adaptable influenza A viruses is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and possible epidemics among swine and/or humans. Assess susceptibility of pigs to LPAI viruses found within the United States and their direct contact transmission potential. Pigs were inoculated with one of ten H5 or H7 LPAI viruses selected from seven different bird species to test infectivity, virulence, pathogenesis, and potential to transmit virus to contact pigs through histological, RRT-PCR and seroconversion data. Although pigs were susceptible to infection with each of the LPAI viruses, no clinical disease was recognized in any pig. During the acute phase of the infection, minor pulmonary lesions were found in some pigs and one or more pigs in each group were RRT-PCR-positive in the lower respiratory tract, but no virus was detected in upper respiratory tract (negative nasal swabs). Except for one group, one or more pigs in each LPAI group developed antibody. No LPAI viruses transmitted to contact pigs. LPAI strains from various bird populations within the United States are capable of infecting pigs. Although adaptability and transmission of individual strains seem unlikely, the subclinical nature of the infections demonstrates the need to improve sampling and testing methods to more accurately measure incidence of LPAI virus infection in pigs, and their potential role in human-zoonotic LPAI virus dynamics. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  7. Treatment with interferon-alpha delays disease in swine infected with a highly virulent CSFV strain

    Science.gov (United States)

    Classical swine fever (CSF) is an economically significant, highly contagious swine disease. The etiological agent, CSF virus (CSFV), is an enveloped virus with a positive-sense, single-stranded RNA genome, classified as a member of the genus Pestivirus within the family Flaviviridae (Becher et al.,...

  8. Comparison: Flu prescription sales data from a retail pharmacy in the US with Google Flu trends and US ILINet (CDC) data as flu activity indicator.

    Science.gov (United States)

    Patwardhan, Avinash; Bilkovski, Robert

    2012-01-01

    The potential threat of bioterrorism along with the emergence of new or existing drug resistant strains of influenza virus, added to expanded global travel, have increased vulnerability to epidemics or pandemics and their aftermath. The same factors have also precipitated urgency for having better, faster, sensitive, and reliable syndromic surveillance systems. Prescription sales data can provide surrogate information about the development of infectious diseases and therefore serve as a useful tool in syndromic surveillance. This study compared prescription sales data from a large drug retailing pharmacy chain in the United States with Google Flu trends surveillance system data as a flu activity indicator. It was found that the two were highly correlated. The correlation coefficient (Pearson 'r') for five years' aggregate data (2007-2011) was 0.92 (95% CI, 0.90-0.94). The correlation coefficients for each of the five years between 2007 and 2011 were 0.85, 0.92, 0.91, 0.88, and 0.87 respectively. Additionally, prescription sales data from the same large drug retailing pharmacy chain in the United States were also compared with US Outpatient Influenza-like Illness Surveillance Network (ILINet) data for 2007 by Centers for Disease Control and Prevention (CDC). The correlation coefficient (Pearson 'r') was 0.97 (95% CI, 0.95-0.98).

  9. Comparison: Flu prescription sales data from a retail pharmacy in the US with Google Flu trends and US ILINet (CDC data as flu activity indicator.

    Directory of Open Access Journals (Sweden)

    Avinash Patwardhan

    Full Text Available The potential threat of bioterrorism along with the emergence of new or existing drug resistant strains of influenza virus, added to expanded global travel, have increased vulnerability to epidemics or pandemics and their aftermath. The same factors have also precipitated urgency for having better, faster, sensitive, and reliable syndromic surveillance systems. Prescription sales data can provide surrogate information about the development of infectious diseases and therefore serve as a useful tool in syndromic surveillance. This study compared prescription sales data from a large drug retailing pharmacy chain in the United States with Google Flu trends surveillance system data as a flu activity indicator. It was found that the two were highly correlated. The correlation coefficient (Pearson 'r' for five years' aggregate data (2007-2011 was 0.92 (95% CI, 0.90-0.94. The correlation coefficients for each of the five years between 2007 and 2011 were 0.85, 0.92, 0.91, 0.88, and 0.87 respectively. Additionally, prescription sales data from the same large drug retailing pharmacy chain in the United States were also compared with US Outpatient Influenza-like Illness Surveillance Network (ILINet data for 2007 by Centers for Disease Control and Prevention (CDC. The correlation coefficient (Pearson 'r' was 0.97 (95% CI, 0.95-0.98.

  10. Classical Swine Fever—An Updated Review

    Science.gov (United States)

    Blome, Sandra; Staubach, Christoph; Henke, Julia; Carlson, Jolene; Beer, Martin

    2017-01-01

    Classical swine fever (CSF) remains one of the most important transboundary viral diseases of swine worldwide. The causative agent is CSF virus, a small, enveloped RNA virus of the genus Pestivirus. Based on partial sequences, three genotypes can be distinguished that do not, however, directly correlate with virulence. Depending on both virus and host factors, a wide range of clinical syndromes can be observed and thus, laboratory confirmation is mandatory. To this means, both direct and indirect methods are utilized with an increasing degree of commercialization. Both infections in domestic pigs and wild boar are of great relevance; and wild boars are a reservoir host transmitting the virus sporadically also to pig farms. Control strategies for epidemic outbreaks in free countries are mainly based on classical intervention measures; i.e., quarantine and strict culling of affected herds. In these countries, vaccination is only an emergency option. However, live vaccines are used for controlling the disease in endemically infected regions in Asia, Eastern Europe, the Americas, and some African countries. Here, we will provide a concise, updated review on virus properties, clinical signs and pathology, epidemiology, pathogenesis and immune responses, diagnosis and vaccination possibilities. PMID:28430168

  11. Classical Swine Fever-An Updated Review.

    Science.gov (United States)

    Blome, Sandra; Staubach, Christoph; Henke, Julia; Carlson, Jolene; Beer, Martin

    2017-04-21

    Classical swine fever (CSF) remains one of the most important transboundary viral diseases of swine worldwide. The causative agent is CSF virus, a small, enveloped RNA virus of the genus Pestivirus. Based on partial sequences, three genotypes can be distinguished that do not, however, directly correlate with virulence. Depending on both virus and host factors, a wide range of clinical syndromes can be observed and thus, laboratory confirmation is mandatory. To this means, both direct and indirect methods are utilized with an increasing degree of commercialization. Both infections in domestic pigs and wild boar are of great relevance; and wild boars are a reservoir host transmitting the virus sporadically also to pig farms. Control strategies for epidemic outbreaks in free countries are mainly based on classical intervention measures; i.e., quarantine and strict culling of affected herds. In these countries, vaccination is only an emergency option. However, live vaccines are used for controlling the disease in endemically infected regions in Asia, Eastern Europe, the Americas, and some African countries. Here, we will provide a concise, updated review on virus properties, clinical signs and pathology, epidemiology, pathogenesis and immune responses, diagnosis and vaccination possibilities.

  12. Isolation and molecular characterization of an H5N1 swine influenza virus in China in 2015.

    Science.gov (United States)

    Wu, Haibo; Yang, Fan; Lu, Rufeng; Xu, Lihua; Liu, Fumin; Peng, Xiuming; Wu, Nanping

    2018-03-01

    In 2015, an H5N1 influenza virus was isolated from a pig in Zhejiang Province, Eastern China. This strain was characterized by whole-genome sequencing with subsequent phylogenetic analysis. Phylogenetic analysis showed that all segments from this strain belonged to clade 2.3.2 and that it had received its genes from poultry influenza viruses in China. A Glu627Lys mutation associated with pathogenicity was observed in the PB2 protein. This strain was moderately pathogenic in mice and was able to replicate without prior adaptation. These results suggest that active surveillance of swine influenza should be used as an early warning system for influenza outbreaks in mammals.

  13. Partial and Full PCR-Based Reverse Genetics Strategy for Influenza Viruses

    Science.gov (United States)

    Chen, Hongjun; Ye, Jianqiang; Xu, Kemin; Angel, Matthew; Shao, Hongxia; Ferrero, Andrea; Sutton, Troy; Perez, Daniel R.

    2012-01-01

    Since 1999, plasmid-based reverse genetics (RG) systems have revolutionized the way influenza viruses are studied. However, it is not unusual to encounter cloning difficulties for one or more influenza genes while attempting to recover virus de novo. To overcome some of these shortcomings we sought to develop partial or full plasmid-free RG systems. The influenza gene of choice is assembled into a RG competent unit by virtue of overlapping PCR reactions containing a cDNA copy of the viral gene segment under the control of RNA polymerase I promoter (pol1) and termination (t1) signals – herein referred to as Flu PCR amplicons. Transfection of tissue culture cells with either HA or NA Flu PCR amplicons and 7 plasmids encoding the remaining influenza RG units, resulted in efficient virus rescue. Likewise, transfections including both HA and NA Flu PCR amplicons and 6 RG plasmids also resulted in efficient virus rescue. In addition, influenza viruses were recovered from a full set of Flu PCR amplicons without the use of plasmids. PMID:23029501

  14. Surveillance of illness associated with pandemic (H1N1) 2009 virus infection among adults using a global clinical site network approach: the INSIGHT FLU 002 and FLU 003 studies

    DEFF Research Database (Denmark)

    Dwyer, Dominic E; Gerstoft, Jan

    2011-01-01

    , with 1049 enrollments into the FLU 002 outpatient study and 316 into the FLU 003 hospitalization study. These 'in progress' INSIGHT influenza observational studies may act as a model for obtaining epidemiological, clinical and laboratory information in future international disease outbreaks....

  15. A flow-through chromatography process for influenza A and B virus purification.

    Science.gov (United States)

    Weigel, Thomas; Solomaier, Thomas; Peuker, Alessa; Pathapati, Trinath; Wolff, Michael W; Reichl, Udo

    2014-10-01

    Vaccination is still the most efficient measure to protect against influenza virus infections. Besides the seasonal wave of influenza, pandemic outbreaks of bird or swine flu represent a high threat to human population. With the establishment of cell culture-based processes, there is a growing demand for robust, economic and efficient downstream processes for influenza virus purification. This study focused on the development of an economic flow-through chromatographic process avoiding virus strain sensitive capture steps. Therefore, a three-step process consisting of anion exchange chromatography (AEC), Benzonase(®) treatment, and size exclusion chromatography with a ligand-activated core (LCC) was established, and tested for purification of two influenza A virus strains and one influenza B virus strain. The process resulted in high virus yields (≥68%) with protein contamination levels fulfilling requirements of the European Pharmacopeia for production of influenza vaccines for human use. DNA was depleted by ≥98.7% for all strains. The measured DNA concentrations per dose were close to the required limits of 10ng DNA per dose set by the European Pharmacopeia. In addition, the added Benzonase(®) could be successfully removed from the product fraction. Overall, the presented downstream process could potentially represent a simple, robust and economic platform technology for production of cell culture-derived influenza vaccines. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs.

    Science.gov (United States)

    Henritzi, Dinah; Zhao, Na; Starick, Elke; Simon, Gaelle; Krog, Jesper S; Larsen, Lars Erik; Reid, Scott M; Brown, Ian H; Chiapponi, Chiara; Foni, Emanuela; Wacheck, Silke; Schmid, Peter; Beer, Martin; Hoffmann, Bernd; Harder, Timm C

    2016-11-01

    A diversifying pool of mammalian-adapted influenza A viruses (IAV) with largely unknown zoonotic potential is maintained in domestic swine populations worldwide. The most recent human influenza pandemic in 2009 was caused by a virus with genes originating from IAV isolated from swine. Swine influenza viruses (SIV) are widespread in European domestic pig populations and evolve dynamically. Knowledge regarding occurrence, spread and evolution of potentially zoonotic SIV in Europe is poorly understood. Efficient SIV surveillance programmes depend on sensitive and specific diagnostic methods which allow for cost-effective large-scale analysis. New SIV haemagglutinin (HA) and neuraminidase (NA) subtype- and lineage-specific multiplex real-time RT-PCRs (RT-qPCR) have been developed and validated with reference virus isolates and clinical samples. A diagnostic algorithm is proposed for the combined detection in clinical samples and subtyping of SIV strains currently circulating in Europe that is based on a generic, M-gene-specific influenza A virus RT-qPCR. In a second step, positive samples are examined by tetraplex HA- and triplex NA-specific RT-qPCRs to differentiate the porcine subtypes H1, H3, N1 and N2. Within the HA subtype H1, lineages "av" (European avian-derived), "hu" (European human-derived) and "pdm" (human pandemic A/H1N1, 2009) are distinguished by RT-qPCRs, and within the NA subtype N1, lineage "pdm" is differentiated. An RT-PCR amplicon Sanger sequencing method of small fragments of the HA and NA genes is also proposed to safeguard against failure of multiplex RT-qPCR subtyping. These new multiplex RT-qPCR assays provide adequate tools for sustained SIV monitoring programmes in Europe. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  17. [Emergence of new viruses in Asia: is climate change involved?].

    Science.gov (United States)

    Chastel, C

    2004-11-01

    Tropical Africa is not the only area where deadly viruses have recently emerged. In South-East Asia severe epidemics of dengue hemorrhagic fever started in 1954 and flu pandemics have originated from China such as the Asian flu (H2N2) in 1957, the Hong-Kong flu (H3N2) in 1968, and the Russian flu (H1N1) in 1977. However, it is especially during the last ten years that very dangerous viruses for mankind have repeatedly developed in Asia, with the occurrence of Alkhurma hemorrhagic fever in Saudi Arabia (1995), avian flu (H5N1) in Hong-Kong (1997), Nipah virus encephalitis in Malaysia (1998,) and, above all, the SARS pandemic fever from Southern China (2002). The evolution of these viral diseases was probably not directly affected by climate change. In fact, their emergential success may be better explained by the development of large industry poultry flocks increasing the risks of epizootics, dietary habits, economic and demographic constraints, and negligence in the surveillance and reporting of the first cases.

  18. Classical swine fever virus infection modulates serum levels of INF-α, IL-8 and TNF-α in 6-month-old pigs

    DEFF Research Database (Denmark)

    von Rosen, Tanya; Lohse, Louise; Nielsen, Jens

    2013-01-01

    Several studies have highlighted the important role of cytokines in disease development of classical swine fever virus (CSFV) infection. In the present study, we examined the kinetics of 7 porcine cytokines in serum from pigs infected with 3 different CSFV strains. Based on the clinical picture i...

  19. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins.

    Science.gov (United States)

    Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K

    2018-04-15

    African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia

  20. Do WHO guidelines on pandemic influenza follow biomedical ethics? : E-letter responses to Martin Enserink and Jocelyn Kaiser : Devilish dilemmas surround pandemic flu vaccine : Science 2009; 324: 702-705

    NARCIS (Netherlands)

    Peterson, M.B.

    2009-01-01

    If and when a pandemic of H1N1 swine flu hits, vaccines might be the world's best hope for softening the blow. But major uncertainties cloud the prospects for vaccines against the new strain. No pandemic vaccine yet exists, and it is unclear how much vaccine would have to be available, and by what

  1. Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus.

    Science.gov (United States)

    Simões, Margarida; Martins, Carlos; Ferreira, Fernando

    2015-12-02

    Although African swine fever virus (ASFV) replicates in viral cytoplasmic factories, the presence of viral DNA within the host cell nucleus has been previously reported to be essential for productive infection. Herein, we described, for the first time, the intranuclear distribution patterns of viral DNA replication events, preceding those that occur in the cytoplasmic compartment. Using BrdU pulse-labelling experiments, newly synthesized ASFV genomes were exclusively detected inside the host cell nucleus at the early phase of infection, both in swine monocyte-derived macrophages (MDMs) and Vero cells. From 8hpi onwards, BrdU labelling was only observed in ASFV cytoplasmic factories. Our results also show that ASFV specifically activates the Ataxia Telangiectasia Mutated Rad-3 related (ATR) pathway in ASFV-infected swine MDMs from the early phase of infection, most probably because ASFV genome is recognized as foreign DNA. Morphological changes of promyelocytic leukaemia nuclear bodies (PML-NBs), nuclear speckles and Cajal bodies were also found in ASFV-infected swine MDMs, strongly suggesting the viral modulation of cellular antiviral responses and cellular transcription, respectively. As described for other viral infections, the nuclear reorganization that takes place during ASFV infection may also provide an environment that favours its intranuclear replication events. Altogether, our results contribute for a better understanding of ASFV replication strategies, starting with an essential intranuclear DNA replication phase which induces host nucleus changes towards a successful viral infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. "Stomach Flu" (For Kids)

    Science.gov (United States)

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body Works ... Educators Search English Español "Stomach Flu" KidsHealth / For Kids / "Stomach Flu" Print Many people talk about the " ...

  3. Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Larsen, Lars Erik; Viuff, Birgitte M.

    2011-01-01

    Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses...... in the upper respiratory tract. Furthermore, experimental and natural infections in pigs have been reported with influenza A virus from avian and human sources. Methods: This study investigated the receptor distribution in the entire respiratory tract of pigs using specific lectins Maackia Amurensis (MAA) I...... and AIV virus was found, and this difference was in accordance with the distribution of the SA-alpha-2,6 and SA-alpha-2,3 receptor, respectively. The results indicated that the distribution of influenza A virus receptors in pigs are similar to that of humans and therefore challenge the theory that the pig...

  4. Swine is a possible source of hepatitis E virus infection by comparative study of hepatitis A and E seroprevalence in Thailand.

    Science.gov (United States)

    Sa-nguanmoo, Pattaratida; Posuwan, Nawarat; Vichaiwattana, Preeyaporn; Wutthiratkowit, Norra; Owatanapanich, Somchai; Wasitthankasem, Rujipat; Thongmee, Thanunrat; Poovorawan, Kittiyod; Theamboonlers, Apiradee; Vongpunsawad, Sompong; Poovorawan, Yong

    2015-01-01

    Hepatitis A virus (HAV) and hepatitis E virus (HEV) infection in developing countries are associated with contaminated food or water. Although Thailand is non-endemic for HEV, sporadic infections may occur from zoonotic transmission. Individuals between 7 months to 69 years (mean age = 32.8) from predominantly Islamic Narathiwat (n = 305) and swine farm-dense Lop Buri (n = 416) provinces were screened for anti-HEV and anti-HAV antibodies by commercial enzyme-linked immunosorbent assay and automated chemiluminescent microparticle immunoassay, respectively. Seroprevalence and relative antibody titers were analyzed according to age groups. HAV IgG antibody positive rates in Lop Buri and Narathiwat residents were 39.9% and 58%, respectively (p 50 years old in both provinces possessed anti-HAV IgG. In contrast, seroprevalence for anti-HEV IgG was much higher in Lop Buri (37.3%) than in Narathiwat (8.9%) (p < 0.001). Highest anti-HEV IgG prevalence was found among 21-30 year-olds (50%) in Lop Buri and 41-50 year-olds (14.1%) in Narathiwat. In summary, fewer individuals possessed anti-HEV IgG in Narathiwat where most residents abstained from pork and fewer swine farms are present. Therefore, an increased anti-HEV IgG seroprevalence was associated with the density of swine farm and possibly pork consumption. Adults were more likely than children to have antibodies to both HEV and HAV.

  5. FluKB: A Knowledge-Based System for Influenza Vaccine Target Discovery and Analysis of the Immunological Properties of Influenza Viruses

    DEFF Research Database (Denmark)

    Simon, Christian; Kudahl, Ulrich Johan; Sun, Jing

    2015-01-01

    FluKB is a knowledge-based system focusing on data and analytical tools for influenza vaccine discovery. The main goal of FluKB is to provide access to curated influenza sequence and epitope data and enhance the analysis of influenza sequence diversity and the analysis of targets of immune...... responses. FluKB consists of more than 400,000 influenza protein sequences, known epitope data (357 verified T-cell epitopes, 685 HLA binders, and 16 naturally processed MHC ligands), and a collection of 28 influenza antibodies and their structurally defined B-cell epitopes. FluKB was built using amodular...

  6. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    Science.gov (United States)

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Infecção pelo vírus Influenza A (H1N1 de origem suína: como reconhecer, diagnosticar e prevenir How to prevent, recognize and diagnose infection with the swine-origin Influenza A (H1N1 virus in humans

    Directory of Open Access Journals (Sweden)

    Alcyone Artioli Machado

    2009-05-01

    Full Text Available Em março de 2009, houve o início de uma epidemia de gripe no México que, em pouco tempo, levou ao surgimento de casos semelhantes em outros países, alertando as autoridades sanitárias para o risco de uma pandemia. Neste artigo, descrevemos os principais sinais e sintomas da infecção pelo vírus Influenza A (H1N1 de origem suína, as medidas a serem tomadas para os casos suspeitos ou confirmados e como proceder em relação aos contactantes. Comentamos também quais drogas são utilizadas para o tratamento e profilaxia.In March of 2009, a flu epidemic began in Mexico. Shortly thereafter, similar cases appeared in other countries, alerting authorities to the risk of a pandemic. This article details the principal signs and symptoms of infection with the swine-origin Influenza A (H1N1 virus. In addition, the measures to be taken in suspected or confirmed cases are addressed, as are the procedures to follow in relation to contacts. Furthermore, the drugs used in the prophylaxis against and the treatment of infection with the H1N1 virus are described.

  8. Pandemic influenza A (H1N1)

    African Journals Online (AJOL)

    ... in Port Shepstone, South Africa. Introduction. Influenza A (H1N1) 2009 'swine flu' variant is currently a global pandemic.1 The infection associated with this virus is usually a mild, self-limiting illness. However, it may progress to severe pneumonia requiring intensive care unit (ICU) therapy in 31% of patients.2 This may.

  9. Vaccination against seasonal flu

    CERN Multimedia

    2015-01-01

    The Medical Service once again recommends you to get your annual flu vaccination for the year.   Vaccination is the most effective way of avoiding the illness and any serious consequences and protecting those around you. The flu can have especially serious consequences for people with chronic conditions (diabetes, cardio-vascular disease, etc.), pregnant women, infants, and people over 65 years of age. Remember, anyone working on the CERN site who wishes to be vaccinated against seasonal flu should go to the Infirmary (Building 57, ground floor) with their vaccine. The Medical Service will issue a prescription on the day of the vaccination for the purposes of reimbursement by UNIQA. NB: The Medical Service cannot provide this vaccination service for family members or retired members of the personnel. For more information: • The "Seasonal flu" flyer by the Medical Service • Recommendations of the Swiss Federal Office of Public...

  10. Different evolutionary trends of swine H1N2 influenza viruses in Italy compared to European viruses.

    Science.gov (United States)

    Moreno, Ana; Gabanelli, Elena; Sozzi, Enrica; Lelli, Davide; Chiapponi, Chiara; Ciccozzi, Massimo; Zehender, Gianguglielmo; Cordioli, Paolo

    2013-12-01

    European H1N2 swine influenza viruses (EU H1N2SIVs) arose from multiple reassortment events among human H1N1, human H3N2, and avian influenza viruses. We investigated the evolutionary dynamics of 53 Italian H1N2 strains by comparing them with EU H1N2 SIVs. Hemagglutinin (HA) phylogeny revealed Italian strains fell into four groups: Group A and B (41 strains) had a human H1 similar to EU H1N2SIVs, which probably originated in 1986. However Group B (38 strains) formed a subgroup that had a two-amino acid deletion at positions 146/147 in HA. Group C (11 strains) contained an avian H1 that probably originated in 1996, and Group D (1 strain) had an H1 characteristic of the 2009 pandemic strain. Neuraminidase (NA) phylogeny suggested a series of genomic reassortments had occurred. Group A had an N2 that originated from human H3N2 in the late 1970s. Group B had different human N2 that most likely arose from a reassortment with the more recent human H3N2 virus, which probably occurred in 2000. Group C had an avian-like H1 combined with an N2 gene from one of EU H1N2SIVs, EU H3N2SIVs or Human H3N2. Group D was part of the EU H3N2SIVs clade. Although selection pressure for HA and NA was low, several positively selected sites were identified in both proteins, some of which were antigenic, suggesting selection influenced the evolution of SIV. The data highlight different evolutionary trends between European viruses and currently circulating Italian B strains and show the establishment of reassortant strains involving human viruses in Italian pigs.

  11. Analysis of classical swine fever virus RNA replication determinants using replicons

    DEFF Research Database (Denmark)

    Risager, Peter Christian; Fahnøe, Ulrik; Gullberg, Maria

    2013-01-01

    Self-replicating RNAs (replicons), with or without reporter gene sequences, derived from the genome of the Paderborn strain of classical swine fever virus (CSFV) have been produced. The full-length viral cDNA, propagated within a bacterial artificial chromosome (BAC), was modified by targeted...... recombination within E. coli. RNA transcripts were produced in vitro and introduced into cells by electroporation. The translation and replication of the replicon RNAs could be followed by the accumulation of luciferase (from Renilla reniformis or Gaussia princeps) protein expression (where appropriate......), as well as by detection of the CSFV NS3 protein production within the cells. Inclusion of the viral E2 coding region within the replicon was advantageous for the replication efficiency. Production of chimeric RNAs, substituting the NS2 and NS3 coding regions (as a unit) from the Paderborn strain...

  12. [The present epidemiological status of African swine fever].

    Science.gov (United States)

    Hess, G

    1986-01-01

    At present, African swine fever (ASF) persists as an enzootic infection both on the African continent and in Europe (Portugal, Spain, and Sardinia). The recent outbreaks of ASF in Belgium and in the Netherlands have again demonstrated the threat of this disease to the swine population in Germany. The main reasons for this threat are the great tenacity of this virus and its stability in meat and meat products together with an immense tourism into these enzootic areas. Epizootiological peculiarities, such as virus replication in ticks and inapparent infections in wild boars are the reason why eradication of the disease has failed so far, especially when pigs are allowed to roam the countryside.

  13. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark.

    Science.gov (United States)

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik; Nielsen, Jens; Bøtner, Anette; Heegaard, Peter M H; Fomsgaard, Anders; Viuff, Birgitte; Hjulsager, Charlotte Kristiane

    2013-09-18

    The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an "avian-like" H1N1 virus by an experimental infection study. Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an "avian-like" H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European "avian-like" H1-gene and a European "swine-like" N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish "avian-like" H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. The "avian-like" H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant between circulating swine "avian-like" H1N1 and H3N2. The Danish

  14. Swine Leukocyte Antigen (SLA) class I allele typing of Danish swine herds and identification of commonly occurring haplotypes using sequence specific low and high resolution primers

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Jungersen, Gregers; Sørensen, Maria Rathmann

    2014-01-01

    of such peptide-MHC complexes (pMHC) naïve T cells can become activated and respond to a given pathogen leading to its elimination and the generation of memory cells. Hence SLA plays a crucial role in maintaining overall adaptive immunologic resistance to pathogens. Knowing which SLA alleles that are commonly...... occurring can be of great importance in regard to future vaccine development and the establishment of immune protection in swine through broad coverage, highly specific, subunit based vaccination against viruses such as swine influenza, porcine reproductive and respiratory syndrome virus, vesicular...

  15. Is it a policy crisis or it is a health crisis? The Egyptian context ...

    African Journals Online (AJOL)

    The International health officials said the swine flu virus that has caused worldwide fear is not transmitted by pigs, and that pig slaughters do nothing to stop its spread. The WHO ... The extinction of the Egyptian pigs is an example of how a health issue can be used to persecute a minority within a country. Although the ...

  16. Construction of a recombinant baculovirus expressing swine hepatitis E Virus ORF2 and preliminary research on its immune effect.

    Science.gov (United States)

    Yang, Z; Hu, Y; Yuan, P; Yang, Y; Wang, K; Xie, L Y; Huang, S L; Liu, J; Ran, L; Song, Z H

    2018-03-01

    In the swine hepatitis E virus (HEV), open reading frame 2 (ORF2) is rich in antigenic determinants and neutralizing epitopes that could induce immune protection. We chose the Bac-to-Bac® Baculovirus Expression System to express fragments containing the critical neutralizing antigenic sites within the HEV ORF2 protein of pigs to obtain a recombinant baculovirus. The fragment of swine HEV ORF2 region (1198-1881bp) was cloned into vector pFastBacTM. A recombinant baculovirus, rBacmid-ORF2, was obtained after transposition and transfection. The molecular mass of the recombinant protein was 26 kDa. Mice were immunized by the intraperitoneal and oral routes with cell lysates of recombinant baculovirus rBacmid-ORF2. Serum and feces of the mice were collected separately at 0, 14, 28, and 42 d after immunization and the antibody levels of IgG and secretory IgA against swine HEV were determined using an enzyme-linked immunosorbent assay. The results suggested that rBacmid-ORF2 induced antibodies of the humoral and mucosal immune responses in mice and that the oral route was significantly superior to the intraperitoneal route. This is the first study to demonstrate that that recombinant baculovirus swine HEV ORF2 could induce humoral and mucosal immune responses in mice. Copyright© by the Polish Academy of Sciences.

  17. What You Can Do to Stop the Flu

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Flu What You Can Do to Stop the Flu Past Issues / Fall 2009 Table of Contents To ... Health and Human Services: http://flu.gov NIH Flu Research to Results Scientists at the National Institute ...

  18. Effects of mutations in the VP2/VP4 cleavage site of Swine vesicular disease virus on RNA encapsidation and viral infectivity

    NARCIS (Netherlands)

    Rebel, J.M.J.; Leendertse, C.H.; Dekker, A.; Moormann, R.J.M.

    2003-01-01

    We studied VP0 cleavage of Swine vesicular disease virus (SVDV), a member of the Picornaviridae using a full-length cDNA copy of the Dutch SVDV isolate. The influences of mutations, introduced at the cleavage site of SVDV, on VP0 cleavage, RNA encapsidation and viral infection were studied. Double

  19. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus.

    Science.gov (United States)

    Hakobyan, Astghik; Galindo, Inmaculada; Nañez, Almudena; Arabyan, Erik; Karalyan, Zaven; Chistov, Alexey A; Streshnev, Philipp P; Korshun, Vladimir A; Alonso, Covadonga; Zakaryan, Hovakim

    2018-01-01

    Rigid amphipathic fusion inhibitors (RAFIs) are a family of nucleoside derivatives that inhibit the infectivity of several enveloped viruses by interacting with virion envelope lipids and inhibiting fusion between viral and cellular membranes. Here we tested the antiviral activity of two RAFIs, 5-(Perylen-3-ylethynyl)-arabino-uridine (aUY11) and 5-(Perylen-3-ylethynyl)uracil-1-acetic acid (cm1UY11) against African swine fever virus (ASFV), for which no effective vaccine is available. Both compounds displayed a potent, dose-dependent inhibitory effect on ASFV infection in Vero cells. The major antiviral effect was observed when aUY11 and cm1UY11 were added at early stages of infection and maintained during the complete viral cycle. Furthermore, virucidal assay revealed a significant extracellular anti-ASFV activity for both compounds. We also found decrease in the synthesis of early and late viral proteins in Vero cells treated with cm1UY11. Finally, the inhibitory effect of aUY11 and cm1UY11 on ASFV infection in porcine alveolar macrophages was confirmed. Overall, our study has identified novel anti-ASFV compounds with potential for future therapeutic developments.

  20. Effective surveillance for early classical swine fever virus detection will utilize both virus and antibody detection capabilities.

    Science.gov (United States)

    Panyasing, Yaowalak; Kedkovid, Roongtham; Thanawongnuwech, Roongroje; Kittawornrat, Apisit; Ji, Ju; Giménez-Lirola, Luis; Zimmerman, Jeffrey

    2018-03-01

    Early recognition and rapid elimination of infected animals is key to controlling incursions of classical swine fever virus (CSFV). In this study, the diagnostic characteristics of 10 CSFV assays were evaluated using individual serum (n = 601) and/or oral fluid (n = 1417) samples collected from -14 to 28 days post inoculation (DPI). Serum samples were assayed by virus isolation (VI), 2 commercial antigen-capture enzyme-linked immunosorbent assays (ELISA), virus neutralization (VN), and 3 antibody ELISAs. Both serum and oral fluid samples were tested with 3 commercial real-time reverse transcription-polymerase chain reaction (rRT-PCR) assays. One or more serum samples was positive by VI from DPIs 3 to 21 and by antigen-capture ELISAs from DPIs 6 to 17. VN-positive serum samples were observed at DPIs ≥ 7 and by antibody ELISAs at DPIs ≥ 10. CSFV RNA was detected in serum samples from DPIs 2 to 28 and in oral fluid samples from DPIs 4 to 28. Significant differences in assay performance were detected, but most importantly, no single combination of sample and assay was able to dependably identify CSFV-inoculated pigs throughout the 4-week course of the study. The results show that effective surveillance for CSFV, especially low virulence strains, will require the use of PCR-based assays for the detection of early infections (<14 days) and antibody-based assays, thereafter. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Comparison of the protective efficacy of recombinant pseudorabies viruses against pseudorabies and classical swine fever in pigs,, influence of different promoters on gene expression and on protection

    NARCIS (Netherlands)

    Hooft, van B.J.L.; Wind, de N.; Wensvoort, G.; Kimman, T.G.; Gielkens, A.L.J.; Moormann, R.J.M.

    1996-01-01

    The glycoprotein E (gE) locus in the genome of pseudorabies virus (PRV) was used as an insertion site for the expression of glycoprotein E1 of classical swine fever virus (CSFV). Transcription of E1 in the recombinants M401, M402 or M403 was regulated by the gD promoter of PRV, the immediate early

  2. Flu Vaccine Skin Patch Tested

    Science.gov (United States)

    ... Subscribe September 2017 Print this issue Health Capsule Flu Vaccine Skin Patch Tested En español Send us ... Each year, millions of people nationwide catch the flu. The best way to protect yourself is to ...

  3. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik

    2013-01-01

    BACKGROUND: The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically...... and the infection dynamics compared to an “avian-like” H1N1 virus by an experimental infection study. METHODS: Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an “avian-like” H1N1 virus, respectively, followed by inoculation...... with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. RESULTS: The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European “avian-like” H1-gene...

  4. 2009 H1N1 Flu Vaccine Facts

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Flu 2009 H1N1 Flu Vaccine Facts Past Issues / Fall 2009 Table of ... the H1N1 flu vaccine. 1 The 2009 H1N1 flu vaccine is safe and well tested. Clinical trials ...

  5. Spreading Of Avian Flu On Duck And Its Impact On Social Economy: Lesson Learnt From Avian Flu Cases On Chicken

    OpenAIRE

    Nyak Ilham

    2013-01-01

    Bird flu disease that attacks duck dismissed the notion of duck immune to bird flu disease. Learning from the experience of bird flu disease that attacks poultry in the year of 2004-2005, necessary to measure the spread of disease prevention bird flu in ducks. This paper aims to describe the business and trade patterns of duck associated with the spread of avian influenza and predict the socio-economic impact of bird flu on duck farms in Indonesia. Duck rearing patterns mostly are in the e...

  6. Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs

    Directory of Open Access Journals (Sweden)

    Viuff Birgitte M

    2011-09-01

    Full Text Available Abstract Background Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SA-alpha-2,3 and swine/human (SA-alpha-2,6 influenza viruses in the upper respiratory tract. Furthermore, experimental and natural infections in pigs have been reported with influenza A virus from avian and human sources. Methods This study investigated the receptor distribution in the entire respiratory tract of pigs using specific lectins Maackia Amurensis (MAA I, and II, and Sambucus Nigra (SNA. Furthermore, the predilection sites of swine influenza virus (SIV subtypes H1N1 and H1N2 as well as avian influenza virus (AIV subtype H4N6 were investigated in the respiratory tract of experimentally infected pigs using immunohistochemical methods. Results SIV antigen was widely distributed in bronchi, but was also present in epithelial cells of the nose, trachea, bronchioles, and alveolar type I and II epithelial cells in severely affected animals. AIV was found in the lower respiratory tract, especially in alveolar type II epithelial cells and occasionally in bronchiolar epithelial cells. SA-alpha-2,6 was the predominant receptor in all areas of the respiratory tract with an average of 80-100% lining at the epithelial cells. On the contrary, the SA-alpha-2,3 was not present (0% at epithelial cells of nose, trachea, and most bronchi, but was found in small amounts in bronchioles, and in alveoli reaching an average of 20-40% at the epithelial cells. Interestingly, the receptor expression of both SA-alpha-2,3 and 2,6 was markedly diminished in influenza infected areas compared to non-infected areas. Conclusions A difference in predilection sites between SIV and AIV virus was found, and this difference was in accordance with the distribution of the SA-alpha-2,6 and SA-alpha-2,3 receptor, respectively. The results indicated

  7. Flu Surveillance: Department of Health

    Science.gov (United States)

    Health & Wellness Food, Water & Environment Birth, Death & Marriage Records Laboratory Healthcare facility managers Schools & child care providers Rhode Island Data Flu Surviellance Healthcare Management Agency Centers for Disease Control &amo; Prevention Flu.gov World Health Organization We can

  8. Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Michael Albin

    2017-01-01

    This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detec...

  9. Molecular detection of hepatitis E virus in feces and slurry from swine farms, Rio Grande do Sul, Southern Brazil

    Directory of Open Access Journals (Sweden)

    J. Vasconcelos

    2015-06-01

    Full Text Available Hepatitis E virus (HEV is highly disseminated among swine herds worldwide. HEV is also a threat to public health, since particularly genotypes 3 and 4 may cause acute hepatitis in human beings. No previous studies were done on the occurrence of HEV in environmental samples in Rio Grande do Sul, Brazil. In the present study, reverse transcriptase-polymerase chain reaction (RT-PCR was employed to detect the presence of HEV in swine feces and in effluents from slurry lagoons in farms located in the municipality of Teutônia, inside the area of swine husbandry in the state. Pooled fecal samples from the floor of pig barns from 9 wean-to-finish farms and liquid manure samples were collected from the slurry lagoons from 8 of these farms. From the pooled fecal samples, 8/9 were positive for the HEV ORF1 gene by RT-PCR; all the slurry lagoon samples were positive for HEV RNA (100%. The identity of the HEV ORF1 amplicons was confirmed by sequencing belonging to HEV genotype 3, which was previously shown to be circulating in South America.

  10. Gradual development of the interferon-γ response of swine to porcine reproductive and respiratory syndrome virus infection or vaccination

    International Nuclear Information System (INIS)

    Meier, William A.; Galeota, Judy; Osorio, Fernando A.; Husmann, Robert J.; Schnitzlein, William M.; Zuckermann, Federico A.

    2003-01-01

    Infection of swine with virulent porcine reproductive and respiratory syndrome (PRRS) virus induced a rapid, robust antibody response that comprised predominantly nonneutralizing antibodies and waned after approximately 3 months. In contrast, the initial onset of virus-specific interferon (IFN)-γ-secreting cells (SC) in the pig lymphocyte population remained at a fairly low level during this period and then increased gradually in frequency, plateauing at 6 months postinfection. A similar polarization of the host humoral and cellular immune responses was also observed in pigs immunized with a PRRS-modified live virus (MLV) vaccine. Even coadministration of an adjuvant that enhanced the immune response to a pseudorabies (PR) MLV vaccine failed to alter the induction of PRRS virus-specific IFN-γ SC (comprising predominately CD4/CD8α double positive memory T cells with a minority being typical CD4 - /CD8αβ + T cells) and the generation of neutralizing antibodies. Moreover, unlike inactivated PR virus, nonviable PRRS virus did not elicit virus-neutralizing antibody production. Presumably, an intrinsic property of this pathogen delays the development of the host IFN-γ response and preferentially stimulates the synthesis of antibodies incapable of neutralization

  11. flu, a metastable gene controlling surface properties of Escherichia coli.

    OpenAIRE

    Diderichsen, B

    1980-01-01

    flu, a gene of Escherichia coli K-12, was discovered and mapped between his and shiA. It is shown that flu is a metastable gene that changes frequently between the flu+ and flu states. flu+ variants give stable homogeneous suspensions, are piliated, and form glossy colonies. flu variants aggregate, fluff and sediment from suspensions, are nonpiliated, and form frizzy colonies. flu+ and flu variants can be isolated from most strains. Implications of these observations are discussed, and it is ...

  12. Transmission of influenza A viruses between pigs and people, Iowa, 2002-2004.

    Science.gov (United States)

    Terebuh, Pauline; Olsen, Christopher W; Wright, Jennifer; Klimov, Alexander; Karasin, Alexander; Todd, Karla; Zhou, Hong; Hall, Henrietta; Xu, Xiyan; Kniffen, Tim; Madsen, David; Garten, Rebecca; Bridges, Carolyn B

    2010-11-01

    Triple-reassortant (tr) viruses of human, avian, and swine origin, including H1N1, H1N2, and H3N2 subtypes, emerged in North American swine herds in 1998 and have become predominant. While sporadic human infections with classical influenza A (H1N1) and with tr-swine influenza viruses have been reported, relatively few have been documented in occupationally exposed swine workers (SW). We conducted a 2-year (2002-2004) prospective cohort study of transmission of influenza viruses between pigs and SW from a single pork production company in Iowa. Respiratory samples were collected and tested for influenza viruses from SW and from pigs under their care through surveillance for influenza-like illnesses (ILI). Serial blood samples from study participants were tested by hemagglutination inhibition (HI) for antibody seroconversion against human and swine influenza viruses (SIV), and antibody seroprevalence was compared to age-matched urban Iowa blood donors. During the first year, 15 of 88 SW had ILI and were sampled; all were culture-negative for influenza. During the second year, 11 of 76 SW had ILI and were sampled; one was culture-positive for a human seasonal H3N2 virus. Among 20 swine herd ILI outbreaks sampled, influenza A virus was detected by rRT-PCR from 17 with 11 trH1N1 and five trH3N2 virus isolates cultured. During both years, HI geometric mean titers were significantly higher among SW compared to blood donor controls for three SIV: classical swine Sw/WI/238/97 (H1N1), tr Sw/IN/9K035/99 (H1N2), and trSw/IA/H02NJ56371/02 (H1N1)] (P influenza viruses and were exposed to diverse influenza virus strains circulating in pigs. Influenza virus surveillance among pigs and SW should be encouraged to better understand cross-species transmission and diversity of influenza viruses at the human-swine interface. © 2010 Blackwell Publishing Ltd.

  13. Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells.

    Science.gov (United States)

    Mussá, Tufária; Rodríguez-Cariño, Carolina; Sánchez-Chardi, Alejandro; Baratelli, Massimiliano; Costa-Hurtado, Mar; Fraile, Lorenzo; Domínguez, Javier; Aragon, Virginia; Montoya, María

    2012-11-16

    Pigs possess a microbiota in the upper respiratory tract that includes Haemophilus parasuis. Pigs are also considered the reservoir of influenza viruses and infection with this virus commonly results in increased impact of bacterial infections, including those by H. parasuis. However, the mechanisms involved in host innate responses towards H. parasuis and their implications in a co-infection with influenza virus are unknown. Therefore, the ability of a non-virulent H. parasuis serovar 3 (SW114) and a virulent serovar 5 (Nagasaki) strains to interact with porcine bone marrow dendritic cells (poBMDC) and their modulation in a co-infection with swine influenza virus (SwIV) H3N2 was examined. At 1 hour post infection (hpi), SW114 interaction with poBMDC was higher than that of Nagasaki, while at 8 hpi both strains showed similar levels of interaction. The co-infection with H3N2 SwIV and either SW114 or Nagasaki induced higher levels of IL-1β, TNF-α, IL-6, IL-12 and IL-10 compared to mock or H3N2 SwIV infection alone. Moreover, IL-12 and IFN-α secretion differentially increased in cells co-infected with H3N2 SwIV and Nagasaki. These results pave the way for understanding the differences in the interaction of non-virulent and virulent strains of H. parasuis with the swine immune system and their modulation in a viral co-infection.

  14. Determination of the sequence of the complete open reading frame and the 5 ' NTR of the Paderborn isolate of classical swine fever virus

    DEFF Research Database (Denmark)

    Oleksiewicz, Martin B.; Rasmussen, Thomas Bruun; Normann, Preben

    2003-01-01

    The classical swine fever (CSF) epidemic in the Netherlands in 1997-1998 lasted 14 months, during which 429 infected and 1300 at risk herds were culled, at an estimated economical cost of 2 billion US dollars. Despite the overwhelming scale of the epizootic, the CSF virus (CSFV) strain causing th...

  15. Influenza Pandemic: Continued Focus on the Nation's Planning and Preparedness Efforts Remains Essential. Testimony before the Ad Hoc Subcommittee on State, Local, and Private Sector Preparedness and Integration, Senate Committee on Homeland Security and Governmental Affairs. GAO-09-760T

    Science.gov (United States)

    Steinhardt, Bernice

    2009-01-01

    As the recent outbreak of the H1N1 (swine flu) virus underscores, an influenza pandemic remains a real threat to our nation and to the world. Over the past 3 years, the US Government Accountability Office (GAO) has conducted a body of work to help the nation better prepare for a possible pandemic. In a February 2009 report, GAO synthesized the…

  16. Nucleoprotein of influenza B virus binds to its type A counterpart and disrupts influenza A viral polymerase complex formation

    International Nuclear Information System (INIS)

    Jaru-ampornpan, Peera; Narkpuk, Jaraspim; Wanitchang, Asawin; Jongkaewwattana, Anan

    2014-01-01

    Highlights: •FluB nucleoprotein (BNP) can bind to FluA nucleoprotein (ANP). •BNP–ANP interaction inhibits FluA polymerase activity. •BNP binding prevents ANP from forming a functional FluA polymerase complex. •Nuclear localization of BNP is necessary for FluA polymerase inhibition. •Viral RNA is not required for the BNP–ANP interaction. -- Abstract: Upon co-infection with influenza B virus (FluB), influenza A virus (FluA) replication is substantially impaired. Previously, we have shown that the nucleoprotein of FluB (BNP) can inhibit FluA polymerase machinery, retarding the growth of FluA. However, the molecular mechanism underlying this inhibitory action awaited further investigation. Here, we provide evidence that BNP hinders the proper formation of FluA polymerase complex by competitively binding to the nucleoprotein of FluA. To exert this inhibitory effect, BNP must be localized in the nucleus. The interaction does not require the presence of the viral RNA but needs an intact BNP RNA-binding motif. The results highlight the novel role of BNP as an anti-influenza A viral agent and provide insights into the mechanism of intertypic interference

  17. Nucleoprotein of influenza B virus binds to its type A counterpart and disrupts influenza A viral polymerase complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Jaru-ampornpan, Peera, E-mail: peera.jar@biotec.or.th; Narkpuk, Jaraspim; Wanitchang, Asawin; Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th

    2014-01-03

    Highlights: •FluB nucleoprotein (BNP) can bind to FluA nucleoprotein (ANP). •BNP–ANP interaction inhibits FluA polymerase activity. •BNP binding prevents ANP from forming a functional FluA polymerase complex. •Nuclear localization of BNP is necessary for FluA polymerase inhibition. •Viral RNA is not required for the BNP–ANP interaction. -- Abstract: Upon co-infection with influenza B virus (FluB), influenza A virus (FluA) replication is substantially impaired. Previously, we have shown that the nucleoprotein of FluB (BNP) can inhibit FluA polymerase machinery, retarding the growth of FluA. However, the molecular mechanism underlying this inhibitory action awaited further investigation. Here, we provide evidence that BNP hinders the proper formation of FluA polymerase complex by competitively binding to the nucleoprotein of FluA. To exert this inhibitory effect, BNP must be localized in the nucleus. The interaction does not require the presence of the viral RNA but needs an intact BNP RNA-binding motif. The results highlight the novel role of BNP as an anti-influenza A viral agent and provide insights into the mechanism of intertypic interference.

  18. Novel poly-uridine insertion in the 3'UTR and E2 amino acid substitutions in a low virulent classical swine fever virus.

    Science.gov (United States)

    Coronado, Liani; Liniger, Matthias; Muñoz-González, Sara; Postel, Alexander; Pérez, Lester Josue; Pérez-Simó, Marta; Perera, Carmen Laura; Frías-Lepoureau, Maria Teresa; Rosell, Rosa; Grundhoff, Adam; Indenbirken, Daniela; Alawi, Malik; Fischer, Nicole; Becher, Paul; Ruggli, Nicolas; Ganges, Llilianne

    2017-03-01

    In this study, we compared the virulence in weaner pigs of the Pinar del Rio isolate and the virulent Margarita strain. The latter caused the Cuban classical swine fever (CSF) outbreak of 1993. Our results showed that the Pinar del Rio virus isolated during an endemic phase is clearly of low virulence. We analysed the complete nucleotide sequence of the Pinar del Rio virus isolated after persistence in newborn piglets, as well as the genome sequence of the inoculum. The consensus genome sequence of the Pinar del Rio virus remained completely unchanged after 28days of persistent infection in swine. More importantly, a unique poly-uridine tract was discovered in the 3'UTR of the Pinar del Rio virus, which was not found in the Margarita virus or any other known CSFV sequences. Based on RNA secondary structure prediction, the poly-uridine tract results in a long single-stranded intervening sequence (SS) between the stem-loops I and II of the 3'UTR, without major changes in the stem- loop structures when compared to the Margarita virus. The possible implications of this novel insertion on persistence and attenuation remain to be investigated. In addition, comparison of the amino acid sequence of the viral proteins E rns , E1, E2 and p7 of the Margarita and Pinar del Rio viruses showed that all non-conservative amino acid substitutions acquired by the Pinar del Rio isolate clustered in E2, with two of them being located within the B/C domain. Immunisation and cross-neutralisation experiments in pigs and rabbits suggest differences between these two viruses, which may be attributable to the amino acid differences observed in E2. Altogether, these data provide fresh insights into viral molecular features which might be associated with the attenuation and adaptation of CSFV for persistence in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Development of a multiplex Luminex assay for detecting swine antibodies to structural and nonstructural proteins of foot-and-mouth disease virus in Taiwan.

    Science.gov (United States)

    Chen, Tsu-Han; Lee, Fan; Lin, Yeou-Liang; Pan, Chu-Hsiang; Shih, Chia-Ni; Tseng, Chun-Hsien; Tsai, Hsiang-Jung

    2016-04-01

    Foot-and-mouth disease (FMD) and swine vesicular disease (SVD) are serious vesicular diseases that have devastated swine populations throughout the world. The aim of this study was to develop a multianalyte profiling (xMAP) Luminex assay for the differential detection of antibodies to the FMD virus of structural proteins (SP) and nonstructural proteins (NSP). After the xMAP was optimized, it detected antibodies to SP-VP1 and NSP-3ABC of the FMD virus in a single serum sample. These tests were also compared with 3ABC polypeptide blocking enzyme-linked immunosorbent assay (ELISA) and virus neutralization test (VNT) methods for the differential diagnosis and assessment of immune status, respectively. To detect SP antibodies in 661 sera from infected naïve pigs and vaccinated pigs, the diagnostic sensitivity (DSn) and diagnostic specificity (DSp) of the xMAP were 90.0-98.7% and 93.0-96.5%, respectively. To detect NSP antibodies, the DSn was 90% and the DSp ranged from 93.3% to 99.1%. The xMAP can detect the immune response to SP and NSP as early as 4 days postinfection and 8 days postinfection, respectively. Furthermore, the SP and NSP antibodies in all 15 vaccinated but unprotected pigs were detected by xMAP. A comparison of SP and NSP antibodies detected in the sera of the infected samples indicated that the results from the xMAP had a high positive correlation with results from the VNT and a 3ABC polypeptide blocking ELISA assay. However, simultaneous quantitation detected that xMAP had no relationship with the VNT. Furthermore, the specificity was 93.3-94.9% with 3ABC polypeptide blocking ELISA for the FMDV-NSP antibody. The results indicated that xMAP has the potential to detect antibodies to FMDV-SP-VP1 and NSP-3ABC and to distinguish FMDV-infected pigs from pigs infected with the swine vesicular disease virus. Copyright © 2014. Published by Elsevier B.V.

  20. Get Your Flu Shot!| NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Flu Shot Get Your Flu Shot! Past Issues / Winter 2011 Table of Contents ... failure, or lung disease "For the 2010–2011 flu season, the flu vaccine provides protection against the ...

  1. FLU AS PROBLEM COMMON TO ALL MANKIND. FUTURE DIRECTIONS FOR PREVENTION AND TREATMENT OF INFLUENZA

    Directory of Open Access Journals (Sweden)

    Korovaeva I.V

    2014-06-01

    Full Text Available This article discusses the flu, as one of the most common infectious diseases affecting humanity throughout its history. The data on the structure of A influenza virus and its variability is given historical background for most famous of the pandemics, which inflicted irreparable damage to the population of the Earth, are shown the basic stages of the study for influenza virus. Are considered the types of variability of the A virus influenza, its ability to overcome interspecies barriers that form the basis of pathogen escape from the immune response. The article shows the promising areas of modern prevention and treatment of this disease

  2. Simulating the epidemiological and economic effects of an African swine fever epidemic in industrialized swine populations

    DEFF Research Database (Denmark)

    Hisham Beshara Halasa, Tariq; Bøtner, Anette; Mortensen, Sten

    2016-01-01

    to simulate the spread of ASF virus between domestic swine herds exemplified by the Danish swine population. ASF was simulated to spread via animal movement, low- or medium-risk contacts and local spread. Each epidemic was initiated in a randomly selected herd – either in a nucleus herd, a sow herd......African swine fever (ASF) is a notifiable infectious disease with a considerable impact on animal health and is currently one of the most important emerging diseases of domestic pigs. ASF was introduced into Georgia in 2007 and subsequently spread to the Russian Federation and several Eastern...... European countries. Consequently, there is a non-negligible risk of ASF spread towards Western Europe. Therefore it is important to develop tools to improve our understanding of the spread and control of ASF for contingency planning. A stochastic and dynamic spatial spread model (DTU-DADS) was adjusted...

  3. Mathematical formulation and numerical simulation of bird flu infection process within a poultry farm

    Science.gov (United States)

    Putri, Arrival Rince; Nova, Tertia Delia; Watanabe, M.

    2016-02-01

    Bird flu infection processes within a poultry farm are formulated mathematically. A spatial effect is taken into account for the virus concentration with a diffusive term. An infection process is represented in terms of a traveling wave solutions. For a small removal rate, a singular perturbation analysis lead to existence of traveling wave solutions, that correspond to progressive infection in one direction.

  4. Comparison of two Next Generation sequencing platforms for full genome sequencing of Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Pedersen, Anders Gorm; Höper, Dirk

    2013-01-01

    to the consensus sequence. Additionally, we got an average sequence depth for the genome of 4000 for the Iontorrent PGM and 400 for the FLX platform making the mapping suitable for single nucleotide variant (SNV) detection. The analysis revealed a single non-silent SNV A10665G leading to the amino acid change D......Next Generation Sequencing (NGS) is becoming more adopted into viral research and will be the preferred technology in the years to come. We have recently sequenced several strains of Classical Swine Fever Virus (CSFV) by NGS on both Genome Sequencer FLX (GS FLX) and Iontorrent PGM platforms...

  5. Flu (Influenza) Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/fluinfluenzatest.html Flu (Influenza) Test To use the sharing features on this page, please enable JavaScript. What is a Flu (Influenza) Test? Influenza, known as the flu , is ...

  6. Swine influenza virus vaccines: to change or not to change-that's the question.

    Science.gov (United States)

    Van Reeth, Kristien; Ma, Wenjun

    2013-01-01

    Commercial vaccines currently available against swine influenza virus (SIV) are inactivated, adjuvanted, whole virus vaccines, based on H1N1 and/or H3N2 and/or H1N2 SIVs. In keeping with the antigenic and genetic differences between SIVs circulating in Europe and the US, the vaccines for each region are produced locally and contain different strains. Even within a continent, there is no standardization of vaccine strains, and the antigen mass and adjuvants can also differ between different commercial products. Recombinant protein vaccines against SIV, vector, and DNA vaccines, and vaccines attenuated by reverse genetics have been tested in experimental studies, but they have not yet reached the market. In this review, we aim to present a critical analysis of the performance of commercial inactivated and novel generation SIV vaccines in experimental vaccination challenge studies in pigs. We pay special attention to the differences between commercial SIV vaccines and vaccination attitudes in Europe and in North America, to the issue of vaccine strain selection and changes, and to the potential advantages of novel generation vaccines over the traditional killed SIV vaccines.

  7. Molecular evolution of H1N1 swine influenza in Guangdong, China, 2016-2017.

    Science.gov (United States)

    Cai, Mengkai; Huang, Junming; Bu, Dexin; Yu, Zhiqing; Fu, Xinliang; Ji, Chihai; Zhou, Pei; Zhang, Guihong

    2018-06-01

    Swine are the main host of the H1N1 swine influenza virus (SIV), however, H1N1 can also infect humans and occasionally cause serious respiratory disease. To trace the evolution of the SIV in Guangdong, China, we performed an epidemic investigation during the period of 2016-2017. Nine H1N1 influenza viruses were isolated from swine nasal swabs. Antigenic analysis revealed that these viruses belonged to two distinct antigenic groups, represented by A/Swine/Guangdong/101/2016 and A/Swine/Guangdong/52/2017. Additionally, three genotypes, known as GD52/17-like, GD493/17-like and GD101/16-like, were identified by phylogenetic analysis. Importantly, the genotypes including a minimum of 4 pdm/09-origin internal genes have become prevalent in China in recent years. A total of 2966 swine serum samples were used to perform hemagglutination inhibition (HI) tests, and the results showed that the seroprevalence values of SW/GD/101/16 (32.2% in 2016, 32.1% in 2017) were significantly higher than the seroprevalence values of SW/GD/52/17 (18.0% in 2016, 16.7% in 2017). Our study showed that the three reassortant genotypes of H1N1 SIV currently circulating in China are stable, but H1N1pdm09 poses challenges to human health by the introduction of internal genes into these reassortant genotypes. Strengthening SIV surveillance is therefore critical for SIV control and minimizing its potential threat to public health. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009.

    Science.gov (United States)

    Shinde, Vivek; Bridges, Carolyn B; Uyeki, Timothy M; Shu, Bo; Balish, Amanda; Xu, Xiyan; Lindstrom, Stephen; Gubareva, Larisa V; Deyde, Varough; Garten, Rebecca J; Harris, Meghan; Gerber, Susan; Vagasky, Susan; Smith, Forrest; Pascoe, Neal; Martin, Karen; Dufficy, Deborah; Ritger, Kathy; Conover, Craig; Quinlisk, Patricia; Klimov, Alexander; Bresee, Joseph S; Finelli, Lyn

    2009-06-18

    Triple-reassortant swine influenza A (H1) viruses--containing genes from avian, human, and swine influenza viruses--emerged and became enzootic among pig herds in North America during the late 1990s. We report the clinical features of the first 11 sporadic cases of infection of humans with triple-reassortant swine influenza A (H1) viruses reported to the Centers for Disease Control and Prevention, occurring from December 2005 through February 2009, until just before the current epidemic of swine-origin influenza A (H1N1) among humans. These data were obtained from routine national influenza surveillance reports and from joint case investigations by public and animal health agencies. The median age of the 11 patients was 10 years (range, 16 months to 48 years), and 4 had underlying health conditions. Nine of the patients had had exposure to pigs, five through direct contact and four through visits to a location where pigs were present but without contact. In another patient, human-to-human transmission was suspected. The range of the incubation period, from the last known exposure to the onset of symptoms, was 3 to 9 days. Among the 10 patients with known clinical symptoms, symptoms included fever (in 90%), cough (in 100%), headache (in 60%), and diarrhea (in 30%). Complete blood counts were available for four patients, revealing leukopenia in two, lymphopenia in one, and thrombocytopenia in another. Four patients were hospitalized, two of whom underwent invasive mechanical ventilation. Four patients received oseltamivir, and all 11 recovered from their illness. From December 2005 until just before the current human epidemic of swine-origin influenza viruses, there was sporadic infection with triple-reassortant swine influenza A (H1) viruses in persons with exposure to pigs in the United States. Although all the patients recovered, severe illness of the lower respiratory tract and unusual influenza signs such as diarrhea were observed in some patients, including

  9. Evaluation of classical swine fever virus antibody detection assays with an emphasis on the differentiation of infected from vaccinated animals

    DEFF Research Database (Denmark)

    Schroeder, S.; von Rosen, Tanya; Blome, S.

    2012-01-01

    vaccinated animals (DIVA). The Chekit* CSF-Sero and the HerdChek* CSFV Ab, both of which detect antibodies against the E2 protein of classical swine fever virus (CSFV), had the highest sensitivity. Both tests were practicable and showed good reproducibility. Comparable sensitivity was shown by the Chekit......The aim of this study was to evaluate the general characteristics of commercially available enzyme-linked immunosorbent assays (ELISAs) to detect antibody against classical swine fever (CSF), as well as to assess their potential use as accompanying marker tests able to differentiate infected from......* CSF-Marker, an Erns ELISA. However, this test does not allow differentiation between antibodies directed against ruminant pestiviruses and those against CSFV. Therefore, it is not suitable for use with the chimeric marker vaccines tested. The PrioCHECK® CSFV Erns was the only ELISA suitable for use...

  10. From where did the 2009 'swine-origin' influenza A virus (H1N1 emerge?

    Directory of Open Access Journals (Sweden)

    Armstrong John S

    2009-11-01

    Full Text Available Abstract The swine-origin influenza A (H1N1 virus that appeared in 2009 and was first found in human beings in Mexico, is a reassortant with at least three parents. Six of the genes are closest in sequence to those of H1N2 'triple-reassortant' influenza viruses isolated from pigs in North America around 1999-2000. Its other two genes are from different Eurasian 'avian-like' viruses of pigs; the NA gene is closest to H1N1 viruses isolated in Europe in 1991-1993, and the MP gene is closest to H3N2 viruses isolated in Asia in 1999-2000. The sequences of these genes do not directly reveal the immediate source of the virus as the closest were from isolates collected more than a decade before the human pandemic started. The three parents of the virus may have been assembled in one place by natural means, such as by migrating birds, however the consistent link with pig viruses suggests that human activity was involved. We discuss a published suggestion that unsampled pig herds, the intercontinental live pig trade, together with porous quarantine barriers, generated the reassortant. We contrast that suggestion with the possibility that laboratory errors involving the sharing of virus isolates and cultured cells, or perhaps vaccine production, may have been involved. Gene sequences from isolates that bridge the time and phylogenetic gap between the new virus and its parents will distinguish between these possibilities, and we suggest where they should be sought. It is important that the source of the new virus be found if we wish to avoid future pandemics rather than just trying to minimize the consequences after they have emerged. Influenza virus is a very significant zoonotic pathogen. Public confidence in influenza research, and the agribusinesses that are based on influenza's many hosts, has been eroded by several recent events involving the virus. Measures that might restore confidence include establishing a unified international administrative

  11. Comprehensive analysis of the codon usage patterns in the envelope glycoprotein E2 gene of the classical swine fever virus.

    Directory of Open Access Journals (Sweden)

    Ye Chen

    Full Text Available The classical swine fever virus (CSFV, circulating worldwide, is a highly contagious virus. Since the emergence of CSFV, it has caused great economic loss in swine industry. The envelope glycoprotein E2 gene of the CSFV is an immunoprotective antigen that induces the immune system to produce neutralizing antibodies. Therefore, it is essential to study the codon usage of the E2 gene of the CSFV. In this study, 140 coding sequences of the E2 gene were analyzed. The value of effective number of codons (ENC showed low codon usage bias in the E2 gene. Our study showed that codon usage could be described mainly by mutation pressure ENC plot analysis combined with principal component analysis (PCA and translational selection-correlation analysis between the general average hydropathicity (Gravy and aromaticity (Aroma, and nucleotides at the third position of codons (A3s, T3s, G3s, C3s and GC3s. Furthermore, the neutrality analysis, which explained the relationship between GC12s and GC3s, revealed that natural selection had a key role compared with mutational bias during the evolution of the E2 gene. These results lay a foundation for further research on the molecular evolution of CSFV.

  12. Lamprey VLRB response to influenza virus supports universal rules of immunogenicity and antigenicity

    OpenAIRE

    Altman, Meghan O; Bennink, Jack R; Yewdell, Jonathan W; Herrin, Brantley R

    2015-01-01

    eLife digest Influenza viruses infect ten of millions of people each year. To conquer a flu infection, the human immune system develops antibodies that hasten recovery and prevent future flu infections. Unfortunately, flu is constantly changing in response to the human immune response, and antibodies induced by previous infection or vaccination provide partial protection, at best, against new strains. An ideal flu vaccine would stimulate the immune system to produce antibodies that protect ag...

  13. Identification of reassortant pandemic H1N1 influenza virus in Korean pigs.

    Science.gov (United States)

    Han, Jae Yeon; Park, Sung Jun; Kim, Hye Kwon; Rho, Semi; Nguyen, Giap Van; Song, Daesub; Kang, Bo Kyu; Moon, Hyung Jun; Yeom, Min Joo; Park, Bong Kyun

    2012-05-01

    Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.

  14. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    International Nuclear Information System (INIS)

    Ocaña-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert; Stech, Jürgen; Stech, Olga; Summerfield, Artur

    2012-01-01

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-κB translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  15. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ocana-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland); Stech, Juergen; Stech, Olga [Friedrich-Loeffler Institut, Greifswald-Insel Riems (Germany); Summerfield, Artur, E-mail: artur.summerfield@ivi.admin.ch [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland)

    2012-05-25

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-{kappa}B translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  16. Regional patterns of genetic diversity in swine influenza A viruses in the United States from 2010 to 2016.

    Science.gov (United States)

    Walia, Rasna R; Anderson, Tavis K; Vincent, Amy L

    2018-04-06

    Regular spatial and temporal analyses of the genetic diversity and evolutionary patterns of influenza A virus (IAV) in swine informs control efforts and improves animal health. Initiated in 2009, the USDA passively surveils IAV in U.S. swine, with a focus on subtyping clinical respiratory submissions, sequencing at minimum the hemagglutinin (HA) and neuraminidase (NA) genes, and sharing these data publicly. In this study, our goal was to quantify and describe regional and national patterns in the genetic diversity and evolution of IAV in U.S. swine from 2010 to 2016. A comprehensive phylogenetic and epidemiological analysis of publicly available HA and NA genes generated by the USDA surveillance system collected from January 2010 to December 2016 was conducted. The dominant subtypes and genetic clades detected during the study period were H1N1 (H1-γ/1A.3.3.3, N1-classical, 29%), H1N2 (H1-δ1/1B.2.2, N2-2002, 27%), and H3N2 (H3-IV-A, N2-2002, 15%), but many other minor clades were also maintained. Year-round circulation was observed, with a primary epidemic peak in October-November and a secondary epidemic peak in March-April. Partitioning these data into 5 spatial zones revealed that genetic diversity varied regionally and was not correlated with aggregated national patterns of HA/NA diversity. These data suggest that vaccine composition and control efforts should consider IAV diversity within swine production regions in addition to aggregated national patterns. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Flu Facts

    Science.gov (United States)

    ... severe cases. These large-scale outbreaks are called epidemics . If they spread worldwide, they're called pandemics . ... before you even know you're sick. Flu epidemics often start in schools and then move quickly ...

  18. FluKB: A Knowledge-Based System for Influenza Vaccine Target Discovery and Analysis of the Immunological Properties of Influenza Viruses

    DEFF Research Database (Denmark)

    Simon, Christian; Kudahl, Ulrich Johan; Sun, Jing

    2015-01-01

    responses. FluKB consists of more than 400,000 influenza protein sequences, known epitope data (357 verified T-cell epitopes, 685 HLA binders, and 16 naturally processed MHC ligands), and a collection of 28 influenza antibodies and their structurally defined B-cell epitopes. FluKB was built using amodular...

  19. Reverse zoonosis of influenza to swine: new perspectives on the human–animal interface

    Science.gov (United States)

    The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to sw...

  20. Lymphadenitis as a Rare Side Effect of H1N1 Vaccine in a Child

    Directory of Open Access Journals (Sweden)

    Zuhal Gundogdu

    2010-01-01

    Full Text Available We present a 5-year-old boy who had the complaint of swelling and pain on the right vaccine shot and right axillary areas. The right axillary area was diagnosed as reactive lymphadenitis, which we believe is a rare local side effect of the swine flu vaccine. The key message to take away from this case is that the patient had lymphadenitis as a local side effect of the swine flu vaccine. Lymphadenitis should be reported as a possible local side effect of the swine flu vaccine.

  1. Lymphadenitis as a Rare Side Effect of H1N1 Vaccine in a Child

    Science.gov (United States)

    Gundogdu, Zuhal; Seyhogullari, Mualla

    2010-01-01

    We present a 5-year-old boy who had the complaint of swelling and pain on the right vaccine shot and right axillary areas. The right axillary area was diagnosed as reactive lymphadenitis, which we believe is a rare local side effect of the swine flu vaccine. The key message to take away from this case is that the patient had lymphadenitis as a local side effect of the swine flu vaccine. Lymphadenitis should be reported as a possible local side effect of the swine flu vaccine. PMID:21209734

  2. Sodium phenylbutyrate abrogates African swine fever virus replication by disrupting the virus-induced hypoacetylation status of histone H3K9/K14.

    Science.gov (United States)

    Frouco, Gonçalo; Freitas, Ferdinando B; Martins, Carlos; Ferreira, Fernando

    2017-10-15

    African swine fever virus (ASFV) causes a highly lethal disease in swine for which neither a vaccine nor treatment are available. Recently, a new class of drugs that inhibit histone deacetylases enzymes (HDACs) has received an increasing interest as antiviral agents. Considering studies by others showing that valproic acid, an HDAC inhibitor (HDACi), blocks the replication of enveloped viruses and that ASFV regulates the epigenetic status of the host cell by promoting heterochromatinization and recruitment of class I HDACs to viral cytoplasmic factories, the antiviral activity of four HDACi against ASFV was evaluated in this study. Results showed that the sodium phenylbutyrate fully abrogates the ASFV replication, whereas the valproic acid leads to a significant reduction of viral progeny at 48h post-infection (-73.9%, p=0.046), as the two pan-HDAC inhibitors tested (Trichostatin A: -82.2%, p=0.043; Vorinostat: 73.9%, p=0.043). Further evaluation showed that protective effects of NaPB are dose-dependent, interfering with the expression of late viral genes and reversing the ASFV-induced histone H3 lysine 9 and 14 (H3K9K14) hypoacetylation status, compatible to an open chromatin state and possibly enabling the expression of host genes non-beneficial to infection progression. Additionally, a synergic antiviral effect was detected when NaPB is combined with an ASFV-topoisomerase II poison (Enrofloxacin). Altogether, our results strongly suggest that cellular HDACs are involved in the establishment of ASFV infection and emphasize that further in vivo studies are needed to better understand the antiviral activity of HDAC inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Etiology and clinical characterization of respiratory virus infections in adult patients attending an emergency department in Beijing.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Yu

    Full Text Available BACKGROUND: Acute respiratory tract infections (ARTIs represent a serious global health burden. To date, few reports have addressed the prevalence of respiratory viruses (RVs in adults with ARTIs attending an emergency department (ED. Therefore, the potential impact of respiratory virus infections on such patients remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: To determine the epidemiological and clinical profiles of common and recently discovered respiratory viruses in adults with ARTIs attending an ED in Beijing, a 1-year consecutive study was conducted from May, 2010, to April, 2011. Nose and throat swab samples from 416 ARTI patients were checked for 13 respiratory viruses using multiple reverse transcription polymerase chain reaction(RT-PCR assays for common respiratory viruses, including influenza viruses (Flu A, B, and adenoviruses (ADVs, picornaviruses (PICs, respiratory syncytial virus (RSV, parainfluenza viruses (PIVs 1-3, combined with real-time RT-PCR for human metapneumovirus (HMPV and human coronaviruses (HCoVs, -OC43, -229E, -NL63, and -HKU1. Viral pathogens were detected in 52.88% (220/416 of patient samples, and 7.21% (30/416 of patients tested positive for more than one virus. PICs (17.79% were the dominant agents detected, followed by FluA (16.11%, HCoVs (11.78%, and ADV (11.30%. HMPV, PIVs, and FluB were also detected (<3%, but not RSV. The total prevalence and the dominant virus infections detected differed significantly between ours and a previous report. Co-infection rates were high for HCoV-229E (12/39, 30.76%, PIC (22/74, 29.73%, ADV (12/47, 25.53% and FluA (15/67, 22.39%. Different patterns of clinical symptoms were associated with different respiratory viruses. CONCLUSIONS: The pattern of RV involvement in adults with ARTIs attending an ED in China differs from that previously reported. The high prevalence of viruses (PIC, FluA, HCoVs and ADV reported here strongly highlight the need for the development of safe and

  4. Influenza A Viruses of Swine (IAV-S) in Vietnam from 2010 to 2015: Multiple Introductions of A(H1N1)pdm09 Viruses into the Pig Population and Diversifying Genetic Constellations of Enzootic IAV-S.

    Science.gov (United States)

    Takemae, Nobuhiro; Harada, Michiyo; Nguyen, Phuong Thanh; Nguyen, Tung; Nguyen, Tien Ngoc; To, Thanh Long; Nguyen, Tho Dang; Pham, Vu Phong; Le, Vu Tri; Do, Hoa Thi; Vo, Hung Van; Le, Quang Vinh Tin; Tran, Tan Minh; Nguyen, Thanh Duy; Thai, Phuong Duy; Nguyen, Dang Hoang; Le, Anh Quynh Thi; Nguyen, Diep Thi; Uchida, Yuko; Saito, Takehiko

    2017-01-01

    Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam. This comprehensive genetic characterization of 388 influenza A viruses of swine (IAV-S) isolated through active surveillance of Vietnamese pig farms from 2010 through 2015 provides molecular epidemiological insight into the genetic diversification of IAV-S in Vietnam after the emergence of A(H1N1)pdm09 viruses. Multiple reassortments among A(H1N1)pdm09 viruses and enzootic IAV-S yielded 14 genotypes, 9 of which carried novel gene combinations. The reassortants that carried M genes derived from A(H1N1

  5. Efficacy of a pandemic (H1N1) 2009 virus vaccine in pigs against the pandemic influenza virus is superior to commercially available swine influenza vaccines.

    Science.gov (United States)

    Loeffen, W L A; Stockhofe, N; Weesendorp, E; van Zoelen-Bos, D; Heutink, R; Quak, S; Goovaerts, D; Heldens, J G M; Maas, R; Moormann, R J; Koch, G

    2011-09-28

    In April 2009 a new influenza A/H1N1 strain, currently named "pandemic (H1N1) influenza 2009" (H1N1v), started the first official pandemic in humans since 1968. Several incursions of this virus in pig herds have also been reported from all over the world. Vaccination of pigs may be an option to reduce exposure of human contacts with infected pigs, thereby preventing cross-species transfer, but also to protect pigs themselves, should this virus cause damage in the pig population. Three swine influenza vaccines, two of them commercially available and one experimental, were therefore tested and compared for their efficacy against an H1N1v challenge. One of the commercial vaccines is based on an American classical H1N1 influenza strain, the other is based on a European avian H1N1 influenza strain. The experimental vaccine is based on reassortant virus NYMC X179A (containing the hemagglutinin (HA) and neuraminidase (NA) genes of A/California/7/2009 (H1N1v) and the internal genes of A/Puerto Rico/8/34 (H1N1)). Excretion of infectious virus was reduced by 0.5-3 log(10) by the commercial vaccines, depending on vaccine and sample type. Both vaccines were able to reduce virus replication especially in the lower respiratory tract, with less pathological lesions in vaccinated and subsequently challenged pigs than in unvaccinated controls. In pigs vaccinated with the experimental vaccine, excretion levels of infectious virus in nasal and oropharyngeal swabs, were at or below 1 log(10)TCID(50) per swab and lasted for only 1 or 2 days. An inactivated vaccine containing the HA and NA of an H1N1v is able to protect pigs from an infection with H1N1v, whereas swine influenza vaccines that are currently available are of limited efficaciousness. Whether vaccination of pigs against H1N1v will become opportune remains to be seen and will depend on future evolution of this strain in the pig population. Close monitoring of the pig population, focussing on presence and evolution of

  6. Swine influenza virus infection dynamics in two pig farms; results of a longitudinal assessment

    Directory of Open Access Journals (Sweden)

    Simon-Grifé Meritxell

    2012-03-01

    Full Text Available Abstract In order to assess the dynamics of influenza virus infection in pigs, serological and virological follow-ups were conducted in two whole batches of pigs from two different farms (F1 and F2, from 3 weeks of age until market age. Anti-swine influenza virus (SIV antibodies (measured by ELISA and hemagglutination inhibition and nasal virus shedding (measured by RRT-PCR and isolation in embryonated chicken eggs and MDCK cells were carried out periodically. SIV isolates were subtyped and hemagglutinin and neuraminidase genes were partially sequenced and analyzed phylogenetically. In F1, four waves of viral circulation were detected, and globally, 62/121 pigs (51.2% were positive by RRT-PCR at least once. All F1 isolates corresponded to H1N1 subtype although hemagglutination inhibition results also revealed the presence of antibodies against H3N2. The first viral wave took place in the presence of colostral-derived antibodies. Nine pigs were positive in two non-consecutive sampling weeks, with two of the animals being positive with the same isolate. Phylogenetic analyses showed that different H1N1 variants circulated in that farm. In F2, only one isolate, H1N2, was detected and all infections were concentrated in a very short period of time, as assumed for a classic influenza outbreak. These findings led us to propose that influenza virus infection in pigs might present different patterns, from an epidemic outbreak to an endemic form with different waves of infections with a lower incidence.

  7. A Review of African Swine Fever and the Potential for Introduction into the United States and the Possibility of Subsequent Establishment in Feral Swine and Native Ticks.

    Science.gov (United States)

    Brown, Vienna R; Bevins, Sarah N

    2018-01-01

    African swine fever (ASF) is caused by African swine fever virus (ASFV), which can cause substantial morbidity and mortality events in swine. The virus can be transmitted via direct and indirect contacts with infected swine, their products, or competent vector species, especially Ornithodoros ticks. Africa and much of Eastern Europe are endemic for ASF; a viral introduction to countries that are currently ASF free could have severe economic consequences due to the loss of production from infected animals and the trade restrictions that would likely be imposed as a result of an outbreak. We identified vulnerabilities that could lead to ASFV introduction or persistence in the United States or other ASF-free regions. Both legal and illegal movements of live animals, as well as the importation of animal products, byproducts, and animal feed, pose a risk of virus introduction. Each route is described, and current regulations designed to prevent ASFV and other pathogens from entering the United States are outlined. Furthermore, existing ASFV research gaps are highlighted. Laboratory experiments to evaluate multiple species of Ornithodoros ticks that have yet to be characterized would be useful to understand vector competence, host preferences, and distribution of competent soft tick vectors in relation to high pig production areas as well as regions with high feral swine (wild boar or similar) densities. Knowledge relative to antigenic viral proteins that contribute to host response and determination of immune mechanisms that lead to protection are foundational in the quest for a vaccine. Finally, sampling of illegally imported and confiscated wild suid products for ASFV could shed light on the types of products being imported and provide a more informed perspective relative to the risk of ASFV importation.

  8. A Review of African Swine Fever and the Potential for Introduction into the United States and the Possibility of Subsequent Establishment in Feral Swine and Native Ticks

    Directory of Open Access Journals (Sweden)

    Vienna R. Brown

    2018-02-01

    Full Text Available African swine fever (ASF is caused by African swine fever virus (ASFV, which can cause substantial morbidity and mortality events in swine. The virus can be transmitted via direct and indirect contacts with infected swine, their products, or competent vector species, especially Ornithodoros ticks. Africa and much of Eastern Europe are endemic for ASF; a viral introduction to countries that are currently ASF free could have severe economic consequences due to the loss of production from infected animals and the trade restrictions that would likely be imposed as a result of an outbreak. We identified vulnerabilities that could lead to ASFV introduction or persistence in the United States or other ASF-free regions. Both legal and illegal movements of live animals, as well as the importation of animal products, byproducts, and animal feed, pose a risk of virus introduction. Each route is described, and current regulations designed to prevent ASFV and other pathogens from entering the United States are outlined. Furthermore, existing ASFV research gaps are highlighted. Laboratory experiments to evaluate multiple species of Ornithodoros ticks that have yet to be characterized would be useful to understand vector competence, host preferences, and distribution of competent soft tick vectors in relation to high pig production areas as well as regions with high feral swine (wild boar or similar densities. Knowledge relative to antigenic viral proteins that contribute to host response and determination of immune mechanisms that lead to protection are foundational in the quest for a vaccine. Finally, sampling of illegally imported and confiscated wild suid products for ASFV could shed light on the types of products being imported and provide a more informed perspective relative to the risk of ASFV importation.

  9. How to be a good visitor during flu season

    Science.gov (United States)

    ... consumers How to be a good visitor during flu season 11/20/2017 Access a printer-friendly ... of infection prevention. This is especially true during flu season. According to the CDC, influenza (the flu) ...

  10. Help Stop the Flu | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... page please turn Javascript on. Feature: Flu Shot Help Stop the Flu Past Issues / Winter 2011 Table ... CDC recommends that Americans do the following to help stop the flu: Cover nose and mouth with ...

  11. Norwalk virus gastroenteritis following raw oyster consumption.

    Science.gov (United States)

    Gunn, R A; Janowski, H T; Lieb, S; Prather, E C; Greenberg, H B

    1982-03-01

    In January, 1980, six out of 13 persons (46%) attending a party in a small northwest Florida town near the Gulf of Mexico became ill with Norwalk virus gastroenteritis after eating raw oysters. Symptoms experienced by the ill persons were principally nausea (100%), vomiting (83%) and diarrhea (50%) and were of brief duration. The symptom complex and epidemiology of Norwalk virus infection closely resemble the gastrointestinal illness commonly referred to as the 24-hour intestinal flu or "stomach flu." Norwalk virus infection was identified in this outbreak by application of a recently developed sensitive and specific serologic radioimmunoassay. Oysters from the incriminated batch had fecal coliform levels above recommended standards; however, recent studies of oyster-harvesting waters have shown only a weak correlation between fecal coliforms and the presence of enteric viruses. Further studies are needed to determine whether modifications of monitoring modalities for oyster-harvesting waters are needed.

  12. Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: A comparative study with foot-and-mouth disease virus and vesicular stomatitis virus

    International Nuclear Information System (INIS)

    Martin-Acebes, Miguel A.; Gonzalez-Magaldi, Monica; Rosas, Maria F.; Borrego, Belen; Brocchi, Emiliana; Armas-Portela, Rosario; Sobrino, Francisco

    2008-01-01

    The intracellular distribution of swine vesicular disease virus (SVDV) proteins and the induced reorganization of endomembranes in IBRS-2 cells were analyzed. Fluorescence to new SVDV capsids appeared first upon infection, concentrated in perinuclear circular structures and colocalized to dsRNA. As in foot-and-mouth disease virus (FMDV)-infected cells, a vesicular pattern was predominantly found in later stages of SVDV capsid morphogenesis that colocalized with those of non-structural proteins 2C, 2BC and 3A. These results suggest that assembly of capsid proteins is associated to the replication complex. Confocal microscopy showed a decreased fluorescence to ER markers (calreticulin and protein disulfide isomerase), and disorganization of cis-Golgi gp74 and trans-Golgi caveolin-1 markers in SVDV- and FMDV-, but not in vesicular stomatitis virus (VSV)-infected cells. Electron microscopy of SVDV-infected cells at an early stage of infection revealed fragmented ER cisternae with expanded lumen and accumulation of large Golgi vesicles, suggesting alterations of vesicle traffic through Golgi compartments. At this early stage, FMDV induced different patterns of ER fragmentation and Golgi alterations. At later stages of SVDV cytopathology, cells showed a completely vacuolated cytoplasm containing vesicles of different sizes. Cell treatment with brefeldin A, which disrupts the Golgi complex, reduced SVDV (∼ 5 log) and VSV (∼ 4 log) titers, but did not affect FMDV growth. Thus, three viruses, which share target tissues and clinical signs in natural hosts, induce different intracellular effects in cultured cells

  13. Validation of a Real Time PCR for Classical Swine Fever Diagnosis

    Directory of Open Access Journals (Sweden)

    Natanael Lamas Dias

    2014-01-01

    Full Text Available The viral disease classical swine fever (CSF, caused by a Pestivirus, is one of the major causes of economic losses for pig farming. The aim of this work was to validate a RT-qPCR using Taqman for detection of CSF in swine tissues. The parameters for the validation followed the specifications of the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (OIE and the guide ABNT NBR ISO/IEC 17025:2005. The analysis of the 5′NTR region of CSF virus was performed in 145 samples from 29 infected pigs and in 240 samples from 80 pigs originated in the Brazilian CSF-free zone. The tissues tested were spleen, kidney, blood, tonsils, and lymph nodes. Sequencing of the positive samples for 5′NTR region was performed to evaluate the specificity of the RT-qPCR. Tests performed for the RT-qPCR validation demonstrated that the PCR assay was efficient in detecting RNA from CSF virus in all materials from different tissues of infected animals. Furthermore, RNA from CSF virus was not detected in samples of swine originated from the Brazilian CSF-free zone. Hence, it is concluded that RT-qPCR can be used as a complementary diagnostic for CSF.

  14. Validation of a real time PCR for classical Swine Fever diagnosis.

    Science.gov (United States)

    Dias, Natanael Lamas; Fonseca Júnior, Antônio Augusto; Oliveira, Anapolino Macedo; Sales, Erica Bravo; Alves, Bruna Rios Coelho; Dorella, Fernanda Alves; Camargos, Marcelo Fernandes

    2014-01-01

    The viral disease classical swine fever (CSF), caused by a Pestivirus, is one of the major causes of economic losses for pig farming. The aim of this work was to validate a RT-qPCR using Taqman for detection of CSF in swine tissues. The parameters for the validation followed the specifications of the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (OIE) and the guide ABNT NBR ISO/IEC 17025:2005. The analysis of the 5'NTR region of CSF virus was performed in 145 samples from 29 infected pigs and in 240 samples from 80 pigs originated in the Brazilian CSF-free zone. The tissues tested were spleen, kidney, blood, tonsils, and lymph nodes. Sequencing of the positive samples for 5'NTR region was performed to evaluate the specificity of the RT-qPCR. Tests performed for the RT-qPCR validation demonstrated that the PCR assay was efficient in detecting RNA from CSF virus in all materials from different tissues of infected animals. Furthermore, RNA from CSF virus was not detected in samples of swine originated from the Brazilian CSF-free zone. Hence, it is concluded that RT-qPCR can be used as a complementary diagnostic for CSF.

  15. Validation of a Real Time PCR for Classical Swine Fever Diagnosis

    Science.gov (United States)

    Dias, Natanael Lamas; Fonseca Júnior, Antônio Augusto; Oliveira, Anapolino Macedo; Sales, Érica Bravo; Alves, Bruna Rios Coelho; Dorella, Fernanda Alves

    2014-01-01

    The viral disease classical swine fever (CSF), caused by a Pestivirus, is one of the major causes of economic losses for pig farming. The aim of this work was to validate a RT-qPCR using Taqman for detection of CSF in swine tissues. The parameters for the validation followed the specifications of the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (OIE) and the guide ABNT NBR ISO/IEC 17025:2005. The analysis of the 5′NTR region of CSF virus was performed in 145 samples from 29 infected pigs and in 240 samples from 80 pigs originated in the Brazilian CSF-free zone. The tissues tested were spleen, kidney, blood, tonsils, and lymph nodes. Sequencing of the positive samples for 5′NTR region was performed to evaluate the specificity of the RT-qPCR. Tests performed for the RT-qPCR validation demonstrated that the PCR assay was efficient in detecting RNA from CSF virus in all materials from different tissues of infected animals. Furthermore, RNA from CSF virus was not detected in samples of swine originated from the Brazilian CSF-free zone. Hence, it is concluded that RT-qPCR can be used as a complementary diagnostic for CSF. PMID:24818039

  16. Porcine Mx1 Protein Inhibits Classical Swine Fever Virus Replication by Targeting Nonstructural Protein NS5B.

    Science.gov (United States)

    Zhou, Jing; Chen, Jing; Zhang, Xiao-Min; Gao, Zhi-Can; Liu, Chun-Chun; Zhang, Yun-Na; Hou, Jin-Xiu; Li, Zhao-Yao; Kan, Lin; Li, Wen-Liang; Zhou, Bin

    2018-04-01

    Mx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 in vitro and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity in vitro Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione S -transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV. We used mutations in the poMx1 protein to elucidate the mechanism of their anti-CSFV activity and found that mutants that disrupted the association with NS5B lost all anti-CSV activity. Moreover, an RdRp activity assay further revealed that poMx1 undermined the RdRp activities of NS5B. Together, these results indicate that porcine Mx proteins exert their antiviral activity against CSFV by interacting with NS5B. IMPORTANCE Our previous studies have shown that porcine Mx1 (poMx1) inhibits classical swine fever virus (CSFV) replication in vitro and in vivo , but the molecular mechanism of action remains largely unknown. In this study, we dissect the molecular mechanism of porcine Mx1 and Mx2 against CSFV in vitro Our results show that poMx1 associates with NS5B, the RNA-dependent RNA polymerase of CSFV, resulting in the reduction of CSFV replication. Moreover, the mutants of poMx1 further elucidate the mechanism of their anti-CSFV activities. Copyright © 2018 American Society for Microbiology.

  17. Protection of pigs against pandemic swine origin H1N1 influenza A virus infection by hemagglutinin- or neuraminidase-expressing attenuated pseudorabies virus recombinants.

    Science.gov (United States)

    Klingbeil, Katharina; Lange, Elke; Blohm, Ulrike; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2015-03-02

    Influenza is an important respiratory disease of pigs, and may lead to novel human pathogens like the 2009 pandemic H1N1 swine-origin influenza virus (SoIV). Therefore, improved influenza vaccines for pigs are required. Recently, we demonstrated that single intranasal immunization with a hemagglutinin (HA)-expressing pseudorabies virus recombinant of vaccine strain Bartha (PrV-Ba) protected pigs from H1N1 SoIV challenge (Klingbeil et al., 2014). Now we investigated enhancement of efficacy by prime-boost vaccination and/or intramuscular administration. Furthermore, a novel PrV-Ba recombinant expressing codon-optimized N1 neuraminidase (NA) was included. In vitro replication of this virus was only slightly affected compared to parental virus. Unlike HA, the abundantly expressed NA was efficiently incorporated into PrV particles. Immunization of pigs with the two PrV recombinants, either singly or in combination, induced B cell proliferation and the expected SoIV-specific antibodies, whose titers increased substantially after boost vaccination. After immunization of animals with either PrV recombinant H1N1 SoIV challenge virus replication was significantly reduced compared to PrV-Ba vaccinated or naïve controls. Protective efficacy of HA-expressing PrV was higher than of NA-expressing PrV, and not significantly enhanced by combination. Despite higher serum antibody titers obtained after intramuscular immunization, transmission of challenge virus to naïve contact animals was only prevented after intranasal prime-boost vaccination with HA-expressing PrV-Ba. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Novel triple reassortant H1N2 influenza viruses bearing six internal genes of the pandemic 2009/H1N1 influenza virus were detected in pigs in China.

    Science.gov (United States)

    Qiao, Chuanling; Liu, Liping; Yang, Huanliang; Chen, Yan; Xu, Huiyang; Chen, Hualan

    2014-12-01

    The pandemic A/H1N1 influenza viruses emerged in both Mexico and the United States in March 2009, and were transmitted efficiently in the human population. Transmissions of the pandemic 2009/H1N1 virus from humans to poultry and other species of mammals were reported from several continents during the course of the 2009 H1N1 pandemic. Reassortant H1N1, H1N2, and H3N2 viruses containing genes of the pandemic 2009/H1N1 viruses appeared in pigs in some countries. In winter of 2012, a total of 2600 nasal swabs were collected from healthy pigs in slaughterhouses located throughout 10 provinces in China. The isolated viruses were subjected to genetic and antigenic analysis. Two novel triple-reassortant H1N2 influenza viruses were isolated from swine in China in 2012, with the HA gene derived from Eurasian avian-like swine H1N1, the NA gene from North American swine H1N2, and the six internal genes from the pandemic 2009/H1N1 viruses. The two viruses had similar antigenic features and some significant changes in antigenic characteristics emerged when compared to the previously identified isolates. We inferred that the novel reassortant viruses in China may have arisen from the accumulation of the three types of influenza viruses, which further indicates that swine herds serve as "mixing vessels" for influenza viruses. Influenza virus reassortment is an ongoing process, and our findings highlight the urgent need for continued influenza surveillance among swine herds. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A historical perspective of influenza A(H1N2) virus.

    Science.gov (United States)

    Komadina, Naomi; McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals.

  20. Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China.

    Science.gov (United States)

    Yu, Hai; Zhang, Peng-Chao; Zhou, Yan-Jun; Li, Guo-Xin; Pan, Jie; Yan, Li-Ping; Shi, Xiao-Xiao; Liu, Hui-Li; Tong, Guang-Zhi

    2009-08-21

    As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or "mixing vessels", and swine influenza virus surveillance in China should be given a high priority.

  1. Influenza virus sequence feature variant type analysis: evidence of a role for NS1 in influenza virus host range restriction.

    Science.gov (United States)

    Noronha, Jyothi M; Liu, Mengya; Squires, R Burke; Pickett, Brett E; Hale, Benjamin G; Air, Gillian M; Galloway, Summer E; Takimoto, Toru; Schmolke, Mirco; Hunt, Victoria; Klem, Edward; García-Sastre, Adolfo; McGee, Monnie; Scheuermann, Richard H

    2012-05-01

    Genetic drift of influenza virus genomic sequences occurs through the combined effects of sequence alterations introduced by a low-fidelity polymerase and the varying selective pressures experienced as the virus migrates through different host environments. While traditional phylogenetic analysis is useful in tracking the evolutionary heritage of these viruses, the specific genetic determinants that dictate important phenotypic characteristics are often difficult to discern within the complex genetic background arising through evolution. Here we describe a novel influenza virus sequence feature variant type (Flu-SFVT) approach, made available through the public Influenza Research Database resource (www.fludb.org), in which variant types (VTs) identified in defined influenza virus protein sequence features (SFs) are used for genotype-phenotype association studies. Since SFs have been defined for all influenza virus proteins based on known structural, functional, and immune epitope recognition properties, the Flu-SFVT approach allows the rapid identification of the molecular genetic determinants of important influenza virus characteristics and their connection to underlying biological functions. We demonstrate the use of the SFVT approach to obtain statistical evidence for effects of NS1 protein sequence variations in dictating influenza virus host range restriction.

  2. Caring for Your Child's Cold or Flu

    Science.gov (United States)

    ... Print Share Caring for Your Child’s Cold or Flu Page Content ​Unfortunately, there's no cure for the ... or spoon) that is marked in milliliters. Prevention: Flu vaccine Children 6 months or older should get ...

  3. Flu Vaccine and People with Egg Allergies

    Science.gov (United States)

    ... Pandemic Other Flu Vaccine and People with Egg Allergies Language: English (US) Español Recommend on Facebook Tweet ... for Recommendations This page contains information about egg allergy and flu vaccination. Summary: CDC and its Advisory ...

  4. Settling and survival profile of enteric pathogens in the swine effluent for water reuse purpose.

    Science.gov (United States)

    Fongaro, G; Kunz, A; Magri, M E; Schissi, C D; Viancelli, A; Philippi, L S; Barardi, C R M

    2016-11-01

    The present study evaluated the pathogens persistence and settling profile in swine effluent. We determined the enteric pathogens settling characteristics, their survival and inactivation profile in swine effluent (for water reuse purpose) and in sludge (generated after aerobic treatment - during secondary settling process). The study was performed in laboratorial-scale and in full-scale (manure treatment plant). Enteric viruses and enteric bacteria were used as biomarkers. Results showed that these enteric pathogens were significantly reduced from swine effluent during secondary settling process, and enteric viruses removal was correlated with the suspended solids decantation. The design of secondary settlers can be adapted to improve pathogens removal, by diminishing the solids loading rate per area and time, ending in higher hydraulic retention times. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Accelerating vaccine development for African swine fever virus ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Photo: IDRC / Bartay The challenge African swine fever (ASF) is a highly infectious hemorrhagic viral disease that wipes out entire herds of infected pigs. ASF is widespread in at least half of sub-Saharan Africa, and threatens food security due to devastating economic losses.

  6. Identification of cross-reacting T-cell epitopes in structural and non-structural proteins of swine and pandemic H1N1 influenza A virus strains in pigs

    DEFF Research Database (Denmark)

    Baratelli, Massimiliano; Pedersen, Lasse Eggers; Trebbien, Ramona

    2017-01-01

    Heterologous protection against swine influenza viruses (SwIVs) of different lineages is an important concern for the pig industry. Cross-protection between 'avian-like' H1N1 and 2009 pandemic H1N1 lineages has been observed previously, indicating the involvement of cross-reacting T-cells. Here...

  7. Continue to Vaccinate Patients and Staff Against the Flu

    Centers for Disease Control (CDC) Podcasts

    This podcast is a reminder to health care providers about the importance of annual flu vaccination—it’s not too late! Health care providers should get their flu vaccine and continue offering and encouraging flu vaccination among their staff, colleagues, and patients.

  8. Efficient purification of cell culture-derived classical swine fever virus by ultrafiltration and size-exclusion chromatography

    Directory of Open Access Journals (Sweden)

    Ruining WANG,Yubao ZHI,Junqing GUO,Qingmei LI,Li WANG,Jifei YANG,Qianyue JIN,Yinbiao WANG,Yanyan YANG,Guangxu XING,Songlin QIAO,Mengmeng ZHAO,Ruiguang DENG,Gaiping ZHANG

    2015-09-01

    Full Text Available Large-scale production of cell culture-based classical swine fever virus (CSFV vaccine is hampered by the adverse reactions caused by contaminants from host cell and culture medium. Hence, we have developed an efficient method for purifying CSFV from cell-culture medium. Pure viral particles were obtained with two steps of tangential-flow filtration (TFF and size-exclusion chromatography (SEC, and were compared with particles from ultracentrifugation by transmission electron microscopy (TEM, infectivity and recovery test, and real time fluorescent quantitative PCR (FQ-PCR. TFF concentrated the virus particles effectively with a retention rate of 98.5%, and 86.2% of viral particles were obtained from the ultrafiltration retentate through a Sepharose 4 F F column on a biological liquid chromatography system. CSFV purified by TFF-SEC or ultracentrifugation were both biologically active from 1.0×10-4.25 TCID50·mL-1 to 3.0×10-6.25 TCID50·mL-1, but the combination of TFF and SEC produced more pure virus particles than by ultracentrifugation alone. In addition, pure CSFV particles with the expected diameter of 40—60 nm were roughly spherical without any visible contamination. Mice immunized with CSFV purified by TFF-SEC produced higher antibody levels compared with immunization with ultracentrifugation-purified CSFV (P<0.05. The purification procedures in this study are reliable technically and feasible for purification of large volumes of viruses.

  9. Cross-Species Infectivity of H3N8 Influenza Virus in an Experimental Infection in Swine.

    Science.gov (United States)

    Solórzano, Alicia; Foni, Emanuela; Córdoba, Lorena; Baratelli, Massimiliano; Razzuoli, Elisabetta; Bilato, Dania; Martín del Burgo, María Ángeles; Perlin, David S; Martínez, Jorge; Martínez-Orellana, Pamela; Fraile, Lorenzo; Chiapponi, Chiara; Amadori, Massimo; del Real, Gustavo; Montoya, María

    2015-11-01

    Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host. To gain insight into the possibility of H3N8 avian IAVs to cross the species barrier into pigs, in vitro experiments and an experimental infection in pigs with four H3N8 viruses from different origins (equine, canine, avian, and seal) were performed. As a positive control, an H3N2 swine influenza virus A was used. Although equine and canine viruses hardly replicated in the respiratory systems of pigs, avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Interestingly, antibodies against hemagglutinin could not be detected after infection by hemagglutination inhibition (HAI) test with avian and seal viruses. This phenomenon was observed not only in pigs but also in mice immunized with the same virus strains. Our data indicated that H3N8 IAVs from wild aquatic birds have the potential to cross the species barrier and establish successful infections in pigs that might spread unnoticed using the HAI test as diagnostic tool. Although natural infection of humans with an avian H3N8 influenza A virus has not yet been reported, this influenza A virus subtype has already crossed the species barrier. Therefore, we have examined the potential of H3N8 from canine, equine, avian, and seal origin to productively infect pigs. Our results demonstrated that avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Surprisingly, we

  10. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response

    Directory of Open Access Journals (Sweden)

    Wei Jian-Chao

    2011-07-01

    Full Text Available Abstract Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV. Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865 and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716, were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine than that of mono-epitope peptide(rE2-a or rE2-b. Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.

  11. Comparative evaluation of the CerTest VIASURE flu A, B & RSV real time RT-PCR detection kit on the BD MAX system versus a routine in-house assay for detection of influenza A and B virus during the 2016/17 influenza season

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Bek-Thomsen, Malene; Andersen, Signe Dalsgaard

    2018-01-01

    laboratory technician "hands on" time but also the laboratory turnaround time is of interest. OBJECTIVES: We evaluated the performance of the VIASURE Flu A, B & RSV Real Time RT-PCR Detection Kit (CerTest Biotec) for detecting Influenza A and B viruses. STUDY DESIGN: During the 2016/17 influenza season 532...

  12. Is It a Cold or the Flu (For Parents)?

    Science.gov (United States)

    ... English Español Is It a Cold or the Flu? KidsHealth / For Parents / Is It a Cold or the Flu? Print en español ¿Es un resfriado o una ... cough, and high fever — could it be the flu that's been going around? Or just a common ...

  13. The effect of gamma-irradiation conditions on the immunogenicity of whole-inactivated Influenza A virus vaccine.

    Science.gov (United States)

    David, Shannon C; Lau, Josyane; Singleton, Eve V; Babb, Rachelle; Davies, Justin; Hirst, Timothy R; McColl, Shaun R; Paton, James C; Alsharifi, Mohammed

    2017-02-15

    Gamma-irradiation, particularly an irradiation dose of 50kGy, has been utilised widely to sterilise highly pathogenic agents such as Ebola, Marburg Virus, and Avian Influenza H5N1. We have reported previously that intranasal vaccination with a gamma-irradiated Influenza A virus vaccine (γ-Flu) results in cross-protective immunity. Considering the possible inclusion of highly pathogenic Influenza strains in future clinical development of γ-Flu, an irradiation dose of 50kGy may be used to enhance vaccine safety beyond the internationally accepted Sterility Assurance Level (SAL). Thus, we investigated the effect of irradiation conditions, including high irradiation doses, on the immunogenicity of γ-Flu. Our data confirm that irradiation at low temperatures (using dry-ice) is associated with reduced damage to viral structure compared with irradiation at room temperature. In addition, a single intranasal vaccination with γ-Flu irradiated on dry-ice with either 25 or 50kGy induced seroconversion and provided complete protection against lethal Influenza A challenge. Considering that low temperature is expected to reduce the protein damage associated with exposure to high irradiation doses, we titrated the vaccine dose to verify the efficacy of 50kGy γ-Flu. Our data demonstrate that exposure to 50kGy on dry-ice is associated with limited effect on vaccine immunogenicity, apparent only when using very low vaccine doses. Overall, our data highlight the immunogenicity of influenza virus irradiated at 50kGy for induction of high titre antibody and cytotoxic T-cell responses. This suggests these conditions are suitable for development of γ-Flu vaccines based on highly pathogenic Influenza A viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Identification of atypical porcine pestivirus infection in swine herds in China.

    Science.gov (United States)

    Zhang, K; Wu, K; Liu, J; Ge, S; Xiao, Y; Shang, Y; Ning, Z

    2017-08-01

    Atypical porcine pestivirus (APPV) have been detected in swine herds from the USA, Germany, the Netherlands, Spain and most recently in Austria, suggesting a wide geographic distribution of this novel virus. Here, for the first time, we reported APPV infection in swine herds in China. Newborn piglets from two separate swine herds in Guangdong province were found showing typical congenital tremors in July and August 2016. RT-PCR, sequencing and phylogenetic analysis showed APPV infection occurred. Phylogenetic analysis showed that Chinese APPV strains, GD1 and GD2, formed independent branch from the USA, Germany and the Netherlands. Nucleotide identities between members of the APPV ranged between 83.1% and 83.5%, and this showed APPV is highly diverse. It is apparent that this provides the first molecular evidence of APPV infection in swine herds in China. © 2017 Blackwell Verlag GmbH.

  15. Factors Affecting Intention among Students to Be Vaccinated against A/H1N1 Influenza: A Health Belief Model Approach

    Directory of Open Access Journals (Sweden)

    Sharon Teitler-Regev

    2011-01-01

    Full Text Available The outbreak of A/H1N1 influenza (henceforth, swine flu in 2009 was characterized mainly by morbidity rates among young people. This study examined the factors affecting the intention to be vaccinated against the swine flu among students in Israel. Questionnaires were distributed in December 2009 among 387 students at higher-education institutions. The research questionnaire included sociodemographic characteristics and Health Belief Model principles. The results show that the factors positively affecting the intention to take the swine flu vaccine were past experience with seasonal flu shot and three HBM categories: higher levels of perceived susceptibility for catching the illness, perceived seriousness of illness, and lower levels of barriers. We conclude that offering the vaccine at workplaces may raise the intention to take the vaccine among young people in Israel.

  16. Humoral and cellular immune response in mice induced by the classical swine fever virus E2 protein fused to the porcine CD154 antigen.

    Science.gov (United States)

    Sordo, Yusmel; Suárez, Marisela; Caraballo, Rosalina; Sardina, Talía; Brown, Emma; Duarte, Carlos; Lugo, Joanna; Gil, Lázaro; Perez, Danny; Oliva, Ayme; Vargas, Milagros; Santana, Elaine; Valdés, Rodolfo; Rodríguez, María Pilar

    2018-03-01

    The development of subunit vaccines against classical swine fever is a desirable goal, because it allows discrimination between vaccinated and infected animals. In this study, humoral and cellular immune response elicited in inbred BALB/c mice by immunization with a recombinant classical swine fever virus (CSFV) E2 protein fused to porcine CD154 antigen (E2CD154) was assessed. This model was used as a predictor of immune response in swine. Mice were immunized with E2CD154 emulsified in Montanide ISA50V2 or dissolved in saline on days 1 and 21. Another group received E2His antigen, without CD154, in the same adjuvant. Montanide ISA50V2 or saline served as negative controls for each experimental group. Animals immunized with 12.5 and 2.5 μg/dose of E2CD154 developed the highest titers (>1:2000) of CSFV neutralizing antibodies. Moreover, CSFV specific splenocyte gamma-interferon production, measured after seven and twenty-eight days of immunization, was significantly higher in mice immunized with 12.5 μg of E2CD154. As a conclusion, E2CD154 emulsified in Montanide ISA50 V2 was able to induce a potent humoral and an early cellular immune response in inbred BALB/c mice. Therefore, this immunogen might be an appropriate candidate to elicit immune response in swine, control CSF disease and to eliminate CSFV in swine. Copyright © 2018 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  17. Bat Influenza (Flu)

    Science.gov (United States)

    ... currently known to carry bat flu are not native to the continental United States, but are common ... by: Office of the Associate Director for Communication, Digital Media Branch, Division of Public Affairs Email Recommend ...

  18. Isoniazid-induced flu-like syndrome: A rare side effect

    Directory of Open Access Journals (Sweden)

    Sudipta Pandit

    2013-01-01

    Full Text Available Drug-induced flu-like syndrome is very rare. It is mainly produced by rifampicin. We report a case of pulmonary tuberculosis (PTB that developed isoniazid-induced flu-like syndrome, but could be cured with a modified regimen replacing isoniazid with levofloxacin. A 10-year-old girl with PTB was treated with isoniazid (H, rifampicin (R, ethambutol (E, and pyrazinamide (Z. She developed features of flu from the sixth day. Symptoms recurred everyday within 1 h of drug ingestion and subsided automatically by next 12 h. After admission, HREZ were continued. She developed symptoms of flu after 1 h of drug ingestion. Antitubercular therapy (ATT was stopped and symptoms subsided automatically. Individual drug was started one by one after three days. Severe symptoms of flu developed after taking isoniazid, while other drugs were tolerated well. Levofloxacin was used as an alternative to isoniazid. She was cured after 6 months of chemotherapy. Isoniazid can possibly cause flu-like syndrome and the treating physician should be aware of this possible side effect when using ATT.

  19. Classical swine fever in India: current status and future perspective.

    Science.gov (United States)

    Singh, Vinod Kumar; Rajak, Kaushal Kishore; Kumar, Amit; Yadav, Sharad Kumar

    2018-05-04

    Classical swine fever (CSF) is a globally significant disease of swine caused by classical swine fever virus. The virus affects the wild boars and pigs of all age groups, leading to acute, chronic, late-onset or in-apparent course of the disease. The disease causes great economic loss to the piggery industry due to mortality, stunted growth, poor reproductive performance, and by impeding the international trade of pig and pig products. In India, CSF outbreaks are reported from most of the states wherever pig rearing is practiced and more frequently from northeast states. In spite of the highly devastating nature and frequent outbreaks, CSF remained underestimated and neglected for decades in India. The country requires rapid and sensitive diagnostic tests for an early detection of infection to limit the spread of the disease. Also, effective prophylactics are required to help in control and eradication of the disease for the development of the piggery industry. This review looks into the economic impact; epidemiology of CSF highlighting the temporal and spatial occurrence of outbreaks in the last two decades, circulation, and emergence of the virus genotypes in and around the country; and the constraints in the disease control, with the aim to update the knowledge of current status of the disease in India. The article also emphasizes the importance of the disease and the need to develop rapid specific diagnostics and effective measures to eradicate the disease.

  20. Experimental Infection of Ornithodoros erraticus sensu stricto with Two Portuguese African Swine Fever Virus Strains. Study of Factors Involved in the Dynamics of Infection in Ticks.

    Directory of Open Access Journals (Sweden)

    Rita Ribeiro

    Full Text Available African swine fever (ASF is a frequently devastating hemorrhagic disease of domestic pigs and wild boar and Ornithodoros erraticus sensu stricto argasid ticks are the only biological vectors of African swine fever virus (ASFV known to occur in Europe. Recently this disease emerged in Eastern Europe and Russian Federation, showing a huge potential for a rapid spread between countries. There is some risk of re-emergence of ASF in the countries where these ticks exist, that can contribute for the persistence of infection and compromise control measures. In this study we aimed to identify factors that determine the probability of infection and its dynamics in the tick vector Ornithodoros erraticus sensu stricto, with two Portuguese strains of ASFV. Our results suggest that these ticks have a high likelihood of excreting the two haemadsorbing ASF viruses of different host origins and that, in field surveys, the analysis of adults and 5th nymphal stage can provide the best chance of detecting virus infection. The results also indicate that infection of pigs with highly virulent ASF viruses will promote higher rates of infection and a higher likelihood for virus excretion by ticks. Nevertheless, there is also a risk, although lower, that ticks can become infected on pigs that have overcome the acute phase of infection, which was simulated in our study by membrane feeding ticks with low titres of virus. We believe these results can be valuable in designing and interpreting the results of ASF control programmes, and future work can also be undertaken as our dataset is released under open access, to perform studies in risk assessment for ASFV persistence in a region where O. erraticus sensu stricto ticks are present.

  1. Influenza A Virus with a Human-Like N2 Gene Is Circulating in Pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2013-01-01

    A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s....

  2. Fighting the Flu

    Centers for Disease Control (CDC) Podcasts

    2011-03-08

    Wes Studi, Hollywood actor, urges Native peoples to know the facts about the flu.  Created: 3/8/2011 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 3/8/2011.

  3. Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus: studies in the pig model of influenza.

    Science.gov (United States)

    Qiu, Yu; De Hert, Karl; Van Reeth, Kristien

    2015-09-24

    Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs.

  4. Comparison of immune responses against foot-and-mouth disease virus induced by fusion proteins using the swine IgG heavy chain constant region or β-galactosidase as a carrier of immunogenic epitopes

    International Nuclear Information System (INIS)

    Li Guangjin; Chen Weizao; Yan Weiyao; Zhao Kai; Liu Mingqiu; Zhang Jun; Fei Liang; Xu Quanxing; Sheng Zutian; Lu Yonggan; Zheng Zhaoxin

    2004-01-01

    Previously, we demonstrated that a fusion protein (Gal-FMDV) consisting of β-galactosidase and an immunogenic peptide, amino acids (141-160)-(21-40)-(141-160), of foot-and-mouth disease virus (FMDV) VP1 protein induced protective immune responses in guinea pigs and swine. We now designed a new potential recombinant protein vaccine against FMDV in swine. The immunogenic peptide, amino acids (141-160)-(21-40)-(141-160) from the VP1 protein of serotype O FMDV, was fused to the carboxy terminus of a swine immunoglobulin G single heavy chain constant region and expressed in Escherichia coli. The expressed fusion protein (IgG-FMDV) was purified and emulsified with oil adjuvant. Vaccination twice at an interval of 3 weeks with the emulsified IgG-FMDV fusion protein induced an FMDV-specific spleen proliferative T-cell response in guinea pigs and elicited high levels of neutralizing antibody in guinea pigs and swine. All of the immunized animals were efficiently protected against FMDV challenge. There was no significant difference between IgG-FMDV and Gal-FMDV in eliciting immunity after vaccination twice in swine. However, when evaluating the efficacy of a single inoculation of the fusion proteins, we found that IgG-FMDV could elicit a protective immune response in swine, while Gal-FMDV only elicited a weak neutralizing activity and could not protect the swine against FMDV challenge. Our results suggest that the IgG-FMDV fusion protein is a promising vaccine candidate for FMD in swine

  5. What You Should Know about Flu Antiviral Drugs

    Science.gov (United States)

    ... Other What You Should Know About Flu Antiviral Drugs Language: English (US) Español Recommend on Facebook Tweet ... used to treat flu illness. What are antiviral drugs? Antiviral drugs are prescription medicines (pills, liquid, an ...

  6. Dual Infection of Novel Influenza Viruses A/H1N1 and A/H3N2 in a Cluster of Cambodian Patients

    Science.gov (United States)

    2011-01-01

    influenza viruses as well as the avian influenza virus A/H5N1...on full genome sequencing. This incident confirms dual influenza virus infections and highlights the risk of zoonotic and seasonal influenza viruses ...North American swine influenza viruses , North American avian influenza viruses , human influenza viruses , and a Eurasian swine influenza virus . 18

  7. Applying lessons from behavioral economics to increase flu vaccination rates.

    Science.gov (United States)

    Chen, Frederick; Stevens, Ryan

    2017-12-01

    Seasonal influenza imposes an enormous burden on society every year, yet many people refuse to obtain flu shots due to misconceptions of the flu vaccine. We argue that recent research in psychology and behavioral economics may provide the answers to why people hold mistaken beliefs about flu shots, how we can correct these misconceptions, and what policy-makers can do to increase flu vaccination rates. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Swine interferon-induced transmembrane protein, sIFITM3, inhibits foot-and-mouth disease virus infection in vitro and in vivo.

    Science.gov (United States)

    Xu, Jinfang; Qian, Ping; Wu, Qunfeng; Liu, Shasha; Fan, Wenchun; Zhang, Keshan; Wang, Rong; Zhang, Huawei; Chen, Huanchun; Li, Xiangmin

    2014-09-01

    The interferon-induced transmembrane protein 3 (IFITM3) is a widely expressed potent antiviral effector of the host innate immune system. It restricts a diverse group of pathogenic, enveloped viruses, by interfering with endosomal fusion. In this report, the swine IFITM3 (sIFITM3) gene was cloned. It shares the functionally conserved CD225 domain and multiple critical amino acid residues (Y19, F74, F77, R86 and Y98) with its human ortholog, which are essential for antiviral activity. Ectopic expression of sIFITM3 significantly inhibited non-enveloped foot-and-mouth disease virus (FMDV) infection in BHK-21 cells. Furthermore, sIFITM3 blocked FMDV infection at early steps in the virus life cycle by disrupting viral attachment to the host cell surface. Importantly, inoculation of 2-day-old suckling mice with a plasmid expressing sIFITM3 conferred protection against lethal challenge with FMDV. These results suggest that sIFITM3 is a promising antiviral agent and that can safeguard the host from infection with FMDV. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Flu shots and the characteristics of unvaccinated elderly Medicare beneficiaries.

    Science.gov (United States)

    Lochner, Kimberly A; Wynne, Marc

    2011-12-21

    Data from the Medicare Current Beneficiary Survey, 2009. • Overall, 73% of Medicare beneficiaries aged 65 years and older reported receiving a flu shot for the 2008 flu season, but vaccination rates varied by socio-demographic characteristics. Flu vaccination was lowest for beneficiaries aged 65-74 years old, who were non-Hispanic Blacks and Hispanics, were not married, had less than a high school education, or who were eligible for Medicaid (i.e., dual eligibles). • Healthcare utilization and personal health behavior were also related to vaccination rates, with current smokers and those with no hospitalizations or physician visits being less likely to be vaccinated. • Among those beneficiaries who reported receiving a flu shot, 59% received it in a physician's office or clinic, with the next most common setting being in the community (21%); e.g., grocery store, shopping mall, library, or church. • Among those beneficiaries who did not receive a flu shot, the most common reasons were beliefs that the shot could cause side effects or disease (20%), that they didn't think the shot could prevent the flu (17%), or that the shot wasn't needed (16%). Less than 1% reported that they didn't get the flu shot because of cost. Elderly persons (aged 65 years and older) are at increased risk of complications from influenza, with the majority of influenza-related hospitalizations and deaths occurring among the elderly (Fiore et al., 2010). Most physicians recommend their elderly patients get a flu shot each year, and many hospitals inquire about elderly patient's immunization status upon admission, providing a vaccination if requested. The importance of getting a flu shot is underscored by the Department of Health and Human Services' Healthy People initiative, which has set a vaccination goal of 90% for the Nation's elderly by the year 2020 (Department of Health and Human Services [DHHS], 2011). Although all costs related to flu shots are covered by Medicare, requiring

  10. A human-like H1N2 influenza virus detected during an outbreak of acute respiratory disease in swine in Brazil.

    Science.gov (United States)

    Schaefer, Rejane; Rech, Raquel Rubia; Gava, Danielle; Cantão, Mauricio Egídio; da Silva, Marcia Cristina; Silveira, Simone; Zanella, Janice Reis Ciacci

    2015-01-01

    Passive monitoring for detection of influenza A viruses (IAVs) in pigs has been carried out in Brazil since 2009, detecting mostly the A(H1N1)pdm09 influenza virus. Since then, outbreaks of acute respiratory disease suggestive of influenza A virus infection have been observed frequently in Brazilian pig herds. During a 2010-2011 influenza monitoring, a novel H1N2 influenza virus was detected in nursery pigs showing respiratory signs. The pathologic changes were cranioventral acute necrotizing bronchiolitis to subacute proliferative and purulent bronchointerstitial pneumonia. Lung tissue samples were positive for both influenza A virus and A(H1N1)pdm09 influenza virus based on RT-qPCR of the matrix gene. Two IAVs were isolated in SPF chicken eggs. HI analysis of both swine H1N2 influenza viruses showed reactivity to the H1δ cluster. DNA sequencing was performed for all eight viral gene segments of two virus isolates. According to the phylogenetic analysis, the HA and NA genes clustered with influenza viruses of the human lineage (H1-δ cluster, N2), whereas the six internal gene segments clustered with the A(H1N1)pdm09 group. This is the first report of a reassortant human-like H1N2 influenza virus derived from pandemic H1N1 virus causing an outbreak of respiratory disease in pigs in Brazil. The emergence of a reassortant IAV demands the close monitoring of pigs through the full-genome sequencing of virus isolates in order to enhance genetic information about IAVs circulating in pigs.

  11. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution

    Directory of Open Access Journals (Sweden)

    Nauwynck Hans J

    2010-02-01

    Full Text Available Abstract Background Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs. However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal and avian virus receptors (Siaα2-3Gal were identified with Sambucus Nigra and Maackia amurensis lectins respectively. Results Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium. Conclusions The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia

  12. Preventing Flu During Pregnancy (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    During the influenza season, pregnant women and infants under 6 months old are especially susceptible to severe complications from the flu. The seasonal flu vaccination is the best way to protect both mother and baby. In this podcast Dr. Stacie Greby discusses the importance of pregnant women receiving the flu vaccine.

  13. Continue to Vaccinate Patients and Staff Against the Flu

    Centers for Disease Control (CDC) Podcasts

    2012-02-08

    This podcast is a reminder to health care providers about the importance of annual flu vaccination—it’s not too late! Health care providers should get their flu vaccine and continue offering and encouraging flu vaccination among their staff, colleagues, and patients.  Created: 2/8/2012 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 2/14/2012.

  14. Gamma-irradiated influenza A virus provides adjuvant activity to a co-administered poorly immunogenic SFV vaccine in mice.

    Directory of Open Access Journals (Sweden)

    Rachelle eBabb

    2014-06-01

    Full Text Available Many currently available inactivated vaccines require 'adjuvants' to maximise the protective immune responses generated against the antigens of interest. Recent studies in mice with gamma-irradiated influenza A virus (γ-FLU have shown its superior efficacy compared to other forms of inactivated FLU vaccines and its ability to induce both potent type-I interferon (IFN-I responses and the IFN-I associated partial lymphocyte activation. Commonly, IFN-I responses induced by adjuvants, combined in vaccine preparations, have been shown to effectively enhance the immunogenicity of the antigens of interest. Therefore, we investigated the potential adjuvant activity of γ-FLU and the possible effect on antibody responses against co-administrated antigens, using gamma-irradiated Semliki Forest Virus (γ-SFV as the experimental vaccine in mice. Our data show that co-vaccination with γ-FLU and γ-SFV resulted in enhanced SFV-specific antibody responses in terms of increased titres by 6 fold and greater neutralisation efficacy, when compared to vaccination with γ-SFV alone. This study provides promising evidence related to the possible use of γ-FLU as an adjuvant to poorly immunogenic vaccines without compromising the vaccine efficacy of γ-FLU.

  15. Isolation and characterization of H3N2 influenza A virus from turkeys.

    Science.gov (United States)

    Tang, Y; Lee, C W; Zhang, Y; Senne, D A; Dearth, R; Byrum, B; Perez, D R; Suarez, D L; Saif, Y M

    2005-06-01

    Five 34-wk-old turkey breeder layer flocks in separate houses of 2550 birds each in a single farm in Ohio experienced a drop in egg production from late January to early February 2004. Tracheal swabs (n = 60), cloacal swabs (n = 50), and convalescent sera (n = 110) from the flocks were submitted to the laboratory for diagnostics. Virus isolation was attempted in specific-pathogen free embryonating chicken eggs and Vero and MDCK cells. Virus characterization was performed using agar gel immunodiffusion, the hemagglutination test, the hemagglutination inhibition test, the virus neutralization test, reverse transcription-polymerase chain reaction, sequencing, and phylogenetic analysis. A presumptive influenza virus was successfully propagated and isolated on the first passage in MDCK cells, but initially not in Vero cells or specific-pathogen free chicken embryos. After two passages in MDCK cells, it was possible to propagate the isolate in specific-pathogen free chicken embryos. Preliminary sequence analysis of the isolated virus confirmed that it was influenza A virus with almost 100% (235/236) identity with the matrix gene of a swine influenza A virus, A/Swine/Illinois/100084/01 (H1N2). However, it was not possible to subtype the virus using conventional serotyping methods. The results of genetic characterization of the isolated virus showed that it was the H3N2 subtype and was designated as A/Turkey/OH/313053/04 (H3N2). Phylogenetic analysis of the eight gene segments of the virus showed that A/Turkey/OH/313053/04 (H3N2) isolate was most closely related to the triple-reassortant H3N2 swine viruses [A/Swine/WI/14094/99 (H3N2)] that have been circulating among pigs in the United States since 1998, which contains gene segments from avian, swine, and human viruses. The A/Turkey/OH/313053/04 (H3N2) isolated from turkeys in this study was classified as a low pathogenic avian influenza A virus because it only caused a drop in egg production with minor other clinical

  16. Oseltamivir-Resistant Flu

    Centers for Disease Control (CDC) Podcasts

    2012-04-13

    Dr. Aaron Storms, an Epidemic Intelligence Service (EIS) officer at CDC, discusses his paper about oseltamivir-resistant H1N1flu.  Created: 4/13/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/17/2012.

  17. Economic Analysis of Classical Swine Fever Surveillance in The Netherlands

    NARCIS (Netherlands)

    Guo, X.; Claassen, G.D.H.; Oude Lansink, A.G.J.M.; Loeffen, W.; Saatkamp, H.W.

    2016-01-01

    Classical swine fever (CSF) is a highly contagious pig disease that causes economic losses and impaired animal welfare. Improving the surveillance system for CSF can help to ensure early detection of the virus, thereby providing a better initial situation for controlling the disease. Economic

  18. Viral meningitis epidemics and a single, recent, recombinant and anthroponotic origin of swine vesicular disease virus

    DEFF Research Database (Denmark)

    Bruhn, Christian Anders Wathne; Nielsen, Sandra Cathrine Abel; Samaniego Castruita, Jose Alfredo

    2015-01-01

    BACKGROUND AND OBJECTIVES: Swine vesicular disease virus (SVDV) is a close relative of the human Enterovirus B serotype, coxsackievirus B5. As the etiological agent of a significant emergent veterinary disease, several studies have attempted to explain its origin. However, several key questions...... and non-coding regions supports that SVDV has a recombinant origin between coxsackievirus B5 and another Enterovirus B serotype, most likely coxsackievirus A9. Extensive Bayesian sequence-based analysis of the time of the most recent common ancestor of all analysed sequences places this within a few years...... around 1961. Epidemiological evidence points to China as an origin, but there are no available samples to test this conclusively. CONCLUSIONS AND IMPLICATIONS: Historical investigation and the clinical aspects of the involved Enterovirus B serotypes, makes the current results consistent with a hypothesis...

  19. OHS Helps Protect Employees During Flu Season | Poster

    Science.gov (United States)

    Flu season is in full swing, bringing a host of symptoms like congestion, coughs, fever, chills, muscle aches, and fatigue. To help NCI at Frederick employees stay healthy this year, Occupational Health Services (OHS) is offering two types of flu vaccines for free.

  20. Evaluating Google Flu Trends in Latin America: Important Lessons for the Next Phase of Digital Disease Detection.

    Science.gov (United States)

    Pollett, Simon; Boscardin, W John; Azziz-Baumgartner, Eduardo; Tinoco, Yeny O; Soto, Giselle; Romero, Candice; Kok, Jen; Biggerstaff, Matthew; Viboud, Cecile; Rutherford, George W

    2017-01-01

     Latin America has a substantial burden of influenza and rising Internet access and could benefit from real-time influenza epidemic prediction web tools such as Google Flu Trends (GFT) to assist in risk communication and resource allocation during epidemics. However, there has never been a published assessment of GFT's accuracy in most Latin American countries or in any low- to middle-income country. Our aim was to evaluate GFT in Argentina, Bolivia, Brazil, Chile, Mexico, Paraguay, Peru, and Uruguay.  Weekly influenza-test positive proportions for the eight countries were obtained from FluNet for the period January 2011-December 2014. Concurrent weekly Google-predicted influenza activity in the same countries was abstracted from GFT. Pearson correlation coefficients between observed and Google-predicted influenza activity trends were determined for each country. Permutation tests were used to examine background seasonal correlation between FluNet and GFT by country.  There were frequent GFT prediction errors, with correlation ranging from r = -0.53 to 0.91. GFT-predicted influenza activity best correlated with FluNet data in Mexico follow by Uruguay, Argentina, Chile, Brazil, Peru, Bolivia and Paraguay. Correlation was generally highest in the more temperate countries with more regular influenza seasonality and lowest in tropical regions. A substantial amount of autocorrelation was noted, suggestive that GFT is not fully specific for influenza virus activity.  We note substantial inaccuracies with GFT-predicted influenza activity compared with FluNet throughout Latin America, particularly among tropical countries with irregular influenza seasonality. Our findings offer valuable lessons for future Internet-based biosurveillance tools. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  1. 9 CFR 85.10 - Interstate movement of swine semen and swine embryos for insemination of or implantation into swine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Interstate movement of swine semen and... ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS PSEUDORABIES § 85.10 Interstate movement of swine semen and swine embryos for insemination of or implantation into swine. Swine semen and swine embryos moved...

  2. Classical swine fever virus induces pyroptosis in the peripheral lymphoid organs of infected pigs.

    Science.gov (United States)

    Yuan, Jin; Zhu, Mengjiao; Deng, Shaofeng; Fan, Shuangqi; Xu, Hailuan; Liao, Jiedan; Li, Peng; Zheng, Jingfang; Zhao, Mingqiu; Chen, Jinding

    2018-05-02

    Classical swine fever virus (CSFV) causes a highly lethal disease in pigs, which is characterized by immunosuppression. Leukopenia is known to be a possible mechanism of immunosuppression during CSFV infection. As a new and specialized form of cell death, pyroptosis is the key response of the innate immune system to pathogens, and is widely involved in the occurrence and development of infectious diseases. However, the relationship between CSFV and pyroptosis has not been explored. In this study, we investigated the occurrence of pyroptosis in pigs following CSFV infection. According to qRT-PCR assay results, the prevalence of this virus in peripheral lymphoid organs (tonsils, lymph nodes, and spleen) was much higher than that in other organs. Severe bleeding, necrosis, and a significant reduction in lymphocytes were found in the peripheral lymphoid organs of CSFV-infected pigs based on histological examination. In-depth studies showed that an increased ratio of deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells were present in the peripheral lymphoid organs of the CSFV-infected group according to immunohistochemistry. Meanwhile, the p10 subunit and activity of caspase-1, which is a regulator of pyroptosis, the N-terminal domain of gasdermin D, which is an executor of pyroptosis, and the cleavage and secretion of IL-1b, which is a product of pyroptosis were increased in the peripheral lymphoid organs of the CSFV-infected group. Together, these results demonstrated that pyroptosis is involved in CSFV-induced cell death in vivo, which provides a new understanding of the mechanism associated with lymphocyte depletion and immunosuppression in pigs infected with this virus. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Postnatal persistent infection with classical Swine Fever virus and its immunological implications.

    Directory of Open Access Journals (Sweden)

    Sara Muñoz-González

    Full Text Available It is well established that trans-placental transmission of classical swine fever virus (CSFV during mid-gestation can lead to persistently infected offspring. The aim of the present study was to evaluate the ability of CSFV to induce viral persistence upon early postnatal infection. Two litters of 10 piglets each were infected intranasally on the day of birth with low and moderate virulence CSFV isolates, respectively. During six weeks after postnatal infection, most of the piglets remained clinically healthy, despite persistent high virus titres in the serum. Importantly, these animals were unable to mount any detectable humoral and cellular immune response. At necropsy, the most prominent gross pathological lesion was a severe thymus atrophy. Four weeks after infection, PBMCs from the persistently infected seronegative piglets were unresponsive to both, specific CSFV and non-specific PHA stimulation in terms of IFN-γ-producing cells. These results suggested the development of a state of immunosuppression in these postnatally persistently infected pigs. However, IL-10 was undetectable in the sera of the persistently infected animals. Interestingly, CSFV-stimulated PBMCs from the persistently infected piglets produced IL-10. Nevertheless, despite the addition of the anti-IL-10 antibody in the PBMC culture from persistently infected piglets, the response of the IFN-γ producing cells was not restored. Therefore, other factors than IL-10 may be involved in the general suppression of the T-cell responses upon CSFV and mitogen activation. Interestingly, bone marrow immature granulocytes were increased and targeted by the virus in persistently infected piglets. Taken together, we provided the first data demonstrating the feasibility of CSFV in generating a postnatal persistent disease, which has not been shown for other members of the Pestivirus genus yet. Since serological methods are routinely used in CSFV surveillance, persistently infected pigs

  4. The untranslated regions of classic swine fever virus RNA trigger apoptosis.

    Directory of Open Access Journals (Sweden)

    Wei-Li Hsu

    Full Text Available Classical swine fever virus (CSFV causes a broad range of disease in pigs, from acute symptoms including high fever and hemorrhages, to chronic disease or unapparent infection, depending on the virus strain. CSFV belongs to the genus Pestivirus of the family Flaviviridae. It carries a single-stranded positive-sense RNA genome. An internal ribosomal entry site (IRES in the 5' untranslated region (UTR drives the translation of a single open reading frame encoding a 3898 amino acid long polypeptide chain. The open reading frame is followed by a 3' UTR comprising four highly structured stem-loops. In the present study, a synthetic RNA composed of the 5' and 3' UTRs of the CSFV genome devoid of any viral coding sequence and separated by a luciferase gene cassette (designated 5'UTR-Luc-3'UTR triggered apoptotic cell death as early as 4 h post-transfection. The apoptosis was measured by DNA laddering analysis, TUNEL assay, annexin-V binding determined by flow cytometry, and by analysis of caspase activation. Contrasting with this, only trace DNA laddering was observed in cells transfected with the individual 5' or 3' UTR RNA; even when the 5' UTR and 3' UTR were co-transfected as separate RNA molecules, DNA laddering did not reach the level induced by the chimeric 5'UTR-Luc-3'UTR RNA. Interestingly, RNA composed of the 5'UTR and of stem-loop I of the 3'UTR triggered much stronger apoptosis than the 5' or 3'UTR alone. These results indicate that the 5' and 3' UTRs act together in cis induce apoptosis. We furthered obtained evidence that the UTR-mediated apoptosis required double-stranded RNA and involved translation shutoff possibly through activation of PKR.

  5. Influenza forecasting with Google Flu Trends.

    Science.gov (United States)

    Dugas, Andrea Freyer; Jalalpour, Mehdi; Gel, Yulia; Levin, Scott; Torcaso, Fred; Igusa, Takeru; Rothman, Richard E

    2013-01-01

    We developed a practical influenza forecast model based on real-time, geographically focused, and easy to access data, designed to provide individual medical centers with advanced warning of the expected number of influenza cases, thus allowing for sufficient time to implement interventions. Secondly, we evaluated the effects of incorporating a real-time influenza surveillance system, Google Flu Trends, and meteorological and temporal information on forecast accuracy. Forecast models designed to predict one week in advance were developed from weekly counts of confirmed influenza cases over seven seasons (2004-2011) divided into seven training and out-of-sample verification sets. Forecasting procedures using classical Box-Jenkins, generalized linear models (GLM), and generalized linear autoregressive moving average (GARMA) methods were employed to develop the final model and assess the relative contribution of external variables such as, Google Flu Trends, meteorological data, and temporal information. A GARMA(3,0) forecast model with Negative Binomial distribution integrating Google Flu Trends information provided the most accurate influenza case predictions. The model, on the average, predicts weekly influenza cases during 7 out-of-sample outbreaks within 7 cases for 83% of estimates. Google Flu Trend data was the only source of external information to provide statistically significant forecast improvements over the base model in four of the seven out-of-sample verification sets. Overall, the p-value of adding this external information to the model is 0.0005. The other exogenous variables did not yield a statistically significant improvement in any of the verification sets. Integer-valued autoregression of influenza cases provides a strong base forecast model, which is enhanced by the addition of Google Flu Trends confirming the predictive capabilities of search query based syndromic surveillance. This accessible and flexible forecast model can be used by

  6. Los encuadres sanitarios en prensa. Gripe A y bacteria e.coli. / The Sanitary framing in Spanish press: Swine flu virus and E. coli bacterium

    Directory of Open Access Journals (Sweden)

    Paloma López Villafranca

    2012-12-01

    Full Text Available ResumenEn la siguiente investigación se analizan los encuadres sobre dos crisis sanitarias, gripe A y bacteria e.coli en prensa, en los diarios de mayor tirada; El País, El Mundo y ABC. En este estudio se refleja cómo se produce un enfoque muy distinto de ambas crisis y la influencia en estos encuadres e importancia de las fuentes institucionales como principales portadoras de información frente a las fuentes sanitarias o científicas, con escasa relevancia para la prensa española.AbstractThe following analysis is focused on the approach made by newspapers such as El País, El Mundo and ABC about the sanitary crisis of A Flu and E.coli bacteria. The methodology used is the analysis of content of a wide range of news samples generated during both crisis. As a result of this analysis it is made clear that both crises have been approached by Spanish press in different ways, giving more importance to government and official sources in opposition to the lack of relevance given to scientific or sanitary ones.

  7. Sensitive detection of African swine fever virus using real-time PCR with a 5' conjugated minor groove binding probe

    DEFF Research Database (Denmark)

    McKillan, John; McMenamy, Michael; Hjertner, Bernt

    2010-01-01

    sensitive than the conventional PCR recommended by the OIE. Linear range was ten logs from 2 × 101 to 2 × 1010. The assay is rapid with an amplification time just over 2 h. The development of this assay provides a useful tool for the specific diagnosis of ASF in statutory or emergency testing programs......The design of a 5′ conjugated minor groove binder (MGB) probe real-time PCR assay is described for the rapid, sensitive and specific detection of African swine fever virus (ASFV) DNA. The assay is designed against the 9GL region and is capable of detecting 20 copies of a DNA standard. It does...

  8. Third wave of African swine fever infection in Armenia: Virus demonstrates the reduction of pathogenicity

    Science.gov (United States)

    Sargsyan, M. A.; Voskanyan, H. E.; Karalova, E. M.; Hakobyan, L. H.; Karalyan, Z. A.

    2018-01-01

    Aim: First cases of clinically uncommon African swine fever (ASF), caused by virus genotype II are described in this article. These cases occurred in Armenia, Tavush region, Dilijan municipality in 2011. The aim of this study was to identify and describe the new pathogenic forms of ASF in Armenia. Materials and Methods: The isolation and identification of ASF virus (ASFV) were carried out using conventional techniques. Clinical signs of infection were recorded daily. Gross anatomical pathology characteristics were observed during routine postmortem examinations. Blood and serum were obtained by puncture of the jugular vein using a vacutainer system. Results: The presence of ASFV DNA in the spleens was confirmed by polymerase chain reaction. Sequenced sections of p72 showed phylogenetic identity to genotype 2. The pathology exhibits unusual manifestations of the main disease. The unusual form of ASF demonstrates characteristics of a subacute form of the disease, with the possibility of conversion to a chronic form. Decreased lethality, low level of hemorrhages, and absence of severe pancytopenia in smears from spleen, lymph nodes, and blood are common features of the new form of ASF. Unlike severe thrombocytopenia in the typical ASF, the unusual form exhibited moderate or minor decrease of this feature. Despite a moderate decrease in hemadsorption titers, the unusual pattern of the disease was characterized by viremia and the presence of the virus in the visceral organs, including the brain. Conclusion: Our data allow assuming that new nosological form of ASF (genotype II) may present as a transitional form of the disease with the possibility of chronization. PMID:29479149

  9. Short communication: Stability and integrity of classical swine fever virus RNA stored at room temperature

    Directory of Open Access Journals (Sweden)

    Damarys Relova

    2017-12-01

    Full Text Available Worldwide cooperation between laboratories working with classical swine fever virus (CSFV requires exchange of virus isolates. For this purpose, shipment of CSFV RNA is a safe alternative to the exchange of infectious material. New techniques using desiccation have been developed to store RNA at room temperature and are reported as effective means of preserving RNA integrity. In this study, we evaluated the stability and integrity of dried CSFV RNA stored at room temperature. First, we determined the stability of CSFV RNA covering CSFV genome regions used typically for the detection of viral RNA in diagnostic samples by reverse transcription-polymerase chain reaction (RT-PCR. To this end, different concentrations of in vitro-transcribed RNAs of the 5’-untranslated region and of the NS5B gene were stored as dried RNA at 4, 20, and 37oC for two months. Aliquots were analyzed every week by CSFV-specific quantitative real-time RT-PCR. Neither the RNA concentration nor the storage temperature did affect CSFV RNA yields at any of the time evaluated until the end of the experiment. Furthermore, it was possible to recover infectious CSFV after transfection of SK-6 cells with dried viral RNA stored at room temperature for one week. The full-length E2 of CSFV was amplified from all the recovered viruses, and nucleotide sequence analysis revealed 100% identity with the corresponding sequence obtained from RNA of the original material. These results show that CSFV RNA stored as dried RNA at room temperature is stable, maintaining its integrity for downstream analyses and applications.

  10. Third wave of African swine fever infection in Armenia: Virus demonstrates the reduction of pathogenicity

    Directory of Open Access Journals (Sweden)

    M. A. Sargsyan

    2018-01-01

    Full Text Available Aim: First cases of clinically uncommon African swine fever (ASF, caused by virus genotype II are described in this article. These cases occurred in Armenia, Tavush region, Dilijan municipality in 2011. The aim of this study was to identify and describe the new pathogenic forms of ASF in Armenia. Materials and Methods: The isolation and identification of ASF virus (ASFV were carried out using conventional techniques. Clinical signs of infection were recorded daily. Gross anatomical pathology characteristics were observed during routine postmortem examinations. Blood and serum were obtained by puncture of the jugular vein using a vacutainer system. Results: The presence of ASFV DNA in the spleens was confirmed by polymerase chain reaction. Sequenced sections of p72 showed phylogenetic identity to genotype 2. The pathology exhibits unusual manifestations of the main disease. The unusual form of ASF demonstrates characteristics of a subacute form of the disease, with the possibility of conversion to a chronic form. Decreased lethality, low level of hemorrhages, and absence of severe pancytopenia in smears from spleen, lymph nodes, and blood are common features of the new form of ASF. Unlike severe thrombocytopenia in the typical ASF, the unusual form exhibited moderate or minor decrease of this feature. Despite a moderate decrease in hemadsorption titers, the unusual pattern of the disease was characterized by viremia and the presence of the virus in the visceral organs, including the brain. Conclusion: Our data allow assuming that new nosological form of ASF (genotype II may present as a transitional form of the disease with the possibility of chronization.

  11. Limit Asthma Attacks Caused by Colds or Flu

    Science.gov (United States)

    Asthma: Limit asthma attacks caused by colds or flu A cold or the flu can trigger an asthma attack. Here's why — and how to keep your sneeze ... plan. If you notice warning signs of an asthma attack — such as coughing, wheezing, chest tightness or shortness ...

  12. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    Science.gov (United States)

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  13. Evidence of hemolysis in pigs infected with highly virulent African swine fever virus

    Directory of Open Access Journals (Sweden)

    Zaven Karalyan

    2016-12-01

    Full Text Available Aim: The research was conducted to understand more profoundly the pathogenetic aspects of the acute form of the African swine fever (ASF. Materials and Methods: A total of 10 pigs were inoculated with ASF virus (ASFV (genotype II in the study of the red blood cells (RBCs, blood and urine biochemistry in the dynamics of disease. Results: The major hematological differences observed in ASFV infected pigs were that the mean corpuscular volume, mean corpuscular hemoglobin, and hematocrits were significantly decreased compared to controls, and the levels of erythropoietin were significantly increased. Also were detected the trends of decrease in RBC count at terminal stages of ASF. Analysis of blood biochemistry revealed that during ASF development, besides bilirubinemia significantly elevated levels of lactate dehydrogenase, and aspartate aminotransferase were detected. Analysis of urine biochemistry revealed the presence of bilirubinuria, proteinuria during ASF development. Proteinuria, especially at late stages of the disease reflects a severe kidney damage possible glomerulonefritis. Conclusion: The results of this study indicate the characteristics of developing hemolytic anemia observed in acute ASF (genotype II.

  14. Sequence-based comparative study of classical swine fever virus genogroup 2.2 isolate with pestivirus reference strains.

    Science.gov (United States)

    Kumar, Ravi; Rajak, Kaushal Kishor; Chandra, Tribhuwan; Muthuchelvan, Dhanavelu; Saxena, Arpit; Chaudhary, Dheeraj; Kumar, Ajay; Pandey, Awadh Bihari

    2015-09-01

    This study was undertaken with the aim to compare and establish the genetic relatedness between classical swine fever virus (CSFV) genogroup 2.2 isolate and pestivirus reference strains. The available complete genome sequences of CSFV/IND/UK/LAL-290 strain and other pestivirus reference strains were retrieved from GenBank. The complete genome sequence, complete open reading frame, 5' and 3' non-coding region (NCR) sequences were analyzed and compared with reference pestiviruses strains. Clustal W model in MegAlign program of Lasergene 6.0 software was used for analysis of genetic heterogeneity. Phylogenetic analysis was carried out using MEGA 6.06 software package. The complete genome sequence alignment of CSFV/IND/UK/LAL-290 isolate and reference pestivirus strains showed 58.9-72% identities at the nucleotide level and 50.3-76.9% at amino acid level. Sequence homology of 5' and 3' NCRs was found to be 64.1-82.3% and 22.9-71.4%, respectively. In phylogenetic analysis, overall tree topology was found similar irrespective of sequences used in this study; however, whole genome phylogeny of pestivirus formed two main clusters, which further distinguished into the monophyletic clade of each pestivirus species. CSFV/IND/UK/LAL-290 isolate placed with the CSFV Eystrup strain in the same clade with close proximity to border disease virus and Aydin strains. CSFV/IND/UK/LAL-290 exhibited the analogous genomic organization to those of all reference pestivirus strains. Based on sequence identity and phylogenetic analysis, the isolate showed close homology to Aydin/04-TR virus and distantly related to Bungowannah virus.

  15. Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication

    International Nuclear Information System (INIS)

    Wanitchang, Asawin; Wongthida, Phonphimon; Jongkaewwattana, Anan

    2016-01-01

    The M2 protein (AM2 and BM2) of influenza A and B viruses function as a proton channel essential for viral replication. They also carry a cytoplasmic tail whose functions are not fully delineated. It is currently unknown whether these proteins could be replaced functionally in a viral context. Here, we generated single-cycle influenza A viruses (scIAV-ΔHA) carrying various M2-2A-mCherry constructs in the segment 4 (HA) and evaluated their growth in complementing cells. Intriguingly, the scIAV-ΔHA carrying AM2 and that bearing BM2 grew comparably well in MDCK-HA cells. Furthermore, while the virus carrying chimeric B-AM2 in which the BM2 transmembrane fused with the AM2 cytoplasmic tail produced robust infection, the one bearing the AM2 transmembrane fused with the BM2 cytoplasmic tail (A-BM2) exhibited severely impaired growth. Altogether, we demonstrate that AM2 and BM2 are functionally interchangeable and underscore the role of compatibility between transmembrane and cytoplasmic tail of the M2 protein. -- Highlights: •Flu A M2 protein (AM2) can be functionally replaced by that of Flu B (BM2). •Both AM2 and BM2 with extended cytoplasmic tail are functional. •Compatibility between the ion channel and the cytoplasmic tail is critical for M2 function. •M2 with higher ion channel activity may augment influenza virus replication.

  16. Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Wanitchang, Asawin; Wongthida, Phonphimon; Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th

    2016-11-15

    The M2 protein (AM2 and BM2) of influenza A and B viruses function as a proton channel essential for viral replication. They also carry a cytoplasmic tail whose functions are not fully delineated. It is currently unknown whether these proteins could be replaced functionally in a viral context. Here, we generated single-cycle influenza A viruses (scIAV-ΔHA) carrying various M2-2A-mCherry constructs in the segment 4 (HA) and evaluated their growth in complementing cells. Intriguingly, the scIAV-ΔHA carrying AM2 and that bearing BM2 grew comparably well in MDCK-HA cells. Furthermore, while the virus carrying chimeric B-AM2 in which the BM2 transmembrane fused with the AM2 cytoplasmic tail produced robust infection, the one bearing the AM2 transmembrane fused with the BM2 cytoplasmic tail (A-BM2) exhibited severely impaired growth. Altogether, we demonstrate that AM2 and BM2 are functionally interchangeable and underscore the role of compatibility between transmembrane and cytoplasmic tail of the M2 protein. -- Highlights: •Flu A M2 protein (AM2) can be functionally replaced by that of Flu B (BM2). •Both AM2 and BM2 with extended cytoplasmic tail are functional. •Compatibility between the ion channel and the cytoplasmic tail is critical for M2 function. •M2 with higher ion channel activity may augment influenza virus replication.

  17. Regional Differences in Pathogen Prevalence and Defensive Reactions to the “Swine Flu” Outbreak among East Asians and Westerners

    Directory of Open Access Journals (Sweden)

    Takeshi Hamamura

    2010-07-01

    Full Text Available Research has found that contagion-minimizing behavioral tendencies are amplified in pathogen-prevalent regions. We investigated whether reactions to the “swine flu” outbreak of 2009 were stronger among East Asians than Westerners, populations residing in regions that now enjoy comparable advances in healthcare but that are characterized by relatively high and low historical pathogen prevalence, respectively. In a survey, East Asians reported greater concerns about infection, especially from foreigners. Analyses of international air travel data around the time of the outbreak provided corroborating evidence: Immediately following the outbreak, airports in the Asia-Pacific region lost more international traffic relative to their Western counterparts, and East Asian airlines reported greater declines in international traffic compared to Western airlines. These differences are unlikely to reflect objective threat posed by swine flu (whose casualties were concentrated in the Americas; rather, they appear to reflect culturally adapted behavioral patterns forged and sustained by regionally variable levels of pathogen prevalence.

  18. Too Late for a Flu Shot (For Parents)?

    Science.gov (United States)

    ... have recently given birth, or are breastfeeding during flu season anyone whose immune system is weakened from medications or illnesses (like HIV ... has ever had a severe reaction to a flu vaccination has Guillain-Barré ... affects the immune system and nerves) In the past, it was recommended ...

  19. Production of lung cancer in mice by inhalation exposure to influenza virus and aerosols of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kotin, P; Wiseley, D V

    1963-01-01

    1800 C57 (tumor-resistant) mice were exposed in chambers to washed air, repeated influenza virus, artificial smog with 1 to 2 ppM oxidant (ozonized gasoline), or a combination of smog and influenza. Squamous lesions were produced in flu (11) and flu plus smog (33) groups but not in control or smog only groups. The flu only lesions did not show keratinization, pleomorphism and atypical mitoses, or vascular or lymphatic invasion as did lesions in flu + smog. Use of proliferative stimulus plus carcinogenic hydrocarbon resulted in keratinizing metaplasia and squamous cell carcinoma not previously produced by other inhalation techniques.

  20. Preventing Flu During Pregnancy (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2013-09-26

    During the influenza season, pregnant women and infants under 6 months old are especially susceptible to severe complications from the flu. The seasonal flu vaccination is the best way to protect both mother and baby. In this podcast Dr. Stacie Greby discusses the importance of pregnant women receiving the flu vaccine.  Created: 9/26/2013 by MMWR.   Date Released: 9/26/2013.