WorldWideScience

Sample records for swimming pool reactors

  1. Backfitting swimming pool reactors

    International Nuclear Information System (INIS)

    Roebert, G.A.

    1978-01-01

    Calculations based on measurements in a critical assembly, and experiments to disclose fuel element surface temperatures in case of accidents like stopping of primary coolant flow during full power operation, have shown that the power of the swimming pool type research reactor FRG-2 (15 MW, operating since 1967) might be raised to 21 MW within the present rules of science and technology, without major alterations of the pool buildings and the cooling systems. A backfitting program is carried through to adjust the reactor control systems of FRG-2 and FRG-1 (5 MW, housed in the same reactor hall) to the present safety rules and recommendations, to ensure FRG-2 operation at 21 MW for the next decade. (author)

  2. Core neutronics of a swimming pool research reactor

    International Nuclear Information System (INIS)

    Mannan, M.A.; Mondal, M.A.W.; Pervini, M.E.

    1981-01-01

    The initial cores of the 5 MW swimming pool research reactor of the Nuclear Research Centre, Tehran have been analyzed using the computer codes METHUSELAH and EQUIPOISE. The effective multiplication factor, critical mass, moderator temperature and void coefficients of the core have been calculated and compared with vendor's values. Calculated values agree reasonably well with the vendor's results. (author)

  3. An analysis of postulated accident for 49-2 Swimming Pool Reactor

    International Nuclear Information System (INIS)

    Wang Yongqing; Cu Shaochu; Wang Liugui; Zhang Zengqing

    1990-01-01

    The thermal hydrodynamic code RETRAN-02 is used for safety analysis of Swimming Pool Reactor. Accident of partial-loss of flow, loss of offsite electric power and unexpected reactivity insertion are analysed and discussed. These results will be helpful for operation safety of the reactor

  4. Analysis of SBO accident for a swimming pool reactor

    International Nuclear Information System (INIS)

    Wang Guimin; Li Weiwei; Li Ning; Guo Wenhui

    2015-01-01

    The RELAP5/MOD3.3 code was adopted to compute the SBO accident condition of a swimming pool reactor. The coolant flow reversal process was calculated, and the influence of parameters of the flow between the core leakage and components on the flow reversal in the SBO accident condition was analyzed. The calculated results show that in the situation the reactor loses all forced flow, the residual heat of the reactor can be removed by the natural circulation flow, and the fuel subassembly will not be damaged. (authors)

  5. Analysis of key hardware factors and countermeasure for restricting 49-2 swimming pool reactor lifetime

    International Nuclear Information System (INIS)

    Zhang Yadong; Guo Yue; Yang Xiao; Wang Yiwei; Wang Zhanwen

    2013-01-01

    Safe operation is the most important factor to determine the lifetime of aged 49-2 swimming pool reactor. In this paper, the hardware factors of lifetime were analyzed, such as the pool concrete aging, corrosion of aluminum container and primary coolant system, and graphite swelling etc., and then the corresponding measures such as surveillance, prevention and maintenance were purposed. The results show that 49-2 swimming pool reactor can continue to operate safely due to that container is safe under 8 degree earthquake, the reactor is safe on flood level of once per millennium, adding dam break, and the ageing condition of primary coolant system and container is acceptable. (authors)

  6. Swimming pool reactor reliability and safety analysis

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1997-01-01

    A reliability and safety analysis of Swimming Pool Reactor in China Institute of Atomic Energy is done by use of event/fault tree technique. The paper briefly describes the analysis model, analysis code and main results. Meanwhile it also describes the impact of unassigned operation status on safety, the estimation of effectiveness of defense tactics in maintenance against common cause failure, the effectiveness of recovering actions on the system reliability, the comparison of occurrence frequencies of the core damage by use of generic and specific data

  7. Siloe, Osiris, and the future perspective of swimming-pool reactors

    International Nuclear Information System (INIS)

    Chatoux, J.; Denielou, G.; Lerouge, B.

    1964-01-01

    Siloe and Osiris are two new general purpose research reactors of the 'Commissariat a l'energie Atomique'. Siloe, located within the 'Centre d'Etudes Nucleaires' of Grenoble is a swimming pool reactor of the same type as Melusine and Triton. It operates, at a nominal power of 15 MW thermal and has reached the peak power of 20 MW thermal with two thirds of its cooling system working. The fast flux above 1 MeV, which is maximum at the center of the core at 15 MW thermal is 1,2. 10 14 . The core, quite open, is downward cooled. Average specific power is 159 kW/l. Osiris is under construction at Saclay. Designed for 50 MW thermal, this reactor is upward cooled. The fast flux at the center of the core above 1 MeV is calculated to be 2, 5.10 14 . The average designed specific power is 280 kW/l. A fixed zircaloy gamma shield makes a box round the core. Future perspectives open to non-pressurised swimming-pool reactors are examined. Ways are suggested for neutronic; thermal and shielding modifications which make possible further improvements in the performances and economy of these devices. (authors) [fr

  8. Justify of implementation of a hot water layer system in swimming pool research reactor IEA-R1m

    International Nuclear Information System (INIS)

    Toyoda, Eduardo Yoshio; Gordon, Ana Maria Pinho Leite; Sordi, Gian-Maria A.A.

    2001-01-01

    The IPEN/CNEN-SP has a swimming pool research reactor (IEA-R1m) in operation since 1957 at 2 MW. In 1998, after some modifications, its nominal power increased to 5 MW. Among these modifications some adaptations had to be accomplished in the radiological protection and operational procedure. The present work aim to study the need of implementation of a hot water layer in order to reduce the dose in the workers in the vicinity of the reactor swimming pool. Applying the principles of radioprotection optimization, it was concluded that the decision of the construction of one hot water layer system in the reactor swimming pool, is not necessary. (author)

  9. Production and release of {sup 14}C from a swimming pool reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthy, T M [Bhabha Atomic Research Centre, Mumbai (India). Environmental Assessment Div.; Sadarangani, S H [Bhabha Atomic Research Centre, Mumbai (India). Radiation Safety Systems Div.; Doshi, G R [Bhabha Atomic Research Centre, Bombay (India). Health Physics Div.

    1994-04-01

    The annual production rate of {sup 14}C in the Apsara swimming pool reactor works out to be about 2.94 mCi. The concentration distribution of {sup 14}C in different compartments viz. pool water, reactor hall air and ion-exchange resin ranged from 200 to 440 pCi/l, 0.09 to 0.38 pCi/l, an average concentration of 8.16 pCi/g respectively. The mean residence time of {sup 14}C in pool water is evaluated to be about 7 days taking into account various sinks. The study revealed atmospheric exchange at the air-water interface as the dominant process responsible for the loss of {sup 14}C from the pool water. (author). 7 refs., 2 figs., 4 tabs.

  10. Some equipment for graphite research in swimming pool reactors

    International Nuclear Information System (INIS)

    Seguin, M.; Arragon, Ph.; Dupont, G.; Gentil, J.; Tanis, G.

    1964-01-01

    The irradiation devices described are used for research concerning reactors of the natural uranium type, moderated by graphite and cooled by carbon dioxide. The devices are generally designed for use in swimming pool reactors. The following points have been particularly studied: - maximum use of the irradiation volume, - use of the simplest technological solutions, - standardization of certain constituent parts. This standardization calls for precision machining and careful assembling; these requirements are also true when a relatively low irradiation temperature is required and the nuclear heating is pronounced. Finally, the design of these devices is suitable for the irradiation of other fissile or non-fissile materials. (authors) [fr

  11. Probabilistic analysis of some safety aspects of a swimming pool reactor

    International Nuclear Information System (INIS)

    Lieber, K.; Nicolescu, T.

    1984-01-01

    A probabilistic risk analysis of some safety aspects without the investigation of radioactivity release has been performed for the 10 MW (thermal) swimming-pool research reactor SAPHIR. Our presentation is focused on the 7 internal initiating events found to be relevant with respect to accident sequences that could result with core melt due to loss of coolant or overcriticality. The results are given by the core melt frequencies for the investigated accident sequences. It could be demonstrated by our investigation that the core melt hazard of the reactor is extremely low. (author)

  12. Design and computational analysis of passive siphon breaker for 49-2 swimming pool reactor

    International Nuclear Information System (INIS)

    Yue Zhiting; Song Yunpeng; Liu Xingmin; Zou Yao; Wu Yuanyuan

    2014-01-01

    Based on safety considerations, a passive siphon breaker will be added to the primary cooling system of 49-2 Swimming Pool Reactor (SPR). With the breaker location determined, the capability of siphon breakers with diameters of 1.5 cm and 2.0 cm was calculated and analyzed respectively by RELAP5/MOD3.3 code. The results show that in the condition of large break loss of coolant accident these two sizes of siphon breakers are able to break the siphon phenomena, and maintain the pool water level above the reactor core when the reactor and the pump are shutdown. In the end, to be conservative, the siphon breaker with diameter of 2.0 cm is adopted. (authors)

  13. Swimming-pool piles

    International Nuclear Information System (INIS)

    Trioulaire, M.

    1959-01-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10 13 . This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [fr

  14. Swimming pool granuloma

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  15. Application of neutron noise analysis to a swimming pool research reactor

    International Nuclear Information System (INIS)

    Behringer, K.; Lescano, V.H.; Meier, F.; Phildius, J.; Winkler, H.

    1982-01-01

    This work is part of a programme of establishing practical applications of neutron noise techniques to a swimming pool research reactor and deals with two different items: (1) The identification of local boiling caused e.g. by a partial blockage of the coolant flow in a fuel element. Local boiling can easily lead to a burn-out situation. The onset of boiling can be detected by neutron noise analysis and a boiling detection system is presently under development. (2) The measurement of the time evolution of the reactivity induced by xenon after reactor shut-down by an on-line reactivity meter based on neutron noise analysis. From the data, the prompt neutron decay constant at delayed critical, the equilibrium xenon reactivity worth, and an estimate of the average steady-state power flux in the core before reactor shut-down were obtained. (author)

  16. Gamma spectrum measurement in a swimming-pool-type reactor

    International Nuclear Information System (INIS)

    Pla, E.

    1969-01-01

    After recalling the various modes of interaction of gamma rays with matter, the authors describe the design of a spectrometer for gamma energies of between 0.3 and 10 MeV. This spectrometer makes use of the Compton and pair-production effects without eliminating them. The collimator, the crystals and the electronics have been studied in detail and are described in their final form. The problem of calibrating the apparatus is then considered ; numerous graphs are given. The sensitivity of the spectrometer for different energies is determined mainly for the 'Compton effect' group. Finally, in the last part of the report, are given results of an experimental measurement of the gamma spectrum of a swimming-pool type reactor with new elements. (author) [fr

  17. Analysis of SBO accident and natural circulation of 49-2 swimming pool reactor

    International Nuclear Information System (INIS)

    Wu Yuanyuan; Liu Tiancai; Sun Wei

    2012-01-01

    The transient thermal hydraulic characteristics of 49-2 Swimming Pool Reactor (SPR) were analyzed by RELAP5/MOD3.3 code to verify the capability of natural circulation and minus reactivity feedback for accident mitigation under the condition of station blackout (SBO). Then, the effects on accident consequence and sequence for core channels and primary pumps were briefly discussed. The calculation results show that the reactor can be shutdown by the effect of minus reactivity feedback, and the residual heat can be removed through the stable natural circulation. Therefore, it demonstrates that the 49-2 SPR is safe during the accident of SBO. (authors)

  18. 21 CFR 1250.89 - Swimming pools.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Swimming pools. 1250.89 Section 1250.89 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.89 Swimming pools. (a) Fill and draw swimming pools shall not be installed or used. (b) Swimming pools of the recirculation type shall be...

  19. Swimming pool cleaner poisoning

    Science.gov (United States)

    Swimming pool cleaner poisoning occurs when someone swallows this type of cleaner, touches it, or breathes in ... The harmful substances in swimming pool cleaner are: Bromine ... copper Chlorine Soda ash Sodium bicarbonate Various mild acids

  20. An experimental study of the behaviour of fission products following an accident on a swimming pool reactor

    International Nuclear Information System (INIS)

    Dadillon, J.

    1976-11-01

    In the estimation of nuclear risks connected with the running of a reactor an essential factor, sometimes neglected because insufficiently known, is the knowledge of the type, amount and behaviour of the contamination actually released inside the containment in the case of an accident. In the special case of swimming pool reactors the cooling fluid proves to be a very efficient barrier against contamination. Three experiments were carried out in the reactor CABRI, during which several fuel element plates were melted inside the core itself. (Author)

  1. Determination of n, γ radiation field around the building of the swimming-pool reactor

    International Nuclear Information System (INIS)

    Jiang Jinling; Wen Youqin; Chen Changmao

    1986-01-01

    This work has measured the dose distribution of n, gamma radiation field around the building of the swimming-pool reactor by use of the highly sensitive neutron Rem counter and PTB-H 7907 exposure ratemeter. The measured datum show that the maximum value of n, gamma dose are 3-4 times greater than the background on certain distance from the building. Generally, the neutron doses are 2-3 times larger than gamma doses on most points

  2. Effect of reactivity insertion rate on peak power and temperatures in swimming pool type research reactor

    International Nuclear Information System (INIS)

    Khan, L.A.; Jabbar, A.; Anwar, A.R.; Ahmad, N.

    1998-01-01

    It is essential to study the reactor behavior under different accidental conditions and take proper measures for its safe operation. We have studied the effect of reactivity insertion, with and without scram conditions, on peak power and temperatures of fuel, cladding and coolant in typical swimming pool type research reactor. The reactivity ranging from 1 $ to 2 $ and insertion times from 0.25 to 1 second have been considered. The computer code PARET has been used and results are presented in this article. (author)

  3. 1968 Listing of Swimming Pool Equipment.

    Science.gov (United States)

    National Sanitation Foundation, Ann Arbor, MI. Testing Lab.

    An up-to-date listing of swimming pool equipment including--(1) companies authorized to display the National Sanitation Foundation seal of approval, (2) equipment listed as meeting NSF swimming pool equipment standards relating to diatomite type filters, (3) equipment listed as meeting NSF swimming pool equipment standard relating to sand type…

  4. Determination of 16N and 19O activities in loop water of swimming pool reactor

    International Nuclear Information System (INIS)

    Ding Shengyao; Xu Kun; Yu Baosheng; Ling Yude

    2006-01-01

    Measurements of activities for 16 N and 19 O nuclei in the loop water of swimming pool reactor at China Institute of Atomic Energy were carried out. In order to verify the experiment results, a calculation for same purpose was also performed. The results show their coincidence is well in uncertainty range. The evaluated recommendation data for 18 O(n, γ) 19 O reaction cross sections are also given in the paper. (authors)

  5. Swimming Pools and Molluscum Contagiosum

    Science.gov (United States)

    ... Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections Poxvirus Swimming Pools Recommend on Facebook Tweet Share Compartir The ... often ask if molluscum virus can spread in swimming pools. There is also concern that it can ...

  6. Reactivity worth of the thermal column of a MTR type swimming pool research reactor using low enriched uranium fuel

    International Nuclear Information System (INIS)

    Ali Khan, L.; Ahmad, N.

    2002-01-01

    The reactivity worth of the thermal column of a typical MTR type swimming pool research reactor using low enriched uranium fuel has been determined by modeling the core using standard computer codes. It was also measured experimentally by operating the reactor in the stall and open ends. The calculated value of the reactivity worth of the thermal column is about 14% greater than the experimentally determined value

  7. Swimming level of pupils from elementary schools with own swimming pool

    OpenAIRE

    Zálupská, Klára

    2012-01-01

    Title: Swimming level of pupils from primary school with private swimming pool. Work objectives: The aim is to identify assess level of swimming of pupils from first to ninth grade of primary school with a private pool in Chomutov district using continuous swimming test with regular swimming lessons, which is started in the first grade and persists until the ninth grade. The condition was organizing a school swimming lessons once a week for 45 minutes in all grades. Methodology: Swimming leve...

  8. Presentation of a calorigenic swimming-pool reactor and study of its use for urban heating, desalination of water, and other industrial applications

    International Nuclear Information System (INIS)

    Lerouge, B.

    The design characteristics of the heat-producing swimming pool reactor are discussed together with economic and technical considerations related to its utilization in the areas of district heating, process heat production, and desalination

  9. Non-electric applications of pool-type nuclear reactors

    International Nuclear Information System (INIS)

    Adamov, E.O.; Cherkashov, Yu.M.; Romenkov, A.A.

    1997-01-01

    This paper recommends the use of pool-type light water reactors for thermal energy production. Safety and reliability of these reactors were already demonstrated to the public by the long-term operation of swimming pool research reactors. The paper presents the design experience of two projects: Apatity Underground Nuclear Heating Plant and Nuclear Sea-Water Desalination Plant. The simplicity of pool-type reactors, the ease of their manufacturing and maintenance make this type of a heat source attractive to the countries without a developed nuclear industry. (author). 6 figs, 1 tab

  10. Radiation shielding considerations for the repair and maintenance of a swimming pool-type tokamak reactor

    International Nuclear Information System (INIS)

    Seki, Y.; Mori, S.

    1984-01-01

    The radiation shielding relevant to the repair and maintenance of a swimming pool-type tokamak reactor is considered. The dose rate during the reactor operation can be made low enough for personnel access into the reactor room if a 2m thick water layer is installed above the magnet cryostat. The dose rate 24 h after shutdown is such that the human access is allowed above the magnet cryostat. Sufficient water layer thickness is provided in the inboard space for the operation of automatic welder/cutter while retaining the magnet shielding capability. Some forced cooling is required for the decay heat removal in the first wall. The penetration shield thickness around the neutral beam injector port is estimated to be barely sufficient in terms of the magnet radiation damage. (orig.)

  11. Remote maintenance considerations for swimming pool tokamak reactor

    International Nuclear Information System (INIS)

    Niikura, S.; Yamada, M.; Kasai, M.

    1983-01-01

    Swimming Pool Tokamak Reactor (SPTR) is one of the candidate devices which are expected to demonstrate physical and engineering feasibility for fusion power reactors. In SPTR, water shield is adopted instead of solid shield structures. Among the advantages of SPTR are, from viewpoint of remote maintenance, small handling weight and high space availability between TF coils and a vacuum vessel. On the other hand, high dose rate during reactor repair and adverse effects on remote maintenance equipment by the shielding water might be the disadvantage of SPTR, where it is assumed that the shielding water is drained during reactor repair. Since the design of SPTR is still at the preliminary stage, for remote maintenance, much effort has been directed to clarification of design conditions such as environment and handling weight. As for the remote maintenance system concepts, studies have been focussed on those for a vacuum vessel and its internal structure (blanket, divertor and protection walls) expected to be repaired more frequently. The vacuum vessel assembly is divided into 21 sectors and number of TF coils is 14. A pair of TF coils are connected with each other by antitorque beams on the whole side surface. Vacuum vessel cassettes and associated blanket, divertor and protection walls are replaced through seven windows between TF coils pairs. Therefore each vacuum vessel cassette is required moving mechanisms in toroidal and radial directions. Options for slide mechanisms are wheels, balls, rollers and water bearings. Options for driving the cassette are self-driving by hydraulic motors and external driving by rack-pinion, wires or specific vehicles. As a result of studies, the moving mechanism with wheels and hydraulic motors has been selected for the reference design, and the system with water bearings and rack-pinion as an alternative. Furthermore typical concepts have been obtained for remote maintenance equipment such as wall-mounted manipulators, tools for

  12. (Important hygienic aspects for swimming pools (author's transl))

    Energy Technology Data Exchange (ETDEWEB)

    Somosi, G

    1981-01-01

    The major epidemics which occurred in Hungary and originated from water in swimming pools are reported. The difficulties encountered in producing epidemiological evidence and in monitoring infections originating from water in swimming pools are mentioned. The possibilities of controlling the water quality in swimming pools and of preventing infections are discussed. Reference is made to the existing bacteriological limit values in Hungary to be observed in the recirculation of water in swimming pools.

  13. Effect of coolant flow rate on the power at onset of nucleate boiling in a swimming pool type research reactor

    International Nuclear Information System (INIS)

    Khan, L.A.; Ahmad, N.; Ahmad, S.

    1998-01-01

    The effect of flow rate of coolant on power of Onset Nucleate Boiling (ONB) in a reference core of a swimming pool type research reactor has been studied using a as standard computer code PARET. It has been found that the decrease in the coolant flow rate results in a corresponding decrease in power at ONB. (author)

  14. Swimming-pool piles; Piles piscines

    Energy Technology Data Exchange (ETDEWEB)

    Trioulaire, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10{sup 13}. This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [French] En France, deux piles piscines, Melusine et Triton, viennent d'entrer en service. La pile piscine est l'outil de recherche ideal pour des flux de neutrons de l'ordre de 10{sup 13}. Ce type de pile peut interesser des maintenant de nombreux centres de recherches mais il faut reduire son prix de revient et rompre avec le conformisme de sa conception. Il y a avantage: - a enterrer la piscine; - a supprimer les canaux experimentaux; - a concentrer le circuit de refrigeration dans la piscine; - a effectuer toutes les manipulations dans l'eau; - a doubler le coeur. (auteur)

  15. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  16. Guide for decontaminating swimming pool at schools

    International Nuclear Information System (INIS)

    Matsuhashi, Shimpei; Kurikami, Hiroshi; Yasuda, Ryo; Takano, Takao; Seko, Noriaki; Naganawa, Hirochika; Kuroki, Ryota; Saegusa, Jun

    2012-07-01

    Because of TEPCO Fukushima Dai-ichi Nuclear Power Plant accident due to the Great East Japan Earthquake, a huge amount of radioactive materials was widely dispersed and precipitated into the environment. Swimming pools in Fukushima prefectures were contaminated with the radioactives. We JAEA carried out several demonstration tests to decontaminate the radioactives and discharge the pool water safely. We concluded the results obtained from the tests as 'Guide for decontaminating Swimming Pool at School' and released it quickly. Following this, we also released the guide in English. This manuscript, as an experimental report of the swimming pool water decontamination, is consisted from the guide in Japanese and English prepared. (author)

  17. Guide for decontaminating swimming pool at schools

    Energy Technology Data Exchange (ETDEWEB)

    Matsuhashi, Shimpei; Kurikami, Hiroshi; Yasuda, Ryo; Takano, Takao; Seko, Noriaki; Naganawa, Hirochika; Kuroki, Ryota; Saegusa, Jun

    2012-07-15

    Because of TEPCO Fukushima Dai-ichi Nuclear Power Plant accident due to the Great East Japan Earthquake, a huge amount of radioactive materials was widely dispersed and precipitated into the environment. Swimming pools in Fukushima prefectures were contaminated with the radioactives. We JAEA carried out several demonstration tests to decontaminate the radioactives and discharge the pool water safely. We concluded the results obtained from the tests as 'Guide for decontaminating Swimming Pool at School' and released it quickly. Following this, we also released the guide in English. This manuscript, as an experimental report of the swimming pool water decontamination, is consisted from the guide in Japanese and English prepared. (author)

  18. Swimming Pool Safety

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Safety & Prevention Immunizations All Around At Home At Play ... Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to ...

  19. Health impact of disinfection by-products in swimming pools

    Directory of Open Access Journals (Sweden)

    Cristina M. Villanueva

    2012-12-01

    Full Text Available This article is focused on the epidemiological evidence on the health impacts related to disinfection by-products (DBPs in swimming pools, which is a chemical hazard generated as an undesired consequence to reduce the microbial pathogens. Specific DBPs are carcinogenic, fetotoxic and/or irritant to the airways according to experimental studies. Epidemiological evidence shows that swimming in pools during pregnancy is not associated with an increased risk of reproductive outcomes. An epidemiological study suggested an increased risk of bladder cancer with swimming pool attendance, although evidence is inconclusive. A higher prevalence of respiratory symptoms including asthma is found among swimming pool workers and elite swimmers, although the causality of this association is unclear. The body of evidence in children indicates that asthma is not increased by swimming pool attendance. Overall, the available knowledge suggests that the health benefits of swimming outweigh the potential health risks of chemical contamination. However, the positive effects of swimming should be enhanced by minimising potential risks.

  20. Irradiations under magnetic field. Measurement of resistivity sample irradiations between 100 and 500 deg C in a swimming-pool reactor

    International Nuclear Information System (INIS)

    Pauleve, J.; Marchand, A.; Blaise, A.

    1964-01-01

    An oven is described which enables the irradiation of small samples in the maximum neutron flux of a swimming-pool reactor of 15 MW (Siloe), at temperatures of between 100 and 500 deg.C defined to ± 0,5 deg.C, The oven is very simple from the technological point of view, and has a diameter of only 27 mm, This permits resistivity measurements to be carried out under irradiation in the reactor, or as another example, it enables irradiations in a magnetic field of 5000 oersteds, created by an immersed solenoid. (authors) [fr

  1. An estimate of radiation fields in a gamma irradiation facility using fuel elements from a swimming pool reactor

    International Nuclear Information System (INIS)

    Narain, Rajendra

    2002-01-01

    A simple gamma irradiation facility set up using a few irradiated or partially irradiated swimming pool elements can be assembled to provide a convenient facility for irradiation of small and medium sized samples for research. The paper presents results of radiation levels with an arrangement using four elements from a reactor core operating at a power of 20 MW. A maximum gamma field of higher than 1 KGy/h at locations adjacent to fuel elements with negligible neutron contamination can be achieved. (author)

  2. Life cycle environmental implications of residential swimming pools.

    Science.gov (United States)

    Forrest, Nigel; Williams, Eric

    2010-07-15

    Ownership of private swimming pools in the U.S. grew 2 to 4% per annum from 1997 to 2007. The environmental implications of pool ownership are analyzed by hybrid life cycle assessment (LCA) for nine U.S. cities. An operational model is constructed estimating consumption of chemicals, water, and energy for a typical residential pool. The model incorporates geographical climatic variations and upstream water and energy use from electricity and water supply networks. Results vary considerably by city: a factor of 5-6 for both water and energy use. Water use is driven by aridness and length of the swimming season, while energy use is mainly driven by length of the swimming season. Water and energy impacts of pools are significant, particularly in arid climates. In Phoenix for example pools account for 22% and 13% of a household's electricity and water use, respectively. Measures to reduce water and energy use in pools such as optimizing the pump schedule and covering the pool in winter can realize greater savings than many common household efficiency improvements. Private versus community pools are also compared. Community pools in Phoenix use 60% less swimming pool water and energy per household than subdivisions without community pools.

  3. Solar swimming pool

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This report examines the feasibility of using solar collectors to heat the water in a previously unheated outdoor swimming pool. The solar system is used in conjunction with a pool blanket, to conserve heat when the pool is not in use. Energy losses through evaporation can be reduced by as much as 70% by a pool blanket. A total of 130 m{sup 2} of highly durable black synthetic collectors were installed on a support structure at a 30{degree} angle from the horizontal, oriented to the south. Circulation of pool water though the collectors, which is controlled by a differential thermostat, was done with the existing pool pump. Before installation the pool temperature averaged 16{degree}C; after installation it ranged from 20{degree} to 26{degree}C. It was hard to distinguish how much pool heating was due to the solar system and how much heat was retained by the pool blanket. However, the pool season was extended by five weeks and attendance tripled. 2 figs.

  4. Infections Unlikely to be Spread Through Swimming Pools

    Science.gov (United States)

    ... Water Home Infections Unlikely to be Spread Through Swimming Pools Language: English (US) Español (Spanish) Recommend on ... included below. Infections Unlikely to be Spread by Swimming Pools Head Lice Head lice are unlikely to ...

  5. Thermal analyses of solar swimming pool heating in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, I.

    2011-01-01

    Hotels and swimming clubs in Pakistan pay huge gas bills for heating Swimming pools in winter. Winter days in most parts of Pakistan remain sunny and unglazed low cost solar collectors may be used to extend the swimming season. Installing the pool in a wind-protected area, which receives unobstructed solar radiation, may further reduce the size of the solar collectors required to heat the swimming pools. The pools should be covered with plastic sheet to eliminate evaporative heat losses and to prevent dust and tree leaves falling in the pool. The results of the thermal analysis show that in some parts of the country, a solar exposed pool can maintain comfortable temperature simply by using a plastic sheet on the pool surface. On the other hand, there are cities where solar collector array equal to twice the surface area of the pool is required to keep desired temperature in winter. (author)

  6. Evaluation of LOCA in a swimming-pool type reactor using the 3D-AIRLOCA code

    International Nuclear Information System (INIS)

    Nagler, A.; Gilat, J.; Hirshfeld, H.

    1991-01-01

    The 3D-AIRLOCA code was used to calculate core temperature evolution curves in the wake of a full LOCA in a swimming pool type reactor, resulting in complete core exposure and dryout within about 1000 sec of the initiating event. The results show that fuel integrity loss thresholds (450 C for softening and 650 C for melting) are reached and exceeded over large fractions of the core at powr levels as low as 2 MW. At 4.5 MW, the softening threshold is reached even when the accident occurs up to 12 hours after reactor shutdown for continuous operation, and up to 2 hrs after shutdown for intermittent (6 hrs/day, 4 days a week) operation. The situation is even more severe in blockage cases, when the air flow through the core is blocked by residual water at the grid plate level. It is concluded that substantial fission product releases are quite likely in this class of accidents. (orig.)

  7. Presence and select determinants of organophosphate flame retardants in public swimming pools

    International Nuclear Information System (INIS)

    Teo, Tiffany L.L.; Coleman, Heather M.; Khan, Stuart J.

    2016-01-01

    The occurrence of five organophosphate flame retardants (PFRs) consisting of tributyl phosphate (TNBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1.3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) in swimming pools were investigated. Fifteen chlorinated public swimming pools were sampled, including indoor pools, outdoor pools and spa pools. The analyses were carried out using isotope dilution gas chromatography tandem mass spectrometry. All five PFRs were detected in swimming pool waters with concentrations ranging from 5–27 ng/L (TNBP), 7–293 ng/L (TCEP), 62–1180 ng/L (TCIPP), 10–670 ng/L (TDCIPP) and 8–132 ng/L (TPHP). The concentrations of PFRs were generally higher in indoor swimming pools compared to outdoor swimming pools. In municipal water supplies, used to fill the swimming pools in three of the sampling locations, the five PFRs were all below the limit of quantifications, eliminating this as the source. Potential leaching of PFRs from commonly used swimming equipment, including newly purchased kickboards and swimsuits was investigated. These experiments revealed that PFRs leached from swimsuits, and may be a source of PFRs in swimming pools. A quantitative risk assessment revealed that the health risk to PFRs via swimming pools was generally low and below commonly applied health risk benchmarks. - Highlights: • TNBP, TCEP, TCIPP, TDCIPP and TPHP were detected in chlorinated swimming pools. • PFRs were below the LOQ in fill water samples collected from 3 locations. • TCIPP was observed to have the highest concentrations in swimming pools. • PFRs are leaching from swimsuits and may be a source in swimming pools. • Health risks through oral and dermal exposure to PFRs in swimming pools were low.

  8. Presence and select determinants of organophosphate flame retardants in public swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Teo, Tiffany L.L., E-mail: tiffany.teo@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington NSW 2052 (Australia); Coleman, Heather M., E-mail: h.coleman@ulster.ac.uk [Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Jordanstown, County Antrim BT37 0QB, Northern Ireland (United Kingdom); Khan, Stuart J., E-mail: s.khan@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington NSW 2052 (Australia)

    2016-11-01

    The occurrence of five organophosphate flame retardants (PFRs) consisting of tributyl phosphate (TNBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1.3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) in swimming pools were investigated. Fifteen chlorinated public swimming pools were sampled, including indoor pools, outdoor pools and spa pools. The analyses were carried out using isotope dilution gas chromatography tandem mass spectrometry. All five PFRs were detected in swimming pool waters with concentrations ranging from 5–27 ng/L (TNBP), 7–293 ng/L (TCEP), 62–1180 ng/L (TCIPP), 10–670 ng/L (TDCIPP) and 8–132 ng/L (TPHP). The concentrations of PFRs were generally higher in indoor swimming pools compared to outdoor swimming pools. In municipal water supplies, used to fill the swimming pools in three of the sampling locations, the five PFRs were all below the limit of quantifications, eliminating this as the source. Potential leaching of PFRs from commonly used swimming equipment, including newly purchased kickboards and swimsuits was investigated. These experiments revealed that PFRs leached from swimsuits, and may be a source of PFRs in swimming pools. A quantitative risk assessment revealed that the health risk to PFRs via swimming pools was generally low and below commonly applied health risk benchmarks. - Highlights: • TNBP, TCEP, TCIPP, TDCIPP and TPHP were detected in chlorinated swimming pools. • PFRs were below the LOQ in fill water samples collected from 3 locations. • TCIPP was observed to have the highest concentrations in swimming pools. • PFRs are leaching from swimsuits and may be a source in swimming pools. • Health risks through oral and dermal exposure to PFRs in swimming pools were low.

  9. Swimming pool special; Zwembadspecial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    This issue includes a few articles and messages on the use of heat pump systems in swimming pools. [Dutch] Dit nummer bevat onder meer een paar artikelen over het gebruik van warmtepompsystemen in zwembaden.

  10. On-site releases of noble gases and iodine in the event of core meltdown in a swimming pool reactor

    International Nuclear Information System (INIS)

    Montaignac, E. de.

    1976-10-01

    Research aimed at defining a standard model accident for swimming pool type reactors, has led to the adoption to the so-called BORAX accident which involves complete meltdown of the reactor core. This type of accident-an accident related to dimensional problems- is useful for calculations concerning reactor components which have to withstand the mechanical forces resulting from the accident. A study of the radiobiological consequences of this type of accident, involving the entire reactor core, required research to determine as accurately as possible how the iodine, noble gases and solid fission products are distributed between the melted core and the site. The joint document in the annexure served as the basis for discussion at the meeting (BEVS/SESR) on 9th March 1973, at which the SESR set the standard parameter values to be used for estimating fission product distributions on the site. (author)

  11. Maintenance operation by divers on a swimming-pool type reactor (Osiris, CEN Saclay). Technical and medical prevention: an example of multidisciplinary ergonomic step

    International Nuclear Information System (INIS)

    Arnould, C.; Martin, L.

    1979-01-01

    Maintenance works in a swimming-pool reactor was performed by a team of divers. A multidisciplinary ergonomic study had previously defined the working procedure. The ergonomic approach is analysed. The divers' working techniques are described. After work, medical tests showed that previsions were verified and proved the methods as safe. This technique by divers' interventions should open new possibilities in nuclear industry [fr

  12. Solar collectors for swimming pools still going strong

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    According to the opinion of the experts, solar energy heating may be technically 'mature' but the profitability is by no means that far. However, solar systems are a good alternative for heating the water in swimming pools. Four solar collector systems developed by different firms to heat swimming pools, including prices, are presented.

  13. Study on water evaporation rate from indoor swimming pools

    Directory of Open Access Journals (Sweden)

    Rzeźnik Ilona

    2017-01-01

    Full Text Available The air relative humidity in closed spaces of indoor swimming pools influences significantly on users thermal comfort and the stability of the building structure, so its preservation on suitable level is very important. For this purpose, buildings are equipped with HVAC systems which provide adequate level of humidity. The selection of devices and their technical parameters is made using the mathematical models of water evaporation rate in the unoccupied and occupied indoor swimming pool. In the literature, there are many papers describing this phenomena but the results differ from each other. The aim of the study was the experimental verification of published models of evaporation rate in the pool. The tests carried out on a laboratory scale, using model of indoor swimming pool, measuring 99cm/68cm/22cm. The model was equipped with water spray installation with six nozzles to simulate conditions during the use of the swimming pool. The measurements were made for conditions of sports pools (water temperature 24°C and recreational swimming pool (water temperature 34°C. According to the recommendations the air temperature was about 2°C higher than water temperature, and the relative humidity ranged from 40% to 55%. Models Shah and Biasin & Krumm were characterized by the best fit to the results of measurements on a laboratory scale.

  14. Blanket and vacuum vessel design of the next tokamak. (Swimming pool type)

    International Nuclear Information System (INIS)

    Iida, H.; Minato, A.; Kitamura, K.

    1983-01-01

    The structural design study of a reactor module for a swimming pool type reactor (SPTR) was conducted. Since pool water plays the role of radiation shielding in the SPTR, the module does not have a solid shield. It consists of tritium breeding blankets, divertor collector plates and a vacuum vessel. The object of this study is to show the reactor module design which has a simple structure and a sufficient tritium breeding ratio. A large coverage of the plasma chamber surface with tritium breeding blanket is essential in order to obtain a high tritium breeding ratio. A breeding blanket is also placed behind the divertor collector plate, i.e. in the upper and lower region, as well as in the outboard and inboard regions of the module. A concept in which the first wall is an integral part of the blanket is employed to minimize the thickness of structural and cooling material brazed in front of the breeding material (Li 2 O) and to enhance the tritium breeding capability. In order to simplify the module structure the vacuum vessel and breeding blanket is also integrated in the inboard region. One of the features inherent in the swimming pool type reactor is an additional external force on the vacuum vessel, namely hydraulic pressure. A detailed structural analysis of the vacuum vessel is performed. Divertor collector plates are assemblies of co-axial tubes. They minimize the electromagnetic force on the plate induced by the plasma disruption. A thermal and structural analysis and life time estimation of the first wall and divertor collector plates are performed. (author)

  15. Determination of neutron energy spectrum at a pneumatic rabbit station of a typical swimming pool type material test research reactor

    International Nuclear Information System (INIS)

    Malkawi, S.R.; Ahmad, N.

    2002-01-01

    The method of multiple foil activation was used to measure the neutron energy spectrum, experimentally, at a rabbit station of Pakistan Research Reactor-1 (PARR-1), which is a typical swimming pool type material test research reactor. The computer codes MSITER and SANDBP were used to adjust the spectrum. The pre-information required by the adjustment codes was obtained by modelling the core and its surroundings in three-dimensions by using the one dimensional transport theory code WIMS-D/4 and the multidimensional finite difference diffusion theory code CITATION. The input spectrum covariance information required by MSITER code was also calculated from the CITATION output. A comparison between calculated and adjusted spectra shows a good agreement

  16. Device and process for recovery and disposal of radioactive wastes underwater in a swimming pool

    International Nuclear Information System (INIS)

    Guironnet, L.; Bline, M.

    1990-01-01

    The device comprises a suction head and a filter fixed to a pole, for safe removing of loose parts (even brittle ones like nuclear fuel) in the core or on the bottom of the swimming pool during reactor shut down for maintenance [fr

  17. A study of some radioprotection apparatuses used in the case of pool reactors

    International Nuclear Information System (INIS)

    Robien, E. de; Choudens, H. de; Delpuech, J.

    1965-01-01

    Various problems of radioprotection concerning swimming-pool reactors in Grenoble have led us to study adequate solutions: a) The automatic verification of the staff-radioactivity when coming out of Melusine or Siloe has been realized thanks to a βγ gate which is insensitive to the ambient background in the reactor-hall; b) The automatic verification of the contamination of the shoes of the agents working in these reactors has been realized with a dedicated device; c) The necessity to measure precisely γ doses with the help of an autonomous apparatus has led to the making of a plastic-scintillator γ dosimeter; d) The obligation to forbid the opening of doors in some places where there might be a great intensity of radiation, has led us to make doors open according to the intensity of radiation inside the rooms; e) The releases of radioactive iodine have been measured with activated charcoal cartridges that surround a scintillator connected with a unique channel selector; f) Finally the control of reactor safety rod fall in case of a radioactive accident has been secured by a chain whose detector is a chamber immersed in the swimming-pool, which offers, in the particular case of the hot thickness swimming-pool reactor a double advantage: first it enables us to regulate the upper hot water layer, second to get free of transitory radiations which appear in the reactor hall as the experimental apparatuses are taken out from the core. (authors) [fr

  18. Cryptosporidium and Giardia in Swimming Pools, Atlanta, Georgia

    Centers for Disease Control (CDC) Podcasts

    In this podcast, Dan Rutz speaks with Dr. Joan Shields, a guest researcher with the Healthy Swimming Program at CDC, about an article in June 2008 issue of Emerging Infectious Diseases reporting on the results of a test of swimming pools in the greater Atlanta, Georgia area. Dr. Shields tested 160 pools in metro Atlanta last year for Cryptosporidium and Giardia. These germs cause most recreational water associated outbreaks.

  19. Estimated environmental radionuclide transfer and deposition into outdoor swimming pools

    International Nuclear Information System (INIS)

    Tagami, Kazumi; Nagata, Izumi; Sueki, Keisuke

    2014-01-01

    In 2011, a large radioactive discharge occurred at the Fukushima Daiichi nuclear power plant. This plant is located within a climatically temperate region where outdoor swimming pools are popular. Although it is relatively easy to decontaminate pools by refilling them with fresh water, it is difficult to maintain safe conditions given highly contaminated diurnal dust falls from the surrounding contaminated ground. Our objectives in this paper were to conduct daily radioactivity measurements, to determine the quantity of radioactive contaminants from the surrounding environment that invade outdoor pools, and to investigate the efficacy of traditional pool cleaners in removing radioactive contaminants. The depositions in the paper filterable particulates ranged from 0 to 62,5 Bq/m 2 /day, with the highest levels found in the southern Tohoku District containing Fukushima Prefecture and in the Kanto District containing Tokyo Metro. They were approximately correlated with the ground contamination. Traditional pool cleaners eliminated 99% of contaminants at the bottom of the pool, reducing the concentration to 41 Bq/m 2 after cleaning. Authors recommended the deposition or the blown radionuclides into outdoor swimming pools must be considered into pool regulations when the environments exactly polluted with radionuclides. - Highlights: • Deposition into outdoor swimming pool in a habitable areas estimated 72 Bq/m 2 /day. • More than 500 Bq/m 2 /day deposition will exceed our national guideline (10 Bq/l) of swimming pool. • Vacuum pool cleaner eliminates 99% radionuclides deposition

  20. Disinfection by-product formation of UV treated swimming pool water

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2015-01-01

    Water samples from 3 indoor swimming pool facilities were tested to evaluate UV-induced effects on swimming pool water chemistry. Concentration change of several DBPs was investigated in experiments including medium pressure UV treatment with and without chlorine and post-UV chlorination. Post-UV...

  1. Titanium distribution in swimming pool water is dominated by dissolved species

    International Nuclear Information System (INIS)

    David Holbrook, R.; Motabar, Donna; Quiñones, Oscar; Stanford, Benjamin; Vanderford, Brett; Moss, Donna

    2013-01-01

    The increased use of titanium dioxide nanoparticles (nano-TiO 2 ) in consumer products such as sunscreen has raised concerns about their possible risk to human and environmental health. In this work, we report the occurrence, size fractionation and behavior of titanium (Ti) in a children's swimming pool. Size-fractionated samples were analyzed for Ti using ICP-MS. Total titanium concentrations ([Ti]) in the pool water ranged between 21 μg/L and 60 μg/L and increased throughout the 101-day sampling period while [Ti] in tap water remained relatively constant. The majority of [Ti] was found in the dissolved phase (<1 kDa), with only a minor fraction of total [Ti] being considered either particulate or microparticulate. Simple models suggest that evaporation may account for the observed variation in [Ti], while sunscreen may be a relevant source of particulate and microparticule Ti. Compared to diet, incidental ingestion of nano-Ti from swimming pool water is minimal. -- Highlights: •Total titanium concentrations in unfiltered swimming pool water ranged between 21 and 60 μg/L. •Evaporation of the swimming pool water is suspected of causing a temporal increase in [Ti]. •The vast majority of Ti is found in the dissolved phase (<1 kD). •Swimming pools are not a significant Ti source for human exposure via ingestion. -- In children's swimming pool water, the majority of titanium is found in the dissolved phase

  2. Cryptosporidium and Giardia in Swimming Pools, Atlanta, Georgia

    Centers for Disease Control (CDC) Podcasts

    2008-05-29

    In this podcast, Dan Rutz speaks with Dr. Joan Shields, a guest researcher with the Healthy Swimming Program at CDC, about an article in June 2008 issue of Emerging Infectious Diseases reporting on the results of a test of swimming pools in the greater Atlanta, Georgia area. Dr. Shields tested 160 pools in metro Atlanta last year for Cryptosporidium and Giardia. These germs cause most recreational water associated outbreaks.  Created: 5/29/2008 by Emerging Infectious Diseases.   Date Released: 5/29/2008.

  3. Swimming pool attendance and respiratory symptoms and allergies among Dutch children

    NARCIS (Netherlands)

    Jacobs, J.H.; Fuertes, E.; Krop, E.J.M.; Spithoven, J.; Tromp, P.; Heederik, D.J.J.

    2012-01-01

    OBJECTIVES To describe associations among swimming, respiratory health, allergen sensitisation and Clara cell protein 16 (CC16) levels in Dutch schoolchildren. Trichloramine levels in swimming pool air were determined to assess potential exposure levels. METHODS Respiratory health and pool

  4. Mathematical modelling and simulation of the thermal performance of a solar heated indoor swimming pool

    OpenAIRE

    Mančić Marko V.; Živković Dragoljub S.; Milosavljević Peđa M.; Todorović Milena N.

    2014-01-01

    Buildings with indoor swimming pools have a large energy footprint. The source of major energy loss is the swimming pool hall where air humidity is increased by evaporation from the pool water surface. This increases energy consumption for heating and ventilation of the pool hall, fresh water supply loss and heat demand for pool water heating. In this paper, a mathematical model of the swimming pool was made to assess energy demands of an indoor swimming po...

  5. Benefits of carbon dioxide as pH reducer in chlorinated indoor swimming pools.

    Science.gov (United States)

    Gomà, Anton; Guisasola, Albert; Tayà, Carlota; Baeza, Juan A; Baeza, Mireia; Bartrolí, Albert; Lafuente, Javier; Bartrolí, Jordi

    2010-06-01

    Carbon dioxide is seldom used as pH reducer in swimming pools. Nevertheless it offers two interesting advantages. First, its use instead of the usual hydrochloric acid avoids the characteristic and serious accident of mixing the disinfectant with that strong acid, which forms a dangerous chlorine gas cloud and, second, it allows the facility to become slightly a depository of that greenhouse gas. This work introduces the experience of using CO(2) as pH reducer in real working swimming pools, showing three more advantages: lower chlorine consumption, lower presence of oxidants in the air above the swimming pool and a diminished formation of trihalomethanes in the swimming pool water. Experiments lasted 4years and they were run in three swimming pools in the Barcelona area, where the conventional system based upon HCl and a system based upon CO(2) were consecutively exchanged.

  6. Strategies for chemically healthy public swimming pools

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht

    spreading of pathogens between swimmers because of its residual disinfection effect. In addition to potential contamination of pathogenic microorganisms, swimming pool water is polluted by organic matter deposited from the bathers such as saliva, urine, sweat, hair and personal care products. Since chlorine...... is a strong oxidant it oxidizes the organic matter in the pool water and forms disinfection byproducts (DBPs). More than 100 different DBPs have been identified. Some of these have been found to be genotoxic and may pose an increased cancer risk for the bathers. The aim of this thesis was to give an overview...... of the strategies which can be used to achieve microbiological safe water with low levels of DBPs to ensure healthy environment for bathers. There are different approaches to achieve healthy environment in public swimming pools which in this thesis are divided into three strategies: alternatives to chlorination...

  7. Mathematical modeling of the energy consumption of heated swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Le Bel, C.; Millette, J. [LTE Shawinigan, Shawinigan, PQ (Canada)

    2007-07-01

    A mathematical model was developed to estimate the water temperature of a residential swimming pool. The model can compare 2 different situations and, if local climatic conditions are known, it can accurately predict energy costs of the pool relative to the total energy consumption of the house. When used with the appropriate energy transfer coefficient and weather file, the model can estimate the water temperature of a residential swimming pool having specific characteristics, such as in-ground, above-ground, heated or non-heated. The model is suitable for determining residential loads. It can be applied to different pool types and sizes, for different water heating scenarios and different climatic regions. Data obtained from the monitoring of water temperature and electricity use of 57 residential swimming pools was used to validate the model. In addition, 5 above-ground pools were installed on the property of LTE Shawinigan to allow for a more detailed study of the parameters involved in the thermal balance of a pool. The mathematical model, based on a global heat transfer coefficient, can determine the effect of a solar blanket and the effect of water volume. 14 refs., 5 tabs., 11 figs.

  8. Neutronics design of the next tokamak. (Swimming pool type)

    International Nuclear Information System (INIS)

    Seki, Y.; Iida, H.; Kitamura, K.; Minato, A.; Sako, K.; Mori, S.; Nishida, H.

    1983-01-01

    A swimming pool type tokamak reactor (SPTR) has been proposed in the Japan Atomic Energy Research Institute as a candidate for the next generation tokamak reactor after the JT-60. The concept of the SPTR evolved from an incentive to relieve the difficulties of repair and maintenance procedures of a tokamak reactor. After about two years of the reactor design studies, several advantages of the SPTR over the conventional tokamak reactors such as the ease of penetration shielding, reduction in solid radwaste have been shown. On the other hand, some drawbacks and uncertainties of the SPTR have also been pointed out but so far no serious defect negating the concept has been found. This paper describes the neutronics aspect of the SPTR based mostly on the result of one dimensional calculations. At first, the radiation shielding capability of water is compared with those of other candidate materials used in the blanket and shield of fusion reactors. Based on the result of the comparison and other requirements such as tritium breeding, thermal mechanical design, repair and maintenance procedures, the material arrangements of the blanket and shield are determined. The result of the blanket neutronics calculations, the radiation shielding calculations for the superconducting magnets, shutdown dose calculations are given together with major penetration shielding considerations. (author)

  9. Ingestion of swimming pool water by recreational

    Data.gov (United States)

    U.S. Environmental Protection Agency — Swimming pool water ingestion data. This dataset is associated with the following publication: Dufour, A., L. Wymer, M. Magnuson, T. Behymer, and R. Cantu. Ingestion...

  10. Indoor swimming pools. Humidity caused problems and suggested solutions

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Reports have been received from across Canada on premature deterioration and other problems of indoor swimming pool buildings. This technical paper has been prepared to assist pool managers to solve these problems, which typically include leaking roofs, condensation on inside walls, peeling paint, efflorescence, rusting of metal elements, deterioration of concrete block structures, and high costs for pool heating. An effective insulation and vapor barrier system for a swimming pool roof is described, and the high relative humidity of the typical pool building is discussed as the primary cause of most problems. Proper sealing to cut down air infiltration is recommended, along with proper maintenance and painting. High energy costs are often due to low insulation values and to excessive ventilation used for decreasing the humidity. By using dehumidifiers capable of heat recovery, and by placing an insulating blanket on the pool after operating hours, it is shown that substantial cost savings are possible. 10 figs.

  11. Automation of water supply and recirculation-filtration of water at a swimming pool using Zelio PLC

    Science.gov (United States)

    Diniş, C. M.; Popa, G. N.; Iagăr, A.

    2018-01-01

    The paper proposes the use of the Zelio PLC for the automation of the water supply and recirculation-filtration system of a swimming pool. To do this, the Zelio SR3B261BD - 24V DC with 10 digital inputs (24V DC) and 10 digital outputs (relay contacts) was used. The proposed application makes the control of the water supply pumps and the water recirculation-filtration from a swimming pool. The recirculation-filtration systems for pools and swimming pools are designed to ensure water cleaning and recirculation to achieve optimum quality and lasting service life. The water filtration process is one of the important steps in water treatment in polls and swimming pools. It consists in recirculation of the entire volume of water and begins by absorbing the water in the pool by means of a pump followed by the passing of water through the filter, disinfectant and pH dosing, and reintroducing the water back into the pool or swimming pool through the discharge holes. Filters must to work 24 hours a day to remove pollutants from pools or swimming pools users. Filtration removes suspension particles with different origins. All newly built pools and swimming pools must be fitted with water recirculation systems, and existing ones will be equipped with water recirculation and water treatment systems.

  12. Analysis of implementing phase change materials in open-air swimming pools

    OpenAIRE

    Zsembinszki, Gabriel; Farid, Mohammed M.; Cabeza, Luisa F.

    2012-01-01

    Open-air swimming pools in Mediterranean climate regions are heated by direct solar radiation with no auxiliary heating systems. In order to extend the swimming season or improve comfort conditions, solar collectors or pool coverings may be used. In this paper, another approach was followed through the use of phase change materials (PCM). Two methods of introducing the PCM were considered: (1) encapsulated in the sidewalls and bottom of the pool, and (2) use the PCM in an external he...

  13. Survey of bacterial contamination of environment of swimming pools in Yazd city, in 2013

    Directory of Open Access Journals (Sweden)

    Hossein Jafari Mansoorian

    2015-09-01

    Full Text Available Background: Infections are readily transmitted as a result of bacterial contamination of swimming pools. Therefore, hygiene and preventing the contamination of swimming pools is of particular importance. The objective of this study was to determine the amount of bacterial contamination in indoor pools of Yazd in 2013. Methods: In this descriptive and analytical study, all indoor swimming pools of Yazd (12 pools were evaluated during the spring and summer of 2013, in terms of bacterial contamination. In order to determine contamination, a sterile cotton swab was used for sampling. On average, 45 samples were taken from different surfaces in each pool (shower, dressing room, sitting places in sauna, platforms and around the pool. In total, about 540 samples from all pools were tested for bacterial contamination. Results: The results show that from 540 samples, bacterial contamination was observed in about 93 samples (17.22%; and was seen more in showers, edges of the pool and jacuzzis, and the slippers used in swimming pools. The most important isolated bacteria types were E. coli, Actinobacteria, Pseudomonas alcaligenes, Pseudomonas aeruginosa and Klebsiella pneumonia. Conclusion: The results indicate the presence of bacterial contamination on the surface of these places. It is recommended that health authorities should pay more attention to cleaning and disinfecting surfaces around the pool, showers, dressing rooms etc, to prevent infectious disease transfer as a result of contact with contaminated swimming pool surfaces.

  14. Swimming pools as heat sinks for air conditioners: Model design and experimental validation for natural thermal behavior of the pool

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, Jonathan; Harrington, Curtis; Modera, Mark [University of California Davis, Western Cooling Efficiency Center, 1450 Drew Avenue, Suite 100, Davis, CA 95618 (United States)

    2011-01-15

    Swimming pools as thermal sinks for air conditioners could save approximately 40% on peak cooling power and 30% of overall cooling energy, compared to standard residential air conditioning. Heat dissipation from pools in semi-arid climates with large diurnal temperature shifts is such that pool heating and space cooling may occur concurrently; in which case heat rejected from cooling equipment could directly displace pool heating energy, while also improving space cooling efficiency. The performance of such a system relies on the natural temperature regulation of swimming pools governed by evaporative and convective heat exchange with the air, radiative heat exchange with the sky, and conductive heat exchange with the ground. This paper describes and validates a model that uses meteorological data to accurately predict the hourly temperature of a swimming pool to within 1.1 C maximum error over the period of observation. A thorough review of literature guided our choice of the most appropriate set of equations to describe the natural mass and energy exchange between a swimming pool and the environment. Monitoring of a pool in Davis, CA, was used to confirm the resulting simulations. Comparison of predicted and observed pool temperature for all hours over a 56 day experimental period shows an R-squared relatedness of 0.967. (author)

  15. Laboratory studies on the effect of ozonation on THM formation in swimming pool water

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Cheema, Waqas Akram

    2015-01-01

    Water samples from indoor swimming pool were ozonated at different pH values to evaluate the effect of pH on decomposition of ozone in swimming pool water. Furthermore, drinking and pool water were repeatedly ozonated followed by chlorination to evaluate THM formation. Decomposition of ozone...... was not affected by pH in the range relevant to swimming pools (pH 6.8 – 7.8) and a half-life time at 10-12 min was obtained. Repeating the ozonation, the decomposition of ozone increased at the second dose of ozone added (t½,2=8 min) and then decreased again at the third and fourth dose of ozone (t½,3=17 min; t...... chlorine for drinking water as lower TTHM formation occurred than in non-ozonated samples. For pool water, a higher TTHM formation was observed in ozonated than non-ozonated pool water. Thus, it was observed that ozone reacts markedly different in swimming pool water from the known pattern in drinking...

  16. Solar-heated municipal swimming pools, a case study: Dade County, Florida

    Science.gov (United States)

    Levin, M.

    1981-09-01

    The installation of a solar energy system to heat the water in the swimming pool in one of Dade County, Florida's major parks is described. The mechanics of solar heated swimming pools are explained. The solar heating system consists of 216 unglazed polypropylene tube collectors, a differential thermostat, and the distribution system. The systems performance and economics as well as future plants are discussed.

  17. Photolytic removal of DBPs by medium pressure UV in swimming pool water

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Zortea, R.; Piketty, A.

    2013-01-01

    in a swimming pool. In an investigated public pool the UV dose was equivalent to an applied electrical energy of 1.34 kWh m− 3 d− 1 and the UV dose required to removed 90% of trichloronitromethane was 0.4 kWh m− 3 d− 1, while 2.6 kWh m− 3 d− 1 was required for chloral hydrate and the bromine containing......Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported...... to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trichloronitromethane, dichloropropanone, trichloropropanone, and chloral hydrate. First order photolysis constants...

  18. Genotoxic Effects in Swimmers Exposed to Disinfection By-products in Indoor Swimming Pool

    Science.gov (United States)

    BACKGROUND: Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk, and a recent study found an increased bladder cancer risk among subjects attending swimming pools. OBJECTIVES: To evaluate whether swimming in pools is associated with ...

  19. Indoor swimming pool attendance and respiratory and dermal health in schoolchildren: HITEA Catalonia.

    NARCIS (Netherlands)

    Font-Ribera, L.; Villanueva, C.M.; Gracia-Lavedan, E.; Borràs-Santos, A.; Kogevinas, M.; Zock, J.P.

    2014-01-01

    Background: Health benefits of swimming in pools may outweigh adverse health outcomes in children, but evidence from epidemiological studies is scarce or inconclusive for different health outcomes. We evaluated the association between indoor swimming pool attendance during childhood and respiratory

  20. Mathematical modelling and simulation of the thermal performance of a solar heated indoor swimming pool

    Directory of Open Access Journals (Sweden)

    Mančić Marko V.

    2014-01-01

    Full Text Available Buildings with indoor swimming pools have a large energy footprint. The source of major energy loss is the swimming pool hall where air humidity is increased by evaporation from the pool water surface. This increases energy consumption for heating and ventilation of the pool hall, fresh water supply loss and heat demand for pool water heating. In this paper, a mathematical model of the swimming pool was made to assess energy demands of an indoor swimming pool building. The mathematical model of the swimming pool is used with the created multi-zone building model in TRNSYS software to determine pool hall energy demand and pool losses. Energy loss for pool water and pool hall heating and ventilation are analyzed for different target pool water and air temperatures. The simulation showed that pool water heating accounts for around 22%, whereas heating and ventilation of the pool hall for around 60% of the total pool hall heat demand. With a change of preset controller air and water temperatures in simulations, evaporation loss was in the range 46-54% of the total pool losses. A solar thermal sanitary hot water system was modelled and simulated to analyze it's potential for energy savings of the presented demand side model. The simulation showed that up to 87% of water heating demands could be met by the solar thermal system, while avoiding stagnation. [Projekat Ministarstva nauke Republike Srbije, br. III 42006: Research and development of energy and environmentally highly effective polygeneration systems based on using renewable energy sources

  1. Influence of a swimming-pool on fertility in buffalo species

    Directory of Open Access Journals (Sweden)

    Luigi Zicarelli

    2010-01-01

    Full Text Available The aim of this study was to verify the effect of a swimming-pool on reproductive efficiency in buffalo species. The trial was performed in a commercial buffalo farm, where lactating buffaloes were divided into two groups (G1 and G2, and only in G1 a swimming-pool was available. Data of a 4-years period (1999–2002 were analysed. Statistical analysis of calving-conception interval (CCI of a first 3-years period (1999–2001, after logarithmic conversion, was performed by “t” Student’s Test while the percentage data were analyzed by Chi-square test. Animals in G1 showed higher conception rate within 120 days post calving (53.7% vs. 39.9%; P<0.001 in both deliveries of January-March and April-August. During the first 2 years (1999–2000 the CCI of buffaloes that delivered in January- March period was longer (P<0.001 than that of April-August. Furthermore, on the total of the 3 years the CCI was longer (P<0.01 in buffaloes of G2 compared to G1. Because of the presence of a swimming- pool also for G2 from 2002 May, the conception rate of not pregnant subjects characterized by more than 40 days open in 2001 and 2002 was also calculated and the favourable effect was confirmed. These results highlight the beneficial effect of a swimming-pool on fertility in buffalo species.

  2. Photolytic removal of DBPs by medium pressure UV in swimming pool water

    OpenAIRE

    Hansen, Kamilla Marie Speht; Zortea, R.; Piketty, A.; Rodriguez Vega, S.; Andersen, Henrik Rasmus

    2013-01-01

    Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trich...

  3. Lip and tooth injuries at public swimming pools in Austria.

    Science.gov (United States)

    Lechner, Katharina; Connert, Thomas; Kühl, Sebastian; Filippi, Andreas

    2017-06-01

    There is an increased risk of orofacial injuries in swimming pool facilities. Nevertheless, only a few studies have addressed this issue. The aim of this study was to identify the frequency of lip and tooth injuries at public swimming pools in Austria. A further aim was to examine which gender and age groups were affected, where and why these injuries occurred, and whether pool attendants had sufficient knowledge of dental first-aid measures. A total of 764 pool attendants in Austria were contacted by telephone and 689 participated in the study (90.2%). The attendants were interviewed retrospectively about accident occurrences in 2014 by a standardized questionnaire. Responses to the provision of first aid and choice of storage medium for avulsed teeth were subsequently evaluated. The frequency of lip injuries was 19.0%, and tooth injuries were 11.3%. Male bathers (P < .05) and children under 12 years (P < .001) most frequently suffered injuries. The waterslide was the most common accident site. The most common cause of lip injuries was slipping on wet surfaces (39.0%), and for tooth injuries it was collisions with other persons or objects (each 28.1%). The pool attendants' responses were predominantly good or sufficient on first aid, with the exception of what storage medium to choose. Tooth rescue boxes were available in only 8.6% of all pool facilities. Orofacial injuries are a frequently occurring problem in swimming pool facilities. The pool attendants' knowledge on first-aid care of tooth injuries could still be improved. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Evaluation and Treatment of Swimming Pool Avoidance Exhibited by an Adolescent Girl with Autism

    Science.gov (United States)

    Rapp, John T.; Vollmer, Timothy R.; Hovanetz, Alyson N.

    2005-01-01

    We evaluated and treated swimming pool avoidance that was exhibited by a 14-year-old girl diagnosed with autism. In part, treatment involved blocking for flopping (dropping to the ground) and elopement (running away from the pool) and access to food for movements toward a swimming pool. Treatment also involved reinforcement for exposure to various…

  5. Determination of Monochloroacetic Acid in Swimming Pool Water by Ion Chromatography-Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Maria Pythias B. Espino

    2013-12-01

    Full Text Available In this study, an analytical method involving ion chromatography with conductivity detection was developed and optimized for the determination of monochloroacetic acid in swimming pool water. The ion chromatographic method has a detection limit of 0.02 mg L-1 and linear range of 0.05 to 1.0 mg L-1 with correlation coeff icient of 0.9992. The method is reproducible with percent RSD of 0.052% (n=10. The recovery of monochloroacetic acid spiked in different water types (bottled, tap and swimming pool water ranged from 28 to 122%. In dilute solutions, chloride and bromide were simultaneously analyzed along with monochloroacetic acid using the optimized method. Chloride and bromide have detection limits of 0.01 to 0.05 mg L-1, respectively. The usefulness of the ion chromatographic method was demonstrated in the analysis of monochloroacetic acid in swimming pool water samples. In such highly-chlorinated samples, an Ag/H cartridge was used prior to the ion chromatographic determination so as to minimize the signal due to chloride ion. Monochloroacetic acid was detected in concentrations between 0.020 and 0.093 mg L-1 in three of the six swimming pool water samples studied. The presence of monochloroacetic acid in the swimming pool water samples suggests the possible occurrence of other disinfection by-products in these waters.

  6. Determination of Monochloroacetic Acid in Swimming Pool Water by Ion Chromatography-Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Maria Pythias B. Espino

    2013-02-01

    Full Text Available In this study, an analytical method involving ion chromatography with conductivity detection was developed and optimized for the determination of monochloroacetic acid in swimming pool water. The ion chromatographic method has a detection limit of 0.02 mg L-1 and linear range of 0.05 to 1.0 mg L-1 with correlation coeff icient of 0.9992. The method is reproducible with percent RSD of 0.052% (n=10. The recovery of monochloroacetic acid spiked in different water types (bottled, tap and swimming pool water ranged from 28 to 122%. In dilute solutions, chloride and bromide were simultaneously analyzed along with monochloroacetic acid using the optimized method. Chloride and bromide have detection limits of 0.01 to 0.05 mg L-1, respectively. The usefulness of the ion chromatographic method was demonstrated in the analysis of monochloroacetic acid in swimming pool water samples. In such highly-chlorinated samples, an Ag/H cartridge was used prior to the ion chromatographic determination so as to minimize the signal due to chloride ion. Monochloroacetic acid was detected in concentrations between 0.020 and 0.093 mg L-1 in three of the six swimming pool water samples studied. The presence of monochloroacetic acid in the swimming pool water samples suggests the possible occurrence of other disinfection by-products in these waters.

  7. The role of risk management in decrease of lawsuits of swimming pools

    Directory of Open Access Journals (Sweden)

    Behzad Izadi

    2012-01-01

    Full Text Available The purpose of this research is to study of risk management practices in decrease of lawsuits in public and private swimming pools in Tehran. The statistical population of the research included 310 managers of public and private swimming pools which 119 were selected as statistical samples by means of random sampling. The research method was descriptive and survey, and in measurement form. 2 questionnaires were used, on relating to demographic data and general information and the other to risk management practices and their validity was determined by alpha Cronbach method. The required information was collected by personal interviews during the time acting of managers in pools gathered and the data was analyzed by using person correlation coefficient. The result of this study indicated that: Significant relationship existed between incidents of accidents/injuries and lawsuits in swimming pools in Tehran. Significant relationship existed between risk management practice and accidents/injuries and lawsuits. Significant relationship existed between risk management practice and lawsuits and lawsuits.

  8. Analysis of an open-air swimming pool solar heating system by using an experimentally validated TRNSYS model

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Elisa; Martinez, Pedro J. [Universidad Miguel Hernandez - Edificio Torreblanca, Avda. de la Universidad s/n, 03202 Elche (Spain)

    2010-01-15

    In the case of private outdoor swimming pools, seldom larger than 100 m{sup 2}, conventional auxiliary heating systems are being installed less and less. Solar heating is an option to extend the swimming season. The temperature evolution of an open-air swimming pool highly depends on the wind speed directly on the water surface, which at the same time is influenced by the surroundings of the pool. In this paper, the TRNSYS model of a private open-air pool with a 50-m{sup 2} surface was validated by registering the water temperature evolution and the meteorological data at the pool site. Evaporation is the main component of energy loss in swimming pools. Six different sets of constants found in literature were considered to evaluate the evaporative heat transfer coefficient with the purpose of finding the most suitable one for the TRNSYS pool model. In order to do that, the evolution of the pool water temperature predicted by the TRNSYS pool model was compared with the experimentally registered one. The simulation with TRNSYS of the total system, including the swimming pool and the absorber circuit integrated into the existing filter circuit, provided information regarding the increase of the pool temperature for different collector areas during the swimming season. This knowledge, together with the economic costs, support the decision about the absorber field size. (author)

  9. ENERGY SAVING AT OPERATION OF OUTDOOR SWIMMING POOLS

    Directory of Open Access Journals (Sweden)

    V. F. Ivin

    2013-09-01

    Full Text Available Purpose. Energy saving is a major problem in modern power engineering and various energy-consuming devices. They include outdoor swimming pools. In order to maintain them in working condition, especially in winter period, it takes significant amount of thermal energy. Task of heat loss substantial decrease in open swimming pools is considered in the article (on DNURT example. Methodology. The method of determining the mass and heat loss on the basis of criteria equations of heat and mass transfer theory is used. Findings. Calculations of the actual DNURT pool heat loss for different seasons, as for natural convection both for air forced motion above the free water surface are performed. It is shown that for the adiabatic evaporation conditions of water from the pool in winter during blow-off with wind the heat loss can be up to 2 kW/m2 on surface. To reduce these losses it is offered to cover water surface in a pool with a special material with low thermal conductivity on the basis of porous polyethylene during the time when the pool is not used for other purposes. It is shown that the implementation of these standards will reduce the actual heat loss, at least 5-6 times. Originality. The solution of important environmental and energy problem thanks to reducing heat losses by the pool in different times of a year and correspondingly lower emissions of power generating enterprises. Practical value. It is shown that the coating surface of the pool with poorly heat-conducting and easy to install coating will let, at a minimum, to reduce the actual heat loss on 5-6 times and reduce the emissions of power plants generating energy for pool heating.

  10. Short-Term Changes in Respiratory Biomarkers after Swimming in a Chlorinated Pool

    OpenAIRE

    Font-Ribera, Laia; Kogevinas, Manolis; Zock, Jan-Paul; G?mez, Federico P.; Barreiro, Esther; Nieuwenhuijsen, Mark J.; Fernandez, Pilar; Lourencetti, Carolina; P?rez-Olabarr?a, Maitane; Bustamante, Mariona; Marcos, Ricard; Grimalt, Joan O.; Villanueva, Cristina M.

    2010-01-01

    Background Swimming in chlorinated pools involves exposure to disinfection by-products (DBPs) and has been associated with impaired respiratory health. Objectives We evaluated short-term changes in several respiratory biomarkers to explore mechanisms of potential lung damage related to swimming pool exposure. Methods We measured lung function and biomarkers of airway inflammation [fractional exhaled nitric oxide (FeNO), eight cytokines, and vascular endothelial growth factor (VEGF) in exhaled...

  11. Decontamination of outdoor school swimming pools in Fukushima

    International Nuclear Information System (INIS)

    Saegusa, Jun

    2013-01-01

    After the Fukushima Daiichi NPP accident following the Great East Japan Earthquake, many school swimming pools in Fukushima have suspended water discharge, due to concerns that pool water which contains radioactive fallout is discharged into a river or waterway for agricultural use. The Japan Atomic Energy Agency conducted researches and examinations on the existing absorbent method and the flocculation method as ways for decontaminating pool water. By reviewing and improving these methods through decontamination demonstrations at eight pools in Fukushima, a practical decontamination method for outdoor pools has been established. This report summarizes the methods and results of the decontamination demonstrations carried out at the schools. Also, the surface density of fallout estimated at one of the pools is also presented and discussed in connection with the overall collection ratio of radiocesium at the pool. (author)

  12. Health effects from swimming training in chlorinated pools and the corresponding metabolic stress pathways.

    Directory of Open Access Journals (Sweden)

    Jiang-Hua Li

    Full Text Available Chlorination is the most popular method for disinfecting swimming pool water; however, although pathogens are being killed, many toxic compounds, called disinfection by-products (DBPs, are formed. Numerous epidemiological publications have associated the chlorination of pools with dysfunctions of the respiratory system and with some other diseases. However, the findings concerning these associations are not always consistent and have not been confirmed by toxicological studies. Therefore, the health effects from swimming in chlorinated pools and the corresponding stress reactions in organisms are unclear. In this study, we show that although the growth and behaviors of experimental rats were not affected, their health, training effects and metabolic profiles were significantly affected by a 12-week swimming training program in chlorinated water identical to that of public pools. Interestingly, the eyes and skin are the organs that are more directly affected than the lungs by the irritants in chlorinated water; instead of chlorination, training intensity, training frequency and choking on water may be the primary factors for lung damage induced by swimming. Among the five major organs (the heart, liver, spleen, lungs and kidneys, the liver is the most likely target of DBPs. Through metabolomics analysis, the corresponding metabolic stress pathways and a defensive system focusing on taurine were presented, based on which the corresponding countermeasures can be developed for swimming athletes and for others who spend a lot of time in chlorinated swimming pools.

  13. Monitoring organic loading to swimming pools by fluorescence excitation–emission matrix with parallel factor analysis (PARAFAC)

    DEFF Research Database (Denmark)

    Seredynska-Sobecka, Bozena; Stedmon, Colin; Boe-Hansen, Rasmus

    2011-01-01

    Fluorescence Excitation–Emission Matrix spectroscopy combined with parallel factor analysis was employed to monitor water quality and organic contamination in swimming pools. The fluorescence signal of the swimming pool organic matter was low but increased slightly through the day. The analysis...... revealed that the organic matter fluorescence was characterised by five different components, one of which was unique to swimming pool organic matter and one which was specific to organic contamination. The latter component had emission peaks at 420nm and was found to be a sensitive indicator of organic...... loading in swimming pool water. The fluorescence at 420nm gradually increased during opening hours and represented material accumulating through the day....

  14. Potential risks of TiO_2 and ZnO nanoparticles released from sunscreens into outdoor swimming pools

    International Nuclear Information System (INIS)

    Jeon, Soo-kyung; Kim, Eun-ju; Lee, Jaesang; Lee, Seunghak

    2016-01-01

    Highlights: • Nanoparticles from sunscreen products can be released into public pools. • Nanoparticles and organic ingredients can generate reactive oxygen species (ROS). • A negative impact of ROS should not be significant in swimming pool. - Abstract: The potential risks of nanoparticles (NPs) in sunscreens being released into swimming water were evaluated by a series of laboratory experiments simulating the fate and transport of NPs in outdoor swimming pools. NPs released from sunscreen-applied skin were estimated using pig skins covered with five different commercial sunscreens containing TiO_2, ZnO, or both at various concentrations. Assuming that the swimming water treatment processes consisted of filtration, UV irradiation, heating, and chlorination, possible removal of the released NPs by each process was estimated. Generation of hydrogen peroxide (H_2O_2) by the NPs under sunlight and after UV photochemical treatment were measured, and the H_2O_2 concentration possibly present in the swimming pool was calculated based on some specific scenarios of operating an outdoor swimming pool. It was found that a significant amount of the NPs in sunscreens could be released into the swimming water, and accumulate during circulation through the treatment system. However, the concentration of H_2O_2 possibly present in the swimming pool should be below the level at which an adverse effect to bathers is concerned.

  15. Enhancing swimming pool safety by the use of range-imaging cameras

    Science.gov (United States)

    Geerardyn, D.; Boulanger, S.; Kuijk, M.

    2015-05-01

    Drowning is the cause of death of 372.000 people, each year worldwide, according to the report of November 2014 of the World Health Organization.1 Currently, most swimming pools only use lifeguards to detect drowning people. In some modern swimming pools, camera-based detection systems are nowadays being integrated. However, these systems have to be mounted underwater, mostly as a replacement of the underwater lighting. In contrast, we are interested in range imaging cameras mounted on the ceiling of the swimming pool, allowing to distinguish swimmers at the surface from drowning people underwater, while keeping the large field-of-view and minimizing occlusions. However, we have to take into account that the water surface of a swimming pool is not a flat, but mostly rippled surface, and that the water is transparent for visible light, but less transparent for infrared or ultraviolet light. We investigated the use of different types of 3D cameras to detect objects underwater at different depths and with different amplitudes of surface perturbations. Specifically, we performed measurements with a commercial Time-of-Flight camera, a commercial structured-light depth camera and our own Time-of-Flight system. Our own system uses pulsed Time-of-Flight and emits light of 785 nm. The measured distances between the camera and the object are influenced through the perturbations on the water surface. Due to the timing of our Time-of-Flight camera, our system is theoretically able to minimize the influence of the reflections of a partially-reflecting surface. The combination of a post image-acquisition filter compensating for the perturbations and the use of a light source with shorter wavelengths to enlarge the depth range can improve the current commercial cameras. As a result, we can conclude that low-cost range imagers can increase swimming pool safety, by inserting a post-processing filter and the use of another light source.

  16. A swimming pool array for ultra high energy showers

    Science.gov (United States)

    Yodh, Gaurang B.; Shoup, Anthony; Barwick, Steve; Goodman, Jordan A.

    1992-11-01

    A very preliminary design concept for an array using water Cherenkov counters, built out of commercially available backyard swimming pools, to sample the electromagnetic and muonic components of ultra high energy showers at large lateral distances is presented. The expected performance of the pools is estimated using the observed lateral distributions by scintillator and water Cherenkov arrays at energies above 1019 eV and simulations.

  17. An Investigation on Physicochemical and Microbial Water Quality of Swimming Pools in Yazd

    Directory of Open Access Journals (Sweden)

    M Dehvari

    2012-08-01

    Full Text Available Introduction: Disrespect of health regulations and proper disinfection of water and swimming pools is effective in incidence of health problems and transfer of infectious diseases to swimmers. The aim of this research was to investigate water of swimming pools in Yazd city and compare the results with national standards. Methods: In this study, 11 active covered swimming pools of Yazd city were sampled as census. Parameters of temperature, pH, amount of free and Combined chlorine residual, turbidity, alkalinity, hardness, the population of heterotrophic bacteria, Staphylococcus aureus, Pseudomonas aeruginosa, fecal streptococci, and fecal coliforms were studied. Sampling has been conducted every two weaks for 3 months and samples were analyzed under standard procedures. Results: In this research, amount of pH in 84.73%, free residual chlorine in 44.18%, Combined residual chlorine in 72.45%, alkalinity in19.82%, turbidity in 86.36%, hardness in 57.18% and temperature in 13.73% Samples were desirable. The fecal streptococci bacteria was not shown in all the swimming pools and population of heterotrophic bacteria, Staphylococcus aureus, Pseudomonas aeruginosa and fecal coliforms in 56.73%, 93.27%, 79.36% and 91.45% cases were desirable, respectively. Statistical analysis indicated that there is a direct relationship between Water turbidity and population of heterotraphic bacteria. Conclusion: According to the results, the parameters of heterotrophic bacteria population, also the alkalinity and temperature had the least compliant with the standards that shows the necessity for continuous monitoring of physical, chemical and microbial parameters and also control of filtration and disinfection of water condition of swimming pools.

  18. Swimming pool hydraulics and their significance for public pools. Bedeutung der Beckenhydraulik in oeffentlichen Schwimmbaedern

    Energy Technology Data Exchange (ETDEWEB)

    Gansloser, G

    1989-11-01

    The term of swimming pool hydraulics means the process of letting in and drawing off water to and from the pool while ensuring that no inadmissible water-borne contaminant concentrations will occur anywhere within the pool. Measurements were performed on a pool to study the significance of correct pool hydraulics. The author points out that a wrong water recirculation design will bring to nought the effects of an elaborate water treatment system; by contrast, poor pool water quality can be greatly improved by redesigning the pool water hydraulics approach. In principle, systems with with water inlet at one side and water outlet at the far side will fall short of hygienic requirements. (BWI).

  19. Hygiene trap in swimming pools? Planning decisions with consequences; Hygienefalle Wasseraufbereitung in Schwimmbaedern. Planungsentscheidungen mit Folgen

    Energy Technology Data Exchange (ETDEWEB)

    Schellhorn, Martin [SHK-Presseagentur Kommunikations-Management Schellhorn GmbH, Haltern am See (Germany)

    2008-03-15

    Planning decisions often can be influenced by a domino effect. A causality pulls the other causality up until clear problems for example in a technical operational sequence are developed. A typical example for this is a water treatment plant in swimming pools. Finally, here it is decided how well the bather feels, how much bathers use the swimming pool and how large the economic success is. Just in the water purification and filtering of swimming pools the market shows a strongly differentiated picture.

  20. Perceived health problems in swimmers according to the chemical treatment of water in swimming pools.

    Science.gov (United States)

    Fernández-Luna, Álvaro; Burillo, Pablo; Felipe, José Luis; del Corral, Julio; García-Unanue, Jorge; Gallardo, Leonor

    2016-01-01

    The objective of this study was to determine which chemical treatment used for disinfecting water in indoor swimming pools had the least impact on users' perceptions of health problems, and which generated the greatest satisfaction with the quality of the water. A survey on satisfaction and perceived health problems was given to 1001 users at 20 indoor swimming pools which used different water treatment methods [chlorine, bromine, ozone, ultraviolet lamps (UV) and salt electrolysis]. The findings suggest that there is a greater probability of perceived health problems, such as eye and skin irritation, respiratory problems and skin dryness, in swimming pools treated with chlorine than in swimming pools using other chemical treatment methods. Pools treated with bromine have similar, although slightly better, results. Other factors, such as age, gender, time of day of use (morning and afternoon) and type of user (competitive and recreational), can also affect the probability of suffering health problems. For all of the above, using combined treatment methods as ozone and UV, or salt electrolysis produces a lower probability of perceived health problems and greater satisfaction.

  1. Potential risks of TiO{sub 2} and ZnO nanoparticles released from sunscreens into outdoor swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Soo-kyung [Center for Water Resource Cycle, Green City Technology Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Energy Environment Policy and Technology, Green School, Korea University (KU)-Korea Institute of Science and Technology (KIST), Seoul 136-701 (Korea, Republic of); Kim, Eun-ju [Center for Water Resource Cycle, Green City Technology Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Lee, Jaesang [Energy Environment Policy and Technology, Green School, Korea University (KU)-Korea Institute of Science and Technology (KIST), Seoul 136-701 (Korea, Republic of); Civil, Environmental, and Architectural Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Seunghak, E-mail: seunglee@kist.re.kr [Center for Water Resource Cycle, Green City Technology Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Energy Environment Policy and Technology, Green School, Korea University (KU)-Korea Institute of Science and Technology (KIST), Seoul 136-701 (Korea, Republic of)

    2016-11-05

    Highlights: • Nanoparticles from sunscreen products can be released into public pools. • Nanoparticles and organic ingredients can generate reactive oxygen species (ROS). • A negative impact of ROS should not be significant in swimming pool. - Abstract: The potential risks of nanoparticles (NPs) in sunscreens being released into swimming water were evaluated by a series of laboratory experiments simulating the fate and transport of NPs in outdoor swimming pools. NPs released from sunscreen-applied skin were estimated using pig skins covered with five different commercial sunscreens containing TiO{sub 2}, ZnO, or both at various concentrations. Assuming that the swimming water treatment processes consisted of filtration, UV irradiation, heating, and chlorination, possible removal of the released NPs by each process was estimated. Generation of hydrogen peroxide (H{sub 2}O{sub 2}) by the NPs under sunlight and after UV photochemical treatment were measured, and the H{sub 2}O{sub 2} concentration possibly present in the swimming pool was calculated based on some specific scenarios of operating an outdoor swimming pool. It was found that a significant amount of the NPs in sunscreens could be released into the swimming water, and accumulate during circulation through the treatment system. However, the concentration of H{sub 2}O{sub 2} possibly present in the swimming pool should be below the level at which an adverse effect to bathers is concerned.

  2. Photolytic removal of DBPs by medium pressure UV in swimming pool water

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Kamilla M.S. [Department of Environmental Engineering, Technical University of Denmark (Denmark); Zortea, Raissa [Department of Land, Environment and Geotechnology Engineering, Polytechnic University of Turin (Italy); Piketty, Aurelia [Institute of Chemistry, Industrial and Chemical Engineering and Technology (INP-ENCIACET), National Polytechnic Institute of Toulouse (France); Vega, Sergio Rodriguez [Chemical Engineering, Complutense University of Madrid (Spain); Andersen, Henrik Rasmus, E-mail: Henrik@ndersen.net [Department of Environmental Engineering, Technical University of Denmark (Denmark)

    2013-01-15

    Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trichloronitromethane, dichloropropanone, trichloropropanone, and chloral hydrate. First order photolysis constants ranged 26-fold from 0.020 min{sup −1} for chloroform to 0.523 min{sup −1} for trichloronitromethane. The rate constants generally increased with bromine substitution. Using the UV removal of combined chlorine as an actinometer, the rate constants were recalculated to actual treatment doses of UV applied in a swimming pool. In an investigated public pool the UV dose was equivalent to an applied electrical energy of 1.34 kWh m{sup −3} d{sup −1} and the UV dose required to removed 90% of trichloronitromethane was 0.4 kWh m{sup −3} d{sup −1}, while 2.6 kWh m{sup −3} d{sup −1} was required for chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes ranged from 0.6 to 3.1 kWh m{sup −3} d{sup −1}. It was predicted thus that a beneficial side-effect of applying UV for removing combined chlorine from the pool water could be a significant removal of trichloronitromethane, chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes. - Highlights: ► UV irradiation is able to degrade all 12 investigated disinfection by-products. ► Bromine species are easier to remove than their chlorinated analogues. ► UV dose used for combined chlorine was comparable with doses required for DBP removal. ► Significant removal of some disinfection by-products in swimming pools is indicated.

  3. Photolytic removal of DBPs by medium pressure UV in swimming pool water

    International Nuclear Information System (INIS)

    Hansen, Kamilla M.S.; Zortea, Raissa; Piketty, Aurelia; Vega, Sergio Rodriguez; Andersen, Henrik Rasmus

    2013-01-01

    Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trichloronitromethane, dichloropropanone, trichloropropanone, and chloral hydrate. First order photolysis constants ranged 26-fold from 0.020 min −1 for chloroform to 0.523 min −1 for trichloronitromethane. The rate constants generally increased with bromine substitution. Using the UV removal of combined chlorine as an actinometer, the rate constants were recalculated to actual treatment doses of UV applied in a swimming pool. In an investigated public pool the UV dose was equivalent to an applied electrical energy of 1.34 kWh m −3 d −1 and the UV dose required to removed 90% of trichloronitromethane was 0.4 kWh m −3 d −1 , while 2.6 kWh m −3 d −1 was required for chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes ranged from 0.6 to 3.1 kWh m −3 d −1 . It was predicted thus that a beneficial side-effect of applying UV for removing combined chlorine from the pool water could be a significant removal of trichloronitromethane, chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes. - Highlights: ► UV irradiation is able to degrade all 12 investigated disinfection by-products. ► Bromine species are easier to remove than their chlorinated analogues. ► UV dose used for combined chlorine was comparable with doses required for DBP removal. ► Significant removal of some disinfection by-products in swimming pools is indicated

  4. Mathematical model development of heat and mass exchange processes in the outdoor swimming pool

    Directory of Open Access Journals (Sweden)

    M. V. Shaptala

    2014-12-01

    Full Text Available Purpose. Currently exploitation of outdoor swimming pools is often not cost-effective and, despite of their relevance, such pools are closed in large quantities. At this time there is no the whole mathematical model which would allow assessing qualitatively the effect of energy-saving measures. The aim of this work is to develop a mathematical model of heat and mass exchange processes for calculating basic heat and mass losses that occur during its exploitation. Methodology. The method for determination of heat and mass loses based on the theory of similarity criteria equations is used. Findings. The main types of heat and mass losses of outdoor pool were analyzed. The most significant types were allocated and mathematically described. Namely: by evaporation of water from the surface of the pool, by natural and forced convection, by radiation to the environment, heat consumption for water heating. Originality. The mathematical model of heat and mass exchange process of the outdoor swimming pool was developed, which allows calculating the basic heat and mass loses that occur during its exploitation. Practical value. The method of determining heat and mass loses of outdoor swimming pool as a software system was developed and implemented. It is based on the mathematical model proposed by the authors. This method can be used for the conceptual design of energy-efficient structures of outdoor pools, to assess their use of energy-intensive and selecting the optimum energy-saving measures. A further step in research in this area is the experimental validation of the method of calculation of heat losses in outdoor swimming pools with its use as an example the pool of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan. The outdoor pool, with water heating- up from the boiler room of the university, is operated year-round.

  5. Occurrence and simulation of trihalomethanes in swimming pool water: A simple prediction method based on DOC and mass balance.

    Science.gov (United States)

    Peng, Di; Saravia, Florencia; Abbt-Braun, Gudrun; Horn, Harald

    2016-01-01

    Trihalomethanes (THM) are the most typical disinfection by-products (DBPs) found in public swimming pool water. DBPs are produced when organic and inorganic matter in water reacts with chemical disinfectants. The irregular contribution of substances from pool visitors and long contact time with disinfectant make the forecast of THM in pool water a challenge. In this work occurrence of THM in a public indoor swimming pool was investigated and correlated with the dissolved organic carbon (DOC). Daily sampling of pool water for 26 days showed a positive correlation between DOC and THM with a time delay of about two days, while THM and DOC didn't directly correlate with the number of visitors. Based on the results and mass-balance in the pool water, a simple simulation model for estimating THM concentration in indoor swimming pool water was proposed. Formation of THM from DOC, volatilization into air and elimination by pool water treatment were included in the simulation. Formation ratio of THM gained from laboratory analysis using native pool water and information from field study in an indoor swimming pool reduced the uncertainty of the simulation. The simulation was validated by measurements in the swimming pool for 50 days. The simulated results were in good compliance with measured results. This work provides a useful and simple method for predicting THM concentration and its accumulation trend for long term in indoor swimming pool water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Gene expression changes in blood RNA after swimming in a chlorinated pool.

    Science.gov (United States)

    Salas, Lucas A; Font-Ribera, Laia; Bustamante, Mariona; Sumoy, Lauro; Grimalt, Joan O; Bonnin, Sarah; Aguilar, Maria; Mattlin, Heidi; Hummel, Manuela; Ferrer, Anna; Kogevinas, Manolis; Villanueva, Cristina M

    2017-08-01

    Exposure to disinfection by-products (DBP) such as trihalomethanes (THM) in swimming pools has been linked to adverse health effects in humans, but their biological mechanisms are unclear. We evaluated short-term changes in blood gene expression of adult recreational swimmers after swimming in a chlorinated pool. Volunteers swam 40min in an indoor chlorinated pool. Blood samples were drawn and four THM (chloroform, bromodichloromethane, dibromochloromethane and bromoform) were measured in exhaled breath before and after swimming. Intensity of physical activity was measured as metabolic equivalents (METs). Gene expression in whole blood mRNA was evaluated using IlluminaHumanHT-12v3 Expression-BeadChip. Linear mixed models were used to evaluate the relationship between gene expression changes and THM exposure. Thirty-seven before-after pairs were analyzed. The median increase from baseline to after swimming were: 0.7 to 2.3 for MET, and 1.4 to 7.1μg/m 3 for exhaled total THM (sum of the four THM). Exhaled THM increased on average 0.94μg/m 3 per 1 MET. While 1643 probes were differentially expressed post-exposure. Of them, 189 were also associated with exhaled levels of individual/total THM or MET after False Discovery Rate. The observed associations with the exhaled THM were low to moderate (Log-fold change range: -0.17 to 0.15). In conclusion, we identified short-term gene expression changes associated with swimming in a pool that were minor in magnitude and their biological meaning was unspecific. The high collinearity between exhaled THM levels and intensity of physical activity precluded mutually adjusted models with both covariates. These exploratory results should be validated in future studies. Copyright © 2017. Published by Elsevier B.V.

  7. Water treatment in public swimming pools - reduction of energy consumption; Vandbehandling i svoemmebade - reduktion af energiforbrug

    Energy Technology Data Exchange (ETDEWEB)

    Hammerich, H.; Radisch, N. (Ramboell, Koege (Denmark)); Olesen, Jens Christian (Gladsaxe Sportscenter, Gladsaxe (Denmark)) (and others)

    2010-04-15

    Measurements were made in five public swimming baths, and energy savings were achieved using new filters, pumps, water treatment control depending on bather load, etc. In a 50 metre pool, electricity consumption for water treatment decreased by 50%, and in a hot-water/paddling pool, electricity consumption decreased by 30-40% while still maintaining satisfactory water quality - even during periods of heavy bather load. In another swimming bath, ventilation electricity consumption was reduced by 15%. The results will e.g. be used to revise the Danish executive order on swimming pools and water quality to allow bather load-dependent water circulation. (ln)

  8. Some equipment for graphite research in swimming pool reactors; Quelques dispositifs d'etude du graphite dans les piles piscines

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, M; Arragon, Ph; Dupont, G; Gentil, J; Tanis, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    The irradiation devices described are used for research concerning reactors of the natural uranium type, moderated by graphite and cooled by carbon dioxide. The devices are generally designed for use in swimming pool reactors. The following points have been particularly studied: - maximum use of the irradiation volume, - use of the simplest technological solutions, - standardization of certain constituent parts. This standardization calls for precision machining and careful assembling; these requirements are also true when a relatively low irradiation temperature is required and the nuclear heating is pronounced. Finally, the design of these devices is suitable for the irradiation of other fissile or non-fissile materials. (authors) [French] Les dispositifs d'irradiation decrits servent aux etudes relatives a la filiere des reacteurs a uranium naturel, moderes au graphite et refroidis par le gaz carbonique. Ils sont generalement concus pour etre utilises dans des piles piscines. L'accent a ete mis sur: - l'utilisation au maximum du volume d'irradiation, - le recours aux solutions technologiques les plus simples, - la standardisation de certaines parties constitutives. Cette standardisation impose un usinage precis et un montage soigne, lesquels sont egalement necessaires lorsqu'on doit obtenir une temperature d'irradiation relativement basse alors que l'echauffement nucleaire est important. Enfin, la conception de ces dispositifs est valable pour irradier d'autres materiaux non fissiles ou fissiles. (auteurs)

  9. Allegheny County Public Swimming Pool, Hot Tub, and Spa Inspections

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Public swimming pool, hot tub, and spa facilities are licensed and inspected once each year to assure proper water quality, sanitation, lifeguard coverage and...

  10. Swimming pools and intra-city climates: Influences on residential ...

    African Journals Online (AJOL)

    While determinants such as household income, regional climate, water price, property size and household occupancy have been comprehensively studied and modelled, other determinants such as swimming pools and intra-city climates have not. This study examines residential water consumption in the City of Cape Town ...

  11. Titanium distribution in swimming pool water is dominated by dissolved species.

    Science.gov (United States)

    David Holbrook, R; Motabar, Donna; Quiñones, Oscar; Stanford, Benjamin; Vanderford, Brett; Moss, Donna

    2013-10-01

    The increased use of titanium dioxide nanoparticles (nano-TiO2) in consumer products such as sunscreen has raised concerns about their possible risk to human and environmental health. In this work, we report the occurrence, size fractionation and behavior of titanium (Ti) in a children's swimming pool. Size-fractionated samples were analyzed for Ti using ICP-MS. Total titanium concentrations ([Ti]) in the pool water ranged between 21 μg/L and 60 μg/L and increased throughout the 101-day sampling period while [Ti] in tap water remained relatively constant. The majority of [Ti] was found in the dissolved phase (microparticulate. Simple models suggest that evaporation may account for the observed variation in [Ti], while sunscreen may be a relevant source of particulate and microparticule Ti. Compared to diet, incidental ingestion of nano-Ti from swimming pool water is minimal. Published by Elsevier Ltd.

  12. Photolytic removal of DBPs by medium pressure UV in swimming pool water.

    Science.gov (United States)

    Hansen, Kamilla M S; Zortea, Raissa; Piketty, Aurelia; Vega, Sergio Rodriguez; Andersen, Henrik Rasmus

    2013-01-15

    Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trichloronitromethane, dichloropropanone, trichloropropanone, and chloral hydrate. First order photolysis constants ranged 26-fold from 0.020 min(-1) for chloroform to 0.523 min(-1) for trichloronitromethane. The rate constants generally increased with bromine substitution. Using the UV removal of combined chlorine as an actinometer, the rate constants were recalculated to actual treatment doses of UV applied in a swimming pool. In an investigated public pool the UV dose was equivalent to an applied electrical energy of 1.34 kWh m(-3) d(-1) and the UV dose required to removed 90% of trichloronitromethane was 0.4 kWh m(-3) d(-1), while 2.6 kWh m(-3) d(-1) was required for chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes ranged from 0.6 to 3.1 kWh m(-3) d(-1). It was predicted thus that a beneficial side-effect of applying UV for removing combined chlorine from the pool water could be a significant removal of trichloronitromethane, chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Pseudomonas aeruginosa in Swimming Pool Water: Evidences and Perspectives for a New Control Strategy

    OpenAIRE

    Guida, Marco; Di Onofrio, Valeria; Gall?, Francesca; Gesuele, Renato; Valeriani, Federica; Liguori, Renato; Romano Spica, Vincenzo; Liguori, Giorgio

    2016-01-01

    Pseudomonas aeruginosa is frequently isolated in swimming pool settings. Nine recreational and rehabilitative swimming pools were monitored according to the local legislation. The presence of P. aeruginosa was correlated to chlorine concentration. The ability of the isolates to form a biofilm on plastic materials was also investigated. In 59.5% of the samples, microbial contamination exceeded the threshold values. P. aeruginosa was isolated in 50.8% of these samples. The presence of P. aerugi...

  14. Disinfection Methods for Swimming Pool Water: Byproduct Formation and Control

    Directory of Open Access Journals (Sweden)

    Huma Ilyas

    2018-06-01

    Full Text Available This paper presents a comprehensive and critical comparison of 10 disinfection methods of swimming pool water: chlorination, electrochemically generated mixed oxidants (EGMO, ultraviolet (UV irradiation, UV/chlorine, UV/hydrogen peroxide (H2O2, UV/H2O2/chlorine, ozone (O3/chlorine, O3/H2O2/chlorine, O3/UV and O3/UV/chlorine for the formation, control and elimination of potentially toxic disinfection byproducts (DBPs: trihalomethanes (THMs, haloacetic acids (HAAs, haloacetonitriles (HANs, trihaloacetaldehydes (THAs and chloramines (CAMs. The statistical comparison is carried out using data on 32 swimming pools accumulated from the reviewed studies. The results indicate that O3/UV and O3/UV/chlorine are the most promising methods, as the concentration of the studied DBPs (THMs and HANs with these methods was reduced considerably compared with chlorination, EGMO, UV irradiation, UV/chlorine and O3/chlorine. However, the concentration of the studied DBPs including HAAs and CAMs remained much higher with O3/chlorine compared with the limits set by the WHO for drinking water quality. Moreover, the enhancement in the formation of THMs, HANs and CH with UV/chlorine compared with UV irradiation and the increase in the level of HANs with O3/UV/chlorine compared with O3/UV indicate the complexity of the combined processes, which should be optimized to control the toxicity and improve the quality of swimming pool water.

  15. Solar thermal space heating combined with swimming pool heating: A promising solution for southern Europe climates

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, M.J.; Neves, Ana [INETI/DER, Lisboa (Portugal)

    2006-07-01

    The system concept evaluation performed focused on systems that can provide hot water, space heating and swimming-pool heating, and are designed for application in southern climates specifically for single-family houses. Due to the climate characteristics of southern Europe, space heating is required only for a few months in the year. In this evaluation it was considered a six month period for space heating and, on the other six months, swimming pool heating was considered. This type of systems are applicable to a niche market of people who are building their houses as single-family houses and want also to take profit of the good climate conditions for the use of solar energy. It is common that the construction of a swimming pool is also planned and constructed. The evaluation is made considering as reference system a factory made with 4m{sup 2} collector area and 300 l storage tank. The system in evaluation offers extra service - space heating and swimming pool heating and is formed by a collector field and a combistore providing solar hot water preparation and space heating in the winter period and providing also swimming pool heating in the summer period. The evaluation made shows that in southern Europe climates this system will give extra service in comparison to the traditional solar systems used and can be economically interesting.

  16. The Leuze mineral water swimming pool - purposefully optimized energy utilization. Mineralbad Leuze: Sinnvoll optimierte Energienutzung

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-04-01

    The mineral-water swimming pool in Stuttgart-Bad Cannstatt is fed by mineral springs. The author reports on the design and energy technology used in this indoor swimming pool (photographs), pool hall (feed and exhaust air), treatment basin, showers, locker rooms (air throughput rate, feed and exhaust air management), cafeteria, kitchen, gymnastics and technical services rooms, toilets, chemicals storage room, cooling system and heat pump (heat recovery from drained pool water up to 50%). District heating steam (18 bar) is used for heat supply (reducing station). The author comments on the temperature levels required for different heating cycles (hot-pool hall, hot-water basin, skylight heating, space heating) and on thermal output requirements (kW). (HWJ).

  17. Short-term changes in respiratory biomarkers after swimming in a chlorinated pool.

    Science.gov (United States)

    Font-Ribera, Laia; Kogevinas, Manolis; Zock, Jan-Paul; Gómez, Federico P; Barreiro, Esther; Nieuwenhuijsen, Mark J; Fernandez, Pilar; Lourencetti, Carolina; Pérez-Olabarría, Maitane; Bustamante, Mariona; Marcos, Ricard; Grimalt, Joan O; Villanueva, Cristina M

    2010-11-01

    Swimming in chlorinated pools involves exposure to disinfection by-products (DBPs) and has been associated with impaired respiratory health. We evaluated short-term changes in several respiratory biomarkers to explore mechanisms of potential lung damage related to swimming pool exposure. We measured lung function and biomarkers of airway inflammation [fractional exhaled nitric oxide (FeNO), eight cytokines, and vascular endothelial growth factor (VEGF) in exhaled breath condensate], oxidative stress (8-isoprostane in exhaled breath condensate), and lung permeability [surfactant protein D (SP-D) and the Clara cell secretory protein (CC16) in serum] in 48 healthy nonsmoking adults before and after they swam for 40 min in a chlorinated indoor swimming pool. We measured trihalomethanes in exhaled breath as a marker of individual exposure to DBPs. Energy expenditure during swimming, atopy, and CC16 genotype (rs3741240) were also determined. Median serum CC16 levels increased from 6.01 to 6.21 microg/L (average increase, 3.3%; paired Wilcoxon test p = 0.03), regardless of atopic status and CC16 genotype. This increase was explained both by energy expenditure and different markers of DBP exposure in multivariate models. FeNO was unchanged overall but tended to decrease among atopics. We found no significant changes in lung function, SP-D, 8-isoprostane, eight cytokines, or VEGF. We detected a slight increase in serum CC16, a marker of lung epithelium permeability, in healthy adults after they swam in an indoor chlorinated pool. Exercise and DBP exposure explained this association, without involving inflammatory mechanisms. Further research is needed to confirm the results, establish the clinical relevance of short-term serum CC16 changes, and evaluate the long-term health impacts.

  18. Particles in swimming pool filters – Does pH determine the DBP formation?

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Willach, Sarah; Mosbæk, Hans

    2012-01-01

    The formation was investigated for different groups of disinfection byproducts (DBPs) during chlorination of filter particles from swimming pools at different pH-values and the toxicity was estimated. Specifically, the formation of the DBP group trihalomethanes (THMs), which is regulated in many...... or initial free chlorine concentrations the particles were chlorinated at different pH-values in the relevant range for swimming pools. THM and HAA formations were reduced by decreasing pH while HAN formation increased with decreasing pH. Based on the organic content the relative DBP formation from...

  19. Environmental burdens of a Finnish indoor swimming pool; Uimahallin ympaeristoekuormitukset

    Energy Technology Data Exchange (ETDEWEB)

    Vaahterus, T.; Saari, A.

    2001-07-01

    In this study the environmental burdens of a Finnish indoor swimming pool generated by its energy consumption were calculated. The calculations were made by using a calculation method based on LCA methodology. Calculations were made of 50 years period. The energy consumption dating from the time of the indoor swimming pool causes towards the gross-floor area a nearly four times bigger environmental load than for example a block of flats and indoor ice- skating rink. On a block of flats and indoor ice-skating rink the energy consumption dating from the time of the use causes more than 90 % of the environmental burdens of the whole life span. One can suppose that at the indoor swimming pool the share of the energy consumption dating from the time of the use only is emphasized. In this study confine therefore to dealing with the environmental loads caused only by the energy consumption dating from the time of the use. The results of these calculations showed that the energy flow of the life cycle energy consumption was 193 000 MJ/brm{sup 2}. 11,2 ton per gross-floor area CO{sub 2} equivalents, 21 kg per gross-floor area SO{sub 2} equivalents and 290 g per gross-floor area ethene equivalents of environmental burdens were caused. The main factor causing the most environmental loads were the need of heating energy. The need of heating energy produced 75 % of the CO{sub 2} equivalents, 70 % of the SO{sub 2} equivalents and 59 % of the ethene equivalents. The need of the electric energy produced 23 % of the CO{sub 2} equivalents, 23 % of the SO{sub 2} equivalents and 17 % of the ethene equivalents. Of the heating energy the share of the warming of water was 56 %. The most significant part of the electric energy were consumed in the use of the sauna stoves and vapor sauna (31 %) and heating pumps and water elements (30 %). Almost all (87 %) of the energy, consumed during the life cycle, was produced with non-renewable energy sources. The source information of the energy was

  20. Design of a tool for extracting a plexiglass falls to the bottom of the reactor pool TRIGA MKI

    International Nuclear Information System (INIS)

    Kankunku, P.K.; Lukanda, M.V.

    2011-01-01

    This paper presents a particular problem, of extracting a plexiglas from the bottom of thr reactor swimming pool. With rudimentary techniques of extraction (two attempts), we noticed that these techniques were unsuccessful, by the way we proceeded in designing a tool made of steel which solved the problem of plexiglas extraction

  1. Swimming Lessons: Learning, New Materialisms, Posthumanism, and Post Qualitative Research Emerge through a Pool Poem

    Science.gov (United States)

    McKnight, Lucinda

    2016-01-01

    This article shifts from the formal learning spaces of school and university to an Australian public swimming pool to playfully engage some of the dilemmas that recent theory poses for curriculum studies. The article enacts multiple diffractions (Barad, 2007) as theory becomes swimming and swimming becomes theory, and ideas and movements are…

  2. Evaluating performance from spiral polyethylene tubes as solar collectors for heating swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Stefanelli, Anderson Thiago Pontes; Marchi Neto, Ismael de; Scalon, Vicente Luiz; Padilha, Alcides [UNESP, Universidade Estadual Paulista Julio de Mesquita Filho, Bauru, SP (Brazil). Dept. de Engenharia Mecanica], e-mails: scalon@feb.unesp.br, padilha@feb.unesp.br

    2010-07-01

    The solar energy is very common in the daily of citizens from different regions in world. Environmental questions and the consequent Development of renewable energy techniques were a decisive factor for expanding this market. Currently, the solar energy is present in many different devices: as direct conversion through photovoltaic panels as in solar domestic for hot water systems(SDHWS). Another common use is in the heating system for swimming pools, that could be utilized for therapeutic or comfort reasons. The main aspect that increments this use is the economy for operation of these systems. On the other hand, these systems need a high initial investment. Reducing this cost without reduction in collector efficiency using new materials and / or alternative projects is important target for new researches. Thus, this paper aims to analyze the efficiency of one of these alternative models for heating swimming pools. The conceptual device evaluated is a low cost model. It could be made from polyethylene tubes forming spiral heat exchangers. Analysis of the system is based on a dynamic model using differential equations system including solar collector and swimming pool. Experimental radiation and other environmental conditions in the region of Bauru-SP are used for analyse the dynamic behavior of the system. The simulations are based on analysis of three main parameters: number of collectors, the pump drive time and wall thickness of the collector of polyethylene. Based on these numerical tests one can conclude that this new model of solar collector for swimming pool has a better cost benefit ratio when superficial area is equal to 80% of pool area, pump operation is alternating with four minutes turned on and 28 turned off and the polyethylene wall thickness is 1.5 mm (author)

  3. Experimental and computational analysis of the hot water layer for the radiological protection in swimming pool reactor

    International Nuclear Information System (INIS)

    Ribeiro, Rogerio.

    1995-01-01

    Pool reactors are research reactors, which allow easy access to the core and rare simple to operate. Reactors of this kind operating at power levels higher than about one megawatt need a hot water layer at the surface of the pool, in order to keep surface activity below acceptable levels and enable free access to the upper part of the reactor. An experimental apparatus was constructed to study the hot water layer stability. Thermocouples were used to measure the temperature field. A numerical analysis was conducted simultaneously. Regarding experimental results, representative temperature contour lines of the hot water layer were plotted. The temperature field was determined in the numerical analysis and temperature contour lines corresponding to those of the experimental results were plotted. The hot water layer kept stable for experimental and numerical results. Good agreement between the results for the hot water layer position and thickness has been obtained. (author). 21 refs., 40 figs., 15 tabs

  4. The future of the low temperature district heating reactor

    International Nuclear Information System (INIS)

    Lu Yingzhong; Wang Dazhong; Ma Changwen; Dong Duo; Tian Jiafu.

    1984-01-01

    In this paper, the role, development and situation of the low temperature district heating reactor (LTDHR) are briefly summarized. There are four types of LTDHR. They are PWR, reactor with boiling in the chimney, organic reactor and swimming pool reactor. The features of these reactors are introduced. The situation and role of the LTDHR in the future of the energy system are also discussed. The experiment on nuclear district heating with the swimming pool reactor in Qinghua Univ. is described briefly. (Author)

  5. Software for the Design of Swimming Pool Dehumidifiers Units

    Science.gov (United States)

    Rubina, Aleš; Blasinski, Petr; Tesař, Zdeněk

    2013-06-01

    The article deals with the description and solution of physical phenomena taking place during evaporation of water. The topicality of the theme is given a number of built indoor swimming pool and wellness centers at present. In addressing HVAC systems serving these areas, it is necessary to know the various design parameters in the interior including the water temperature as the pool temperature and humidity. Following is a description of the calculation module, air handling units, including optimizing the settings of the physical changes in order to ensure the lowest energy consumption for air treatment and required maintaining internal microclimate parameters.

  6. Dynamic simulation and thermo-economic analysis of a PhotoVoltaic/Thermal collector heating system for an indoor–outdoor swimming pool

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; De Luca, Giuseppina; Figaj, Rafal Damian; Vanoli, Laura

    2015-01-01

    Highlights: • A PV/T heating system for indoor–outdoor swimming pools is proposed. • A comparison among some thermal pool models available in literature is carried out. • Dynamic simulations of the thermal behavior of the swimming-pools are performed. • PV/T thermal energy is used to heat the swimming pool and for DHW production. • Energy and economic parametric analyses of the proposed system are presented. - Abstract: This paper presents an analysis of an innovative renewable energy plant serving an existing indoor/outdoor swimming pool located in Naples. The proposed solar hybrid system is designed in order to balance the remarkable energy demand of the swimming pool facility and to ensure suitable comfort conditions for swimmers. With the aim to accomplish such goals, the dynamic thermal behavior of the swimming pool was analyzed as a function of the thermo-hygrometric conditions of the indoor space and on the meteorological conditions of the pool site. In order to properly design and size the proposed renewable energy system, different thermal pool loss formulations for the calculation of the swimming pool thermal balance, in indoor and outdoor regimes, are adopted. The solar hybrid system consists of a water cooled photovoltaic/thermal collectors plant (PV/T), designed to meet a part of the facility demands of electricity and heat. Electricity is completely utilized by the facility, while the produced thermal energy is primarily used to meet the pool thermal demand and secondarily for sanitary hot water scopes. In order to carry out dynamic simulations and sensitivity analyses, the system performance is designed and dynamically simulated in TRNSYS environment. The developed simulation model enables the calculation of both the indoor and outdoor swimming pool thermal losses and the overall energy and economic system performance. Such results are obtained as a function of the thermo-hygrometric conditions of the environment, of the occupants and the

  7. A scale model to evaluate water evaporation from indoor swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Asdrubali, F. [Department of Industrial Engineering, University of Perugia, Via G. Duranti 67, 06125 Perugia (Italy)

    2009-03-15

    The evaluation of water evaporation from indoor swimming pools is a topic of considerable practical interest, since evaporation may cause the highest energy consumption of the pool plant. A purposely designed experimental apparatus was used to measure the water evaporation rate from a pool scale model inserted into a climatic chamber to control environmental conditions. The experimental data were obtained varying various parameters such as water temperature, air temperature, relative humidity and air velocity. The results were used to propose a prediction model for water evaporation which was compared to other methods found in the literature, showing a good agreement. (author)

  8. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  9. Gamma spectrum measurement in a swimming-pool-type reactor; Mesure du spectre {gamma} d'une pile piscine

    Energy Technology Data Exchange (ETDEWEB)

    Pla, E [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    After recalling the various modes of interaction of gamma rays with matter, the authors describe the design of a spectrometer for gamma energies of between 0.3 and 10 MeV. This spectrometer makes use of the Compton and pair-production effects without eliminating them. The collimator, the crystals and the electronics have been studied in detail and are described in their final form. The problem of calibrating the apparatus is then considered ; numerous graphs are given. The sensitivity of the spectrometer for different energies is determined mainly for the 'Compton effect' group. Finally, in the last part of the report, are given results of an experimental measurement of the gamma spectrum of a swimming-pool type reactor with new elements. (author) [French] Apres un rappel des differents modes d'interaction des rayons gamma avec la matiere, nous decrivons la conception d'un spectrometre pour les energies gamma s'etendant de 0,3 a 10 MeV. Ce spectrometre utilise les effets Compton et creation de paires sans les eliminer. Le collimateur, les cristaux et l'electronique sont entierement etudies et decrits dans leur realisation definitive. Ensuite, le probleme de l'etalonnage de l'appareil est envisage; de nombreuses courbes sont donnees. La sensibilite du spectrometre pour les differentes energies est determinee principalement pour le groupe ''effet Compton''. Enfin, les resultats d'une experience de mesure du spectre gamma d'une pile piscine avec elements neufs sont donnes dans la derniere partie. (auteur)

  10. Reinforced confinement in a nuclear reactor

    International Nuclear Information System (INIS)

    Norman, H.

    1988-01-01

    The present invention concerns a nuclear reactor containing a reactor core, a swimming pool space that is filled and pressurized with a neutron-absorbing solution, a reactor tank, at least one heat exchanger, at least one inlet line, at least one return line and at least one circulation pump, where the said reactor tank is confined in the said swimming pool space and designed to be cooled with the aid of relatively pure water, which is fed by means of the said at least one circulating pump to the said reactor tank from the said heat exchanger via the said at least one inlet line and is returned to the heat exchanger via the said at least one return line. The problem that is to be solved by the invention is to design a reactor of the above type in such a way that a complete confinement of the primary circuit of the reactor is achieved at relatively low extra cost. This problem is solved by providing the reactor with a special confinement space that confines the heat exchanger, but not the reactor tank, with the confinement space and the swimming pool space being fashioned in the same concrete body

  11. Comparison of swimming pools alternative passive and active heating systems based on renewable energy sources in Southern Europe

    International Nuclear Information System (INIS)

    Katsaprakakis, Dimitris Al.

    2015-01-01

    This article examines different passive and active heating systems for swimming pools. The passive systems introduced in this article are: * The swimming pools' enclosure. * The placement of floating insulating covers on the pools' surfaces whenever they are not used. The examined active systems in this article are: * A biomass heater. * A biomass heater and solar collectors combi-system. * Vertical geothermal heat exchangers (GHE) co-operating with geothermal heat pumps (GHP). The methodology employed for the introduced systems' evaluation is the arithmetic computational simulation of the swimming pools' annual heating, using annual time series of averaged hourly values for the available solar radiation and the calculated pools' thermal power demand (heating loads). The dimensioning of the active systems aims at the maximisation of the heating production from R.E.S. (renewable energy sources). and the optimisation of the corresponding investments' economic indexes. The examined systems are evaluated technically and economically versus fundamental criteria. It is proved that significant reduction of the heating loads is achieved with the introduced passive systems. The reduced swimming pools' heating loads can be successfully covered by the proposed R.E.S. active systems. The fossil fuels consumption is eliminated. The corresponding investments' payback periods can be lower than 5 years. - Highlights: • The passive solar systems reduce the swimming pools heating loads more than 90%. • The examined active heating system exhibit payback periods lower than 3.5 years. • The energy saving is maximised with a biomass heater – solar collectors system. • Single biomass heaters exhibits the shortest payback period. • GHE–GHP can be used in cases of low solar radiation and lack of biomass fuels

  12. Optimization of heat pump system in indoor swimming pool using particle swarm algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wen-Shing; Kung, Chung-Kuan [Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, 1, Section 3, Chung-Hsiao East Road, Taipei (China)

    2008-09-15

    When it comes to indoor swimming pool facilities, a large amount of energy is required to heat up low-temperature outdoor air before it is being introduced indoors to maintain indoor humidity. Since water is evaporated from the pool surface, the exhausted air contains more water and specific enthalpy. In response to this indoor air, heat pump is generally used in heat recovery for indoor swimming pools. To reduce the cost in energy consumption, this paper utilizes particle swarm algorithm to optimize the design of heat pump system. The optimized parameters include continuous parameters and discrete parameters. The former consists of outdoor air mass flow and heat conductance of heat exchangers; the latter comprises compressor type and boiler type. In a case study, life cycle energy cost is considered as an objective function. In this regard, the optimized outdoor air flow and the optimized design for heating system can be deduced by using particle swarm algorithm. (author)

  13. A sustainable swimming pool, an example for society; Een duurzaam zwembad, een voorbeeld voor de samenleving

    Energy Technology Data Exchange (ETDEWEB)

    Klok, T. [DWA installatie- en energieadvies, Bodegraven (Netherlands)

    2009-11-15

    Swimming pools are public buildings. Generally, the local authorities are responsible for their housing. New constructions or renovations are usually based on high ambitions for environmental conservation, partly because no other building uses as much energy as a swimming pool. [Dutch] Een zwembad is een publiek gebouw. Meestal is de gemeentelijke overheid verantwoordelijk voor de huisvesting. Bij nieuwbouw of renovatie zijn de ambities met betrekking tot milieubesparing vaak hoog, mede omdat bijna geen enkel gebouw is zo energie-intensief als een zwembad.

  14. Acute changes in serum immune markers due to swimming in a chlorinated pool.

    Science.gov (United States)

    Vlaanderen, Jelle; van Veldhoven, Karin; Font-Ribera, Laia; Villanueva, Cristina M; Chadeau-Hyam, Marc; Portengen, Lützen; Grimalt, Joan O; Zwiener, Christian; Heederik, Dick; Zhang, Xiangru; Vineis, Paolo; Kogevinas, Manolis; Vermeulen, Roel

    2017-08-01

    Exposure to disinfectants and disinfection byproducts (DBPs) due to swimming in chlorinated water has been associated with allergic and respiratory health effects, including asthma. Biological mechanisms contributing to these associations are largely unknown. We hypothesized a potential pathway involving modulation of the immune system. We assessed levels of immune markers (CCL11, CCL22, CXCL10, CRP, EGF, GCSF, IL-8, IL-17, IL-1RA, MPO, VEGF, Periostin) in serum collected from 30 women and 29 men before and after 40min of swimming in a chlorinated pool. Exposure to DBPs was assessed by measuring bromodichloromethane, bromoform, chloroform, and dibromochloromethane in exhaled breath before and after swimming. Covariate data including information on physical activity was available through questionnaires and measurements. We assessed the association between indicators of swimming in a chlorinated pool and changes in serum immune marker concentrations using linear regression with bivariate normal distributions and adjusted for multiple comparisons by applying the Benjamini-Hochberg procedure. We observed a significant decrease in serum concentrations of IL-8 (-12.53%; q=2.00e-03), CCL22 (-7.28%; q=4.00e-04), CCL11 (-7.15%; q=9.48e-02), CRP (-7.06%; q=4.68e-05), and CXCL10 (-13.03%; q=6.34e-14) and a significant increase in IL-1RA (20.16%; q=4.18e-06) from before to after swimming. Associations with quantitative measurements of DBPs or physical activity were similar in direction and strength. Most of the observed associations became non-significant when we adjusted the effects of exposure to DBPs for physical activity or vice-versa. Our study indicates that swimming in a chlorinated pool induces perturbations of the immune response through acute alterations of patterns of cytokine and chemokine secretion. The observed effects could not be uniquely attributed to either exposure to DBPs or physical activity. Evidence in the literature suggests that observed decreases in

  15. Prevalence of dental erosion in adolescent competitive swimmers exposed to gas-chlorinated swimming pool water.

    Science.gov (United States)

    Buczkowska-Radlińska, J; Łagocka, R; Kaczmarek, W; Górski, M; Nowicka, A

    2013-03-01

    The purpose of this study was to analyze the prevalence of dental erosion among competitive swimmers of the local swimming club in Szczecin, Poland, who train in closely monitored gas-chlorinated swimming pool water. The population for this survey consisted of a group of junior competitive swimmers who had been training for an average of 7 years, a group of senior competitive swimmers who had been training for an average of 10 years, and a group of recreational swimmers. All subjects underwent a clinical dental examination and responded to a questionnaire regarding aspects of dental erosion. In pool water samples, the concentration of calcium, magnesium, phosphate, sodium, and potassium ions and pH were determined. The degree of hydroxyapatite saturation was also calculated. Dental erosion was found in more than 26 % of the competitive swimmers and 10 % of the recreational swimmers. The lesions in competitive swimmers were on both the labial and palatal surfaces of the anterior teeth, whereas erosions in recreational swimmers developed exclusively on the palatal surfaces. Although the pH of the pool water was neutral, it was undersaturated with respect to hydroxyapatite. The factors that increase the risk of dental erosion include the duration of swimming and the amount of training. An increased risk of erosion may be related to undersaturation of pool water with hydroxyapatite components. To decrease the risk of erosion in competitive swimmers, the degree of dental hydroxyapatite saturation should be a controlled parameter in pool water.

  16. Microbial quality of swimming pool water with treatment without disinfection, with ultrafiltration, with UV-based treatment and with chlorination

    NARCIS (Netherlands)

    Keuten, M.G.A.; Peters, M.C.F.M.; van Dijk, J.C.; van Loosdrecht, Mark C.M.; Rietveld, L.C.

    2017-01-01

    Swimming pools are traditionally disinfected with a residual disinfectant such as sodium hypochlorite. Nowadays, swimming water without a residual disinfectant is increasingly popular, as can be seen by the growing number of (natural) swimming ponds (Weilandt 2015), but health risks for bathers do

  17. Replacement of thermal column elastomeric gasket in pool type research reactors based on ageing and radiation degradation

    International Nuclear Information System (INIS)

    Garai, S.K.

    2006-01-01

    Pool type research reactors are designed with Thermal column facilities to irradiate samples at different flux levels of thermal neutrons. The sealing of demineralised pool water between stainless steel lined pool wall and the Aluminium Thermal column plate is achieved by an elastomeric gasket. The gasket joint is subjected to pool water temperature ranging from 25degC to 45degC and radiation field of the order of 104 -106 R/hr. The gasket loses its sealing properties due to ageing and radiation degradation after a few years, leading to the leakage and loss of the pool water. Though degradation of the gasket is, generally, predictable, some amount of uncertainty always remains in the leakage rate. The paper describes the study of a few elastomers in radiation environment and replacement of the Thermal column gasket of a swimming pool type research reactor. It includes the details of features like planning and scheduling, the actual sequential execution of the job, various problems encountered and corrective measures applied, engineering and radiological safety measures adopted, development of remote tools, disassembly and reassembly procedure and finally satisfactory completion of the site job in high radiation environment with minimum time and man rem consumption. (author)

  18. Effect of ozonation of swimming pool water on formation of volatile disinfection by-products - A laboratory study

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Cheema, Waqas Akram

    2016-01-01

    Ozonation experiments were performed using unchlorinated tap water used for filling municipal swimming pools, actual pool water and pool water polluted by addition of fresh tap water and artificial body fluid to evaluate ozone kinetics and water quality effects on formation of volatile disinfecti...

  19. Design and Construction of Pool Door for Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kwangsub; Lee, Sangjin; Choi, Jinbok; Oh, Jinho; Lee, Jongmin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The pool door is a structure to isolate the reactor pool from the service pool for maintenance. The pool door is installed before the reactor pool is drained. The pool door consists of structural component and sealing component. The main structures of the pool door are stainless steel plates and side frames. The plates and frames are assembled by welded joints. Lug is welded at the top of the plate. The pool door is submerged in the pool water when it is used. Materials of the pool door should be resistive to corrosion and radiation. Stainless steel is used in structural components and air nozzle assemblies. Features of design and construction of the pool door for the research reactor are introduced. The pool door is designed to isolate the reactor pool for maintenance. Structural analysis is performed to evaluate the structural integrity during earthquake. Tests and inspections are also carried out during construction to identify the safety and function of the pool door.

  20. Design and Construction of Pool Door for Research Reactor

    International Nuclear Information System (INIS)

    Jung, Kwangsub; Lee, Sangjin; Choi, Jinbok; Oh, Jinho; Lee, Jongmin

    2016-01-01

    The pool door is a structure to isolate the reactor pool from the service pool for maintenance. The pool door is installed before the reactor pool is drained. The pool door consists of structural component and sealing component. The main structures of the pool door are stainless steel plates and side frames. The plates and frames are assembled by welded joints. Lug is welded at the top of the plate. The pool door is submerged in the pool water when it is used. Materials of the pool door should be resistive to corrosion and radiation. Stainless steel is used in structural components and air nozzle assemblies. Features of design and construction of the pool door for the research reactor are introduced. The pool door is designed to isolate the reactor pool for maintenance. Structural analysis is performed to evaluate the structural integrity during earthquake. Tests and inspections are also carried out during construction to identify the safety and function of the pool door

  1. Effect of selection of pH in swimming pool on formation of chlorination by-products

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Willach, Sarah; Mosbæk, Hans

    2011-01-01

    Chlorine is used as disinfection agent in public swimming pools, but also reacts with organic matter in the water forming chlorinat ed disinfection by-products. In order to evaluate the effect of choice of pHsetpoint in the pool we investigated the effect of chlorination of artificial body fluid...

  2. Performance of a swimming pool heating system by utilizing waste energy rejected from an ice rink with an energy storage tank

    International Nuclear Information System (INIS)

    Kuyumcu, Muhammed Enes; Tutumlu, Hakan; Yumrutaş, Recep

    2016-01-01

    Highlights: • An analytical model of the system, and a computational program were developed. • Transient behavior of the water in the buried energy storage tank was simulated. • Effects of various system parameters on the system performance were investigated. • Long period performance of the system was analyzed and obtained periodic condition. • Optimum ice rink size is determined for a semi-Olympic size swimming pool heating. - Abstract: This study deals with determining the long period performance of a swimming pool heating system by utilizing waste heat energy that is rejected from a chiller unit of ice rink and subsequently stored in an underground thermal energy storage (TES) tank. The system consists of an ice rink, a swimming pool, a spherical underground TES tank, a chiller and a heat pump. The ice rink and the swimming pool are both enclosed and located in Gaziantep, Turkey. An analytical model was developed to obtain the performance of the system using Duhamel’s superposition and similarity transformation techniques. A computational model written in MATLAB program based on the transient heat transfer is used to obtain the annual variation of the ice rink and the swimming pool energy requirements, the water temperature in the TES tank, COP, and optimum ice rink size depending on the different ground, TES tank, chiller, and heat pump characteristics. The results obtained from the analysis indicate that 6–7 years’ operational time span is necessary to obtain the annual periodic operation condition. In addition, an ice rink with a size of 475 m"2 gives the optimum performance of the system with a semi-Olympic size swimming pool (625 m"2).

  3. Study of the formation and of the distribution of dissolved gases and hydrogen peroxide in water from a swimming-pool reactor (triton) (1961); Etude de la formation et de la repartition des gaz dissous et de l'eau oxygenee dans l'eau d'un reacteur piscine (triton) (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Chenouard, J; Rozenberg, J; Dolle, L; Dirian, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    In order to determine experimentally the amount of radiolysis in the swimming-pool reactor Triton, direct measurements have been made of the quantity of radiolysis gas and hydrogen peroxide in the water, at the entry and exit of the core. The concentration distribution of these gases in the reactor was also determined. An explanation is given as to why no gases evolution is seen in the swimming-pool reactors of the C.E.A. The overall amount of radiolysis is zero, and a simple interpretation of this result is possible. The real amount of radiolysis occurring in the reactor core can be calculated. This is in satisfactory agreement with certain measurement mad elsewhere. (authors) [French] Pour determiner experimentalement le taux de radiolyse dans la pile piscine Triton, des mesures directes de la quantite de gaz de radiolyse et d'eau oxygenee dans l'eau a l'entree et a la sortie du coeur ont ete faites. La repartition de la concentration de ces gaz dans la piscine a egalement ete determinee. On explique pourquoi aucun degagement gazeux n'est observe dans les piles piscines du CE.A. Le taux de radiolyse global est nul, et une interpretation simple de ce resultat est possible. Un taux de radiolyse reel dans le coeur du reacteur peut etre calcule. Celui-ci est en accord satisfaisant avec certaines determinations faites ailleurs. (auteurs)

  4. Combined UV treatment and ozonation for the removal of by-product precursors in swimming pool water

    DEFF Research Database (Denmark)

    Cheema, Waqas Akram; Kaarsholm, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2017-01-01

    Both UV treatment and ozonation are used to reduce different types of disinfection by-products (DBPs) in swimming pools. UV treatment is the most common approach, as it is particularly efficient at removing combined chlorine. However, the UV treatment of pool water increases chlorine reactivity...

  5. Thermal analysis and modeling of a swimming pool heating system by utilizing waste energy rejected from a chiller unit of an ice rink

    OpenAIRE

    Kuyumcu Muhammed Enes; Yumrutaş Recep

    2017-01-01

    This study deals with the thermal analysis and modeling of a swimming pool heating system in which the waste energy rejected from the chiller unit of an ice rink is used as an energy source. The system consists of a swimming pool and an ice rink coupled by a chiller unit. The swimming pool and the ice rink both indoor types and were constructed in city of Gaziantep, Turkey. The thermal energy requirement for each section is determined by thermal analysis of each component of the system. Effec...

  6. Pore diffusion limits removal of monochloramine in treatment of swimming pool water using granular activated carbon.

    Science.gov (United States)

    Skibinski, Bertram; Götze, Christoph; Worch, Eckhard; Uhl, Wolfgang

    2018-04-01

    Overall apparent reaction rates for the removal of monochloramine (MCA) in granular activated carbon (GAC) beds were determined using a fixed-bed reactor system and under conditions typical for swimming pool water treatment. Reaction rates dropped and quasi-stationary conditions were reached quickly. Diffusional mass transport in the pores was shown to be limiting the overall reaction rate. This was reflected consistently in the Thiele modulus, in the effect of temperature, pore size distribution and of grain size on the reaction rates. Pores <2.5 times the diameter of the monochloramine molecule were shown to be barely accessible for the monochloramine conversion reaction. GACs with a significant proportion of large mesopores were found to have the highest overall reactivity for monochloramine removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Pool-type reactor

    International Nuclear Information System (INIS)

    Hopkins, S.R.

    1977-01-01

    This invention relates to a pool nuclear reactor fitted with a perfected system to raise the buckets into a vertical position at the bottom of a channel. This reactor has an inclined channel to guide a bucket containing a fuel assembly to introduce it into the reactor jacket or extract it therefrom and a damper at the bottom of the channel to stop the drop of the bucket. An upright vertically movable rod has a horizontally articulated arm with a hook. This can pivot to touch a radial lug on the bucket and pivot the bucket around its base in a vertical position, when the rod moves up [fr

  8. Osiris reactor descriptive report

    International Nuclear Information System (INIS)

    1976-03-01

    OSIRIS is a swimming pool reactor of 70 MW thermal power. Its main purpose is the irradiation of reactor materials in high neutron flux. A description is given of the air conditioning, ventilation, and radioactive gas removal system. (R.L.)

  9. The effect of UV treatment on highly polluted and normal operated swimming pools

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Kaarsholm, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2017-01-01

    Water samples from 2 indoor public swimming pool facilities with significantly different organic matter concentrations in the recirculation were tested to evaluate UV-induced effects on water chemistry. The aim of the study was to investigate the impact of poor water quality due to increased...

  10. Payroll System in Swimming Pool Tasa Using Visual Basic .Net 2003

    OpenAIRE

    Parcel Natalnael Hutabarat; Rahayu Noveandini, SKom, MM

    2008-01-01

    With the proposed payroll system built on this design, it can replace the manual system to process payroll, and expect to be able to overcome the weaknesses that have been faced by TASA and the swimming pool is also a way to simplify payroll activities TASA which during the many weaknesses . With the system that uses computer services is expected to help TASA employee wage freeze.

  11. Diatomite Type Filters for Swimming Pools. Standard No. 9, Revised October, 1966.

    Science.gov (United States)

    National Sanitation Foundation, Ann Arbor, MI.

    Pressure and vacuum diatomite type filters are covered in this standard. The filters herein described are intended to be designed and used specifically for swimming pool water filtration, both public and residential. Included are the basic components which are a necessary part of the diatomite type filter such as filter housing, element supports,…

  12. Research reactors - an overview

    International Nuclear Information System (INIS)

    West, C.D.

    1997-01-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs

  13. Color Fringes Bordering Black Stripes at the Bottom of a Swimming Pool

    Science.gov (United States)

    Fuster, Gonzalo; Rojas, Roberto; Slüsarenko, Viktor

    2016-01-01

    We have observed a nice example of chromatic dispersion due to refraction in water, in the form of color fringes bordering the black stripes that exist at the bottom of a swimming pool. Here we give a qualitative description of the phenomenon, explaining the role of the black stripes and the dispersive index of refraction of water.

  14. Assessment of structural materials inside the reactor pool of the Dalat research reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Luong Ba Vien; Nguyen Minh Tuan; Trang Cao Su

    2010-01-01

    Originally the Dalat Nuclear Research Reactor (DNRR) was a 250-kW TRIGA MARK II reactor, started building from early 1960s and achieved the first criticality on February 26, 1963. During the 1982-1984 period, the reactor was reconstructed and upgraded to 500kW, and restarted operation on March 20, 1984. From the original TRIGA reactor, only the pool liner, beam ports, thermal columns, and graphite reflector have been remained. The structural materials of pool liner and other components of TRIGA were made of aluminum alloy 6061 and aluminum cladding fuel assemblies. Some other parts, such as reactor core, irradiation rotary rack around the core, vertical irradiation facilities, etc. were replaced by the former Soviet Union's design with structural materials of aluminum alloy CAV-1. WWR-M2 fuel assemblies of U-Al alloy 36% and 19.75% 235 U enrichment and aluminum cladding have been used. In its original version, the reactor was setting upon an all-welded aluminum frame supported by four legs attached to the bottom of the pool. After the modification made, the new core is now suspended from the top of the pool liner by means of three aluminum concentric cylindrical shells. The upper one has a diameter of 1.9m, a length of 3.5m and a thickness of 10mm. This shell prevents from any visual access to the upper part of the pool liner, but is provided with some holes to facilitate water circulation in the 4cm gap between itself and the reactor pool liner. The lower cylindrical shells act as an extracting well for water circulation. As reactor has been operated at low power of 500 kW, it was no any problem with degradation of core structural materials due to neutron irradiation and thermal heat, but there are some ageing issues with aluminum liner and other structures (for example, corrosion of tightening-up steel bolt in the fourth beam port and flood of neutron detector housing) inside the reactor pool. In this report, the authors give an overview and assessment of

  15. Thermal analysis and modeling of a swimming pool heating system by utilizing waste energy rejected from a chiller unit of an ice rink

    Directory of Open Access Journals (Sweden)

    Kuyumcu Muhammed Enes

    2017-01-01

    Full Text Available This study deals with the thermal analysis and modeling of a swimming pool heating system in which the waste energy rejected from the chiller unit of an ice rink is used as an energy source. The system consists of a swimming pool and an ice rink coupled by a chiller unit. The swimming pool and the ice rink both indoor types and were constructed in city of Gaziantep, Turkey. The thermal energy requirement for each section is determined by thermal analysis of each component of the system. Effects of different design parameters such as ceiling insulation thickness, ceiling emissivity, Carnot efficiency factor and size of the ice rink on the thermal energy requirements and coefficient of performance of the chiller unit are investigated. As a result of analyses of the system, the minimum ice rink area is determined in order to meet annual total heat energy demand of the olympic-sized swimming pool.

  16. New method for determination of trihalomethanes in exhaled breath: Applications to swimming pool and bath environments

    International Nuclear Information System (INIS)

    Lourencetti, Carolina; Ballester, Clara; Fernandez, Pilar; Marco, Esther; Prado, Celia; Periago, Juan F.; Grimalt, Joan O.

    2010-01-01

    A method for the estimation of the human intake of trihalomethanes (THMs), namely chloroform, bromodichloromethane, dibromochloromethane and bromoform, during showering and bathing is reported. The method is based on the determination of these compounds in exhaled breath that is collected by solid adsorption on Tenax using a device specifically designed for this purpose. Instrumental measurements were performed by automatic thermal desorption coupled to gas chromatography with electron capture detection. THMs in exhaled breath samples were determined during showering and swimming pool attendance. The levels of these compounds in indoor air and water were also determined as reference for interpretation of the exhaled breath results. The THM concentrations in exhaled breath of the volunteers measured before the exposure experiments showed a close correspondence with the THMs levels in indoor air where the sampler was located. Limits of detection in exhaled breath were dependent on THM analytes and experimental sites. They ranged between 170 and 710 ng m -3 in the swimming pool studies and between 97 and 460 ng m -3 in the showering studies. Application of this method to THMs determination during showering and swimming pool activities revealed statistically significant increases in THMs concentrations when comparing exhaled breath before and after exposure.

  17. Prevalence of Ocular, Respiratory and Cutaneous Symptoms in Indoor Swimming Pool Workers and Exposure to Disinfection By-Products (DBPs

    Directory of Open Access Journals (Sweden)

    Guglielmina Fantuzzi

    2010-03-01

    Full Text Available The objective of this cross-sectional study was to investigate the prevalence of self-reported respiratory, ocular and cutaneous symptoms in subjects working at indoor swimming pools and to assess the relationship between frequency of declared symptoms and occupational exposure to disinfection by-products (DBPs. Twenty indoor swimming pools in the Emilia Romagna region of Italy were included in the study. Information about the health status of 133 employees was collected using a self-administered questionnaire. Subjects working at swimming pools claimed to frequently experience the following symptoms: cold (65.4%, sneezing (52.6%, red eyes (48.9% and itchy eyes (44.4%. Only 7.5% claimed to suffer from asthma. Red eyes, runny nose, voice loss and cold symptoms were declared more frequently by pool attendants (lifeguards and trainers when compared with employees working in other areas of the facility (office, cafe, etc.. Pool attendants experienced generally more verrucas, mycosis, eczema and rash than others workers; however, only the difference in the frequency of self-declared mycosis was statistically significant (p = 0.010. Exposure to DBPs was evaluated using both environmental and biological monitoring. Trihalomethanes (THMs, the main DBPs, were evaluated in alveolar air samples collected from subjects. Swimming pool workers experienced different THM exposure levels: lifeguards and trainers showed the highest mean values of THMs in alveolar air samples (28.5 ± 20.2 µg/m3, while subjects working in cafe areas (17.6 ± 12.1 µg/m3, offices (14.4 ± 12.0 µg/m3 and engine rooms (13.6 ± 4.4 µg/m3 showed lower exposure levels. Employees with THM alveolar air values higher than 21 µg/m3 (median value experienced higher risks for red eyes (OR 6.2; 95% CI 2.6–14.9, itchy eyes (OR 3.5; 95% CI 1.5–8.0, dyspnea/asthma (OR 5.1; 95% CI 1.0–27.2 and blocked nose (OR 2.2; 95% CI 1.0–4.7 than subjects with less exposure. This study confirms

  18. Study of Microbial Contamination of the Public Swimming Pools with Escherichia coli and Pseudomonas aeruginosa and Their Physical Parameters in Kermanshah, Iran

    Directory of Open Access Journals (Sweden)

    Afsaneh Haghmorad Korasti

    2016-09-01

    Full Text Available Background and Objectives: Public swimming pools' waters are contaminated with a wide variety of pathogenic microorganisms and are a suitable environment for transmission of different diseases. The aim of this study was to investigate the microbial contamination of the public swimming pools' waters with Escherichia coli and Pseudomonas aeruginosa and to determine certain parameters such as residual chlorine, pH, temperature and turbidity in these pools' waters in Kermanshah. In this descriptive, cross-sectional study, 129 water samples were taken from all active pools in Kermanshah and their bacteriologic and physicochemical properties were investigated. Phosphatase alkaline (PHO-A gene was used for molecular confirmation of E. coli isolates, and exotoxin A (ETA gene in PCR was employed to confirm pathogenicity of P. aeruginosa isolates. Data were analyzed by chi-square and t-test. p0.05. Conclusion: The results of this study indicated that appropriate amount of residual chlorine caused reduction in microbial contamination in the public swimming pools' waters in Kermanshah.

  19. Dynamic real-time monitoring of chloroform in an indoor swimming pool air using open-path Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Chen, M-J; Duh, J-M; Shie, R-H; Weng, J-H; Hsu, H-T

    2016-06-01

    This study used open-path Fourier transform infrared (OP-FTIR) spectroscopy to continuously assess the variation in chloroform concentrations in the air of an indoor swimming pool. Variables affecting the concentrations of chloroform in air were also monitored. The results showed that chloroform concentrations in air varied significantly during the time of operation of the swimming pool and that there were two peaks in chloroform concentration during the time of operation of the pool. The highest concentration was at 17:30, which is coincident with the time with the highest number of swimmers in the pool in a day. The swimmer load was one of the most important factors influencing the chloroform concentration in the air. When the number of swimmers surpassed 40, the concentrations of chloroform were on average 4.4 times higher than the concentration measured without swimmers in the pool. According to the results of this study, we suggest that those who swim regularly should avoid times with highest number of swimmers, in order to decrease the risk of exposure to high concentrations of chloroform. It is also recommended that an automatic mechanical ventilation system is installed to increase the ventilation rate during times of high swimmer load. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. IEA-R1 reactor - Spent fuel management

    International Nuclear Information System (INIS)

    Mattos, J.R.L. De

    1996-01-01

    Brazil currently has one Swimming Pool Research Reactor (IEA-R1) at the Instituto de Pesquisas Energeticas e Nucleares - Sao Paulo. The spent fuel produced is stored both at the Reactor Pool Storage Compartment and at the Dry Well System. The present situation and future plans for spent fuel storage are described. (author). 3 refs, 2 figs, 2 tabs

  1. Mathematical model development of heat and mass exchange processes in the outdoor swimming pool

    OpenAIRE

    M. V. Shaptala; D. E. Shaptala

    2014-01-01

    Purpose. Currently exploitation of outdoor swimming pools is often not cost-effective and, despite of their relevance, such pools are closed in large quantities. At this time there is no the whole mathematical model which would allow assessing qualitatively the effect of energy-saving measures. The aim of this work is to develop a mathematical model of heat and mass exchange processes for calculating basic heat and mass losses that occur during its exploitation. Methodology. The m...

  2. What's in The Pool? A Comprehensive Identification Of Disinfection By-Products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water

    Science.gov (United States)

    Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in the water and related that to mutagenicity. We performed a compreh...

  3. What's in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water

    NARCIS (Netherlands)

    Richardson, S.D.; Demarini, D.M.; Kogevinas, M.; Fernandez, P.; Marco, E.; Lourencetti, C.; Balleste, C.; Heederik, D.|info:eu-repo/dai/nl/072910542; Meliefste, K.; McKague, A.B.; Marcos, R.; Font-Ribera, L.; Grimalt, J.O.; Villanueva, C.M.

    2010-01-01

    BACKGROUND: Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in the water and related that to mutagenicity. OBJECTIVES: We performed a

  4. Childhood Asthma and Environmental Exposures at Swimming Pools: State of the Science and Research Recommendations

    Science.gov (United States)

    Recent studies have explored the potential for swimming pool disinfection byproducts (DBPs) which are respiratory irritants to cause asthma in young children. While these studies raise concerns, gaps still exist in our knowledge regarding the exact causal agents and mechanisms f...

  5. Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools.

    Science.gov (United States)

    Tardif, Robert; Catto, Cyril; Haddad, Sami; Simard, Sabrina; Rodriguez, Manuel

    2016-07-01

    This study was aimed at assessing the profiles (occurrence and speciation) of disinfection by-product (DBP) contamination in air and water of a group of 41 public indoor swimming pools in Québec (Canada). The contaminants measured in the water included the traditional DBPs [i.e., four trihalomethanes (THMs), six haloacetic acids (HAAs)] but also several emergent DBPs [i.e., halonitriles, halonitromethanes, haloketones and nitrosodimethylamine (NDMA)]. Those measured in the air comprised THMs and chloramines (CAMs). Overall, extremely variable DBP levels were found from one pool to another (both quantitatively and in terms of speciation). For instance, in water, among the four THMs, chloroform was usually the most abundant compound (37.9±25.7µg/L). Nevertheless, the sum of the three other brominated THMs represented more than 25% of total THMs at almost half the facilities visited (19 cases). In 13 of them, the levels of brominated THMs (66±24.2µg/L) even greatly outweighed the levels of chloroform (15.2±6.31µg/L). Much higher levels of HAAs (294.8±157.6µg/L) were observed, with a consistent preponderance of brominated HAAs in the swimming pools with more brominated THMs. NDMA levels which were measured in a subset of 8 pools ranged between 2.8ng/L and 105ng/L. With respect to air, chloroform was still the most abundant THM globally (119.4±74.2µg/m(3)) but significant levels of brominated THMs were also observed in various cases, particularly in the previously evoked group of 13 swimming pools with preponderant levels of brominated THMs in water. CAM levels (0.23±0.15mg/m(3)) varied highly, ranging from not detected to 0.56mg/m(3). Overall, the levels were generally relatively high compared to current guidelines or reference values from several countries, and they point to a relatively atypical presence of brominated compounds, and to significant levels of emergent DBPs for which health risk is less documented. Copyright © 2016 Elsevier Inc. All rights

  6. Exciting Pools

    Science.gov (United States)

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  7. Degradation of Organic UV filters in Chlorinated Seawater Swimming Pools: Transformation Pathways and Bromoform Formation.

    Science.gov (United States)

    Manasfi, Tarek; Coulomb, Bruno; Ravier, Sylvain; Boudenne, Jean-Luc

    2017-12-05

    Organic ultraviolet (UV) filters are used in sunscreens and other personal-care products to protect against harmful effects of exposure to UV solar radiation. Little is known about the fate of UV filters in seawater swimming pools disinfected with chlorine. The present study investigated the occurrence and fate of five commonly used organic UV filters, namely dioxybenzone, oxybenzone, avobenzone, 2-ethylhexyl-4-methoxycinnamate, and octocrylene, in chlorinated seawater swimming pools. Pool samples were collected to monitor the variation of UV filter concentrations during pool opening hours. Furthermore, laboratory-controlled chlorination experiments were conducted in seawater spiked with UV filters to investigate the reactivity of UV filters. Extracts of chlorination reaction samples were analyzed using high-resolution mass spectrometry and electron-capture detection to identify the potentially formed byproducts. In the collected pool samples, all the UV filters except dioxybenzone were detected. Chlorination reactions showed that only octocrylene was stable in chlorinated seawater. The four reactive UV filters generated brominated transformation products and disinfection byproducts. This formation of brominated products resulted from reactions between the reactive UV filters and bromine, which is formed rapidly when chlorine is added to seawater. Based on the identified byproducts, the transformation pathways of the reactive UV filters were proposed for the first time. Bromoform was generated by all the reactive UV filters at different yields. Bromal hydrate was also detected as one of the byproducts generated by oxybenzone and dioxybenzone.

  8. Swimming Pool Hygiene: Self-Monitoring, Task Clarification, and Performance Feedback Increase Lifeguard Cleaning Behaviors

    Science.gov (United States)

    Rose, Henry M. S.; Ludwig, Timothy D.

    2009-01-01

    The effects of task clarification, self-monitoring, and performance feedback on cleaning behaviors of 9 lifeguards in 3 performance areas (vacuuming, lobby tidying, and pool deck maintenance) were investigated using an ABA reversal design at a county swim complex. A specific task in each performance area was used as a behavioral control. Following…

  9. Cooling device for reactor suppression pool

    International Nuclear Information System (INIS)

    Togasaki, Susumu; Kato, Kiyoshi.

    1994-01-01

    In a cooling device of a reactor suppression pool, when a temperature of pool water is abnormally increased and a heat absorbing portion is heated by, for example, occurrence of an accident, coolants are sent to the outside of the reactor container to actuates a thermally operating portion by the heat energy of coolants and drive heat exchanging fluids of a secondary cooling system. If the heat exchanging fluids are sent to a cooling portion, the coolants are cooled and returned to the heat absorbing portion of the suppression pool water. If the heat absorbing portion is heat pipes, the coolants are evaporated by heat absorbed from the suppression pool water, steams are sent to the thermally operating portion, then coolants are liquefied and caused to return to the heat absorbing portion. If the thermal operation portion is a gas turbine, the gas turbine is operated by the coolants, and it is converted to a rotational force to drive heat exchanging fluids by pumps. By constituting the cooling portion with a condensator, the coolants are condensed and liquefied and returned to the heat absorbing portion of the suppression pool water. (N.H.)

  10. Structure of pool in reactor building

    International Nuclear Information System (INIS)

    Yokoyama, Shigeki.

    1997-01-01

    Shielding walls made of iron-reinforced concrete having a metal liner including two body walls rigidly combined to the upper surface of a reactor container are disposed at least to one of an equipment pool or spent fuel storage pool in a reactor building. A rack for temporarily placing an upper lattice plate is detachably attached at least above one of a steam dryer or a gas/liquid separator temporarily placed in the temporary pool, and the height from the bottom portion to the upper end of the shielding wall is determined based on the height of an upper lattice plate temporary placed on the rack and the water depth required for shielding radiation from the upper lattice plate. An operator's exposure on the operation floor can be reduced by the shielding wall, and radiation dose from the spent fuels is reduced. The increase of the height of a pool guarder enhances bending resistance as a ceiling. In addition, the total height of them is made identical with the depth of the spent fuel storage pool thereby enabling to increase storage area for spent fuels. (N.H.)

  11. ‘Right now, Sophie *swims in the pool?!’: Brain potentials of grammatical aspect processing

    Directory of Open Access Journals (Sweden)

    Monique eFlecken

    2015-11-01

    Full Text Available We investigated whether brain potentials of grammatical aspect processing resemble semantic or morpho-syntactic processing, or whether they instead are characterized by an entirely distinct pattern in the same individuals. We studied aspect from the perspective of agreement between the temporal information in the context (temporal adverbials, e.g., Right now and a morpho-syntactic marker of grammatical aspect (e.g., progressive is swimming. Participants read questions providing a temporal context that was progressive (What is Sophie doing in the pool right now? or habitual (What does Sophie do in the pool every Monday?. Following a lead-in sentence context such as Right now, Sophie…, we measured ERPs time-locked to verb phrases in four different conditions, e.g., (a is swimming (control; (b *is cooking (semantic violation; (c *are swimming (morpho-syntactic violation; or (d?swims (aspect mismatch; …in the pool. The collected ERPs show typical N400 and P600 effects for semantics and morpho-syntax, while aspect processing elicited an Early Negativity (250-350 ms. The aspect-related Negativity was short-lived and had a central scalp distribution with an anterior onset. This differentiates it not only from the semantic N400 effect, but also from the typical (LAN (Left Anterior Negativity, that is frequently reported for various types of agreement processing. Moreover, aspect processing was not accompanied by a clear P600 modulation.We argue that the specific context for each item in this experiment provided a trigger for agreement checking with temporal information encoded on the verb, i.e., morphological aspect marking. The aspect-related Negativity obtained for aspect agreement mismatches reflects a violated expectation concerning verbal inflection (in the example above, the expected verb phrase was Sophie is X-ing rather than Sophie X-s in condition d. The absence of an additional P600 for aspect processing suggests that the mismatch did not

  12. Pseudomonas aeruginosa in Swimming Pool Water: Evidences and Perspectives for a New Control Strategy

    Directory of Open Access Journals (Sweden)

    Marco Guida

    2016-09-01

    Full Text Available Pseudomonas aeruginosa is frequently isolated in swimming pool settings. Nine recreational and rehabilitative swimming pools were monitored according to the local legislation. The presence of P. aeruginosa was correlated to chlorine concentration. The ability of the isolates to form a biofilm on plastic materials was also investigated. In 59.5% of the samples, microbial contamination exceeded the threshold values. P. aeruginosa was isolated in 50.8% of these samples. The presence of P. aeruginosa was not correlated with free or total chlorine amount (R2 < 0.1. All the isolates were moderate- to strong-forming biofilm (Optical Density O.D.570 range 0.7–1.2. To control biofilm formation and P. aeruginosa colonization, Quantum FreeBioEnergy© (QFBE, FreeBioEnergy, Brisighella, Italy, has been applied with encouraging preliminary results. It is a new, promising control strategy based on the change of an electromagnetic field which is responsible for the proliferation of some microorganisms involved in biofilm formation, such as P. aeruginosa.

  13. Reactor TRIGA PUSPATI (RTP) spent fuel pool conceptual design

    International Nuclear Information System (INIS)

    Mohd Fazli Zakaria; Tonny Lanyau; Ahmad Nabil Ab Rahim

    2010-01-01

    Reactor TRIGA PUSPATI (RTP) is the one and only research reactor in Malaysia that has been safely operated and maintained since 1982. In order to enhance technical capabilities and competencies especially in nuclear reactor engineering a feasibility study on RTP power upgrading was proposed to serve future needs for advance nuclear science and technology in the country with the capability of designing and develop reactor system. The need of a Spent Fuel Pool begins with the discharge of spent fuel elements from RTP for temporary storage that includes all activities related to the storage of fuel until it is either sent for reprocessed or sent for final disposal. To support RTP power upgrading there will be major RTP systems replacement such as reactor components and a new temporary storage pool for fuel elements. The spent fuel pool is needed for temporarily store the irradiated fuel elements to accommodate a new reactor core structure. Spent fuel management has always been one of the most important stages in the nuclear fuel cycle and considered among the most common problems to all countries with nuclear reactors. The output of this paper will provide sufficient information to show the Spent Fuel Pool can be design and build with the adequate and reasonable safety assurance to support newly upgraded TRIGA PUSPATI TRIGA Research Reactor. (author)

  14. Design of the Demineralized Water Make-up Line to Maintain the Normal Pool Water Level of the Reactor Pool in the Research Reactor

    International Nuclear Information System (INIS)

    Yoon, Hyun Gi; Choi, Jung Woon; Yoon, Ju Hyeon; Chi, Dae Young

    2012-01-01

    In many research reactors, hot water layer system (HWLS) is used to minimize the pool top radiation level. Reactor pool divided into the hot water layer at the upper part of pool and the cold part below the hot water layer with lower temperature during normal operation. Water mixing between these layers is minimized because the hot water layer is formed above cold water. Therefore the hot water layer suppresses floatation of cold water and reduces the pool top radiation level. Pool water is evaporated form the surface to the building hall because of high temperature of the hot water layer; consequently the pool level is continuously fallen. Therefore, make-up water is necessary to maintain the normal pool level. There are two way to supply demineralized water to the pool, continuous and intermittent methods. In this system design, the continuous water make-up method is adopted to minimize the disturbance of the reactor pool flow. Also, demineralized water make-up is connected to the suction line of the hot water layer system to raise the temperature of make-up water. In conclusion, make-up demineralized water with high temperature is continuously supplied to the hot water layer in the pool

  15. Evaporation rate measurement in the pool of IEAR-1 reactor

    International Nuclear Information System (INIS)

    Torres, Walmir Maximo; Cegalla, Miriam A.; Baptista Filho, Benedito Dias

    2000-01-01

    The surface water evaporation in pool type reactors affects the ventilation system operation and the ambient conditions and dose rates in the operation room. This paper shows the results of evaporation rate experiment in the pool of IEA-R1 research reactor. The experiment is based on the demineralized water mass variation inside cylindrical metallic recipients during a time interval. Other parameters were measured, such as: barometric pressure, relative humidity, environmental temperature, water temperature inside the recipients and water temperature in the reactor pool. The pool level variation due to water contraction/expansion was calculated. (author)

  16. Reliability assessment of emergency exhaust system in a pool-type research reactor

    International Nuclear Information System (INIS)

    Khan, S.A.

    1991-01-01

    The reliability of an extract system in a swimming-pool-type research reactor has been assessed. A global fault-tree analysis technique has been utilized. The basic event reliability data is based on both generic and reactor specific informations. The unavailability of the extract system is quantified in terms of the unavailability of the various functional requirements of the system. The unavailability is expressed as the probability of failure on demand. The computer system unavailability is determined from the minimal cutsets of the system. It is found that only three events have a major contribution to the top event, i.e., failures of compressed air supply, electric power supply and solenoid valve. A sensitivity analysis is performed to show the effects of variations in the data values of the dominant cutsets. An uncertainty analysis was also performend on the fault tree. The evaluations show that the reactor extract system lacks diversity and redundance in most of its components. It is tolerant of most minor degradations, as these are taken care of by the operating policies and procedures. However, it can not tolerate common cause failures, e.g. simultaneous compressed air and electric power supply failure. Based upon the results obtained, some recommendations are made. (orig.)

  17. Safety classification of systems, structures, and components for pool-type research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ryong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-08-15

    Structures, systems, and components (SSCs) important to safety of nuclear facilities shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions. Although SSC classification guidelines for nuclear power plants have been well established and applied, those for research reactors have been only recently established by the International Atomic Energy Agency (IAEA). Korea has operated a pool-type research reactor (the High Flux Advanced Neutron Application Reactor) and has recently exported another pool-type reactor (Jordan Research and Training Reactor), which is being built in Jordan. Korea also has a plan to build one more pool-type reactor, the Kijang Research Reactor, in Kijang, Busan. The safety classification of SSCs for pool-type research reactors is proposed in this paper based on the IAEA methodology. The proposal recommends that the SSCs of pool-type research reactors be categorized and classified on basis of their safety functions and safety significance. Because the SSCs in pool-type research reactors are not the pressure-retaining components, codes and standards for design of the SSCs following the safety classification can be selected in a graded approach.

  18. Estimation of reactor pool water temperature after shutdown in JRR-3M

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Sato, Mitsugu; Kakefuda, Kazuhiro

    1999-01-01

    The reactor pool water temperature increasing by the decay heat was estimated by calculation. The reactor pool water temperature was calculated by increased enthalpy that was estimated by the reactor decay heat, the heat released from the reactor biological shielding concrete, reactor pool water surface, the heat conduction from the canal and the core inlet piping. These results of calculation were compared with the past measured data. As the results of estimation, after the JRR-3M shutdown, the calculated reactor pool temperature first increased sharply. This is because the decay heat was the major contribution. And then, rate of increased reactor pool temperature decreased. This is because the ratio of heat released from reactor biological shielding concrete and core inlet piping to the decay heat increased. Besides, the calculated reactor pool water temperature agreed with the past measured data in consequence of correcting the decay heat and the released heat. The corrected coefficient k 1 of decay heat was 0.74 - 0.80. And the corrected coefficient k 2 of heat released from the reactor biological shielding concrete was 3.5 - 4.5. (author)

  19. An approach to optimised control of HVAC systems in indoor swimming pools

    Science.gov (United States)

    Ribeiro, Eliseu M. A.; Jorge, Humberto M. M.; Quintela, Divo A. A.

    2016-04-01

    Indoor swimming pools are recognised as having a high level of energy consumption and present a great potential for energy saving. The energy is spent in several ways such as evaporation heat loss from the pool, high rates of ventilation required to guarantee the indoor air quality, and ambient temperatures with expressive values (typically 28-30°C) required to maintain conditions of comfort. This paper presents an approach to optimising control of heat ventilation and air conditioning systems that could be implemented in a building energy management system. It is easily adapted to any kind of pool and results in significant energy consumption reduction. The development and validation of the control model were carried out with a building thermal simulation software. The use of this control model in the case study building could reduce the energy efficiency index by 7.14 points (7.4% of total) which adds up to an energy cost saving of 15,609€ (7.5% of total).

  20. Convective cooling in a pool-type research reactor

    Science.gov (United States)

    Sipaun, Susan; Usman, Shoaib

    2016-01-01

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U3Si2Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system's performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm-3. An MSTR model consisting of 20% of MSTR's nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s-1 from the 4" pipe, and predicted pool surface temperature not exceeding 30°C.

  1. [Investigation and comparison of behaviours of adults and children in swimming pools].

    Science.gov (United States)

    Bonini, M; Bodina, A; Bonali, D; Bascucci, B; Pellino, P; Castaldi, S

    2011-01-01

    The swimmers health's protection must be achieved through the implementation of structures that respect safety standards, the best management of the structures and the users'compliance with rules that minimize the potential risks to health, now clearly identified by the World Health Organization in specific guidelines and by the national and regional legislation. An anonymous questionnaire has been used in order to detect the level of knowledge of hygienic risks and the behaviour of costumers (adults and children) of swimming pool. Comparing the answers, statistically significant differences in the behaviours of adults and children were found in order to protect their own and others' health. In particular children do shower and go through footbath before entering the swimming pool more than adults (respectively 89.2% versus 77.4% and 89.2% versus 79.4%). No differences in the behaviours of the two groups were found in the use of dedicated footwear and caps. Children are predisposed to follow the rules because they are more loyal to duty, while adults comply with the rules only when it is clear the advantage to protect their health. This paper underline the importance of health education programs that can help people to understand the importance of adopting certain behaviours in order to prevent risks and promote health for the benefit of all.

  2. Pitting Corrosion of the Resistance Welding Joints of Stainless Steel Ventilation Grille Operated in Swimming Pool Environment

    Directory of Open Access Journals (Sweden)

    Mirosław Szala

    2018-01-01

    Full Text Available This work focuses on the pitting corrosion of ventilation grilles operated in swimming pool environments. The ventilation grille was made by resistance welding of stainless steel rods. Based on the macroscopic and microscopic examinations, the mechanism of the pitting corrosion was confirmed. Chemical composition microanalysis of sediments as well as base metal using scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS method was carried out. The weldments did not meet the operating conditions of the swimming pool environment. The wear due to the pitting corrosion was identified in heat affected zones of stainless steel weldment and was more severe than the corrosion of base metal. The low quality finish of the joints and influence of the welding process on the weld metal microstructure lead to accelerated deposition of corrosion effecting elements such as chlorine.

  3. Convective cooling in a pool-type research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sipaun, Susan, E-mail: susan@nm.gov.my [Malaysian Nuclear Agency, Industrial Technology Division, Blok 29T, Bangi 43200, Selangor (Malaysia); Usman, Shoaib, E-mail: usmans@mst.edu [Missouri University of Science and Technology, Nuclear Engineering, 222 Fulton Hall 301 W.14th St., Rolla 64509 MO (United States)

    2016-01-22

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U{sub 3}Si{sub 2}Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system’s performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm{sup −3}. An MSTR model consisting of 20% of MSTR’s nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s{sup −1} from the 4” pipe, and predicted pool surface temperature not exceeding 30°C.

  4. Quantitative microbial risk assessment for an indoor swimming pool with chlorination compared to a UV-based treatment

    NARCIS (Netherlands)

    Peters, M.C.F.M.; Keuten, M.G.A.; de Kreuk, M.K.; Vrouwenvelder, J.S.; Rietveld, L.C.; Medema, G.

    2017-01-01

    Aims Most swimming pools use residual disinfectants like chlorine for disinfection. The use of chlorine has several drawbacks: some waterborne-pathogens are chlorine resistant and disinfection by-products (DBPs) may be formed which are associated with various health risks. Therefore, an alternative

  5. Diarrhea and Swimming

    Science.gov (United States)

    ... 888) 232-6348 Contact CDC–INFO Healthy Swimming Health Benefits of Water-based Exercise Swimmer Protection Steps of ... Disinfection Microbial Testing & Disinfection Swimming Pool Chemicals Injuries & Outdoor Health International Recreational Water RWIs, Swimmer Hygiene, & Behavioral ...

  6. Potential market and characteristics of low-temperature reactors

    International Nuclear Information System (INIS)

    Lerouge, B.

    1975-01-01

    The low-temperature (100 to 200 deg C) heat market for industrial applications and district heating is very important. Two main studies have been developed: a swimming pool reactor delivering water at 110 deg C and a prestressed concrete vessel reactor delivering water at 200 deg C [fr

  7. Sleeping Beauty. Revitalisation of the old indoor swimming pool Heidelberg; Sleeping Beauty. Revitalisierung des alten Hallenbads Heidelberg

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Jochen

    2010-07-01

    Since its closure before nearly 30 years due to safety aspects, the monument protected indoor swimming pool in Heidelberg (Federal Republic of Germany) dilapidated appreciably. Only after moving away of the local council from its demand of the wet use, an investor could be found.

  8. Destruction of disinfection byproducts and their precursors in swimming pool water by combined UV treatment and ozonation

    DEFF Research Database (Denmark)

    Cheema, Waqas Akram; Kaarsholm, Kamilla Marie Speht; Andersen, Henrik Rasmus

    Both UV treatment and ozonation are used to reduce different types of disinfection byproducts (DBP) in swimming pools. UV treatment is most common as it is particularly efficient in removing the repulsive chlorine like smelling chloramines (combined chlorine). UV treatment of a pool water increased...... chlorine reactivity and formation of chlor-organic DBP such as trihalomethanes. Based on the similar selective reactivity of ozone and chlorine we hypothesized that the created reactivity towards chlorine by UV treatment of dissolved organic matter in pool water might also be expressed as an increased...... reactivity towards ozone and that ozonation might saturate the chlorine reactivity created by UV treatment and mitigate the increased DBP formation. By experimentally treating pool water samples, we found that UV treatment makes pool water highly reactive to ozone. The created reactivity towards chlorine...

  9. Pool type liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Guthrie, B.M.

    1978-08-01

    Various technical aspects of the liquid metal fast breeder reactor (LMFBR), specifically pool type LMFBR's, are summarized. The information presented, for the most part, draws upon existing data. Special sections are devoted to design, technical feasibility (normal operating conditions), and safety (accident conditions). A survey of world fast reactors is presented in tabular form, as are two sets of reference reactor parameters based on available data from present and conceptual LMFBR's. (auth)

  10. Principle of a liquid nitrogen irradiation device and its realization for use in a swimming-pool type reactor

    International Nuclear Information System (INIS)

    Bochirol, L.; Doulat, J.; Weil, L.

    1961-01-01

    The problem of pile irradiation of samples immersed in liquid nitrogen has been solved with total elimination of explosion hazards and high reliability (no moving parts). The principle of the device is that of a double bath: one of high purity nitrogen cools the samples at the level of the core; a second of commercial nitrogen is located above the first one, outside the high radiation field, and works as a continuous condenser for the pure nitrogen, the flow-back of which is provided simply by gravity. The apparatus described in detail here has been designed for a swimming-pool pile. It was so designed as to provide absolute protection against radiations and to allow the irradiated samples to be easily removed in the cold condition. This apparatus has been in operation for several months. In a fast flux greater than 10 13 neutrons/cm 2 .s and a γ-flux of the order of 10 8 roentgens/h, the consumption of liquid nitrogen is of the order of 100 liters a day. (author) [fr

  11. Bacterial populations on silicone hydrogel and hydrogel contact lenses after swimming in a chlorinated pool.

    Science.gov (United States)

    Choo, Jennifer; Vuu, Kathy; Bergenske, Peter; Burnham, Kara; Smythe, Jennifer; Caroline, Patrick

    2005-02-01

    A number of reports have indicated an association between swimming with contact lenses and subsequent eye infection. This study tests whether a hydrophilic contact lens worn while swimming accumulates bacteria present in the water. It was of interest to determine whether lens type (silicone hydrogel vs. hydrogel) affected the result. Fifteen healthy noncontact lens wearers swam for 30 minutes with a silicone hydrogel lens (PureVision, Bausch & Lomb, Rochester, NY) on one eye and a hydrogel lens (Acuvue 2, Vistakon Inc., Jacksonville, FL) on the other. Lenses were removed aseptically and placed in sterile vials 10 minutes after the subjects left the water. Microbial growth was enumerated for total numbers of colonies and categorized by species present. Numbers of colonies were compared between the two lens groups and with a water sample taken from the pool at the time of the experiment. Eight of the subjects returned on a different day and wore new lenses for 50 minutes in normal room conditions. Two lenses were lost while swimming. Twenty-seven of the remaining 28 lenses worn while swimming showed colonization, principally with Staphylococcus epidermidis, which was also by far the most common species identified from the water itself. Small numbers of Staphylococcus aureus and Streptococcus salivarius were also present in the water and on the lenses. Numbers of colonies varied among subjects (range, 0 to 230), but no differences were observed between the two lens groups. Lenses removed after 30 minutes of wear without swimming were mostly sterile, with 3 of 16 lenses showing just two colonies each. It appears that wearing a hydrophilic lens while swimming allows accumulation of microbial organisms on or in the lens, regardless of lens material. Swimmers should be advised to wear tight-fitting goggles if lenses are worn while swimming, and thorough disinfection of the lenses before overnight wear seems prudent.

  12. Simulation of a pool type research reactor

    International Nuclear Information System (INIS)

    Oliveira, Andre Felipe da Silva de; Moreira, Maria de Lourdes

    2011-01-01

    Computational fluid dynamic is used to simulate natural circulation condition after a research reactor shutdown. A benchmark problem was used to test the viability of usage such code to simulate the reactor model. A model which contains the core, the pool, the reflector tank, the circulation pipes and chimney was simulated. The reactor core contained in the full scale model was represented by a porous media. The parameters of porous media were obtained from a separate CFD analysis of the full core model. Results demonstrate that such studies can be carried out for research and test of reactors design. (author)

  13. Decontamination of outdoor school swimming pools in Fukushima after the nuclear accident in March 2011.

    Science.gov (United States)

    Saegusa, J; Kurikami, H; Yasuda, R; Kurihara, K; Arai, S; Kuroki, R; Matsuhashi, S; Ozawa, T; Goto, H; Takano, T; Mitamura, H; Nagano, T; Naganawa, H; Yoshida, Z; Funaki, H; Tokizawa, T; Nakayama, S

    2013-03-01

    Because of radioactive fallout resulting from the Fukushima Daiichi Nuclear Power Plant (NPP) accident, water discharge from many outdoor swimming pools in Fukushima was suspended out of concern that radiocesium in the pool water would flow into farmlands. The Japan Atomic Energy Agency has reviewed the existing flocculation method for decontaminating pool water and established a practical decontamination method by demonstrating the process at eight pools in Fukushima. In this method, zeolite powder and a flocculant are used for capturing radiocesium present in pool water. The supernatant is discharged if the radiocesium concentration is less than the targeted level. The radioactive residue is collected and stored in a temporary storage space. Radioactivity concentration in water is measured with a NaI(Tl) or Ge detector installed near the pool. The demonstration results showed that the pool water in which the radiocesium concentration was more than a few hundred Bq L was readily purified by the method, and the radiocesium concentration was reduced to less than 100 Bq L. The ambient dose rates around the temporary storage space were slightly elevated; however, the total increase was up to 30% of the background dose rates when the residue was shielded with sandbags.

  14. Experience on Maintenance of Thai Research Reactor's 'Small-Section' Pool

    International Nuclear Information System (INIS)

    Tippayakul, Chanatip

    2013-01-01

    The reactor pool of TRR-1/M1 has been used since 1962 when the reactor building was constructed. Periodic maintenance of the reactor pool has been conducted by cleaning the pool surface and re-painting with epoxy coating. The TRR-1/M1 pool basically consists of two sections referred as 'large-section' and 'small-section'. The latest re-painting activity of the 'large-section' pool was performed in 2006 but the 'small-section' pool had not been re-painted for more than 10 years. Therefore, to assure that the 'small-section' pool can maintain leak-proof condition, the re-painting of the 'small-section' pool was performed in the early 2012. A project team was organized specially for this project and a detailed execution plan was developed. The project activities include removing foreign objects and highly activated materials from the pool section, cleaning, inspecting, re-painting the pool surface and testing for water leaks. Preparation of the repainting activities had begun 2 years in advance. During the time, the reactor core had been relocated to operate in the large-section pool away from the working area in order to minimize radioactivity. The challenge of this project was to handle 4 sets of highly radioactive bolts and nuts which support the weight of the 'void tank' irradiation facility. These bolts and nuts were made from stainless steel and had been in the flux region since the installation of the 'void tank' irradiation facility approximately 30 years ago. Dose rate measurement at the contacts of these bolts and nuts were found to be in the range of 10 . 20 R/hr. The strategy to minimize the dose rate of the workers to conduct the pool repainting in the area was to remove the bolts and nuts and replace with new ones before entering the area. Special tools were improvised in order to remove the bolts and nuts under water. During the execution of the project, close radiation monitoring was performed by the radiation protection team. The project was conducted

  15. Pump/heat exchanger assembly for pool-type reactor

    International Nuclear Information System (INIS)

    Nathenson, R.D.; Slepian, R.M.

    1987-01-01

    A heat exchanger and pump assembly comprising a heat exchanger including a housing for defining an annularly shaped cavity and supporting therein a plurality of heat transfer tubes. A pump is disposed beneath the heat exchanger and is comprised of a plurality of flow couplers disposed in a circular array. Each flow coupler is comprised of a pump duct for receiving a first electrically conductive fluid, i.e. the primary liquid metal, from a pool thereof, and a generator duct for receiving a second electrically conductive fluid, i.e. the intermediate liquid metal. The primary liquid metal is introduced from the reactor pool into the top, inlet ends of the tubes, flowing downward therethrough to be discharged from the tubes' bottom ends directly into the reactor pool. The primary liquid metal is variously introduced into the pump ducts directly from the reactor pool, either from the bottom or top end of the flow coupler. The intermediate fluid introduced into the generator ducts via the inlet duct and inlet plenum and after leaving the generator ducts passes through the annular cavity of the exchanger to cool the primary liquid in the tubes. The annular magnetic field of the pump is produced by a circular array of electromagnets having hollow windings cooled by a flow of the intermediate metal. (author)

  16. Design studies of Tokamak power reactor in JAERI

    International Nuclear Information System (INIS)

    Tone, T.; Nishikawa, M.; Tanaka, Y.

    1985-01-01

    Recent design studies of tokamak power reactor and related activities conducted in JAERI are presented. A design study of the SPTR (Swimming-Pool Type Reactor) concept was carried out in FY81 and FY82. The reactor design studies in the last two years focus on nuclear components, heat transport and energy conversion systems. In parallel of design studies, tokamak systems analysis code is under development to evaluate reactor performances, cost and net energy balance

  17. Refurbishment of Pakistan research reactor (PARR-1) for stainless steel lining of the reactor pool

    International Nuclear Information System (INIS)

    Salahuddin, A.; Israr, M.; Hussain, M.

    2002-01-01

    Pakistan Research Reactor-1 (PARR-1) is a pool-type research reactor. Reactor aging has resulted in the increase of water seepage from the concrete walls of the reactor pool. To stop the seepage, it was decided to augment the existing pool walls with an inner lining of stainless steel. This could be achieved only if the pool walls could be accessed unhindered and without excessive radiation doses. For this purpose a partial decommissioning was done by removing all active core components including standard/control fuel elements, reflector elements, beam tubes, thermal shield, core support structure, grid plate and the pool's ceramic tiles, etc. An overall decommissioning program was devised which included procedures specific to each item. This led to the development of a fuel transport cask for transportation, and an interim fuel storage bay for temporary storage of fuel elements (until final disposal). The safety of workers and the environment was ensured by the use of specially designed remote handling tools, appropriate shielding and pre-planned exposure reduction procedures based on the ALARA principle. During the implementation of this program, liquid and solid wastes generated were legally disposed of. It is felt that the experience gained during the refurbishment of PARR-1 to install the stainless steel liner will prove useful and better planning and execution for the future decommissioning of PARR-1, in particular, and for other research reactors like PARR-2 (27 kW MNSR), in general. Furthermore, due to the worldwide activities on decommissioning, especially those communicated through the IAEA CRP on 'Decommissioning Techniques for Research Reactors', the importance of early planning has been well recognized. This has made possible the implementation of some early steps like better record keeping, rehiring of trained manpower, and creation of interim and final waste storage. (author)

  18. A survey of fungi and some indicator bacteria in chlorinated water of indoor public swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Aho, R.; Hirn, J.

    1981-01-01

    Fifty-four water samples, of volume 500 ml, originating from six public indoor fresh water swimming pools were examined for the presence of fungi and some indicator bacteria by a membrane-filter method. Sabouraud-dextrose agar and selective Candida albicans-medium were used for isolation and identification of fungi. In all but one of the samples the free chlorine content was above 0.40 mg/l. No Candida albicans were detected. Molds and unidentified yeasts were isolated from 29 of the samples. The following species were recorded: Acremonium spp., ALternaria sp., Aspergillus spp., Candida guilliermondii, Chaetomium sp., Cladosporium spp., Clasterosporium sp., Fusarium spp., Geotrichium sp., Penicillium spp., Petriellidium boydii and Phoma spp. Their occurrence was sporadic, each species mostly appearing as single colonies only, with a maximum of 5 colonies. Bacterial growth was noticed in 15 samples, but only in the sample of low free chlorine content did this reach significant proportions. The study indicates that the standard of chlorination is, at least in general, an adequate measure against fungal contamination of swimming pool water. However, the spectrum of mold species encountered encourages a further search for possible indicator species among these organisms.

  19. Farewell to a reactor

    International Nuclear Information System (INIS)

    Skanborg, P.

    1976-01-01

    Denmark's second reactor, DR 2, whose first criticality took place the night of 18/19 December 1958 was shut down for the last time on 31 October 1975. It was a light-water moderrated and cooled reactor of swimming-pool type with a thermal power of 5 MW, using 90% enriched uranium. The operation is described. The reactor and auxiliary equipment are now being put 'in store' - all fuel elements sent for reprocessing, the reactor tank and cooling circuits emptied, and a lead shielding placed over the tank opening. The rest of the equipment will remain in place. (B.P.)

  20. Structural analysis of the reactor pool for the RRRP

    International Nuclear Information System (INIS)

    Alberro, J.G.; Abbate, A.D.

    2005-01-01

    The purpose of the present document is to describe the structural design of the Reactor Pool relevant to the RRRP (Replacement Research Reactor Project) for the Australian Nuclear Science and Technology Organisation. The structural analysis required coordinated design, engineering, analysis, and fabrication efforts. The pool has been designed, manufactured, and inspected following as guideline the ASME Boiler and Pressure Vessel Code, which defines the requirements for the pool to withstand hydrostatic and mechanical forces, ensuring its integrity throughout its lifetime. Standard off-the-shelf finite element programs (Nastran and Ansys codes) were used to evaluate the pool and further qualify the design and its construction. Both global and local effect analyses were carried out. The global analysis covers the structural integrity of the pool wall (6 mm thick) considering the different load states acting on it, namely hydrostatic pressure, thermal expansion, and seismic event. The local analysis evaluates the structural behaviour of the pool at specific points resulting from the interaction among components. It is confirmed that maximum stresses and displacements fall below the allowable values required by the ASME Boiler and Pressure Vessel Code. The water pressure analysis was validated by means of a hydrostatic test. (authors)

  1. In-service inspection of pool type research reactors

    International Nuclear Information System (INIS)

    Rajamani, K.

    2002-01-01

    In the case of Apsara Reactor, it has been proposed to carry out major modifications in the near future. It is planned to modify the core suitably with a heavy water reflector tank to demonstrate the Multiple Purpose Research Reactor concept. The core structure will be a stationary one and will be located at the 'B' position of the pool. The modified reactor will be operated at 1 MW power level. Suitable methodologies are evolved for carrying out a planned ISI for this modified reactor

  2. Geneva 24 hours swim

    CERN Document Server

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  3. Geneva 24 Hours Swim

    CERN Document Server

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  4. A small research reactor for the 1980's

    International Nuclear Information System (INIS)

    Baglin, C.; Collis-Smith, J.A.; Mitchell, B.; Roskilly, T.

    1978-01-01

    In 1960, GEC together with Imperial College, designed and built the Consort reactor which is still in daily use at the London University Reactor Centre, Silwood Park. In 1977, GEC-REL chose the Consort reactor as a prototype for the development of a modern swimming pool research reactor, designed to meet the needs of countries or organisations starting in the field of Nuclear Technology. This paper outlines some of the topics which arose in the course of this project. (author)

  5. Swimming pool exposure is associated with autonomic changes and increased airway reactivity to a beta-2 agonist in school aged children: A cross-sectional survey

    Science.gov (United States)

    Paciência, Inês; Silva, Diana; Martins, Carla; Madureira, Joana; de Oliveira Fernandes, Eduardo; Padrão, Patrícia; Moreira, Pedro; Delgado, Luís; Moreira, André

    2018-01-01

    Background Endurance swimming exercises coupled to disinfection by-products exposure has been associated with increased airways dysfunction and neurogenic inflammation in elite swimmers. However, the impact of swimming pool exposure at a recreational level on autonomic activity has never been explored. Therefore, this study aimed to investigate how swimming pool attendance is influencing lung and autonomic function in school-aged children. Methods A total of 858 children enrolled a cross sectional survey. Spirometry and airway reversibility to beta-2 agonist, skin-prick-tests and exhaled nitric oxide measurements were performed. Pupillometry was used to evaluate autonomic nervous function. Children were classified as current swimmers (CS), past swimmers (PS) and non-swimmers (NS), according to the amount of swimming practice. Results Current swimmers group had significantly lower maximum and average pupil constriction velocities when compared to both PS and NS groups (3.8 and 5.1 vs 3.9 and 5.3 vs 4.0 and 5.4 mm/s, p = 0.03 and p = 0.01, respectively). Moreover, affinity to the beta-2 agonist and levels of exhaled nitric oxide were significantly higher in CS when compared to NS (70 vs 60 mL and 12 vs 10 ppb, pswimming practice, particularly in atopic individuals (β = 1.12, 1.40 and 1.31, respectively). After case-case analysis, it was possible to observe that results were not influenced by the inclusion of individuals with asthma. Conclusions Concluding, swimming pool attendance appears to be associated with autonomic changes and increased baseline airway smooth muscle constriction even in children without asthma. PMID:29529048

  6. A study of some radioprotection apparatuses used in the case of pool reactors; Etude de quelques dispositifs de radioprotection en service aupres des piles piscines

    Energy Technology Data Exchange (ETDEWEB)

    Robien, E de; Choudens, H de; Delpuech, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-07-01

    Various problems of radioprotection concerning swimming-pool reactors in Grenoble have led us to study adequate solutions: a) The automatic verification of the staff-radioactivity when coming out of Melusine or Siloe has been realized thanks to a {beta}{gamma} gate which is insensitive to the ambient background in the reactor-hall; b) The automatic verification of the contamination of the shoes of the agents working in these reactors has been realized with a dedicated device; c) The necessity to measure precisely {gamma} doses with the help of an autonomous apparatus has led to the making of a plastic-scintillator {gamma} dosimeter; d) The obligation to forbid the opening of doors in some places where there might be a great intensity of radiation, has led us to make doors open according to the intensity of radiation inside the rooms; e) The releases of radioactive iodine have been measured with activated charcoal cartridges that surround a scintillator connected with a unique channel selector; f) Finally the control of reactor safety rod fall in case of a radioactive accident has been secured by a chain whose detector is a chamber immersed in the swimming-pool, which offers, in the particular case of the hot thickness swimming-pool reactor a double advantage: first it enables us to regulate the upper hot water layer, second to get free of transitory radiations which appear in the reactor hall as the experimental apparatuses are taken out from the core. (authors) [French] Differents problemes de radioprotection se posant aupres des piles piscines de Grenoble, ils ont necessite l'etude de solutions particulieres: a) le controle automatique de la radioactivite du personnel sortant de Melusine ou de Siloe a ete realise a l'aide d'un portique {beta}{gamma} insensible au bruit de fond ambiant du hall des piles; b) le controle automatique de la contamination des souliers des agents travaillant dans ces piles a ete realise par une passerelle pieds {beta}{gamma}; c) la

  7. Evaporation-preventive device for nuclear reactor pool water

    International Nuclear Information System (INIS)

    Kurusu, Yoshihisa; Akabori, Shiro.

    1986-01-01

    Purpose: To prevent pool water from evaporating by a great amount in a reactor pool such as a spent fuel storing pool. Constitution: Air discharge and in-take ports are disposed just above the surface of the pool water and charge and discharge of airs are forcively carried out to form air curtains above the pool water. Water vapor evaporated from the surface of the pool water does not diffuse above the air curtains due to the air stream of the curtains, but is intaken into the intake port and then condensated into water by a steam condensator and re-supplied to the pool. Since diffusion of water vapor and radioactive materials are suppressed above the air curtains, the working circumstance in the pool chamber can be maintained desirably thereby keeping the radioactivity dose in the atmosphere. Further, incorporation of dusts from above into the pool can also be prevented by the air curtains to provide an effect for the prevention of radioactive contamination. Further, since covers are not used, visual observation can be insured. (Kawakami, Y.)

  8. Wastewater treatment in a compact intensified wetland system at the Badboot: a floating swimming pool in Belgium.

    Science.gov (United States)

    Van Oirschot, D; Wallace, S; Van Deun, R

    2015-09-01

    The Badboot (Dutch for swimming pool boat) is a floating swimming pool located in the city center of Antwerp in Belgium. The overall design consists of a recycled ferry boat that serves as a restaurant and next to that a newly built ship that harbours an Olympic size swimming pool, sun decks, locker rooms with showers, and a party space. A major design goal of the project was to make the ship as environmentally friendly as possible. To avoid discharge of contaminated waste water in the Antwerp docks, the ship includes onsite treatment of wastewater in a compact constructed wetland. The treatment wetland system was designed to treat wastewater from visitor locker rooms, showers, toilets, two bars, and the wastewater from the restaurant kitchen. Due to the limited space on board the ship, only 188 m(2) could be allocated to a wetland treatment system. As a result, part of the design included intensification of the wetland treatment process through the use of Forced Bed Aeration, which injects small quantities of air in a very uniform grid pattern throughout the wetland with a mechanical air compressor. The system was monitored between August 2012 and March 2013 (with additional sampling in the autumn of 2014). Flows and loads to the wetland were highly variable, but removal efficiency was extremely high; 99.5 % for chemical oxygen demand (COD), 88.6 % for total nitrogen and 97.2 % for ammonia. The treatment performance was assessed using a first-order, tanks-in-series model (the P-k-C* model) and found to be roughly equivalent to similar intensified wetlands operating in Germany. However, treatment performance was substantially better than data reported on passive wetlands, likely as a result of intensification. Even with mechanically assisted aeration, the total oxygen delivered to the treatment wetlands was insufficient to support conventional nitrification and denitrification, so it is likely that alternate nitrogen removal pathways, such as anammox, are

  9. The reactor Cabri

    International Nuclear Information System (INIS)

    Ailloud, J.; Millot, J.P.

    1964-01-01

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m 3 /h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under exceptional

  10. Observation of fallout deposition in an outdoor swimming pool 50 km away from the Fukushima Daiichi nuclear power plant

    International Nuclear Information System (INIS)

    Saegusa, Jun; Yasuda, Ryo; Kurikami, Hiroshi

    2014-01-01

    After the accident at the Fukushima Daiichi nuclear power plant (NPP), outdoor school swimming pools at Fukushima were decontaminated to curb the redistribution of radioactivity into downstream farmlands. In the process, the radioactivity concentrations of the pool water and sediment substances (residue) were measured to estimate the deposition density of the fallout. At a pool situated 50 km away from the NPP, the average concentrations of radiocesium ( 134+137 Cs) for the water and residue were quantified as 170 Bq L −1 and 3.6 × 10 5 Bq kg −1 , respectively. Taking account of the radioactivity concentrations and of the water balance in and around the pool, the deposition density of radiocesium, as of August 2011, was precisely determined to be 0.32 ± 0.03 MBq m −2 (k = 1). The density corroborated the previous results obtained by other methods, i.e., airborne surveys, in-situ Ge surveys and soil samplings at neighboring locations. Other than radiocesium, the only gamma-emitting nuclide detected was 110m Ag, with a concentration of 560 Bq kg −1 in the residue. The radioactivity concentrations of 89 Sr, 90 Sr, 238 Pu and 239+240 Pu in the water were all less than the minimum detectable activities – 2, 0.1, 0.002 and 0.002 Bq L −1 , respectively. - Highlights: • Deposition density of radiocesium was estimated at a swimming pool in Fukushima. • The density was determined with a small standard uncertainty of approximately 10%. • Water balance was simulated for estimating radioactivity budget in the pool. • Detected gamma-emitting nuclide was 110m Ag other than radiocesium. • Radiocesium was much dominant compared with 89 Sr, 90 Sr, 110m Ag, 238 Pu and 239+240 Pu

  11. Swimming attendance during childhood and development of asthma: Meta-analysis.

    Science.gov (United States)

    Valeriani, Federica; Protano, Carmela; Vitali, Matteo; Romano Spica, Vincenzo

    2017-05-01

    The association between asthma and swimming pool attendance has not been demonstrated and currently there are conflicting results. In order to clarify the association between asthma diagnosis in children and swimming pool attendance, and to assess the consistency of the available epidemiological studies, we completed a literature analysis on the relationship between the exposure to disinfection by-products in indoor swimming pools during childhood and asthma diagnosis. Following the Meta-analysis of Observational Studies in Epidemiology (MOOSE) and Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) criteria, a systematic review and meta-analysis was performed by searching MEDLINE via PubMed, TOXNET, and Scopus databases (from inception to 20 April 2015) using the key word "Asthma" together with "swimming pool", "disinfection by-products", "indoor air pollution" and "children". Inclusion criteria were: English language, a complete analytic study design involving a cohort of children (0-16 years), a well-defined definition of exposure, and the presence of data on effect and variance. Studies on in vivo, in vitro or professional and accidental exposure were excluded. After a screening process, seven reports (n = 5851 subjects) were included out of a total of 2928 references. The reported OR of the association between swimming pool attendance and asthma prevalence ranged from 0.58 to 2.30. The present meta-analysis failed to identify a significant difference in asthma development between children attending swimming pools and controls (OR, 1.084; 95% CI: 0.89-1.31). Swimming in childhood does not increase the likelihood of doctor-diagnosed asthma. Based on this meta-analysis review, the association of the disease with indoor pool attendance is still unclear. © 2016 Japan Pediatric Society.

  12. Development of system design and seismic performance evaluation for reactor pool working platform of a research reactor

    International Nuclear Information System (INIS)

    Kwag, Shinyoung; Lee, Jong-Min; Oh, Jinho; Ryu, Jeong-Soo

    2014-01-01

    Highlights: • Design of reactor pool working platform (RPWP) is newly proposed for an open-tank-in-pool type research reactor. • Main concept of RPWP is to minimize the pool top radiation level. • Framework for seismic performance evaluation of nuclear SSCs in a deterministic and a probabilistic manner is proposed. • Structural integrity, serviceability, and seismic margin of the RPWP are evaluated during and after seismic events. -- Abstract: The reactor pool working platform (RPWP) has been newly designed for an open-tank-in-pool type research reactor, and its seismic response, structural integrity, serviceability, and seismic margin have been evaluated during and after seismic events in this paper. The main important concept of the RPWP is to minimize the pool top radiation level by physically covering the reactor pool of the open-tank-in-pool type research reactor and suppressing the rise of flow induced by the primary cooling system. It is also to provide easy handling of the irradiated objects under the pool water by providing guide tubes and refueling cover to make the radioisotopes irradiated and protect the reactor structure assembly. For this concept, the new three dimensional design model of the RPWP is established for manufacturing, installation and operation, and the analytical model is developed to analyze the seismic performance. Since it is submerged under and influenced by water, the hydrodynamic effect is taken into account by using the hydrodynamic added mass method. To investigate the dynamic characteristics of the RPWP, a modal analysis of the developed analytical model is performed. To evaluate the structural integrity and serviceability of the RPWP, the response spectrum analysis and response time history analysis have been performed under the static load and the seismic load of a safe shutdown earthquake (SSE). Their stresses are analyzed for the structural integrity. The possibility of an impact between the RPWP and the most

  13. Upgradation of Apsara reactor

    International Nuclear Information System (INIS)

    Mammen, S.; Mukherjee, P.; Bhatnagar, A.; Sasidharan, K.; Raina, V.K.

    2009-01-01

    Apsara is a 1 MW swimming pool type research reactor using high enriched uranium as fuel with light water as coolant and moderator. The reactor is in operation for more than five decades and has been extensively used for basic research, radioisotope production, neutron radiography, detector testing, shielding experiments etc. In view of its long service period, it is planned to carry out refurbishment of the reactor to extend its useful life. During refurbishment, it is also planned to upgrade the reactor to a 2 MW reactor to improve its utilization and to upgrade the structure, system and components in line with the current safety standards. This paper gives a brief account of the design features and safety aspects of the upgraded Apsara reactor. (author)

  14. Contributions of research Reactors in science and technology

    International Nuclear Information System (INIS)

    Butt, N.M.; Bashir, J.

    1992-12-01

    In the present paper, after defining a research reactor, its basic constituents, types of reactors, their distribution in the world, some typical examples of their uses are given. Particular emphasis in placed on the contribution of PARR-I (Pakistan Research Reactor-I), the 5 MW Swimming Pool Research reactor which first became critical at the Pakistan Institute of Nuclear Science and Technology (PINSTECH) in Dec. 1965 and attained its full power in June 1966. This is still the major research facility at PINSTECH for research and development. (author)

  15. Control Rods in high-Flux Swimming-Pool Reactors; Les Barres de Controle dans les Piles Piscines a Haut Flux; Reguliruyushchie sterzhni dlya reaktorov bassejnovogo tipa s vysokoj plotnost'yu nejtronnogo potoka; Las Barras de Control en los Reactores Tipo Piscina de Flujo Elevado

    Energy Technology Data Exchange (ETDEWEB)

    Ageroni, P.; Blum, P.; Denielou, G.; Denis, P.; Meunier, C. [Centre d' Etudes Nucleaires de Grenoble (France)

    1964-06-15

    Control-rod problems in open swimming-pool high-flux and high specific power research reactors are examined in the light of the calibrations and experiments made during the construction of the SILOE reactor. Control-rod operating experience for this reactor at 13 MW is also described. 2. The following are considered in turn: (a) Reactivity balances and reactivity values for the different types of rod tested (cadmium, B4C , rare earths and combinations of these different elements). (b) Flux peaks set up in the core by the presence of the control rods, their incidence on the specific power, the fast fluxes that can be obtained and means of increasing them. (c ) The technological problems involved in constructing the rods. (d) In-pile cooling, vibration, deformation and scram-time problems. 3. In conclusion, current studies on control rods in open swimming-pool reactors operating in the 10 - 30 1W range are briefly summarized. (author) [French] 1. Les problemes poses par les barres de controle dans les reacteurs de recherche de type piscine ouverte a haute puissance specifique et haut flux sont examines a la lumiere des calculs et des experiences effectues pendant la construction du reacteur SILOE. Les resultats de l'experience de fonctionnement a 13 MW de ce reacteur sont egalement presentes en ce qui concerne les barres de controle. 2. On examine successivement: a) les bilans de reactivite et les valeurs en reactivite des differents types de barres qui ont ete essayes (Cadmium, B 4C , terres rares et combinaisons de ces differents elements). b) Les pics de flux crees dans le coeur par la presence de barres de controle, leur incidence sur la puissance specifique, et les flux rapides que l'on peut obtenir ainsi que les moyens correspondants d'accroitre ces flux. c) Les problemes technologiques poses par la construction des barres. d) Les problemes de refrigeration, de vibration, de deformation, de temps de chute en pile. 3. En conclusion on decrit sommairement les

  16. Neutronics and thermohydraulics of the reactor C.E.N.E.-Part I; Analisis neutronico y termohidraulico del reactor C.E.N.E. Parte I

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R; Ahnert, C; Naudin, A E; Martinez Fanegas, R; Minguez, E; Rovira, A

    1976-07-01

    In this report the analysis of neutronics (both statics and kinetics), of the 10 MWt swimming pool reactor C.E.N.E, is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking, carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs.

  17. Neutronics and thermohydraulics of the reactor C.E.N.E. Part II; Analisis neutronico y termohidraulico del reactor C.E.N.E. Parte II

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R

    1976-07-01

    In this report the analysis of neutronics thermohydraulics and shielding of the 10 HWt swimming pool reactor C.E.N.E is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs.

  18. Decommissioning of the pool reactor Thetis in Ghent, Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Cortenbosch, Geert; Mommaert, Chantal [Bel V, Brussels (Belgium); Tierens, Hubert; Monsieurs, Myriam; Meierlaen, Isabelle; Strijckmans, Karel [Ghent Univ. (Belgium)

    2016-11-15

    The Thetis research pool reactor (with a nominal power of 150 kW) of the Ghent University was operational from 1967 till December 2003. The first phase of the decommissioning of the reactor, the removal of the spent fuel from the site, took place in 2010. The cumulative dose received was only 404 man . μSv. During the second phase, the transition period between the removal of the spent fuel in 2010 and the start of the decommissioning phase in March 2013, 3-monthly internal inspections and inspections by Bel V, were performed. The third and final decommissioning phase started on March 18, 2013. The total dose received between March 2013 and August 2013 was 1561 man . μSv. The declassification from a Class I installation to a Class II installation was possible by the end of 2015. The activated concrete in the reactor pool will remain under regulatory control until the activation levels are lower than the limits for free release.

  19. Modifications for water management guidance based on an assessment of swimming pool water consumption of an operational facility in the UK

    OpenAIRE

    Lewis, L; Chew, J; Woodley, I; Colbourne, J; Pond, K

    2015-01-01

    Water use is a significant operational cost factor for large swimming pool facilities, however it has been overshadowed by the recent focus on energy consumption and carbon emissions. Currently it is difficult for operators to make decisions in relation to water efficiency due to the lack of information on the relationship between pool operation and water use. This study has started to address this issue by reviewing water use at a fully operational facility. The analysis of the consumption d...

  20. Fast-neutron dosimetry in the seed-irradiation facility, ASTRA reactor, Seibersdorf

    International Nuclear Information System (INIS)

    Ahnstroem, G.; Burtscher, A.; Casta, J.

    1967-01-01

    An important part of the co-ordinated programme on the neutron irradiation of seeds has been the construction of a fast-neutron irradiation facility for swimming-pool reactors. This facility was installed around 70 cm from the core in the ASTRA reactor swimming-pool at the end of December, 1966. Also, for this programme a pair of constant potential ionization chambers have been constructed at the Institute of Biochemistry, Stockholm University. These chambes are of the type described in the technical annex and are the same size as the seed-irradiation vials to be used in the seed-irradiation container (diam. =15 mm, length = 60 mm). Some preliminary dosimetry experiments were undertaken to test the irradiation facility and the ionization chambers, and to investigate the usefulness of the dosimetry instructions in the Technical Annex. The results of these experiments are discussed in this paper. 3 refs, 6 figs, 7 tabs

  1. The Influence of RSG-GAS Primary Pump Operation Concerning the Rise Water Level of Reactor Pool in 15 MW Reactor Power

    International Nuclear Information System (INIS)

    Djunaidi

    2004-01-01

    The expansion of air volume in the delay chamber shows in rise water level of reactor pool during the operation. The rises of water level in the reactor pool is not quite from the expansion of air volume in the delay chamber, but some influence the primary pump operation. The purpose evaluated of influence primary pump is to know the influence primary pump power concerning the rise water level during the reactor operation. From the data collection during 15 MW power operation in the last core 42 the influence of primary pump operation concerning the rise water level in the reactor pool is 34.48 % from the total increased after operation during 12 days. (author)

  2. Description of the RA-3 research reactor as a model facility

    International Nuclear Information System (INIS)

    Vicens, Hugo E.; Quintana, Jorge A.

    2001-01-01

    The Argentine RA-3 reactor is described as a model facility for the information to be provided to the IAEA in accordance with the requirements of the Model Additional Protocol. RA-3 reactor was designed as a 5 MW swimming pool reactor, moderated and cooled with light water. Its fuel was 90% enriched uranium. The reactor started its operation in 1967, has been modified and improved in many components, including the core, that now is fueled with moderately enriched uranium

  3. Seismic responses of a pool-type fast reactor with different core support designs

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1989-01-01

    In designing the core support system for a pool-type fast reactor, there are many issues which must be considered in order to achieve an optimum and balanced design. These issues include safety, reliability, as well as costs. Several design options are possible to support the reactor core. Different core support options yield different frequency ranges and responses. Seismic responses of a large pool-type fast reactor incorporated with different core support designs have been investigated. 4 refs., 3 figs

  4. Neutronics and thermohydraulics of the reactor C.E.N.E. Pt. 1

    International Nuclear Information System (INIS)

    Caro, R.; Ahnert, C.; Esteban Naudin, A.; Martinez Fanegas, R.; Minguez, E.; Rovira, A.

    1976-01-01

    The analysis of neutronics (both statics and kinetics), of the 10 Mwt swimming pool reactor C.E.N.E. is included. A short description of the theoretical model used, along with the theoretical versus experimental cheking, carried out, whenever possible, with the reactors JEN-1 and JEN-2 of Junta de Energia Nuclear, is given in each of these chapters. (author) [es

  5. Livermore pool-type reactor

    International Nuclear Information System (INIS)

    Mann, L.G.

    1977-01-01

    The Livermore Pool-Type Reactor (LPTR) has served a dual purpose since 1958--as an instrument for fundamental research and as a tool for measurement and calibration. Our early efforts centered on neutron-diffraction, fission, and capture gamma-ray studies. During the 1960's it was used for extensive calibration work associated with radiochemical and physical measurements on nuclear-explosive tests. Since 1970 the principal applications have been for trace-element measurements and radiation-damage studies. Today's research program is dominated by radiochemical studies of the shorter-lived fission products and by research on the mechanisms of radiation damage. Trace-element measurement for the National Uranium Resource Evaluation (NURE) program is the major measurement application today

  6. The pool chlorine hypothesis and asthma among boys.

    LENUS (Irish Health Repository)

    Cotter, A

    2012-01-31

    Swimming pool sanitation has largely been concerned with the microbiological quality of pool water, which is normally treated using a number of chlorine products. Recent studies have pointed to the potential hazards of chlorine by-products to the respiratory epithelium, particularly in indoor, poorly ventilated, pools. The aim of our study was to elucidate whether chronic exposure to indoor chlorinated swimming pools was associated with an increased likelihood of the development of asthma in boys. METHODS: The subjects were boys aged between 6 and 12 years. Data was collected by means of parental responses to a standardized asthma questionnaire (ISAAC: International Study of Asthma and Allergies in Childhood), supplemented with additional questions regarding frequency of attendance, number of years attendance, whether the child is a swimming team member. The questionnaire return rate was 71\\/% (n = 121). 23 boys were excluded on the basis that they had asthma before they started swimming (n = 97). There was a significant association between number of years a boy had been swimming and the likelihood of wheezing in the last 12 months (p = 0.009; OR = 1.351; 95% CI = 1.077-1.693) and diagnosed asthma (p = 0.046; OR = 1.299; 95% CI = 1.004-1.506). The greater the number the number of years a boy had been attending an indoor, chlorinated pool, the greater the likelihood of wheezing in the last 12 months or "had asthma". Age, parental smoking habits and being a swimming team member had no association with any of the asthma variables examined. Swimming pool attendance may be a risk factor in asthma in boys.

  7. Stress corrosion cracking (Standard Astm G 30-90) in stainless steel 08X18H10T of swimming-pool that contain nuclear fuel in reactors V.V.E.R.-440

    International Nuclear Information System (INIS)

    Zamora R, L.; Herrera, V.

    1998-01-01

    The standard recommended practice for making and using 'U' bend stress corrosion test specimens; Designation G30-90 has been used as a laboratory tool to study the susceptibility of austenitic stainless steels and the other materials of test of intergranular stress corrosion cracking (IGSCC). The experiment has been development in a similar conditions of the chemical regime, the swimming-pool that containing nuclear fuel in borated water reactors VVER-440 in general this cladding by two films, one of carbon steel (04T26) and other with austenitic stainless steel 08X18HT (similar type 321) stabilized with titanium, the thickness of filler metals was to 4 to 8 mm. The specimens was prepare one plate with this characteristics, the welding was put in the part central with the following measurements of 160x15x5 mm. The specimens strips bent approximately 180 degrees around radius of curvature of R=14.5 mm and ε 1 = 17.2% and maintained in this plastically deformed condition during the test. And then preparing metallographically and exposure in environment of 12 and 40 gr./l of H 3 BO 3 70 Centigrade with or noting contaminants of NaCl. The results showed the initial cracks. (Author)

  8. Experimental Investigation of the Hot Water Layer Effect on Upward Flow Open Pool Reactor Operability

    International Nuclear Information System (INIS)

    Abou Elmaaty, T.

    2014-01-01

    The open pool reactor offers a high degree of reliability in the handling and manoeuvring, the replacement of reactor internal components and the suing of vertical irradiation channels. The protection of both the operators and the reactor hall environment against radiation hazards is considered a matter of interest. So, a hot water layer is implemented above many of the research reactors main pool, especially those whose flow direction is upward flow. An experimental work was carried out to ensure the operability of the upward flow open pool research reactor with / without the hot water layer. The performed experiment showed that, the hot water layer is produced an inverse buoyant force make the water to diffuse downward against the ordinary natural circulation from the reactor core. An upward flow - open pool research reactor (with a power greater than 20 M watt) could not wok without a hot water layer. The high temperature of the hot water layer surface could release a considerable amount of water vapour into the reactor hall, so a heat and mass transfer model is built based on the measured hot water layer surface temperature to calculate the amount of released water vapour during the reactor operating period. The effects of many parameters like the ambient air temperature, the reactor hall relative humidity and the speed of the pushed air layer above the top pool end on the evaporation rate is studied. The current study showed that, the hot water layer system is considered an efficient shielding system against Gamma radiation for open pool upward flow reactor and that system should be operated before the reactor start up by a suitable period of time. While, the heat and mass transfer model results showed that, the amount of the released water vapour is increased as a result of both the increase in hot water layer surface temperature and the increase in air layer speed. As the increase in hot water layer surface temperature could produce a good operability

  9. Experimental Investigation of the Hot Water Layer Effect on Upward Flow Open Pool Reactor Operability

    International Nuclear Information System (INIS)

    Abou Elmaaty, T.

    2015-01-01

    The open pool reactor offers a high degree of reliability in the handling and manoeuvring, the replacement of reactor internal components and the swing of vertical irradiation channels. The protection of both the operators and the reactor hall environment against radiation hazards is considered a matter of interest. So, a hot water layer implemented above many of the research reactors main pool, especially those whose flow direction is upward flow. An experimental work was carried out to ensure the operability of the upward flow open pool research reactor with / without the hot water layer. The performed experiment showed that, the hot water layer produced an inverse buoyant force making the water to diffuse downward against the ordinary natural circulation from the reactor core. An upward flow-open pool research reactor (with a power greater than 20 Mw) could not wok without a hot water layer. The high temperature of the hot water layer surface could release a considerable amount of water vapour into the reactor hall, so a heat and mass transfer model is built based on the measured hot water layer surface temperature to calculate the amount of released water vapour during the reactor operating period. The effects of many parameters like the ambient air temperature, the reactor hall relative humidity and the speed of the pushed air layer above the top pool end on the evaporation rate is studied. The current study showed that, the hot water layer system is considered an efficient shielding system against gamma radiation for open pool upward flow reactor and that system should be operated before the reactor start up by a suitable period of time. While, the heat and mass transfer model results showed that, the amount of the released water vapour is increased as a result of both the increase in hot water layer surface temperature and the increase in air layer speed. As the increase in hot water layer surface temperature could produce a good operability conditions from

  10. Design of hydrotherapy exercise pools.

    Science.gov (United States)

    Edlich, R F; Abidin, M R; Becker, D G; Pavlovich, L J; Dang, M T

    1988-01-01

    Several hydrotherapy pools have been designed specifically for a variety of aquatic exercise. Aqua-Ark positions the exerciser in the center of the pool for deep-water exercise. Aqua-Trex is a shallow underwater treadmill system for water walking or jogging. Swim-Ex generates an adjustable laminar flow that permits swimming without turning. Musculoskeletal conditioning can be accomplished in the above-ground Arjo shallow-water exercise pool. A hydrotherapy pool also can be custom designed for musculoskeletal conditioning in its shallow part and cardiovascular conditioning in a deeper portion of the pool. Regardless of the type of exercise, there is general agreement that the specific exercise conducted in water requires significantly more energy expenditure than when the same exercise is performed on land.

  11. Trihalometanos en el agua de piscinas en cuatro zonas de España participantes en el proyecto INMA Trihalomethanes in swimming pool water in four areas of Spain participating in the INMA project

    Directory of Open Access Journals (Sweden)

    Laia Font-Ribera

    2010-12-01

    Full Text Available Objetivo: La natación es uno de los deportes más practicados en España, por personas de todas las edades y condiciones físicas. También es una vía de exposición a subproductos de la desinfección, compuestos potencialmente tóxicos. Su concentración en el agua de las piscinas no está legislada y es poco conocida. El objetivo de este trabajo es describir la concentración de trihalometanos en el agua de piscinas de los municipios de cuatro cohortes del estudio INMA. Métodos: En julio de 2009 se analizaron los trihalometanos en el agua de piscinas (n=27 de Asturias, Granada, Valencia y Sabadell. Resultados: La concentración media de trihalometanos totales fue de 42,7µg/l (desviación estándar [DE]=19,1 en las piscinas interiores y de 151,2µg/l (DE=80,7 en las exteriores, predominando siempre el cloroformo. Granada tuvo los valores más bajos. Conclusión: La concentración de trihalometanos en el agua de piscinas presenta una gran variabilidad. Las piscinas exteriores tienen valores más altos, superando mayoritariamente los límites legales establecidos para el agua de consumo.Objective: Swimming is one of the most widely practiced sports in Spain among people of all ages and physical conditions. This activity is also a source of exposure to disinfection by-products (DBP, which are potentially toxic. The DBP concentration in swimming pool water is not regulated and is poorly known. The aim of this study was to describe trihalomethane concentrations in swimming pool water in the municipalities of four cohorts of the INMA project. Methods: In July 2009, trihalomethanes were analyzed in water from 27 swimming pools in Asturias, Granada, Valencia and Sabadell. Results: The mean total trihalomethane concentration was 42.7µg/L (standard deviation [SD]=19.1 in indoor pools and 151.2µg/L (SD=80.7 in outdoor pools. In all pools, the most abundant trihalomethane was always chloroform. The lowest levels were found in Granada. Conclusion

  12. Plenum separator system for pool-type nuclear reactors

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1983-01-01

    This invention provides a plenum separator system for pool-type nuclear reactors which substantially lessens undesirable thermal effects on major components. A primary feature of the invention is the addition of one or more intermediate plena, containing substantially stagnant and stratified coolant, which separate the hot and cold plena and particularly the hot plena from critical reactor components. This plenum separator system also includes a plurality of components which together form a dual pass flow path annular region spaced from the reactor vessel wall by an annular gas space. The bypass flow through the flow path is relatively small and is drawn from the main coolant pumps and discharged to an intermediate plenum

  13. From Source Water to Tap Water to Spa and Swimming Pool Water: Effects of Disinfectanta and Precursors and Implications for Exposure and Toxicity

    Science.gov (United States)

    Introduction The current study investigated the effect of different disinfection treatments on the disinfection by-products (DBPs) formed in finished drinking water vs. tap water vs. swimming pool water vs. spa waters. To this end, samples across the complete water pathway (untr...

  14. Neutronics and thermohydraulics of the reactor C.E.N.E. Part II

    International Nuclear Information System (INIS)

    Caro, R.

    1976-01-01

    In this report the analysis of neutronics thermohydraulics and shielding of the 10 HWt swimming pool reactor C.E.N.E is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs

  15. Neutronics and thermohydraulics of the reactor C.E.N.E.-Part I

    International Nuclear Information System (INIS)

    Caro, R.; Ahnert, C.; Naudin, A. E.; Martinez Fanegas, R.; Minguez, E.; Rovira, A.

    1976-01-01

    In this report the analysis of neutronics (both statics and kinetics), of the 10 MWt swimming pool reactor C.E.N.E, is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking, carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs

  16. E-SCAPE: A scale facility for liquid-metal, pool-type reactor thermal hydraulic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Van Tichelen, Katrien, E-mail: kvtichel@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Mirelli, Fabio, E-mail: fmirelli@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Greco, Matteo, E-mail: mgreco@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Viviani, Giorgia, E-mail: giorgiaviviani@gmail.com [University of Pisa, Lungarno Pacinotti 43, 56126 Pisa (Italy)

    2015-08-15

    Highlights: • The E-SCAPE facility is a thermal hydraulic scale model of the MYRRHA fast reactor. • The focus is on mixing and stratification in liquid-metal pool-type reactors. • Forced convection, natural convection and the transition are investigated. • Extensive instrumentation allows validation of computational models. • System thermal hydraulic and CFD models have been used for facility design. - Abstract: MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a flexible fast-spectrum research reactor under design at SCK·CEN. MYRRHA is a pool-type reactor with lead bismuth eutectic (LBE) as primary coolant. The proper understanding of the thermal hydraulic phenomena occurring in the reactor pool is an important issue in the design and licensing of the MYRRHA system and liquid-metal cooled reactors by extension. Model experiments are necessary for understanding the physics, for validating experimental tools and to qualify the design for the licensing. The E-SCAPE (European SCAled Pool Experiment) facility at SCK·CEN is a thermal hydraulic 1/6-scale model of the MYRRHA reactor, with an electrical core simulator, cooled by LBE. It provides experimental feedback to the designers on the forced and natural circulation flow patterns. Moreover, it enables to validate the computational methods for their use with LBE. The paper will elaborate on the design of the E-SCAPE facility and its main parameters. Also the experimental matrix and the pre-test analysis using computational fluid dynamics (CFD) and system thermal hydraulics codes will be described.

  17. Simplified analysis of trasients in pool type liquid metal reactors

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1987-01-01

    The conceptual design of a liquid metal fast breeder reactor will require a great effort of development in several technical disciplines. One of them is the thermal-hydraulic design of the reactor and of the heat and fluid transport components inside the reactor vessel. A simplified model to calculate the maximum sodium temperatures is presented in this paper. This model can be used to optimize the layout of components inside the reactor vessel and was easily programmed in a small computer. Illustrative calculations of two transients of a typical hot pool type fast reactor are presented and compared with the results of other researchers. (author) [pt

  18. Stabilization of reactor fuel storage pool-TTP

    International Nuclear Information System (INIS)

    Sevigny, G.

    1994-10-01

    The proposed work includes evaluating standard and improved technologies an designing an integrated demonstration system to clean the water and sludge the fuel storage pools. The water released would meet drinking water standards and tritium standards. The volume of radioactive sludge would be reduced by partial separation of the sludge and radionuclides and eventual solidification of the hazardous and radioactive waste. The scope of the wo includes a survey of needs and applicable technologies, system engineering evaluation, conceptual design, detailed design, fabrication of the integrat demonstration system, and testing of the system. The survey task will locate potential specific customers within the DOE complex, and outside of the DOE complex throughout the United States, that be able to utilize the narrowly focused technology to stabilize/shutdown reactor fuel storage pools, responsible parties will be located and asked respond to a survey about their specific process requirements. Literature searches will be run through technical and scientific databases to locate technologies that may be an improvement over the standard baselined technol for cleanup of radioactively-contaminated pools. Systems engineering will provide decision analysis support for the development, evaluation, design, test functions of the treatment of pool water and sludge

  19. Stabilization of reactor fuel storage pool-TTP

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, G.

    1994-10-01

    The proposed work includes evaluating standard and improved technologies an designing an integrated demonstration system to clean the water and sludge the fuel storage pools. The water released would meet drinking water standards and tritium standards. The volume of radioactive sludge would be reduced by partial separation of the sludge and radionuclides and eventual solidification of the hazardous and radioactive waste. The scope of the wo includes a survey of needs and applicable technologies, system engineering evaluation, conceptual design, detailed design, fabrication of the integrat demonstration system, and testing of the system. The survey task will locate potential specific customers within the DOE complex, and outside of the DOE complex throughout the United States, that be able to utilize the narrowly focused technology to stabilize/shutdown reactor fuel storage pools, responsible parties will be located and asked respond to a survey about their specific process requirements. Literature searches will be run through technical and scientific databases to locate technologies that may be an improvement over the standard baselined technol for cleanup of radioactively-contaminated pools. Systems engineering will provide decision analysis support for the development, evaluation, design, test functions of the treatment of pool water and sludge.

  20. Rational energy utilization and utilization of solar energy in the open-air swimming pool and in the multiple purpose hall at Wiehl. Final report. Pt. G

    Energy Technology Data Exchange (ETDEWEB)

    Bouillon, H; Jensch, K; Jensch, W; Biasin, K; Dreisbach, K; Fruehauf, H J

    1982-12-01

    The research- and demonstration project in Wiehl consists mainly of an open-air swimming pool heated by solar energy and of a multiple purpose hall which is chiefly used as an ice-sport hall. The ice-field is cooled by means of a refrigeration system. The waste heat developing during freezing is used for water heating, space heating and hall-air heating for the multiple purpose hall and for after-heating of the pool water in the open-air swimming pool. In artificial ice-fields operated without interruptions during quite a long time, the subsoil may freeze. In this case there is the risk of the field constructions being damaged by the tensile forces of the frozen subsoil. In order to avoid this heating coils are installed below the fields in many cases today, due to which part of the waste heat developing during ice-production can be used to heat the field subsoil and thus avoid the risk of destruction.

  1. Activities for extending the lifetime of MINT research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bokhari, Adnan; Kassim, Mohammad Suhaimi [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia)

    1998-10-01

    MINT TRIGA Reactor is a 1-MW swimming pool nuclear reactor commissioned in June 1982. Since then, it has been used for research, isotope production, neutron activation, neutron radiography and manpower training. The total operating time till the end on September 1997 is 16968 hours with cumulative total energy release of 11188 MW-hours. After more than fifteen years of successful operation, some deterioration in components and associated systems has been observed. This paper describes some of the activities carried out to increase the lifetime and to reduce the shutdown time of the reactor. (author)

  2. Detection of fission products release in the research reactor 'RA' spent fuel storage pool

    International Nuclear Information System (INIS)

    Matausek, M.V.; Vukadin, Z.; Pavlovic, S.; Maksin, T.; Idakovic, Z.; Marinkovic, N.

    1997-05-01

    Spent fuel resulting from 25 years of operating the 6.5/10 MW thermal heavy water moderated and cooled research reactor RA at the VINCA Institute is presently all stored in the temporary spent fuel storage pool in the basement of the reactor building. In 1984, the reactor was shut down for refurbishment, which for a number of reasons has not yet been completed. Recent investigations show that independent of the future status of the research reactor, safe disposal of the so far irradiated fuel must be the subject of primary concern. The present status of the research reactor RA spent fuel storage pool at the VINCA Institute presents a serious safety problem. Action is therefore initiated in two directions. First, safety of the existing spent fuel storage should be improved. Second, transferring spent fuel into another, presumably dry storage space should be considered. By storing the previously irradiated fuel of the research reactor RA in a newly built storage space, sufficient free space will be provided in the existing spent fuel storage pool for the newly irradiated fuel when the reactor starts operation again. In the case that it would be decided to decommission the research reactor RA, the newly built storage space would provide safe disposal for the fuel irradiated so far

  3. Development, Implementation and Experimental Validations of Activation Products Models for Water Pool Reactors

    International Nuclear Information System (INIS)

    Petriw, S.N.

    2001-01-01

    Some parameters were obtained both calculations and experiments in order to determined the source of the meaning activation products in water pool reactors. In this case, the study was done in RA-6 reactor (Centro Atomico Bariloche - Argentina).In normal operation, neutron flux on core activates aluminium plates.The activity on coolant water came from its impurities activation and meanly from some quantity of aluminium that, once activated, leave the cladding and is transported by water cooling system.This quantity depends of the 'recoil range' of each activation reaction.The 'staying time' on pool (the time that nuclides are circulating on the reactor pool) is another characteristic parameter of the system.Stationary state activity of some nuclides depends of this time.Also, several theoretical models of activation on coolant water system are showed, and their experimental validations

  4. Optical inspections of research reactor tanks and tank components

    International Nuclear Information System (INIS)

    Boeck, H.; Hammer, J.

    1988-01-01

    By the end of 1987 worldwide there were 326 research reactors in operation, 276 of them operating more than 10 years, and 195 of them operating more than 20 years. The majority of these reactors are swimming-pool type or tank type reactors using aluminium as structural material. Although aluminium has prooven its excellent properties for reactor application in primary system, it is however subjected to various types of corrosion if it gets into contact with other materials such as mild steel in the presence of destilled water. This paper describes various methods of research reactor tank inspections, maintenance and repair possibilities. 9 figs. (Author)

  5. Front crawl swimming analysis using accelerometers

    DEFF Research Database (Denmark)

    Espinosa, Hugo G; Nordsborg, Nikolai Baastrup; Thiel, David V

    2015-01-01

    Biomechanical characteristics such as stroke rate and stroke length can be used to determine the velocity of a swimmer and can be analysed in both a swimming pool and a flume. The aim of the present preliminary study was to investigate the differences between the acceleration data collected from...... a swimming pool with that collected from a flume, as a function of the swimmer's stroke rate and stroke count, with the objective of identifying the impact on the swimmer's performance. The differences were determined by the analysis of the stroke's features, comparing several strokes normalized to one...

  6. Neutron noise measurement technique in a coupled reactor

    International Nuclear Information System (INIS)

    Genoud, J.P.

    1976-01-01

    Describes work carried out on the swimming pool reactor at the Physikalisch-Technische Bundesanstalt at Braunschweig. The reactor has two multiplying zones, is light water moderated, with 90% enriched 235 U fuel. There is a D 2 0 reservoir between the two parts of the reactor. Signal/noise ratio obtained by means of ionisation chamber type neutron detectors of 10 -13 amp/u.f. sensitivity is of the order of 40 dB and band frequency 1.5 kHz. Spectral density of the interzone interaction energy was obtained by use of Fourier transforms, previously corrected by a Hanning window. (S.W.)

  7. Secondary formation of disinfection by-products by UV treatment of swimming pool water

    Energy Technology Data Exchange (ETDEWEB)

    Spiliotopoulou, Aikaterini [Water ApS, Farum Gydevej 64, 3520 Farum (Denmark); Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby (Denmark); Hansen, Kamilla M.S., E-mail: kmsh@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby (Denmark); Andersen, Henrik R. [Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby (Denmark)

    2015-07-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  8. Secondary formation of disinfection by-products by UV treatment of swimming pool water

    International Nuclear Information System (INIS)

    Spiliotopoulou, Aikaterini; Hansen, Kamilla M.S.; Andersen, Henrik R.

    2015-01-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  9. The use and evolution of the CEA research reactors

    International Nuclear Information System (INIS)

    Rossillon, F.; Chauvez, C.

    1964-01-01

    The authors successively examine the different research reactors in use in the French C.E.A. Nuclear Centres. They trace briefly their histories, describing how they have been used up to the present, and how they have been adapted to changes in programme by means of certain modifications. They also describe the reasons which have led to the elaboration of the project for the new reactor Osiris. Zoe, the oldest reactor in the CEA, has been in service in the Centre de Fontenay-aux-Roses since 1948. It is used mainly for measurements of absorption cross-sections in graphite, and for various short irradiations which do not require high fluxes. The reactor EL 2, in service since 1952, was used for the first studies on gas cooling. It has also been widely used for the production of radioisotopes and for a large number of experiments in the fields of physics, metallurgy and physical chemistry. The ageing of certain elements of the reactor has led to the decision to close it down in the near future The reactor EL 3 has been widely used for experiments in physics and in the investigation of fuels. The possibilities of the reactor in fast neutron irradiations will be considerably improved by the adoption of a new type of core (the 'snow crystal' structure). Triton-I, a 2 MW swimming-pool reactor, is used for the most part for fast neutron and gamma irradiations. The modifications being carried out on it at present should result in an increase in the power of the reactor up to 4 or 5 MW. In a neighbouring compartment is housed Triton-II which is of the same general structure, as Triton-I, but whose maximum power is 100 kW. Triton-II is used solely for studies on shielding. Melusine, a 2 MW swimming-pool reactor, has been in use in the Centre d'Etudes Nucleaires de Grenoble since 1959. It has supported a very high programme concerned mainly with solid state physics, fundamental research into refractory fissile materials and special graphites, and the study of the behaviour of

  10. EFFECTS OF THREE FEEDBACK CONDITIONS ON AEROBIC SWIM SPEEDS

    Directory of Open Access Journals (Sweden)

    Pedro Pérez Soriano

    2009-03-01

    Full Text Available The purpose of this study was twofold: (a to develop an underwater chronometer capable to provide feedback while the athlete is swimming, as well as being a control tool for the coach, and (b to analyse its feedback effect on swim pace control compared with feedback provided by the coach and with no feedback, in 25 m and 50 m swimming pools. 30 male swimmers of national level volunteer to participate. Each swimmer swam 3 x 200 m at aerobic speed (AS and 3 x 200 m just under the anaerobic threshold speed (AnS, each swam repetition with a different feedback condition: chronometer, coach and without feedback. Results (a validate the chronometer system developed and (b show that swimmers pace control is affected by the type of feedback provided, the swim speed elected and the size of the swimming pool

  11. Radon measurements in air in waterworks and indoor swimming pools - a primary mapping project

    International Nuclear Information System (INIS)

    Marinko, J.; Mjoenes, L.; Soederman, A.-L.

    2004-01-01

    In 2001 the Swedish Work Environment Authority asked five regional offices around the country; Falun, Malmoe, Vaexjoe, Umeaa and Oerebro, to measure radon in air in workplaces where water was likely to enhance radon levels indoors. Track etch detectors were used and placed in workplaces according to the SSI measurement protocol for determining the annual average radon concentration in homes. Rooms that are frequently used by employees were measured. The detectors were exposed between 1 to 3 months. 225 detectors were used in the project and analysed at the same laboratory. The results showed that the radon concentration in waterworks often is high. Measurements were made in 60 waterworks. Levels exceeding 1000 Bq/m 3 were found in 49 of them and levels exceeding 4000 Bq/m 3 were found in 21 waterworks. The variation between waterworks may be a result of the radon concentration in the raw water, the amount of radon gas escaping to the air when water is treated, the air exchange rate in the building and where the detectors were deployed. Measurements were made in 28 indoor swimming baths. The maximum level was 290 Bq/m 3 , but most concentrations were between 30 to 70 Bq/m 3 . The conclusion is that high radon levels do not seem to be a problem in indoor swimming baths. Maybe this is due to good ventilation or the fact that water often has been treated for radon before it is used in swimming pools. The results from measurement in food industries such as breweries showed no extreme radon levels except for a fish farm where levels over 1000 Bq/m 3 were measured in the farming room and 790 Bq/m 3 in the office. The radon concentrations in laundries were relatively low, between 30 and 170 Bq/m 3

  12. Optimal pH in chlorinated swimming pools - balancing formation of by-products

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Albrechtsen, Hans-Jørgen; Andersen, Henrik Rasmus

    2013-01-01

    In order to identify the optimal pH range for chlorinated swimming pools the formation of trihalomethanes, haloacetonitriles and trichloramine was investigated in the pH-range 6.5–7.5 in batch experiments. An artificial body fluid analogue was used to simulate bather load as the precursor for by-products....... The chlorine-to-precursor ratio used in the batch experiments influenced the amounts of by-products formed, but regardless of the ratio the same trends in the effect of pH were observed. Trihalomethane formation was reduced by decreasing pH but haloacetonitrile and trichloramine formation increased....... To evaluate the significance of the increase and decrease of the investigated organic by-products at the different pH values, the genotoxicity was calculated based on literature values. The calculated genotoxicity was approximately at the same level in the pH range 6.8–7.5 and increased when pH was 6...

  13. Primary system thermal-hydraulic simulation of a experimental pool type research fast reactor

    International Nuclear Information System (INIS)

    Borges, E.M.; Braz Filho, F.A.

    1993-01-01

    The first step of the Fast Reactor Program (REARA) is the design of an experimental reactor. To this end a 5 MW t pool type reactor was adapted. The objective of this work is to evaluate the reactor behaviour at the on set protected accidents. The program NALAP was used in this study and the results showed the outstanding safety margins that this reactor type presents inherently. (author)

  14. Conceptual design of multipurpose compact research reactor

    International Nuclear Information System (INIS)

    Nagata, Hiroshi; Kusunoki, Tsuyoshi; Hori, Naohiko; Kaminaga, Masanori

    2012-01-01

    Conceptual design of the high-performance and low-cost multipurpose compact research reactor which will be expected to construct in the nuclear power plant introduction countries, started from 2010 in JAEA and nuclear-related companies in Japan. The aims of this conceptual design are to achieve highly safe reactor, economical design, high availability factor and advanced irradiation utilization. One of the basic reactor concept was determined as swimming pool type, thermal power of 10MW and water cooled and moderated reactor with plate type fuel element same as the JMTR. It is expected that the research reactors are used for human resource development, progress of the science and technology, expansion of industry use, lifetime extension of LWRs and so on. (author)

  15. Storage of water reactor spent fuel in water pools. Survey of world experience

    International Nuclear Information System (INIS)

    1982-01-01

    Following discharge from a nuclear reactor, spent fuel has to be stored in water pools at the reactor site to allow for radioactive decay and cooling. After this initial storage period, the future treatment of spent fuel depends on the fuel cycle concept chosen. Spent fuel can either be treated by chemical processing or conditioning for final disposal at the relevant fuel cycle facilities, or be held in interim storage - at the reactor site or at a central storage facility. Recent forecasts predict that, by the year 2000, more than 150,000 tonnes of heavy metal from spent LWR fuel will have been accumulated. Because of postponed commitments regarding spent fuel treatment, a significant amount of spent fuel will still be held in storage at that time. Although very positive experience with wet storage has been gained over the past 40 years, making wet storage a proven technology, it appears desirable to summarize all available data for the benefit of designers, storage pool operators, licensing agenices and the general public. Such data will be essential for assessing the viability of extended water pool storage of spent nuclear fuel. In 1979, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD jointly issued a questionnaire dealing with all aspects of water pool storage. This report summarizes the information received from storage pool operators

  16. Water Penetration into Middle Ear Through Ventilation Tubes in Children While Swimming

    Directory of Open Access Journals (Sweden)

    Mao-Che Wang

    2009-02-01

    Conclusion: Water penetration into the middle ear through ventilation tubes and middle ear infection are not likely when surface swimming. Children with ventilation tubes can enjoy swimming without protection in clean chlorinated swimming pools.

  17. Kick, Stroke and Swim: Complement Your Swimming Program by Engaging the Whole Body on Dry Land and in the Pool

    Science.gov (United States)

    Flynn, Susan; Duell, Kelly; Dehaven, Carole; Heidorn, Brent

    2017-01-01

    The Kick, Stroke and Swim (KSS) program can be used to engage students in swimming-skill acquisition and fitness training using a variety of modalities, strategies and techniques on dry land. Practicing swim strokes and techniques on land gives all levels of swimmers--from beginner to competitive--a kinesthetic awareness of the individual…

  18. Some particular aspects of control in nuclear power reactors

    International Nuclear Information System (INIS)

    Vathaire, F. de; Vernier, Ph.; Pascouet, A.

    1964-01-01

    This paper reviews the experience acquired in France on the question, of reactor safety. Since a special paper is being presented on reactors of the graphite gas type, the safety of the other types studied in France is discussed here: - heavy water-gas reactors, - fast neutron reactors, - water research reactors of the swimming-pool and tank types. The safety rules peculiar to the different types are explained, with emphasis on their influence on the reactor designs and on the power limits they impose. The corresponding safety studies are presented, particular stress being placed on the original work developed in these fields. Special mention is made of the experimental systems constructed for these studies: the reactor CABRI, pile loop for depressurization tests, loops outside the pile, mock-ups etc. (authors) [fr

  19. Modifying the food supply at a community swimming pool: a case study.

    Science.gov (United States)

    Lloyd, Beverley; Dumbrell, Susan

    2011-04-01

    We report on a process evaluation of a project that aimed to replace energy-dense, nutrient-poor (EDNP) items at a community swimming pool kiosk. The analytic framework was the Analysis Grid for Environments Linked to Obesity (ANGELO). To contribute to health promotion practice in recreational settings, the process evaluation sought to determine the extent to which project'controversies' modified project objectives and strategies. The case study method captured the project narrative. The primary data were interviews with key project participants, supplemented with project records and media articles.These were analysed thematically. The socio-cultural and political environments, particularly the capacity to exercise choice in relation to ENDP products, had considerable influence on the project. In the face of two controversies -"I thought everyone was signed up to it"and "We can't deny the kiddies their ice-cream" it was necessary for the project partners to modify the objectives and strategies and substantially change the target. The setting is highly responsive to both the micro and macro socio-cultural and political aspects of the environment.

  20. Conceptual design of reactor TRIGA PUSPATI (RTP) spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Tonny Lanyau; Mazleha Maskin; Mohd Fazli Zakaria; Mohmammad Suhaimi Kassim; Ahmad Nabil Abdul Rahim; Phongsakorn Prak Tom; Mohd Fairus Abdul Farid; Mohd Huzair Hussain

    2012-01-01

    After undergo about 30 years of safe operation, Reactor TRIGA PUSPATI (RTP) was planned to be upgraded to ensure continuous operation at optimum safety condition. In the meantime, upgrading is essential to get higher flux to diversify the reactor utilization. Spent fuel pool is needed for temporary storage of the irradiated fuel before sending it back to original country for reprocessing, reuse after the upgrading accomplished or final disposal. The irradiated fuel elements need to be secure physically with continuous cooling to ensure the safety of the fuels itself. The decay heat probably still exist even though the fuel elements not in the reactor core. Therefore, appropriate cooling is required to remove the heat produced by decay of the fission product in the irradiated fuel element. The design of spent fuel pool cooling system (SFPCS) was come to mind in order to provide the sufficient cooling to the irradiated fuel elements and also as a shielding. The spent fuel pool cooling system generally equipped with pumps, heat exchanger, water storage tank, valve and piping. The design of the system is based on criteria of the primary cooling system. This paper provides the conceptual design of the spent fuel cooling system. (author)

  1. The heavy water accountancy for research reactors in JAERI

    International Nuclear Information System (INIS)

    Yoshijima, Tetsuo; Tanaka, Sumitoshi; Nemoto, Denjirou

    1998-11-01

    The three research reactors have been operated by the Department of Research Reactor and used about 41 tons heavy water as coolant, moderator and reflector of research reactors. The JRR-2 is a tank type research reactor of 10MW in thermal power and its is used as moderator, coolant and reflector about 16 tons heavy water. The JRR-3M is a light water cooled and moderated pool type research reactor with a thermal power of 20MW and its is used as reflector about 7.3 tons heavy water. In the JRR-4, which is a light water cooled swimming pool type research reactor with the maximum thermal power of 3.5MW, about 1 ton heavy water is used to supply fully thermalized neutrons with a neutron beam experiment of facility. The heavy water was imported from U.S.A., CANADA and Norway. Parts of heavy water is internationally controlled materials, therefore management of heavy water is necessary for materials accountancy. This report described the change of heavy water inventories in each research reactors, law and regulations for accounting of heavy water in JAERI. (author)

  2. Radiological performance of hot water layer system in open pool type reactor

    OpenAIRE

    Amr Abdelhady

    2013-01-01

    The paper presents the calculated dose rate carried out by using MicroShield code to show the importance of hot water layer system (HWL) in 22 MW open pool type reactor from the radiation protection safety point of view. The paper presents the dose rate profiles over the pool surface in normal and abnormal operations of HWL system. The results show that, in case of losing the hot water layer effect, the radiation dose rate profiles over the pool surface will increase from values lower than th...

  3. Internal exposure by natural radiation and decontamination of swimming pool

    International Nuclear Information System (INIS)

    Seki, Hideyuki

    2012-01-01

    This explanation concerns the scientific knowledge and finding of the title subjects for general public to understand their present radiation environment, id est (i.e.), at about 1 year after the Fukushima Daiichi Power Plant Accident (FDPPA). The first described is the world history of radiation exposure, where A-bomb explosion in Hiroshima and Nagasaki, Three Mile Island Power Plant Accident and Chernobyl Accident are told about their teachings and about internal nuclides at FDPPA: the author points out the natural high abundance of K-40 in contrast to the release of I-131, and Cs-137/-134 in the accident. The second is described about the effect of radiations on human cells, where characteristics, measurements, unit and their derived radionuclides of alpha, beta and gamma rays are explained together with their biological influences. Also explained are hydroxy-radical formation by alpha and beta rays in the internal exposure, and comparison of external photons, gamma and more risky ultraviolet rays. Third, the author mentions about man's natural functions to protect radiation hazard. Presented are an easy calculation and a comparison of K-40 and Cs-137 contents (weight and Bq) in the body and in the swimming pool with reference to Chernobyl standards. Internal exposure by natural radionuclides like K-40 and others, is also calculated, which is found equivalent to 0.29 mSv/y based on about 5,630 Bq/60 kg body weight. Finally, explained are the knowledge and practice of decontamination, where various adsorbents like zeolite (molecular sieve), ion exchanger, charcoal and natural zeolites (alumino-silicate) are compared and the last agent, clay easily and economically available, is recommended for decontamination. Clay material is said to adsorb 87% of Cs-137 at as low level as 750 mg/L and the author has an experience to use it successfully for decontamination of the pool. Importantly, the radioactivity of the resultant sludge should not exceed 8,000 Bq/kg. (T.T.)

  4. Swimming Safely (A Minute of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2014-05-22

    Almost 4,000 people die from drowning each year in the U.S. You can also get sick at the pool. This podcast discusses swimming pool safety tips.  Created: 5/22/2014 by MMWR.   Date Released: 5/22/2014.

  5. 3-dimensional thermohydraulic analysis of KALIMER reactor pool during unprotected accidents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Hahn Do Hee

    2003-01-01

    During a normal reactor scram, the heat generation is reduced almost instantaneously while the coolant flow rate follows the pump coastdown. This mismatch between power and flow results in a situation where the core flow entering the hot pool is at a lower temperature than the temperature of the bulk pool sodium. This temperature difference leads to thermal stratification. Thermal stratification can occur in the hot pool region if the entering coolant is colder than the existing hot pool coolant and the flow momentum is not large enough to overcome the negative buoyancy force. Since the fluid of hot pool enters IHXs, the temperature distribution of hot pool can alter the overall system response. Hence, it is necessary to predict the pool coolant temperature distribution with sufficient accuracy to determine the inlet temperature conditions for the IHXs and its contribution to the net buoyancy head. Therefore, two-dimensional hot pool thermohydraulic model named HP2D has been developed. In this report code-to-code comparison analysis between HP2D and COMMIX-1AR/P has been performed in the case of steady-state and UTOP.

  6. Management of developing swimming performance in National Paralympic Committee of Indonesia

    Directory of Open Access Journals (Sweden)

    Nonik Rahmawati

    2018-05-01

    Full Text Available The main objective of this study is to understand and analyze structural organization of NPC (National Paralympic Committee of Indonesia on managing swimming performance,recruitment system, infrastructure management, funding management and implementation of the exercise management on managing swimming performance. This study was conducted at Head Office of NPC Indonesia and Kartasura Swimming Pool, Central Java Province. This studyis made in qualitative manner and presented in descriptive approach. The data collection is conducted by doing observation, document analysis, and interviews. The results of the management of developing swimming performance in NPC (National Paralympic Committee of Indonesia are summarized as follows: 1 there are general chairman, the head of the achievement division, the head of the sports department, coach manager and then directed to the coach coordinator and coach’s assistant in the organizational structure 2 recruitment of the organization is held by choosing people who concerned about NPC of Indonesia, recruitment of coach is held without any special tests, which is selected by: giving priority to athletes who have ever won medals and have experienced in coaching, while recruitment of athletes is held by using special test by NPC of Indonesia, 3 facilities, in the form of swimming’s support tools, are given gradually by Ministry of Youth and Sports Affairsby submitting proposals. Meanwhile, facility such as swimming pool still depends on renting Kartasura Swimming Pool, 4 the funding is obtained from Ministry of Youth and Sports Affairs without any sponsorship, 5 training program is held by giving suitable program in general preparation, special preparation, pre match, and also considering athletes’ physical condition, technique, and mental status. Training program can be developed according to the condition of each athlete. Based on the analysis, it can be concluded that management of developing swimming

  7. Fuel shuffling optimization for the Delft research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Hoogenboom, J.E.; Gibcus, H.P.M. [Delft Univ. of Technology, Interfaculty Reactor Inst., Delft (Netherlands); Quist, A.J. [Delft Univ., Fac. of Applied Mathematics and Informatics, Delft (Netherlands)

    1997-07-01

    A fuel shuffling optimization procedure is proposed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, a 2 MWth swimming-pool type research reactor. In order to cope with the fluctuatory behaviour of objective functions in loading pattern optimization, the proposed cyclic permutation optimization procedure features a gradual transition from global to local search behaviour via the introduction of stochastic tests for the number of fuel assemblies involved in a cyclic permutation. The possible objectives and the safety and operation constraints, as well as the optimization procedure, are discussed, followed by some optimization results for the HOR. (author) 5 figs., 4 refs.

  8. Fuel shuffling optimization for the Delft research reactor

    International Nuclear Information System (INIS)

    Geemert, R. van; Hoogenboom, J.E.; Gibcus, H.P.M.; Quist, A.J.

    1997-01-01

    A fuel shuffling optimization procedure is proposed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, a 2 MWth swimming-pool type research reactor. In order to cope with the fluctuatory behaviour of objective functions in loading pattern optimization, the proposed cyclic permutation optimization procedure features a gradual transition from global to local search behaviour via the introduction of stochastic tests for the number of fuel assemblies involved in a cyclic permutation. The possible objectives and the safety and operation constraints, as well as the optimization procedure, are discussed, followed by some optimization results for the HOR. (author)

  9. Fuel shuffling optimization for the Delft research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Hoogenboom, J.E.; Gibcus, H.P.M. [Delft Univ. of Technology, Interfaculty Reactor Inst., Delft (Netherlands); Quist, A.J. [Delft Univ., Fac. of Applied Mathematics and Informatics, Delft (Netherlands)

    1997-07-01

    A fuel shuffling optimization procedure is proposed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, a 2 MWth swimming-pool type research reactor. In order to cope with the fluctuatory behaviour of objective functions in loading pattern optimization, the proposed cyclic permutation optimization procedure features a gradual transition from global to local search behaviour via the introduction of stochastic tests for the number of fuel assemblies involved in a cyclic permutation. The possible objectives and the safety and operation constraints, as well as the optimization procedure, are discussed, followed by some optimization results for the HOR. (author)

  10. Design and manufacture of mechanical forceps to pick up objects at the bottom of the pool reactor TRIGA MK II

    International Nuclear Information System (INIS)

    Kankunku, K.P.; Lukanda, M.V.

    2011-01-01

    This design helps us to pick up any objects felt in bottom of swimming pool, which is a radioactive area, due to the presence of spent nuclear fuel. Its great advantage is its sample designing and made with local material.

  11. Global results concerning the operation of the reactors at the Grenoble nuclear research centre

    International Nuclear Information System (INIS)

    Jacquemain, M.; Marouby, R.

    1964-01-01

    The Grenoble Nuclear Research Centre has 3 reactors of the open-core swimming-pool type: Melusine (2 MW) operating since 1959, Siloe (15 MW) operating since 1963, Siloette (100 kW) operating since 1964 The report describes the operating conditions of these reactors and the improvements which have been made to increase the flux in the irradiation rigs and to increase the safety and the regularity of operation. The advantages are also explained of having on the same site, close to one another, several reactors with wide ranges of flux. (authors) [fr

  12. The Good, the Bad, and the Volatile - Can We Have Both Healthy Pools and Healthy People?

    Science.gov (United States)

    Given the popularity of swimming for recreation and sport, it is remarkable that we are only in the early stages of understanding swimming pool chemistry, human exposure(s), and potential health risks. This is partly due to the complexity of swimming pool water chemistry, which i...

  13. Database of operation history for fuel elements in swimming pool research reactor 300

    International Nuclear Information System (INIS)

    Chen Wei; Jiang Yanwei

    2006-01-01

    It is to cooperate with the original data preparation of ORIGEN2 that the database of operation history in SPRR -300 is built with Microsoft Access. Only one table is used to record the history of the reactor after simplifications. Table of every assembly records only its load history, which will not exceed 20. Tables in the database are linked by the field of Load ID. It is confirmed that errors occurred during statistic and/or input can be classified into two kinds while inquiries are built for them to check errors automatically. Inquiry is also built for every assembly, while data of any assembly are collected from the table of total reactor history according to the given table of assembly load history. After those data are exported to pure text files, a program named Operation Data Processing Program is developed to treat them into operation history data needed by ORIGEN2 calculation. (authors)

  14. Safety features of TR-2 reactor

    International Nuclear Information System (INIS)

    Tuerker, T.

    2001-01-01

    TR-2 is a swimming pool type research reactor with 5 MW thermal power and uses standard MTR plate type fuel elements. Each standard fuel element consist of 23 fuel plates with a meat + cladding thickness of 0.127 cm, coolant channel clearance is 0.21 cm. Originally TR-2 is designed for %93 enriched U-Al. Alloy fuel meat.This work is based on the preparation of the Final Safety Analyses Report (FSAR) of the TR-2 reactor. The main aspect is to investigate the behaviour of TR-2 reactor under the accident and abnormal operating conditions, which cowers the accident spectrum unique for the TR-2 reactor. This presentation covers some selected transient analyses which are important for the safety aspects of the TR-2 reactor like reactivity induced startup accidents, pump coast down (Loss of Flow Accident, LOFA) and other accidents which are charecteristic to the TR-2

  15. Sodium pool fire analysis of sodium-cooled fast reactor by calculation

    International Nuclear Information System (INIS)

    Yu Hong; Xu Mi; Jin Degui

    2002-01-01

    Theoretical models were established according to the characteristic of sodium pool fire, and the SPOOL code was created independently. Some transient processes in sodium pool fire were modeled, including chemical reaction of sodium and oxygen; sodium combustion heat transfer modes in several kids of media; production, deposition and discharge of sodium aerosol; mass and energy exchange between different media in different ventilating conditions. The important characteristic parameters were calculated, such as pressure and temperature of gas, temperature of building materials, mass concentration of sodium aerosol, and so on. The SPOOL code, which provided available safety analysis tool for sodium pool fire accidents in sodium-cooled fast reactor, was well demonstrated with experimental data

  16. Safe new reactor for radionuclide production

    International Nuclear Information System (INIS)

    Gray, P.L.

    1995-01-01

    In late 1995, DOE is schedule to announce a new tritium production unit. Near the end of the last NPR (New Production Reactors) program, work was directed towards eliminating risks in current designs and reducing effects of accidents. In the Heavy Water Reactor Program at Savannah River, the coolant was changed from heavy to light water. An alternative, passively safe concept uses a heavy-water-filled, zircaloy reactor calandria near the bottom of a swimming pool; the calandria is supported on a light-water-coolant inlet plenum and has upflow through assemblies in the calandria tubes. The reactor concept eliminates or reduces significantly most design basis and severe accidents that plague other deigns. The proven, current SRS tritium cycle remains intact; production within the US of medical isotopes such as Mo-99 would also be possible

  17. Test of precoat filtration technology for treatment of swimming pool water.

    Science.gov (United States)

    Christensen, Morten Lykkegaard; Klausen, Morten Møller; Christensen, Peter Vittrup

    2018-02-01

    The technical performance of a precoat filter was compared with that of a traditional sand filter. Particle concentration and size distribution were measured before and after the filtration of swimming pool water. Both the sand and precoat filters could reduce the particle concentration in the effluent. However, higher particle removal efficiency was generally observed for the precoat filter, especially for particles smaller than 10 μm in diameter. Adding flocculant improved the removal efficiency of the sand filter, resulting in removal efficiencies comparable to those of the precoat filter. Three powders, i.e., two types of perlite (Harbolite ® and Aquatec perlite) and cellulose fibers (Arbocel ® ), were tested for the precoat filter, but no significant difference in particle removal efficiency was observed among them. The maximum efficiency was reached within 30-40 min of filtration. The energy required for the pumps increased by approximately 35% over a period of 14 days. The energy consumption could be reduced by replacing the powder on the filter cloth. The sand filter was backwashed once a week, while the powder on the precoat filter was replaced every two weeks. Under these conditions, it was possible to reduce the water used for cleaning by 88% if the precoat filter was used instead of the sand filter.

  18. Electromagnetic Interference from Swimming Pool Generator Current Causing Inappropriate ICD Discharges

    Directory of Open Access Journals (Sweden)

    Edward Samuel Roberto

    2017-01-01

    Full Text Available Electromagnetic interference (EMI includes any electromagnetic field signal that can be detected by device circuitry, with potentially serious consequences: incorrect sensing, pacing, device mode switching, and defibrillation. This is a unique case of extracardiac EMI by alternating current leakage from a submerged motor used to recycle chlorinated water, resulting in false rhythm detection and inappropriate ICD discharge. A 31-year-old female with arrhythmogenic right ventricular cardiomyopathy and Medtronic dual-chamber ICD placement presented after several inappropriate ICD shocks at the public swimming pool. Patient had never received prior shocks and device was appropriate at all regular follow-ups. Intracardiac electrograms revealed unique, high-frequency signals at exactly 120 msec suggestive of EMI from a strong external source of alternating current. Electrical artifact was incorrectly sensed as a ventricular arrhythmia which resulted in discharge. ICD parameters including sensing, pacing thresholds, and impedance were all normal suggesting against device malfunction. With device failure and intracardiac sources excluded, EMI was therefore strongly suspected. Avoidance of EMI source brought complete resolution with no further inappropriate shocks. After exclusion of intracardiac interference, device malfunction, and abnormal settings, extracardiac etiologies such as EMI must be thoughtfully considered and excluded. Elimination of inappropriate shocks is to “first, do no harm.”

  19. Design of make-up water system for Tehran research reactor spent nuclear fuels storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Aghoyeh, Reza Gholizadeh [Reactor Research Group, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), North Amirabad, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Khalafi, Hosein, E-mail: hkhalafi@aeoi.org.i [Reactor Research Group, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), North Amirabad, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2010-10-15

    Spent nuclear fuels storage (SNFS) is an essential auxiliary system in nuclear facility. Following discharge from a nuclear reactor, spent nuclear fuels have to be stored in water pool of SNFS away from reactor to allow for radioactive to decay and removal of generated heat. To prevent corrosion damage of fuels and other equipments, the storage pool is filled with de-ionized water which serves as moderator, coolant and shielding. The de-ionized water will be provided from make-up water system. In this paper, design of a make-up water system for optimal water supply and its chemical properties in SNFS pool is presented. The main concern of design is to provide proper make-up water throughout the storage time. For design of make-up water system, characteristics of activated carbon purifier, anionic, cationic and mixed-bed ion-exchangers have been determined. Inlet water to make-up system provide from Tehran municipal water system. Regulatory Guide 1.13 of the and graver company manual that manufactured the Tehran research reactor (TRR) make-up water system have been used for make-up water system of TRR spent nuclear fuels storage pool design.

  20. Design of make-up water system for Tehran research reactor spent nuclear fuels storage pool

    International Nuclear Information System (INIS)

    Aghoyeh, Reza Gholizadeh; Khalafi, Hosein

    2010-01-01

    Spent nuclear fuels storage (SNFS) is an essential auxiliary system in nuclear facility. Following discharge from a nuclear reactor, spent nuclear fuels have to be stored in water pool of SNFS away from reactor to allow for radioactive to decay and removal of generated heat. To prevent corrosion damage of fuels and other equipments, the storage pool is filled with de-ionized water which serves as moderator, coolant and shielding. The de-ionized water will be provided from make-up water system. In this paper, design of a make-up water system for optimal water supply and its chemical properties in SNFS pool is presented. The main concern of design is to provide proper make-up water throughout the storage time. For design of make-up water system, characteristics of activated carbon purifier, anionic, cationic and mixed-bed ion-exchangers have been determined. Inlet water to make-up system provide from Tehran municipal water system. Regulatory Guide 1.13 of the and graver company manual that manufactured the Tehran research reactor (TRR) make-up water system have been used for make-up water system of TRR spent nuclear fuels storage pool design.

  1. Statistical evaluation of potential damage to the Al(OH)3 layer on nTiO2 particles in the presence of swimming pool and seawater

    International Nuclear Information System (INIS)

    Virkutyte, Jurate; Al-Abed, Souhail R.

    2012-01-01

    Nanosized TiO 2 particles (nTiO 2 ) are usually coated with an Al(OH) 3 layer when used in sunscreen to shield against the harmful effects of free radicals that are generated when these particles are exposed to UV radiation. Therefore, it is vital to insure the structural stability of these particles in the environment where the protective layer may be damaged and adverse health and environmental effects can occur. This study utilized X-ray analysis (SEM–EDS) to provide a qualitative and semi-quantitative assessment of the chemical and physical characteristics of Al(OH) 3 -coated original and damaged nTiO 2 particles (used in sunscreen lotion formulations) in the presence of both swimming pool and seawater. Also, by utilizing statistical tools, a distribution of Al/Ti (%) on the particle surface was determined and evaluated. It was found that 45 min of treatment with swimming pool and seawater significantly induced the redistribution of Al/Ti (%), which changed the surface characteristics of particles and, therefore, may have induced undesired photo-activity and the consequent formation of free radicals.

  2. Swimming in a contained space: Understanding the experience of indoor lap swimmers.

    Science.gov (United States)

    Ward, Miranda

    2017-07-01

    Drawing on ethnographic work, this paper explores the convergence of bodies, materialities and practices found at the indoor swimming pool - a space that has not often been the subject of geographical study, in spite of the fact that swimming is one of the most popular forms of exercise in countries such as the UK. The paper focuses on the "contained" nature of the indoor pool environment, examining the distinct experience this can create for lap swimmers. This focus is placed in the context of a broader politics of exercise, with an emphasis on the popularity and potential benefits of swimming, as well as less encouraging facts about participation and facility provision, suggesting that in order to encourage further uptake of swimming and preservation of swimming facilities the voices and experiences of regular swimmers should be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Review on the seismic safety of JRR-3 according to the revised regulatory code on seismic design for nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tetsuya; Araki, Masaaki; Ohba, Toshinobu; Torii, Yoshiya [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Takeuchi, Masaki [Nuclear Safety Commission (Japan)

    2012-03-15

    JRR-3(Japan Research Reactor No.3) with the thermal power of 20MW is a light water moderated and cooled, swimming pool type research reactor. JRR-3 has been operated without major troubles. This paper presents about review on the seismic safety of JRR-3 according to the revised regulatory code on seismic design for nuclear reactors. In addition, some topics concerning damages in JRR-3 due to the Great East Japan Earthquake are presented. (author)

  4. Water inventory management in condenser pool of boiling water reactor

    International Nuclear Information System (INIS)

    Gluntz, D.M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs

  5. Application of JAERI research reactors to education

    International Nuclear Information System (INIS)

    Ogawa, Shigeru; Morozumi, Minoru

    1987-01-01

    At the dawning of the atomic age in Japan, training on reactor operation and reactor engineering experiments has been started in 1958 using JRR-1 (a 50 kW water boiler type reactor with liquid fuel), which was the first research reactor in Japan. The role of the training has been transferred to JRR-4 (a 3500 kW swimming pool type reactor with ETR type fuel) since 1969 due to the decommission of JRR-1. The training courses which have been held are: JRR-1 Short-Term Course for Operation (1958 ∼ 1963) General Course (1961 ∼ ) Reactor Engineering Course (1976 ∼ ) Training Course in Nuclear Technology (International course)(1986 ∼ ). And individual training concerning research reactors for the participants of scientist exchange program sponsored by Science and Technology Agency and of bilateral agreement have been initiated in 1985. The graduates of these courses work as staff members in various fields in nuclear industry. (author)

  6. Evaluation of filters in RSPCS (Reactor Service Pool Cooling System) and HWL (Hot Water Layer) in OPAL research reactor at ANSTO (Australian Nuclear Science and Technology Organization) using Gamma Spectrometry System and Liquid Scintillation Counter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jim In; Foy, Robin; Jung, Seong Moon; Park, Hyeon Suk; Ye, Sung Joon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Australian Nuclear Science and Technology Organization(ANSTO) has a research reactor, OPAL (Open Pool Australian Lightwater reactor) which is a state-of-art 20 MW reactor for various purposes. In OPAL reactor, there are many kinds of radionuclides produced from various reactions in pool water and those should be identified and quantified for the safe use of OPAL. To do that, it is essential to check the efficiency of filters which are able to remove the radioactive substance from the reactor pool water. There are two main water circuits in OPAL which are RSPCS (Reactor Service Pool Cooling System) and HWL (Hot Water Layer) water circuits. The reactor service pool is connected to the reactor pool via a transfer canal and provides a working area and storage space for the spent and other materials. Also, HWL is the upper part of the reactor pool water and it minimize radiation dose rates at the pool surface. We collected water samples from these circuits and measured the radioactivity by using Gamma Spectrometry System (GSS) and Liquid Scintillation Counter (LSC) to evaluate the filters. We could evaluate the efficiency of filters in RSPCS and HWL in OPAL research reactor. Through the measurements of radioactivity using GSS and LSC, we could conclude that there is likely to be no alpha emitter in water samples, and for beta and gamma activity, there are very big differences between inlet and outlet results, so every filter is working efficiently to remove the radioactive substance.

  7. Bakteri Legionella pneumophila Terdeteksi pada Air Kolam Renang di Kota Surabaya dengan Nested Polymerase Chain Reaction (LEGIONELLA PNEUMOPHILA BACTERIADETECTED IN SWIMMING POOL WATER OF SURABAYA BY USING NESTED POLYMERASE CHAIN REACTION

    Directory of Open Access Journals (Sweden)

    Eduardus Bimo Aksono

    2017-06-01

    Full Text Available Legionella pneumophila is a Gram-negative bacillus that causes nosocomial and community-acquired pneumonia. The aim of this research was to detect the presence of bacteria of L. pneumophila species in the swimming pools water of Surabaya city by using nested Polymerase Chain Reaction (PCR assay of a specific gene for L. pneumophila (mip gene. This study used purposive sampling method. A total of 10 water samples were collected from five swimming pools consisting of 200 mL water for each swimming pool. The results showed that of 10 samples tested by nested PCR, one sample was positive for L. pneumophila, and nine samples were negative. L. pneumophila were found in pool water samples with a higher temperature (>30ºC.Serogrouping analysis of positive sample that L. pneumophila bacteria detected in the water sample of swimming pool in Surabaya was L. pneumophila serogroup 9 (98% and serogroup 10 (98%. L. pneumophila detection of bacteria is expected to raise the awareness of physician and microbiologists about the transmission of L. pneumophila and will also be useful for controlling the agents. ABSTRAK Legionella pneumophila adalah bakteri Gram-negatif berbentuk batang yang dapat menyebabkan penyakit nosokomial dan pneumonia. Tujuan penelitian ini adalah untuk mendeteksi keberadaan bakteri L. pneumophila pada air kolam renang di Kota Surabaya dengan menggunakan nested Polymerase Chain Reaction (PCR berbasis gen spesifik L. pneumophila (mip gene. Penelitian ini menggunakan metode purposive sampling. Sebanyak sepuluh sampel diambil dari lima kolam renang. Sampel diambil sebanyak 200 mL dari air kolam renang di setiap lokasi. Hasil dari 10 sampel yang diuji menggunakan nested PCR, satu sampel menunjukkan hasil positif untuk L.pneumophila, dan sembilan sampel menunjukkan hasil negatif. Bakteri L. pneumophila ditemukan pada sampel air kolam dengan suhu yang lebih tinggi (>30ºC. Satu sampel positip tersebut ketika dilanjutkan terhadap analisis serogrup

  8. CFD aided analysis of a scaled down model of the Brazilian Multipurpose Reactor (RMB) pool

    International Nuclear Information System (INIS)

    Schweizer, Fernando L.A.; Lima, Claubia P.B.; Costa, Antonella L.; Veloso, Maria A.F.

    2013-01-01

    Research reactors are commonly built inside deep pools that provide radiological and thermal protection and easy access to its core. Reactors with thermal power in the order of MW usually use an auxiliary thermal-hydraulic circuit at the top of its pool to create a purified hot water layer (HWL). Thermal-hydraulic analysis of the flow configuration in the pool and HWL is paramount to insure radiological protection. A useful tool for these analyses is the application of CFD (Computational Fluid Dynamics). To obtain satisfactory results using CFD it is necessary the verification and validation of the CFD numerical model. Verification is divided in code and solution verifications. In the first one establishes the correctness of the CFD code implementation and in the former estimates the numerical accuracy of a particular calculation. Validation is performed through comparison of numerical and experimental results. This paper presents a dimensional analysis of the RMB (Brazilian Multipurpose Reactor) pool to determine a scaled down experimental installation able to aid in the HWL numerical investigation. Two CFD models were created one with the same dimensions and boundary conditions of the reactor prototype and the other with 1/10 proportion size and boundary conditions set to achieve the same inertial and buoyant forces proportions represented by Froude Number between the two models. Results comparing the HWL thickness show consistence between the prototype and the scaled down model behavior. (author)

  9. Radiological performance of hot water layer system in open pool type reactor

    Directory of Open Access Journals (Sweden)

    Amr Abdelhady

    2013-06-01

    Full Text Available The paper presents the calculated dose rate carried out by using MicroShield code to show the importance of hot water layer system (HWL in 22 MW open pool type reactor from the radiation protection safety point of view. The paper presents the dose rate profiles over the pool surface in normal and abnormal operations of HWL system. The results show that, in case of losing the hot water layer effect, the radiation dose rate profiles over the pool surface will increase from values lower than the worker permissible dose limits to values very higher than the permissible dose limits.

  10. Energy efficiency in swimming baths. Protecting climate - reduction of expenses; Energieeffizienz in Schwimmbaedern. Klima schuetzen - Kosten senken

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-15

    Today, swimming with the school class, in the club or with the family and friends is an important component of the socially and sportive life. Indoor and outdoor swimming pools are indispensable for fitness programs and sports. The contribution under consideration reports on measures necessary for a rational, economic and resource conserving application of energy in swimming pools in respect of a future-oriented and holistic energy concept.

  11. Dominant seismic sloshing mode in a pool-type reactor tank

    International Nuclear Information System (INIS)

    Ma, D.C.; Gvildys, J.; Chang, Y.W.

    1987-01-01

    Large-diameter LMR (Liquid Metal Reactor) tanks contain a large volume of sodium coolant and many in-tank components. A reactor tank of 70 ft. in diameter contains 5,000,000 of sodium coolant. Under seismic events, the sloshing wave may easily reach several feet. If sufficient free board is not provided to accommodate the wave height, several safety problems may occur such as damage to tank cover due to sloshing impact and thermal shocks due to hot sodium, etc. Therefore, the sloshing response should be properly considered in the reactor design. This paper presents the results of the sloshing analysis of a pool-type reactor tank with a diameter of 39 ft. The results of the fluid-structure interaction analysis are presented in a companion paper. Five sections are contained in this paper. The reactor system and mathematical model are described. The dominant sloshing mode and the calculated maximum wave heights are presented. The sloshing pressures and sloshing forces acting on the submerged components are described. The conclusions are given

  12. A building technical management system optimizes the energy recovery in a swimming pool-skating rink complex; Une GTB optimise la recuperation d'energie d'un complexe piscine-patinoire

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-04-01

    The municipal skating rink of La Roche-sur-Yon (France) is supplied by a direct expansion refrigerating system. The energy recovered from this system allows to heat the sport complex made of a 25 m swimming pool and of a ludic pool. A technical management system ensures the control and management of the overall technical equipments. The automation of the system has permitted to optimize the energy costs which have remained practically unchanged since 20 years, even after the extension of the main pool and the increase of the number of visitors. (J.S.)

  13. Remote maintenance in the building of the reactor of power plants

    International Nuclear Information System (INIS)

    Bonin, R.

    1984-01-01

    Examples describing the different operations requiring remote control for reactor maintenance are given. These operations include: refueling machines (for closure stud, vessel flange cleaning, screwing plug for channel head, swimming pool decontamination) in-service inspection machines (MIS, spider for eddy current testing of steam generator, television) and routine or accidental maintenance (leak detection in water boxes, maintenance spider, opening or closing primary manways, decontamination manipulators and various automatic control devices) [fr

  14. The evolution of doses in the IEA-R1 reactor environment and tendencies based on the current results

    International Nuclear Information System (INIS)

    Toyoda, Eduardo Yoshio

    2016-01-01

    The IPEN / CNEN-SP have a Nuclear Research Reactor-NRR named IEA-R1, in operation from 1957. It is an open swimming pool reactor using light water as shielding, moderator and as cooling, the volume of this pool is 273m 3 .Until 1995 the reactor operated daily at a power of 2,0 MW. From June of that year, after a few safety modifications the reactor began operating in continuous way from Monday to Wednesday without shutdown totalizing 64 hours per week and the power was increased to 4,5MW also. Because of these changes, continuous operation and increased power, workers' doses would tend to increase. In the past several studies were conducted seeking ways to reduce the workers' doses. A study was made on the possibility to introduce a shielding at the top of the reactor core with a hot water layer. Studies have shown that a major limitation for operating a reactor at high power comes from the gamma radiation emitted by the sodium-24. Other elements such as magnesium-27, aluminum-28, Argon-51, contribute considerably to the water activity of the pool. The introduction of a hot water layer on the swimming pool would form a layer of surface, stable and free of radioactive elements with a 1.5m to 2m thickness creates a shielding to radiation from radioactive elements dissolved in water. Optimization studies proved that the installation of the hot layer was not necessary for the regime and the current power reactor operation, because other procedures adopted were more effective. From this decision the Radiological Protection Reactor Team, set up a dose assessment program to ensure them remained in low values based on principles established in national and international standards. The purpose of this paper is to analyze the individual doses of OEI (Occupationally Exposed Individual), which will be checked increasing doses resulting from recent changes in reactor operation regime and suggested viable safety and protection options, in the first instance to reducing

  15. Computer codes used during upgrading activities at MINT TRIGA reactor

    International Nuclear Information System (INIS)

    Mohammad Suhaimi Kassim; Adnan Bokhari; Mohd Idris Taib

    1999-01-01

    MINT TRIGA Reactor is a 1-MW swimming pool nuclear research reactor commissioned in 1982. In 1993, a project was initiated to upgrade the thermal power to 2 MW. The IAEA assistance was sought to assist the various activities relevant to an upgrading exercise. For neutronics calculations, the IAEA has provided expert assistance to introduce the WIMS code, TRIGAP, and EXTERMINATOR2. For thermal-hydraulics calculations, PARET and RELAP5 were introduced. Shielding codes include ANISN and MERCURE. However, in the middle of 1997, MINT has decided to change the scope of the project to safety upgrading of the MINT Reactor. This paper describes some of the activities carried out during the upgrading process. (author)

  16. Refurbishment programme of the reactor and progress of work

    International Nuclear Information System (INIS)

    Astruc, J.M.

    1992-01-01

    During 20 years of operation, since its start-up the ILL there have been some problems, like ruptured heavy water collector, in the upper part of the reflector tank, replacement of all the beam tubes due to the evolution of the mechanical characteristics of the aluminium alloy under irradiation. Some days after regular shutdown for maintenance, an inspection of the internal elements of the reactor discovered cracks on the grids which ensure the regular flow of cooling water. The investigations showed that the cracks are due to a design fault, aggravated by the effects of mechanical fatigue on highly irradiated material. It was not possible to repair the cracked grid, and it had to be replaced. This involved the dismantling of the internals parts of the reactor tank. The reactor refurbishment programme was set up. It provides for the replacement of the reactor block, the coupling sleeves, the anti turbulence grids and the diffuser, and of the ancillary elements. The main items to be replaced are: the reactor block consisting of the reactor vessel and its cover, known as the 'upper structure'; the heavy water collectors; connecting sleeves between the reactor block and the flanges of the various beam tubes. These three items constitute the primary circuit in the swimming pool. It is also planned to replace some internal parts of the reactor tank, such as the beam-tubes, the grid and diffuser and the chimney. Some parts of the present reactor, which are not at the end of their life, would be reused, for instance the two cold sources, the safety rods, and some other pieces. The parts replaced would be cut up and packaged in accordance with current standards and disposed of. All items are in principle to be replaced by identical equipment. This concerns in particular performance, mechanical characteristics and the choice of materials. The replacement of the reactor block necessitates a complete dismantling of the equipment in the reactor block, and of the structures in

  17. Simulation of the Gamma Dose Rate in Loss of Pool Water Accident of the Second Egyptian Research Reactor ETRR-2

    International Nuclear Information System (INIS)

    Amin, E.; Saleh, H.; Ashoub, N.

    2000-01-01

    The Second Egyptian Research Reactor ETRR-2, is a pool type reactor, a sudden loss of pool water resulting of leaving the core region un-covered. The reactor core is surrounded by chimney chambers whose water is isolated from pool water. This accident would lead to significant external dose. A model is developed and is used to calculate the dose rates for key access and traffic plans from indirect line of sight of the core have a maximum dose rate. The model developed uses the discrete ordinate method as implemented in the code DOT 3.5

  18. Design of neutron radiography facility in pool for the reactor RA-10

    International Nuclear Information System (INIS)

    Peirone, M.; Coleff, A.; Sanchez, F.; Chiaraviglio, N.

    2013-01-01

    RA-10 project consists in the design and construction of a multipurpose reactor for multiple applications, including radioisotopes production, material testing and an in pool facility for neutron imaging. Neutron imaging is a powerful tool for studies of materials and offer several advantages among other attenuation-based techniques. In this study mechanical and neutronic requirements for the RA-10 in pool neutron imaging facility are described. The MCNP neutronic model and the mechanical design satisfying these requirements in a first engineering stage are described. (author)

  19. Exercise-training intervention studies in competitive swimming.

    Science.gov (United States)

    Aspenes, Stian Thoresen; Karlsen, Trine

    2012-06-01

    Competitive swimming has a long history and is currently one of the largest Olympic sports, with 16 pool events. Several aspects separate swimming from most other sports such as (i) the prone position; (ii) simultaneous use of arms and legs for propulsion; (iii) water immersion (i.e. hydrostatic pressure on thorax and controlled respiration); (iv) propulsive forces that are applied against a fluctuant element; and (v) minimal influence of equipment on performance. Competitive swimmers are suggested to have specific anthropometrical features compared with other athletes, but are nevertheless dependent on physiological adaptations to enhance their performance. Swimmers thus engage in large volumes of training in the pool and on dry land. Strength training of various forms is widely used, and the energetic systems are addressed by aerobic and anaerobic swimming training. The aim of the current review was to report results from controlled exercise training trials within competitive swimming. From a structured literature search we found 17 controlled intervention studies that covered strength or resistance training, assisted sprint swimming, arms-only training, leg-kick training, respiratory muscle training, training the energy delivery systems and combined interventions across the aforementioned categories. Nine of the included studies were randomized controlled trials. Among the included studies we found indications that heavy strength training on dry land (one to five repetitions maximum with pull-downs for three sets with maximal effort in the concentric phase) or sprint swimming with resistance towards propulsion (maximal pushing with the arms against fixed points or pulling a perforated bowl) may be efficient for enhanced performance, and may also possibly have positive effects on stroke mechanics. The largest effect size (ES) on swimming performance was found in 50 m freestyle after a dry-land strength training regimen of maximum six repetitions across three

  20. Physical principle and engineering features of the deep pool reactor for residential heating

    International Nuclear Information System (INIS)

    Shi Gong; Zhao Zhaoyi; Guo Jingren; Tian Jiafu

    1999-01-01

    The use of nuclear energy for low temperature heating is confronted with challenges of safety and economy. The deep pool reactor, a low temperature heating reactor based on novel design principles, has been studied in detail. Results show that it has excellent safety and economic features, and is very suitable for low temperature heating purposes. The whole heating system including the nuclear reactor will be a simple and easy engineering system with the characteristics of reliability, safety and economy because the system and all its devices are based on low temperature and ordinary pressure

  1. Activity of corrosion products in pool type reactors with ascending flow in the core

    International Nuclear Information System (INIS)

    Andrade e Silva, Graciete S. de; Queiroz Bogado Leite, Sergio de

    1995-01-01

    A model for the activity of corrosion products in the water of a pool type reactor with ascending flow is presented. The problem is described by a set of coupled differential equations relating the radioisotope concentrations in the core and pool circuits and taking into account two types of radioactive sources: i) those from radioactive species formed in the fuel cladding, control elements, reflector, etc, and afterwards released to the primary stream by corrosion (named reactor sources) and ii) those formed from non radioactive isotopes entering the primary stream by corrosion of the circuit components and being activated when passing through the core (named circuit sources). (author). 6 refs, 3 figs, 4 tabs

  2. Computational study of the mixed cooling effects on the in-vessel retention of a molten pool in a nuclear reactor

    International Nuclear Information System (INIS)

    Kim, Byung Seok; Sohn, Chang Hyun; Ahn, Kwang Il

    2004-01-01

    The retention of a molten pool vessel cooled by internal vessel reflooding and/or external vessel reactor cavity flooding has been considered as one of severe accident management strategies. The present numerical study investigates the effect of both internal and external vessel mixed cooling on an internally heated molten pool. The molten pool is confined in a hemispherical vessel with reference to the thermal behavior of the vessel wall. In this study, our numerical model used a scaled-down reactor vessel of a KSNP (Korea Standard Nuclear Power) reactor design of 1000 MWe (a pressurized water reactor with a large and dry containment). Well-known temperature-dependent boiling heat transfer curves are applied to the internal and external vessel cooling boundaries. Radiative heat transfer has been considered in the case of dry internal vessel boundary condition. Computational results show that the external cooling vessel boundary conditions have better effectiveness than internal vessel cooling in the retention of the melt pool vessel failure

  3. Study on the seismic response of reactor vessel of pool type LMFBR including fluid-structure interaction

    International Nuclear Information System (INIS)

    Tanimoto, K.; Ito, T.; Fujita, K.; Kurihara, C.; Sawada, Y.; Sakurai, A.

    1988-01-01

    The paper presents the seismic response of reactor vessel of pool type LMFBR with fluid-structure interaction. The reactor vessel has bottom support arrangement, the same core support system as Super-Phenix in France. Due to the bottom support arrangement, the level of core support is lower than that of the side support arrangement. So, in this reactor vessel, the displacement of the core top tends to increase because of the core's rocking. In this study, we investigated the vibration and seismic response characteristics of the reactor vessel. Therefore, the seismic experiments were carried out using one-eighth scale model and the seismic response including FSI and sloshing were investigated. From this study, the effect of liquid on the vibration characteristics and the seismic response characteristics of reactor vessel were clarified and sloshing characteristics were also clarified. It was confirmed that FEM analysis with FSI can reproduce the seismic behavior of the reactor vessel and is applicable to seismic design of the pool type LMFBR with bottom support arrangement. (author). 5 refs, 14 figs, 2 tabs

  4. SWIMMING CLASSES IN JUNIOR HIGH SCHOOL STUDENTS’ OPINION

    Directory of Open Access Journals (Sweden)

    Grzegorz Bielec

    2013-02-01

    Full Text Available The role of modern physical education is not only to develop motor abilities of the students, but most of all prevent them from epidemic youth diseases such as obesity or postural defects. Positive attitudes to swimming as a long-life physical activity, instilled in adolescence should be beneficial in adult life. The group of 130 boys and 116 girls of 7th grade junior high school (mean age 14.6 was asked in the survey to present their opinion of obligatory swimming lessons at school. Students of both sexes claimed that they liked swimming classes because they could improve their swimming skills (59% of answers and because of health-related character of water exercises (38%. 33% of students regarded swimming lessons as boring and monotonous, and 25% of them complained about poor pool conditions like chlorine smell, crowded lanes, too low temperature. Majority of the surveyed students saw practical role of swimming in saving others life.

  5. Current status and ageing management of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Nhi Dien [Nuclear Research Institute, Dalat (Viet Nam)

    2000-10-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500 kW swimming pool type reactor loaded with the Soviet WWR-M2 fuel elements, moderated and cooled by light water. It was reconstructed and upgraded from the former 250 kW TRIGA Mark-II reactor built in 1963. The first criticality of the renovated reactor was in November 1983 and it has been put in regular operation at nominal power since March 1984. The DNRR is operated mainly in continuous runs of 100 hrs every 4 weeks, for radioisotope production, neutron activation analyses and other research purposes. The remaining time is devoted to maintenance work and to short runs for reactor physics studies as well. From its first start-up to the end of 1998, it totaled about 20,000 hrs of operation at nominal power. After ten years of operation, reactor general inspection and refurbishment were implemented in the 1992-1996 period. In April 1994, refueling work was executed with adding of 11 fresh fuel elements to the reactor core. At present, the reactor has been working with 100-fuel element configuration. Corrosion study has been implemented by visual inspection of the reactor pool tank and some other inside components which remain unchanged from the previous TRIGA reactor. The inspections were carried out with the assistance of some experts from other countries. Some visual inspection results have been obtained and the nature of the electrochemical corrosion and related aspects were little by little identified. In this paper, the operation status of the Dalat reactor is presented, and some activities related to the ageing management of the reactor pool tank and its inside components are also discussed. (author)

  6. Current status and ageing management of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien

    2000-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500 kW swimming pool type reactor loaded with the Soviet WWR-M2 fuel elements, moderated and cooled by light water. It was reconstructed and upgraded from the former 250 kW TRIGA Mark-II reactor built in 1963. The first criticality of the renovated reactor was in November 1983 and it has been put in regular operation at nominal power since March 1984. The DNRR is operated mainly in continuous runs of 100 hrs every 4 weeks, for radioisotope production, neutron activation analyses and other research purposes. The remaining time is devoted to maintenance work and to short runs for reactor physics studies as well. From its first start-up to the end of 1998, it totaled about 20,000 hrs of operation at nominal power. After ten years of operation, reactor general inspection and refurbishment were implemented in the 1992-1996 period. In April 1994, refueling work was executed with adding of 11 fresh fuel elements to the reactor core. At present, the reactor has been working with 100-fuel element configuration. Corrosion study has been implemented by visual inspection of the reactor pool tank and some other inside components which remain unchanged from the previous TRIGA reactor. The inspections were carried out with the assistance of some experts from other countries. Some visual inspection results have been obtained and the nature of the electrochemical corrosion and related aspects were little by little identified. In this paper, the operation status of the Dalat reactor is presented, and some activities related to the ageing management of the reactor pool tank and its inside components are also discussed. (author)

  7. Simulated front crawl swimming performance related to critical speed and critical power

    NARCIS (Netherlands)

    Toussaint, H.M.; Wakayoshi, K.; Hollander, A.P.; Ogita, F.

    1998-01-01

    Purpose: Competitive pool swimming events range in distance from 50 to 1500 m. Given the difference in performance times (±23-1000 s), the contribution of the aerobic and anaerobic energy systems changes considerably with race distance. In training practice the regression line between swimming

  8. Feasibility analysis of the Primary Loop of Pool-Type Natural Circulating Nuclear Reactor Dedicated to Seawater Desalination

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woonho; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the feasibility of natural circulation was evaluated for the reference plant AHR400 (Advanced Heating Reactor 400MWth). AHR400 is a pool-type desalination-dedicated nuclear reactor. As a consequence, AHR400 has low operating pressure and temperature which provides large safety margin. Removal of the reactor coolant pump from the AHR400 will enforce integrity of the reactor vessel and passive safety feature. Therefore, the study also tried to find out optimized primary loop design to achieve total natural circulation of the coolant. Natural circulation capacity of the primary loop of the desalination dedicated nuclear reactor AHR400 was evaluated. It was concluded that to remove RCP from the AHR400 and operates the reactor only by natural circulation of the coolant is impossible. Decreased core power as half make removal of RCP possible with 15m central height difference between the core and IHXs. Furthermore, validation and modification of pressure loss coefficients by small-scaled natural circulation experiment at a pool-type reactor would provide more accurate results.

  9. Three-dimensional fluid-structure interaction dynamics of a pool-reactor in-tank component

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1979-01-01

    The safety evaluation of reactor-components often involves the analysis of various types of fluid/structural components interacting in three-dimensional space. For example, in the design of a pool-type reactor several vital in-tank components such as the primary pumps and the intermediate heat exchangers are contained within the primary tank. Typically, these components are suspended from the deck structure and largely submersed in the sodium pool. Because of this positioning these components are vulnerable to structural damage due to pressure wave propagation in the tank during a CDA. In order to assess the structural integrity of these components it is necessary to perform a dynamic analysis in three-dimensional space which accounts for the fluid-structure coupling. A model is developed which has many of the salient features of this fluid-structural component system

  10. Further evidence for conditioned taste aversion induced by forced swimming.

    Science.gov (United States)

    Masaki, Takahisa; Nakajima, Sadahiko

    2005-01-31

    A series of experiments with rats reported that aversion to a taste solution can be established by forced swimming in a water pool. Experiment 1 demonstrated that correlation of taste and swimming is a critical factor for this phenomenon, indicating associative (i.e., Pavlovian) nature of this learning. Experiment 2 showed that this learning obeys the Pavlovian law of strength, by displaying a positive relationship between the duration of water immersion in training and the taste aversion observed in subsequent testing. Experiment 3 revealed that swimming rather than being wet is the critical agent, because a water shower did not endow rats with taste aversion. Experiment 4 found that taste aversion was a positive function of water level of the pools in training (0, 12 or 32 cm). These results, taken together, suggest that energy expenditure caused by physical exercise might be involved in the development of taste aversion.

  11. Use of natural gas for swimming facilities: Energy savings and environmental compatibility

    International Nuclear Information System (INIS)

    Ciocca, B.

    1992-01-01

    In the last twenty years, natural gas consumption has greatly increased in the civil sector and this trend will be confirmed in the next decade which will have a considerable increase in the domestic Italian distribution and in national supply networks. Swimming centres, particularly those equipped with covered swimming-pools and therefore characterized by continuous operation during the year, have significant energy consumption, with the same volume, compared with other civil users. This is due not only to the particular operating characteristics of the swimming pool but, in most cases, to the little attention payed to running costs and thus to energy savings. Natural gas, as a versatile fuel of good quality, can offer a valid contribution to the limitation of the energy consumption of swimming centres, as well as, to the abatement of air pollution, in particular, if it is employed together with new technologies such as the cogeneration and gas fuelled heat pumps

  12. Control of reactor coolant flow path during reactor decay heat removal

    International Nuclear Information System (INIS)

    Hunsbedt, A.N.

    1988-01-01

    This patent describes a sodium cooled reactor of the type having a reactor hot pool, a slightly lower pressure reactor cold pool and a reactor vessel liner defining a reactor vessel liner flow gap separating the hot pool and the cold pool along the reactor vessel sidewalls and wherein the normal sodium circuit in the reactor includes main sodium reactor coolant pumps having a suction on the lower pressure sodium cold pool and an outlet to a reactor core; the reactor core for heating the sodium and discharging the sodium to the reactor hot pool; a heat exchanger for receiving sodium from the hot pool, and removing heat from the sodium and discharging the sodium to the lower pressure cold pool; the improvement across the reactor vessel liner comprising: a jet pump having a venturi installed across the reactor vessel liner, the jet pump having a lower inlet from the reactor vessel cold pool across the reactor vessel liner and an upper outlet to the reactor vessel hot pool

  13. Post shut-down decay heat removal from nuclear reactor core by natural convection loops in sodium pool

    Energy Technology Data Exchange (ETDEWEB)

    Rajamani, A. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Sundararajan, T., E-mail: tsundar@iitm.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Prasad, B.V.S.S.S. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Parthasarathy, U.; Velusamy, K. [Nuclear Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2016-05-15

    Highlights: • Transient simulations are performed for a worst case scenario of station black-out. • Inter-wrapper flow between various sub-assemblies reduces peak core temperature. • Various natural convection paths limits fuel clad temperatures below critical level. - Abstract: The 500 MWe Indian pool type Prototype Fast Breeder Reactor (PFBR) has a passive core cooling system, known as the Safety Grade Decay Heat Removal System (SGDHRS) which aids to remove decay heat after shut down phase. Immediately after reactor shut down the fission products in the core continue to generate heat due to beta decay which exponentially decreases with time. In the event of a complete station blackout, the coolant pump system may not be available and the safety grade decay heat removal system transports the decay heat from the core and dissipates it safely to the atmosphere. Apart from SGDHRS, various natural convection loops in the sodium pool carry the heat away from the core and deposit it temporarily in the sodium pool. The buoyancy driven flow through the small inter-wrapper gaps (known as inter-wrapper flow) between fuel subassemblies plays an important role in carrying the decay heat from the sub-assemblies to the hot sodium pool, immediately after reactor shut down. This paper presents the transient prediction of flow and temperature evolution in the reactor subassemblies and the sodium pool, coupled with the safety grade decay heat removal system. It is shown that with a properly sized decay heat exchanger based on liquid sodium and air chimney stacks, the post shutdown decay heat can be safely dissipated to atmospheric air passively.

  14. Efficient heating of a swimming pool. High-efficiency boiler and solar system at Blaubeuren; Effiziente Freibad-Beheizung. Brennwert-Solartechnik in Blaubeuren

    Energy Technology Data Exchange (ETDEWEB)

    Trobisch, Jens [Bosch Thermotechnik GmbH, Wernau (Germany)

    2009-07-01

    The ''Blautopf'' karst spring near Blaubeuren is a wonder of nature and widely known even across the borders of Baden-Wuerttemberg. Few visitors, however, are aware that just a few steps away, there is another tourist attraction, i.e. the town's new outdoor swimming pool. In May 2008, a modern gas-fuelled high-efficiency boiler combined with a solar system was installed to heat the shower water for about 60,000 visitors per year. Optimised control ensures energy savings of up to 75 percent. The first season was highly successful. (orig.)

  15. Corrosion of aluminium alloy test coupons in water of spent fuel storage pool at RA reactor

    International Nuclear Information System (INIS)

    Pesic, M.; Maksin, T.; Jordanov, G.; Dobrijevic, R.

    2004-12-01

    Study on corrosion of aluminium cladding, of the TVR-S type of enriched uranium spent fuel elements of the research reactor RA in the storage water pool is examined in the framework nr the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) 'Corrosion of Research Reactor Clad-Clad Spent Fuel in Water' since 2002. Standard racks with aluminium coupons are exposed to water in the spent fuel pools of the research reactor RA. After predetermined exposure times along with periodic monitoring of the water parameters, the coupons are examined according to the strategy and the protocol supplied by the IAEA. Description of the standard corrosion racks, experimental protocols, test procedures, water quality monitoring and compilation of results of visual examination of corrosion effects are present in this article. (author)

  16. Statistical evaluation of potential damage to the Al(OH){sub 3} layer on nTiO{sub 2} particles in the presence of swimming pool and seawater

    Energy Technology Data Exchange (ETDEWEB)

    Virkutyte, Jurate [Pegasus Technical Services, Inc (United States); Al-Abed, Souhail R., E-mail: al-abed.souhail@epa.gov [U.S. Environmental Protection Agency, National Risk Management Research Laboratory (United States)

    2012-03-15

    Nanosized TiO{sub 2} particles (nTiO{sub 2}) are usually coated with an Al(OH){sub 3} layer when used in sunscreen to shield against the harmful effects of free radicals that are generated when these particles are exposed to UV radiation. Therefore, it is vital to insure the structural stability of these particles in the environment where the protective layer may be damaged and adverse health and environmental effects can occur. This study utilized X-ray analysis (SEM-EDS) to provide a qualitative and semi-quantitative assessment of the chemical and physical characteristics of Al(OH){sub 3}-coated original and damaged nTiO{sub 2} particles (used in sunscreen lotion formulations) in the presence of both swimming pool and seawater. Also, by utilizing statistical tools, a distribution of Al/Ti (%) on the particle surface was determined and evaluated. It was found that 45 min of treatment with swimming pool and seawater significantly induced the redistribution of Al/Ti (%), which changed the surface characteristics of particles and, therefore, may have induced undesired photo-activity and the consequent formation of free radicals.

  17. Evaluation of an experiment modelling heat transfer from the melt pool for use in VVER 440/213 reactors

    International Nuclear Information System (INIS)

    Skop, J.

    2003-12-01

    The strategy of confining core melt within the reactor vessel is among promising strategies to mitigate severe accidents of VVER 440/213 reactors. This strategy consists in residual heat removal from the melt by external vessel cooling from the outside, using water from the flooded reactor downcomer. This approach can only be successful if the critical heat flux on the external vessel surface is not exceeded. This can be assessed based on the parameters of heat transfer from the core melt pool in the conditions of natural circulation within the pool. Those parameters are the subject of the report. A basic description of the terms and physical basis of the strategy of confining core melt inside the vessel is given in Chapter 2, which also briefly explains similarity theory, based on which the results obtained on experimental facilities, using simulation materials, can be related to the actual situation inside a real reactor. Chapter 3 presents an overview of experimental work addressing the characteristics of heat transfer from the core melt pool in natural circulation conditions and a description of the experimental facilities. An overview of the results emerging from the experiments and their evaluation with respect to their applicability to reactors in Czech nuclear power plants are given in Chapter 4

  18. Simulation of the gamma dose rate in a loss of pool water accident of the second Egyptian research reactor ET-RR-2

    International Nuclear Information System (INIS)

    Amin, E.; Saleh, H.G.; Ashoub, N.

    2002-01-01

    The second Egyptian research reactor ET-RR-2, is a pool type reactor. A sudden loss of pool water would leave the core region uncovered. The reactor core is surrounded by chimney chambers with water isolated from the pool water. This accident would lead to significant external doses. A model is developed and used to calculate the dose rates for key access-areas and traffic plans from indirect line of sight of the core which have a maximum dose rate. The model developed uses the discrete ordinate method as implemented in the code DOT3.5. (orig.) [de

  19. Swimming pools and shower rooms - sealing directly under the tiles avoids hygienically serious water accumulations. Schwimmbecken und Duschraeume - Abdichtung direkt unter den Fliesen vermeidet hygienisch bedenkliche Wasseransammlungen

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1990-12-14

    Swimming pool seals are to carry out according to the DIN 18195 part 7 in which sealing with strips and foils is required; at the bottom of the pool a sufficiently dimensioned protective coating under the tiles and in the wall area using the following construction from the outside to the inside: tiles, mortar, face brickwork of at least half brick thickness and behind it a 4 cm shell joint. Then as the next layer follows the seal with foils or sealing strips. The total construction facing the water is thus with a total layer thickness of about 10 cm permanently exposed to water with all the thus resulting consequences. (orig.).

  20. Modal analysis of pool door in water tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Soo; Jeong, Kyeong Hoon; Park, Chan Gook; Koo, In Soo [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    A pool door is installed at the chase of the pool gate by means of an overhead crane in the building of a research reactor. The principal function of the pool door, which is located between the reactor pool and service pool, is to separate the reactor pool from the service pool for the maintenance and/or the removal of the equipment either in the reactor pool or service pool. The pool door consists of stainless steel plates supported by structural steel frames and sealing components. The pool door is equipped with double inflatable gaskets. The configuration of the pool door is shown in Figure 1. The FEM analysis and theoretical calculation by the formula were performed to evaluate the natural frequency for the pool door in the water. The results from the two methods were compared.

  1. Performance Variation of Spent Resin in Mixed Bed From Water Purifying System of Xi'an Pulse Reactor

    International Nuclear Information System (INIS)

    Li Hua; Ma Yan; Xiao Yan; Liu Yueheng; Yang Yongqing

    2010-01-01

    Detailed physical and chemical characteristic analysis was performed on the spent cation and anion resins in the mixed bed from Xi'an Pulse Reactor water purifying system.The exchange performance variations of used resins and the contributions from different factors to the variation were discussed.Based on the obtained information of the impurities in the used resin, the contamination state of the water in the Xi'an Pulse Reactor water pool, the corrosion state of the structural material in the reactor was presented. The spent anion resin almost completely losses its exchange performance,while the remaining exchange capacity in the spent cation resin is still high.The radiation field from the reactor operation contributes little to the degradation of the performance of the resins. The exchange capacity loss of the spent anion resin is due to the exchange of its active groups into abundant carbonate and a certain amount of organics. The impurity amount in the anion and cation exchange resins is low,which suggests(that) the water in the Xi'an Pulse Reactor water pool is little contaminated. A certain extent of corrosion is occurred on the structural material in the swimming pool of the reactor. The results provide important referential data for the operational safety of the water purifying system of similar research reactor. (authors)

  2. Safe Swimming (A Minute of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2017-06-01

    Most outbreaks linked to pools and water playgrounds are caused by Cryptosporidium. This podcast discusses ways to keep you healthy and safe while swimming.  Created: 6/1/2017 by MMWR.   Date Released: 6/1/2017.

  3. The analysis of the RA reactor irradiated fuel cooling in the spent fuel pool; Analiza hladjenja ozracenog goriva u bazenu za odlaganje reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    Vrhovac, M; Afgan, N; Spasojevic, D; Jovic, V [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1985-07-01

    According to the RA reactor exploitation plan the great quantity of the irradiated spent fuel will be disposed in the reactor spent fuel pool after each reactor campaign which will including the present spent fuel inventory increase the residual power level in the pool and will soon cause the pool capacity shortage. To enable the analysis of the irradiated fuel cooling the pool and characteristic spent fuel canister temperature distribution at the residual power maximum was done. The results obtained under the various spent fuel cooling conditions in the pit indicate the normal spent fuel thermal load even in the most inconvenient cooling conditions. (author)

  4. The research reactor BER II at the Helmholtz-Center Berlin

    Energy Technology Data Exchange (ETDEWEB)

    Krohn, Herbert [Helmholtz-Zentrum Berlin (HZB), Berlin (Germany)

    2012-10-15

    For basic and application-oriented research assignments the Helmholtz-Center Berlin (Helmholtz Zentrum Berlin - HZB) runs a research reactor that operates as a source of neutron beams for a wide range of scientific investigations. At the end of the 1980{sup th} the BER II was completed renewed and fitted with new experimental facilities. The BER II is a light water cooled and moderated swimming pool type reactor to be operated at 10 MW thermal power. Six neutron guides deliver cold neutrons from the cold moderator cell to a neutron guide hall adjacent to the experiment hall. With its 24 experimental stations, experimenters at HZB have practically all neutron scattering or neutron radiography techniques at their disposal. (orig.)

  5. The research reactor BER II at the Helmholtz-Center Berlin

    International Nuclear Information System (INIS)

    Krohn, Herbert

    2012-01-01

    For basic and application-oriented research assignments the Helmholtz-Center Berlin (Helmholtz Zentrum Berlin - HZB) runs a research reactor that operates as a source of neutron beams for a wide range of scientific investigations. At the end of the 1980 th the BER II was completed renewed and fitted with new experimental facilities. The BER II is a light water cooled and moderated swimming pool type reactor to be operated at 10 MW thermal power. Six neutron guides deliver cold neutrons from the cold moderator cell to a neutron guide hall adjacent to the experiment hall. With its 24 experimental stations, experimenters at HZB have practically all neutron scattering or neutron radiography techniques at their disposal. (orig.)

  6. Is swimming during pregnancy a safe exercise?

    DEFF Research Database (Denmark)

    Juhl, Mette; Kogevinas, Manolis; Andersen, Per Kragh

    2010-01-01

    ,486 singleton pregnancies. Recruitment to The Danish National Birth Cohort took place 1996-2002. Using Cox, linear and logistic regression analyses, depending on the outcome, we compared swimmers with physically inactive pregnant women; to separate a possible swimming effect from an effect of exercise......BACKGROUND: Exercise in pregnancy is recommended in many countries, and swimming is considered by many to be an ideal activity for pregnant women. Disinfection by-products in swimming pool water may, however, be associated with adverse effects on various reproductive outcomes. We examined......, bicyclists were included as an additional comparison group. RESULTS: Risk estimates were similar for swimmers and bicyclists, including those who swam throughout pregnancy and those who swam more than 1.5 hours per week. Compared with nonexercisers, women who swam in early/mid-pregnancy had a slightly...

  7. Study on the Safety Classification Criteria of Mechanical Systems and Components for Open Pool-Type Research Reactors

    International Nuclear Information System (INIS)

    Belal, Al Momani; Jo, Jong Chull

    2013-01-01

    This paper describes a new compromised safety classification approach based on the comparative study of the different practices in safety classification of mechanical systems and components of open pool-type RRs, which have been adopted by several developed countries in the nuclear power area. It is hoped that the proposed safety classification criteria will be used to develop a harmonized consensus international standard. Different safety classification criteria for systems, structures, and components (SSCs) of nuclear reactors are used among the countries that export or import nuclear reactor technology, which may make the nuclear technology trade and exchange difficult. Thus, such various different approaches of safety classification need to be compromised to establish a global standard. This article proposes practicable optimized criteria for safety classification of SSCs for open pool-type research reactors (RRs)

  8. Study on the Safety Classification Criteria of Mechanical Systems and Components for Open Pool-Type Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belal, Al Momani [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jo, Jong Chull [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    This paper describes a new compromised safety classification approach based on the comparative study of the different practices in safety classification of mechanical systems and components of open pool-type RRs, which have been adopted by several developed countries in the nuclear power area. It is hoped that the proposed safety classification criteria will be used to develop a harmonized consensus international standard. Different safety classification criteria for systems, structures, and components (SSCs) of nuclear reactors are used among the countries that export or import nuclear reactor technology, which may make the nuclear technology trade and exchange difficult. Thus, such various different approaches of safety classification need to be compromised to establish a global standard. This article proposes practicable optimized criteria for safety classification of SSCs for open pool-type research reactors (RRs)

  9. Spectacular energy technology: Panorama-Sauna Holzweiler. KfW funds indoor swimming pools as 'process heat'; Energetisch spektakulaer: Panorama-Sauna Holzweiler. KfW foerdert Schwimmbaeder als 'Prozesswaerme'

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Rolf

    2008-11-15

    The ''Panorama-Sauna'' at Grafschaft is a big indoor swimming pool and Sauna centre in a rural region not far from Cologne and Koblenz. The charm of this spectacular solar project is in its minimalism. Conventional solar thermal power systems, in contrast, tend to be complex and prone to failure. (orig.)

  10. Study on irradiation conditions of producing 153Sm with natural abundance samarium target

    International Nuclear Information System (INIS)

    Du Jin; Jin Xiaohai; Bai Hongsheng; Liu Yuemin; Chen Daming; Wang Fan

    1998-01-01

    Irradiation conditions of natural abundance 152 Sm targets in different forms are studied in the heavy water reactor and the light water swimming pool reactor at the China Institute of Atomic Energy. The result shows that the specific activity of 153 Sm in liquid form target irradiated in the light water swimming pool reactor is two times greater than that in solid form target. The radionuclide purity of 153 Sm is more than 99%, which can meet the needs of clinical application

  11. Geothermal heat for Erding. 2. Energy and wellness, geothermal heating station and hot-water indoor swimming pool; Geowaerme fuer Erding 2. Energie und Wellness, Geothermieheizwerk und Thermalbad

    Energy Technology Data Exchange (ETDEWEB)

    Tenzer, H. (comp.); Bussmann, W.

    1999-07-01

    This 17:20 minute VHS-PAL video film describes the project 'Geothermal heat for Erding 2', i.e. the construction of the geothermal heating station and a modern hot-water indoor swimming pool. [German] Der vorliegende VHS-PAL-Videofilm beschreibt innerhalb von 17:20 Min. Lauflaenge das Projekt 'Geowaerme fuer Erding 2'. Gezeigt werden die Entstehungsphasen dieses Projektes bestehend aus einem Geothermieheizwerk und einem modernen Thermalbad. (AKF)

  12. Critical evaluation of oxygen-uptake assessment in swimming.

    Science.gov (United States)

    Sousa, Ana; Figueiredo, Pedro; Pendergast, David; Kjendlie, Per-Ludvik; Vilas-Boas, João P; Fernandes, Ricardo J

    2014-03-01

    Swimming has become an important area of sport science research since the 1970s, with the bioenergetic factors assuming a fundamental performance-influencing role. The purpose of this study was to conduct a critical evaluation of the literature concerning oxygen-uptake (VO2) assessment in swimming, by describing the equipment and methods used and emphasizing the recent works conducted in ecological conditions. Particularly in swimming, due to the inherent technical constraints imposed by swimming in a water environment, assessment of VO2max was not accomplished until the 1960s. Later, the development of automated portable measurement devices allowed VO2max to be assessed more easily, even in ecological swimming conditions, but few studies have been conducted in swimming-pool conditions with portable breath-by-breath telemetric systems. An inverse relationship exists between the velocity corresponding to VO2max and the time a swimmer can sustain it at this velocity. The energy cost of swimming varies according to its association with velocity variability. As, in the end, the supply of oxygen (whose limitation may be due to central-O2 delivery and transportation to the working muscles-or peripheral factors-O2 diffusion and utilization in the muscles) is one of the critical factors that determine swimming performance, VO2 kinetics and its maximal values are critical in understanding swimmers' behavior in competition and to develop efficient training programs.

  13. Roof loading and response following a HCDA in a pool-type reactor

    International Nuclear Information System (INIS)

    Lancefield, M.J.; Leigh, K.M.; Potter, R.; Staniforth, R.

    1979-01-01

    In a pool-type reactor the loading and response of the roof structure to a HCDA is important to safety analysis and design. The U.K. programme of experimental and theoretical work on this topic is described. Good progress in understanding and evaluating the complex processes has been made and this is illustrated by results from experimental and theoretical work. 5 refs

  14. Thermal hydraulics in the hot pool of Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Padmakumar, G.; Pandey, G.K.; Vaidyanathan, G.

    2009-01-01

    Sodium cooled Fast Breeder Test Reactor (FBTR) of 40 MWt/13 MWe capacity is in operation at Kalpakkam, near Chennai. Presently it is operating with a core of 10.5 MWt. Knowledge of temperatures and flow pattern in the hot pool of FBTR is essential to assess the thermal stresses in the hot pool. While theoretical analysis of the hot pool has been conducted by a three-dimensional code to access the temperature profile, it involves tuning due to complex geometry, thermal stresses and vibration. With this in view, an experimental model was fabricated in 1/4 scale using acrylic material and tests were conducted in water. Initially hydraulic studies were conducted with ambient water maintaining Froude number similarity. After that thermal studies were conducted using hot and cold water maintaining Richardson similitude. In both cases Euler similarity was also maintained. Studies were conducted simulating both low and full power operating conditions. This paper discusses the model simulation, similarity criteria, the various thermal hydraulic studies that were carried out, the results obtained and the comparison with the prototype measurements.

  15. Public Swimming Pools | Florida Department of Health

    Science.gov (United States)

    Illness Disease Reporting and Surveillance Bureau of Public Health Laboratories Environmental Health Air Air Monitoring Carbon Monoxide Indoor Air Quality Mold Radon Water Aquatic Toxins Beach Water Quality purification, testing, treatment, and disinfection procedures. To ensure that the pool technicians are

  16. Do swimming goggles limit microbial contamination of contact lenses?

    Science.gov (United States)

    Wu, Yvonne T; Tran, Jess; Truong, Michelle; Harmis, Najat; Zhu, Hua; Stapleton, Fiona

    2011-04-01

    Wearing goggles over contact lenses while swimming is often recommended by eye care professionals. Limited data are available to assess this recommendation. The purpose of this study was to examine whether wearing goggles while swimming limits bacterial colonization on contact lenses and whether the type of lens worn affects contamination rates. Twenty-three subjects underwent two swimming sessions at an ocean (salt water) pool (Maroubra beach Rock Pool, Sydney, Australia). Silicone hydrogel (Ciba Focus Night and Day) or hydrogel lenses (Ciba Focus Daily) were inserted into subjects' eyes before 30 min of swimming sessions, and subjects used modified goggles to mimic goggled and non-goggled conditions. At the end of each session, lenses were collected for microbial investigation. Viable bacterial colonies were classified as gram positive and gram negative and enumerated. The level of bacterial colonization on contact lenses between goggled and non-goggled conditions and between the two lens materials were compared. The range of colony forming units recovered from goggled lenses were 0 to 930 compared with 0 to 1210 on non-goggled lenses. The majority of subjects (16/23) had more microorganisms in the non-goggled condition than when wearing goggles (p = 0.03). Gram negative organisms were found in three non-goggled lenses. No significant difference was shown in the number of bacteria isolated from silicone hydrogel and hydrogel lenses (p > 0.6) irrespective of wearing goggles. Water samples had consistently higher numbers of bacterial counts than those adhered to the lenses; however, no association was found between the number of bacteria in the water sample and those found on the contact lenses. Consistently, fewer bacterial colonies were found on the goggled contact lens, thus suggesting goggles offer some protection against bacterial colonization of contact lenses while swimming. These data would support the recommendation encouraging lens wearers to use goggles

  17. Computational simulation of the natural circulation occurring in an experimental test section of a pool type research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Francisco R.T. do; Lima Junior, Carlos A.S.; Oliveira, Andre F.S. de; Affonso, Renato R.W.; Faccini, Jose L.H.; Moreira, Maria L., E-mail: rogerio.tdn@gmail.com, E-mail: souzalima_ca@ien.gov.br, E-mail: oliveira.afelipe@gmail.com, E-mail: raoniwa@yahoo.com.br, E-mail: faccini@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The present work presents a computational simulation of the natural circulation phenomenon developing in an experimental test section of a pool type research reactor. The test section has been designed using a reduced scale in height 1:4.7 in relation to a pool type 30 MW research reactor prototype. It comprises a cylindrical vessel, which is opened to atmosphere, and representing the reactor pool; a natural circulation pipe, a lower plenum, and a heater containing electrical resistors in rectangular plate format, which represents the fuel elements, with a chimney positioned on the top of the resistor assembly. In the computational simulation, it was used a commercial CFD software, without any turbulence model. Besides, in the presence of the natural circulation, a laminar flow has been assumed and the equations of the mass conservation, momentum and energy were solved by the finite element method. In addition, the results of the simulation are presented in terms of velocities and temperatures differences, respectively: at inlet and outlet of the heater and of the natural circulation pipe. (author)

  18. Computational simulation of the natural circulation occurring in an experimental test section of a pool type research reactor

    International Nuclear Information System (INIS)

    Nascimento, Francisco R.T. do; Lima Junior, Carlos A.S.; Oliveira, Andre F.S. de; Affonso, Renato R.W.; Faccini, Jose L.H.; Moreira, Maria L.

    2015-01-01

    The present work presents a computational simulation of the natural circulation phenomenon developing in an experimental test section of a pool type research reactor. The test section has been designed using a reduced scale in height 1:4.7 in relation to a pool type 30 MW research reactor prototype. It comprises a cylindrical vessel, which is opened to atmosphere, and representing the reactor pool; a natural circulation pipe, a lower plenum, and a heater containing electrical resistors in rectangular plate format, which represents the fuel elements, with a chimney positioned on the top of the resistor assembly. In the computational simulation, it was used a commercial CFD software, without any turbulence model. Besides, in the presence of the natural circulation, a laminar flow has been assumed and the equations of the mass conservation, momentum and energy were solved by the finite element method. In addition, the results of the simulation are presented in terms of velocities and temperatures differences, respectively: at inlet and outlet of the heater and of the natural circulation pipe. (author)

  19. Creatine supplementation and swim performance: a brief review.

    Science.gov (United States)

    Hopwood, Melissa J; Graham, Kenneth; Rooney, Kieron B

    2006-03-01

    Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle. Key PointsCreatine supplementation does not improve single sprint

  20. Environmental and personal determinants of the uptake of disinfection by-products during swimming

    NARCIS (Netherlands)

    Font-Ribera, Laia; Kogevinas, Manolis; Schmalz, Christina; Zwiener, Christian; Marco, Esther; Grimalt, Joan O; Liu, Jiaqi; Zhang, Xiangru; Mitch, William; Critelli, Rossana; Naccarati, Alessio; Heederik, Dick; Spithoven, Jack; Arjona, Lourdes; de Bont, Jeroen; Gracia-Lavedan, Esther; Villanueva, Cristina M

    BACKGROUND: Trihalomethanes (THMs) in exhaled breath and trichloroacetic acid (TCAA) in urine are internal dose biomarkers of exposure to disinfection by-products (DBPs) in swimming pools. OBJECTIVE: We assessed how these biomarkers reflect the levels of a battery of DBPs in pool water and

  1. Design and construction of an irradiation apparatus with controlled atmosphere and temperature for radiation damage evaluation of nuclear materials in the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Lucki, Georgi; Silva, Jose Eduardo Rosa da; Castanheira, Myrthes; Terremoto, Luis Antonio Albiac; Teodoro, Celso Antonio; Silva, Antonio Teixeira e; Damy, Margaret de Almeida

    2005-01-01

    A material irradiation apparatus CIMAT (Capsula de Irradiacao de Materiais) with controlled temperature and atmosphere is described. The device was specifically designed to perform experiments inside the core of the IEA-R1 swimming pool reactor and allows fast neutron (E=1 MeV) irradiations of multiple miniature metallic samples at temperature between 100 deg C and 500 deg C, in Argon or Helium atmosphere to inhibit corrosion. The aim of CIMAT is to make a comparative assessment of Radiation Embrittlement (RE) on the AS 508 cl.3 steel, of different origins (ELETROMETAL-Brazil and VITCOVICE-Chekia) used in Pressure Vessels (PV) of PWR, for fluence of 10 exp 19 nvt at 300 C, by means of mechanical post irradiation evaluation. Previous characterization of non-irradiated samples of these materials is presented. In situ electrical and magnetic measurements, at high temperatures, are foreseen to be made with this apparatus. Extensive temperature stability and leak-tightness tests performed in the reactor swimming pool have proven the CIMAT to be intrinsically safe and operational. (author)

  2. The radionuclides of primary coolant in HANARO and the recent activities performed to reduce the radioactivity or reactor pool water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [HANARO Research Reactor Centre, Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1998-10-01

    In HANARO reactor, there have been activities to identify the principal radionuclides and to quantify them under the normal operation. The purposes of such activities were to establish the measure by which we can reduce the radioactivity of the reactor pool water and detect, in early stage, the abnormal symptoms due to the leakage of radioactive materials from the irradiation sample or the damage of the nuclear fuel, etc. The typical radionuclides produced by the activation of reactor coolant are N{sup 16} and Ar{sup 41}. The radionuclides produced by the activation of the core structural material consist of Na{sup 24}, Mn{sup 56}, and W{sup 187}. Of the various radionuclides, governing the radiation level at the pool surface are Na{sup 24}, Ar{sup 41}, Mn{sup 58}, and W{sup 187}. By establishing the hot water layer system on the pool surface, we expected that the radionuclides such as Ar{sup 41} and Mn{sup 56} whose half-life are relatively short could be removed to a certain extent. Since the content of radioactivity of Na{sup 24} occupies about 60% of the total radioactivity, we assumed that the total radiation level would be greatly reduced if we could decrease the radiation level of Na{sup 24}. However the actual radiation level has not been reduced as much as we expected. Therefore, some experiments have been carried out to find the actual causes afterwards. What we learned through the experiments are that any disturbance in reactor pool water layer causes increase of the pool surface radiation level and even if we maintain the hot water layer well, reactor shutdown will be very much likely to happen once the hot water layer is disturbed. (author)

  3. Avoiding Swimming Sickness (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    Pools, water parks, and other recreational water venues are popular places to relax and stay cool, but they can be sources of serious illness. In this podcast, Ashley Andujar discusses ways to stay safe while going swimming this summer.

  4. Control of reactor coolant flow path during reactor decay heat removal

    Science.gov (United States)

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  5. Experimental study on size effect of siphon-breaking hole in the real-scaled reactor pool

    International Nuclear Information System (INIS)

    Kang, Soon Ho; Ahn, Ho Seon; Kim, Ji Min; Kim, Moo Hwan; Lee, Kwon Yeong; Seo, Kyoung Woo; Chi, Dae Young

    2012-01-01

    A rupture in the primary piping of a cooling system with a heat source or in a research reactor could lead to a loss-of-coolant accident (LOCA). However, if the water level of the reactor pool could be sustained and a reactor scram follows, the heat source could be cooled by natural convection, and significant accidents could be avoided. When a piping-system rupture accident occurs, the coolant starts to siphon out of the reactor pool until the pressure head between the inlet and outlet is removed or the siphon flow is interrupted. Therefore, a siphon-breaker mechanism can be adopted as a passive safety device to maintain the reactor water level. The gas entrainment is used to block the continuous loss of coolant by interrupting the siphon flow. Siphon breaking is complicated due to the transient, turbulent, two-phase flow mode, so suitable models or correlations that describe this phenomenon do not exist, and no general analysis been developed. Previous researchers have conducted experiments and numerical simulations to design a siphon breaker to meet their needs. Previous research on siphon breaking has not been conducted systemically, and no literature exists, even though the topic is greatly concerned with hydraulic safety. In this study, siphon-breaking holes were used as siphon breakers, and their performance was evaluated by the residual water quantity. Flow visualization was conducted to interpret the siphon-breaking phenomenon

  6. Demolition of the FRJ-1 research reactor (MERLIN)

    International Nuclear Information System (INIS)

    Stahn, B.; Matela, K.; Zehbe, C.; Poeppinghaus, J.; Cremer, J.

    2003-01-01

    FRJ-2 (MERLIN), the swimming pool reactor cooled and moderated by light water, was built at the then Juelich Nuclear Research Establishment (KFA) between 1958 and 1962. In the period between 1964 and 1985, it was used for. The reactor was decommissioned in 1985. Since 1996, most of the demolition work has been carried out under the leadership of a project team. The complete secondary cooling system was removed by late 1998. After the cooling loops and experimental installations had been taken out, the reactor vessel internals were removed in 2000 after the water had been drained from the reactor vessel. After the competent authority had granted a license, demolition of the reactor block, the central part of the research reactor, was begun in October 2001. In a first step, the reactor operating floor and the reactor attachment structures were removed by the GNS/SNT consortium charged with overall planning and execution of the job. This phase gave rise to approx. The reactor block proper is dismantled in a number of steps. A variety of proven cutting techniques are used for this purpose. Demolition of the reactor block is to be completed in the first half of 2003. (orig.) [de

  7. Environmental and personal determinants of the uptake of disinfection by-products during swimming.

    Science.gov (United States)

    Font-Ribera, Laia; Kogevinas, Manolis; Schmalz, Christina; Zwiener, Christian; Marco, Esther; Grimalt, Joan O; Liu, Jiaqi; Zhang, Xiangru; Mitch, William; Critelli, Rossana; Naccarati, Alessio; Heederik, Dick; Spithoven, Jack; Arjona, Lourdes; de Bont, Jeroen; Gracia-Lavedan, Esther; Villanueva, Cristina M

    2016-08-01

    Trihalomethanes (THMs) in exhaled breath and trichloroacetic acid (TCAA) in urine are internal dose biomarkers of exposure to disinfection by-products (DBPs) in swimming pools. We assessed how these biomarkers reflect the levels of a battery of DBPs in pool water and trichloramine in air, and evaluated personal determinants. A total of 116 adults swam during 40min in a chlorinated indoor pool. We measured chloroform, bromodichloromethane, dibromochloromethane and bromoform in exhaled breath and TCAA in urine before and after swimming, trichloramine in air and several DBPs in water. Personal determinants included sex, age, body mass index (BMI), distance swum, energy expenditure, heart rate and 12 polymorphisms in GSTT1, GSTZ1 and CYP2E1 genes. Median level of exhaled total THMs and creatinine adjusted urine TCAA increased from 0.5 to 14.4µg/m(3) and from 2.5 to 5.8µmol/mol after swimming, respectively. The increase in exhaled brominated THMs was correlated with brominated THMs, haloacetic acids, haloacetonitriles, haloketones, chloramines, total organic carbon and total organic halogen in water and trichloramine in air. Such correlations were not detected for exhaled chloroform, total THMs or urine TCAA. Exhaled THM increased more in men, urine TCAA increased more in women, and both were affected by exercise intensity. Genetic variants were associated with differential increases in exposure biomarkers. Our findings suggest that, although affected by sex, physical activity and polymorphisms in key metabolizing enzymes, brominated THMs in exhaled breath could be used as a non-invasive DBP exposure biomarker in swimming pools with bromide-containing source waters. This warrants confirmation with new studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Data acquisition and processing system for reactor noise analysis

    International Nuclear Information System (INIS)

    Costa Oliveira, J.; Morais Da Veiga, C.; Forjaz Trigueiros, D.; Pombo Duarte, J.

    1975-01-01

    A data acquisition and processing system for reactor noise analysis by time correlation methods is described, consisting in one to four data feeding channels (transducer, associated electronics and V/f converter), a sampling unit, a landline transmission system and a PDP 15 computer. This system is being applied to study the kinetic parameters of the 'Reactor Portugues de Investigacao', a swimming-pool 1MW reactor. The main features that make such a data acquisition and processing system a useful tool to perform noise analysis are: the improved characteristics of analog-to-digital converters employed to quantize the signals; the use of an on-line computer which allows a great accumulation and a rapid treatment of data together with an easy check of the correctness of the experiments; and the adoption of the time cross-correlation technique using two-detectors which by-pass the limitation of low efficiency detectors. (author)

  9. Design study of an IHX support structure for a POOL-TYPE Sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2009-01-01

    The IHX (Intermediate Heat eXchanger) for a pool-type SFR (Sodium-cooled Fast Reactor) system transfers heat from the primary high temperature sodium to the intermediate cold temperature sodium. The upper structure of the IHX is a coaxial structure designed to form a flow path for both the secondary high temperature and low temperature sodium. The coaxial structure of the IHX consists of a central downcomer and riser for the incoming and outgoing intermediate sodium, respectively. The IHX of a pool-type SFR is supported at the upper surface of the reactor head with an IHX support structure that connects the IHX riser cylinder to the reactor head. The reactor head is generally maintained at the low temperature regime, but the riser cylinder is exposed in the elevated temperature region. The resultant complicated temperature distribution of the co-axial structure including the IHX support structure may induce a severe thermal stress distribution. In this study, the structural feasibility of the current upper support structure concept is investigated through a preliminary stress analysis and an alternative design concept to accommodate the IHTS (Intermediate Heat Transport System) piping expansion loads and severe thermal stress is proposed. Through the structural analysis it is found that the alternative design concept is effective in reducing the thermal stress and acquiring structural integrity

  10. Predictors of Swimming Ability among Children and Adolescents in the United States

    Directory of Open Access Journals (Sweden)

    Jennifer Pharr

    2018-02-01

    Full Text Available Swimming is an important source of physical activity and a life skill to prevent drowning. However, little research has been conducted to understand predictors of swimming ability. The purpose of this study was to understand factors that predict swimming ability among children and adolescents in the United States (US. This was a cross-sectional survey conducted between February and April of 2017 across five geographically diverse cities. Participants were accessed through the Young Christian Men’s Association (YMCA and included parents of children aged 4–11 years old and adolescents aged 12–17 years old. Independent t-test, analysis of variance (ANOVA, and univariate and multivariate analyses were conducted. Several factors were significant (p ≤ 0.05 predictors of swimming ability and explained 53% of the variance in swimming ability. Variables that were positively associated with swimming ability included: ability of parent(s to swim, child/adolescent age, a best friend who enjoys swimming, water-safety knowledge, pool open all year, and encouragement to swim from parent(s. Variables that were negatively associated with swimming ability included: fear of drowning, being African American, and being female. Interventions and programs to improve the swimming ability of children and adolescents could be developed with these predictors in mind.

  11. CREATINE SUPPLEMENTATION AND SWIM PERFORMANCE: A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Melissa J. Hopwood

    2006-03-01

    Full Text Available Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle

  12. Thai research reactor

    International Nuclear Information System (INIS)

    Aramrattana, M.

    1987-01-01

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  13. Fast flux measurements by means of threshold detectors on the reactor 'Melusine'

    International Nuclear Information System (INIS)

    Leger, P.; Sautiez, B.

    1959-01-01

    Using existing data on the (n,p) and (n,α) threshold reactions we have carried out fast flux measurements on the swimming pool type reactor 'Melusine'. Four common elements: P, S, Mg, Al were chosen because from the point of view of fast spectrum analysis they represent a fairly good energy range from 2.4 MeV to 8 MeV. The fission flux value found in the central element at a power of 1 MW is 1.4 x 10 13 n/cm 2 /s ± 0.14. (author) [fr

  14. The Effect of Concurrent Visual Feedback on Controlling Swimming Speed

    Directory of Open Access Journals (Sweden)

    Szczepan Stefan

    2016-03-01

    Full Text Available Introduction. Developing the ability to control the speed of swimming is an important part of swimming training. Maintaining a defined constant speed makes it possible for the athlete to swim economically at a low physiological cost. The aim of this study was to determine the effect of concurrent visual feedback transmitted by the Leader device on the control of swimming speed in a single exercise test. Material and methods. The study involved a group of expert swimmers (n = 20. Prior to the experiment, the race time for the 100 m distance was determined for each of the participants. In the experiment, the participants swam the distance of 100 m without feedback and with visual feedback. In both variants, the task of the participants was to swim the test distance in a time as close as possible to the time designated prior to the experiment. In the first version of the experiment (without feedback, the participants swam the test distance without receiving real-time feedback on their swimming speed. In the second version (with visual feedback, the participants followed a beam of light moving across the bottom of the swimming pool, generated by the Leader device. Results. During swimming with visual feedback, the 100 m race time was significantly closer to the time designated. The difference between the pre-determined time and the time obtained was significantly statistically lower during swimming with visual feedback (p = 0.00002. Conclusions. Concurrently transmitting visual feedback to athletes improves their control of swimming speed. The Leader device has proven useful in controlling swimming speed.

  15. Analysis of a total loss of pool water accident in MTR-type research reactors

    International Nuclear Information System (INIS)

    Yilmazer, A.; Yavuz, H.

    2004-01-01

    In this study, the transient in which the pool water is lost throughout one or more of the main coolant pipes which are supposed to be broken guillotine-like is investigated for the TR-2 research reactor in Istanbul. The applicability of the methods used for other similar types of research reactors is shown. Decrease of the pool water level until the top of the core, and from the top to the bottom of the core are examined as two successive phases of the accident. Finite difference scheme and integral methods are employed to solve energy equations and the results of both methods are compared. The finite difference solution uses an explicit form for the analysis of the first phase, and a moving boundary approach for the second phase. The integral method is based on the assumption that the temperatures appearing in the energy equations have the same profiles during the transient as the steady state ones. Analyses are done both for nominal and hot channel, and the results of both methods are observed to be in agreement. (orig.)

  16. Analysis of a total loss of pool water accident in MTR-type research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yilmazer, A. [Hacettepe University, Ankara (Turkey). Nuclear Engineering Department; Yavuz, H. [Istanbul Technical University (Turkey). Energy Institute

    2004-08-01

    In this study, the transient in which the pool water is lost throughout one or more of the main coolant pipes which are supposed to be broken guillotine-like is investigated for the TR-2 research reactor in Istanbul. The applicability of the methods used for other similar types of research reactors is shown. Decrease of the pool water level until the top of the core, and from the top to the bottom of the core are examined as two successive phases of the accident. Finite difference scheme and integral methods are employed to solve energy equations and the results of both methods are compared. The finite difference solution uses an explicit form for the analysis of the first phase, and a moving boundary approach for the second phase. The integral method is based on the assumption that the temperatures appearing in the energy equations have the same profiles during the transient as the steady state ones. Analyses are done both for nominal and hot channel, and the results of both methods are observed to be in agreement. (orig.)

  17. Trace element analysis at the Livermore pool-type reactor using neutron activation techniques

    International Nuclear Information System (INIS)

    Ragaini, R.C.; Ralston, R.; Garvis, D.

    1975-01-01

    The capabilities of trace element analysis at the Livermore Pool-Type Reactor (LPTR) using instrumental neutron activation analysis (INAA) are discussed. A description is given of the technology and the methods employed, including sample preparation, irradiation, and analysis. Applications of the INAA technique in past and current projects are described. A computer program, GAMANAL, has been used for nuclide identification and quantification. (U.S.)

  18. Methods for measurement of energy expenditure and substrate concentrations in swimming rats.

    Science.gov (United States)

    Benthem, L; Bolhuis, J W; van der Leest, J; Steffens, A B; Zock, J P; Zijlstra, W G

    1994-07-01

    A measuring system is described for the determination of oxygen consumption (Vo2) and carbon dioxide production (Vco2) in swimming rats. Vo2 and Vco2 were measured by means of an O2-analyzer (Ametek S3A) and a mass spectrometer (Balzers QMG 511), respectively, combined with a gas flow meter. The measurements were made in a 5-1 metabolic chamber on top of a swimming pool in which a water flow of 0.22 m/s was maintained. The rats were fitted with an indwelling catheter with its tip at the entrance of the right atrium for the repeated determination of energy substrate and hormone concentrations, before, during, and after swimming. The inaccuracy of the Vo2 and Vco2 measurements was 0.18% and 0.31% of the reading, respectively; the imprecision was 2.15% and 2.59%. This high accuracy and precision of the system was attained by measuring room air for 20 s after each 100 s of measuring air from the metabolic chamber, and by using demineralized water in the swimming pool. Vo2 during steady-state swimming was 1.89 +/- 0.06 mmol/kg.min (ca. 60% Vo2max), indicating moderate exercise. Respiratory quotient (RQ), during steady-state exercise, was 0.80 +/- 0.01. Vo2 and RQ resulted in rates for carbohydrate and fat utilization of 15.6 +/- 0.8 and 15.1 +/- 0.7 mg/kg.min, respectively.

  19. Consequences in a long time of the forced loss of coolant in a pool type reactor

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1986-01-01

    The fuel and pool water temperatures are calculated as a function of time using unidimensional models of heat conduction and momentum conservation, to simulate the natural convection flow of the coolant. The reactor building pressure due to the pool water evaporation is calculated using a homogeneous model with thermal equilibrium. The heat loss from the three main components of the building volume (liquid water, air, and steam) to solid surfaces such as the building walls are taking into account. (Author) [pt

  20. The evolution of doses in the IEA-R1 reactor environment and tendencies based on the current results; Evolucao das doses no ambiente do Reator IEA-R1 e tendencias com base nos resultados atuais

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Eduardo Yoshio

    2016-11-01

    The IPEN / CNEN-SP have a Nuclear Research Reactor-NRR named IEA-R1, in operation from 1957. It is an open swimming pool reactor using light water as shielding, moderator and as cooling, the volume of this pool is 273m{sup 3}.Until 1995 the reactor operated daily at a power of 2,0 MW. From June of that year, after a few safety modifications the reactor began operating in continuous way from Monday to Wednesday without shutdown totalizing 64 hours per week and the power was increased to 4,5MW also. Because of these changes, continuous operation and increased power, workers' doses would tend to increase. In the past several studies were conducted seeking ways to reduce the workers' doses. A study was made on the possibility to introduce a shielding at the top of the reactor core with a hot water layer. Studies have shown that a major limitation for operating a reactor at high power comes from the gamma radiation emitted by the sodium-24. Other elements such as magnesium-27, aluminum-28, Argon-51, contribute considerably to the water activity of the pool. The introduction of a hot water layer on the swimming pool would form a layer of surface, stable and free of radioactive elements with a 1.5m to 2m thickness creates a shielding to radiation from radioactive elements dissolved in water. Optimization studies proved that the installation of the hot layer was not necessary for the regime and the current power reactor operation, because other procedures adopted were more effective. From this decision the Radiological Protection Reactor Team, set up a dose assessment program to ensure them remained in low values based on principles established in national and international standards. The purpose of this paper is to analyze the individual doses of OEI (Occupationally Exposed Individual), which will be checked increasing doses resulting from recent changes in reactor operation regime and suggested viable safety and protection options, in the first instance to

  1. The solar heating system of the sport centre 'Guillamo Swimming Pool' in Sierre, Switzerland; Installation solaire thermique. Complexe sportif de la piscine de Guillamo - Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This illustrated report for the Swiss Federal Office of Energy describes the refurbishment and the extension of the sport centre 'Guillamo Swimming Pool' in Sierre, Switzerland. The original building built in 1978 included three swimming pools (two indoor and one small outdoor). In 2005 a three-room fitness centre, a wellness centre and a bar were added to the compound and the old building and technical installations refurbished. At the same time a 591 m{sup 2} solar collector array was added. Unglazed selective solar absorbers were mounted on the 5{sup o} tilted flat roof. They insure at the same time the water tightness of the roof, a feature that lead to a significant cost reduction of the project. Before 2005 the natural gas consumption of the centre was 1.3 to 1.7 GWh/year. After the construction work the consumption was about 1.6 GWh, including a contribution of 0.06 GWh from the solar collectors. This last figure is disappointing. The reasons for this are mainly attributed by the authors to a very poor integration of the solar collectors into the conventional heat generation and distribution system, which do not enable the solar collectors to deliver the heat quantity they should. Changes should be made on the hydraulics of the whole system and on the control algorithms and settings.

  2. Effect of swimming suit design on the energy demands of swimming.

    Science.gov (United States)

    Starling, R D; Costill, D L; Trappe, T A; Jozsi, A C; Trappe, S W; Goodpaster, B H

    1995-07-01

    Eight competitive male swimmers completed a standardized 365.8 m (400 yd) freestyle swimming trial at a fixed pace (approximately 90% of maximal effort) while wearing a torso swim suit (TOR) or a standard racing suit (STD). Oxygen uptake (VO2), blood lactate, heart rate (HR), and distance per stroke (DPS) measurements were obtained. In addition, a video-computer system was used to collect velocity data during a prone underwater glide following a maximal leg push-off from the side of the pool while wearing the TOR and STD suits. These data were used to calculate the total distance covered during the glides. VO2 (3.76 +/- 0.16 vs 3.92 +/- 0.18 l.min-1) and lactate (8.08 +/- 0.53 vs, 9.66 +/- 0.66 mM) were significantly (P 0.05) between the TOR (170.1 +/- 5.1 b.min-1) and STD (173.5 +/- 5.7 b.min-1) trials. DPS was significantly greater during the TOR (2.70 +/- 0.066 m.stroke-1) versus STD (2.58 +/- 0.054 m.stroke-1) trial. A significantly greater total distance was covered during the prone glide while wearing the TOR (2.05 +/- 0.067 m) compared to the STD (2.00 +/- 0.080 m) suit. These findings demonstrate that a specially designed torso suit reduces the energy demand of swimming compared to a standard racing suit which may be due to a reduction in body drag.

  3. Reactor building

    International Nuclear Information System (INIS)

    Maruyama, Toru; Murata, Ritsuko.

    1996-01-01

    In the present invention, a spent fuel storage pool of a BWR type reactor is formed at an upper portion and enlarged in the size to effectively utilize the space of the building. Namely, a reactor chamber enhouses reactor facilities including a reactor pressure vessel and a reactor container, and further, a spent fuel storage pool is formed thereabove. A second spent fuel storage pool is formed above the auxiliary reactor chamber at the periphery of the reactor chamber. The spent fuel storage pool and the second spent fuel storage pool are disposed in adjacent with each other. A wall between both of them is formed vertically movable. With such a constitution, the storage amount for spent fuels is increased thereby enabling to store the entire spent fuels generated during operation period of the plant. Further, since requirement of the storage for the spent fuels is increased stepwisely during periodical exchange operation, it can be used for other usage during the period when the enlarged portion is not used. (I.S.)

  4. Pacing in Swimming: A Systematic Review.

    Science.gov (United States)

    McGibbon, Katie E; Pyne, D B; Shephard, M E; Thompson, K G

    2018-03-20

    Pacing strategy, or how energy is distributed during exercise, can substantially impact athletic performance and is considered crucial for optimal performance in many sports. This is particularly true in swimming given the highly resistive properties of water and low mechanical efficiency of the swimming action. The aim of this systematic review was to determine the pacing strategies utilised by competitive swimmers in competition and their reproducibility, and to examine the impact of different pacing strategies on kinematic, metabolic and performance variables. This will provide valuable and practical information to coaches and sports science practitioners. The databases Web of Science, Scopus, SPORTDiscus and PubMed were searched for published articles up to 1 August 2017. A total of 23 studies examining pool-based swimming competitions or experimental trials in English-language and peer-reviewed journals were included in this review. In short- and middle-distance swimming events maintenance of swimming velocity is critical, whereas in long-distance events a low lap-to-lap variability and the ability to produce an end spurt in the final lap(s) are key. The most effective strategy in the individual medley (IM) is to conserve energy during the butterfly leg to optimise performance in subsequent legs. The pacing profiles of senior swimmers remain relatively stable irrespective of opponents, competition stage or type, and performance time. Implementing event-specific pacing strategies should benefit the performance of competitive swimmers. Given differences between swimmers, there is a need for greater individualisation when considering pacing strategy selection across distances and strokes.

  5. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration.

    Science.gov (United States)

    Yang, Linyan; She, Qianhong; Wan, Man Pun; Wang, Rong; Chang, Victor W-C; Tang, Chuyang Y

    2017-06-01

    Recent studies report high concentrations of haloacetic acids (HAAs), a prevalent class of toxic disinfection by-products, in swimming pool water (SPW). We investigated the removal of 9 HAAs by four commercial reverse osmosis (RO) and nanofiltration (NF) membranes. Under typical SPW conditions (pH 7.5 and 50 mM ionic strength), HAA rejections were >60% for NF270 with molecular weight cut-off (MWCO) equal to 266 Da and equal or higher than 90% for XLE, NF90 and SB50 with MWCOs of 96, 118 and 152 Da, respectively, as a result of the combined effects of size exclusion and charge repulsion. We further included 7 neutral hydrophilic surrogates as molecular probes to resolve the rejection mechanisms. In the absence of strong electrostatic interaction (e.g., pH 3.5), the rejection data of HAAs and surrogates by various membranes fall onto an identical size-exclusion (SE) curve when plotted against the relative-size parameter, i.e., the ratio of molecular radius over membrane pore radius. The independence of this SE curve on molecular structures and membrane properties reveals that the relative-size parameter is a more fundamental SE descriptor compared to molecular weight. An effective molecular size with the Stokes radius accounting for size exclusion and the Debye length accounting for electrostatic interaction was further used to evaluate the rejection. The current study provides valuable insights on the rejection of trace contaminants by RO/NF membranes. Copyright © 2017. Published by Elsevier Ltd.

  6. Influence of physical activity in the intake of trihalomethanes in indoor swimming pools.

    Science.gov (United States)

    Marco, Esther; Lourencetti, Carolina; Grimalt, Joan O; Gari, Mercè; Fernández, Pilar; Font-Ribera, Laia; Villanueva, Cristina M; Kogevinas, Manolis

    2015-07-01

    This study describes the relationship between physical activity and intake of trihalomethanes (THMs), namely chloroform (CHCl3), bromodichloromethane (CHCl2Br), dibromochloromethane (CHClBr2) and bromoform (CHBr3), in individuals exposed in two indoor swimming pools which used different disinfection agents, chlorine (Cl-SP) and bromine (Br-SP). CHCl3 and CHBr3 were the dominant compounds in air and water of the Cl-SP and Br-SP, respectively. Physical exercise was assessed from distance swum and energy expenditure. The changes in exhaled breath concentrations of these compounds were measured from the differences after and before physical activity. A clear dependence between distance swum or energy expenditure and exhaled breath THM concentrations was observed. The statistically significant relationships involved higher THM concentrations at higher distances swum. However, air concentration was the major factor determining the CHCl3 and CHCl2Br intake in swimmers whereas distance swum was the main factor for CHBr3 intake. These two causes of THM incorporation into swimmers concurrently intensify the concentrations of these compounds into exhaled breath and pointed to inhalation as primary mechanism for THM uptake. Furthermore, the rates of THM incorporation were proportionally higher as higher was the degree of bromination of the THM species. This trend suggested that air-water partition mechanisms in the pulmonary system determined higher retention of the THM compounds with lower Henry's Law volatility constants than those of higher constant values. Inhalation is therefore the primary mechanisms for THM exposure of swimmers in indoor buildings. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Scope of activities and organization of an interuniversity reactor institute

    International Nuclear Information System (INIS)

    de Bruin, M.

    1990-01-01

    The Reactor Instituut Delft was founded in 1958 and was at that time part of the Delft University of Technology. In 1969, the institute was converted into an interuniversity institute, owned and directed by the combined Dutch universities. Since 1987, the institute has again constituted part of the Delft University of Technology, still continuing its role as an interuniversity institute and with provisions in the organizational structure to secure this role. The major facility of the institute is the Hoger Onderwijs reactor, a 2-MW swimming pool reactor operated 24 h/day, 5 days/week. The reactor is used in neutron beam studies, reactor physics research, and for isotope production, neutron activation analysis (NAA), and commercial irradiation. The institute's 3-MeV Van de Graaff electron accelerator is mainly used for radiation chemistry. It can deliver subnanosecond high-current pulses and is provided with fast optical and conductivity measuring equipment. The variable energy positron source is being used for the study of defects at metal surfaces and interfaces. The experience obtained with this source is used in the development of a much stronger source as the basis of a positron microbeam in one of the reactor beam tubes

  8. Feynman-α technique for measurement of detector dead time using a 30 kW tank-in-pool research reactor

    International Nuclear Information System (INIS)

    Akaho, E.H.K.; Intsiful, J.D.K.; Maakuu, B.T.; Anim-Sampong, S.; Nyarko, B.J.B.

    2002-01-01

    Reactor noise analysis was carried out for Ghana Research Reactor-1 GHARR-1, a tank-in-pool type reactor using the Feynman-α technique (variance-to-mean method). Measurements made at different detector positions and under subcritical conditions showed that the technique could not be used to determine the prompt decay constant for the reactor which is Be reflected with photo-neutron background. However, for very low dwell times the technique was used to measure the dead time of the detector which compares favourably with the value obtained using the α-conventional method

  9. Feynman-alpha technique for measurement of detector dead time using a 30 kW tank-in-pool research reactor

    CERN Document Server

    Akaho, E H K; Intsiful, J D K; Maakuu, B T; Nyarko, B J B

    2002-01-01

    Reactor noise analysis was carried out for Ghana Research Reactor-1 GHARR-1, a tank-in-pool type reactor using the Feynman-alpha technique (variance-to-mean method). Measurements made at different detector positions and under subcritical conditions showed that the technique could not be used to determine the prompt decay constant for the reactor which is Be reflected with photo-neutron background. However, for very low dwell times the technique was used to measure the dead time of the detector which compares favourably with the value obtained using the alpha-conventional method.

  10. Proposal for a verification facility of ADS in China

    International Nuclear Information System (INIS)

    Guan Xialing; Luo Zhanglin

    1999-01-01

    The concept, general layout and some specifications of a proposed verification facility of the accelerator driven radioactive clean nuclear power system (AD-RCNPS) in China are described. It is composed of a 150 MeV/3 mA low energy accelerator, a swimming pool reactor and some basic research facilities. The 150 MeV accelerator consists of an ECR proton source, LEBT, RFQ, CCDTL and SCC. As the sub-critical reactor, the swimming pool reactor is an existing research reactor at the China Institute of Atomic Energy, whose maximum output power is 3.5 MW. The effect of the instability of proton beam and possibility of simulation tests on the verification facility have been analysed. (author)

  11. Proposal for a verification facility of ADS in China

    International Nuclear Information System (INIS)

    Guan Xialing; Luo Zhanglin

    2000-01-01

    The concept, the general layout and some specifications of a proposed verification facility of the accelerator driven radioactive clean nuclear power system (AD-RCNPS) in China has been described. It is composed of a 150 MeV/3 mA low energy accelerator, a swimming pool reactor and some basic research facility. The 150 MeV accelerator consists of an ECR proton source, LEBT, RFQ, CCDTL and SCC. As the sub-critical reactor, the swimming pool reactor is an existing research reactor in China Institute of Atomic Energy, its maximum output power is 3.5 MW. The effect of the instability of proton beam and possibility of simulation test on the verification facility have been analyzed

  12. Technical specification for fabrication of HANARO pool cover

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Woo, Sang Ik

    2001-06-01

    This technical specification details the requirements and the acceptance criteria for design, seismic analysis, function test, installation and quality assurance for HANARO pool cover which will be installed at the top of reactor pool. The pool cover is classified as non-nuclear safety, seismic category II and quality class T. The basic design of the pool cover for increasing HANARO applications has been carried out for supporting the driving devices which can load, unload and rotate the irradiation targets in the in-core and out-core vertical irradiation holes under on-power operation. The comments of HANARO user group related with irradiation tests have optimally considered in the process of design. The interference between fuel handling and control absorber units in the reactor pool and activities to load, unload and rotate the irradiation targets at the top of the reactor pool have been minimized. The pool cover can be moved for maintenance and can protect the reactor pool from unexpected drop of foreign materials. It provides the space to vertical access of driving devices for NTD, CT/IR and OR4/OR5 under on-power operation. And the pool cover assembly must maintain its structural integrity under seismic load. Based on the above design concept, the HANARO pool cover has been proposed as supporting structure of driving devices for NTD, fission moly and RI production under on-power operation.

  13. Operational and research activities of Tsing Hua open pool reactor

    International Nuclear Information System (INIS)

    Wang, T.-K.; Tseng, D.-L.; Chou, H.-P.; Onyang Minsun

    1988-01-01

    Tsing Hua Open Pool Reaction (THOR) is the first nuclear reactor to become operational in Taiwan. It reached its first critical on April 13, 1961. Until now, THOR has been operated successfully for 27 years. The major missions of THOR include radioisotope production, neutron activation analysis, nuclear science and engineering researches, education, and personnel training. The THOR was originally loaded with HEU MTR-type fuels. A gradual fuel replacing program using LEU TRIGA fuel to replace MTR started in 1977. By 1987, THOR was loaded with all TRIGA fuels. This paper gives a brief history of THOR, its current status, the core conversion work, some selected research topics, and its improvement plan. (author)

  14. Chemical Safety Alert: Safe Storage and Handling of Swimming Pool Chemicals

    Science.gov (United States)

    Hazards of pool water treatment and maintenance chemicals (e.g., chlorine), and the protective measures pool owners should take to prevent fires, toxic vapor releases, and injuries. Triggered by improper wetting, mixing, or self-reactivity over time.

  15. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    International Nuclear Information System (INIS)

    Rosenthal, Murray Wilford

    2009-01-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  16. The effect of cold water endurance swimming on core temperature in aspiring English Channel swimmers.

    Science.gov (United States)

    Diversi, Tara; Franks-Kardum, Vanessa; Climstein, Mike

    2016-01-01

    The purpose of this study was to determine if cold water swimmers (CWS) developed hypothermia over a 6-h cold water endurance swim and whether body composition, stroke rate (SR) or personal characteristics correlated with core temperature (TC) change. Nine experienced male and female CWS who were aspiring English Channel (EC) swimmers volunteered to participate. Subjects aimed to complete their 6-h EC qualifying swim (water 15-15.8 °C/air 15-25 °C) while researchers intermittently monitored TC and SR. Data obtained included anthropometry (height, mass, segmental body composition), training volume and EC completion. Of the nine swimmers who volunteered, all successfully completed their EC qualifying swim. Six CWS had complete data included in analysis. One CWS demonstrated hypothermia (34.8 °C) at 6-h. TC rate of decline was slower in the first 3 h (-0.06 °C/hr) compared to the last 3 h (-0.36 °C/hr) of the swim. Older age was significantly correlated to TC change (r = -0.901, p swim was 57.8 spm (range 48-73 spm), and a significant (p pool and open water (OW); however, they swam significantly [t (7) = -2.433, p swim (CWES) of 6-h duration at 15-16 °C resulted in TC reduction in the majority of swimmers regardless of anthropometry. More research is required to determine why some CWS are able to maintain their TC throughout a CWES. Our results indicate that older swimmers are at greater risk of developing hypothermia, and that SR decline is an indicator of TC decline. Our results also suggest that OW swimming training combined with pool training is important for EC swim success.

  17. Nuclear reactor containing facility

    International Nuclear Information System (INIS)

    Hidaka, Masataka; Murase, Michio.

    1994-01-01

    In a reactor containing facility, a condensation means is disposed above the water level of a cooling water pool to condensate steams of the cooling water pool, and return the condensated water to the cooling water pool. Upon occurrence of a pipeline rupture accident, steams generated by after-heat of a reactor core are caused to flow into a bent tube, blown from the exit of the bent tube into a suppression pool and condensated in a suppression pool water, thereby suppressing the pressure in the reactor container. Cooling water in the cooling water pool is boiled by heat conduction due to the condensation of steams, then the steams are exhausted to the outside of the reactor container to remove the heat of the reactor container to the outside of the reactor. In addition, since cooling water is supplied to the cooling water pool quasi-permanently by gravity as a natural force, the reactor container can be cooled by the cooling water pool for a long period of time. Since the condensation means is constituted with a closed loop and interrupted from the outside, radioactive materials are never released to the outside. (N.H.)

  18. Radio-transmitted electromyogram signals as indicators of swimming speed in lake trout and brown trout

    DEFF Research Database (Denmark)

    Thorstad, E.B.; Økland, F.; Koed, Anders

    2000-01-01

    Swimming speed and average electromyogram (EMG) pulse intervals were highly correlated in individual lake trout Salvelinus namaycush (r(2)=0.52-0.89) and brown trout Salmo trutta (r(2)=0.45-0.96). High correlations were found also for pooled data in both lake trout (r(2)=0.90) and brown trout...... of the Ema stock (r(2)=0.96) and Laerdal stock (r(2)=0.96). The linear relationship between swimming speed and average EMG pulse intervals differed significantly among lake trout and the brown trout stocks. This successful calibration of EMGs to swimming speed opens the possibility of recording swimming...... speed of free swimming lake trout and brown trout in situ. EMGs can also be calibrated to oxygen consumption to record energy expenditure. (C) 2000 The Fisheries Society of the British Isles...

  19. Evaluation of Pressure Changes in HANARO Reactor Hall after a Reactor Shutdown

    International Nuclear Information System (INIS)

    Han, Geeyang; Han, Jaesam; Ahn, Gukhoon; Jung, Hoansung

    2013-01-01

    The major objective of this work is intended to evaluate the characteristics of the thermal behavior regarding how the decay heat will be affected by the reactor hall pressure change and the increase of pool water temperature induced in the primary coolant after a reactor shutdown. The particular reactor pool water temperature at the surface where it is evaporated owing to the decay heat resulting in the local heat transfer rate is related to the pressure change response in the reactor hall associated with the primary cooling system because of the reduction of the heat exchanger to remove the heat. The increase in the pool water temperature is proportional to the heat transfer rate in the reactor pool. Consequently, any limit on the reactor pool water temperature imposes a corresponding limit on the reactor hall pressure. At HANARO, the decay heat after a reactor shutdown is mainly removed by the natural circulation cooling in the reactor pool. This paper is written for the safety feature of the pressure change related leakage rate from the reactor hall. The calculation results show that the increase of pressure in the reactor hall will not cause any serious problems to the safety limits although the reactor hall pressure is slightly increased. Therefore, it was concluded that the pool water temperature increase is not so rapid as to cause the pressure to vary significantly in the reactor hall. Furthermore, the mathematical model developed in this work can be a useful analytical tool for scoping and parametric studies in the area of thermal transient analysis, with its proper representation of the interaction between the temperature and pressure in the reactor hall

  20. Criticality analysis of the CAREM-25 reactor irradiated fuel elements storage pool

    International Nuclear Information System (INIS)

    Albornoz, A.F.; Jatuff, F.E.; Gho, C.J.

    1993-01-01

    A criticality safety analysis of the irradiated fuel element pool storage of the CAREM-25 reactor was performed. The CAREM project is property of the Comision Nacional de Energia Atomica (CNEA) of Argentine, and it is being executed by INVAP S.E. difficult evaluation of the CAREM core (relatively high -3,4%- enriched U O 2 , Gd 2 O 3 burnable absorber in different densities, or criticality achievement with as few as 7 fuel elements is inherited by the pool storage. The lattice code CONDOR 1.1 was used for investigating the problem scene, and some results compared on the Monte Carlo codes MONK 5.0 and MONK 6.3. Circular and square tubes of 304-L stainless steel, borated steel and boral B 4 C in Al) were tested as suitable channels for fuel element containment, in square and hexagonal arrays; in addition, burnup, burnable absorber concentration, Sm and leakage credits were determined. It was found that the critical is strongly dependent on the separation of the fuel elements in the pool. Out-of-nominal conditions were investigated too, showing that the loss of coolant and the change in temperature and density conditions in the storage lead to an increase in reactivity, but the system's reactivity remains near the safety limits. (author)

  1. Detectability prediction for a thermoacoustic sensor in the breazeale nuclear reactor pool

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James [Idaho National Laboratory, Idaho Falls, ID (United States); Hrisko, Joshua [Idaho National Laboratory, Idaho Falls, ID (United States); Garrett, Steven [Idaho National Laboratory, Idaho Falls, ID (United States)

    2016-03-01

    Laboratory experiments have suggested that thermoacoustic engines can be in- corporated within nuclear fuel rods. Such engines would radiate sounds that could be used to measure and acoustically-telemeter information about the op- eration of the nuclear reactor (e.g., coolant temperature or uxes of neutrons or other energetic particles) or the physical condition of the nuclear fuel itself (e.g., changes in temperature, evolved gases) that are encoded as the frequency and/or amplitude of the radiated sound [IEEE Measurement and Instrumen- tation 16(3), 18-25 (2013)]. For such acoustic information to be detectable, it is important to characterize the vibroacoustical environments within reactors. Measurements will be presented of the background noise spectra (with and with- out coolant pumps) and reverberation times within the 70,000 gallon pool that cools and shields the fuel in the 1 MW research reactor on Penn State's campus using two hydrophones, a piezoelectric projector, and an accelerometer. Sev- eral signal-processing techniques will be demonstrated to enhance the measured results. Background vibrational measurement were also taken at the 250 MW Advanced Test Reactor, located at the Idaho National Laboratory, using ac- celerometers mounted outside the reactor's pressure vessel and on plumbing will also be presented. The detectability predictions made in the thesis were validated in September 2015 using a nuclear ssion-heated thermoacoustic sensor that was placed in the core of the Breazeale Nuclear Reactor on Penn State's campus. Some features of the thermoacoustic device used in that experiment will also be revealed. [Work supported by the U.S. Department of Energy.

  2. Development of a Two-dimensional Thermohydraulic Hot Pool Model and ITS Effects on Reactivity Feedback during a UTOP in Liquid Metal Reactors

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Jeong, Hae Yong; Cho, Chung Ho; Kwon, Young Min; Ha, Kwi Seok; Chang, Won Pyo; Suk, Soo Dong; Hahn, Do Hee

    2009-01-01

    The existence of a large sodium pool in the KALIMER, a pool-type LMR developed by the Korea Atomic Energy Research Institute, plays an important role in reactor safety and operability because it determines the grace time for operators to cope with an abnormal event and to terminate a transient before reactor enters into an accident condition. A two-dimensional hot pool model has been developed and implemented in the SSC-K code, and has been successfully applied for the assessment of safety issues in the conceptual design of KALIMER and for the analysis of anticipated system transients. The other important models of the SSC-K code include a three-dimensional core thermal-hydraulic model, a reactivity model, a passive decay heat removal system model, and an intermediate heat transport system and steam generation system model. The capability of the developed two-dimensional hot pool model was evaluated with a comparison of the temperature distribution calculated with the CFX code. The predicted hot pool coolant temperature distributions obtained with the two-dimensional hot pool model agreed well with those predicted with the CFX code. Variations in the temperature distribution of the hot pool affect the reactivity feedback due to an expansion of the control rod drive line (CRDL) immersed in the pool. The existing CRDL reactivity model of the SSC-K code has been modified based on the detailed hot pool temperature distribution obtained with the two-dimensional pool model. An analysis of an unprotected transient over power with the modified reactivity model showed an improved negative reactivity feedback effect

  3. Influence of mobile games on the process of teaching of students that can not swim

    Directory of Open Access Journals (Sweden)

    Strelnykov G.L.

    2012-02-01

    Full Text Available Considered direction in teaching of students to swimming in terms 25 meter pool. 30 students took part in an experiment. The place of mobile games in the process of teaching of novices is certain. Information of results of testing of level of physical preparedness of students is presented. Positive influence of mobile games on the process of mastering of skills of swimming and co-operations on water is marked. Forms and methods of mastering of skills and conduct in water are offered. The motive mode and forms of organization of educational process of not able to swim students is recommended.

  4. Turbulence model for melt pool natural convection heat transfer

    International Nuclear Information System (INIS)

    Kelkar, K.M.; Patankar, S.V.

    1994-01-01

    Under severe reactor accident scenarios, pools of molten core material may form in the reactor core or in the hemispherically shaped lower plenum of the reactor vessel. Such molten pools are internally heated due to the radioactive decay heat that gives rise to buoyant flows in the molten pool. The flow in such pools is strongly influenced by the turbulent mixing because the expected Rayleigh numbers under accidents scenarios are very high. The variation of the local heat flux over the boundaries of the molten pools are important in determining the subsequent melt progression behavior. This study reports results of an ongoing effort towards providing a well validated mathematical model for the prediction of buoyant flow and heat transfer in internally heated pool under conditions expected in severe accident scenarios

  5. Safe operation and maintenance of research reactor

    International Nuclear Information System (INIS)

    Munsorn, S.

    1999-01-01

    The first Thai Research Reactor (TRR-1) was established in 1961 at the Office of Atomic Energy for Peace (OAEP), Bangkok. The reactor was light water moderated and cooled, using HEU plate-type with U 3 O 8 - Al fuel meat and swimming pool type. The reactor went first critical on October 27, 1962 and had been licensed to operate at 1 MW (thermal). On June 30, 1975 the reactor was shutdown for modification and the core and control system was disassemble and replaced by that of TRIGA Mark III type while the pool cooling system, irradiation facilities and other were kept. Thus the name TRR-1/M1' has been designed due to this modification the fuel has been changed from HEU plate type to Uranium Zirconium Hydride (UZrH) Low Enrichment Uranium (LEU) which include 4 Fuel Follower Control Rods and 1 Air Follower Control Rod. The TRR-1/M1 went critical on November 7, 1977 and the purpose of the operation are training, isotope production and research. Nowadays the TRR-1/M1 has been operated with core loading No.12 which released power of 1,056 MWD. (as of October 1998). The TRR-1/M1 has been operated at the power of 1.2 MW, three days a week with 34 hours per week, Shut-down on Monday for weekly maintenance and Tuesday for special experiment. The everage energy released is about 40.8 MW-hour per week. Every year, the TRR-1/M1 is shut-down about 2 months between February to March for yearly maintenance. (author)

  6. Safe operation and maintenance of research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Munsorn, S. [Reactor Operation Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok (Thailand)

    1999-10-01

    The first Thai Research Reactor (TRR-1) was established in 1961 at the Office of Atomic Energy for Peace (OAEP), Bangkok. The reactor was light water moderated and cooled, using HEU plate-type with U{sub 3}O{sub 8}- Al fuel meat and swimming pool type. The reactor went first critical on October 27, 1962 and had been licensed to operate at 1 MW (thermal). On June 30, 1975 the reactor was shutdown for modification and the core and control system was disassemble and replaced by that of TRIGA Mark III type while the pool cooling system, irradiation facilities and other were kept. Thus the name TRR-1/M1' has been designed due to this modification the fuel has been changed from HEU plate type to Uranium Zirconium Hydride (UZrH) Low Enrichment Uranium (LEU) which include 4 Fuel Follower Control Rods and 1 Air Follower Control Rod. The TRR-1/M1 went critical on November 7, 1977 and the purpose of the operation are training, isotope production and research. Nowadays the TRR-1/M1 has been operated with core loading No.12 which released power of 1,056 MWD. (as of October 1998). The TRR-1/M1 has been operated at the power of 1.2 MW, three days a week with 34 hours per week, Shut-down on Monday for weekly maintenance and Tuesday for special experiment. The everage energy released is about 40.8 MW-hour per week. Every year, the TRR-1/M1 is shut-down about 2 months between February to March for yearly maintenance. (author)

  7. Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona DCN:2051-SR-01-0

    International Nuclear Information System (INIS)

    Altic, Nick A.

    2011-01-01

    The University of Arizona (University) research reactor is a TRIGA swimming pool type reactor designed by General Atomics and constructed at the University in 1958. The reactor first went into operation in December of 1958 under U.S. Nuclear Regulatory Commission (NRC) license R-52 until final shut down on May 18, 2010. Initial site characterization activities were conducted in February 2009 during ongoing reactor operations to assess the radiological status of the Nuclear Reactor Laboratory (NRL) excluding the reactor tank, associated components, and operating systems. Additional post-shutdown characterization activities were performed to complete characterization activities as well as verify assumptions made in the Decommissioning Plan (DP) that were based on a separate activation analysis (ESI 2009 and WMG 2009). Final status survey (FSS) activities began shortly after the issuance of the FSS plan in May 2011. The contractor completed measurement and sampling activities during the week of August 29, 2011.

  8. Measurement and analysis of the neutron noise of the pool research reactor at IPEN

    International Nuclear Information System (INIS)

    Simoes, Graciete Pedro

    1979-01-01

    Variations in the neutron density or power of a nuclear reactor (the neutron noise) operating at nominally constant power are generally random and can only be described in terms of statistical parameters. Random variations in the power of a power reactor are produced by one or more driving functions. In this work the neutron noise of the pool reactor IEAR-1 (2 MW nominal power) has been studied using two compensated ionization chambers ( Westinghouse VJL6377) and related to three possible-driving functions, namely vibration of the control bar and reactor support bridge and the temperature of the water entering the core. The CIC detectors were located in rigid tubes in turn positively located in the reactor lattice plate. Conventional accelerometers were used. Temperature measurements were made with a NiCr/Ni thermocouple (wire diam ∼ 0.2mm) located 10 mm above the top of a fuel element. Although the correlation between the measured neutron signals was high ( > 0,4) for frequencies in the range 0 to 10 Hz no resonances were identified in the neutron noise. A significant correlation (> 0,4) between the control bar acceleration and the neutron flux was obtained in the frequency range 0 to 10 Hz. The measured correlation between the neutron noise and both the bridge vibration and the reactor water inlet temperature was insignificant. (author)

  9. Warm-up and performance in competitive swimming.

    Science.gov (United States)

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  10. Simulated front crawl swimming performance related to critical speed and critical power.

    Science.gov (United States)

    Toussaint, H M; Wakayoshi, K; Hollander, A P; Ogita, F

    1998-01-01

    Competitive pool swimming events range in distance from 50 to 1500 m. Given the difference in performance times (+/- 23-1000 s), the contribution of the aerobic and anaerobic energy systems changes considerably with race distance. In training practice the regression line between swimming distance and time (Distance = critical velocity x time + anaerobic swimming capacity) is used to determine the individual capacity of the aerobic and anaerobic metabolic pathways. Although there is confidence that critical velocity and anaerobic swimming capacity are fitness measures that separate aerobic and anaerobic components, a firm theoretical basis for the interpretation of these results does not exist. The purpose of this study was to evaluate the critical power concept and anaerobic swimming capacity as measures of the aerobic and anaerobic capacity using a modeling approach. A systems model was developed that relates the mechanics and energetics involved in front crawl swimming performance. From actual swimming flume measurements, the time dependent aerobic and anaerobic energy release was modeled. Data derived from the literature were used to relate the energy cost of front crawl swimming to swimming velocity. A balance should exist between the energy cost to swim a distance in a certain time and the concomitant aerobic and anaerobic energy release. The ensuing model was used to predict performance times over a range of distances (50-1500 m) and to calculate the regression line between swimming distance and time. Using a sensitivity analysis, it was demonstrated that the critical velocity is indicative for the capacity of the aerobic energy system. Estimates of the anaerobic swimming capacity, however, were influenced by variations in both anaerobic and aerobic energy release. Therefore, it was concluded that the anaerobic swimming capacity does not provide a reliable estimate of the anaerobic capacity.

  11. Rational energy utilization and utilization of solar energy in the open-air swimming pool and in the multiple purpose hall at Wiehl. Final report. Pt. E

    Energy Technology Data Exchange (ETDEWEB)

    Bouillon, H; Jensch, K; Pentenrieder, J; Biasin, K; Dreisbach, K; Fruehauf, H J

    1982-12-01

    The test operation in Wiehl has shown that the waste heat utilization of an ice-sport ground especially in connection with the heat supply of an open-air swimming pool can be technically and functionally performed. Unter the given operating conditions annual cost savings of approx. 45.000 DM are yielded as against conventional systems. In addition to this advantage regarding works-economy the heat pump system also offers the advantage of considerable primary energy conservation. Apart from these very important findings also essential knowledge of details with regard to design, control, energy consumption and behaviour of the individual systems of this complex system have been obtained.

  12. THE EFFECTS OF THE SWIMMING TRAINING MODEL AIMED AT THE IMPROVEMENT OF FUNCTIONAL ABILITIES

    OpenAIRE

    Dragan Krivokapić

    2006-01-01

    On the sample of 32 fourth grade students of some Belgrade highs schools, who had the physical education classes carried out at the city’s swimming pools, an attempt was made to evaluate the effects of the two different programmes of swimming training in different intensity zones, defined relative to the anaerobic threshold. The subjects were divided into two sub-samples of 15 and 17 participants respectively. Before the research began there was no statistically significant difference between...

  13. Physical and energy requirements of competitive swimming events.

    Science.gov (United States)

    Pyne, David B; Sharp, Rick L

    2014-08-01

    The aquatic sports competitions held during the summer Olympic Games include diving, open-water swimming, pool swimming, synchronized swimming, and water polo. Elite-level performance in each of these sports requires rigorous training and practice to develop the appropriate physiological, biomechanical, artistic, and strategic capabilities specific to each sport. Consequently, the daily training plans of these athletes are quite varied both between and within the sports. Common to all aquatic athletes, however, is that daily training and preparation consumes several hours and involves frequent periods of high-intensity exertion. Nutritional support for this high-level training is a critical element of the preparation of these athletes to ensure the energy and nutrient demands of the training and competition are met. In this article, we introduce the fundamental physical requirements of these sports and specifically explore the energetics of human locomotion in water. Subsequent articles in this issue explore the specific nutritional requirements of each aquatic sport. We hope that such exploration will provide a foundation for future investigation of the roles of optimal nutrition in optimizing performance in the aquatic sports.

  14. Hygienic aspects of pool water treatment plants. Fresh water and energy conservation by using Desozid 2000. Hygienische Aspekte bei Schwimmbadwasser-Aufbereitungsanlagen. Frischwasser- und Energieeinsparung durch den Einsatz von Desozid 2000

    Energy Technology Data Exchange (ETDEWEB)

    Pacik, D [Hygiene-Institut des Ruhrgebiets, Gelsenkirchen (Germany, F.R.)

    1989-01-01

    In the last years the so-called leisure swimming pools have become more and more popular. Swimming is no longer only a sport but it has become a substantial part of leisure activities. In this respect also hygiene aspect of pool water treatment plants gain importance. The legal basis forms the Bundesseuchengesetz (Federal Disease Law), the degree law about swimming and bathing pool water as well as the BGA-list. At present a DIN committee is working out a standard concerning the problems with hot bubbling pools. For hygiene reasons a means for disinfection should in any case be provided for the filling water (even before its introduction into the water storage). (BWI).

  15. London 2012 Paralympic swimming: passive drag and the classification system.

    Science.gov (United States)

    Oh, Yim-Taek; Burkett, Brendan; Osborough, Conor; Formosa, Danielle; Payton, Carl

    2013-09-01

    The key difference between the Olympic and Paralympic Games is the use of classification systems within Paralympic sports to provide a fair competition for athletes with a range of physical disabilities. In 2009, the International Paralympic Committee mandated the development of new, evidence-based classification systems. This study aims to assess objectively the swimming classification system by determining the relationship between passive drag and level of swimming-specific impairment, as defined by the current swimming class. Data were collected on participants at the London 2012 Paralympic Games. The passive drag force of 113 swimmers (classes 3-14) was measured using an electro-mechanical towing device and load cell. Swimmers were towed on the surface of a swimming pool at 1.5 m/s while holding their most streamlined position. Passive drag ranged from 24.9 to 82.8 N; the normalised drag (drag/mass) ranged from 0.45 to 1.86 N/kg. Significant negative associations were found between drag and the swimming class (τ = -0.41, p < 0.01) and normalised drag and the swimming class (τ = -0.60, p < 0.01). The mean difference in drag between adjacent classes was inconsistent, ranging from 0 N (6 vs 7) to 11.9 N (5 vs 6). Reciprocal Ponderal Index (a measure of slenderness) correlated moderately with normalised drag (r(P) = -0.40, p < 0.01). Although swimmers with the lowest swimming class experienced the highest passive drag and vice versa, the inconsistent difference in mean passive drag between adjacent classes indicates that the current classification system does not always differentiate clearly between swimming groups.

  16. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Murray Wilford [ORNL

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  17. Ageing Management Programme for the IEA-R1 Reactor in São Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, L. V. [Institute of Energy and Nuclear Research (IPEN), National Nuclear Energy Commission (CNEN), São Paulo (Brazil)

    2014-08-15

    IEA-R1 is a swimming pool type reactor. It is moderated and cooled by light water and uses graphite and beryllium as reflector elements. First criticality was achieved on 16 September 1957, and the reactor is currently operating at 4.0 MW on a 64 h per week cycle. In 1996, a reactor ageing study was established to determine general deterioration of systems and components such as cooling towers, secondary cooling system, piping, pumps, specimen irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation, and safety system. The basic structure of the reactor from the original design has been maintained, but several improvements and modifications have been made over the years to various components, systems and structures. During the period 1996–2005 the reactor power was increased from 2 MW to 5 MW and the operational cycle from 8 h per day for 5 days a week to 120 h continuous per week, mainly to increase production of {sup 99}Mo. Prior to increasing reactor power, several modifications were made to the reactor system and its components. Simultaneously, a vigorous ageing management, inspection and modernization programme was put in place.

  18. Design guide for Category III reactors: pool type reactors

    International Nuclear Information System (INIS)

    Brynda, W.J.; Lobner, P.R.; Powell, R.W.; Straker, E.A.

    1978-11-01

    The Department of Energy (DOE) in the ERDA Manual requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned reactors be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirement of Category III reactor structures, components, and systems

  19. Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

    International Nuclear Information System (INIS)

    Sathiah, Pratap; Roelofs, Ferry

    2014-01-01

    Highlights: • A CFD based method is proposed for the simulation of sodium pool combustion. • A sodium evaporation based model is proposed to model sodium pool evaporation. • The proposed method is validated against sodium pool experiments of Newman and Payne. • The results obtained using the proposed method are in good agreement with the experiments. - Abstract: The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate. Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor

  20. Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: pratap.sathiah78@gmail.com [Shell Global Solutions Ltd., Brabazon House, Concord Business Park, Threapwood Road, Manchester M220RR (United Kingdom); Roelofs, Ferry, E-mail: roelofs@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755ZG Petten (Netherlands)

    2014-10-15

    Highlights: • A CFD based method is proposed for the simulation of sodium pool combustion. • A sodium evaporation based model is proposed to model sodium pool evaporation. • The proposed method is validated against sodium pool experiments of Newman and Payne. • The results obtained using the proposed method are in good agreement with the experiments. - Abstract: The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate. Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor.

  1. Methodology for thermal-hydraulics analysis of pool type MTR fuel research reactors

    International Nuclear Information System (INIS)

    Umbehaun, Pedro Ernesto

    2000-01-01

    This work presents a methodology developed for thermal-hydraulic analysis of pool type MTR fuel research reactors. For this methodology a computational program, FLOW, and a model, MTRCR-IEAR1 were developed. FLOW calculates the cooling flow distribution in the fuel elements, control elements, irradiators, and through the channels formed among the fuel elements and among the irradiators and reflectors. This computer program was validated against experimental data for the IEA-R1 research reactor core at IPEN-CNEN/SP. MTRCR-IEAR1 is a model based on the commercial program Engineering Equation Solver (EES). Besides the thermal-hydraulic analyses of the core in steady state accomplished by traditional computational programs like COBRA-3C/RERTR and PARET, this model allows to analyze parallel channels with different cooling flow and/or geometry. Uncertainty factors of the variables from neutronic and thermalhydraulic calculation and also from the fabrication of the fuel element are introduced in the model. For steady state analyses MTRCR-IEAR1 showed good agreement with the results of COBRA-3C/RERTR and PARET. The developed methodology was used for the calculation of the cooling flow distribution and the thermal-hydraulic analysis of a typical configuration of the IEA-R1 research reactor core. (author)

  2. Analysis of swimming performance from physical, physiological, and biomechanical parameters in young swimmers.

    Science.gov (United States)

    Jürimäe, Jaak; Haljaste, Kaja; Cicchella, Antonio; Lätt, Evelin; Purge, Priit; Leppik, Aire; Jürimäe, Toivo

    2007-02-01

    The purpose of this study was to examine the influence of the energy cost of swimming, body composition, and technical parameters on swimming performance in young swimmers. Twenty-nine swimmers, 15 prepubertal (11.9 +/- 0.3 years; Tanner Stages 1-2) and 14 pubertal (14.3 +/- 1.4 years; Tanner Stages 3-4) boys participated in the study. The energy cost of swimming (Cs) and stroking parameters were assessed over maximal 400-m front-crawl swimming in a 25-m swimming pool. The backward extrapolation technique was used to evaluate peak oxygen consumption (VO2peak). A stroke index (SI; m2 . s(-1) . cycles(-1)) was calculated by multiplying the swimming speed by the stroke length. VO2peak results were compared with VO2peak test in the laboratory (bicycle, 2.86 +/- 0.74 L/min, vs. in water, 2.53 +/- 0.50 L/min; R2 = .713; p = .0001). Stepwise-regression analyses revealed that SI (R2 = .898), in-water VO2peak (R2 = .358), and arm span (R2 = .454) were the best predictors of swimming performance. The backward-extrapolation method could be used to assess VO2peak in young swimmers. SI, arm span, and VO2peak appear to be the major determinants of front-crawl swimming performance in young swimmers.

  3. EFFICIENCY OF DIFFERENT METHODOLOGICAL MODELS OF SWIMMING PRACTICE WITH PRE-SCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Dragan Krivokapić

    2006-06-01

    Full Text Available On the sample of 68 preschool boys and girls aged five to six years two models of swimming teaching realised with purpose to research their efficacity. lt was finded before that they were nonswimers. Testers deviated in two similar groups by basic motor and cognitive abilities. First model of swim teaching, signed as time deviated learning, was realised at the cloused swimming pool with 36 testers which exercised twice of week during three months. Second model of swim teaching, signed as time concentrated learning, was realised as a two-week course with 32 testers which exercised at the sea side. Two control assessment of swimming level knowledge were made during experimental process, and a final assesment was made at the and of the experiment Scaling tehnicque was used for assesing. An analysis of the obtained data resulted in the following conclusions: the both models of swim teaching were efficacity and majority of children accepted swim knovvledge. Results of time concentrated model learning were statistical significance beter then time deviated learning only in the control assesments, but the svviming level knowledge was not different in the final assment. That conclusion shows that model of time concentrated learning has more efficacity in the begining, and model of time deviated learning in the later period of teaching

  4. Eddy current testing of PWR fuel pencils in the pool of the Osiris reactor

    International Nuclear Information System (INIS)

    Faure, M.; Marchand, L.

    1983-12-01

    A nondestructive testing bench is described. It is devoted to examination of high residual power fuel pencils without stress on the cladding nor interference with cooling. Guiding by fluid bearings decrease the background noise. Scanning speed is limited only by safety criteria and data acquisition configuration. Simultaneous control of various parameters is possible. Associated to an irradiation loop, loaded and unloaded in a reactor swinning pool, this bench can follow fuel pencil degradation after each irradiation cycle [fr

  5. Effect of turbulent natural convection on sodium pool combustion in the steam generator building of a fast breeder reactor

    International Nuclear Information System (INIS)

    Karthikeyan, S.; Sundararajan, T.; Shet, U.S.P.; Selvaraj, P.

    2009-01-01

    A computational model is proposed to simulate sodium pool combustion considering the effect of turbulent natural convection in a vented enclosure of the steam generator building (SGB) of a fast breeder reactor. The model is validated by comparing the simulated results with the experimental results available in literature for sodium pool combustion in a CSTF vessel. After validation, the effects of vents and the location of the pool on the burning rate of sodium and the associated heat transfer to the walls are studied in an enclosure comparable in size to one floor of the steam generator building. In the presence of ventilation, the burning rate of sodium increases, but the total heat transferred to the walls of the enclosure is reduced. It is also found that the burning rate of sodium pool and the heat transfer to the walls of the enclosures vary significantly with the location of sodium pool.

  6. Disposable swim diaper retention of Cryptosporidium-sized particles on human subjects in a recreational water setting.

    Science.gov (United States)

    Amburgey, James E; Anderson, J Brian

    2011-12-01

    Cryptosporidium is a chlorine-resistant protozoan parasite responsible for the majority of waterborne disease outbreaks in recreational water venues in the USA. Swim diapers are commonly used by diaper-aged children participating in aquatic activities. This research was intended to evaluate disposable swim diapers for retaining 5-μm diameter polystyrene microspheres, which were used as non-infectious surrogates for Cryptosporidium oocysts. A hot tub recirculating water without a filter was used for this research. The microsphere concentration in the water was monitored at regular intervals following introduction of microspheres inside of a swim diaper while a human subject undertook normal swim/play activities. Microsphere concentrations in the bulk water showed that the majority (50-97%) of Cryptosporidium-sized particles were released from the swim diaper within 1 to 5 min regardless of the swim diaper type or configuration. After only 10 min of play, 77-100% of the microspheres had been released from all swim diapers tested. This research suggests that the swim diapers commonly used by diaper-aged children in swimming pools and other aquatic activities are of limited value in retaining Cryptosporidium-sized particles. Improved swim diaper solutions are necessary to efficiently retain pathogens and effectively safeguard public health in recreational water venues.

  7. Online failed fuel identification using delayed neutron detector signals in pool type reactors

    International Nuclear Information System (INIS)

    Upadhyay, Chandra Kant; Sivaramakrishna, M.; Nagaraj, C.P.; Madhusoodanan, K.

    2011-01-01

    In todays world, nuclear reactors are at the forefront of modern day innovation and reactor designs are increasingly incorporating cutting edge technology. It is of utmost importance to detect failure or defects in any part of a nuclear reactor for healthy operation of reactor as well as the safety aspects of the environment. Despite careful fabrication and manufacturing of fuel pins, there is a chance of clad failure. After fuel pin clad rupture takes place, it allows fission products to enter in to sodium pool. There are some potential consequences due to this such as Total Instantaneous Blockage (TIB) of coolant and primary component contamination. At present, the failed fuel detection techniques such as cover gas monitoring (alarming the operator), delayed neutron detection (DND-automatic trip) and standalone failed fuel localization module (FFLM) are exercised in various reactors. The first technique is a quantitative measurement of increase in the cover gas activity background whereas DND system causes automatic trip on detecting certain level of activity during clad wet rupture. FFLM is subsequently used to identify the failed fuel subassembly. The later although accurate, but mainly suffers from downtime and reduction in power during identification process. The proposed scheme, reported in this paper, reduces the operation of FFLM by predicting the faulty sector and therefore reducing reactor down time and thermal shocks. The neutron evolution pattern gets modulated because fission products are the delay neutron precursors. When they travel along with coolant to Intermediate heat Exchangers, experienced three effects i.e. delay; decay and dilution which make the neutron pulse frequency vary depending on the location of failed fuel sub assembly. This paper discusses the method that is followed to study the frequency domain properties, so that it is possible to detect exact fuel subassembly failure online, before the reactor automatically trips. (author)

  8. High efficiency pool filtering systems utilising variable frequency drives

    Energy Technology Data Exchange (ETDEWEB)

    Hameiri, Z.; Sproul, A.B. [School of Photovoltaic and Renewable Energy Engineering, UNSW, Sydney, NSW 2052 (Australia); Spooner, T. [School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia)

    2009-02-15

    Over 1 year, private swimming pools in Australia will typically consume 1680 GWh of electricity, producing 2130 kt of CO{sub 2}. Redesigning a pool's filtration system and using it more efficiently can reduce the energy use, and hence the CO{sub 2} production, by a significant amount. This paper describes experimental measurements carried out on a new design of pool pump system. Initial experiments using a variable frequency drive (VFD) with a standard, single phase pump/motor system have achieved energy savings of 40%. Utilising a VFD and a three phase pump/motor energy savings of 61% have been achieved, without degrading the system performance. (author)

  9. The Ineffectiveness of Manual Treatment of Swimming Pools NNAJI ...

    African Journals Online (AJOL)

    Michael Horsfall

    there was a level of dissatisfaction among the swimmers. Some of ... period, the COD was above 80mg/l, the pH was between 6.2 and 7.1 as against 7.2 to 7.8 recommended by .... Fig 6: Chemical oxygen Demand of the Pool for Three Months.

  10. Vortex re-capturing and kinematics in human underwater undulatory swimming.

    Science.gov (United States)

    Hochstein, Stefan; Blickhan, Reinhard

    2011-10-01

    To maximize swimming speed athletes copy fish undulatory swimming during the underwater period after start and turn. The anatomical limitations may lead to deviations and may enforce compensating strategies. This has been investigated by analyzing the kinematics of two national female swimmers while swimming in a still water pool. Additionally, the flow around and behind the swimmers was measured with the aid of time-resolved particle image velocimetry (TR-2D-PIV). As compared to fish, the swimmers used undulatory waves characterized by much higher Strouhal numbers but very similar amplitude distributions along the body and Froude efficiencies. Vortices generated in the region of strongly flexing joints are suitable to be used pedally to enhance propulsion (vortex re-capturing). Complementing studies using numerical and technical modeling will help us to probe the efficiency of observed mechanisms and further improvements of the human strategy. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Current status of the Thai Research Reactor (TRR-1/M1)

    International Nuclear Information System (INIS)

    Chueinta, Siripone; Julanan, Mongkol; Charncanchee, Decharchai

    2006-01-01

    The first Thai Research Reactor, TRR-1 went critical on 27 October 1962 at the maximum power of 1 MW. It was located at Office of Atoms for Peace (OAP) in Bangkok. Since then, TRR-1 was continuously operated and eventually shut down in 1975. Plate type, high-enriched uranium (HEU) and U 3 O 8 A1 cladding were used as the reactor fuel. Light water was used as moderator and coolant as well. In 1975, because of the problem from fuel supplier and also to supporting the Treaty of Non Proliferation of Nuclear Weapon or NPT, TRR-1 was shut down for modification. The reactor core and control system were disassembled and replaced by TRIGA Mark III. A new core was a hexagonal core shape designed by General Atomics (GA). Afterwards, TRR-1 was officially renamed to the Thai Research Reactor-1/Modification 1 (TRR-1/M1). TRR-1/M1 is a multipurpose swimming pool type reactor with nominal power of 2 MW. The TRR-1/M1 uses uranium enriched at 20% in U-235 (LEU) and ZrH alloy as fuel. Light water is also used as coolant and moderator. At present, the reactor is operating with core No.14. The reactor has been serving for various kinds of utilization namely, radioisotope production, neutron activation analysis, beam experiments and reactor physics experiments. (author)

  12. Multi-purpose reactor

    International Nuclear Information System (INIS)

    1991-05-01

    The Multi-Purpose-Reactor (MPR), is a pool-type reactor with an open water surface and variable core arrangement. Its main feature is plant safety and reliability. Its power is 22MW t h, cooled by light water and moderated by beryllium. It has platetype fuel elements (MTR type, approx. 20%. enriched uranium) clad in aluminium. Its cobalt (Co 60 ) production capacity is 50000 Ci/yr, 200 Ci/gr. The distribution of the reactor core and associated control and safety systems is essentially based on the following design criteria: - upwards cooling flow, to waive the need for cooling flow inversion in case the reactor is cooled by natural convection if confronted with a loss of pumping power, and in order to establish a superior heat transfer potential (a higher coolant saturation temperature); - easy access to the reactor core from top of pool level with the reactor operating at full power, in order to facilitate actual implementation of experiments. Consequently, mechanisms associated to control and safety rods s,re located underneath the reactor tank; - free access of reactor personnel to top of pool level with the reactor operating at full power. This aids in the training of personnel and the actual carrying out of experiments, hence: - a vast water column was placed over the core to act as radiation shielding; - the core's external area is cooled by a downwards flow which leads to a decay tank beyond the pool (for N 16 to decay); - a small downwards flow was directed to stream downwards from above the reactor core in order to drag along any possibly active element; and - a stagnant hot layer system was placed at top of pool level so as to minimize the upwards coolant flow rising towards pool level

  13. THE EFFECTS OF DIFFERENT MODELS OF SWIMMING TRAINING (DEFINED IN RELATION TO ANAEROBIC THRESHOLD ON THE INCREASE OF SWIM SPEED

    Directory of Open Access Journals (Sweden)

    Dragan Krivokapić

    2007-05-01

    Full Text Available On the sample of 32 fourth grade students of some Belgrade highs schools, who had the physical education classes carried out at the city’s swimming pools, an attempt was made to evaluate the effects of the two different programmes of swimming training in different intensity zones, defi ned relative to the anaerobic threshold. The examinees were divided into two groups out of 15 i.e. 17 participants who were not (according to statistics signifi cantly different in terms of average time and heart frequency during the 400 m swimming test and heart frequency and time measured after 50 m in the moment of reaching the anaerobic threshold. The fi rst training model consisted of swimming at the intensity level within the zone below anaerobic threshold, while the second model involved occasional swimming at a higher intensity sometimes surpassing the anaerobic threshold. The experimentalprogramme with both sub-groups lasted 8 weeks with 3 training sessions per week, 2 ‘of which we’re identical for both experimental groups, with the third one differing regarding the swimming intensity, this in the fi rst group being still in the zone below, and in the second group occasionally in the zone above the anaerobic threshold. The amount of training and the duration were the same in both programmes. The aim of the research , was to evaluate and to compare the effects of the two training models, using as the basic criteria possible changes of average time and heart frequency during the 400 m swimming test and heart frequency and time measured after 50 m in the moment of reaching the anaerobic thereshold. On the basis of the statistical analysis of the obtained data, it is possible to conclude that in both experimental groups there were statistically signifi cant changes of average values concerning all the physiological variables. Although the difference in effi ciency of applied experimental programmes is not defi ned, we can claim that both of experimental

  14. An Assessment of Fission Product Scrubbing in Sodium Pools Following a Core Damage Event in a Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, M.; Farmer, M.; Grabaskas, D.

    2017-06-26

    The U.S. Nuclear Regulatory Commission has stated that mechanistic source term (MST) calculations are expected to be required as part of the advanced reactor licensing process. A recent study by Argonne National Laboratory has concluded that fission product scrubbing in sodium pools is an important aspect of an MST calculation for a sodium-cooled fast reactor (SFR). To model the phenomena associated with sodium pool scrubbing, a computational tool, developed as part of the Integral Fast Reactor (IFR) program, was utilized in an MST trial calculation. This tool was developed by applying classical theories of aerosol scrubbing to the decontamination of gases produced as a result of postulated fuel pin failures during an SFR accident scenario. The model currently considers aerosol capture by Brownian diffusion, inertial deposition, and gravitational sedimentation. The effects of sodium vapour condensation on aerosol scrubbing are also treated. This paper provides details of the individual scrubbing mechanisms utilized in the IFR code as well as results from a trial mechanistic source term assessment led by Argonne National Laboratory in 2016.

  15. The Impact of Baby Swimming on Introductory and Elementary Swimming Training

    OpenAIRE

    Břízová, Gabriela

    2007-01-01

    THESIS ANNOTATION Title: The Impact of Baby Swimming on Introductory and Elementary Swimming Training Aim: To assess the impact of 'baby swimming' on the successfulness in introductory and partly in elementary swimming training, and to find out whether also other circumstances (for example the length of attendance at 'baby swimming') have some influence on introductory swimming training. Methods: We used a questionnaire method for the parents of children who had attended 'baby swimming' and f...

  16. Plasma renin activity, aldosterone and catecholamine levels when swimming and running.

    Science.gov (United States)

    Guezennec, C Y; Defer, G; Cazorla, G; Sabathier, C; Lhoste, F

    1986-01-01

    The purpose of this study was to determine the response of plasma renin activity (PRA), plasma aldosterone concentration (PAC) and catecholamines to two graded exercises differing by posture. Seven male subjects (19-25 years) performed successively a running rest on a treadmill and a swimming test in a 50-m swimming pool. Each exercise was increased in severity in 5-min steps with intervals of 1 min. Oxygen consumption, heart rate and blood lactate, measured every 5 min, showed a similar progression in energy expenditure until exhaustion, but there was a shorter time to exhaustion in the last step of the running test. PRA, PAC and catecholamines were increased after both types of exercise. The PRA increase was higher after the running test (20.9 ng AngI X ml-1 X h-1) than after swimming (8.66 ng AngI X ml-1 X h-1). The PAC increase was slightly greater after running (123 pg X ml-1) than swimming (102 pg X ml-1), buth the difference was not significant. Plasma catecholamine was higher after the swimming test. These results suggest that the volume shift induced by the supine position and water pressure during swimming decreased the PRA response. The association after swimming compared to running of a decreased PRA and an enhanced catecholamine response rule out a strict dependence of renin release under the effect of plasma catecholamines and is evidence of the major role of neural pathways for renin secretion during physical exercise.

  17. Power control of water reactors using nitrogen 16 activity measurements

    International Nuclear Information System (INIS)

    Gariod, R.; Merchie, F.; O'byrne, G.

    1964-01-01

    At the Grenoble Nuclear Research Centre, the open-core swimming pool reactors Melusine (2 MW) and Siloe (15 MW) are controlled at a constant overall power using nitrogen-16 channels. The conventional linear control channels react instantaneously to the rapid power fluctuations, this being necessary for the safety of the reactors, but their power indications are erroneous since they are affected by local deformations of the thermal flux caused by the compensation movements of the control rods. The nitrogen-16 channels on the other hand give an indication of the overall power proportional to the mean fission flux and independent of the rod movements, but their response time is 15 seconds, A constant overall power control is thus possible by a slow correction of the reference signal given by the automatic control governed by thu linear channels by means of a correction term given by the 'N-16' channels: This is done automatically in Melusine and manually in Siloe. (authors) [fr

  18. Reactor container facility

    International Nuclear Information System (INIS)

    Saito, Takashi; Nagasaka, Hideo.

    1990-01-01

    A dry-well pool for spontaneously circulating stored pool water and a suppression pool for flooding a pressure vessel by feeding water, when required, to a flooding gap by means of spontaneous falling upto the flooding position, thereby flooding the pressure vessel are contained at the inside of a reactor container. Thus, when loss of coolant accidents such as caused by main pipe rupture accidents should happen, pool water in the suppression pool is supplied to the flooding gap by spontaneously falling. Further, if the flooding water uprises exceeding a predetermined level, the flooding gap is in communication with the dry-well pool at the upper and the lower portions respectively. Accordingly, flooding water at high temperature heated by the after-heat of the reactor core is returned again into the flooding gap to cool the reactor core repeatedly. (T.M.)

  19. Development of the user interface for visualization of the auxiliary systems of the TRIGA Mark III nuclear reactor; Desarrollo de la interface de usuario para la visualizacion de los sistemas auxiliares del reactor nuclear Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Merced D, J. E.

    2016-07-01

    The Instituto Nacional de Investigaciones Nucleares (ININ) has a nuclear research reactor type swimming pool with movable core cooled and moderate with light water. The nominal maximum power of the reactor is 1 MW in steady-state operation and can be pulsed at a maximum power of 2,000 MW for approximately 10 milliseconds. This reactor is mainly used to study the effects of radiation on various materials and substances. In 2001 the new control console of the nuclear reactor was installed which was based on two digital computers, one computer controls the bar management mechanisms and the other the systems to the reactor operator. In 2004, the control computer was replaced and the software was updated. Within the modernization and/or updating of the TRIGA Mark III reactor of ININ, is intended (theme of this work) to develop the user interface for the visualization of the auxiliary systems, through a Man-Machine Interface module for the renewal process of the control console. The man-machine interface system to be developed will have communication with the programmable logic controllers that will be constantly monitored and controlled to obtain real-time variables of the reactor behavior. (Author)

  20. Pressure drop calculation in a fuel element of a pool type reactor

    International Nuclear Information System (INIS)

    Lassance, Victor; Oliveira, Andre F.; Moreira, Maria de L.

    2013-01-01

    Even with the advances of hardware in computer sciences, sometimes it is necessary to simplify the simulation in order to optimize the results given the same calculation runtime. The object of this study is a thermodynamic analysis of the core of a pool type research reactor, focusing on natural circulation. Due to the high geometrical complexity of the core, the scale transfer process becomes an essential step to the thermodynamic study of the reactor. This process takes place by determining the effective equivalent properties obtained from a detailed simulation of the core and transferring them to a porous medium having a coarse mesh while preserving the overall characteristics. In this way, it will be able to obtain the quadratic resistance coefficient KQ by calculating the pressure drop inside the fuel element. To observe in detail the behavior of this flow, longitudinal and transversal cross sections will be made in different points, thereby observing the velocity and pressure distributions. The analysis will provide detailed data on the fluid flow between the fuel plates enabling the observation of possible critical points or undesired behavior. The whole analysis was made by using the commercial code ANSYS CFX ver. 12.1. This is study will provide data, as a first step to enable future simulations which will consider the entire reactor. (author)

  1. Safety system for reactor container

    International Nuclear Information System (INIS)

    Shimizu, Miwako; Seki, Osamu; Mano, Takio.

    1995-01-01

    A slanted structure is formed below a reactor core where there is a possibility that molten reactor core materials are dropped, and above a water level of a pool which is formed by coolants flown from a reactor recycling system and accumulated on the inner bottom of the reactor container, to prevent molten fuels from dropping at once in the form of a large amount of lump. The molten materials are provisionally received on the structure, gradually formed into small pieces and then dropped. Further, the molten materials are dropped and received provisionally on a group of coolant-flowing pipelines below the structure, to lower the temperature of the molten materials, and then the reactor core molten materials are gradually formed into small pieces and dropped into the pool water. Since they are not dropped directly into the pool water but dropped gradually into the pool water as small droplets, occurrence of steam explosion can be reduced. The occurrence of steam explosion due to dropped molten reactor core material and pool water is suppressed, and the molten materials are kept in the pool water, thereby enabling to maintain the integrity of the reactor container more effectively. (N.H.)

  2. Inspection and repairing method and device for inside of nuclear reactor

    International Nuclear Information System (INIS)

    Ito, Shin; Yuguchi, Yasuhiro; Sato, Katsuhiko

    1996-01-01

    A swimming robot handling device is disposed on a floor of a reactor pit floor or a reactor floor. A swimming robot is connected to a winding device of a composite cable incorporating optical fibers. The swimming robot comprises a robot propulsion device for propelling the robot itself, a laser beam irradiating optical device for irradiating pulsative laser beams introduced by an optical fiber and an antenna mechanism having ultrasonic probe in an antenna-like shape. The swimming robot is lowered in a reactor filled with water and caused to swim to a portion to be welded, and pulsative laser beams are irradiated to the portion to be welded in a state where the antenna mechanism is brought into contact with the portion to be welded to improve the state of stresses on the surface. Further, the ultrasonic oscillations generated upon irradiation of the laser beams are measured using the ultrasonic probe to perform physical inspection. The surface of the portion to be welded can be modified or repaired stably and efficiently by remote control. (N.H.)

  3. Reduction of the pool-top radiation level in HANARO

    International Nuclear Information System (INIS)

    Lee, Choong-Sung; Park, Sang-Jun; Kim, Heonil; Park, Yong-Chul; Choi, Young-San

    1999-01-01

    HANARO is an open-tank-in-pool type reactor. Pool water is the only shielding to minimize the pool top radiation level. During the power ascension test of HANARO, the measured pool top radiation level was higher than the design value because some of the activation products in the coolant reached the pool surface. In order to suppress this rising coolant, the hot water layer system (HWL) was designed and installed to maintain l.2 meter-deep hot water layer whose temperature is 5degC higher than that of the underneath pool surface. After the installation of the HWL system, however, the radiation level of the pool-top did not satisfy the design value. The operation modes of the hot water layer system and the other systems in the reactor pool, which had an effect on the formation of the hot water layer, were changed to reduce pool-top radiation level. After the above efforts, the temperature and the radioactivity distribution in the pool was measured to confirm whether this system blocked the rising coolant. The radiation level at the pool-top was significantly reduced below one tenth of that before installing the HWL and satisfied the design value. It was also confirmed by calculation that this hot water layer system would significantly reduce the release of fission gases to the reactor hall and the environment during the hypothetical accident as well. (author)

  4. Effect of beetroot juice supplementation on aerobic response during swimming.

    Science.gov (United States)

    Pinna, Marco; Roberto, Silvana; Milia, Raffaele; Marongiu, Elisabetta; Olla, Sergio; Loi, Andrea; Migliaccio, Gian Mario; Padulo, Johnny; Orlandi, Carmine; Tocco, Filippo; Concu, Alberto; Crisafulli, Antonio

    2014-01-29

    The beneficial effects of beetroot juice supplementation (BJS) have been tested during cycling, walking, and running. The purpose of the present study was to investigate whether BJS can also improve performance in swimmers. Fourteen moderately trained male master swimmers were recruited and underwent two incremental swimming tests randomly assigned in a pool during which workload, oxygen uptake (VO₂), carbon dioxide production (VCO₂), pulmonary ventilation (VE), and aerobic energy cost (AEC) of swimming were measured. One was a control swimming test (CSW) and the other a swimming test after six days of BJS (0.5 l/day organic beetroot juice containing about 5.5 mmol of NO₃⁻). Results show that workload at anaerobic threshold was significantly increased by BJS as compared to the CSW test (6.3 ± 1 and 6.7 ± 1.1 kg during the CSW and the BJS test respectively). Moreover, AEC was significantly reduced during the BJS test (1.9 ± 0.5 during the SW test vs. 1.7 ± 0.3 kcal·kg⁻¹1·h⁻¹ during the BJS test). The other variables lacked a statistically significant effect with BJS. The present investigation provides evidence that BJS positively affects performance of swimmers as it reduces the AEC and increases the workload at anaerobic threshold.

  5. Practical experience for liquid radioactive waste treatment from spent fuel storage pool on RA reactor in Vinca Institute

    International Nuclear Information System (INIS)

    Plecas, I.; Pavlovic, R.; Pavlovic, S.

    2002-01-01

    The present paper reports the results of the preliminary removal of sludge from the bottom of the spent fuel storage pool in the RA reactor, mechanical filtration of the pool water and sludge conditioning and storage. Yugoslavia is a country without a nuclear power plant (NPP) on its territory. The law which strictly forbids NPP construction is still valid, but, nevertheless we must handle and dispose radioactive waste. This is not only because of radwaste originating from the use of radioactive materials in medicine and industry, but also because of the waste generated by research in the Nuclear Sciences Institute Vinca. In the last forty years, in the Vinca Institute, as a result of two research reactors being operational, named RA and RB, and as a result of the application of radionuclides in medicine, industry and agriculture, radioactive waste materials of different levels of specific activity were generated. As a temporary solution, radioactive waste materials are stored in two interim storages. Radwaste materials that were immobilized in the inactive matrices are to be placed in concrete containers, for further manipulation and disposal.(author)

  6. New set of convective heat transfer coefficients established for pools and validated against CLARA experiments for application to corium pools

    Energy Technology Data Exchange (ETDEWEB)

    Michel, B., E-mail: benedicte.michel@irsn.fr

    2015-05-15

    Highlights: • A new set of 2D convective heat transfer correlations is proposed. • It takes into account different horizontal and lateral superficial velocities. • It is based on previously established correlations. • It is validated against recent CLARA experiments. • It has to be implemented in a 0D MCCI (molten core concrete interaction) code. - Abstract: During an hypothetical Pressurized Water Reactor (PWR) or Boiling Water Reactor (BWR) severe accident with core meltdown and vessel failure, corium would fall directly on the concrete reactor pit basemat if no water is present. The high temperature of the corium pool maintained by the residual power would lead to the erosion of the concrete walls and basemat of this reactor pit. The thermal decomposition of concrete will lead to the release of a significant amount of gases that will modify the corium pool thermal hydraulics. In particular, it will affect heat transfers between the corium pool and the concrete which determine the reactor pit ablation kinetics. A new set of convective heat transfer coefficients in a pool with different lateral and horizontal superficial gas velocities is modeled and validated against the recent CLARA experimental program. 155 tests of this program, in two size configurations and a high range of investigated viscosity, have been used to validate the model. Then, a method to define different lateral and horizontal superficial gas velocities in a 0D code is proposed together with a discussion about the possible viscosity in the reactor case when the pool is semi-solid. This model is going to be implemented in the 0D ASTEC/MEDICIS code in order to determine the impact of the convective heat transfer in the concrete ablation by corium.

  7. Evaluation of biological and physico-chemical quality of public swimming pools, Hamadan (Iran

    Directory of Open Access Journals (Sweden)

    Edris Hoseinzadeh

    2013-01-01

    Conclusion: As results showed the residual chlorine in pools water was lower than standard level and as regard to microbial contamination in pool water, it can be concluded that the disinfection system has been impaired.

  8. Development of the user interface for visualization of the auxiliary systems of the TRIGA Mark III nuclear reactor

    International Nuclear Information System (INIS)

    Merced D, J. E.

    2016-01-01

    The Instituto Nacional de Investigaciones Nucleares (ININ) has a nuclear research reactor type swimming pool with movable core cooled and moderate with light water. The nominal maximum power of the reactor is 1 MW in steady-state operation and can be pulsed at a maximum power of 2,000 MW for approximately 10 milliseconds. This reactor is mainly used to study the effects of radiation on various materials and substances. In 2001 the new control console of the nuclear reactor was installed which was based on two digital computers, one computer controls the bar management mechanisms and the other the systems to the reactor operator. In 2004, the control computer was replaced and the software was updated. Within the modernization and/or updating of the TRIGA Mark III reactor of ININ, is intended (theme of this work) to develop the user interface for the visualization of the auxiliary systems, through a Man-Machine Interface module for the renewal process of the control console. The man-machine interface system to be developed will have communication with the programmable logic controllers that will be constantly monitored and controlled to obtain real-time variables of the reactor behavior. (Author)

  9. Local flow distribution analysis inside the reactor pools of KALIMER-600 and PDRC performance test facility

    International Nuclear Information System (INIS)

    Jeong, Ji Hwan; Hwang, Seong Won; Choi, Kyeong Sik

    2010-05-01

    In the study, 3-dimensional thermal hydraulic analysis was carried out focusing on the thermal hydraulic behavior inside the reactor pools for both KALIMER-600 and one-fifth scale-down test facility. STAR-CD, one of the commercial CFD codes, was used to analyze 3-dimensional incompressible steady-state thermal hydraulic behavior in both designs of KALIMER-600 and the scale-down test facility. In the KALIMER-600 CFD analysis, the pressure drops in the core and IHX gave a good agreement within 1% error range. It was found that the porous media model was appropriate to analyze the pressure distribution inside reactor core and IHX. Also, a validation analysis showed the pressure drop through the porous media under the condition of 80% flow rate and thermal power was calculated 64% less than in 100% condition giving a physically reasonable analytic result. Since the temperatures in the hot-side pool and cold-side pool were estimated to be very close to 540 and 390 .deg. C specified on the design values respectively, the CFD models of heat source and sink was confirmed. Through the study, the methodology of 3-dimensional CFD analysis about KALIMER-600 has been established and proven. Performed with the methodology, the analysis data such as flow velocity, temperature and pressure distribution were compared by normalizing those data for the actual sized modeling and scale-down modeling. As a result, the characteristics of thermal hydraulic behavior were almost identical for the actual sized modeling and scale-down modeling and the similarity scaling law used in the design of the sodium test facility by KAERI was found to be correct

  10. What’s In the Pool? (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    As summer approaches, more and more people will head to the pool, but dangers lurk in the form of waterborne diseases. In this podcast, Michele Hlavsa discusses ways to avoid waterborne diseases while swimming.

  11. Experience and research with the IEA-R1 Brazilian reactor

    International Nuclear Information System (INIS)

    Fulfaro, R.; Sousa, J.A. de; Nastasi, M.J.C.; Vinhas, L.A.; Lima, F.W.

    1982-06-01

    The IEA-R1 reactor of the Instituto de Pesquisas Energeticas e Nucleares, IPEN, of Sao Paulo, Brazil, a lightwater moderated swimming-pool research reactor of MTR type, went critical for the first time on September 16, 1957. In a general way, in these twenty four years the reactor was utilized without interruption by users of IPEN and other institutions, for the accomplishment of work in the field of applied and basic research, for master and doctoral thesis and for technical development. Some works performed and the renewal programme established for the IEA-R1 research reactor in which several improvements and changes were made. Recent activities in terms of production of radioisotopes and some current research programm in the field of Radiochemistry are described, mainly studies and research on chemical reactions and processes using radioactive tracers and development of radioanalytical methods, such as neutron activation and isotopic dilution. The research programmes of the Nuclear Physics Division of IPEN, which includes: nuclear spectroscopy studies and electromagnetic hyperfine interactions; neutron diffraction; neutron inelastic scattering studies in condensed matter; development and application of the technique of fission track register in solid state detectors; neutron radioactive capture with prompt gamma detection and, finally, research in the field of nuclear metrology, are presented. (Author) [pt

  12. Experience and research with the IEA-R1 Brazilian reactor

    International Nuclear Information System (INIS)

    Fulfaro, R.; Sousa, J.A. de; Nastasi, M.J.C.; Vinhas, L.A.; Lima, F.W. de.

    1982-06-01

    The IEA-R1 reactor of the Instituto de Pesquisas Energeticas e Nucleares, IPEN, of Sao Paulo, Brazil, a lighwater moderated swimming-pool research reactor of MTR type, went critical for the first time on September 16, 1957. In a general way, in these twenty four years the reactor was utilized without interruption by users of IPEN and other institutions, for the accomplishment of work in the field of applied and basic research, for master and doctoral thesis and for technical development. Some works performed and the renewal programme established for the IEA-R1 research reactor in which several improvements and changes were made. Recent activities in terms of production of radioisotopes and some current research programm in the field of Radiochemistry are described, mainly studies and research on chemical reactions and processes using radioactive tracers and development of radioanalytical methods, such as neutron activation and isotopic dilution. It is also presented the research programmes of the Nuclear Physics Division of IPEN, which includes: nuclear spectroscopy studies and electromagnetic hyperfine interactions; neutron diffraction; neutron inelastic scattering studies in condensed matter; development and application of the technique of fission track register in solid state detectors; neutron radioactive capture with prompt gamma detection and, finally, research in the field of nuclear metrology. (Author) [pt

  13. Applying physiological principles and assessment techniques to swimming the English Channel. A case study.

    Science.gov (United States)

    Acevedo, E O; Meyers, M C; Hayman, M; Haskin, J

    1997-03-01

    This study presents the use of physiological principles and assessment techniques in addressing four objectives that can enhance a swimmer's likelihood of successfully swimming the English Channel. The four objective were: (1) to prescribe training intensities and determine ideal swimming pace; (2) to determine the amount of insulation needed, relative to heat produced, to diminish the likelihood of the swimmer suffering from hypothermia; (3) to calculate the caloric expenditure for the swim and the necessary glucose replacement required to prevent glycogen depletion; and (4) to determine the rate of acclimatization to cold water (15.56 C/60 F). The subject participated in several pool swimming data collection sessions including a tethered swim incremental protocol to determine peak oxygen consumption and onset of lactate accumulation and several steady state swims to determine ideal swimming pace at 4.0 mM/L of lactate. Additionally, these swims provided information on oxygen consumption, which in combination with ultrasound assessment of subcutaneous fat was used to assess heat production and insulation capabilities. Finally, the subject participated in 18 cold water immersions to document acclimatization rate. The data demonstrated the high fitness level of this subject and indicated that at a stroke rate of 63 stokes/min, HR was 130 heats/min and lactate was 4 mM/L. At this swimming pace the swimmer would need to consume 470 kcal of glucose/hr. In addition, the energy produced at this swim pace was 13.25 kcal/min while the energy lost at the present subcutaneous fat quantity was 13.40 kcal/min, requiring a fat weight gain of 6,363.03 g (13.88 lbs) to resist heat loss. Finally, the data from the cold water immersions suggested that acclimatization occurred following two weeks of immersions. There results were provided to the swimmer and utilized in making decisions in preparation for the swim.

  14. Safety aspects of the cleaning and conditioning of radioactive sludge from spent fuel storage pool on 'RA' Research reactor in the Vinca Institute

    International Nuclear Information System (INIS)

    Pavlovic, R; Pavlovic, S.; Plecas, I.

    1999-01-01

    Spent fuel elements from nuclear reactors in the Vinca Institute have been temporary stored in water filled storage pool. Due to the fact that the water in the spent fuel elements storage pool have not been purified for a long time, all metallic components submerged in the water have been hardly corroded and significant amount of the sludge has been settled on the bottom of the pool. As a first step in improving spent fuel elements storage conditions and slowing down corrosion in the storage spent fuel elements pool we have decided to remove the sludge from the bottom of the pool. Although not high, but slightly radioactive, this sludge had to be treated as radioactive waste material. Some safety aspects and radiation protection measures in the process of the spent fuel storage pool cleaning are presented in this paper

  15. Effect of fastskin suits on performance, drag, and energy cost of swimming.

    Science.gov (United States)

    Chatard, Jean-Claude; Wilson, Barry

    2008-06-01

    To investigate the effect of fastskin suits on 25- to 800-m performances, drag, and energy cost of swimming. The performances, stroke rate and distance per stroke, were measured for 14 competitive swimmers in a 25-m pool, when wearing a normal suit (N) and when wearing a full-body suit (FB) or a waist-to-ankle suit (L). Passive drag, oxygen uptake, blood lactate, and the perceived exertion were measured in a flume. There was a 3.2% +/- 2.4% performance benefit for all subjects over the six distances covered at maximal speed wearing FB and L when compared with N. When wearing L, the gain was significantly lower (1.8% +/- 2.5%, P energy cost of swimming was significantly reduced when wearing FB and L by 4.5% +/- 5.4% and 5.5% +/- 3.1%, respectively (P energy cost of submaximal swimming and an increased distance per stroke, at the same stroke rates, and reduced freestyle performance time.

  16. Influence of reactor design on the establishment of natural circulation in pool-type LMFBR

    International Nuclear Information System (INIS)

    Durham, M.E.

    1976-01-01

    The general principles involved in establishing natural circulation in a pool-type liquid metal cooled fast breeder reactor following loss of a.c. supplies are elucidated and the effects of design features by use of the computer code MELANI are quantified. It is shown that natural circulation can provide a feasible means of emergency core cooling in addition to that provided by pony motors. The choice of primary pump rundown time has a significant effect in controlling peak core outlet temperatures in the hypothetical case of natural circulation alone being the core heat removal process. (author)

  17. Mechanical power, thrust power and propelling efficiency: relationships with elite sprint swimming performance.

    Science.gov (United States)

    Gatta, Giorgio; Cortesi, Matteo; Swaine, Ian; Zamparo, Paola

    2018-03-01

    The purpose of this study was to explore the relationships between mechanical power, thrust power, propelling efficiency and sprint performance in elite swimmers. Mechanical power was measured in 12 elite sprint male swimmers: (1) in the laboratory, by using a whole-body swimming ergometer (W' TOT ) and (2) in the pool, by measuring full tethered swimming force (F T ) and maximal swimming velocity (V max ): W' T  = F T  · V max . Propelling efficiency (η P ) was estimated based on the "paddle wheel model" at V max . V max was 2.17 ± 0.06 m · s -1 , η P was 0.39 ± 0.02, W' T was 374 ± 62 W and W' TOT was 941 ± 92 W. V max was better related to W' T (useful power output: R = 0.943, P swimming performance. The ratio W' T /W' TOT (0.40 ± 0.04) represents the fraction of total mechanical power that can be utilised in water (e.g., η P ) and was indeed the same as that estimated based on the "paddle wheel model"; this supports the use of this model to estimate η P in swimming.

  18. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  19. Overcoming the challenges of conventional dispersive liquid-liquid microextraction: analysis of THMs in chlorinated swimming pools.

    Science.gov (United States)

    Faraji, Hakim; Helalizadeh, Masoumeh; Kordi, Mohammad Reza

    2018-01-01

    A rapid, simple, and sensitive approach to the analysis of trihalomethanes (THMs) in swimming pool water samples has been developed. The main goal of this study was to overcome or to improve the shortcomings of conventional dispersive liquid-liquid microextraction (DLLME) and to maximize the realization of green analytical chemistry principles. The method involves a simple vortex-assisted microextraction step, in the absence of the dispersive solvent, followed by salting-out effect for the elimination of the centrifugation step. A bell-shaped device and a solidifiable solvent were used to simplify the extraction solvent collection after phase separation. Optimization of the independent variables was performed by using chemometric methods in three steps. The method was statistically validated based on authentic guidance documents. The completion time for extraction was less than 8 min, and the limits of detection were in the range between 4 and 72 ng L -1 . Using this method, good linearity and precision were achieved. The results of THMs determination in different real samples showed that in some cases the concentration of total THMs was more than threshold values of THMs determined by accredited healthcare organizations. This method indicated satisfactory analytical figures of merit. Graphical Abstract A novel green microextraction technique for overcoming the challenges of conventional DLLME. The proposed procedure complies with the principles of green/sustainable analytical chemistry, comprising decreasing the sample size, making easy automation of the process, reducing organic waste, diminishing energy consumption, replacing toxic reagents with safer reagents, and enhancing operator safety.

  20. Mitigating the impact of swimming pools on domestic water demand

    African Journals Online (AJOL)

    need to implement desalination schemes by ensuring water is used in in a 'fit for purpose' manner. This study therefore aims to better understand the impact that pools have on residential water demand through the analysis of metered water demand records and end-use modelling. The study site was the Liesbeek.

  1. A Simple Method for Determination of Critical Swimming Velocity in Swimming Flume

    OpenAIRE

    高橋, 繁浩; 若吉, 浩二; Shigehiro, TAKAHASHI; Kohji, WAKAYOSHI; 中京大学; 奈良教育大学教育学部

    2001-01-01

    The purpose of this study was to investigate a simple method for determination of critical swimming velocity (Vcri). Vcri is defined by Wakayoshi et al. (1992) as the swimming speed which could theoretically be maintained forever without exhaustion, and is expressed as the slope of a regression line between swimming distance (D) and swimming time (T) obtained at various swimming speeds. To determine Vcri, 20 well-trained swimmers were measured at several swimming speeds ranging from 1.25 m/se...

  2. Contaminación del aire interior y del agua de baño en piscinas cubiertas de Guipúzcoa Indoor air and bathing water pollution in indoor swimming pools in Guipúzcoa (Spain

    Directory of Open Access Journals (Sweden)

    Loreto Santa Marina

    2009-04-01

    Full Text Available Objetivo: Describir los niveles de contaminantes presentes en las piscinas cubiertas de Guipúzcoa, tanto en el agua de baño como en el aire, y estudiar la relación entre estos contaminantes y otras variables relacionadas con los sistemas de ventilación y el uso de las instalaciones. Métodos: De las 35 piscinas cubiertas registradas en Guipúzcoa se estudiaron las 20 más utilizadas por nadadores. Cada instalación se muestreó 2 días no consecutivos y se midieron los niveles de cloro libre y combinado y trihalometanos en el agua, así como los de cloro total y cloroformo en el aire. Como indicador de la renovación del aire se midió el dióxido de carbono (CO2. Resultados: El nivel medio de cloro en el aire fue de 0,4mg/m³ y el de cloroformo de 22µg/m³. Los valores de cloro libre y combinado de todas las piscinas se mantuvieron dentro de los valores reglamentarios. El nivel medio de cloroformo del agua de baño fue de 13,7µg/l. El valor del cloroformo del aire puede predecirse razonablemente (R²=0,85, y las variables predictoras son el cloroformo del agua, el CO2 y el número de bañistas del día. Conclusiones: Los niveles de contaminantes en el agua y en el aire de las piscinas de Guipúzcoa son inferiores a los descritos en otros estudios. Sin embargo, utilizando la concentración de 0,5mg/m³ de cloro total en aire, propuesta como valor de referencia para la protección de los nadadores con actividad intensa, un 20% de las instalaciones superarían dicho valor.Objective: To describe levels of pollutants found in indoor swimming pools in Guipúzcoa (Basque Country, Spain, both in the bathing water and in the air, and to study the association between these pollutants and other variables related to ventilation systems and the use of installations. Methods: Of the 35 indoor swimming pools registered in Guipúzcoa, the 20 most frequently used by swimmers were studied. Each installation was sampled on two nonconsecutive days. Free and

  3. Reactor thermal behaviors under kinetics parameters variations in fast reactivity insertion

    Energy Technology Data Exchange (ETDEWEB)

    Abou-El-Maaty, Talal [Reactors Department, Atomic Energy Authority, Cairo 13759 (Egypt)], E-mail: talal22969@yahoo.com; Abdelhady, Amr [Reactors Department, Atomic Energy Authority, Cairo 13759 (Egypt)

    2009-03-15

    The influences of variations in some of the kinetics parameters affecting the reactivity insertion are considered in this study, it has been accomplished in order to acquire knowledge about the role that kinetic parameters play in prompt critical transients from the safety point of view. The kinetics parameters variations are limited to the effective delayed neutron fraction ({beta}{sub eff}) and the prompt neutron generation time ({lambda}). The reactor thermal behaviors under the variations in effective delayed neutron fraction and prompt neutron generation time included, the reactor power, maximum fuel temperature, maximum clad temperature, maximum coolant temperature and the mass flux variations at the hot channel. The analysis is done for a typical swimming pool, plate type research reactor with low enriched uranium. The scram system is disabled during the accidents simulations. Calculations were done using PARET code. As a result of simulations, it is concluded that, the reactor (ETRR2) thermal behavior is considerably more sensitive to the variation in the effective delayed neutron fraction than to the variation in prompt neutron generation time and the fast reactivity insertion in both cases causes a flow expansion and contraction at the hot channel exit. The amplitude of the oscillated flow is a qualitatively increases with the decrease in both {beta}{sub eff} and {lambda}.

  4. Current status of operation and utilization of the Dalat research reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Le Van So

    2004-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500 kW swimming pool type reactor using the Soviet WWR-SM fuel assembly with 36% enrichment of U-235. It was upgraded from the USA 250 kW TRIGA Mark-II reactor. The first criticality of the renovated reactor was in November 1983 and its regular operation at nominal power of 500 kW has been since March 1984. The DNRR is operated mainly in continuous runs of 100 hrs, once every 4 weeks, for radioisotope production, neutron activation analyses and research purposes. The remaining time between two continuous runs is devoted to maintenance activities and also to short run for physics experiments and training purpose. From the first start-up to the end of December 2002, it totaled about 24,700 hrs of operation and the total energy released was 490 MWd. After 10 years of operation with the core of 89-fuel assembly configuration, in April 1994, the first refueling work was done and the 100-fuel assembly configuration was set-up. The second fuel reloading was executed in March 2002. At present time, the working configuration of the reactor core consists of 104 fuel assemblies. This fuel reloading will ensure efficient exploitation of the reactor for about 3 years with 1200-1300 hrs per year at nominal power. The current status of operation and utilization and some activities related to the reactor core management of the DNRR are presented and discussed in this paper. (author)

  5. Repairing liner of the reactor; Reparacion del liner del reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-07-15

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  6. Effect of Beetroot Juice Supplementation on Aerobic Response during Swimming

    Directory of Open Access Journals (Sweden)

    Marco Pinna

    2014-01-01

    Full Text Available The beneficial effects of beetroot juice supplementation (BJS have been tested during cycling, walking, and running. The purpose of the present study was to investigate whether BJS can also improve performance in swimmers. Fourteen moderately trained male master swimmers were recruited and underwent two incremental swimming tests randomly assigned in a pool during which workload, oxygen uptake (VO2, carbon dioxide production (VCO2, pulmonary ventilation (VE, and aerobic energy cost (AEC of swimming were measured. One was a control swimming test (CSW and the other a swimming test after six days of BJS (0.5l/day organic beetroot juice containing about 5.5 mmol of NO3−. Results show that workload at anaerobic threshold was significantly increased by BJS as compared to the CSW test (6.3 ± 1 and 6.7 ± 1.1 kg during the CSW and the BJS test respectively. Moreover, AEC was significantly reduced during the BJS test (1.9 ± 0.5 during the SW test vs. 1.7 ± 0.3 kcal·kg−1·h−1 during the BJS test. The other variables lacked a statistically significant effect with BJS. The present investigation provides evidence that BJS positively affects performance of swimmers as it reduces the AEC and increases the workload at anaerobic threshold.

  7. Neutron radiography in Brazil

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1983-01-01

    Neutron radiography studies being carried out in reactor centres in Brazil are discussed. These research projects are under way using the 5 MW swimming pool reactor at the Institute of Energy and Nuclear Research (IPEN) in Sao Paulo and the Argonaut reactor at the Institute of Nuclear Engineering (IEN) in Rio de Janeiro. (Auth.)

  8. Seismic sloshing experiments of large pool-type fast breeder reactors

    International Nuclear Information System (INIS)

    Sakurai, A.; Masuko, Y.; Kurihara, C.; Ishihama, K.; Yashiro, T.; Rodwell, E.

    1989-01-01

    This paper presents the results of seismic sloshing experiments performed on large pool-type LMFBR vessels. Two types of tests were performed. The first type of test was designed to understand the basis phenomena of sloshing (limited to linear sloshing only) and evaluate the effects of the deck-mounted components (i.e., IHXs, pumps, and UIS) on sloshing wave heights using a 1/10-scale model (diameter 2.23 m x H 1.03 m) of the LSPB 1340 MWe pool plant. The second type of test was designed to evaluate the structural integrity of the thermal baffles of the roof-deck to withstand sloshing impulsive pressures (focused on nonlinear sloshing), using a two-dimensional 1/3-scale model (L 8 m x W 3 m x H 2.6 m) of a typical 1000 MWe pool plant. The results of the linear sloshing tests have shown that: 1. the vessel wall stiffness has no effect on the sloshing natural frequency; 2. sloshing wave heights are lowered by 30% to 50% in the presence of the deck-mounted components; and 3. damping factors of sloshing are not influenced by the wall stiffness while they are increased by the presence of the deck-mounted components. The results of the nonlinear sloshing tests are that: 1. the maximum impulsive pressure occurs when the first effective wave strikes at the roof-deck, and thereafter the impulsive pressure decreases irrespective of the impact velocity of the fluid; 2. the first effective wave refers to the case in which the height of the fluid free surface becomes nearly twice the height of the cover gas space; and 3. the structural integrity of the thermal baffles for the roof-deck against the sloshing load was confirmed. In addition to these results, two sloshing-caused problems were identified. The first one is the spillover of hot sodium into the gas-dam type thermal insulator. The second one is cover-gas entrainment into sodium which might lead to a transient overpower (TOP) incident because of the presence of gas bubbles in the reactor core. (orig./HP)

  9. Board Diving Regulations in Public Swimming Pools and Risk of Injury.

    Science.gov (United States)

    Williams, David; Odin, Louise

    2016-06-01

    Public session access to diving boards is one of the stepping stones for those wishing to develop their skills in the sport of diving. The extent to which certain dive forms are considered risky (forward/backward/rotations) and therefore not permitted is a matter for local pool managers. In Study 1, 20 public pools with diving facilities responded to a U.K. survey concerning their diving regulation policy and related injury incidence in the previous year. More restrictive regulation of dive forms was not associated with a decrease in injuries (rs [42] = -0.20, p = 0.93). In Study 2, diving risk perception and attitudes towards regulation were compared between experienced club divers (N = 22) and nondivers (N = 22). Risk was perceived to be lower for those with experience, and these people favored less regulation. The findings are interpreted in terms of a risk thermostat model, where for complex physical performance activities such as diving, individuals may exercise caution in proportion to their ability and previous experience of success and failure related to the activity. Though intuitively appealing, restrictive regulation of public pool diving may be ineffective in practice because risk is not simplistically associated with dive forms, and divers are able to respond flexibly to risk by exercising caution where appropriate. © 2015 Society for Risk Analysis.

  10. The risk of contracting infectious diseases in public swimming pools: a review

    Directory of Open Access Journals (Sweden)

    Zsófia Barna

    2012-12-01

    Full Text Available A review of pathogenic microorganisms presenting risk of infection in pool based artificial recreational water venues is extracted from the available scientific literature. The microorganisms are grouped both according to their way of spread and their survival and growth strategies and their characteristics relevant for the pool and spa based recreation are discussed. In order to put the proposed risks on a solid basis, among others a ten year excerpt of the waterborne disease statistics of the Centers for Disease Control and Prevention (CDC is used throughout the article.

  11. New nuclear heat sources for district heating

    International Nuclear Information System (INIS)

    Lerouge, B.

    1975-01-01

    The means by which urban oil heating may be taken over by new energy sources, especially nuclear, are discussed. Several possibilities exist: pressurized water reactors for high powers, and low-temperature swimming-pool-type process-heat reactors for lower powers. Both these cases are discussed [fr

  12. Use of heterogeneous finite elements generated by collision probability solutions to calculate a pool reactor core

    International Nuclear Information System (INIS)

    Calabrese, C.R.; Grant, C.R.

    1990-01-01

    This work presents comparisons between measured fluxes obtained by activation of Manganese foils in the light water, enriched uranium research pool reactor RA-2 MTR (Materials Testing Reactors) fuel element) and fluxes calculated by the finite element method FEM using DELFIN code, and describes the heterogeneus finite elements by a set of solutions of the transport equations for several different configurations obtained using the collision probability code HUEMUL. The agreement between calculated and measured fluxes is good, and the advantage of using FEM is showed because to obtain the flux distribution with same detail using an usual diffusion calculation it would be necessary 12000 mesh points against the 2000 points that FEM uses, hence the processing time is reduced in a factor ten. An interesting alternative to use in MTR fuel management is presented. (Author) [es

  13. Spent fuel pool cleanup and stabilization

    International Nuclear Information System (INIS)

    Miller, R.L.

    1987-06-01

    Each of the plutonium production reactors at Hanford had a large water-filled spent fuel pool to provide interim storage of irradiated fuel while awaiting shipment to the separation facilities. After cessation of reactor operations the fuel was removed from the pools and the water levels were drawn down to a 5- to 10-foot depth. The pools were maintained with the water to provide shielding and radiological control. What appeared to be a straightforward project to process the water, remove the sediments from the basin, and stabilize the contamination on the floors and walls became a very complex and time consuming operation. The sediment characteristics varied from pool to pool, the ion exchange system required modification, areas of hard-pack sediments were discovered on the floors, special arrangements to handle and package high dose rate items for shipment were required, and contract problems ensued with the subcontractor. The original schedule to complete the project from preliminary engineering to final stabilization of the pools was 15 months. The actual time required was about 25 months. The original cost estimate to perform the work was $2,651,000. The actual cost of the project was $5,120,000, which included $150,000 for payment of claims to the subcontractor. This paper summarizes the experiences associated with the cleanup and radiological stabilization of the 100-B, -C, -D, and -DR spent fuel pools, and discusses a number of lessons learned items

  14. Recovery effects after extinction in the Morris swimming pool navigation task.

    Science.gov (United States)

    Prados, José; Manteiga, Raúl D; Sansa, Joan

    2003-08-01

    In three experiments in which rats were used as subjects, we developed an extinction procedure using a Morris pool. The animals were trained to find a hidden platform located at a fixed position and were then given extinction trials in which the platform was removed from the pool. When training and extinction were carried out in the same context and time was allowed to elapse between extinction and test, spontaneous recovery of learning was observed. On the other hand, those rats that received extinction in a context different from the one used for training failed to show spontaneous recovery of learning when tested in the extinction context after an interval of 96 h. However, they did show renewal of spatial learning when tested in the training context. These results show that extinction in the spatial domain behaves like extinction in standard conditioning preparations.

  15. Measurement of argon concentrations in a TRIGA Mark-III pool

    Energy Technology Data Exchange (ETDEWEB)

    Simms, R [California State University, Northridge, CA (United States)

    1974-07-01

    Argon-41, the principal radioactive effluent from a pool type reactor during normal operation, is produced by the {sup 40}A (n,{gamma}) reaction. The reactant, {sup 40}A, is introduced into the pool water by contact with the air. Reduction in radioactive argon release can be accomplished by reducing the concentration of dissolved {sup 40}A and retaining the {sup 41}A within the pool. However, little data were available concerning the mechanisms of argon introduction, production, retention, and release from a reactor pool. Experiments have therefore been performed at the Torrey Pines TRIGA Mark-III Reactor to develop techniques to sample dissolved argon and to provide data on argon concentrations in the pool for release modeling studies. Significant results for argon dissolved at different pool depths can only be obtained if the water samples are sealed at the point of collection. A special handling tool was developed to perform this remote operation. Pool samples were counted for {sup 41}A soon after collection with a NaI spectrometer. After allowing one day for decay of {sup 41}A, the concentration of {sup 40}A in the water sample was determined by neutron activation analysis. In each case, the 1.29 MeV gamma-ray peak of {sup 41}A was used. Interference from the 1.37 MeV {sup 24}Na peak was considered and its effect subtracted after determining {sup 24}Na content from the 2.75 MeV {sup 24}Na peak and a sodium standard. A Ge(Li) detector was tried and found to eliminate the problem, but it introduced an unacceptable geometrical effect dependent on bubble size within the sample bottles. Samples were taken from the 27 ft deep TRIGA pool at various locations. Results were obtained for samples taken on several different days along the same vertical line about 3-1/2 ft from the reactor centerline. Temperature measurements along this vertical traverse indicated a sharp temperature gradient at about 15 ft below the surface ({approx}6 ft above the top of the reactor). The

  16. Propulsive efficiency of frog swimming with different feet and swimming patterns

    Directory of Open Access Journals (Sweden)

    Fan Jizhuang

    2017-04-01

    Full Text Available Aquatic and terrestrial animals have different swimming performances and mechanical efficiencies based on their different swimming methods. To explore propulsion in swimming frogs, this study calculated mechanical efficiencies based on data describing aquatic and terrestrial webbed-foot shapes and swimming patterns. First, a simplified frog model and dynamic equation were established, and hydrodynamic forces on the foot were computed according to computational fluid dynamic calculations. Then, a two-link mechanism was used to stand in for the diverse and complicated hind legs found in different frog species, in order to simplify the input work calculation. Joint torques were derived based on the virtual work principle to compute the efficiency of foot propulsion. Finally, two feet and swimming patterns were combined to compute propulsive efficiency. The aquatic frog demonstrated a propulsive efficiency (43.11% between those of drag-based and lift-based propulsions, while the terrestrial frog efficiency (29.58% fell within the range of drag-based propulsion. The results illustrate the main factor of swimming patterns for swimming performance and efficiency.

  17. Repairing liner of the reactor; Reparacion del liner del reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-07-15

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  18. An Overview of Ageing Management and Refurbishment of Research Reactors at Trombay

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R. C.; Raina, V. K. [Bhabha Atomic Research Centre, Mumbai (India)

    2014-08-15

    Three nuclear research reactors have been in operation at Bhabha Atomic Research Centre, Mumbai, India. India has a rich experience of about 120 research reactor operating years including ageing management. A well structured programme is in force for plant life management, refurbishment and upgrading reactors in operation. Apsara, commissioned in August 1956, was the first research reactor. Apsara is a 1 MW{sub th} swimming pool type of reactor with a movable core loaded with enriched uranium fuel and immersed in demineralized light water pool, which serves as coolant, moderator and reflector besides providing radiation shielding. Apsara was shut down during May 2009 for partial decommissioning and upgrading to a 2 MW reactor with several safety upgrades, e.g. a LEU based reactor core with higher neutron flux, a new reactor building meeting seismic qualification criteria and two independent shutdown devices. Cirus, a 40 MW{sub th} tank type reactor utilizing heavy water as moderator, graphite as reflector, demineralized light water as primary coolant and natural uranium metal as fuel; has been in operation since 1960. After about three decade of operation, the availability factor started declining mainly due to outage of equipment exhibiting signs of ageing. After ageing studies and performance review, refurbishment requirements were identified. A programme for refurbishment was drawn that included safety upgrades like civil repairs to the emergency storage reservoir to meet seismic qualification criteria and a new iodine removal system for better efficiency. The reactor was shut down during 1997 for execution of this refurbishment programme. After completion of refurbishment, the reactor was brought back into operation during 2003. It has completed about seven years of safe operation after refurbishment with a significant increase in availability factor from 70% to about 90%. The reactor was permanently shut down during December 2010. The reactor core was unloaded

  19. Increase in swimming endurance capacity of mice by capsaicin-induced adrenal catecholamine secretion.

    Science.gov (United States)

    Kim, K M; Kawada, T; Ishihara, K; Inoue, K; Fushiki, T

    1997-10-01

    Increase in endurance swimming capacity caused by capsaicin (CAP), a pungent component of red pepper, -induced increase of fat metabolism in mice was investigated using an adjustable-current water pool. The mice administered CAP via a stomach tube, showed longer swimming time until exhaustion than the control group of mice, in a dose-dependent manner. The maximal effect was observed at a dose of 10 mg/kg while more than 15 mg/kg had no effect. The increase of endurance was observed only when CAP was administered two hours before swimming. After the administration of CAP, the serum glucose concentration rapidly increased and then decreased within 60 min, while the concentration of serum-free fatty acids gradually increased through 3 hours. The residual glycogen concentration of the gastrocnemius muscle after 30 min of swimming was significantly higher in the CAP-administered mice than in control mice, suggesting that use of the serum free fatty acids spared muscle glycogen consumption. The serum adrenaline concentration significantly increased with twin peaks at 30 min and two hours after administration of CAP. An experiment using adrenalectomized mice was done to confirm that the effect of CAP is due to increased energy metabolism through the secretion of adrenaline from the adrenal gland. The swimming endurance capacity of the adrenalectomized mice was not increased by CAP administration, although adrenaline injection induced a 58% increase in the endurance time. These results suggest that the increase of swimming endurance induced by CAP in mice is caused by an increase in fatty acid utilization due to CAP-induced adrenal catecholamine secretion.

  20. One-Dimensional Analysis of Thermal Stratification in AHTR and SFR Coolant Pools

    International Nuclear Information System (INIS)

    Haihua Zhao; Per F. Peterson

    2007-01-01

    Thermal stratification phenomena are very common in pool type reactor systems, such as the liquid-salt cooled Advanced High Temperature Reactor (AHTR) and liquid-metal cooled fast reactor systems such as the Sodium Fast Reactor (SFR). It is important to accurately predict the temperature and density distributions both for design optimation and accident analysis. Current major reactor system analysis codes such as RELAP5 (for LWR's, and recently extended to analyze high temperature reactors), TRAC (for LWR's), and SASSYS (for liquid metal fast reactors) only provide lumped-volume based models which can only give very approximate results and can only handle simple cases with one mixing source. While 2-D or 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, yet such fine grid resolution is difficult or impossible to provide for studying the reactor response to transients due to computational expense. Therefore, new methods are needed to support design optimization and safety analysis of Generation IV pool type reactor systems. Previous scaling has shown that stratified mixing processes in large stably stratified enclosures can be described using one-dimensional differential equations, with the vertical transport by free and wall jets modeled using standard integral techniques. This allows very large reductions in computational effort compared to three-dimensional numerical modeling of turbulent mixing in large enclosures. The BMIX++ (Berkeley mechanistic MIXing code in C++) code was originally developed at UC Berkeley to implement such ideas. This code solves mixing and heat transfer problems in stably stratified enclosures. The code uses a Lagrangian approach to solve 1-D transient governing equations for the ambient fluid and uses analytical or 1-D integral models to compute substructures. By including liquid salt properties, BMIX++ code is

  1. Containment vessel construction for nuclear power reactors

    International Nuclear Information System (INIS)

    Sulzer, H.D.; Coletti, J.L.

    1975-01-01

    A nuclear containment vessel houses an inner reactor housing structure whose outer wall is closely spaced from the inner wall of the containment vessel. The inner reactor housing structure is divided by an intermediate floor providing an upper chamber for housing the reactor and associated steam generators and a lower chamber directly therebeneath containing a pressure suppression pool. Communication between the upper chamber and the pressure suppression pool is established by conduits extending through the intermediate floor which terminate beneath the level of the pressure suppression pool and by inlet openings in the reactor housing wall beneath the level of the pressure suppression pool which communicate with the annulus formed between the outer wall of the reactor housing structure and the inner wall of the containment vessel. (Official Gazette)

  2. The reactor Cabri; La pile cabri

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J; Millot, J P [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m{sup 3}/h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under exceptional

  3. PROPERTIES OF SWIMMING WATER

    Directory of Open Access Journals (Sweden)

    Tayfun KIR

    2004-10-01

    Full Text Available Swimming waters may be hazardous on human health. So, The physicians who work in the facilities, which include swimming areas, are responsible to prevent risks. To ensure hygiene of swimming water, European Swimming Water Directive offers microbiological, physical, and chemical criteria. [TAF Prev Med Bull 2004; 3(5.000: 103-104

  4. Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units.

    Science.gov (United States)

    Fantozzi, Silvia; Giovanardi, Andrea; Magalhães, Fabrício Anício; Di Michele, Rocco; Cortesi, Matteo; Gatta, Giorgio

    2016-01-01

    The analysis of the joint kinematics during swimming plays a fundamental role both in sports conditioning and in clinical contexts. Contrary to the traditional video analysis, wearable inertial-magnetic measurements units (IMMUs) allow to analyse both the underwater and aerial phases of the swimming stroke over the whole length of the swimming pool. Furthermore, the rapid calibration and short data processing required by IMMUs provide coaches and athletes with an immediate feedback on swimming kinematics during training. This study aimed to develop a protocol to assess the three-dimensional kinematics of the upper limbs during swimming using IMMUs. Kinematics were evaluated during simulated dry-land swimming trials performed in the laboratory by eight swimmers. A stereo-photogrammetric system was used as the gold standard. The results showed high coefficient of multiple correlation (CMC) values, with median (first-third quartile) of 0.97 (0.93-0.95) and 0.99 (0.97-0.99) for simulated front-crawl and breaststroke, respectively. Furthermore, the joint angles were estimated with an accuracy increasing from distal to proximal joints, with wrist indices showing median CMC values always higher than 0.90. The present findings represent an important step towards the practical use of technology based on IMMUs for the kinematic analysis of swimming in applied contexts.

  5. Introduction to the study of boiling in swimming-pool reactors. Measurement of the efficiency of a CC5 chamber

    International Nuclear Information System (INIS)

    Froelicher, B.

    1967-01-01

    The efficiency of a CC5 ionisation chamber has been evaluated by a rough measurement: by integrating the relationship P(f) = ε F0 (1 + ε A) over the band width of the apparatus, it is possible to show the influence of ε. This conventional method of operation is not very precise and so a more realistic value of the efficiency will be derived later using the plot of the low power transfer function of the reactor Ulysse, this being a more exact method. (author) [fr

  6. Controlled-frequency breath swimming improves swimming performance and running economy.

    Science.gov (United States)

    Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S

    2015-02-01

    Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P swimming may improve muscular oxygen utilization during terrestrial exercise in novice swimmers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Fukushima - calculation of the reactor core inventory and storage pools Dai-ichi 1 to Dai-ichi 4, an estimation of a source term

    International Nuclear Information System (INIS)

    Krpelanova, M.; Carny, P.

    2011-01-01

    Inventory of the reactor core and spent fuel storage pool of the reactors at Dai-ichi 1 to Dai-ichi 4 was determined to need a realistic estimate of the source (released into the atmosphere environment) and modelling of radiological impact of the events in Fukushima NPP. Calculations of inventories were carried out by the methodology that is used in systems to support emergency response and crisis management anymore. Calculations were made based on a model that respects knowledge of real fuels and fuel cycles for individual reactors Dai-ichi. Necessary input data for training the model and calculate inventories are obtained from the IAEA PRIS database.

  8. Safety evaluation report related to the renewal of the operating license for the Worcester Polytechnic Institute open-pool training reactor, Docket No. 50-134

    International Nuclear Information System (INIS)

    1982-12-01

    This Safety Evaluation Report for the application filed by the Worcester Polytechnic Institute (WPI) for a renewal of Operating License R-61 to continue to operate the WPI 10-kW open-pool training reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is owned and operated by the Worcester Polytechnic Institute and is located on the WPI campus in Worcester, Worcester County, Massachusetts. The staff concludes that the reactor facility can continue to be operated by WPI without endangering the health and safety of the public

  9. Studies of thermal stratification in water pool

    International Nuclear Information System (INIS)

    Verma, P.K.; Chandraker, D.K.; Nayak, A.K.; Vijayan, P.K.

    2015-01-01

    Large water pools are used as a heat sink for various cooling systems used in industry. In context of advance nuclear reactors like AHWR, it is used as ultimate heat sink for passive systems for decay heat removal and containment cooling. This system incorporates heat exchangers submerged in the large water pool. However, heat transfer by natural convection in pool poses a problem of thermal stratification. Due to thermal stratification hot layers of water accumulate over the relatively cold one. The heat transfer performance of heat exchanger gets deteriorated as a hot fluid envelops it. In the nuclear reactors, the walls of the pool are made of concrete and it may subject to high temperature due to thermal stratification which is not desirable. In this paper, a concept of employing shrouds around the heat source is studied. These shrouds provide a bulk flow in the water pool, thereby facilitating mixing of hot and cold fluid, which eliminate stratification. The concept has been applied to the a scaled model of Gravity Driven Water Pool (GDWP) of AHWR in which Isolation Condensers (IC) tubes are submerged for decay heat removal of AHWR using ICS and thermal stratification phenomenon was predicted with and without shrouds. To demonstrate the adequacy of the effectiveness of shroud arrangement and to validate the simulation methodology of RELAP5/Mod3.2, experiments has been conducted on a scaled model of the pool with and without shroud. (author)

  10. What’s In the Pool? (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2013-05-30

    As summer approaches, more and more people will head to the pool, but dangers lurk in the form of waterborne diseases. In this podcast, Michele Hlavsa discusses ways to avoid waterborne diseases while swimming.  Created: 5/30/2013 by MMWR.   Date Released: 5/30/2013.

  11. Emergency water supply facility for nuclear reactor

    International Nuclear Information System (INIS)

    Karasawa, Toru

    1998-01-01

    Water is stored previously in an equipment storage pit disposed on an operator floor of a reactor building instead of a condensate storage vessel. Upon occurrence of an emergency, water is supplied from the equipment storage pit by way of a sucking pipeline to a pump of a high pressure reactor core water injection circuit and a pump of a reactor-isolation cooling circuit to supply water to a reactor. The equipment storage pit is arranged in a building so that the depth thereof is determined to keep the required amount of water by storing water at a level lower than the lower end of a pool gate during normal operation. Water is also supplied from the equipment storage pit by way of a supply pipeline to a spent fuel storage pool on the operation floor of the reactor building. Namely, water is supplied to the spent fuel storage pool by a pump of a fuel pool cooling and cleaning circuit. This can eliminate a suppression pool cleaning circuit. (I.N.)

  12. Differences in the energy cost between children and adults during front crawl swimming.

    Science.gov (United States)

    Kjendlie, Per-Ludvik; Ingjer, Frank; Madsen, Ørjan; Stallman, Robert Keig; Stray-Gundersen, James

    2004-04-01

    There is little information available about the swimming economy of children. The aim of this study was to examine any possible differences in swimming economy in children and adults, swimming front crawl submaximally. Swimming economy was compared in adults [ n=13, aged 21.4 (3.7) years] and children [n=10, aged 11.8 (0.8) years] tested at four submaximal 6-min workloads. Oxygen consumption (VO2) was measured with Douglas bags in a 25-m pool and pacer lights were used to control the velocities. Swimming economy was scaled to body size using mass (BM), body surface area (BSA) and body length (BL). Children had lower VO2 (litres per minute) at a given velocity than the adults, with 1.86 (0.28) and 2.39 (0.20) l min(-1) respectively (at 1.00 m s(-1)). When scaling for size, children had higher VO2 measured in litres per square metre per minute and millilitres per kilogram per minute (divided by BSA and BM) than adults. The VO2 divided by BL was found not to differ between the two groups. The O2 cost of swimming 1 m at a velocity of 1.00 m s(-1) was lower in the children [31.0 (4.6) ml m(-1)] than in the adults [39.9 (3.3) ml m(-1) Pswimming velocity cubed and VO2 exists as shown earlier for adults. It is concluded that, when scaling for BSA and BM, children are less economical than adults, when scaling for BL, children are equally economical, and when considering energy cost per metre and absolute VO2, children are more economical than the adults.

  13. The life-extension and upgrade program of the Tsing Hua Open-pool Reactor (THOR) and its research prospectives

    International Nuclear Information System (INIS)

    Kai, J.-J.

    1992-01-01

    The Tsing Hua Open-Pool Reactor (THOR) has been operated for thirty years. It is the regulations of the ROCAEC that any reactor shall be decommissioned after forty-year operation since the first fuel loading. Therefore, for extending the lifetime of THOR, it is necessary to have a life-extension program to be approved by the ROCAEC and also completed by the year of 1997. At the same time, for proceeding new research purposes, it is planed to upgrade the thermal power of THOR from 1 Wth up to 3 Wth and hopefully to reach the maximum thermal neutron flux of 5x10 13 n/cm 2 .s and the fast flux close to that order. New research directions involve (a) boron-captured neutron cancer therapy (BNCT) (b) small-angle neutron scattering (SANS). (author)

  14. Status and some safety philosophies of the China advanced research reactor CARR

    International Nuclear Information System (INIS)

    Luzheng Yuan

    2001-01-01

    The existing two research reactors, HWRR (heavy water research reactor) and SPR (swimming pool reactor), have been operated by China Institute of Atomic Energy (CIAE) since, respectively, 1958 and 1964, and are both in extending service and facing the aging problem. It is expected that they will be out of service successively in the beginning decade of the 21 st century. A new, high performance and multipurpose research reactor called China advanced research reactor (CARR) will replace these two reactors. This new reactor adopts the concept of inverse neutron trap compact core structure with light water as coolant and heavy water as the outer reflector. Its design goal is as follows: under the nuclear power of 60MW, the maximum unperturbed thermal neutron flux in peripheral D 2 O reflector not less than 8 x 10 14 n/cm 2 . s while in central experimental channel, if the central cell to be replaced by an experimental channel, the corresponding value not less than 1 x 10 15 n/cm 2 . s. The main applications for this research reactor will cover RI production, neutron scattering experiments, NAA and its applications, neutron photography, NTD for monocrystaline silicon and applications on reactor engineering technology. By the end of 1999, the preliminary design of CARR was completed, then the draft of preliminary safety analysis report (PSAR) was submitted to the relevant authority at the end of 2000 for being reviewed. Now, the CARR project has entered the detail design phase and safety reviewing procedure for obtaining the construction permit from the relevant licensing authority. This paper will only briefly introduce some aspects of safety philosophy of CARR design and PSAR. (orig.)

  15. Swimming Performance of Adult Asian Carp: Field Assessment Using a Mobile Swim Tunnel

    Science.gov (United States)

    2016-08-01

    ERDC/TN ANSRP-16-1 August 2016 Approved for public release; distribution is unlimited. Swimming Performance of Adult Asian Carp: Field...Assessment Using a Mobile Swim Tunnel by Jan Jeffrey Hoover, Jay A. Collins, Alan W. Katzenmeyer, and K. Jack Killgore PURPOSE: Empirical swim speed...test in traditional laboratory swim tunnels. Biologists from the Engineer Research and Development Center (ERDC) Environmental Laboratory (EL), with

  16. The influence of elements of synchronized swimming on technique of the selected swimming strokes

    OpenAIRE

    Široký, Michal

    2015-01-01

    Title: The influence of elements of synchronized swimming on technique of the selected swimming strokes Objectives: The objective of the thesis is to assess the effect of the elements of synchronized swimming at improving the techniques of swimming. Methods: The results were detected by overt observation with active participation and subsequent scaling on the ordinal scale 1 to 5. Results: The results show that the influence of the elements of synchronized swimming on improving the technique ...

  17. Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers.

    Science.gov (United States)

    Lätt, Evelin; Jürimäe, Jaak; Mäestu, Jarek; Purge, Priit; Rämson, Raul; Haljaste, Kaja; Keskinen, Kari L; Rodriguez, Ferran A; Jürimäe, Toivo

    2010-01-01

    The purpose of this study was to analyze the relationships between 100-m front crawl swimming performance and relevant biomechanical, anthropometrical and physiological parameters in male adolescent swimmers. Twenty five male swimmers (mean ± SD: age 15. 2 ± 1.9 years; height 1.76 ± 0.09 m; body mass 63.3 ± 10.9 kg) performed an all-out 100-m front crawl swimming test in a 25-m pool. A respiratory snorkel and valve system with low hydrodynamic resistance was used to collect expired air. Oxygen uptake was measured breath-by-breath by a portable metabolic cart. Swimming velocity, stroke rate (SR), stroke length and stroke index (SI) were assessed during the test by time video analysis. Blood samples for lactate measurement were taken from the fingertip pre exercise and at the third and fifth minute of recovery to estimate net blood lactate accumulation (ΔLa). The energy cost of swimming was estimated from oxygen uptake and blood lactate energy equivalent values. Basic anthropometry included body height, body mass and arm span. Body composition parameters were measured using dual-energy X-ray absorptiometry (DXA). Results indicate that biomechanical factors (90.3%) explained most of 100-m front crawl swimming performance variability in these adolescent male swimmers, followed by anthropometrical (45.8%) and physiological (45.2%) parameters. SI was the best single predictor of performance, while arm span and ∆La were the best anthropometrical and physiological indicators, respectively. SI and SR alone explained 92.6% of the variance in competitive performance. These results confirm the importance of considering specific stroke technical parameters when predicting success in young swimmers. Key pointsThis study investigated the influence of different anthropometrical, physiological and biomechanical parameters on 100-m swimming performance in adolescent boys.Biomechanical factors contributed most to sprint swimming performance in these young male swimmers (90

  18. RA Reactor

    International Nuclear Information System (INIS)

    1978-02-01

    In addition to basic characteristics of the RA reactor, organizational scheme and financial incentives, this document covers describes the state of the reactor components after 18 years of operation, problems concerned with obtaining the licence for operation with 80% fuel, problems of spent fuel storage in the storage pool of the reactor building and the need for renewal of reactor equipment, first of all instrumentation [sr

  19. Development of Lower Plenum Molten Pool Module of Severe Accident Analysis Code in Korea

    International Nuclear Information System (INIS)

    Son, Donggun; Kim, Dong-Ha; Park, Rae-Jun; Bae, Jun-Ho; Shim, Suk-Ku; Marigomen, Ralph

    2014-01-01

    To simulate a severe accident progression of nuclear power plant and forecast reactor pressure vessel failure, we develop computational software called COMPASS (COre Meltdown Progression Accident Simulation Software) for whole physical phenomena inside the reactor pressure vessel from a core heat-up to a vessel failure. As a part of COMPASS project, in the first phase of COMPASS development (2011 - 2014), we focused on the molten pool behavior in the lower plenum, heat-up and ablation of reactor vessel wall. Input from the core module of COMPASS is relocated melt composition and mass in time. Molten pool behavior is described based on the lumped parameter model. Heat transfers in between oxidic, metallic molten pools, overlying water, steam and debris bed are considered in the present study. The models and correlations used in this study are appropriately selected by the physical conditions of severe accident progression. Interaction between molten pools and reactor vessel wall is also simulated based on the lumped parameter model. Heat transfers between oxidic pool, thin crust of oxidic pool and reactor vessel wall are considered and we solve simple energy balance equations for the crust thickness of oxidic pool and reactor vessel wall. As a result, we simulate a benchmark calculation for APR1400 nuclear power plant, with assumption of relocated mass from the core is constant in time such that 0.2ton/sec. We discuss about the molten pool behavior and wall ablation, to validate our models and correlations used in the COMPASS. Stand-alone SIMPLE program is developed as the lower plenum molten pool module for the COMPASS in-vessel severe accident analysis code. SIMPLE program formulates the mass and energy balance for water, steam, particulate debris bed, molten corium pools and oxidic crust from the first principle and uses models and correlations as the constitutive relations for the governing equations. Limited steam table and the material properties are provided

  20. Heat removing device for reactor container

    International Nuclear Information System (INIS)

    Hisamochi, Kohei; Matsumoto, Tomoyuki; Matsumoto, Masayoshi; Sato, Ken-ichi.

    1996-01-01

    A recycling loop for reactor water is disposed in a reactor pressure vessel of a BWR type reactor. Extracted reactor water from the recycling loop passes through a extracted reactor water pipeline and flows into a reactor coolant cleanup system. A pipeline for connecting the extracted reactor water pipeline and a suppression pool is disposed, and a discharged water pressurizing pump is disposed to the pipeline. Upon occurrence of emergency, discharged water from the suppression pool is pressurized by a discharged water pressurizing pump and sent to a reactor coolant cleanup system. The discharged water is cooled while passing through a sucking water cooling portion of a regenerative heat exchanger and a non-regenerative heat exchanger. Then, it is sent to a feed water pipeline passing a bypass line of a filtering desalter and a bypass line of the sucked water cooling portion of the regenerative heat exchanger, injected to the inside of the pressure vessel to cool the reactor core and remove after-heat. Then, it cools the inside of the reactor container together with coolants flown out of the pressure vessel and then returns to the suppression pool. (I.N.)

  1. Analysis of radiation shields of BNPP spent fuel pool

    International Nuclear Information System (INIS)

    Ayoobian, N.; Hadad, K.; Nematollahi, M. R.

    2007-01-01

    Radioactive protection is one of the most important subjects in nuclear power plants safety. Analysis of BNPP spent fuel pool shielding , as a main source of energetic γ-rays was the main goal of this project. Firstly, we simulated the reactor core using WIMSD-4 neutronic code and the amount of fission product in the fuel assembly (FA) was calculated during the reactor operation. Then, by obtaining the results from the previous calculation and by using MCNP4C nuclear code , the intensity of γ-rays was obtained in layers of spent fuel pool shields. The results have shown that no significant γ-rays passed through these shields. Finally, an accident and resulting exposure dose above the pool was analyzed

  2. Analysis of swimming performance: perceptions and practices of US-based swimming coaches.

    Science.gov (United States)

    Mooney, Robert; Corley, Gavin; Godfrey, Alan; Osborough, Conor; Newell, John; Quinlan, Leo Richard; ÓLaighin, Gearóid

    2016-01-01

    In elite swimming, a broad range of methods are used to assess performance, inform coaching practices and monitor athletic progression. The aim of this paper was to examine the performance analysis practices of swimming coaches and to explore the reasons behind the decisions that coaches take when analysing performance. Survey data were analysed from 298 Level 3 competitive swimming coaches (245 male, 53 female) based in the United States. Results were compiled to provide a generalised picture of practices and perceptions and to examine key emerging themes. It was found that a disparity exists between the importance swim coaches place on biomechanical analysis of swimming performance and the types of analyses that are actually conducted. Video-based methods are most frequently employed, with over 70% of coaches using these methods at least monthly, with analyses being mainly qualitative in nature rather than quantitative. Barriers to the more widespread use of quantitative biomechanical analysis in elite swimming environments were explored. Constraints include time, cost and availability of resources, but other factors such as sources of information on swimming performance and analysis and control over service provision are also discussed, with particular emphasis on video-based methods and emerging sensor-based technologies.

  3. Reactor power control device

    International Nuclear Information System (INIS)

    Imaruoka, Hiromitsu.

    1994-01-01

    A high pressure water injection recycling system comprising injection pipelines of a high pressure water injection system and a flow rate control means in communication with a pool of a pressure control chamber is disposed to a feedwater system of a BWR type reactor. In addition, the flow rate control means is controlled by a power control device comprising a scram impossible transient event judging section, a required injection flow rate calculation section for high pressure water injection system and a control signal calculation section. Feed water flow rate to be supplied to the reactor is controlled upon occurrence of a scram impossible transient event of the reactor. The scram impossible transient event is judged based on reactor output signals and scram operation demand signals and injection flow rate is calculated based on a predetermined reactor water level, and condensate storage tank water or pressure control chamber pool water is injected to the reactor. With such procedures, water level can be ensured and power can be suppressed. Further, condensate storage tank water of low enthalpy is introduced to the pressure suppression chamber pool to directly control elevation of water temperature and ensure integrity of the pressure vessel and the reactor container. (N.H.)

  4. Hospital hydrotherapy pools treated with ultra violet light: bad bacteriological quality and presence of thermophilic Naegleria.

    Science.gov (United States)

    De Jonckheere, J. F.

    1982-01-01

    The microbiological quality of eight halogenated and two u.v.-treated hydrotherapy pools in hospitals was investigated. The microbiological quality of halogenated hydrotherapy pools was comparable to halogenated public swimming pools, although in some Pseudomonas aeruginosa and faecal pollution indicators were more frequent due to bad management. On the other hand u.v.-treated hydrotherapy pools had very bad microbiological quality. Apart from faecal pollution indicators, P. aeruginosa was present in very high numbers. Halogenated hydrotherapy pools were not highly contaminated with amoebae, and Naegleria spp. were never detected. On the other hand u.v.-treated pools contained very high numbers of thermophilic Naegleria. The Naegleria isolated were identified as N. lovaniensis, a species commonly found in association with N. fowleri. Isoenzyme analysis showed a different type of N. lovaniensis was present in each of two u.v.-treated pools. Images Plate 1 PMID:7061835

  5. Repairing liner of the reactor

    International Nuclear Information System (INIS)

    Aguilar H, F.

    2001-07-01

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  6. Natural Convection Heat Transfer of Oxide Pool During In-Vessel Retention of Core Melts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae-Kyun; Chung, Bum-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The integrity of reactor vessel may be threatened by the heat generation at the oxide pool and to the natural convection heat transfer to the reactor vessel by those two layers. Therefore, External Reactor Vessel Cooling (ERVC) is performed in order to secure the integrity of the reactor vessel. Whether the IVR(In-Vessel Retention) Strategy can be applicable to a larger reactor is the technical concern, which nourished the research interest for the natural convection heat transfer of metal and oxide pool and ERVC performance. Especially, it is hard to simulate oxide pool by experimentally due to the high level of buoyancy. Moreover, the volumetrically exothermic working fluid should be adopted to simulate the behavior of the core melts. Therefore, the volumetric heat sources that immersed in the working fluid have been adopted to simulate oxide pool by experiment. We investigated oxide pool with two different designs of the volumetric heat sources that adopted previous experiments. The investigation was performed by mass transfer experiment using analogy between heat and mass transfers. The results were compared to previous studies. We simulated the natural convection heat transfer of the oxide pool by mass transfer experiment. The isothermally cooled condition was established by limiting current technique firstly. The results were compared to previous studies under identical design of the volumetric heat sources. The average Nu's of the curvature and the top plate were close to the previous studies.

  7. Estudo das condições sanitárias das águas de piscinas públicas e particulares, na cidade de Araraquara, SP, Brasil Sanitary conditions of private and public swimming-pools in Araraquara, State of S. Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Clara Pechmann Mendonça

    1978-06-01

    Full Text Available Levando-se em consideração que a natação é um exercício excelente para a saúde e tem sido um esporte preferido por pessoas de várias idades de ambos os sexos; e que a massa líquida, contida em tanques, pode veicular doenças, procurou-se estudar as condições sanitárias de algumas piscinas públicas e particulares da Cidade de Araraquara, SP (Brasil. Em 36 tomadas de amostras de águas de piscinas públicas e 22 de piscinas particulares, constatou-se que, embora recebendo tratamento específico, elas não mantêm os níveis de cloro suficiente para impedir a proliferação de bactérias, algumas das quais perigosas para a saúde dos freqüentadores. Verificou-se que os níveis de cloretos estavam altos, indicando contaminação das águas por urina ou mesmo suor do corpo, e concluiu-se que o banhista deveria receber instruções a respeito.Taking into account that swimming is excelent exercise for health in general, and has been prefered as a sport by people of all ages and both sexes, and that the liquid mass contained in tanks can transmit diseases, a study was undertaken in order to verify the hygienic conditions of some of the public and private swimming pools in the City of Araraquara, State of S. Paulo, Brazil. Thirty-six samples of water from public swimming pools and 22 from private ones were taken. It was verified that, although receiving a specific treatment, they did not maintain sufficient chlorine levels to restrain the proliferation of bacteria, some of which dangerous to the health of bathers. Likewise, chloride levels were seen to be high, which indicate that the water was contaminated by urine or even by sweat, leading to the conclusion that bathers must receive adequate instruction.

  8. Dynamic design load of type 2 water-flow capsule in Nuclear Safety Research Reactor in Tokai Research Establishment of Japan Atomic Energy Research Institute, and its reuse test

    International Nuclear Information System (INIS)

    1981-01-01

    A report by the Nuclear Safety Bureau of the Science and Technology Agency to the Nuclear Safety Commission was presented on the validity of the dynamic design load of type 2 water-flow capsule and the method of its reuse test. The safety in both aspects of the capsule was confirmed. The Nuclear Safety Research Reactor (NSRR), in which the water-flow capsule is set, is a swimming pool type reactor, fueled with enriched uranium, having heat output of 300 kW in normal operation and maximum instantaneous heat output of 23,000 MW in pulse operation. The type 2 water-flow capsule, with the initial conditions simulating a power generating LWR plant and being appropriately set, is used to acquire the data on fuel behavior and destructive power in pulse irradiation. (J.P.N.)

  9. Dynamic design load of type 2 water-flow capsule in Nuclear Safety Research Reactor in Tokai Research Establishment of Japan Atomic Energy Research Institute, and its reuse test

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A report by the Nuclear Safety Bureau of the Science and Technology Agency to the Nuclear Safety Commission was presented on the validity of the dynamic design load of type 2 water-flow capsule and the method of its reuse test. The safety in both aspects of the capsule was confirmed. The Nuclear Safety Research Reactor (NSRR), in which the water-flow capsule is set, is a swimming pool type reactor, fueled with enriched uranium, having heat output of 300 kW in normal operation and maximum instantaneous heat output of 23,000 MW in pulse operation. The type 2 water-flow capsule, with the initial conditions simulating a power generating LWR plant and being appropriately set, is used to acquire the data on fuel behavior and destructive power in pulse irradiation.

  10. The Effect of Swimming Experience on Acquisition and Retention of Swimming-Based Taste Aversion Learning in Rats

    Science.gov (United States)

    Masaki, Takahisa; Nakajima, Sadahiko

    2010-01-01

    Swimming endows rats with an aversion to a taste solution consumed before swimming. The present study explored whether the experience of swimming before or after the taste-swimming trials interferes with swimming-based taste aversion learning. Experiment 1 demonstrated that a single preexposure to 20 min of swimming was as effective as four or…

  11. Numerical analysis and scale experiment design of the hot water layer system of the Brazilian Multipurpose Reactor (RMB reactor)

    International Nuclear Information System (INIS)

    Schweizer, Fernando Lage Araújo

    2014-01-01

    The Brazilian Multipurpose Reactor (RMB) consists in a 30 MW open pool research reactor and its design is currently in development. The RMB is intended to produce a neutron flux applied at material irradiation for radioisotope production and materials and nuclear fuel tests. The reactor is immersed in a deep water pool needed for radiation shielding and thermal protection. A heating and purifying system is applied in research reactors with high thermal power in order to create a Hot Water Layer (HWL) on the pool top preventing that contaminated water from the reactor core neighboring reaches its surface reducing the room radiation dose rate. This dissertation presents a study of the HWL behavior during the reactor operation first hours where perturbations due to the cooling system and pool heating induce a mixing flow in the HWL reducing its protection. Numerical simulations using the CFD code CFX 14.0 have been performed for theoretical dose rate estimation during reactor operation, for a 1/10 scaled down model using dimensional analysis and mesh testing as an initial verification of the commercial code application. Equipment and sensor needed for an experimental bench project were defined by the CFD numerical simulation. (author)

  12. PHYSIOLOGICAL, BIOMECHANICAL AND ANTHROPOMETRICAL PREDICTORS OF SPRINT SWIMMING PERFORMANCE IN ADOLESCENT SWIMMERS

    Directory of Open Access Journals (Sweden)

    Evelin Lätt

    2010-09-01

    Full Text Available The purpose of this study was to analyze the relationships between 100-m front crawl swimming performance and relevant biomechanical, anthropometrical and physiological parameters in male adolescent swimmers. Twenty five male swimmers (mean ± SD: age 15. 2 ± 1.9 years; height 1.76 ± 0.09 m; body mass 63.3 ± 10.9 kg performed an all-out 100-m front crawl swimming test in a 25-m pool. A respiratory snorkel and valve system with low hydrodynamic resistance was used to collect expired air. Oxygen uptake was measured breath-by-breath by a portable metabolic cart. Swimming velocity, stroke rate (SR, stroke length and stroke index (SI were assessed during the test by time video analysis. Blood samples for lactate measurement were taken from the fingertip pre exercise and at the third and fifth minute of recovery to estimate net blood lactate accumulation (?La. The energy cost of swimming was estimated from oxygen uptake and blood lactate energy equivalent values. Basic anthropometry included body height, body mass and arm span. Body composition parameters were measured using dual-energy X-ray absorptiometry (DXA. Results indicate that biomechanical factors (90.3% explained most of 100-m front crawl swimming performance variability in these adolescent male swimmers, followed by anthropometrical (45.8% and physiological (45.2% parameters. SI was the best single predictor of performance, while arm span and ∆La were the best anthropometrical and physiological indicators, respectively. SI and SR alone explained 92.6% of the variance in competitive performance. These results confirm the importance of considering specific stroke technical parameters when predicting success in young swimmers.

  13. Research reactor in-core fuel management optimization by application of multiple cyclic interchange algorithms

    Energy Technology Data Exchange (ETDEWEB)

    van Geemert, R.; Hoogenboom, J.E.; Gibcus, H.P.M. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Quist, A.J. [Delft University of Technology, Faculty of Applied Mathematics and Informatics Mekelweg 4, 2628 JB, Delft (Netherlands)

    1998-12-01

    Fuel shuffling optimization procedures are proposed for the Hoger Onderwijs Reactor (HOR) in Delft, The Netherlands, a 2MWth swimming-pool type research reactor. These procedures are based on the multiple cyclic interchange approach, according to which the search for the reload pattern associated with the highest objective function value can be thought of as divided in multiple stages. The transition from the initial to the final stage is characterized by an increase in the degree of locality of the search procedure. The general idea is that, during the first stages, the `elite` cluster containing the group of best patterns must be located, after which the solution space is sampled in a more and more local sense to find the local optimum in this cluster. The transition(s) from global search behaviour to local search behaviour can be either prompt, by defining strictly separate search regimes, or gradual by introducing stochastic acceptance tests. The possible objectives and the safety and operation constraints, as well as the optimization procedure, are discussed, followed by some optimization results for the HOR. (orig.) 4 refs.

  14. Research reactor in-core fuel management optimization by application of multiple cyclic interchange algorithms

    International Nuclear Information System (INIS)

    Geemert, R. van; Hoogenboom, J.E.; Gibcus, H.P.M.

    1998-01-01

    Fuel shuffling optimization procedures are proposed for the Hoger Onderwijs Reactor (HOR) in Delft, The Netherlands, a 2MWth swimming-pool type research reactor. These procedures are based on the multiple cyclic interchange approach, according to which the search for the reload pattern associated with the highest objective function value can be thought of as divided in multiple stages. The transition from the initial to the final stage is characterized by an increase in the degree of locality of the search procedure. The general idea is that, during the first stages, the 'elite' cluster containing the group of best patterns must be located, after which the solution space is sampled in a more and more local sense to find the local optimum in this cluster. The transition(s) from global search behaviour to local search behaviour can be either prompt, by defining strictly separate search regimes, or gradual by introducing stochastic acceptance tests. The possible objectives and the safety and operation constraints, as well as the optimization procedure, are discussed, followed by some optimization results for the HOR. (orig.)

  15. Development of neutron detectors and neutron radiography at ...

    Indian Academy of Sciences (India)

    BARC, Department of Atomic Energy units and some universities and research institutes in India and .... by Solid State Physics Division for various applications, using the 400 kW swim- ming pool type reactor, Apsara as the neutron source.

  16. Velocity Fields Measurement of Natural Circulation Flow inside a Pool Using PIV Technique

    International Nuclear Information System (INIS)

    Kim, Seok; Kim, Dong Eok; Youn, Young Jung; Euh, Dong Jin; Song, Chul Hwa

    2012-01-01

    Thermal stratification is encountered in large pool of water increasingly being used as heat sink in new generation of advanced reactors. These large pools at near atmospheric pressure provide a heat sink for heat removal from the reactor or steam generator, and the containment by natural circulation as well as a source of water for core cooling. For examples, the PAFS (passive auxiliary feedwater system) is one of the advanced safety features adopted in the APR+ (Advanced Power Reactor Plus), which is intended to completely replace the conventional active auxiliary feedwater system. The PAFS cools down the steam generator secondary side and eventually removes the decay heat from the reactor core by adopting a natural convection mechanism. In a pool, the heat transfer from the PCHX (passive condensation heat exchanger) contributed to increase the pool temperature up to the saturation condition and induce the natural circulation flow of the PCCT (passive condensate cooling tank) pool water. When a heat rod is placed horizontally in a pool of water, the fluid adjacent to the heat rod gets heated up. In the process, its density reduces and by virtue of the buoyancy force, the fluid in this region moves up. After reaching the top free surface, the heated water moves towards the other side wall of the pool along the free surface. Since this heated water is cooling, it goes downward along the wall at the other side wall. Above heater rod, a natural circulation flow is formed. However, there is no flow below heater rod until pool water temperature increases to saturation temperature. In this study, velocity measurement was conducted to reveal a natural circulation flow structure in a small pool using PIV (particle image velocimetry) measurement technique

  17. Structural integrity assessment of HANARO pool cover

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    2001-11-01

    This report is for the seismic analysis and the structural integrity evaluation of HANARO Pool Cover in accordances with the requirement of the Technical Specification for Seismic Analysis of HANARO Pool Cover. For performing the seismic analysis and evaluating the structural integrity for HANARO Pool Cover, the finite element analysis model using ANSYS 5.7 was developed and the dynamic characteristics were analyzed. The seismic response spectrum analyses of HANARO Pool Cover under the design floor response spectrum loads of OBE and SSE were performed. The analysis results show that the stress values in HANARO Pool Cover for the seismic loads are within the ASME Code limits. It is also confirmed that the fatigue usage factor is less than 1.0. Therefore any damage on structural integrity is not expected when an HANARO Pool Cover is installed in the upper part of the reactor pool

  18. Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters

    DEFF Research Database (Denmark)

    Cheema, Waqas Akram; Manasfi, Tarek; Kaarsholm, Kamilla Marie Speht

    2017-01-01

    Several brominated disinfection by-products (DBPs) are formed in chlorinated seawater pools, due to the high concentration of bromide in seawater. UV irradiation is increasingly employed in freshwater pools, because UV treatment photodegrades harmful chloramines. However, in freshwater pools it has...

  19. The reactor Cabri; La pile cabri

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J.; Millot, J.P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m{sup 3}/h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under

  20. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)