WorldWideScience

Sample records for swimming fish embiotoca

  1. Pectoral fin beat frequency predicts oxygen consumption during spontaneous activity in a labriform swimming fish (Embiotoca lateralis)

    DEFF Research Database (Denmark)

    Tudorache, Christian; Jordan, Anders D.; Svendsen, Jon Christian

    2009-01-01

    The objective of this study was to identify kinematic variables correlated with oxygen consumption during spontaneous labriform swimming. Kinematic variables (swimming speed, change of speed, turning angle, turning rate, turning radius and pectoral fin beat frequency) and oxygen consumption (MO2......) of spontaneous swimming in Embiotoca lateralis were measured in a circular arena using video tracking and respirometry, respectively. The main variable influencing MO2 was pectoral fin beat frequency (r (2) = 0.71). No significant relationship was found between swimming speed and pectoral fin beat frequency...

  2. Gait transition and oxygen consumption in swimming striped surfperch Embiotoca lateralis Agassiz

    DEFF Research Database (Denmark)

    Cannas, M.; Schaefer, J.; Domenici, P.

    2006-01-01

    A flow-through respirometer and swim tunnel was used to estimate the gait transition speed (Up-c) of striped surfperch Embiotoca lateralis, a labriform swimmer, and to investigate metabolic costs associated with gait transition. The Up-c was defined as the lowest speed at which fish decrease...... the use of pectoral fins significantly. While the tail was first recruited for manoeuvring at relatively low swimming speeds, the use of the tail at these low speeds [as low as 0·75 body (fork) lengths s-1, LF s-1) was rare (..., either in addition to pectoral fins or during burst-and-coast mode. Oxygen consumption increased exponentially with swimming speeds up to gait transition, and then levelled off. Similarly, cost of transport (CT) decreased with increasing speed, and then levelled off near Up-c. When speeds =Up...

  3. Kinematics and energetic benefits of schooling in the labriform fish, striped surfperch Embiotoca lateralis

    DEFF Research Database (Denmark)

    Johansen, J. L.; Vaknin, R.; Steffensen, John Fleng

    2010-01-01

    Schooling can provide fish with a number of behavioural and ecological advantages, including increased food supply and reduced predator risk. Previous work suggests that fish swimming using body and caudal fin locomotion may also experience energetic advantages when trailing behind neighbours....... However, little is known about the potential energetic advantages associated with schooling in fish that swim using their pectoral fins. Using the striped surfperch Embiotoca lateralis, a labriform fish that swims routinely with its pectoral fins, we found that pectoral fin beat frequencies were...... significantly higher for schooling individuals swimming in the front of a school relative to those swimming in the back, with trailing individuals benefiting from a 14.9 +/- 3.2% reduction in fin beat frequency (mean +/- SE). Trailing fish were estimated to benefit from a 25.6% reduction in oxygen consumption...

  4. Swimming performance assessment in fishes.

    Science.gov (United States)

    Tierney, Keith B

    2011-05-20

    Swimming performance tests of fish have been integral to studies of muscle energetics, swimming mechanics, gas exchange, cardiac physiology, disease, pollution, hypoxia and temperature. This paper describes a flexible protocol to assess fish swimming performance using equipment in which water velocity can be controlled. The protocol involves one to several stepped increases in flow speed that are intended to cause fish to fatigue. Step speeds and their duration can be set to capture swimming abilities of different physiological and ecological relevance. Most frequently step size is set to determine critical swimming velocity (U(crit;)), which is intended to capture maximum sustained swimming ability. Traditionally this test has consisted of approximately ten steps each of 20 min duration. However, steps of shorter duration (e.g. 1 min) are increasingly being utilized to capture acceleration ability or burst swimming performance. Regardless of step size, swimming tests can be repeated over time to gauge individual variation and recovery ability. Endpoints related to swimming such as measures of metabolic rate, fin use, ventilation rate, and of behavior, such as the distance between schooling fish, are often included before, during and after swimming tests. Given the diversity of fish species, the number of unexplored research questions, and the importance of many species to global ecology and economic health, studies of fish swimming performance will remain popular and invaluable for the foreseeable future.

  5. Fluid Mechanics of Fish Swimming

    Indian Academy of Sciences (India)

    user

    shark). Redrawn from Review of Fish. Swimming Modes for Aquatic. Locomotion, IEEE Journal of. Oceanic Engineering, Vol.24,. No.2, pp. 237–252, 1999, D M. Lane, M Sfakiotakis and J B C. Davies, Heriot-Watt University. undulatory → oscillatory caudaltail¯n (B C F ) m otions are know n collectively as. B C F sw im m ers.

  6. Fluid Mechanics of Fish Swimming

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 1. Fluid Mechanics of Fish Swimming - Lift-based Propulsion. Jaywant H Arakeri. General Article Volume 14 Issue 1 January 2009 pp 32-46. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Fluid Mechanics of Fish Swimming

    Indian Academy of Sciences (India)

    user

    forces generated by their °apping tails. A nguilliform sw im m .... In natural systems, like a human walking or a ¯sh swimming, there is always unsteadiness. ... (L) mainly from the wings balances the weight (W). b) For the fish shown here the thrust is mainly from the flapping tail. Lift from fins and buoyancy (FB ) bal- ance the ...

  8. Energetics of swimming of schooling fish

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    schools. Oxygen consumption of swimming fish increases exponentially or as a power function with respect to swimming speed, and hence the decrease in oxygen saturation through the school is related to the swimming speed of the school. A model describing the oxygen saturation in a fish school from front...

  9. Energetics of swimming of schooling fish

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    Soc for experimental Biol Annual Meeting - Salzburg 2012 John F. Steffensen (University of Copenhagen, Denmark) When a fish school swims through the water, every individual consumes a certain amount of oxygen, which means that less will be available for the trailing fish in the school. In 1967 Mc......Farland and Moss reported that the oxygen saturation decreased approximately 30% from the front to the rear of an approximately 150-m long school of mullets swimming in normoxic water. They also observed that the decline in oxygen saturation at the rear resulted in the school disintegrating into smaller separate...... schools. Oxygen consumption of swimming fish increases exponentially or as a power function with respect to swimming speed, and hence the decrease in oxygen saturation through the school is related to the swimming speed of the school. A model describing the oxygen saturation in a fish school from front...

  10. Swimming and other activities: applied aspects of fish swimming performance

    Science.gov (United States)

    Castro-Santos, Theodore R.; Farrell, A.P.

    2011-01-01

    Human activities such as hydropower development, water withdrawals, and commercial fisheries often put fish species at risk. Engineered solutions designed to protect species or their life stages are frequently based on assumptions about swimming performance and behaviors. In many cases, however, the appropriate data to support these designs are either unavailable or misapplied. This article provides an overview of the state of knowledge of fish swimming performance – where the data come from and how they are applied – identifying both gaps in knowledge and common errors in application, with guidance on how to avoid repeating mistakes, as well as suggestions for further study.

  11. Swimming and muscle structure in fish

    NARCIS (Netherlands)

    Spierts, I.L.Y.

    1999-01-01

    In this series of studies the relations between swimming behaviour of fish in general and extreme swimming responses in particular (called fast starts or escape responses) and the structure and ontogeny of the muscle system was investigated. Special attention was paid to relate functional

  12. Muscle dynamics in fish during steady swimming

    DEFF Research Database (Denmark)

    Shadwick, RE; Steffensen, JF; Katz, SL

    1998-01-01

    SYNOPSIS. Recent research in fish locomotion has been dominated by an interest in the dynamic mechanical properties of the swimming musculature. Prior observations have indicated that waves of muscle activation travel along the body of an undulating fish faster than the resulting waves of muscular...... position in swimming fish. Quantification of muscle contractile properties in cyclic contractions relies on in vitro experiments using strain and activation data collected in vivo. In this paper we discuss the relation between these parameters and body kinematics. Using videoradiographic data from swimming...... constant cross-section of red muscle along much of the body suggests that positive power for swimming is generated fairly uniformly along the length of the fish....

  13. Biomechanics of swimming in developing larval fish

    NARCIS (Netherlands)

    Voesenek, Cees J.; Muijres, Florian T.; Leeuwen, Van Johan L.

    2018-01-01

    Most larvae of bony fish are able to swim almost immediately after hatching. Their locomotory system supports several vital functions: fish larvae make fast manoeuvres to escape from predators, aim accurately during suction feeding and maymigrate towards suitable future habitats. Owing to their

  14. Swimming in air-breathing fishes.

    Science.gov (United States)

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  15. The evolution of phenotypic plasticity in fish swimming

    Science.gov (United States)

    Oufiero, Christopher E.; Whitlow, Katrina R.

    2016-01-01

    Abstract Fish have a remarkable amount of variation in their swimming performance, from within species differences to diversity among major taxonomic groups. Fish swimming is a complex, integrative phenotype and has the ability to plastically respond to a myriad of environmental changes. The plasticity of fish swimming has been observed on whole-organismal traits such as burst speed or critical swimming speed, as well as underlying phenotypes such as muscle fiber types, kinematics, cardiovascular system, and neuronal processes. Whether the plastic responses of fish swimming are beneficial seems to depend on the environmental variable that is changing. For example, because of the effects of temperature on biochemical processes, alterations of fish swimming in response to temperature do not seem to be beneficial. In contrast, changes in fish swimming in response to variation in flow may benefit the fish to maintain position in the water column. In this paper, we examine how this plasticity in fish swimming might evolve, focusing on environmental variables that have received the most attention: temperature, habitat, dissolved oxygen, and carbon dioxide variation. Using examples from previous research, we highlight many of the ways fish swimming can plastically respond to environmental variation and discuss potential avenues of future research aimed at understanding how plasticity of fish swimming might evolve. We consider the direct and indirect effects of environmental variation on swimming performance, including changes in swimming kinematics and suborganismal traits thought to predict swimming performance. We also discuss the role of the evolution of plasticity in shaping macroevolutionary patterns of diversity in fish swimming. PMID:29491937

  16. Ectoparasites increase swimming costs in a coral reef fish.

    Science.gov (United States)

    Binning, Sandra A; Roche, Dominique G; Layton, Cayne

    2013-02-23

    Ectoparasites can reduce individual fitness by negatively affecting behavioural, morphological and physiological traits. In fishes, there are potential costs if ectoparasites decrease streamlining, thereby directly compromising swimming performance. Few studies have examined the effects of ectoparasites on fish swimming performance and none distinguish between energetic costs imposed by changes in streamlining and effects on host physiology. The bridled monocle bream (Scolopsis bilineatus) is parasitized by an isopod (Anilocra nemipteri), which attaches above the eye. We show that parasitized fish have higher standard metabolic rates (SMRs), poorer aerobic capacities and lower maximum swimming speeds than non-parasitized fish. Adding a model parasite did not affect SMR, but reduced maximum swimming speed and elevated oxygen consumption rates at high speeds to levels observed in naturally parasitized fish. This demonstrates that ectoparasites create drag effects that are important at high speeds. The higher SMR of naturally parasitized fish does, however, reveal an effect of parasitism on host physiology. This effect was easily reversed: fish whose parasite was removed 24 h earlier did not differ from unparasitized fish in any performance metrics. In sum, the main cost of this ectoparasite is probably its direct effect on streamlining, reducing swimming performance at high speeds.

  17. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves

  18. Pelagic behaviour of reservoir fishes: sinusoidal swimming and associated behaviour

    OpenAIRE

    JAROLÍM, Oldřich

    2009-01-01

    Annotation Long-term fixed-location hydroacoustic study with uplooking transducer was performed during 2005 in Římov reservoir, Czech Republic. It dealt mainly with fish behaviour in the open water of reservoir, especially with sinusoidal swimming behaviour. The dependence of pelagic fish behaviour on environmental conditions was also studied.

  19. Sinusoidal cycling swimming pattern of reservoir fishes

    Czech Academy of Sciences Publication Activity Database

    Čech, Martin; Kubečka, Jan

    2002-01-01

    Roč. 61, č. 2 (2002), s. 456-471 ISSN 0022-1112 R&D Projects: GA AV ČR IAA6017901; GA AV ČR IAA6017201; GA ČR GA206/02/0520 Keywords : sinusoidal swimming * echosounder * reservoir Subject RIV: EH - Ecology, Behaviour Impact factor: 1.186, year: 2002

  20. Analytical insights into optimality and resonance in fish swimming

    Science.gov (United States)

    Kohannim, Saba; Iwasaki, Tetsuya

    2014-01-01

    This paper provides analytical insights into the hypothesis that fish exploit resonance to reduce the mechanical cost of swimming. A simple body–fluid fish model, representing carangiform locomotion, is developed. Steady swimming at various speeds is analysed using optimal gait theory by minimizing bending moment over tail movements and stiffness, and the results are shown to match with data from observed swimming. Our analysis indicates the following: thrust–drag balance leads to the Strouhal number being predetermined based on the drag coefficient and the ratio of wetted body area to cross-sectional area of accelerated fluid. Muscle tension is reduced when undulation frequency matches resonance frequency, which maximizes the ratio of tail-tip velocity to bending moment. Finally, hydrodynamic resonance determines tail-beat frequency, whereas muscle stiffness is actively adjusted, so that overall body–fluid resonance is exploited. PMID:24430125

  1. Analytical insights into optimality and resonance in fish swimming.

    Science.gov (United States)

    Kohannim, Saba; Iwasaki, Tetsuya

    2014-03-06

    This paper provides analytical insights into the hypothesis that fish exploit resonance to reduce the mechanical cost of swimming. A simple body-fluid fish model, representing carangiform locomotion, is developed. Steady swimming at various speeds is analysed using optimal gait theory by minimizing bending moment over tail movements and stiffness, and the results are shown to match with data from observed swimming. Our analysis indicates the following: thrust-drag balance leads to the Strouhal number being predetermined based on the drag coefficient and the ratio of wetted body area to cross-sectional area of accelerated fluid. Muscle tension is reduced when undulation frequency matches resonance frequency, which maximizes the ratio of tail-tip velocity to bending moment. Finally, hydrodynamic resonance determines tail-beat frequency, whereas muscle stiffness is actively adjusted, so that overall body-fluid resonance is exploited.

  2. Hydrodynamics of burst swimming fish larvae; a conceptual model approach

    NARCIS (Netherlands)

    Verhagen, J.H.G.

    2004-01-01

    Burst swimming of fish larvae is analysed from a hydrodynamic point of view. A picture of the expected flow pattern is presented based on information in literature on unsteady-flow patterns around obstacles in the intermediate Reynolds number region. It is shown that the acceleration stage of burst

  3. Modeling and Simulation of Fish-Like Swimming in a Straight-Line Swimming State Using Immersed Boundary Method

    Directory of Open Access Journals (Sweden)

    Wenquan Wang

    2014-05-01

    Full Text Available A self-propelled swimming fish model is established, which can reflect the interaction between fish movement, internal force generated by muscle contraction, and the external force provided by fluid. Using finite element immersed boundary method combined with traditional feedback force method, the self-propelled swimming fish is numerically simulated. Firstly, a self-induced vibration of a cantilever beam immersed in a fluid is one of the benchmarks of fluid-structure interaction, which is used to verify the validity of the numerical method. Secondly, start and cruise process of a single swimming fish in a straight-line swimming state is simulated and analysis of the flow characteristics and fish body movement features is done. The results reveal that the fish gain energy from flow field by the conversion of “C” type and “S” type of fish body.

  4. Optimum swimming pathways of fish spawning migrations in rivers

    Science.gov (United States)

    McElroy, Brandon; DeLonay, Aaron; Jacobson, Robert

    2012-01-01

    Fishes that swim upstream in rivers to spawn must navigate complex fluvial velocity fields to arrive at their ultimate locations. One hypothesis with substantial implications is that fish traverse pathways that minimize their energy expenditure during migration. Here we present the methodological and theoretical developments necessary to test this and similar hypotheses. First, a cost function is derived for upstream migration that relates work done by a fish to swimming drag. The energetic cost scales with the cube of a fish's relative velocity integrated along its path. By normalizing to the energy requirements of holding a position in the slowest waters at the path's origin, a cost function is derived that depends only on the physical environment and not on specifics of individual fish. Then, as an example, we demonstrate the analysis of a migration pathway of a telemetrically tracked pallid sturgeon (Scaphirhynchus albus) in the Missouri River (USA). The actual pathway cost is lower than 105 random paths through the surveyed reach and is consistent with the optimization hypothesis. The implication—subject to more extensive validation—is that reproductive success in managed rivers could be increased through manipulation of reservoir releases or channel morphology to increase abundance of lower-cost migration pathways.

  5. The Fastskin Revolution From Human Fish to Swimming Androids

    Directory of Open Access Journals (Sweden)

    Jennifer Craik

    2011-04-01

    Full Text Available The story of fastskin swimsuits reflects some of the challenges facing the impact of technology in postmodern culture. Introduced in 1999 and ratified for the Sydney 2000 Olympic Games, fastskin swimsuits were touted as revolutionising competitive swimming. Ten years later, they were banned by the world’s swimming regulatory body FINA (the Fédération Internationale de Natation, with the ban taking effect from January 2010 (Shipley 2009. The reason was the controversy caused by the large number of world records that were broken by competitors wearing polyurethane swimsuits, the next generation of the original fast skin suits. These suits were deemed to be providing an artificial advantage by increasing buoyancy and reducing drag. This had been an issue ever since they were introduced, yet FINA had approved the suits and, thereby, unleashed an unstoppable technological revolution of the sport of competitive swimming. Underlying this was the issue about its implications of the transformation of a sport based on the movement of the human body through water without the aid of artificial devices or apparatus. This article argues that the advent of the fastskin has not only transformed the art of swimming but has created a new image of the swimmer as a virtual android rather than a human fish. In turn, the image of the sport of swimming has been re-mapped as a technical artefact and sci-fi spectacle based on a radically transformed concept of the swimming body as a material object that has implications for the ideal of the fashionable body.

  6. Relationship between fish kairomone concentration in a lake and phototactic swimming by Daphnia

    NARCIS (Netherlands)

    Van Gool, E.; Ringelberg, J.

    2002-01-01

    Light-induced swimming behaviour of Daphnia can lead to diel vertical migration. When this occurs, Daphnia may escape from predation by juvenile 0+ fish. For this to happen, swimming in response to the change in light intensity at dawn and dusk must be enhanced. This enhanced swimming reaction can

  7. Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish

    Science.gov (United States)

    Gerry, Shannon P.; Ellerby, David J.

    2014-01-01

    Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858

  8. Resolving shifting patterns of muscle energy use in swimming fish.

    Directory of Open Access Journals (Sweden)

    Shannon P Gerry

    Full Text Available Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.

  9. Ultrasound backscatter from free-swimming fish at 1 MHz for fish identification

    DEFF Research Database (Denmark)

    Pham, An Hoai; Lundgren, Bo; Stage, Bjarne

    2012-01-01

    In the frequency range well below 1 MHz, the swimbladder is often considered the most important part for acoustic fish detection. In this work a portable system was developed to not only detect but also try to identify free-swimming fish. It has been used to measure the ultrasound backscatter at ...... indicate that at 1 MHz the surface areas (also fins and tail) of the fish can give echoes that are much stronger (up to 3 times) than the swimbladder can, therefore important for identification of fish......In the frequency range well below 1 MHz, the swimbladder is often considered the most important part for acoustic fish detection. In this work a portable system was developed to not only detect but also try to identify free-swimming fish. It has been used to measure the ultrasound backscatter at 1...... MHz from fish. The system consists of a Reson TC3210 1 MHz single-element transducer, a dual-frequency, multi-beam Blueview P900-2250 sonar, and three Oregon ATC9K cameras. The Reson transducer is connected to an Olympus pulser-receiver monitored by a portable computer through a Picoscope 4226 PC...

  10. On burst-and-coast swimming performance in fish-like locomotion

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M-H, E-mail: mhsuan@mail.nkmu.edu.t, E-mail: meng.hsuan.chung@gmail.co [Institute of Ocean Engineering and Technology, National Kaohsiung Marine University, Kaohsiung City 81143, Taiwan (China)

    2009-09-15

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  11. On burst-and-coast swimming performance in fish-like locomotion.

    Science.gov (United States)

    Chung, M-H

    2009-09-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  12. How the body contributes to the wake in undulatory fish swimming: Flow fields of a swimming eel (Anguilla anguilla)

    NARCIS (Netherlands)

    Müller, Ulrike K.; Smit, Joris; Stamhuis, Eize J.; Videler, John J.

    2001-01-01

    Undulatory swimmers generate thrust by passing a transverse wave down their body. Thrust is generated not just at the tail, but also to a varying degree by the body, depending on the fish's morphology and swimming movements. To examine the mechanisms by which the body in particular contributes to

  13. Hydrodynamics of unsteady fish swimming and the effects of body size : Comparing the flow fields of fish larvae and adults

    NARCIS (Netherlands)

    Mueller, U.K; Stamhuis, E.J; Videler, J.J

    Zebra danios (Brachydanio rerio) swim in a burst-and-coast mode. Most swimming bouts consist of a single tail flick and a coasting phase, during which the fish keeps its body straight. When visualising the flow in a horizontal section through the wake, the effects of the flow regime become apparent

  14. Quantitative wake analysis of a freely swimming fish using 3D synthetic aperture PIV

    OpenAIRE

    Mendelson, Leah Rose; Techet, Alexandra H.

    2015-01-01

    Synthetic aperture PIV (SAPIV) is used to quantitatively analyze the wake behind a giant danio (Danio aequipinnatus) swimming freely in a seeded quiescent tank. The experiment is designed with minimal constraints on animal behavior to ensure that natural swimming occurs. The fish exhibits forward swimming and turning behaviors at speeds between 0.9 and 1.5 body lengths/second. Results show clearly isolated and linked vortex rings in the wake structure, as well as the thrust jet coming off of ...

  15. Riding the waves : the role of the body wave in undulatory fish swimming

    NARCIS (Netherlands)

    Muller, UK; Stamhuis, EJ; Videler, JJ

    2002-01-01

    A continuously swimming mullet modulates its thrust production by changing slip-the ratio between its swimming speed U and the speed V with which the body wave travels down its body. This variation in thrust is reflected in the wake of the fish. We obtained 2-dimensional impressions of the wake

  16. Swimming

    Science.gov (United States)

    ... re just learning to swim, stay in the shallow end. Don't push or jump on others. ... and treatment, consult your doctor. © 1995- The Nemours Foundation. All rights reserved. Images provided by The Nemours ...

  17. Quantitative wake analysis of a freely swimming fish using 3D synthetic aperture PIV

    Science.gov (United States)

    Mendelson, Leah; Techet, Alexandra H.

    2015-07-01

    Synthetic aperture PIV (SAPIV) is used to quantitatively analyze the wake behind a giant danio ( Danio aequipinnatus) swimming freely in a seeded quiescent tank. The experiment is designed with minimal constraints on animal behavior to ensure that natural swimming occurs. The fish exhibits forward swimming and turning behaviors at speeds between 0.9 and 1.5 body lengths/second. Results show clearly isolated and linked vortex rings in the wake structure, as well as the thrust jet coming off of a visual hull reconstruction of the fish body. As a benchmark for quantitative analysis of volumetric PIV data, the vortex circulation and impulse are computed using methods consistent with those applied to planar PIV data. Volumetric momentum analysis frameworks are discussed for linked and asymmetric vortex structures, laying a foundation for further volumetric studies of swimming hydrodynamics with SAPIV. Additionally, a novel weighted refocusing method is presented as an improvement to SAPIV reconstruction.

  18. Intra- and Intersexual swim bladder dimorphisms in the plainfin midshipman fish (Porichthys notatus): Implications of swim bladder proximity to the inner ear for sound pressure detection.

    Science.gov (United States)

    Mohr, Robert A; Whitchurch, Elizabeth A; Anderson, Ryan D; Forlano, Paul M; Fay, Richard R; Ketten, Darlene R; Cox, Timothy C; Sisneros, Joseph A

    2017-11-01

    The plainfin midshipman fish, Porichthys notatus, is a nocturnal marine teleost that uses social acoustic signals for communication during the breeding season. Nesting type I males produce multiharmonic advertisement calls by contracting their swim bladder sonic muscles to attract females for courtship and spawning while subsequently attracting cuckholding type II males. Here, we report intra- and intersexual dimorphisms of the swim bladder in a vocal teleost fish and detail the swim bladder dimorphisms in the three sexual phenotypes (females, type I and II males) of plainfin midshipman fish. Micro-computerized tomography revealed that females and type II males have prominent, horn-like rostral swim bladder extensions that project toward the inner ear end organs (saccule, lagena, and utricle). The rostral swim bladder extensions were longer, and the distance between these swim bladder extensions and each inner-ear end organ type was significantly shorter in both females and type II males compared to that in type I males. Our results revealed that the normalized swim bladder length of females and type II males was longer than that in type I males while there was no difference in normalized swim bladder width among the three sexual phenotypes. We predict that these intrasexual and intersexual differences in swim bladder morphology among midshipman sexual phenotypes will afford greater sound pressure sensitivity and higher frequency detection in females and type II males and facilitate the detection and localization of conspecifics in shallow water environments, like those in which midshipman breed and nest. © 2017 Wiley Periodicals, Inc.

  19. Body Fineness Ratio as a Predictor of Maximum Prolonged-Swimming Speed in Coral Reef Fishes

    Science.gov (United States)

    Walker, Jeffrey A.; Alfaro, Michael E.; Noble, Mae M.; Fulton, Christopher J.

    2013-01-01

    The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at Umax. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax. For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax. For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax, which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies. PMID:24204575

  20. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.

    Science.gov (United States)

    Babu, Mannam Naga Praveen; Mallikarjuna, J M; Krishnankutty, P

    Two-dimensional velocity fields around a freely swimming freshwater black shark fish in longitudinal (XZ) plane and transverse (YZ) plane are measured using digital particle image velocimetry (DPIV). By transferring momentum to the fluid, fishes generate thrust. Thrust is generated not only by its caudal fin, but also using pectoral and anal fins, the contribution of which depends on the fish's morphology and swimming movements. These fins also act as roll and pitch stabilizers for the swimming fish. In this paper, studies are performed on the flow induced by fins of freely swimming undulatory carangiform swimming fish (freshwater black shark, L  = 26 cm) by an experimental hydrodynamic approach based on quantitative flow visualization technique. We used 2D PIV to visualize water flow pattern in the wake of the caudal, pectoral and anal fins of swimming fish at a speed of 0.5-1.5 times of body length per second. The kinematic analysis and pressure distribution of carangiform fish are presented here. The fish body and fin undulations create circular flow patterns (vortices) that travel along with the body waves and change the flow around its tail to increase the swimming efficiency. The wake of different fins of the swimming fish consists of two counter-rotating vortices about the mean path of fish motion. These wakes resemble like reverse von Karman vortex street which is nothing but a thrust-producing wake. The velocity vectors around a C-start (a straight swimming fish bends into C-shape) maneuvering fish are also discussed in this paper. Studying flows around flapping fins will contribute to design of bioinspired propulsors for marine vehicles.

  1. Digesting or swimming? Integration of the postprandial metabolism, behavior and locomotion in a frequently foraging fish.

    Science.gov (United States)

    Nie, Li-Juan; Cao, Zhen-Dong; Fu, Shi-Jian

    2017-02-01

    Fish that are active foragers usually perform routine activities while digesting their food; thus, their postprandial swimming capacity and related behavior adjustments might be ecologically important. To test whether digestion affect swimming performance and the relationships of digestion with metabolism and behavior in an active forager, we investigated the postprandial metabolic response, spontaneous swimming activities, critical swimming speed (Ucrit), and fast-start escape performance of both fasted and digesting (3h after feeding to satiation) juvenile rose bitterling (Rhodeus ocellatus). Feeding to satiation elicited a 50% increase in the oxygen consumption rate, which peaked at 3h after feeding and returned to the prefeeding state after another 3h. However, approximately 50% and 90% of individuals resumed feeding behavior at 2 and 3h postfeeding, respectively, although the meal size varied substantially. Digestion showed no effect on either steady swimming performance as suggested by the Ucrit or unsteady swimming performance indicated by the maximum linear velocity in fast-start escape movement. However, digesting fish showed more spontaneous activity as indicated by the longer total distance traveled, mainly through an increased percentage of time spent moving (PTM). A further analysis found that fasting individuals with high swimming speed were more inclined to increase their PTM during digestive processes. The present study suggests that as an active forager With a small meal size and hence limited postprandial physiological and morphological changes, the swimming performance of rose bitterling is maintained during digestion, which might be crucial for its active foraging mode and anti-predation strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Center of mass motion in swimming fish: effects of speed and locomotor mode during undulatory propulsion.

    Science.gov (United States)

    Xiong, Grace; Lauder, George V

    2014-08-01

    Studies of center of mass (COM) motion are fundamental to understanding the dynamics of animal movement, and have been carried out extensively for terrestrial and aerial locomotion. But despite a large amount of literature describing different body movement patterns in fishes, analyses of how the center of mass moves during undulatory propulsion are not available. These data would be valuable for understanding the dynamics of different body movement patterns and the effect of differing body shapes on locomotor force production. In the present study, we analyzed the magnitude and frequency components of COM motion in three dimensions (x: surge, y: sway, z: heave) in three fish species (eel, bluegill sunfish, and clown knifefish) swimming with four locomotor modes at three speeds using high-speed video, and used an image cross-correlation technique to estimate COM motion, thus enabling untethered and unrestrained locomotion. Anguilliform swimming by eels shows reduced COM surge oscillation magnitude relative to carangiform swimming, but not compared to knifefish using a gymnotiform locomotor style. Labriform swimming (bluegill at 0.5 body lengths/s) displays reduced COM sway oscillation relative to swimming in a carangiform style at higher speeds. Oscillation frequency of the COM in the surge direction occurs at twice the tail beat frequency for carangiform and anguilliform swimming, but at the same frequency as the tail beat for gymnotiform locomotion in clown knifefish. Scaling analysis of COM heave oscillation for terrestrial locomotion suggests that COM heave motion scales with positive allometry, and that fish have relatively low COM oscillations for their body size. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Fish foot prints : Morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus risso)

    NARCIS (Netherlands)

    Mueller, U.K; van den Heuvel, B.L.E.; Stamhuis, Eize; Videler, J.J

    1997-01-01

    The structure of the wake behind a continuously swimming mullet was analysed qualitatively and quantitatively by applying two-dimensional particle image velocimetry. A detailed analysis of the flow pattern and of the swimming movements of the fish allowed us to derive a kinematic explanation of the

  4. Partition of aerobic and anaerobic swimming costs related to gait transitions in a labriform fish

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tudorache, Christian; Jordan, Anders Drud

    ) is below the Up-c, whereas both 1.9 and 2.3 bl s-1 are above the Up-c. Exercise oxygen consumption (MO2) while the fish were swimming at these speeds was determined. The presence and magnitude of excessive post exercise oxygen consumption (EPOC) was evaluated after the three swimming speeds....... There was no evidence of EPOC after swimming 1.4 and 1.9 bl s-1 indicating that the gait transition from pectoral oscillation to axial undulation is not a threshold for anaerobic metabolism. In contrast, swimming at 2.3 bl s-1 resulted in EPOC being 51.7 mg O2 kg-1 suggesting that anaerobic metabolism added about 34......% to the exercise MO2. E. lateralis switched to an unsteady burst and flap gait at 2.3 bl s-1. Burst activity correlated linearly and positively with the magnitude of the resulting EPOC. Collectively, these data suggest that steady axial propulsion does not lead to EPOC whereas transition to burst assisted swimming...

  5. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.

    Science.gov (United States)

    Marras, Stefano; Porfiri, Maurizio

    2012-08-07

    The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its 'engineered' member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a 'dummy'. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot-animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour.

  6. Controlling swimming and crawling in a fish robot using a central pattern generator

    OpenAIRE

    Crespi, Alessandro; Lachat, Daisy; Pasquier, Ariane; Ijspeert, Auke Jan

    2008-01-01

    Online trajectory generation for robots with multiple degrees of freedom is still a difficult and unsolved problem, in particular for non-steady state locomotion, that is, when the robot has to move in a complex environment with continuous variations of the speed, direction, and type of locomotor behavior. In this article we address the problem of controlling the non-steady state swimming and crawling of a novel fish robot. For this, we have designed a control architecture based on a central ...

  7. Abundance, Fishing Season and Management Strategy for Blue Swimming Crab (Portunus pelagicus) in Pangkajene Kepulauan, South Sulawesi, Indonesia.

    Science.gov (United States)

    Wiyono, Eko Sri; Ihsan

    2018-03-01

    In order to manage blue swimming crabs in Pangkajene Kepulauan, management measures are required. Since the environment which affects the abundance of the blue swimming crab varies seasonally, it is necessary to take into account the seasonal nature with the aim of developing a management strategy. The objectives of this study are to define the abundance of and fishing season of blue swimming crabs in the Pangkajene Kepulauan waters, South Sulawesi, Indonesia. The fishing season was analysed using seasonal index analysis, while fish abundance was analysed by means of Equilibrium-Schaefer. The result of this study demonstrated that fishermen allocate their fishing gear all year, although the fish catch is seasonal. Based on analysis of the result, the fishing season for the blue swimming crabs is short. The peak fishing season starts in May and finishes in June. However, in order to enable their families to earn a living, fishermen operated their fishing gear throughout the year. As a result, both catch landing and effort were close to maximum sustainable yield (MSY). In order to reduce fishing pressure, it is necessary to reduce fishing gear and have a seasonal arrangement regarding fishing gear allocation.

  8. Different ossification patterns of intermuscular bones in fish with different swimming modes

    Directory of Open Access Journals (Sweden)

    Wenjie Yao

    2015-12-01

    Full Text Available Intermuscular bones are found in the myosepta in teleosts. However, there is very little information on the development and ossification of these intermuscular bones. In this study, we performed an in-depth investigation of the ossification process during development in zebrafish (Danio rerio and Japanese eel (Anguilla japonica. In Japanese eel, a typical anguilliform swimmer, the intermuscular bones ossified predominantly from the anterior to the posterior. By contrast, in the zebrafish, a sub-carangiform or carangiform swimmer, the intermuscular bones ossified predominantly from the posterior to the anterior regions of the fish. Furthermore, tail amputation affected the ossification of the intermuscular bones. The length of the intermuscular bones in the posterior area became significantly shorter in tail-amputated zebrafish and Japanese eels, and both had less active and lower swimming speeds; this indicates that swimming might induce the ossification of the intermuscular bones. Moreover, when a greater length of tail was amputated in the zebrafish, the intermuscular bones became even shorter. Tail amputation affected the length and ossification of intermuscular bones in the anterior part of the fish, close to the head, differently between the two fish: they became significantly shorter in the zebrafish, but did not in the Japanese eel. This might be because tail amputation did not significantly affect the undulations in the anterior of the Japanese eel, especially near the head. This study shows that the ossification of intermuscular bones might be induced through mechanical force loadings that are produced by swimming.

  9. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin

    International Nuclear Information System (INIS)

    Low, K H; Chong, C W

    2010-01-01

    In this paper, we aim to study the swimming performance of fish robots by using a statistical approach. A fish robot employing a carangiform swimming mode had been used as an experimental platform for the performance study. The experiments conducted aim to investigate the effect of various design parameters on the thrust capability of the fish robot with a flexible caudal fin. The controllable parameters associated with the fin include frequency, amplitude of oscillation, aspect ratio and the rigidity of the caudal fin. The significance of these parameters was determined in the first set of experiments by using a statistical approach. A more detailed parametric experimental study was then conducted with only those significant parameters. As a result, the parametric study could be completed with a reduced number of experiments and time spent. With the obtained experimental result, we were able to understand the relationship between various parameters and a possible adjustment of parameters to obtain a higher thrust. The proposed statistical method for experimentation provides an objective and thorough analysis of the effects of individual or combinations of parameters on the swimming performance. Such an efficient experimental design helps to optimize the process and determine factors that influence variability.

  10. Pattern Recognition for Robotic Fish Swimming Gaits Based on Artificial Lateral Line System and Subtractive Clustering Algorithms

    Directory of Open Access Journals (Sweden)

    Hongli Liu

    2014-11-01

    Full Text Available The complicated and changeable underwater environment increases the difficulty of pattern recognition for robotic fish swimming gaits. Aiming at this question, environment sensing and pattern recognition using an artificial lateral system are investigated in this work. Imitating lateral line of real fish in nature, a novel artificial lateral line system for robotic fish is designed in this paper. Based on this novel system, the pressure information around robotic fish can be sensed when robotic fish swims in different gaits, so the feature points can be extracted from the pressure information. And then, based on the feature points, a subtractive clustering algorithm is used to recognize the swimming gaits of robotic fish. So the pattern state of robotic fish can be obtained, which provides a basis for the quick control of robotic fish in water. Finally, a validation experiment is conducted with freely swimming robotic fish. The validity of this novel system is demonstrated. And the feasibility and accuracy of subtractive clustering algorithm used in pattern recognition for robotic fish is verified too.

  11. Go reconfigure: how fish change shape as they swim and evolve.

    Science.gov (United States)

    Long, John H; Porter, Marianne E; Root, Robert G; Liew, Chun Wai

    2010-12-01

    The bodies of fish change shape over propulsive, behavioral, developmental, and evolutionary time scales, a general phenomenon that we call "reconfiguration". Undulatory, postural, and form-reconfiguration can be distinguished, studied independently, and examined in terms of mechanical interactions and evolutionary importance. Using a combination of live, swimming fishes and digital robotic fish that are autonomous and self-propelled, we examined the functional relation between undulatory and postural reconfiguration in forward swimming, backward swimming, and yaw turning. To probe how postural and form reconfiguration interact, the yaw turning of leopard sharks was examined using morphometric and kinematic analyses. To test how undulatory reconfiguration might evolve, the digital robotic fish were subjected to selection for enhanced performance in a simulated ecology in which each individual had to detect and move towards a food source. In addition to the general issue of reconfiguration, these investigations are united by the fact that the dynamics of undulatory and postural reconfigurations are predicted to be determined, in part, by the structural stiffness of the fish's body. Our method defines undulatory reconfiguration as the combined, point-by-point periodic motion of the body, leaving postural reconfiguration as the combined deviations from undulatory reconfiguration. While undulatory reconfiguration appears to be the sole or primary propulsive driver, postural reconfiguration may contribute to propulsion in hagfish and it is correlated with differences in forward, and backward, swimming in lamprey. Form reconfigures over developmental time in leopard sharks in a manner that is consistent with an allometric scaling theory in which structural stiffness of the body is held constant. However, correlation of a form proxy for structural stiffness of the body suggests that body stiffness may scale in order to limit maximum postural reconfiguration during routine

  12. Size and Cell Number of the Utricle in kinetotically swimming Fish: A parabolic Aircraft Flight Study

    Science.gov (United States)

    Baeuerle, A.; Anken, R.; Baumhauer, N.; Hilbig, R.; Rahmann, H.

    Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalisation of gravity in teleosteans) of fish swimming kinetotically during the μg-phases in the course of PAFs in comparison with animals from the same batch who swam normally. On the light microscopical level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100μm -μm), however, was reduced in kinetotic animals (p<0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in asymmetric inner ear otoliths as has been suggested earlier, but also in genetically predispositioned, malformed sensory epithelia. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).

  13. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild

    Science.gov (United States)

    Broell, Franziska; Taggart, Christopher T.

    2015-01-01

    This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming ‘efficiently’, is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time) in the wild. PMID:26673777

  14. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model.

    Science.gov (United States)

    Lucas, Kelsey N; Thornycroft, Patrick J M; Gemmell, Brad J; Colin, Sean P; Costello, John H; Lauder, George V

    2015-10-08

    Simple mechanical models emulating fish have been used recently to enable targeted study of individual factors contributing to swimming locomotion without the confounding complexity of the whole fish body. Yet, unlike these uniform models, the fish body is notable for its non-uniform material properties. In particular, flexural stiffness decreases along the fish's anterior-posterior axis. To identify the role of non-uniform bending stiffness during fish-like propulsion, we studied four foil model configurations made by adhering layers of plastic sheets to produce discrete regions of high (5.5 × 10(-5) Nm(2)) and low (1.9 × 10(-5) Nm(2)) flexural stiffness of biologically-relevant magnitudes. This resulted in two uniform control foils and two foils with anterior regions of high stiffness and posterior regions of low stiffness. With a mechanical flapping foil controller, we measured forces and torques in three directions and quantified swimming performance under both heaving (no pitch) and constant 0° angle of attack programs. Foils self-propelled at Reynolds number 21 000-115 000 and Strouhal number ∼0.20-0.25, values characteristic of fish locomotion. Although previous models have emphasized uniform distributions and heaving motions, the combination of non-uniform stiffness distributions and 0° angle of attack pitching program was better able to reproduce the kinematics of freely-swimming fish. This combination was likewise crucial in maximizing swimming performance and resulted in high self-propelled speeds at low costs of transport and large thrust coefficients at relatively high efficiency. Because these metrics were not all maximized together, selection of the 'best' stiffness distribution will depend on actuation constraints and performance goals. These improved models enable more detailed, accurate analyses of fish-like swimming.

  15. Long-term behavioral tracking of freely swimming weakly electric fish.

    Science.gov (United States)

    Jun, James J; Longtin, André; Maler, Leonard

    2014-03-06

    Long-term behavioral tracking can capture and quantify natural animal behaviors, including those occurring infrequently. Behaviors such as exploration and social interactions can be best studied by observing unrestrained, freely behaving animals. Weakly electric fish (WEF) display readily observable exploratory and social behaviors by emitting electric organ discharge (EOD). Here, we describe three effective techniques to synchronously measure the EOD, body position, and posture of a free-swimming WEF for an extended period of time. First, we describe the construction of an experimental tank inside of an isolation chamber designed to block external sources of sensory stimuli such as light, sound, and vibration. The aquarium was partitioned to accommodate four test specimens, and automated gates remotely control the animals' access to the central arena. Second, we describe a precise and reliable real-time EOD timing measurement method from freely swimming WEF. Signal distortions caused by the animal's body movements are corrected by spatial averaging and temporal processing stages. Third, we describe an underwater near-infrared imaging setup to observe unperturbed nocturnal animal behaviors. Infrared light pulses were used to synchronize the timing between the video and the physiological signal over a long recording duration. Our automated tracking software measures the animal's body position and posture reliably in an aquatic scene. In combination, these techniques enable long term observation of spontaneous behavior of freely swimming weakly electric fish in a reliable and precise manner. We believe our method can be similarly applied to the study of other aquatic animals by relating their physiological signals with exploratory or social behaviors.

  16. A pressure-based force and torque prediction technique for the study of fish-like swimming.

    Directory of Open Access Journals (Sweden)

    Kelsey N Lucas

    Full Text Available Many outstanding questions about the evolution and function of fish morphology are linked to swimming dynamics, and a detailed knowledge of time-varying forces and torques along the animal's body is a key component in answering many of these questions. Yet, quantifying these forces and torques experimentally represents a major challenge that to date prevents a full understanding of fish-like swimming. Here, we develop a method for obtaining these force and torque data non-invasively using standard 2D digital particle image velocimetry in conjunction with a pressure field algorithm. We use a mechanical flapping foil apparatus to model fish-like swimming and measure forces and torques directly with a load cell, and compare these measured values to those estimated simultaneously using our pressure-based approach. We demonstrate that, when out-of-plane flows are relatively small compared to the planar flow, and when pressure effects sufficiently dominate shear effects, this technique is able to accurately reproduce the shape, magnitude, and timing of locomotor forces and torques experienced by a fish-like swimmer. We conclude by exploring of the limits of this approach and its feasibility in the study of freely-swimming fishes.

  17. A pressure-based force and torque prediction technique for the study of fish-like swimming.

    Science.gov (United States)

    Lucas, Kelsey N; Dabiri, John O; Lauder, George V

    2017-01-01

    Many outstanding questions about the evolution and function of fish morphology are linked to swimming dynamics, and a detailed knowledge of time-varying forces and torques along the animal's body is a key component in answering many of these questions. Yet, quantifying these forces and torques experimentally represents a major challenge that to date prevents a full understanding of fish-like swimming. Here, we develop a method for obtaining these force and torque data non-invasively using standard 2D digital particle image velocimetry in conjunction with a pressure field algorithm. We use a mechanical flapping foil apparatus to model fish-like swimming and measure forces and torques directly with a load cell, and compare these measured values to those estimated simultaneously using our pressure-based approach. We demonstrate that, when out-of-plane flows are relatively small compared to the planar flow, and when pressure effects sufficiently dominate shear effects, this technique is able to accurately reproduce the shape, magnitude, and timing of locomotor forces and torques experienced by a fish-like swimmer. We conclude by exploring of the limits of this approach and its feasibility in the study of freely-swimming fishes.

  18. Measuring abnormal movements in free-swimming fish with accelerometers: implications for quantifying tag and parasite load.

    Science.gov (United States)

    Broell, Franziska; Burnell, Celene; Taggart, Christopher T

    2016-03-01

    Animal-borne data loggers allow movement, associated behaviours and energy expenditure in fish to be quantified without direct observations. As with any tagging, tags that are attached externally may adversely affect fish behaviour, swimming efficiency and survival. We report on free-swimming wild Atlantic cod (Gadus morhua) held in a large mesocosm that exhibited distinctly aberrant rotational swimming (scouring) when externally tagged with accelerometer data loggers. To quantify the phenomenon, the cod were tagged with two sizes of loggers (18 and 6 g; parasite-load shedding in the wild. The results infer a more careful interpretation of data derived from external tags and the careful consideration of tag type, drag, buoyancy and placement, as well as animal buoyancy and species. © 2016. Published by The Company of Biologists Ltd.

  19. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.

    Science.gov (United States)

    Jusufi, Ardian; Vogt, Daniel M; Wood, Robert J; Lauder, George V

    2017-09-01

    Undulatory motion of the body is the dominant mode of locomotion in fishes, and numerous studies of body kinematics and muscle activity patterns have provided insights into the mechanics of swimming. However, it has not been possible to investigate how key parameters such as the extent of bilateral muscle activation affect propulsive performance due to the inability to manipulate muscle activation in live, freely swimming fishes. In this article we extend previous work on passive flexible mechanical models of undulatory propulsion by using actively controlled pneumatic actuators attached to a flexible foil to gain insight into undulatory locomotion and mechanisms for body stiffness control. Two soft actuators were attached on each side of a flexible panel with stiffness comparable to that of a fish body. To study how bilateral contraction can be used to modify axial body stiffness during swimming, we ran a parameter sweep of actuator contraction phasing and frequency. Thrust production by the soft pneumatic actuators was tested at cyclic undulation frequencies ranging from 0.3 to 1.2 Hz in a recirculating flow tank at flow speeds up to 28 cm/s. Overall, this system generated more thrust at higher tail beat frequencies, with a plateau in thrust above 0.8 Hz. Self-propelled speed was found to be 0.8 foil lengths per second or ∼13 cm/s when actuated at 0.55 Hz. This active pneumatic model is capable of producing substantial trailing edge amplitudes with a maximum excursion equivalent to 1.4 foil lengths, and of generating considerable thrust. Altering the extent of bilateral co-contraction in a range from -22% to 17% of the cycle period showed that thrust was maximized with some amount of simultaneous left-right actuation of ∼3% to 6% of the cycle period. When the system is exposed to water flow, thrust was substantially reduced for conditions of greatest antagonistic overlap in left-right actuation, and also for the largest latencies introduced. This

  20. Deep RNA sequencing of the skeletal muscle transcriptome in swimming fish.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available Deep RNA sequencing (RNA-seq was performed to provide an in-depth view of the transcriptome of red and white skeletal muscle of exercised and non-exercised rainbow trout (Oncorhynchus mykiss with the specific objective to identify expressed genes and quantify the transcriptomic effects of swimming-induced exercise. Pubertal autumn-spawning seawater-raised female rainbow trout were rested (n = 10 or swum (n = 10 for 1176 km at 0.75 body-lengths per second in a 6,000-L swim-flume under reproductive conditions for 40 days. Red and white muscle RNA of exercised and non-exercised fish (4 lanes was sequenced and resulted in 15-17 million reads per lane that, after de novo assembly, yielded 149,159 red and 118,572 white muscle contigs. Most contigs were annotated using an iterative homology search strategy against salmonid ESTs, the zebrafish Danio rerio genome and general Metazoan genes. When selecting for large contigs (>500 nucleotides, a number of novel rainbow trout gene sequences were identified in this study: 1,085 and 1,228 novel gene sequences for red and white muscle, respectively, which included a number of important molecules for skeletal muscle function. Transcriptomic analysis revealed that sustained swimming increased transcriptional activity in skeletal muscle and specifically an up-regulation of genes involved in muscle growth and developmental processes in white muscle. The unique collection of transcripts will contribute to our understanding of red and white muscle physiology, specifically during the long-term reproductive migration of salmonids.

  1. The origin and evolution of the surfactant system in fish: insights into the evolution of lungs and swim bladders.

    Science.gov (United States)

    Daniels, Christopher B; Orgeig, Sandra; Sullivan, Lucy C; Ling, Nicholas; Bennett, Michael B; Schürch, Samuel; Val, Adalberto Luis; Brauner, Colin J

    2004-01-01

    Several times throughout their radiation fish have evolved either lungs or swim bladders as gas-holding structures. Lungs and swim bladders have different ontogenetic origins and can be used either for buoyancy or as an accessory respiratory organ. Therefore, the presence of air-filled bladders or lungs in different groups of fishes is an example of convergent evolution. We propose that air breathing could not occur without the presence of a surfactant system and suggest that this system may have originated in epithelial cells lining the pharynx. Here we present new data on the surfactant system in swim bladders of three teleost fish (the air-breathing pirarucu Arapaima gigas and tarpon Megalops cyprinoides and the non-air-breathing New Zealand snapper Pagrus auratus). We determined the presence of surfactant using biochemical, biophysical, and morphological analyses and determined homology using immunohistochemical analysis of the surfactant proteins (SPs). We relate the presence and structure of the surfactant system to those previously described in the swim bladders of another teleost, the goldfish, and those of the air-breathing organs of the other members of the Osteichthyes, the more primitive air-breathing Actinopterygii and the Sarcopterygii. Snapper and tarpon swim bladders are lined with squamous and cuboidal epithelial cells, respectively, containing membrane-bound lamellar bodies. Phosphatidylcholine dominates the phospholipid (PL) profile of lavage material from all fish analyzed to date. The presence of the characteristic surfactant lipids in pirarucu and tarpon, lamellar bodies in tarpon and snapper, SP-B in tarpon and pirarucu lavage, and SPs (A, B, and D) in swim bladder tissue of the tarpon provide strong evidence that the surfactant system of teleosts is homologous with that of other fish and of tetrapods. This study is the first demonstration of the presence of SP-D in the air-breathing organs of nonmammalian species and SP-B in actinopterygian

  2. Spatial Expression of Otolith Matrix Protein-1 and Otolin-1 in Normally and Kinetotically Swimming Fish.

    Science.gov (United States)

    Weigele, Jochen; Franz-Odendaal, Tamara A; Hilbig, Reinhard

    2015-10-01

    Kinetosis (motion sickness) has been repeatedly shown to affect some fish of a given clutch following the transition from 1g to microgravity or from hypergravity to 1g. This susceptibility to kinetosis may be correlated with irregular inner ear otolith growth. Otoliths are mainly composed of calcium carbonate and matrix proteins, which play an important role in the process of otolith mineralization. Here, we examine the morphology of otoliths and the expression pattern of the major otolith proteins OMP-1 and otolin-1 in a series of hypergravity experiments. In the utricle, OMP-1 is present in centripetal (medial) and centrifugal (lateral) regions of the meshwork area. In the saccule, OMP-1 was expressed within a dorsal and a ventral narrow band of the meshwork area opposite to the periphery of the sulcus acusticus. In normal animals, the spatial expression pattern of OMP-1 reaches more posteriorly in the centrifugal aspect and is considerably broader in the centripetal portion of the utricle compared to kinetotic animals. However, otolin-1 was not expressed in the utricule. In the saccule, no differences were observed for either gene when comparing normal and kinetotically behaving fish. The difference in the utricular OMP-1 expression pattern between normally and kinetotically swimming fish indicates a different otolith morphology and thus a different geometry of the otoliths resting on the corresponding sensory maculae. As the utricle is the endorgan responsible for sensing gravity, the aberrant morphology of the utricular otoliths, based on OMP-1 expression, likely leads to the observed kinetotic behavior. © 2015 Wiley Periodicals, Inc.

  3. Anthropogenic chemical cues can alter the swimming behaviour of juvenile stages of a temperate fish.

    Science.gov (United States)

    Díaz-Gil, Carlos; Cotgrove, Lucy; Smee, Sarah Louise; Simón-Otegui, David; Hinz, Hilmar; Grau, Amalia; Palmer, Miquel; Catalán, Ignacio A

    2017-04-01

    Human pressure on coastal areas is affecting essential ecosystems including fish nursery habitats. Among these anthropogenic uses, the seasonal increment in the pressure due to leisure activities such as coastal tourism and yachting is an important environmental stressor in many coastal zones. These pressures may elicit understudied impacts due to, for example, sunscreens or other seasonal pollutants. The island of Majorca, northwest Mediterranean Sea, experiences one of the highest number of tourist visits per capita in the world, thus the surrounding coastal habitat is subject to high anthropogenic seasonal stress. Studies on early stages of fishes have observed responses to coastal chemical cues for the selection or avoidance of habitats. However, the potential interferences of human impacts on these signals are largely unknown. A choice chamber was used to determine water type preference and behaviour in naïve settled juvenile gilt-head sea bream (Sparus aurata), a temperate species of commercial interest. Fish were tested individually for behavioural changes with respect to water types from potential beneficial habitats, such as seawater with extract of the endemic seagrass Posidonia oceanica, anthropogenically influenced habitats such as water extracted from a commercial and recreational harbour and seawater mixed with sunscreen at concentrations observed in coastal waters. Using a Bayesian approach, we investigated a) water type preference; b) mean speed; and c) variance in the movement (as an indicator of burst swimming activity, or "sprint" behaviour) as behavioural descriptors with respect to water type. Fish spent similar percentage of time in treatment and control water types. However, movement descriptors showed that fish in sunscreen water moved slower (98.43% probability of being slower) and performed fewer sprints (90.1% probability of having less burst in speed) compared to control water. Less evident increases in sprints were observed in harbour

  4. High postural costs and anaerobic metabolism during swimming support the hypothesis of a U-shaped metabolism-speed curve in fishes.

    Science.gov (United States)

    Di Santo, Valentina; Kenaley, Christopher P; Lauder, George V

    2017-12-05

    Swimming performance is considered a key trait determining the ability of fish to survive. Hydrodynamic theory predicts that the energetic costs required for fishes to swim should vary with speed according to a U-shaped curve, with an expected energetic minimum at intermediate cruising speeds and increasing expenditure at low and high speeds. However, to date no complete datasets have shown an energetic minimum for swimming fish at intermediate speeds rather than low speeds. To address this knowledge gap, we used a negatively buoyant fish, the clearnose skate Raja eglanteria , and took two approaches: a classic critical swimming speed protocol and a single-speed exercise and recovery procedure. We found an anaerobic component at each velocity tested. The two approaches showed U-shaped, though significantly different, speed-metabolic relationships. These results suggest that ( i ) postural costs, especially at low speeds, may result in J- or U-shaped metabolism-speed curves; ( ii ) anaerobic metabolism is involved at all swimming speeds in the clearnose skate; and ( iii ) critical swimming protocols might misrepresent the true costs of locomotion across speeds, at least in negatively buoyant fish.

  5. Optimal swimming speed in head currents and effects on distance movement of winter-migrating fish

    DEFF Research Database (Denmark)

    Brodersen, J.; Nilsson, P.A.; Ammitzbøl, J.

    2008-01-01

    ecologically and economically important. We here use passive and active telemetry to study how winter migrating roach regulate swimming speed and distance travelled per day in response to variations in head current velocity. Furthermore, we provide theoretical predictions on optimal swimming speeds in head...

  6. Spiral swimming behavior due to cranial and vertebral lesions associated with Cytophaga psychrophila infections in salmonid fishes

    Science.gov (United States)

    Kent, M.L.; Groff, J.M.; Morrison, J.K.; Yasutake, W.T.; Holt, R.A.

    1989-01-01

    C. psychrophila infections of the cranium and anterior vertebrae in salmonid fishes were associated with ataxia, spiral swimming along the axis of the fish, and death. The syndrome was observed in 2-10% of underyearling coho salmon Oncorhynchus kisutch, rainbow troutSalmo gairdneri, and steelhead trout S. gairdneri at several private, state, and federal hatcheries in Washington and Oregon, USA, between 1963 and 1987. Affected fish did not recover and ultimately died. Histological examination consistently revealed subacute to chronic periostitis, osteitis, meningitis, and ganglioneuritis. Inflammation and periosteal proliferation of the anterior vertebrae at the junction of the vertebral column with the cranium with extension into the cranial case was a consistent feature. The adjacent nervous tissue, particularly the medulla, was often compressed by the proliferative lesion, and this may have caused the ataxia. Though bacteria were seldom observed in these lesions. C. psychrophilawas isolated in culture from the cranial cavity of all affected fish that were tested. Epidemiological observations suggested that this bacterium is the causative agent because the spiral swimming behaviour and lesions were observed only in populations that had recovered from acute C. psychrophila infections.

  7. Quantifying fish swimming behavior in response to acute exposure of aqueous copper using computer assisted video and digital image analysis

    Science.gov (United States)

    Calfee, Robin D.; Puglis, Holly J.; Little, Edward E.; Brumbaugh, William G.; Mebane, Christopher A.

    2016-01-01

    Behavioral responses of aquatic organisms to environmental contaminants can be precursors of other effects such as survival, growth, or reproduction. However, these responses may be subtle, and measurement can be challenging. Using juvenile white sturgeon (Acipenser transmontanus) with copper exposures, this paper illustrates techniques used for quantifying behavioral responses using computer assisted video and digital image analysis. In previous studies severe impairments in swimming behavior were observed among early life stage white sturgeon during acute and chronic exposures to copper. Sturgeon behavior was rapidly impaired and to the extent that survival in the field would be jeopardized, as fish would be swept downstream, or readily captured by predators. The objectives of this investigation were to illustrate protocols to quantify swimming activity during a series of acute copper exposures to determine time to effect during early lifestage development, and to understand the significance of these responses relative to survival of these vulnerable early lifestage fish. With mortality being on a time continuum, determining when copper first affects swimming ability helps us to understand the implications for population level effects. The techniques used are readily adaptable to experimental designs with other organisms and stressors.

  8. Partition of aerobic and anaerobic swimming costs related to gait transitions in a labriform swimmer

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tudorache, Christian; Jordan, Anders D.

    2010-01-01

    was to partition aerobic and anaerobic swimming costs at speeds below and above the Up–c in the striped surfperch Embiotoca lateralis using swimming respirometry and video analysis to test the hypothesis that the gait transition marks the switch from aerobic to anaerobic power output. Exercise oxygen consumption......Members of the family Embiotocidae exhibit a distinct gait transition from exclusively pectoral fin oscillation to combined pectoral and caudal fin propulsion with increasing swimming speed. The pectoral–caudal gait transition occurs at a threshold speed termed Up–c. The objective of this study...... included caudal fin propulsion in a mostly steady and unsteady (burst-assisted) mode, respectively. There was no evidence of EPOC after swimming at 1.4 and 1.9 L s–1, indicating that the pectoral–caudal gait transition was not a threshold for anaerobic metabolism. At 2.3 L s–1, E. lateralis switched...

  9. Simulation of forced deformable bodies interacting with two-dimensional incompressible flows: Application to fish-like swimming

    International Nuclear Information System (INIS)

    Ghaffari, Seyed Amin; Viazzo, Stéphane; Schneider, Kai; Bontoux, Patrick

    2015-01-01

    Highlights: • An algorithm for numerical simulation of fish-like swimming is proposed. • A new 4th order direct solver for the solution of the Poisson equation is presented. • The penalization method proved to be efficient in dealing with fluid–structure interactions. • Double exponential denoising of the hydrodynamic coefficients is crucial in the algorithm. • An efficient law for rotation control of an anguilliform swimmer is proposed. - Abstract: We present an efficient algorithm for simulation of deformable bodies interacting with two-dimensional incompressible fluid flows. The temporal and spatial discretizations of the Navier-Stokes equations in vorticity stream-function formulation are based on classical fourth-order Runge-Kutta scheme and compact finite differences, respectively. Using a uniform Cartesian grid we benefit from the advantage of a new fourth-order direct solver for the Poisson equation to ensure the incompressibility constraint down to machine zero over an optimal grid. For introducing a deformable body in fluid flow, the volume penalization method is used. A Lagrangian structured grid with prescribed motion covers the deformable body which is interacting with the surrounding fluid due to the hydrodynamic forces and the torque calculated on the Eulerian reference grid. An efficient law for controlling the curvature of an anguilliform fish, swimming toward a prescribed goal, is proposed which is based on the geometrically exact theory of nonlinear beams and quaternions. Validation of the developed method shows the efficiency and expected accuracy of the algorithm for fish-like swimming and also for a variety of fluid/solid interaction problems

  10. Effect of drying and frying conditions on physical and chemical characteristics of fish maw from swim bladder of seabass (Lates calcarifer).

    Science.gov (United States)

    Sinthusamran, Sittichoke; Benjakul, Soottawat

    2015-12-01

    Swim bladder is generated as a by-product during evisceration. It has been used for the production of fish maw, in which several processing parameters determine the characteristics or quality of the resulting fish maw. The present study aimed to investigate the characteristics of fish maws from seabass swim bladder as influenced by drying and frying conditions. The expansion ratio and oil uptake content of fish maw increased as the moisture content of swim bladder increased (P frying and frying temperatures increased, the expansion ratio of fish maw increased (P frying was performed at a temperature higher than 200 °C. The oil uptake contents of fish maw with frying temperatures of 180 and 200 °C were in the range of 451.06-578.06 g kg(-1) , whereas the lower contents (378.60-417.17 g kg(-1) ) were found in those having frying temperatures of 220-240 °C. Hardness of fish maw decreased but no changes in fracturability were observed with increasing pre-frying temperature when subsequent frying was carried out 200 °C. Drying temperatures, moisture content, pre-frying and frying temperatures were the factors influencing the characteristics and properties of fish maws from seabass swim bladder. Fish maw could be prepared by pre-frying swim bladder, dried at 60 °C to obtain 150 g kg(-1) moisture content, at 110 °C for 5 min, followed by frying at 200 °C for 20 s. © 2014 Society of Chemical Industry.

  11. Entrainment, retention, and transport of freely swimming fish in junction gaps between commercial barges operating on the Illinois Waterway

    Science.gov (United States)

    Davis, Jeremiah J.; Jackson, P. Ryan; Engel, Frank; LeRoy, Jessica Z.; Neeley, Rebecca N.; Finney, Samuel T.; Murphy, Elizabeth A.

    2016-01-01

    Large Electric Dispersal Barriers were constructed in the Chicago Sanitary and Ship Canal (CSSC) to prevent the transfer of invasive fish species between the Mississippi River Basin and the Great Lakes Basin while simultaneously allowing the passage of commercial barge traffic. We investigated the potential for entrainment, retention, and transport of freely swimming fish within large gaps (> 50 m3) created at junction points between barges. Modified mark and capture trials were employed to assess fish entrainment, retention, and transport by barge tows. A multi-beam sonar system enabled estimation of fish abundance within barge junction gaps. Barges were also instrumented with acoustic Doppler velocity meters to map the velocity distribution in the water surrounding the barge and in the gap formed at the junction of two barges. Results indicate that the water inside the gap can move upstream with a barge tow at speeds near the barge tow travel speed. Water within 1 m to the side of the barge junction gaps was observed to move upstream with the barge tow. Observed transverse and vertical water velocities suggest pathways by which fish may potentially be entrained into barge junction gaps. Results of mark and capture trials provide direct evidence that small fish can become entrained by barges, retained within junction gaps, and transported over distances of at least 15.5 km. Fish entrained within the barge junction gap were retained in that space as the barge tow transited through locks and the Electric Dispersal Barriers, which would be expected to impede fish movement upstream.

  12. Larval Fish Swimming Behavior Alters Dispersal Patterns From Marine Protected Areas in the North-Western Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Robin Faillettaz

    2018-03-01

    Full Text Available Most demersal fishes undergo a dispersal phase as larvae, which strongly influences the connectivity among adult populations and, consequently, their genetic structure and replenishment opportunities. Because this phase is difficult to observe directly, it is frequently simulated through numerical models, most of which consider larvae as passive or only vertically migrating. However, in several locations, including the Mediterranean Sea, many species have been shown to swim fast and orient. Here we use a Lagrangian model to study connectivity patterns among three Mediterranean Marine Protected Areas (MPAs and compare simulations in which virtual larvae are passive to simulations in which oriented swimming is implemented. The parameterization of behavior is based on observations for two groups of species of the family Sparidae: species with small larvae (i.e., 9–11 mm, displaying a maximum swimming speed of 6 cm s−1 and a pelagic larval duration of 13–19 days (e.g., Diplodus annularis L., Oblada melanura L. and species with large larvae (i.e., 14–16 mm, displaying a maximum swimming speed of 10 cm s−1 and a PLD of 28–38 days (e.g., Spondyliosoma cantharus L.. Including larval behavior in the model (i increased the overall proportion of successful settlers, (ii enhanced self-recruitment within the MPAs, but also (iii increased the intensity, and (iv widened the export of eggs and larvae (recruitment subsidy from the MPAs; overall, it significantly changed connectivity patterns. These results highlight the need to gather the observational data that are required to correctly parameterize connectivity models.

  13. Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming.

    Science.gov (United States)

    Ramananarivo, Sophie; Godoy-Diana, Ramiro; Thiria, Benjamin

    2013-11-06

    Swimmers in nature use body undulations to generate propulsive and manoeuvring forces. The anguilliform kinematics is driven by muscular actions all along the body, involving a complex temporal and spatial coordination of all the local actuations. Such swimming kinematics can be reproduced artificially, in a simpler way, by using the elasticity of the body passively. Here, we present experiments on self-propelled elastic swimmers at a free surface in the inertial regime. By addressing the fluid-structure interaction problem of anguilliform swimming, we show that our artificial swimmers are well described by coupling a beam theory with the potential flow model of Lighthill. In particular, we show that the propagative nature of the elastic wave producing the propulsive force is strongly dependent on the dissipation of energy along the body of the swimmer.

  14. On inappropriately used neuronal circuits as a possible basis of the ``loop-swimming'' behaviour of fish under reduced gravity: a theoretical study

    Science.gov (United States)

    Anken, R. H.; Rahmann, H.

    One hypothesis for the explanation of the so-called ``loop-swimming'' behaviour in fish when being subjected to reduced gravity assumes that the activities of the differently weighted otoliths of the two labyrinths are well compensated on ground but that a functional asymmetry is induced in weightlessness, resulting in a tonus asymmetry of the body and by this generating the ``loop-swimming'' behaviour. The basis of this abnormal behaviour has to be searched for in the central nervous system (cns), where the signal-transduction from the inner ear- related signal internalisation to the signal response takes place. Circuits within the CNS of fish, that could possibly generate the ``loop-swimming'', might be as follows: An asymmetric activation of vestibulospinal circuits would directly result in a tonus asymmetry of the body. An asymmetric activation of the oculomotor nucleus would generate an asymmetrical rotation of the eyes. This would cause in its turn asymmetric images on the two retinas, which were forwarded to the diencephalic accessory optic system (AOS). It is the task of the AOS to stabilize retinal images, thereby involving the cerebellum, which is the main integration center for sensory and motor modalities. With this, the cerebellar output would generate a tonus asymmetry of the body in order to make the body of the fish follow its eyes. Such movements (especially when assuming an open loop control) would end up in the aforementioned ``loop-swimming'' behaviour.

  15. Flow-structure Interaction Modeling of a Fish Caudal Fin during Steady Swimming

    Science.gov (United States)

    Liu, Geng; Geng, Biao; Zheng, Xudong; Xue, Qian; Dong, Haibo

    2017-11-01

    It's widely thought that the flexibilities of fish fins play critical roles in propulsive performance enhancement (such as thrust augment and efficiency improvement) in nature. In order to explore the formation mechanisms of the fish fin's flexible morphing and its hydrodynamic benefits as well, a high-fidelity flow-structure/membrane interaction modeling of the fish caudal fin is conducted in this work. Following the realistic configuration of the fish caudal fin, a thin membrane supported by a series of beams is constructed. The material properties of the membrane and the beams are reversely determined by the realistic fin morphing obtained from the high-speed videos and the high fidelity flow-structure interaction simulations. With the accurate material property, we investigate the interplay between structure, kinematics and fluid flow in caudal fin propulsion. Detailed analyses on the relationship between the flexural stiffness, fin morphing patterns, hydrodynamic forces and vortex dynamics are then conducted.

  16. Dynamic morphology of fish larvae, structural implications of friction forces in swimming, feeding and ventilation

    NARCIS (Netherlands)

    Osse, J.W.M.; Boogaart, van den J.G.M.

    1999-01-01

    Dynamic morphology is the study of the ontogenetic transformations of functional systems in growing organisms. This paper describes these processes in fish larvae as they grow into the juvenile stage. Details of form changes and growth at the level of the organism and its organs are given. Some

  17. Not all sharks are "swimming noses": variation in olfactory bulb size in cartilaginous fishes.

    Science.gov (United States)

    Yopak, Kara E; Lisney, Thomas J; Collin, Shaun P

    2015-03-01

    Olfaction is a universal modality by which all animals sample chemical stimuli from their environment. In cartilaginous fishes, olfaction is critical for various survival tasks including localizing prey, avoiding predators, and chemosensory communication with conspecifics. Little is known, however, about interspecific variation in olfactory capability in these fishes, or whether the relative importance of olfaction in relation to other sensory systems varies with regard to ecological factors, such as habitat and lifestyle. In this study, we have addressed these questions by directly examining interspecific variation in the size of the olfactory bulbs (OB), the region of the brain that receives the primary sensory projections from the olfactory nerve, in 58 species of cartilaginous fishes. Relative OB size was compared among species occupying different ecological niches. Our results show that the OBs maintain a substantial level of allometric independence from the rest of the brain across cartilaginous fishes and that OB size is highly variable among species. These findings are supported by phylogenetic generalized least-squares models, which show that this variability is correlated with ecological niche, particularly habitat. The relatively largest OBs were found in pelagic-coastal/oceanic sharks, especially migratory species such as Carcharodon carcharias and Galeocerdo cuvier. Deep-sea species also possess large OBs, suggesting a greater reliance on olfaction in habitats where vision may be compromised. In contrast, the smallest OBs were found in the majority of reef-associated species, including sharks from the families Carcharhinidae and Hemiscyllidae and dasyatid batoids. These results suggest that there is great variability in the degree to which these fishes rely on olfactory cues. The OBs have been widely used as a neuroanatomical proxy for olfactory capability in vertebrates, and we speculate that differences in olfactory capabilities may be the result of

  18. Long-term Behavioral Tracking of Freely Swimming Weakly Electric Fish

    OpenAIRE

    Jun, James J.; Longtin, André; Maler, Leonard

    2014-01-01

    Long-term behavioral tracking can capture and quantify natural animal behaviors, including those occurring infrequently. Behaviors such as exploration and social interactions can be best studied by observing unrestrained, freely behaving animals. Weakly electric fish (WEF) display readily observable exploratory and social behaviors by emitting electric organ discharge (EOD). Here, we describe three effective techniques to synchronously measure the EOD, body position, and posture of a free-swi...

  19. Real-Time Localization of Moving Dipole Sources for Tracking Multiple Free-Swimming Weakly Electric Fish.

    Directory of Open Access Journals (Sweden)

    James Jaeyoon Jun

    Full Text Available In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal's positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole

  20. Ontogenic events and swimming behavior of larvae of the characid fish Salminus brasiliensis (Cuvier (Characiformes, Characidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    José Enemir dos Santos

    2002-03-01

    Full Text Available The larval ontogeny and swimming behavior of the characid fish Salminus brasiliensis (Cuvier, 1816 were studied under experimental laboratory conditions, from hatching to yolk absorption. At day 1, the larvae were transparent, with sparse dendrite chromatophores and a well-developed adhesive organ on the head. The retinal epithelial cells were initiating pigmentation. The branchial arches were at the initial phase of differentiation. The larvae were able to perform only vertical displacements and, when resting on the tank bottom, remained in lateral decumbency, in groups of 3 to 15 larvae. On day 2, the mouth was open, with conical teeth, and the digestive tube presented lumen and folded mucosa. The gaseous bladder and pectoral fins also were in differentiation. The larvae performed vertical and horizontal movements, adhered to the water surface by means of the adhesive organ or formed groups of three to six on the tank bottom. On day 3, the adhesive organ turned dorsal, the retina was pigmented, the digestive tube mucosa showed goblet cells, and the yolk sac exhausted. The larvae were now scattering in the water column forming no groups on the bottom.

  1. "The fish becomes aware of the water in which it swims": revealing the power of culture in shaping teaching identity

    Science.gov (United States)

    Rahmawati, Yuli; Taylor, Peter Charles

    2017-08-01

    "The fish becomes aware of the water in which it swims" is a metaphor that represents Yuli's revelatory journey about the hidden power of culture in her personal identity and professional teaching practice. While engaging in a critical auto/ethnographic inquiry into her lived experience as a science teacher in Indonesian and Australian schools, she came to understand the powerful role of culture in shaping her teaching identity. Yuli realised that she is a product of cultural hybridity resulting from interactions of very different cultures—Javanese, Bimanese, Indonesian and Australian. Traditionally, Javanese and Indonesian cultures do not permit direct criticism of others. This influenced strongly the way she had learned to interact with students and caused her to be very sensitive to others. During this inquiry she learned the value of engaging students in open discourse and overt caring, and came to realise that teachers bringing their own cultures to the classroom can be both a source of power and a problem. In this journey, Yuli came to understand the hegemonic power of culture in her teaching identity, and envisioned how to empower herself as a good teacher educator of pre-service science teachers.

  2. Developmental intervals during the larval and juvenile stages of the Antarctic myctophid fish Electrona antarctica in relation to changes in feeding and swimming functions

    Science.gov (United States)

    Moteki, Masato; Tsujimura, Eri; Hulley, Percy-Alexander

    2017-06-01

    The Antarctic myctophid fish species Electrona antarctica is believed to play a key role in the Southern Ocean food web, but there have been few studies on its early life history. This study examined the developmental changes in the external morphology and osteology of E. antarctica from the early larva to juvenile stages through the transformation phase and inferred changes in its behaviour and feeding mode. Once the larvae reached 12-13 mm body length (BL), they adopted a primordial suction feeding mode along with the acquisition of early swimming capabilities. Thereafter, both swimming and feeding functions were enhanced through fin development and ossification and acquisition of elements of the jaw and suspensorium. These processes indicate that larvae transition from the planktonic to nektonic phase upon reaching 12-13 mm BL when they enhance their both swimming and feeding abilities with growth. Transformation occurred when larvae reached 19-21 mm BL with changes such as discontinuous increases in eye diameter and upper jaw length and the appearance of photophores and dense body pigmentation. Osteological development of swimming- and feeding-related structures were mostly complete after transformation. Rapid changes in external morphology and osteology during the transformation stage are most likely related to ontogenetic vertical migration into deep waters.

  3. Experiments for possible hydroacoustic discrimination of free-swimming juvenile gadoid fish by analysis of broadband pulse spectra as well as 3D fish position form video images and split beam acoustics

    DEFF Research Database (Denmark)

    Lundgren, Bo; Nielsen, J. Rasmus

    2002-01-01

    Measurements were made of the broad-bandwidth (80–220 kHz) acoustic backscattering from free-swimming juvenile gadoids at various orientations and positions in an acoustic beam, under controlled conditions. The experimental apparatus consisted of a stereo-video camera system, a broad-bandwidth ec......Measurements were made of the broad-bandwidth (80–220 kHz) acoustic backscattering from free-swimming juvenile gadoids at various orientations and positions in an acoustic beam, under controlled conditions. The experimental apparatus consisted of a stereo-video camera system, a broad...... were estimated from stereo-images captured synchronously when broad-bandwidth echoes were received from passing fish. Fish positions were also estimated from data collected with a synchronized split-beam echosounder. Software was developed for image analysis and modelling, including calibration...

  4. Maximum swimming speeds of sailfish and three other large marine predatory fish species based on muscle contraction time and stride length

    DEFF Research Database (Denmark)

    Svendsen, Morten Bo Søndergaard; Domenici, Paolo; Marras, Stefano

    2016-01-01

    Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s(-1) but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish......, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s(-1)), followed by barracuda (6.2±1.0 m s(-1)), little tunny (5.6±0.2 m s(-1)) and dorado (4...

  5. Maximum swimming speeds of sailfish and three other large marine predatory fish species based on muscle contraction time and stride length: a myth revisited

    Directory of Open Access Journals (Sweden)

    Morten B. S. Svendsen

    2016-10-01

    Full Text Available Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s−1 but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s−1, followed by barracuda (6.2±1.0 m s−1, little tunny (5.6±0.2 m s−1 and dorado (4.0±0.9 m s−1; although size-corrected performance was highest in little tunny and lowest in sailfish. Contrary to previously reported estimates, our results suggest that sailfish are incapable of exceeding swimming speeds of 10-15 m s−1, which corresponds to the speed at which cavitation is predicted to occur, with destructive consequences for fin tissues.

  6. Study of Maximum Swimming Speed Tilapia (Oreochromis Niloticus) for Fisheries Management

    OpenAIRE

    Primeswari, Ridha; ', Nofrizal; Sari, T. Ersti Yulika

    2015-01-01

    The purpose of this study was to determine the swimming speed of the free swimming intank and flume tank, an outdoor durability of tilapia (Oreochromis niloticus), and maximumswimming speed tilapia in flume tank. Therefore, to use experimental methods. Free swimmingspeed was 0,25 BL/sec, maximum swimming speed of fish occurs when the fish are given ashock to swim. Negative correlation between speed and endurance swimming R2 = 0,7295 showsa fish swimming endurance decreases at higher speeds. S...

  7. Swimming strategy and body plan of the world’s largest fish: implications for foraging efficiency and thermoregulation

    Directory of Open Access Journals (Sweden)

    Mark eMeekan

    2015-09-01

    Full Text Available The largest animals in the oceans eat prey that are orders of magnitude smaller than themselves, implying strong selection for cost-effective foraging to meet their energy demands. Whale sharks (Rhincodon typus may be especially challenged by warm seas that elevate their metabolism and contain sparse prey resources. Using a combination of biologging and satellite tagging, we show that whale sharks use four strategies to save energy and improve foraging efficiency: 1 fixed, low power swimming, 2 constant low speed swimming, 3 gliding and 4 asymmetrical diving. These strategies increase foraging efficiency by 22 – 32% relative to swimming horizontally and resolve the energy-budget paradox of whale sharks. However, sharks in the open ocean must access food resources that reside in relatively cold waters (up to 20oC cooler than the surface at depths of 250-500 m during the daytime, where long, slow gliding descents, continuous ram ventilation of the gills and filter-feeding could rapidly cool the circulating blood and body tissues. We suggest that whale sharks may overcome this problem through their large size and a specialized body plan that isolates highly vascularized red muscle on the dorsal surface, allowing heat to be retained near the centre of the body within a massive core of white muscle. This could allow a warm-adapted species to maintain enhanced function of organs and sensory systems while exploiting food resources in deep, cool water.

  8. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sjannie, E-mail: sjannie.lefevre@biology.au.dk [Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus (Denmark); Jensen, Frank B. [Department of Biology, University of Southern Denmark, Odense (Denmark); Huong, Do.T.T. [College of Aquaculture and Fisheries, Can Tho University, Can Tho City (Viet Nam); Wang, Tobias [Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus (Denmark); Phuong, Nguyen T. [College of Aquaculture and Fisheries, Can Tho University, Can Tho City (Viet Nam); Bayley, Mark [Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus (Denmark)

    2011-07-15

    In this study we investigated nitrite (NO{sub 2}{sup -}) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO{sub 2max}) and critical swimming speed (U{sub crit}) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC{sub 50} of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO{sub 2max} and U{sub crit}. The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO{sub 2max} and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish.

  9. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus

    International Nuclear Information System (INIS)

    Lefevre, Sjannie; Jensen, Frank B.; Huong, Do.T.T.; Wang, Tobias; Phuong, Nguyen T.; Bayley, Mark

    2011-01-01

    In this study we investigated nitrite (NO 2 - ) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO 2max ) and critical swimming speed (U crit ) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC 50 of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO 2max and U crit . The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO 2max and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish.

  10. Automatic realistic real time stimulation/recording in weakly electric fish: long time behavior characterization in freely swimming fish and stimuli discrimination.

    Directory of Open Access Journals (Sweden)

    Caroline G Forlim

    Full Text Available Weakly electric fish are unique model systems in neuroethology, that allow experimentalists to non-invasively, access, central nervous system generated spatio-temporal electric patterns of pulses with roles in at least 2 complex and incompletely understood abilities: electrocommunication and electrolocation. Pulse-type electric fish alter their inter pulse intervals (IPIs according to different behavioral contexts as aggression, hiding and mating. Nevertheless, only a few behavioral studies comparing the influence of different stimuli IPIs in the fish electric response have been conducted. We developed an apparatus that allows real time automatic realistic stimulation and simultaneous recording of electric pulses in freely moving Gymnotus carapo for several days. We detected and recorded pulse timestamps independently of the fish's position for days. A stimulus fish was mimicked by a dipole electrode that reproduced the voltage time series of real conspecific according to previously recorded timestamp sequences. We characterized fish behavior and the eletrocommunication in 2 conditions: stimulated by IPIs pre-recorded from other fish and random IPI ones. All stimuli pulses had the exact Gymontus carapo waveform. All fish presented a surprisingly long transient exploratory behavior (more than 8 h when exposed to a new environment in the absence of electrical stimuli. Further, we also show that fish are able to discriminate between real and random stimuli distributions by changing several characteristics of their IPI distribution.

  11. An implantable two axis micromanipulator made with a 3D printer for recording neural activity in free-swimming fish.

    Science.gov (United States)

    Rogers, Loranzie S; Van Wert, Jacey C; Mensinger, Allen F

    2017-08-15

    Chronically implanted electrodes allow monitoring neural activity from free moving animals. While a wide variety of implanted headstages, microdrives and electrodes exist for terrestrial animals, few have been developed for use with aquatic animals. A two axis micromanipulator was fabricated with a Formlabs 3D printer for implanting electrodes into free-swimming oyster toadfish (Opsanus tau). The five piece manipulator consisted of a base, body, electrode holder, manual screw drive and locking nut. The manipulator measured approximately 25×20×30mm (l×w×h) and weighed 5.28g after hand assembly. Microwire electrodes were inserted successfully with the manipulator to record high fidelity signals from the anterior lateral line nerve of the toadfish. The micromanipulator allowed the chronically implanted electrodes to be repositioned numerous times to record from multiple sites and extended successful recording time in the toadfish by several days. Three dimensional printing allowed an inexpensive (<$US 5 material), two axis micromanipulator to be printed relatively rapidly (<2h) to successfully record from multiple sites in the anterior lateral line nerve of free-swimming toadfish. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Seahorses under a changing ocean: the impact of warming and acidification on the behaviour and physiology of a poor-swimming bony-armoured fish.

    Science.gov (United States)

    Faleiro, Filipa; Baptista, Miguel; Santos, Catarina; Aurélio, Maria L; Pimentel, Marta; Pegado, Maria Rita; Paula, José Ricardo; Calado, Ricardo; Repolho, Tiago; Rosa, Rui

    2015-01-01

    Seahorses are currently facing great challenges in the wild, including habitat degradation and overexploitation, and how they will endure additional stress from rapid climate change has yet to be determined. Unlike most fishes, the poor swimming skills of seahorses, along with the ecological and biological constraints of their unique lifestyle, place great weight on their physiological ability to cope with climate changes. In the present study, we evaluate the effects of ocean warming (+4°C) and acidification (ΔpH = -0.5 units) on the physiological and behavioural ecology of adult temperate seahorses, Hippocampus guttulatus. Adult seahorses were found to be relatively well prepared to face future changes in ocean temperature, but not the combined effect of warming and acidification. Seahorse metabolism increased normally with warming, and behavioural and feeding responses were not significantly affected. However, during hypercapnia the seahorses exhibited signs of lethargy (i.e. reduced activity levels) combined with a reduction of feeding and ventilation rates. Nonetheless, metabolic rates were not significantly affected. Future ocean changes, particularly ocean acidification, may further threaten seahorse conservation, turning these charismatic fishes into important flagship species for global climate change issues.

  13. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.

    Science.gov (United States)

    Blake, R W; Ng, H; Chan, K H S; Li, J

    2008-09-01

    Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312-7). Whilst such vehicles have many potential advantages in operating in complex environments (e.g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximately 0.9) at low forward speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, 'plate-like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximately 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/or provide more power to other functions (e.g. communications).

  14. Swimming physiology.

    Science.gov (United States)

    Holmér, I

    1992-05-01

    Swimming takes place in a medium, that presents different gravitational and resistive forces, respiratory conditions and thermal stress compared to air. The energy cost of propulsion in swimming is high, but a considerable reduction occurs at a given velocity as result of regular swim training. In medley swimmers the energy cost is lowest for front crawl, followed by backstroke, butterfly and breast-stroke. Cardiac output is probably not limiting for performance since swimmers easily achieve higher values during running. Maximal heart rate, however, is lowered by approx. 10 beats/min during swimming compared to running. Most likely active muscle mass is smaller and rate of power production lesser in swimming. Local factors, such as peripheral circulation, capillary density, perfusion pressure and metabolic capacity of active muscles, are important determinants of the power production capacity and emphasize the role of swim specific training movements. Improved swimming technique and efficiency are likely to explain much of the continuous progress in performance. Rational principles based on improved understanding of the biomechanics and physiology of swimming should be guidelines for swimmers and coaches in their efforts to explore the limits of human performance.

  15. Do bacteria, not fish, produce 'fish kairomone'?

    NARCIS (Netherlands)

    Ringelberg, J.; Van Gool, E.

    1998-01-01

    Fish-associated chemicals enhance phototactic downward swimming in Daphnia. If perch were treated with the antibiotic ampicillin, this enhancement was significantly decreased. Therefore, not fish, but bacteria associated with fish, seem to produce this kairomone. [KEYWORDS: Diel vertical migration;

  16. Importance of mechanics and kinematics in determining the stiffness contribution of the vertebral column during body-caudal-fin swimming in fishes.

    Science.gov (United States)

    Nowroozi, Bryan N; Brainerd, Elizabeth L

    2014-02-01

    Whole-body stiffness in fishes has important consequences for swimming mode, speed and efficiency, but the contribution of vertebral column stiffness to whole-body stiffness is unclear. In our opinion, this lack of clarity is due in part to the lack of studies that have measured both in vitro mechanical properties of the vertebral column as well as in vivo vertebral kinematics in the same species. Some lack of clarity may also come from real variation in the mechanical role of the vertebral column across species. Previous studies, based on either mechanics or kinematics alone, suggest species-specific variation in vertebral column locomotor function that ranges from highly stiff regimes that contribute greatly to whole-body stiffness, and potentially act as a spring, to highly compliant regimes that only prohibit excessive flexion of the intervertebral joints. We review data collected in combined investigations of both mechanics and kinematics of three species, Myxine glutinosa, Acipenser transmontanus, and Morone saxatilis, to illustrate how mechanical testing within the context of the in vivo kinematics more clearly distinguishes the role of the vertebral column in each species. In addition, we identify species for which kinematic data are available, but mechanical data are lacking. We encourage further investigation of these species to fill these mechanical data gaps. Finally, we hope these future combined analyses will identify certain morphological, mechanical, or kinematic parameters that might be associated with certain vertebral column functional regimes with respect to body stiffness. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Intraspecific variation in aerobic and anaerobic locomotion: gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata) do not exhibit a trade-off between maximum sustained swimming speed and minimum cost of transport

    Science.gov (United States)

    Svendsen, Jon C.; Tirsgaard, Bjørn; Cordero, Gerardo A.; Steffensen, John F.

    2015-01-01

    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; Ucrit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3) there is a trade-off between maximum sustained swimming speed (Usus) and minimum cost of transport (COTmin); and (4) variation in Usus correlates positively with optimum swimming speed (Uopt; i.e., the speed that minimizes energy expenditure per unit of distance traveled). Data collection involved swimming respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg−1. Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer, suggesting that the metabolic cost of burst swimming is similar across various types of locomotion. There was no correlation between Ucrit and MS or anaerobic capacity in S. aurata indicating that other factors, including morphological or biomechanical traits, influenced Ucrit. We found no evidence of a trade-off between Usus and COTmin. In fact, data revealed significant negative correlations between Usus and COTmin, suggesting that individuals with high Usus also exhibit low COTmin. Finally, there were positive correlations between Usus and Uopt. Our study demonstrates the energetic importance of anaerobic metabolism during unsteady swimming, and provides intraspecific evidence that superior maximum sustained swimming speed is associated with superior swimming economy and

  18. Intraspecific variation in aerobic and anaerobic locomotion: gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata) do not exhibit a trade-off between maximum sustained swimming speed and minimum cost of transport.

    Science.gov (United States)

    Svendsen, Jon C; Tirsgaard, Bjørn; Cordero, Gerardo A; Steffensen, John F

    2015-01-01

    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; U crit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3) there is a trade-off between maximum sustained swimming speed (U sus) and minimum cost of transport (COTmin); and (4) variation in U sus correlates positively with optimum swimming speed (U opt; i.e., the speed that minimizes energy expenditure per unit of distance traveled). Data collection involved swimming respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg(-1). Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer, suggesting that the metabolic cost of burst swimming is similar across various types of locomotion. There was no correlation between U crit and MS or anaerobic capacity in S. aurata indicating that other factors, including morphological or biomechanical traits, influenced U crit. We found no evidence of a trade-off between U sus and COTmin. In fact, data revealed significant negative correlations between U sus and COTmin, suggesting that individuals with high U sus also exhibit low COTmin. Finally, there were positive correlations between U sus and U opt. Our study demonstrates the energetic importance of anaerobic metabolism during unsteady swimming, and provides intraspecific evidence that superior maximum sustained swimming speed is associated with superior swimming

  19. Intraspecific variation in aerobic and anaerobic locomotion: gilthead sea bream (Sparus aurata and Trinidadian guppy (Poecilia reticulata do not exhibit a trade-off between maximum sustained swimming speed and minimum cost of transport.

    Directory of Open Access Journals (Sweden)

    Jon Christian Svendsen

    2015-02-01

    Full Text Available Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata and Trinidadian guppy (Poecilia reticulata, both axial swimmers, this study tested four hypotheses: 1 gait transition from steady to unsteady (i.e. burst-assisted swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC; 2 variation in swimming performance (critical swimming speed; Ucrit correlates with metabolic scope (MS or anaerobic capacity (i.e. maximum EPOC; 3 there is a trade-off between maximum sustained swimming speed (Usus and minimum cost of transport (COTmin; and 4 variation in Usus correlates positively with optimum swimming speed (Uopt; i.e. the speed that minimizes energy expenditure per unit of distance travelled. Data collection involved swimming respirometry and video analysis. Results showed that anaerobic swimming costs (i.e. EPOC increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg-1. Data are consistent with a previous study on striped surfperch (Embiotoca lateralis, a labriform swimmer, suggesting that the metabolic cost of burst swimming is similar across various types of locomotion. There was no correlation between Ucrit and MS or anaerobic capacity in S. aurata indicating that other factors, including morphological or biomechanical traits, influenced Ucrit. We found no evidence of a trade-off between Usus and COTmin. In fact, data revealed significant negative correlations between Usus and COTmin, suggesting that individuals with high Usus also exhibit low COTmin. Finally, there were positive correlations between Usus and Uopt. Our study demonstrates the energetic importance of anaerobic metabolism during unsteady swimming, and provides intraspecific evidence that superior maximum sustained swimming speed is associated with superior swimming economy and optimum

  20. Body dynamics and hydrodynamics of swimming larvae: a computational study

    NARCIS (Netherlands)

    Li, G.; Müller, U.K.; Leeuwen, van J.L.; Liu, H.

    2012-01-01

    To understand the mechanics of fish swimming, we need to know the forces exerted by the fluid and how these forces affect the motion of the fish. To this end, we developed a 3-D computational approach that integrates hydrodynamics and body dynamics. This study quantifies the flow around a swimming

  1. Fishing

    Energy Technology Data Exchange (ETDEWEB)

    Walker, G.

    1984-09-01

    Two classifications of fishing jobs are discussed: open hole and cased hole. When there is no casing in the area of the fish, it is called open hole fishing. When the fish is inside the casing, it is called cased hole fishing. The article lists various things that can become a fish-stuck drill pipe, including: broken drill pipe, drill collars, bit, bit cones, hand tools dropped in the well, sanded up or mud stuck tubing, packers become stuck, and much more. It is suggested that on a fishing job, all parties involved should cooperate with each other, and that fishing tool people obtain all the information concerning the well. That way they can select the right tools and methods to clean out the well as quickly as possible.

  2. PROPERTIES OF SWIMMING WATER

    Directory of Open Access Journals (Sweden)

    Tayfun KIR

    2004-10-01

    Full Text Available Swimming waters may be hazardous on human health. So, The physicians who work in the facilities, which include swimming areas, are responsible to prevent risks. To ensure hygiene of swimming water, European Swimming Water Directive offers microbiological, physical, and chemical criteria. [TAF Prev Med Bull 2004; 3(5.000: 103-104

  3. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata)

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Banet, Amanda I.; Christensen, Rune Haubo Bojesen

    2013-01-01

    of reproductive traits, pectoral fin use and burse-assisted swimming on swimming metabolic rate, standard metabolic rate (MO2std) and prolonged swimming performance (Ucrit). Reproductive traits included reproductive allocation and pregnancy stage, the former defined as the mass of the reproductive tissues divided...... by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, MO2std or Ucrit. In contrast, data revealed strong...... effects of pectoral fin use on swimming cost and Ucrit. Poecilia reticulata employed body-caudal fin (BCF) swimming at all tested swimming speeds; however, fish with a high simultaneous use of the pectoral fins exhibited increased swimming cost and decreased Ucrit. These data indicated that combining BCF...

  4. Fish under exercise

    NARCIS (Netherlands)

    Palstra, A.P.; Planas, J.V.

    2011-01-01

    Improved knowledge on the swimming physiology of fish and its application to fisheries science and aquaculture (i.e., farming a fitter fish) is currently needed in the face of global environmental changes, high fishing pressures, increased aquaculture production as well as increased concern on fish

  5. Wild-type Zebrafish subjected to swim-training

    NARCIS (Netherlands)

    Fiaz, Ansa

    2014-01-01

    Genome-wide microarray analysis of the effects of swim-training on zebrafish larval development. Zebrafish were subjected to swim-training from 5 days post fertilization (dpf) until 10 dpf. Subsequently, we performed a genome-wide microarray analysis of trained and control fish at 10 dpf. The goal

  6. Swimming pool granuloma

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  7. ARC Code TI: Swim

    Data.gov (United States)

    National Aeronautics and Space Administration — Swim is a software information service for the grid built on top of Pour, which is an information service framework developed at NASA. Swim provides true software...

  8. Diarrhea and Swimming

    Science.gov (United States)

    ... Pool What to Do if You Have Diarrhea Diarrhea and Swimming Diarrhea and swimming don’t mix! ... small amount of pool water to become infected. Diarrhea and Spreading Illness at the Pool Infectious diarrhea ...

  9. Laryngoscopy during swimming

    DEFF Research Database (Denmark)

    Walsted, Emil S; Swanton, Laura L; van van Someren, Ken

    2017-01-01

    that precipitates their symptoms. This report provides the first description of the feasibility of performing continuous laryngoscopy during exercise in a swimming environment. The report describes the methodology and safety of the use of continuous laryngoscopy while swimming. Laryngoscope, 2017....

  10. Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L.

    NARCIS (Netherlands)

    Burgerhout, E.; Tudorache, C.; Brittijn, S.A.; Palstra, A.P.; Dirks, R.P.; Thillart, G.E.E.J.M.

    2013-01-01

    During migration, swimming in schools provides fish with a number of behavioural and ecological advantages, including increased food supply and reduced predation risk. Previous work shows that carangiform and tunniform swimming result in energetic advantages for individuals using a diamond swimming

  11. Extreme swimming: The oceanic migrations of anguillids

    DEFF Research Database (Denmark)

    Righton, David; Aarestrup, Kim; Jellyman, Don

    2013-01-01

    to their natal habitat to spawn. In temperate species, the migrations are extreme, requiring larvae and adults to swim thousands of km before reaching their destination, but the migrations of tropical species (hundreds of km) are still remarkable in comparison with many other fish species. To achieve...

  12. Cetacean Swimming with Prosthetic Limbs

    Science.gov (United States)

    Bode-Oke, Ayodeji; Ren, Yan; Dong, Haibo; Fish, Frank

    2016-11-01

    During entanglement in fishing gear, dolphins can suffer abrasions and amputations of flukes and fins. As a result, if the dolphin survives the ordeal, swimming performance is altered. Current rehabilitation technques is the use of prosthesis to regain swimming ability. In this work, analyses are focused on two dolphins with locomotive impairment; Winter (currently living in Clearwater Marine Aquarium in Florida) and Fuji (lived in Okinawa Churaumi Aquarium in Japan). Fuji lost about 75% of its fluke surface to necrosis (death of cells) and Winter lost its tail due to amputation. Both dolphins are aided by prosthetic tails that mimic the shape of a real dolphin tail. Using 3D surface reconstruction techniques and a high fidelity Computational Fluid Dynamics (CFD) flow solver, we were able to elucidate the kinematics and hydrodynamics and fluke deformation of these swimmers to clarify the effectiveness of prostheses in helping the dolphins regain their swimming ability. Associated with the performance, we identified distinct features in the wake structures that can explain this gap in the performance compared to a healthy dolphin. This work was supported by ONR MURI Grant Number N00014-14-1-0533.

  13. The Complex Hydrodynamics of Swimming in the Spanish Dancer

    Science.gov (United States)

    Zhou, Zhuoyu; Mittal, Rajat

    2016-11-01

    The lack of a vertebra seems to have freed marine gastropods to explore and exploit a stupendous variety of swimming kinematics. In fact, examination of just a few animals in this group reveal locomotory modes ranging from insect-like flapping, to fish-like undulatory swimming, jet propulsion, and rajiform (manta-like) swimming. There are also a number of marine gastropods that have bizarre swimming gaits with no equivalent among fish or marine mammals. In this latter category is the Spanish Dancer (Hexabranchus sanguineus) a sea slug that swims with a complex combination of body undulations and flapping parapodia. While the neurobiology of these animals has been relatively well-studied, less is known about their propulsive mechanism and swimming energetics. In this study, we focus on the hydrodynamics of two distinct swimmers: the Spanish Dancer, and the sea hare Aplysia; the latter adopts a rajiform-like mode of swimming by passing travelling waves along its parapodia. In the present study an immersed boundary method is employed to examine the vortex structures, hydrodynamic forces and energy costs of the swimming in these animals. NSF Grant No. 1246317.

  14. A MODEL OF OXYGEN CONDITIONS IN A SCHOOL OF FISH BASED ON EXPERIMENTAL RESPIROMETRY

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2010-01-01

    . Based on measurements of oxygen consumption in Atlantic herring (C/llpea harengus) swimming at a variety of forced speeds in a swimming respirometer, a model describing the decline in oxygen conditions through a fish school was constructed. With the model the effects of swimming speed, environmental......John Fleng Steffensen. 1st International FitFish Workshop on the Swimming Physiology of Fish, Barcelona 2010. Oxygen consumption of swimming fish is well known to increase as a power function or exponentially as swimming speed increase. When a fi sh swim through the water they consume oxygen...... and hence less oxygen will be available behind the fish. Similarly oxygen concentration will decrease from front to rear in a school of swimming fish. McFarland and Moss (1967) showed that the oxygen saturation decreased about 30 % from front to rear in an approximately 150 m long school of swimming mullets...

  15. Swimming performance of the small characin Bryconamericus stramineus (Characiformes: Characidae

    Directory of Open Access Journals (Sweden)

    Miriam A. de Castro

    2010-01-01

    Full Text Available Very little research has been conducted on the swimming capacity of Neotropical fish. The few studies available have focused on large migratory species. The present study used fixed and increasing velocity tests to determine prolonged and sustained speeds of the "pequira", Bryconamericus stramineus Eigenmann, 1908, a small, abundant species found in fish passages implemented at the Paraná basin, Brazil. The results of increasing velocity tests showed significant relationships between critical speeds, total and standard lengths, and body weight. When compared with other Neotropical fish, the "pequira" is able to swim faster than individuals of other species of similar length. The point of change from sustained to prolonged swimming was found to occur at an approximate speed of 8.7 lengths per second. These data provide guidance and criteria for design and proper maintenance of structures such as fishways, fish screens and other systems that aim to facilitate or avoid upstream passages as part of management strategies.

  16. Volumetric flow around a swimming lamprey

    Science.gov (United States)

    Lehn, Andrea M.; Colin, Sean P.; Costello, John H.; Leftwich, Megan C.; Tytell, Eric D.

    2015-11-01

    A primary experimental technique for studying fluid-structure interactions around swimming fish has been planar dimensional particle image velocimetry (PIV). Typically, two components of the velocity vector are measured in a plane, in the case of swimming studies, directly behind the animal. While useful, this approach provides little to no insight about fluid structure interactions above and below the fish. For fish with a small height relative to body length, such as the long and approximately cylindrical lamprey, 3D information is essential to characterize how these fish interact with their fluid environment. This study presents 3D flow structures along the body and in the wake of larval lamprey, P etromyzon m arinus , which are 10-15 cm long. Lamprey swim through a 1000 cm3 field of view in a standard 10 gallon tank illuminated by a green laser. Data are collected using the three component velocimeter V3V system by TSI, Inc. and processed using Insight 4G software. This study expands on previous works that show two pairs of vortices each tail beat in the mid-plane of the lamprey wake. NSF DMS 1062052.

  17. The effects of swimming pattern on the energy use of gilthead seabream (Sparus aurata L.)

    DEFF Research Database (Denmark)

    Steinhausen, Maria Faldborg; Steffensen, John Fleng; Andersen, Niels Gerner

    2010-01-01

    Oxygen consumption ( ) was measured for gilthead seabream (Sparus aurata) during spontaneous and forced activities. During spontaneous activity, the swimming pattern was analysed for the effect on   on the average speed (U), turning rate (¿) and change in speed (¿U). All swimming characteristics...... and   during forced activity was also established. During spontaneous activity, 2.5 times more energy was used than in forced swimming at a speed of 0.5 BL s-1. This indicates that spontaneous swimming costs may be considerably higher compared with those of a fixed swimming speed. However, comparing...... contributed significantly to the source of spontaneous swimming costs, and the models explained up to 58% of the variation in   Prediction of   of fish in field studies can thereby be improved if changes in speed and direction are determined in addition to swimming speed. A relationship between swimming speed...

  18. Strouhal number for free swimming

    Science.gov (United States)

    Saadat, Mehdi; van Buren, Tyler; Floryan, Daniel; Smits, Alexander; Haj-Hariri, Hossein

    2015-11-01

    In this work, we present experimental results to explore the implications of free swimming for Strouhal number (as an outcome) in the context of a simple model for a fish that consists of a 2D virtual body (source of drag) and a 2D pitching foil (source of thrust) representing cruising with thunniform locomotion. The results validate the findings of Saadat and Haj-Hariri (2012): for pitching foils thrust coefficient is a function of Strouhal number for all gaits having amplitude less than a certain critical value. Equivalently, given the balance of thrust and drag forces at cruise, Strouhal number is only a function of the shape, i.e. drag coefficient and area, and essentially a constant for high enough swimming speeds for which the mild dependence of drag coefficient on the speed vanishes. Furthermore, a dimensional analysis generalizes the findings. A scaling analysis shows that the variation of Strouhal number with cruising speed is functionally related to the variation of body drag coefficient with speed. Supported by ONR MURI Grant N00014-14-1-0533.

  19. Swimming Pool Safety

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Safety & Prevention Immunizations All Around At Home At Play ... Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to ...

  20. Swimming near the substrate: a simple robotic model of stingray locomotion.

    Science.gov (United States)

    Blevins, Erin; Lauder, George V

    2013-03-01

    Studies of aquatic locomotion typically assume that organisms move through unbounded fluid. However, benthic fishes swim close to the substrate and will experience significant ground effects, which will be greatest for fishes with wide spans such as benthic batoids and flatfishes. Ground effects on fixed-wing flight are well understood, but these models are insufficient to describe the dynamic interactions between substrates and undulating, oscillating fish. Live fish alter their swimming behavior in ground effect, complicating comparisons of near-ground and freestream swimming performance. In this study, a simple, stingray-inspired physical model offers insights into ground effects on undulatory swimmers, contrasting the self-propelled swimming speed, power requirements, and hydrodynamics of fins swimming with fixed kinematics near and far from a solid boundary. Contrary to findings for gliding birds and other fixed-wing fliers, ground effect does not necessarily enhance the performance of undulating fins. Under most kinematic conditions, fins do not swim faster in ground effect, power requirements increase, and the cost of transport can increase by up to 10%. The influence of ground effect varies with kinematics, suggesting that benthic fish might modulate their swimming behavior to minimize locomotor penalties and incur benefits from swimming near a substrate.

  1. Swimming behavior of zebrafish is accurately classified by direct modeling and behavioral space analysis

    Science.gov (United States)

    Feng, Ruopei; Chemla, Yann; Gruebele, Martin

    Larval zebrafish is a popular organism in the search for the correlation between locomotion behavior and neural pathways because of their highly stereotyped and temporally episodic swimming motion. This correlation is usually investigated using electrophysiological recordings of neural activities in partially immobilized fish. Seeking for a way to study animal behavior without constraints or intruding electrodes, which can in turn modify their behavior, our lab has introduced a parameter-free approach which allows automated classification of the locomotion behaviors of freely swimming fish. We looked into several types of swimming bouts including free swimming and two modes of escape responses and established a new classification of these behaviors. Combined with a neurokinematic model, our analysis showed the capability to probe intrinsic properties of the underlying neural pathways of freely swimming larval zebrafish by inspecting swimming movies only.

  2. A MODEL OF OXYGEN CONDITIONS IN A SCHOOL OF FISH BASED ON EXPERIMENTAL RESPIROMETRY

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2010-01-01

    John Fleng Steffensen. 1st International FitFish Workshop on the Swimming Physiology of Fish, Barcelona 2010. Oxygen consumption of swimming fish is well known to increase as a power function or exponentially as swimming speed increase. When a fi sh swim through the water they consume oxygen and ...... of Atlantic herring with a ROV instrumented with cameras and a logging YSJ CTD as well as an acoustic Oxyguard oxygen transmitter....

  3. Fish, invertebrate and benthic surveys along the West coast of Hawaii from 2003-03-01 to 2017-03-01 (NCEI Accession 0164965)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish urchins and all other fish species are recorded in the return swim, during which divers swim more slowly carefully looking for smaller site-attached and semi...

  4. Geneva 24 hours swim

    CERN Multimedia

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  5. Geneva 24 Hours Swim

    CERN Multimedia

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  6. Optimal shape and motion of undulatory swimming organisms.

    Science.gov (United States)

    Tokić, Grgur; Yue, Dick K P

    2012-08-07

    Undulatory swimming animals exhibit diverse ranges of body shapes and motion patterns and are often considered as having superior locomotory performance. The extent to which morphological traits of swimming animals have evolved owing to primarily locomotion considerations is, however, not clear. To shed some light on that question, we present here the optimal shape and motion of undulatory swimming organisms obtained by optimizing locomotive performance measures within the framework of a combined hydrodynamical, structural and novel muscular model. We develop a muscular model for periodic muscle contraction which provides relevant kinematic and energetic quantities required to describe swimming. Using an evolutionary algorithm, we performed a multi-objective optimization for achieving maximum sustained swimming speed U and minimum cost of transport (COT)--two conflicting locomotive performance measures that have been conjectured as likely to increase fitness for survival. Starting from an initial population of random characteristics, our results show that, for a range of size scales, fish-like body shapes and motion indeed emerge when U and COT are optimized. Inherent boundary-layer-dependent allometric scaling between body mass and kinematic and energetic quantities of the optimal populations is observed. The trade-off between U and COT affects the geometry, kinematics and energetics of swimming organisms. Our results are corroborated by empirical data from swimming animals over nine orders of magnitude in size, supporting the notion that optimizing U and COT could be the driving force of evolution in many species.

  7. Swim-training changes the spatio-temporal dynamics of skeletogenesis in zebrafish larvae (Danio rerio)

    NARCIS (Netherlands)

    Fiaz, A.W.; Leon-Kloosterziel, K.M.; Gort, G.; Schulte-Merker, S.; van Leeuwen, J.L.; Kranenbarg, S.

    2012-01-01

    Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical

  8. 2007 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  9. Swimming Pools and Molluscum Contagiosum

    Science.gov (United States)

    ... Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections Poxvirus Swimming Pools Recommend on Facebook Tweet Share Compartir The ... often ask if molluscum virus can spread in swimming pools. There is also concern that it can ...

  10. 2006 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  11. 2009 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  12. 2008 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  13. 2010 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  14. 2012 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  15. Unsteady propulsion by an intermittent swimming gait

    Science.gov (United States)

    Akoz, Emre; Moored, Keith W.

    2018-01-01

    Inviscid computational results are presented on a self-propelled swimmer modeled as a virtual body combined with a two-dimensional hydrofoil pitching intermittently about its leading edge. Lighthill (1971) originally proposed that this burst-and-coast behavior can save fish energy during swimming by taking advantage of the viscous Bone-Lighthill boundary layer thinning mechanism. Here, an additional inviscid Garrick mechanism is discovered that allows swimmers to control the ratio of their added mass thrust-producing forces to their circulatory drag-inducing forces by decreasing their duty cycle, DC, of locomotion. This mechanism can save intermittent swimmers as much as 60% of the energy it takes to swim continuously at the same speed. The inviscid energy savings are shown to increase with increasing amplitude of motion, increase with decreasing Lighthill number, Li, and switch to an energetic cost above continuous swimming for sufficiently low DC. Intermittent swimmers are observed to shed four vortices per cycle that form into groups that are self-similar with the DC. In addition, previous thrust and power scaling laws of continuous self-propelled swimming are further generalized to include intermittent swimming. The key is that by averaging the thrust and power coefficients over only the bursting period then the intermittent problem can be transformed into a continuous one. Furthermore, the intermittent thrust and power scaling relations are extended to predict the mean speed and cost of transport of swimmers. By tuning a few coefficients with a handful of simulations these self-propelled relations can become predictive. In the current study, the mean speed and cost of transport are predicted to within 3% and 18% of their full-scale values by using these relations.

  16. Fluid-mediated stability and speed-increase for heaving hydrofoils swimming side-by-side

    Science.gov (United States)

    Newbolt, Joel; Zhang, Jun; Ristroph, Leif

    2017-11-01

    As an example of collective motion in active swimmers we study the fluid-mediated interaction between two heaving hydrofoils that swim with a fixed transverse separation (between the heaving mid-heights) but are free to independently choose their forward swimming speeds and positions. Experiments reveal that out-of-phase foils are attracted to a side-by-side configuration which also increases the swimming speed of the pair (up to 59% faster for our parameters), while in-phase foils are repelled from this configuration. Because this type of swimming is qualitatively similar to that of fish and birds this interaction could be important to schooling and flocking.

  17. Automated visual tracking for studying the ontogeny of zebrafish swimming

    NARCIS (Netherlands)

    Fontaine, E.; Lentink, D.; Kranenbarg, S.; Müller, U.K.; Leeuwen, van J.L.; Barr, A.H.; Burdick, J.W.

    2008-01-01

    The zebrafish Danio rerio is a widely used model organism in studies of genetics, developmental biology, and recently, biomechanics. In order to quantify changes in swimming during all stages of development, we have developed a visual tracking system that estimates the posture of fish. Our current

  18. Observations on side-swimming rainbow trout in water recirculation aquaculture systems.

    Science.gov (United States)

    Good, Christopher; Davidson, John; Kinman, Christin; Kenney, P Brett; Bæverfjord, Grete; Summerfelt, Steven

    2014-12-01

    During a controlled 6-month study using six replicated water recirculation aquaculture systems (WRASs), it was observed that Rainbow Trout Oncorhynchus mykiss in all WRASs exhibited a higher-than-normal prevalence of side swimming (i.e., controlled, forward swimming but with misaligned orientation such that the fish's sagittal axis is approximately parallel to the horizontal plane). To further our understanding of this abnormality, a substudy was conducted wherein side swimmers and normally swimming fish were selectively sampled from each WRAS and growth performance (length, weight), processing attributes (fillet yield, visceral index, ventrum [i.e., thickness of the ventral "belly flap"] index), blood gas and chemistry parameters, and swim bladder morphology and positioning were compared. Side swimmers were found to be significantly smaller in length and weight and had less fillet yield but higher ventrum indices. Whole-blood analyses demonstrated that, among other things, side swimmers had significantly lower whole-blood pH and higher Pco2. Side swimmers typically exhibited swim bladder malformations, although the positive predictive value of this subjective assessment was only 73%. Overall, this study found several anatomical and physiological differences between side-swimming and normally swimming Rainbow Trout. Given the reduced weight and fillet yield of market-age side swimmers, producers would benefit from additional research to reduce side-swimming prevalence in their fish stocks.

  19. Effects of skeletal deformities on swimming performance and recovery from exhaustive exercise in triploid Atlantic salmon.

    Science.gov (United States)

    Powell, Mark D; Jones, Matthew A; Lijalad, Maite

    2009-05-27

    The occurrence of spinal deformity in aquaculture can be considerable, and a high rate of deformity has been suggested in triploid smolts in Tasmania. However, the physiological performance of fish with skeletal deformities has not been addressed. The swimming performance and oxygen consumption of triploid Atlantic salmon smolts with either a vertebral fusion (platyspondyly) or multifocal scoliosis were compared to normal (non-deformed) triploid smolts. Fish with vertebral fusion attained swim speeds similar to normal fish, whereas scoliotic fish were unable to attain comparable swim speeds. Routine and maximum oxygen consumption was higher for deformed fish compared with normal fish, translating into apparent increased routine metabolic scope in vertebral fusion fish, and equivocal scope in scoliotic fish compared with normal controls. Deformed fish developed a lower excess post-exercise oxygen consumption compared to non-deformed fish, suggesting they are either incapable of sustained anaerobic activity or possess an increased recovery capacity. These data suggest that skeletal deformity has differential effects on swimming performance depending upon the type of deformity but imposes a significant metabolic cost on salmon smolts.

  20. Impaired swim bladder inflation in early-life stage fathead ...

    Science.gov (United States)

    The present study investigated whether inhibition of deiodinase, the enzyme which converts thyroxine (T4) to the more biologically-active form, 3,5,3'-triiodothyronine (T3), would impact inflation of the posterior and/or anterior chamber of the swim bladder, processes previously demonstrated to be thyroid-hormone regulated. Two experiments were conducted using a model deiodinase inhibitor, iopanoic acid (IOP). In the first study, fathead minnow (Pimephales promelas) embryos were exposed to 0.6, 1.9, or 6.0 mg IOP/L or control water in a flow-through system until reaching 6 days post-fertilization (dpf) at which time posterior swim bladder inflation was assessed. To examine effects on anterior swim bladder inflation, a second study was conducted with 6 dpf larvae exposed to the same IOP concentrations until reaching 21 dpf. Fish from both studies were sampled for T4/T3 measurements, gene transcription analyses, and thyroid histopathology. In the embryo study, incidence and length of inflated posterior swim bladders were significantly reduced in the 6.0 mg/L treatment at 6 dpf. Incidence of inflation and length of anterior swim bladder in larval fish were significantly reduced in all IOP treatments at 14 dpf, but inflation recovered by 18 dpf. Throughout the larval study, whole body T4 concentrations were significantly increased and T3 concentrations were significantly decreased in all IOP treatments. Consistent with hypothesized compensatory responses, sig

  1. Similarities and Differences for Swimming in Larval and Adult Lampreys.

    Science.gov (United States)

    McClellan, Andrew D; Pale, Timothée; Messina, J Alex; Buso, Scott; Shebib, Ahmad

    2016-01-01

    The spinal locomotor networks controlling swimming behavior in larval and adult lampreys may have some important differences. As an initial step in comparing the locomotor systems in lampreys, in larval animals the relative timing of locomotor movements and muscle burst activity were determined and compared to those previously published for adults. In addition, the kinematics for free swimming in larval and adult lampreys was compared in detail for the first time. First, for swimming in larval animals, the neuromechanical phase lag between the onsets or terminations of muscle burst activity and maximum concave curvature of the body increased with increasing distance along the body, similar to that previously shown in adults. Second, in larval lampreys, but not adults, absolute swimming speed (U; mm s(-1)) increased with animal length (L). In contrast, normalized swimming speed (U'; body lengths [bl] s(-1)) did not increase with L in larval or adult animals. In both larval and adult lampreys, U' and normalized wave speed (V') increased with increasing tail-beat frequency. Wavelength and mechanical phase lag did not vary significantly with tail-beat frequency but were significantly different in larval and adult animals. Swimming in larval animals was characterized by a smaller U/V ratio, Froude efficiency, and Strouhal number than in adults, suggesting less efficient swimming for larval animals. In addition, during swimming in larval lampreys, normalized lateral head movements were larger and normalized lateral tail movements were smaller than for adults. Finally, larval animals had proportionally smaller lateral surface areas of the caudal body and fin areas than adults. These differences are well suited for larval sea lampreys that spend most of the time buried in mud/sand, in which swimming efficiency is not critical, compared to adults that would experience significant selection pressure to evolve higher-efficiency swimming to catch up to and attach to fish for

  2. Stirring by swimming bodies

    Energy Technology Data Exchange (ETDEWEB)

    Thiffeault, Jean-Luc, E-mail: jeanluc@math.wisc.ed [Department of Mathematics, University of Wisconsin - Madison, 480 Lincoln Dr., Madison, WI 53706 (United States); Institute for Mathematics and Applications, University of Minnesota - Twin Cities, 207 Church Street S.E., Minneapolis, MN 55455 (United States); Childress, Stephen [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012 (United States)

    2010-07-26

    We consider the stirring of an inviscid fluid caused by the locomotion of bodies through it. The swimmers are approximated by non-interacting cylinders or spheres moving steadily along straight lines. We find the displacement of fluid particles caused by the nearby passage of a swimmer as a function of an impact parameter. We use this to compute the effective diffusion coefficient from the random walk of a fluid particle under the influence of a distribution of swimming bodies. We compare with the results of simulations. For typical sizes, densities and swimming velocities of schools of krill, the effective diffusivity in this model is five times the thermal diffusivity. However, we estimate that viscosity increases this value by two orders of magnitude.

  3. Swimming with multiple propulsors: measurement and comparison of swimming gaits in three species of neotropical cichlids.

    Science.gov (United States)

    Feilich, Kara L

    2017-11-15

    Comparative studies of fish swimming have been limited by the lack of quantitative definitions of fish gaits. Traditionally, steady swimming gaits have been defined categorically by the fin or region of the body that is used as the main propulsor and named after major fish clades (e.g. carangiform, anguilliform, balistiform, labriform). This method of categorization is limited by the lack of explicit measurements, the inability to incorporate contributions of multiple propulsors and the inability to compare gaits across different categories. I propose an alternative framework for the definition and comparison of fish gaits based on the propulsive contribution of each structure (body and/or fin) being used as a propulsor relative to locomotor output, and demonstrate the effectiveness of this framework by comparing three species of neotropical cichlids with different body shapes. This approach is modular with respect to the number of propulsors considered, flexible with respect to the definition of the propulsive inputs and the locomotor output of interest, and designed explicitly to handle combinations of propulsors. Using this approach, gait can be defined as a trajectory through propulsive space, and gait transitions can be defined as discontinuities in the gait trajectory. By measuring and defining gait in this way, patterns of clustering corresponding to existing categorical definitions of gait may emerge, and gaits can be rigorously compared across categories. © 2017. Published by The Company of Biologists Ltd.

  4. Warm water and cool nests are best. How global warming might influence hatchling green turtle swimming performance.

    Directory of Open Access Journals (Sweden)

    David T Booth

    Full Text Available For sea turtles nesting on beaches surrounded by coral reefs, the most important element of hatchling recruitment is escaping predation by fish as they swim across the fringing reef, and as a consequence hatchlings that minimize their exposure to fish predation by minimizing the time spent crossing the fringing reef have a greater chance of surviving the reef crossing. One way to decrease the time required to cross the fringing reef is to maximize swimming speed. We found that both water temperature and nest temperature influence swimming performance of hatchling green turtles, but in opposite directions. Warm water increases swimming ability, with hatchling turtles swimming in warm water having a faster stroke rate, while an increase in nest temperature decreases swimming ability with hatchlings from warm nests producing less thrust per stroke.

  5. Effect of morphological fin curl on the swimming performance and station-holding ability of juvenile shovelnose sturgeon

    Science.gov (United States)

    Deslauriers, David; Johnston, Ryan; Chipps, Steven R.

    2016-01-01

    We assessed the effect of fin-curl on the swimming and station-holding ability of juvenile shovelnose sturgeon Scaphirhynchus platorynchus (mean fork length = 17 cm; mean weight = 16 g; n = 21) using a critical swimming speed test performed in a small swim chamber (90 L) at 20°C. We quantified fin-curl severity using the pectoral fin index. Results showed a positive relationship between pectoral fin index and critical swimming speed indicative of reduced swimming performance displayed by fish afflicted with a pectoral fin index < 8%. Fin-curl severity, however, did not affect the station-holding ability of individual fish. Rather, fish affected with severe fin-curl were likely unable to use their pectoral fins to position their body adequately in the water column, which led to the early onset of fatigue. Results generated from this study should serve as an important consideration for future stocking practices.

  6. Sand swimming lizard: sandfish

    OpenAIRE

    Maladen, Ryan D.; Ding, Yang; Kamor, Adam; Goldman, Daniel I.

    2009-01-01

    We use high-speed x-ray imaging to reveal how a small (~10cm) desert dwelling lizard, the sandfish (Scincus scincus), swims within a granular medium [1]. On the surface, the lizard uses a standard diagonal gait, but once below the surface, the organism no longer uses limbs for propulsion. Instead it propagates a large amplitude single period sinusoidal traveling wave down its body and tail to propel itself at speeds up to ~1.5 body-length/sec. Motivated by these experiments we study a numeric...

  7. Establishing zebrafish as a novel exercise model: swimming economy, swimming-enhanced growth and muscle growth marker gene expression.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available BACKGROUND: Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: Individual zebrafish (n = 10 were able to swim at a critical swimming speed (U(crit of 0.548±0.007 m s(-1 or 18.0 standard body lengths (BL s(-1. The optimal swimming speed (U(opt at which energetic efficiency is highest was 0.396±0.019 m s(-1 (13.0 BL s(-1 corresponding to 72.26±0.29% of U(crit. The cost of transport at optimal swimming speed (COT(opt was 25.23±4.03 µmol g(-1 m(-1. A group-wise experiment was conducted with zebrafish (n = 83 swimming at U(opt for 6 h day(-1 for 5 days week(-1 for 4 weeks vs. zebrafish (n = 84 that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb, insulin-like growth factor 1 receptor a (igf1ra, troponin C (stnnc, slow myosin heavy chain 1 (smyhc1, troponin I2 (tnni2, myosin heavy polypeptide 2 (myhz2 and myostatin (mstnb. CONCLUSIONS/SIGNIFICANCE: From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture.

  8. Fish Locomotion: Recent Advances and New Directions

    Science.gov (United States)

    Lauder, George V.

    2015-01-01

    Research on fish locomotion has expanded greatly in recent years as new approaches have been brought to bear on a classical field of study. Detailed analyses of patterns of body and fin motion and the effects of these movements on water flow patterns have helped scientists understand the causes and effects of hydrodynamic patterns produced by swimming fish. Recent developments include the study of the center-of-mass motion of swimming fish and the use of volumetric imaging systems that allow three-dimensional instantaneous snapshots of wake flow patterns. The large numbers of swimming fish in the oceans and the vorticity present in fin and body wakes support the hypothesis that fish contribute significantly to the mixing of ocean waters. New developments in fish robotics have enhanced understanding of the physical principles underlying aquatic propulsion and allowed intriguing biological features, such as the structure of shark skin, to be studied in detail.

  9. Ontogenetic differentiation of swimming performance and behaviour in relation to habitat availability in the endangered North Sea houting (Coregonus oxyrinchus)

    DEFF Research Database (Denmark)

    Poulsen, Søren Brandt; Jensen, Lasse Fast; Schulz, Carsten

    2012-01-01

    The survival of the highly endangered, anadromous fish species North Sea houting (Coregonus oxyrinchus) depends on the correct timing of downstream dispersal during its early ontogenetic stages. To date, however, no studies have investigated the ontogenetic differentiation of swimming performance...

  10. The effects of chronic cadmium exposure on repeat swimming performance and anaerobic metabolism in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis)

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Jessie L.; McGeer, James C., E-mail: jmcgeer@wlu.ca

    2016-04-15

    Highlights: • Exposure to 18 nM waterborne Cd induced plasma Ca loss that recovered by day 30 for lake whitefish but not brown trout. • Ucrit measured after an initial swim to 85% of Ucrit and a 30 min rest period was reduced in 18 nM Cd exposed fish compared to controls. • Swimming to 85% of Ucrit resulted in decreased muscle glycogen and increased lactate that was not recovered in the 30 min recovery period. • Second swim impairment is not related to metabolic processes in white muscle. - Abstract: This study investigates the effect of chronic Cd exposure on the ability to perform repeat swim challenges in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis). Fish were exposed to waterborne Cd (18 nM) in moderately hard water (120 mg L{sup −1} CaCO{sub 3}) for 30 days. This level of exposure has been shown to cause sublethal physiological disruption and acclimation responses but no impairment of sustained swimming capacity (U{sub crit}) in single swim challenges. Swim trials were done over the course of the exposure and each one consisted of an initial swim to 85% of the U{sub crit} of control fish, a 30 min recovery period and finally a second swim challenge to determine U{sub crit}. Plasma and tissue samples were collected before and after each of the swim periods. As expected from previous studies, Cd exposure resulted in significant accumulation of Cd in gills, liver and kidney but not in white muscle. Exposure also induced a loss of plasma Ca followed by subsequent recovery (in lake whitefish but not brown trout) with few mortalities (100% survival for lake whitefish and 93% for brown trout). Both control and exposed fish swam to 85% of the single swim U{sub crit} and no differences in performance were seen. The Ucrit of unexposed controls in the second swim challenges were not different from the single swim Ucrit. However, second swim performance was significantly reduced in Cd exposed fish, particularly after a week of exposure

  11. The Impact of Baby Swimming on Introductory and Elementary Swimming Training

    OpenAIRE

    Břízová, Gabriela

    2007-01-01

    THESIS ANNOTATION Title: The Impact of Baby Swimming on Introductory and Elementary Swimming Training Aim: To assess the impact of 'baby swimming' on the successfulness in introductory and partly in elementary swimming training, and to find out whether also other circumstances (for example the length of attendance at 'baby swimming') have some influence on introductory swimming training. Methods: We used a questionnaire method for the parents of children who had attended 'baby swimming' and f...

  12. Swimming level of pupils from elementary schools with own swimming pool

    OpenAIRE

    Zálupská, Klára

    2012-01-01

    Title: Swimming level of pupils from primary school with private swimming pool. Work objectives: The aim is to identify assess level of swimming of pupils from first to ninth grade of primary school with a private pool in Chomutov district using continuous swimming test with regular swimming lessons, which is started in the first grade and persists until the ninth grade. The condition was organizing a school swimming lessons once a week for 45 minutes in all grades. Methodology: Swimming leve...

  13. Baby swimming and respiratory health.

    Science.gov (United States)

    Nystad, Wenche; Håberg, Siri E; London, Stephanie J; Nafstad, Per; Magnus, Per

    2008-05-01

    To estimate the effect of baby swimming in the first 6 months of life on respiratory diseases from 6 to 18 months. We used data from The Norwegian Mother and Child Cohort Study (MoBa) conducted by the Norwegian Institute of Public Health in children born between 1999 and 2005 followed from birth to the age of 18 months (n = 30,870). Health outcomes: lower respiratory tract infections (LRTI), wheeze and otitis media between 6 and 18 months of age. baby swimming at the age of 6 months. The effect of baby swimming was estimated by logistic regression analysis adjusting for potential confounders. About 25% of the children participated in baby swimming. The prevalence of LRTI was 13.3%, wheeze 40.0% and otitis media 30.4%. Children who were baby swimming were not more likely to have LRTI, to wheeze or to have otitis media. However, children with atopic mothers who attended baby swimming had an increased risk of wheeze, adjusted odds ratios (aOR) 1.24 (95% CI 1.11, 1.39), but not LRTI or otitis media. This was also the case for children without respiratory diseases before 6 months aOR 1.08 (95%CI 1.02-1.15). Baby swimming may be related to later wheeze. However, these findings warrant further investigation.

  14. Influence of swimming behavior of copepod nauplii on feeding of larval turbot (Scophthalmus maximus)

    DEFF Research Database (Denmark)

    Bruno, Eleonora; Højgaard, Jacob Kring; Hansen, Benni Winding

    2018-01-01

    Feeding in larval fish is influenced by a range of factors and among these are the morphological and behavioral characteristics of their prey. We investigated the influence of the swimming behavior of two species of calanoid copepods, Acartia tonsa and Temora longicornis, on larval turbot feeding....... The nauplii of these species represent two contrasting swimming behaviors: A. tonsa is a jump-sink type swimmer, while T. longicornis is a cruise swimming type. Three replicates of ten larvae aged 7 and 9 days post hatch (DPH) were observed feeding on one of the two copepod species using a 2-dimensional video...

  15. The determination of the swimming performance of rainbow trout (Oncorhynchus mykiss) under the effect of detergent

    Science.gov (United States)

    Esenbuǧa, Hülya; Alak, Gonca; Atamanalp, Muhammed

    2017-04-01

    Detergent residues can lead to continuous damage in the cell membranes and make them become sensitive to the harmful effects of other toxic substances and infection factors. In this study, the behavioral responses of rainbow trout have been studied at the end of 21 days, where they have been exposed to different concentrations of Sodium Dodecyl Sulphate (SDS). In the fish which have been exposed to two different doses of SDS material, the swimming performance has been examined for behavior analysis with emphasis on critical swimming speed. The effect of SDS on critical swimming speed has been found to be significant (p <0.05).

  16. Swim bladder function and buoyancy control in pink snapper (Pagrus auratus) and mulloway (Argyrosomus japonicus).

    Science.gov (United States)

    Stewart, John; Hughes, Julian M

    2014-04-01

    Physoclist fish are able to regulate their buoyancy by secreting gas into their hydrostatic organ, the swim bladder, as they descend through the water column and by resorbing gas from their swim bladder as they ascend. Physoclists are restricted in their vertical movements due to increases in swim bladder gas volume that occur as a result of a reduction in hydrostatic pressure, causing fish to become positively buoyant and risking swim bladder rupture. Buoyancy control, rates of swim bladder gas exchange and restrictions to vertical movements are little understood in marine teleosts. We used custom-built hyperbaric chambers and laboratory experiments to examine these aspects of physiology for two important fishing target species in southern Australia, pink snapper (Pagrus auratus) and mulloway (Argyrosomus japonicus). The swim bladders of pink snapper and mulloway averaged 4.2 and 4.9 % of their total body volumes, respectively. The density of pink snapper was not significantly different to the density of seawater (1.026 g/ml), whereas mulloway were significantly denser than seawater. Pink snapper secreted gas into their swim bladders at a rate of 0.027 ± 0.005 ml/kg/min (mean ± SE), almost 4 times faster than mulloway (0.007 ± 0.001 ml/kg/min). Rates of swim bladder gas resorption were 11 and 6 times faster than the rates of gas secretion for pink snapper and mulloway, respectively. Pink snapper resorbed swim bladder gas at a rate of 0.309 ± 0.069 ml/kg/min, 7 times faster than mulloway (0.044 ± 0.009 ml/kg/min). Rates of gas exchange were not affected by water pressure or water temperature over the ranges examined in either species. Pink snapper were able to acclimate to changes in hydrostatic pressure reasonably quickly when compared to other marine teleosts, taking approximately 27 h to refill their swim bladders from empty. Mulloway were able to acclimate at a much slower rate, taking approximately 99 h to refill their swim bladders. We estimated that the

  17. Fish positions relative to neighbours modulate the hydrodynamic advantages of schooling

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    of distances along the direction of locomotion, spanning one body length (BL) in the front (+1 BL) and behind (-1 BL) a neighbouring fish. We found a significant reduction in the mean TBF of fish when swimming in a school versus solitary fish . Furthermore, the TBF of the focal fish decreased linearly between......) and Paolo Domenici (CNR, Italy) Schooling behaviour is a widespread phenomenon shared by a large number of fish species. One of the most common benefits of swimming in a school is the hydrodynamic and energetic advantage obtained by its members. Fish occupying non-frontal positions can benefit from the flow...... generated by the caudal movement of fish swimming in the front. While previous work has demonstrated that trailing fish show a lower tail beat frequency (TBF) than leading fish , the extent to which schooling provides hydrodynamic advantages compared to swimming alone has not been quantified. We quantified...

  18. Fish positions relative to neighbours modulate the hydrodynamic advantages of schooling

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    ) and Paolo Domenici (CNR, Italy) Schooling behaviour is a widespread phenomenon shared by a large number of fish species. One of the most common benefits of swimming in a school is the hydrodynamic and energetic advantage obtained by its members. Fish occupying non-frontal positions can benefit from the flow...... generated by the caudal movement of fish swimming in the front. While previous work has demonstrated that trailing fish show a lower tail beat frequency (TBF) than leading fish , the extent to which schooling provides hydrodynamic advantages compared to swimming alone has not been quantified. We quantified...... of distances along the direction of locomotion, spanning one body length (BL) in the front (+1 BL) and behind (-1 BL) a neighbouring fish. We found a significant reduction in the mean TBF of fish when swimming in a school versus solitary fish . Furthermore, the TBF of the focal fish decreased linearly between...

  19. Swimming Performance and Metabolism of Golden Shiners

    Science.gov (United States)

    The swimming ability and metabolism of golden shiners, Notemigonus crysoleucas, was examined using swim tunnel respirometery. The oxygen consumption and tail beat frequencies at various swimming speeds, an estimation of the standard metabolic rate, and the critical swimming speed (Ucrit) was determ...

  20. Swimming ability and physiological response to swimming fatigue in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-06

    Apr 6, 2009 ... The swimming endurance of kuruma shrimp, Marsupenaeus japonicus (11.04 ± 2.43 g) at five swimming speeds (23.0, 26.7, 31.0, 34.6 and 38.6 cm s-1) was determined in a circulating flume at 25.7 ± 0.7°C. The plasma glucose and total protein, hepatopancreas and pleopods muscle glycogen ...

  1. Swimming ability and physiological response to swimming fatigue in ...

    African Journals Online (AJOL)

    The swimming endurance of kuruma shrimp, Marsupenaeus japonicus (11.04 ± 2.43 g) at five swimming speeds (23.0, 26.7, 31.0, 34.6 and 38.6 cm s-1) was determined in a circulating flume at 25.7 ± 0.7°C. The plasma glucose and total protein, hepatopancreas and pleopods muscle glycogen concentrations were ...

  2. To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida) in Marine Turtles.

    Science.gov (United States)

    Domènech, Francesc; Tomás, Jesús; Crespo-Picazo, José Luis; García-Párraga, Daniel; Raga, Juan Antonio; Aznar, Francisco Javier

    2017-01-01

    Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80%) on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. Hatched nauplii crawled only on rough substrates and lacked the ability to swim. Only copepodites IV and V, and adults, were able to perform directional swimming. Legs 2, 3 and 4 played a major role in swimming and were only well-developed in these stages. Nauplii reared in wells with turtle skin readily fed on this item. Late copepodites and adults also fed on turtle skin but did not consume other potential food items such as fish skin, baleen plates or planktonic algae. Evidences suggest that the transmission of B. manatorum should rely on hosts' bodily contacts and/or swimming of late developmental stages between spatially close hosts. The possibility of long-ranged dispersal is unlikely for two reasons. First, all developmental stages seem to depend on turtle skin as a food resource. Second, the average clutch size of ovigerous females was small (turtles that occur at very low densities (turtles·km-2) in the western Mediterranean. The high prevalence of B. manatorum in loggerhead turtles in this area raises the question whether these turtles have contacts, or tend to closely aggregate, more than is currently believed.

  3. Shortlist Masterplan Wind. Effect of pilling noise on the survival of fish larvae( pilot study) progress report

    NARCIS (Netherlands)

    Bolle, L.J.; Keeken, van O.A.; Damme, van C.J.G.; Winter, H.V.; Haan, de D.; Lohman, M.; Heul, van der J.W.; Huijer, T.

    2010-01-01

    Fish can suffer lethal damage to swimming bladder or other organs due to extreme loud impulse sounds caused by e.g. pile driving (Popper & Hastings 2009). Juvenile and adult fish can actively swim away from a sound source, but planktonic larvae are not able to do this. As a result, fish larvae

  4. Healthy Swimming/Recreational Water

    Science.gov (United States)

    ... Model Aquatic Health Code (MAHC) Featured Partners Healthy Water Sites Healthy Water Drinking Water Healthy Swimming Global WASH Other Uses of Water WASH-related Emergencies & Outbreaks Water, Sanitation, & Environmentally-related ...

  5. Free Swimming in Ground Effect

    Science.gov (United States)

    Cochran-Carney, Jackson; Wagenhoffer, Nathan; Zeyghami, Samane; Moored, Keith

    2017-11-01

    A free-swimming potential flow analysis of unsteady ground effect is conducted for two-dimensional airfoils via a method of images. The foils undergo a pure pitching motion about their leading edge, and the positions of the body in the streamwise and cross-stream directions are determined by the equations of motion of the body. It is shown that the unconstrained swimmer is attracted to a time-averaged position that is mediated by the flow interaction with the ground. The robustness of this fluid-mediated equilibrium position is probed by varying the non-dimensional mass, initial conditions and kinematic parameters of motion. Comparisons to the foil's fixed-motion counterpart are also made to pinpoint the effect that free swimming near the ground has on wake structures and the fluid-mediated forces over time. Optimal swimming regimes for near-boundary swimming are determined by examining asymmetric motions.

  6. System Wide Information Management (SWIM)

    Science.gov (United States)

    Hritz, Mike; McGowan, Shirley; Ramos, Cal

    2004-01-01

    This viewgraph presentation lists questions regarding the implementation of System Wide Information Management (SWIM). Some of the questions concern policy issues and strategies, technology issues and strategies, or transition issues and strategies.

  7. Swimming literacy field hockey woman player ground.

    OpenAIRE

    Baštová, Miroslava

    2012-01-01

    Title: Swimming literacy field hockey woman player ground. Objectives: To obtain and analyze data on the level ground swimming literacy field hockey woman player. Their perception swimming literacy for life, the use of non-specific regeneration and as a training resource. Methods: Analysis of scientific literature, survey, case study, data analysis and graphical presentation of results. Results of the work: field hockey player as swimming literate, benefits swimming but not used as a means of...

  8. Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds

    DEFF Research Database (Denmark)

    Herskin, J; Steffensen, JF

    1998-01-01

    Tail beat frequency of sea bass, Dicentrarchus labrax (L.) (23.5 ± 0·5 cm, LT), swimming at the front of a school was significantly higher than when swimming at the rear, for all water velocities tested from 14·8 to 32 cm s-1. The logarithm of oxygen consumption rate, and the tail beat frequency...... of solitary swimming sea bass (28·8 ± 0·4 cm, LT), were each correlated linearly with swimming speed, and also with one another. The tail beat frequency of individual fish was 9-14% lower when at the rear of a school than when at the front, corresponding to a 9-23% reduction in oxygen consumption rate....

  9. Water Evaporation in Swimming Baths

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are repres...... are represented in instructions for carrying out and running swimming baths. If you follow the instructions you can achieve less investments, less heat consumption and a better comfort to the bathers....

  10. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  11. Whole blood-oxygen binding properties of four cold-temperate marine fishes: blood affinity is independent of pH-dependent binding, routine swimming performance, and environmental hypoxia

    DEFF Research Database (Denmark)

    Herbert, Neill A; Skov, Peter V; Wells, Rufus M G

    2006-01-01

    The relationship between whole blood-oxygen affinity (P(50)) and pH-dependent binding (i.e., cooperativity and the Bohr [ Phi ] and Root effects) was examined statistically under standardized conditions (10.0 degrees Celsius) in four unrelated cold-temperate marine fishes that differ widely in th...

  12. Swimming with the Shoal

    Science.gov (United States)

    Childs, Ann

    2017-10-01

    This article responds to Yuli Rahmawati and Peter Charles Taylor's piece and explores my role as a science teacher, science teacher educator and researcher in two contexts, Sierra Leone and Bhutan. In the first part of the article I reflect on my 3 years as a science teacher in Sierra Leone and demonstrate resonances with Yuli's accounts of culture shock and with her positioning of herself in a third space. I also reflect on the importance of colleagues in helping me reshape my identity as a science teacher in this new context. The second part of the article reflects on much shorter periods of time in Bhutan and my work as a teacher educator and researcher where, unlike Sierra Leone, it was not possible because of the short periods I worked there, to occupy a third space. I close by discussing how in Bhutan, but also Sierra Leone, collaboration with colleagues allowed me to contribute my own expertise, despite my lack of a deep understanding of the cultural context, in a way that was as valuable as possible. I liken this way of collaborative working in my professional life as `swimming with the shoal'.

  13. Is paramecium swimming autonomic?

    Science.gov (United States)

    Bandyopadhyay, Promode R.; Toplosky, Norman; Hansen, Joshua

    2010-11-01

    We seek to explore if the swimming of paramecium has an underlying autonomic mechanism. Such robotic elements may be useful in capturing the disturbance field in an environment in real time. Experimental evidence is emerging that motion control neurons of other animals may be present in paramecium as well. The limit cycle determined using analog simulation of the coupled nonlinear oscillators of olivo-cerebellar dynamics (ieee joe 33, 563-578, 2008) agrees with the tracks of the cilium of a biological paramecium. A 4-motor apparatus has been built that reproduces the kinematics of the cilium motion. The motion of the biological cilium has been analyzed and compared with the results of the finite element modeling of forces on a cilium. The modeling equates applied torque at the base of the cilium with drag, the cilium stiffness being phase dependent. A low friction pendulum apparatus with a multiplicity of electromagnetic actuators is being built for verifying the maps of the attractor basin computed using the olivo-cerebellar dynamics for different initial conditions. Sponsored by ONR 33.

  14. Influence of pre-school swimming on level of swimming abilities of early schol age children

    OpenAIRE

    Velová, Lenka

    2011-01-01

    My thesis paper is focused on children swimming from their birth to early school age. The pivotal part of the paper is the comparison of swimming abilities between primary school children who have passed pre-school swimming training and those who have had no training at all. Theoretical framework of the paper is then focused on general swimming theory, characteristics of children's evolutionary stages within the context of swimming and definition of basic swimming skills.

  15. Effects of a Novel Acoustic Transmitter on Swimming Performance and Predator Avoidance of Juvenile Chinook Salmon: Determination of a Size Threshold

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Ricardo W.; Ashton, Neil K.; Brown, Richard S.; Liss, Stephanie A.; Colotelo, Alison HA; Do Vale Beirao, Bernardo; Townsend, Richard L.; Deng, Zhiqun; Eppard, M. B.

    2016-01-04

    Abstract Telemetry studies are used worldwide to investigate the behavior and migration of fishes. The miniaturization of acoustic transmitters enables researchers to tag smaller fish, such as the juvenile life stages of salmon, thus representing a greater proportion of the population of interest. The development of an injectable acoustic transmitter has led to research determining the least invasive and quickest method of tag implantation. Swimming performance and predator avoidance were examined. To quantify critical swimming speed (Ucrit; an index of prolonged swimming performance) and predator avoidance for juvenile Chinook salmon (Oncorhynchus tshawytscha), fish were split into three groups: (1) fish implanted with a dummy injectable acoustic transmitter (IAT treatment), (2) fish implanted with a dummy injectable acoustic transmitter and passive integrated transponder (PIT) tag (IAT+PIT treatment), and (3) an untagged control group. The Ucrits and predator avoidance capability of tagged fish were compared with untagged fish to determine if carrying an IAT adversely affected swimming performance or predator avoidance. Fish implanted with only an IAT had lower Ucrit values than untagged fish and a size threshold at 79 mm fork length was found. Conversely, Ucrit values for fish implanted with an IAT+PIT were not significantly different from untagged controls and no size threshold was found. Predator avoidance testing showed no significant difference for fish implanted with an IAT compared to untagged individuals, nor was there a significant difference for IAT+PIT fish compared to untagged fish.

  16. The undulatory swimming gait of elongated swimmers revisited.

    Science.gov (United States)

    Iosilevskii, Gil

    2017-03-31

    An undulatory swimming gait is characterized by short lateral displacement waves that propagate backwards along the body of the swimmer faster than it swims. Hydrodynamic theory of elongated bodies predicts that if the amplitude of the displacement waves does not increase toward the caudal end, the part of the swimmer posteriad of the dorso-ventrally widest point takes no part in propulsion. It also predicts that if the amplitude does increase, then the hydrodynamic propulsion efficiency suffers. Cusk eels have their widest point located in the anterior half of the body with the bulk of their locomotive muscles located posteriad of it; indeed, they swim so that the amplitude of the propulsion wave increases toward the caudal end. Anguillid eels have their widest point posteriad of the mid-body, and their locomotive muscles are distributed along their entire length-but they swim as cusk eels, using the posterior half only. Apparently, both use hydrodynamically inefficient gaits. The paper questions the definition of propulsion efficiency and shows that biomechanical considerations are more important than hydrodynamic, and that most probably fish adjust their gait to maximize the ratio between the energy made good (the product of thrust and distance) and the chemical energy consumed by the muscles. The role of body shape is discussed.

  17. Hydrodynamics and energy-saving swimming techniques of Pacific bluefin tuna.

    Science.gov (United States)

    Takagi, Tsutomu; Tamura, Yumiko; Weihs, Daniel

    2013-11-07

    Weihs theoretically revealed that during the movement of fish with negative buoyancy, more kinetic energy is saved in the glide and upward (GAU) swimming mode than in the continuous horizontal swimming mode. Because kinetic energy saving depends on dynamic parameters such as the drag and lift of the body, the effects of variations in these parameters on energy saving for different species remain unknown. Here, the kinetic energy saving of Pacific bluefin tuna (PBT), Thunnus orientalis, exhibiting the GAU swimming mode was investigated. The dynamic properties of PBT were estimated by carrying out CFD analysis. The CFD model was produced by using a three-dimensional laser surface profiler, and the model was controlled such that it exhibited swimming motion similar to that of a live PBT swimming in a flume tank. The drag generated by tail beating, which significantly affects the kinetic energy during motion, was twice that generated in the glide mode. The faster the upward swimming speed, the lesser is the kinetic energy saving; therefore, when the upward swimming speed is more than twice the glide speed, there is no gain in the GAU mode. However, when SMR (Standard Metabolic Rate) is considered, if the energy based on SMR is assumed to be 30% of the total energy spent during motion, the most efficient upward swimming speed is 1.4 times the glide speed. The GAU swimming mode of PBT leads to energy saving during motion, and the upward swimming speed and the lift force produced by the pectoral fins for the most efficient drive are unique for different species of different sizes. © 2013 Elsevier Ltd. All rights reserved.

  18. Why do fish school?

    Directory of Open Access Journals (Sweden)

    Matz LARSSON

    2012-02-01

    Full Text Available Synchronized movements (schooling emit complex and overlapping sound and pressure curves that might confuse the inner ear and lateral line organ (LLO of a predator. Moreover, prey-fish moving close to each other may blur the electro-sensory perception of predators. The aim of this review is to explore mechanisms associated with synchronous swimming that may have contributed to increased adaptation and as a consequence may have influenced the evolution of schooling. The evolutionary development of the inner ear and the LLO increased the capacity to detect potential prey, possibly leading to an increased potential for cannibalism in the shoal, but also helped small fish to avoid joining larger fish, resulting in size homogeneity and, accordingly, an increased capacity for moving in synchrony. Water-movements and incidental sound produced as by-product of locomotion (ISOL may provide fish with potentially useful information during swimming, such as neighbour body-size, speed, and location. When many fish move close to one another ISOL will be energetic and complex. Quiet intervals will be few. Fish moving in synchrony will have the capacity to discontinue movements simultaneously, providing relatively quiet intervals to allow the reception of potentially critical environmental signals. Besides, synchronized movements may facilitate auditory grouping of ISOL. Turning preference bias, well-functioning sense organs, good health, and skillful motor performance might be important to achieving an appropriate distance to school neighbors and aid the individual fish in reducing time spent in the comparatively less safe school periphery. Turning preferences in ancestral fish shoals might have helped fish to maintain groups and stay in formation, reinforcing aforementioned predator confusion mechanisms, which possibly played a role in the lateralization of the vertebrate brain [Current Zoology 58 (1: 116–128, 2012].

  19. The shoulder in competitive swimming.

    Science.gov (United States)

    Richardson, A B; Jobe, F W; Collins, H R

    1980-01-01

    Shoulder pain is the most common orthopaedic problem in competitive swimming. In a group of 137 of this country's best swimmers, 58 had had symptoms of "swimmer's shoulder." Population characteristics of this group indicated that symptoms increased with the caliber of the athlete, were slightly more common in men, and were related to sprint rather than distance swimming. The use of hand-paddle training exacerbated symptoms, which were more common during the early and middle season. Consideration of shoulder mechanics in swimming reveals that freestyle, butterfly, and backstroke require similar motions; a swimmer using any of these strokes is susceptible to developing shoulder pain. Swimmer's shoulder represents chronic irritation of the humeral head and rotator cuff on the coracoacromial arch during abduction of the shoulder, the so-called impingement syndrome. Treatment included stretching, rest, ice therapy, oral antiinflammatory agents, judicious use of injectable steroids, and surgery as a last resort.

  20. Paramecium swimming in capillary tube

    Science.gov (United States)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2012-04-01

    Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.

  1. Swimming against the tide: explaining the Higgs

    CERN Multimedia

    Emma Sanders

    2012-01-01

    "Never before in the field of science journalism have so few journalists understood what so many physicists were telling them!" tweeted the UK Channel 4’s Tom Clarke from last December’s Higgs seminar. As a consequence, most coverage focused on debates over the use of the label “god particle” and the level of excitement of the physicists (high), whilst glossing over what this excitement was actually all about.   So what is the Higgs? Something fundamental. Something to do with mass. If your interest in physics is more than simply passing, you may find that rooms full of chattering politicians or the use of different footwear when walking through snow just don’t do the job in convincing you why the Higgs is so important. And if images of fish make you feel like a fish out of water - or at least one swimming against a strong current - then perhaps you would appreciate a different approach. The need for the Higgs Whilst gauge th...

  2. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.

    Science.gov (United States)

    Tytell, Eric D; Hsu, Chia-Yu; Williams, Thelma L; Cohen, Avis H; Fauci, Lisa J

    2010-11-16

    Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.

  3. Swimming in an Unsteady World

    Science.gov (United States)

    Koehl, M. A. R.

    2016-02-01

    When animals swim in marine habitats, the water through which they move is usually flowing. Therefore, an important part of understanding the physics of how animals swim in nature is determining how they interact with the fluctuating turbulent water currents in their environment. The research systems we have been using to address this question are microscopic marine animals swimming in turbulent, wavy water flow over spatially-complex communities of organisms growing on surfaces. Field measurements of water motion were used to design realistic turbulent flow in a laboratory wave-flume over different substrata, particle-image velocimetry was used to measure fine-scale, rapidly-varying water velocity vector fields, and planar laser-induced fluorescence was used to measure concentrations of chemical cues from the substratum. We used individual-based models of small animals swimming in this unsteady flow to determine how their trajectories and contacts with substrata were affected by their locomotion through the water, rotation by local shear, response to odors, and transport by ambient flow. We found that the shears, accelerations, and odor concentrations encountered by small swimmers fluctuate rapidly, with peaks much higher than mean values lasting fractions of a second. We identified ways in which the behavior of small, weak swimmers can bias how they are transported by ambient flow (e.g. sinking during brief encounters with shear or odor enhances settlement onto substrata below, whereas constant swimming enhances contact with surfaces above or beside larvae). Although microscopic organisms swim slowly relative to ambient water flow, their locomotory behavior in response to the rapidly-fluctuating shears and odors they encounter can affect where they are transported by ambient water movement.

  4. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  5. Hydrodynamic interaction of swimming organisms in an inertial regime

    Science.gov (United States)

    Li, Gaojin; Ostace, Anca; Ardekani, Arezoo M.

    2016-11-01

    We numerically investigate the hydrodynamic interaction of swimming organisms at small to intermediate Reynolds number regimes, i.e., Re˜O (0.1 -100 ) , where inertial effects are important. The hydrodynamic interaction of swimming organisms in this regime is significantly different from the Stokes regime for microorganisms, as well as the high Reynolds number flows for fish and birds, which involves strong flow separation and detached vortex structures. Using an archetypal swimmer model, called a "squirmer," we find that the inertial effects change the contact time and dispersion dynamics of a pair of pusher swimmers, and trigger hydrodynamic attraction for two pullers. These results are potentially important in investigating predator-prey interactions, sexual reproduction, and the encounter rate of marine organisms such as copepods, ctenophora, and larvae.

  6. Modelling swimming hydrodynamics to enhance performance

    OpenAIRE

    Marinho, D.A.; Rouboa, A.; Barbosa, Tiago M.; Silva, A.J.

    2010-01-01

    Swimming assessment is one of the most complex but outstanding and fascinating topics in biomechanics. Computational fluid dynamics (CFD) methodology is one of the different methods that have been applied in swimming research to observe and understand water movements around the human body and its application to improve swimming performance. CFD has been applied attempting to understand deeply the biomechanical basis of swimming. Several studies have been conducted willing to analy...

  7. Vortex re-capturing and kinematics in human underwater undulatory swimming.

    Science.gov (United States)

    Hochstein, Stefan; Blickhan, Reinhard

    2011-10-01

    To maximize swimming speed athletes copy fish undulatory swimming during the underwater period after start and turn. The anatomical limitations may lead to deviations and may enforce compensating strategies. This has been investigated by analyzing the kinematics of two national female swimmers while swimming in a still water pool. Additionally, the flow around and behind the swimmers was measured with the aid of time-resolved particle image velocimetry (TR-2D-PIV). As compared to fish, the swimmers used undulatory waves characterized by much higher Strouhal numbers but very similar amplitude distributions along the body and Froude efficiencies. Vortices generated in the region of strongly flexing joints are suitable to be used pedally to enhance propulsion (vortex re-capturing). Complementing studies using numerical and technical modeling will help us to probe the efficiency of observed mechanisms and further improvements of the human strategy. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. 43 CFR 423.36 - Swimming.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Swimming. 423.36 Section 423.36 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR... Swimming. (a) You may swim, wade, snorkel, scuba dive, raft, or tube at your own risk in Reclamation waters...

  9. 36 CFR 331.10 - Swimming.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Swimming. 331.10 Section 331.10 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY REGULATIONS..., KENTUCKY AND INDIANA § 331.10 Swimming. Swimming is prohibited unless authorized in writing by the District...

  10. 36 CFR 327.5 - Swimming.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Swimming. 327.5 Section 327.5 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY RULES AND REGULATIONS... Swimming. (a) Swimming, wading, snorkeling or scuba diving at one's own risk is permitted, except at...

  11. The influence of elements of synchronized swimming on technique of the selected swimming strokes

    OpenAIRE

    Široký, Michal

    2015-01-01

    Title: The influence of elements of synchronized swimming on technique of the selected swimming strokes Objectives: The objective of the thesis is to assess the effect of the elements of synchronized swimming at improving the techniques of swimming. Methods: The results were detected by overt observation with active participation and subsequent scaling on the ordinal scale 1 to 5. Results: The results show that the influence of the elements of synchronized swimming on improving the technique ...

  12. The hydrodynamics of swimming microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Lauga, Eric [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411 (United States); Powers, Thomas R [Division of Engineering, Brown University, Providence, RI 02912-9104 (United States)], E-mail: elauga@ucsd.edu, E-mail: Thomas_Powers@brown.edu

    2009-09-15

    Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies.

  13. The hydrodynamics of swimming microorganisms

    International Nuclear Information System (INIS)

    Lauga, Eric; Powers, Thomas R

    2009-01-01

    Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies.

  14. Sports Medicine Meets Synchronized Swimming.

    Science.gov (United States)

    Wenz, Betty J.; And Others

    This collection of articles contains information about synchronized swimming. Topics covered include general physiology and cardiovascular conditioning, flexibility exercises, body composition, strength training, nutrition, coach-athlete relationships, coping with competition stress and performance anxiety, and eye care. Chapters are included on…

  15. Shape Optimization of Swimming Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, J.; Hosoi, A.E.

    2005-03-01

    The swimming behavior of a flexible sheet which moves by propagating deformation waves along its body was first studied by G. I. Taylor in 1951. In addition to being of theoretical interest, this problem serves as a useful model of the locomotion of gastropods and various micro-organisms. Although the mechanics of swimming via wave propagation has been studied extensively, relatively little work has been done to define or describe optimal swimming by this mechanism.We carry out this objective for a sheet that is separated from a rigid substrate by a thin film of viscous Newtonian fluid. Using a lubrication approximation to model the dynamics, we derive the relevant Euler-Lagrange equations to optimize swimming speed and efficiency. The optimization equations are solved numerically using two different schemes: a limited memory BFGS method that uses cubic splines to represent the wave profile, and a multi-shooting Runge-Kutta approach that uses the Levenberg-Marquardt method to vary the parameters of the equations until the constraints are satisfied. The former approach is less efficient but generalizes nicely to the non-lubrication setting. For each optimization problem we obtain a one parameter family of solutions that becomes singular in a self-similar fashion as the parameter approaches a critical value. We explore the validity of the lubrication approximation near this singular limit by monitoring higher order corrections to the zeroth order theory and by comparing the results with finite element solutions of the full Stokes equations.

  16. Sodium bicarbonate improves swimming performance.

    Science.gov (United States)

    Lindh, A M; Peyrebrune, M C; Ingham, S A; Bailey, D M; Folland, J P

    2008-06-01

    Sodium bicarbonate ingestion has been shown to improve performance in single-bout, high intensity events, probably due to an increase in buffering capacity, but its influence on single-bout swimming performance has not been investigated. The effects of sodium bicarbonate supplementation on 200 m freestyle swimming performance were investigated in elite male competitors. Following a randomised, double blind counterbalanced design, 9 swimmers completed maximal effort swims on 3 separate occasions: a control trial (C); after ingestion of sodium bicarbonate (SB: NaHCO3 300 mg . kg (-1) body mass); and after ingestion of a placebo (P: CaCO3 200 mg . kg (-1) body mass). The SB and P agents were packed in gelatine capsules and ingested 90 - 60 min prior to each 200 m swim. Mean 200 m performance times were significantly faster for SB than C or P (1 : 52.2 +/- 4.7; 1 : 53.7 +/- 3.8; 1 : 54.0 +/- 3.6 min : ss; p bicarbonate were all elevated pre-exercise in the SB compared to C and P trials (p < 0.05). Post-200 m blood lactate concentrations were significantly higher following the SB trial compared with P and C (p < 0.05). It was concluded that SB supplementation can improve 200 m freestyle performance time in elite male competitors, most likely by increasing buffering capacity.

  17. The Effect of Swimming Experience on Acquisition and Retention of Swimming-Based Taste Aversion Learning in Rats

    Science.gov (United States)

    Masaki, Takahisa; Nakajima, Sadahiko

    2010-01-01

    Swimming endows rats with an aversion to a taste solution consumed before swimming. The present study explored whether the experience of swimming before or after the taste-swimming trials interferes with swimming-based taste aversion learning. Experiment 1 demonstrated that a single preexposure to 20 min of swimming was as effective as four or…

  18. Body size and swimming types in carp larvae : effects of being small

    NARCIS (Netherlands)

    Osse, J.W.M.; Boogaart, van den J.G.M.

    2000-01-01

    The viscosity of water is a major hydrodynamic force and especially important for tiny objects (on or below a mm scale) moving at low speeds. Fish larvae between 4.8 and 8.1 mm total length (TL) are of intermediate size. During their growth the flow while swimming becomes dominated by inertial

  19. Pre-task music improves swimming performance.

    Science.gov (United States)

    Smirmaul, B P; Dos Santos, R V; Da Silva Neto, L V

    2015-12-01

    The purpose of this study was to investigate the effects of pre-task music on swimming performance and other psychological variables. A randomized counterbalanced within-subjects (experimental and control condition) design was employed. Eighteen regional level male swimmers performed two 200-m freestyle swimming time trials. Participants were exposed to either 5 minutes of self-selected music (pre-task music condition) or 5 minutes of silence (control condition) and, after 1 minute, performed the swimming task. Swimming time was significantly shorter (-1.44%) in the pre-task music condition. Listening to pre-task music increased motivation to perform the swimming task, while arousal remained unchanged. While fatigue increased after the swimming task in both conditions, vigor, ratings of perceived exertion and affective valence were unaltered. It is concluded, for the first time, that pre-task music improves swimming performance.

  20. Aerobic capacity influences the spatial position of individuals within fish schools

    DEFF Research Database (Denmark)

    Killen, Shaun S.; Marras, Stefano; Steffensen, John Fleng

    2012-01-01

    of juvenile mullet Liza aurata were filmed at three swim speeds in a swim tunnel, with one focal fish from each school then also measured for standard metabolic rate (SMR), maximal metabolic rate (MMR), aerobic scope (AS) and maximum aerobic swim speed. At faster speeds, fish with lower MMR and AS swam near...... the rear of schools. These trailing fish required fewer tail beats to swim at the same speed as individuals at the front of schools, indicating that posterior positions provide hydrodynamic benefits that reduce swimming costs. Conversely, fish with high aerobic capacity can withstand increased drag...... at the leading edge of schools, where they could maximize food intake while possibly retaining sufficient AS for other physiological functions. SMR was never related to position, suggesting that high maintenance costs do not necessarily motivate individuals to occupy frontal positions. In the wild, shifting...

  1. How body torque and Strouhal number change with swimming speed and developmental stage in larval zebrafish.

    Science.gov (United States)

    van Leeuwen, Johan L; Voesenek, Cees J; Müller, Ulrike K

    2015-09-06

    Small undulatory swimmers such as larval zebrafish experience both inertial and viscous forces, the relative importance of which is indicated by the Reynolds number (Re). Re is proportional to swimming speed (vswim) and body length; faster swimming reduces the relative effect of viscous forces. Compared with adults, larval fish experience relatively high (mainly viscous) drag during cyclic swimming. To enhance thrust to an equally high level, they must employ a high product of tail-beat frequency and (peak-to-peak) amplitude fAtail, resulting in a relatively high fAtail/vswim ratio (Strouhal number, St), and implying relatively high lateral momentum shedding and low propulsive efficiency. Using kinematic and inverse-dynamics analyses, we studied cyclic swimming of larval zebrafish aged 2-5 days post-fertilization (dpf). Larvae at 4-5 dpf reach higher f (95 Hz) and Atail (2.4 mm) than at 2 dpf (80 Hz, 1.8 mm), increasing swimming speed and Re, indicating increasing muscle powers. As Re increases (60 → 1400), St (2.5 → 0.72) decreases nonlinearly towards values of large swimmers (0.2-0.6), indicating increased propulsive efficiency with vswim and age. Swimming at high St is associated with high-amplitude body torques and rotations. Low propulsive efficiencies and large yawing amplitudes are unavoidable physical constraints for small undulatory swimmers. © 2015 The Author(s).

  2. Hydroacoustic measurement of swimming speed of North Sea saithe in the field

    DEFF Research Database (Denmark)

    Pedersen, Jan

    2001-01-01

    Saithe Pollachius virens, tracked diurnally with a split-beam echosounder. showed no relationship between size and swimming speed. The average and the median swimming speeds were 1.05 m s(-1) (+/- 0.09 m s (-1)) and 0.93 m a (-1). respectively. However. ping-to-ping speeds up to 3.34 m s (-1) were...... measured for 25-29 cm fish, whose swimming speeds were significantly higher at night (1.08 m s(-1)) than during the day (0.72 m s(- 1)). The high average swimming speed could be related to the: foraging or streaming part of the population and not to potential weakness of the methodology. However....... the uncertainty or target location increased with depth and resulted in calculated average swimming speeds of 0.15 m s(-1) even for a stationary target. With increasing swimming speed the average error decreased to Om s ' for speeds >0.34 m s(-1). Species identity was verified by trawling in a pelagic layer...

  3. Nutritional recommendations for synchronized swimming.

    Science.gov (United States)

    Robertson, Sherry; Benardot, Dan; Mountjoy, Margo

    2014-08-01

    The sport of synchronized swimming is unique, because it combines speed, power, and endurance with precise synchronized movements and high-risk acrobatic maneuvers. Athletes must train and compete while spending a great amount of time underwater, upside down, and without the luxury of easily available oxygen. This review assesses the scientific evidence with respect to the physiological demands, energy expenditure, and body composition in these athletes. The role of appropriate energy requirements and guidelines for carbohydrate, protein, fat, and micronutrients for elite synchronized swimmers are reviewed. Because of the aesthetic nature of the sport, which prioritizes leanness, the risks of energy and macronutrient deficiencies are of significant concern. Relative Energy Deficiency in Sport and disordered eating/eating disorders are also of concern for these female athletes. An approach to the healthy management of body composition in synchronized swimming is outlined. Synchronized swimmers should be encouraged to consume a well-balanced diet with sufficient energy to meet demands and to time the intake of carbohydrate, protein, and fat to optimize performance and body composition. Micronutrients of concern for this female athlete population include iron, calcium, and vitamin D. This article reviews the physiological demands of synchronized swimming and makes nutritional recommendations for recovery, training, and competition to help optimize athletic performance and to reduce risks for weight-related medical issues that are of particular concern for elite synchronized swimmers.

  4. Dynamic Shape Capture of Free-Swimming Aquatic Life using Multi-view Stereo

    Science.gov (United States)

    Daily, David

    2017-11-01

    The reconstruction and tracking of swimming fish in the past has either been restricted to flumes, small volumes, or sparse point tracking in large tanks. The purpose of this research is to use an array of cameras to automatically track 50-100 points on the surface of a fish using the multi-view stereo computer vision technique. The method is non-invasive thus allowing the fish to swim freely in a large volume and to perform more advanced maneuvers such as rolling, darting, stopping, and reversing which have not been studied. The techniques for obtaining and processing the 3D kinematics and maneuvers of tuna, sharks, stingrays, and other species will be presented and compared. The National Aquarium and the Naval Undersea Warfare Center and.

  5. Imaging Techniques for Dense 3D reconstruction of Swimming Aquatic Life using Multi-view Stereo

    Science.gov (United States)

    Daily, David; Kiser, Jillian; McQueen, Sarah

    2016-11-01

    Understanding the movement characteristics of how various species of fish swim is an important step to uncovering how they propel themselves through the water. Previous methods have focused on profile capture methods or sparse 3D manual feature point tracking. This research uses an array of 30 cameras to automatically track hundreds of points on a fish as they swim in 3D using multi-view stereo. Blacktip sharks, sting rays, puffer fish, turtles and more were imaged in collaboration with the National Aquarium in Baltimore, Maryland using the multi-view stereo technique. The processes for data collection, camera synchronization, feature point extraction, 3D reconstruction, 3D alignment, biological considerations, and lessons learned will be presented. Preliminary results of the 3D reconstructions will be shown and future research into mathematically characterizing various bio-locomotive maneuvers will be discussed.

  6. Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus.

    Science.gov (United States)

    Hupé, Ginette J; Lewis, John E

    2008-05-01

    Brown ghost knifefish, Apteronotus leptorhynchus, are a species of weakly electric fish that produce a continuous electric organ discharge (EOD) that is used in navigation, prey capture and communication. Stereotyped modulations of EOD frequency and amplitude are common in social situations and are thought to serve as communication signals. Of these modulations, the most commonly studied is the chirp. This study presents a quantitative analysis of chirp production in pairs of free-swimming, physically interacting male and female A. leptorhynchus. Under these conditions, we found that in addition to chirps, the fish commonly produce a second signal type, a type of frequency rise called abrupt frequency rises, AFRs. By quantifying the behaviours associated with signal production, we find that Type 2 chirps tend to be produced when the fish are apart, following periods of low aggression, whereas AFRs tend to be produced when the fish are aggressively attacking one another in close proximity. This study is the first to our knowledge that quantitatively describes both electrocommunication signalling and behavioural correlates on a subsecond time-scale in a wave-type weakly electric fish.

  7. Dimethyl Sulfide is a Chemical Attractant for Reef Fish Larvae.

    Science.gov (United States)

    Foretich, Matthew A; Paris, Claire B; Grosell, Martin; Stieglitz, John D; Benetti, Daniel D

    2017-05-31

    Transport of coral reef fish larvae is driven by advection in ocean currents and larval swimming. However, for swimming to be advantageous, larvae must use external stimuli as guides. One potential stimulus is "odor" emanating from settlement sites (e.g., coral reefs), signaling the upstream location of desirable settlement habitat. However, specific chemicals used by fish larvae have not been identified. Dimethyl sulfide (DMS) is produced in large quantities at coral reefs and may be important in larval orientation. In this study, a choice-chamber (shuttle box) was used to assess preference of 28 pre-settlement stage larvae from reef fish species for seawater with DMS. Swimming behavior was examined by video-tracking of larval swimming patterns in control and DMS seawater. We found common responses to DMS across reef fish taxa - a preference for water with DMS and change in swimming behavior - reflecting a switch to "exploratory behavior". An open water species displayed no response to DMS. Affinity for and swimming response to DMS would allow a fish larva to locate its source and enhance its ability to find settlement habitat. Moreover, it may help them locate prey accumulating in fronts, eddies, and thin layers, where DMS is also produced.

  8. No evidence for a bioenergetic advantage from forced swimming in rainbow trout under a restrictive feeding regime

    DEFF Research Database (Denmark)

    Skov, Peter Vilhelm; Lund, Ivar; Margarido Pargana, Alexandre

    2015-01-01

    rate (SGR) and feed conversion ratio (FCR) were calculated from weight and length measurements every 3 weeks. Routine metabolic rate (RMR) was measured every hour as rate of oxygen consumption in the tanks, and was positively correlated with swimming speed. Total ammonia nitrogen (TAN) excretion rates...... and the current speed at which fish were reared, fish that were forced to swim and were fed restrictively consequentially had poorer growth and feed utilization. The results show that for rainbow trout, water current can negatively affect growth despite promoting minor positive changes in substrate utilization...

  9. Design and Construction of a Specialised Biomimetic Robot in Multiple Swimming Gaits

    Directory of Open Access Journals (Sweden)

    Sayyed Farideddin Masoomi

    2015-11-01

    Full Text Available Efficient cruising, manoeuvrability and noiseless performance of fish robots have been attracting people in various scientific realms. Accordingly, a number of fish robots are designed and fabricated so far. However, the existing robots are only capable of one gait of locomotion. This deficiency is addressed by UC-Ika 2 with multiple gaits of locomotion including cruising and manoeuvring that are inspired from two different fishes. This paper aims at presenting the design and fabrication process of UC-Ika 2. The swimming performance of the robot is tested and compared with its previous version UC-Ika 1.

  10. Kinematics of swimming garter snakes (Thamnophis sirtalis).

    Science.gov (United States)

    Munk, Yonatan

    2008-06-01

    We investigate the kinematics of swimming garter snakes (Thamnophis sirtalis) using a novel nonlinear regression-based digitization method to establish quantitative statistical support for non-constant wavelengths in the undulatory pattern exhibited by swimming snakes. We find that in swimming snakes, the growth of the amplitude of the propulsive wave head-to-tail is strongly correlated (p < 0.005) with the head-to-tail growth in the wavelength. We investigate correlations between kinematic parameters and steady swimming speed, and find a very strong positive correlation between swimming speed and undulation frequency. We furthermore find a statistically well-supported positive correlation between swimming speed and both the initial amplitude of the propulsive wave at the head and the degree of amplitude growth from head to tail.

  11. Enhanced active swimming in viscoelastic fluids

    OpenAIRE

    Riley, Emily E; Lauga, Eric Jean-Marie

    2014-01-01

    Swimming microorganisms often self propel in fluids with complex rheology. While past theoretical work indicates that fluid viscoelasticity should hinder their locomotion, recent experiments on waving swimmers suggest a possible non-Newtonian enhancement of locomotion. We suggest a physical mechanism, based on fluid-structure interaction, leading to swimming in a viscoelastic fluid at a higher speed than in a Newtonian one. Using Taylor's two-dimensional swimming sheet model, we solve for the...

  12. HYDRODINAMICS AND SWIMMING TEHNIQUE AS PARAMETERS FOR SUCCESSFULL SWIMMING AT THE AGE 10–12

    Directory of Open Access Journals (Sweden)

    Goran Dimitrić

    2008-08-01

    Full Text Available The aim of this study was to confirm that swimming technique and hydrodynamic parameters of a swimmer are relevant for successful swimming. Total of 63 boys, at the age of 10-12, participated in this research. There were 15 criterion morphology and specific motoric skills variables as well as one predictive variable derived from FINA points. We have concluded that hydrodynamic and swimming technique significantly contributes for successful swimming. These facts should use trainers as guidance for workout plan.

  13. The Swimming Ability of Children with Asthma

    Directory of Open Access Journals (Sweden)

    Benčuriková Ľubomíra

    2017-05-01

    Full Text Available This paper reports on findings of a pilot research to determine the level of swimming ability of children with weak respiratory system aged between 10 - 11 years, who attended special classes for asthmatics. Swimming ability was assessed by 25 m free style swimming test. The results of asthmatics were compared with healthy peers (Benčuriková 2006; Kováčová 2010; Labudová 2011. The results confirmed that the level of swimming capability of asthmatic children, despite their handicap, is significantly higher than their healthy peers.

  14. Tethered swimming can be used to evaluate force contribution for short-distance swimming performance.

    Science.gov (United States)

    Morouço, Pedro G; Marinho, Daniel A; Keskinen, Kari L; Badillo, Juan J; Marques, Mário C

    2014-11-01

    The purpose of this study was two-fold: (a) to compare stroke and the physiological responses between maximal tethered and free front crawl swimming and (b) to evaluate the contribution of force exertion for swimming performance over short distances. A total of 34 male swimmers, representing various levels of competitive performance, participated in this study. Each participant was tested in both a 30-second maximal tethered swimming test and a 50-m free swimming test. The tethered force parameters, the swimming speed, stroke (stroke rate [SR]), and the physiological responses (increase in blood lactate concentration [ΔBLa], heart rate, and rate of perceived exertion) were recorded and calculated. The results showed no differences in stroke and the physiological responses between tethered and free swimming, with a high level of agreement for the SR and ΔBLa. A strong correlation was obtained between the maximum impulse of force per stroke and the speed (r = 0.91; p swimming performance. The relationship between the swimming speed and maximum force tended to be nonlinear, whereas linear relationships were observed with the maximum impulse. This study demonstrates that tethered swimming does not significantly alter stroke and the physiological responses compared with free swimming, and that the maximum impulse per stroke should be used to evaluate the balance between force and the ability to effectively apply force during sprint swimming. Consequently, coaches can rely on tethered forces to identify strength deficits and improve swimming performance over short distances.

  15. Unilateral ablation of trunk superficial neuromasts increases directional instability during steady swimming in the yellowtail kingfish Seriola lalandi.

    Science.gov (United States)

    Yanase, K; Herbert, N A; Montgomery, J C

    2014-09-01

    Detailed swimming kinematics of the yellowtail kingfish Seriola lalandi were investigated after unilateral ablation of superficial neuromasts (SNs). Most kinematic variables, such as tail-beat frequency, stride length, caudal fin-beat amplitude and propulsive wavelength, were unaffected but lateral amplitude at the tip of the snout (A0 ) was significantly increased in SN-disrupted fish compared with sham-operated controls. In addition, the orientation of caudal fin-tip relative to the overall swimming direction of SN-disrupted fish was significantly deflected (two-fold) in comparison with sham-operated control fish. In some fish, SN disruption also led to a phase distortion of the propulsive body-wave. These changes would be expected to increase both hydrodynamic drag and thrust production which is consistent with the finding that SN-disrupted fish had to generate significantly greater thrust power when swimming at ≥1·3 fork lengths (LF ) s(-1) . In particular, hydrodynamic drag would increase as a result of any increase in rotational (yaw) perturbation and sideways slip resulting from the sensory disturbance. In conclusion, unilateral SN ablation produced directional instability of steady swimming and altered propulsive movements, suggesting a role for sensory feedback in correcting yaw and slip disturbances to maintain efficient locomotion. © 2014 The Fisheries Society of the British Isles.

  16. ENERGETIC EXTREMES IN A HOSTILE HABITAT: FISH LOCOMOTION ON WAVE-SWEPT CORAL REEFS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2010-01-01

    bandanensis), which maintain tuna-like optimum swimming speeds (7.5 lengths per second) while using no more energy than a similar-sized fish swimming four times slower. Such high performance in S. bandanensis arises from their exceptional aerobic scope (22 times above RMR), streamlined rigid-body posture......, and wing-like fins that generate lift-based thrust at high speed. Literally flying underwater, Stethojulis and other winged-fin species are the most abundant fish in wave-swept coral reef habitats. We discuss the extreme swimming performance of these reef fishes within the context of other non...

  17. Knee pain in competitive swimming.

    Science.gov (United States)

    Rodeo, S A

    1999-04-01

    The high volume of training in competitive swimming results in cumulative overload injuries. Knee pain ranks second to shoulder pain as a common complaint in competitive swimmers. Most knee pain occurs on the medial side of the knee and, most commonly, in breaststroke swimmers; however, knee pain may accompany all strokes. This article reviews the incidence of knee pain, the biomechanic and anatomic factors predisposing to injury, specific injury patterns, injury diagnosis, and the treatment and prevention of injury to the knee in swimmers.

  18. The effect of accelerations in light increase on the phototactic downward swimming of Daphnia and the relevance to diel vertical migration

    NARCIS (Netherlands)

    Van Gool, E.; Ringelberg, J.

    1997-01-01

    The effect of relative increases in light intensity on photobehaviour was studied in the hybrid Daphnia galeata x hyalina. We first carried out a series of experiments to study the influence of fish kairomone on several response variables of light-induced swimming. With fish kairomone present, an

  19. Halliwickov koncept učenja plavanja in ocenjevanje plavalnih veščin: The Halliwick concept of teaching of swimming and assessment of swimming skills: The Halliwick concept of teaching of swimming and assessment of swimming skills:

    OpenAIRE

    Groleger, Katja; Vidmar, Gaj; Vrečar, Irena

    2010-01-01

    The Halliwick concept of teaching of swimming is a comprehensive programme of adaptation to water, learning to breathe, moving in water and swimming, aimed mainly at persons with movement and/or learning disabilities of different age. Assessment of swimming ability is an integral part of the Halliwick concept. The system of Halliwick badges is used, which has recently been supplemented by the Swimming With Independent Measurement (SWIM). There is no data on sensitivity of the SWIM test in the...

  20. Substantial energy expenditure for locomotion in ciliates verified by means of simultaneous measurement of oxygen consumption rate and swimming speed.

    Science.gov (United States)

    Katsu-Kimura, Yumiko; Nakaya, Fumio; Baba, Shoji A; Mogami, Yoshihiro

    2009-06-01

    In order to characterize the energy expenditure of Paramecium, we simultaneously measured the oxygen consumption rate, using an optic fluorescence oxygen sensor, and the swimming speed, which was evaluated by the optical slice method. The standard metabolic rate (SMR, the rate of energy consumption exclusively for physiological activities other than locomotion) was estimated to be 1.18x10(-6) J h(-1) cell(-1) by extrapolating the oxygen consumption rate into one at zero swimming speed. It was about 30% of the total energy consumed by the cell swimming at a mean speed of 1 mm s(-1), indicating that a large amount of the metabolic energy (about 70% of the total) is consumed for propulsive activity only. The mechanical power liberated to the environment by swimming Paramecium was calculated on the basis of Stokes' law. This power, termed Stokes power, was 2.2x10(-9) J h(-1) cell(-1), indicating extremely low efficiency (0.078%) in the conversion of metabolic power to propulsion. Analysis of the cost of transport (COT, the energy expenditure for translocation per units of mass and distance) revealed that the efficiency of energy expenditure in swimming increases with speed rather than having an optimum value within a wide range of forced swimming, as is generally found in fish swimming. These characteristics of energy expenditure would be unique to microorganisms, including Paramecium, living in a viscous environment where large dissipation of the kinetic energy is inevitable due to the interaction with the surrounding water.

  1. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi)

    Science.gov (United States)

    Palstra, Arjan P.; Mes, Daan; Kusters, Kasper; Roques, Jonathan A. C.; Flik, Gert; Kloet, Kees; Blonk, Robbert J. W.

    2015-01-01

    Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (Uopt in m s−1 or body lengths s−1, BL s−1) were assessed and then applied to determine the effects of long-term forced and sustained swimming at Uopt on growth performance of juvenile yellowtail kingfish. Uopt was quantified in Blazka-type swim-tunnels for 145, 206, and 311 mm juveniles resulting in values of: (1) 0.70 m s−1 or 4.83 BL s−1, (2) 0.82 m s−1 or 3.25 BL s−1, and (3) 0.85 m s−1 or 2.73 BL s−1. Combined with literature data from larger fish, a relation of Uopt (BL s−1) = 234.07(BL)−0.779 (R2 = 0.9909) was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s−1 (“swimmers”) or allowed to perform spontaneous activity at low water flow (“resters”) in a newly designed 3600 L oval flume (with flow created by an impeller driven by an electric motor), were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n = 23) showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n = 23). As both groups were fed equal rations, feed conversion ratio (FCR) for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31%) in the ventral aorta of swimmers vs. resters (44 ± 3 vs. 34 ± 3 mL min−1, respectively, under anesthesia). Thus, growth performance can be rapidly improved by optimal swimming, without larger feed investments. PMID:25620933

  2. Survey of the mathematical theory of fish locomotion

    NARCIS (Netherlands)

    Sparenberg, JA

    2002-01-01

    In this paper an attempt is made to give a survey of the mathematical approach to the description of the swimming of fish. This type of investigation is of interest because it gives insight in the fundamentals of the interaction of the body of the fish and the fluid. Sir James Lighthill considered

  3. Growing swimming algae for bioenergy

    Science.gov (United States)

    Croze, Ottavio

    Biofuel production from photosynthetic microalgae is not commercially viable due to high processing costs. New engineering and biological solutions are being sought to reduce these costs by increasing processing efficiency (productivity per energy input). Important physics, however, is ignored. For example, the fluid dynamics of algal suspensions in photobioreactors (ponds or tube arrays) is non-trivial, particularly if the algae swim. Cell reorientation by passive viscous and gravitational torques (gyrotaxis) or active reorientation by light (phototaxis) cause swimming algae in suspension to structure in flows, even turbulent ones. This impacts the distribution and dispersion of swimmers, with significant consequences for photobioreactor operation and design. In this talk, I will describe a theory that predicts swimmer dispersion in laminar pipe flows. I will then then present experimental tests of the theory, as well as new results on the circadian suspension dynamics of the algaChlamydomonas reinhardtii in lab-scale photobioreactors. Finally, I will briefly consider the implications of our work, and related active matter research, for improving algal bioprocessing efficiency. Winton Programme for the Physics of Sustainability.

  4. Basic Land Drills for Swimming Stroke Acquisition

    Science.gov (United States)

    Zhang, Peng

    2014-01-01

    Teaching swimming strokes can be a challenging task in physical education. The purpose of the article is to introduce 12 on land drills that can be utilized to facilitate the learning of swimming strokes, including elementary back stroke, sidestroke, front crawl, back stroke, breaststroke, and butterfly. Each drill consists of four components…

  5. Propulsive force in front crawl swimming

    NARCIS (Netherlands)

    Berger, M.A.M.; de Groot, G.; Hollander, A.P.

    1999-01-01

    To evaluate the propulsive forces in front crawl arm swimming, derived from a three-dimensional kinematic analysis, these values were compared with mean drag forces. The propulsive forces during front crawl swimming using the arms only were calculated using three-dimensional kinematic analysis

  6. Swimming dynamics of bidirectional artificial flagella

    NARCIS (Netherlands)

    Namdeo, S.; Khaderi, S. N.; Onck, P. R.

    2013-01-01

    We study magnetic artificial flagella whose swimming speed and direction can be controlled using light and magnetic field as external triggers. The dependence of the swimming velocity on the system parameters (e. g., length, stiffness, fluid viscosity, and magnetic field) is explored using a

  7. Pet fish radiography: technique and case history reports

    International Nuclear Information System (INIS)

    Love, N.E.; Lewbart, G.A.

    1997-01-01

    Radiography can be used to aid in the diagnosis and treatment of pet fish diseases. Handling, restraint and radiographic technique for the radiographic examination of pet fish is described. Quality diagnostic images can be obtained with standard radiographic equipment and radiographic techniques. Fishes with undifferentiated sarcoma, swim bladder herniation and scoliosis are three clinical examples that are described where radiography was used in the management of the patient. Conventional radiography appears to be best for evaluating skeletal and swim bladder diseases. Alternate imaging techniques such as computed tomography and magnetic resonance imaging may enhance the evaluation of coelomic soft tissue structures

  8. Prey capture by freely swimming flagellates

    Science.gov (United States)

    Andersen, Anders; Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas

    2017-11-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. Here, we explore the dependence of swimming kinematics and prey clearance rate on flagellar arrangement and determine optimal flagellar arrangements and essential trade-offs. To describe near-cell flows around freely swimming flagellates we consider a model in which the cell is represented by a no-slip sphere and each flagellum by a point force. For uniflagellates pulled by a single flagellum the model suggests that a long flagellum favors fast swimming, whereas high clearance rate is favored by a very short flagellum. For biflagellates with both a longitudinal and a transversal flagellum we explore the helical swimming kinematics and the prey capture sites. We compare our predictions with observations of swimming kinematics, prey capture, and flows around common marine flagellates. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  9. Is swimming during pregnancy a safe exercise?

    DEFF Research Database (Denmark)

    Juhl, Mette; Kogevinas, Manolis; Andersen, Per Kragh

    2010-01-01

    BACKGROUND: Exercise in pregnancy is recommended in many countries, and swimming is considered by many to be an ideal activity for pregnant women. Disinfection by-products in swimming pool water may, however, be associated with adverse effects on various reproductive outcomes. We examined...... the association between swimming in pregnancy and preterm and postterm birth, fetal growth measures, small-for-gestational-age, and congenital malformations. METHODS: We used self-reported exercise data (swimming, bicycling, or no exercise) that were prospectively collected twice during pregnancy for 74......,486 singleton pregnancies. Recruitment to The Danish National Birth Cohort took place 1996-2002. Using Cox, linear and logistic regression analyses, depending on the outcome, we compared swimmers with physically inactive pregnant women; to separate a possible swimming effect from an effect of exercise...

  10. Kinematics of ram filter feeding and beat-glide swimming in the northern anchovyEngraulis mordax.

    Science.gov (United States)

    Carey, Nicholas; Goldbogen, Jeremy A

    2017-08-01

    In the dense aquatic environment, the most adept swimmers are streamlined to reduce drag and increase the efficiency of locomotion. However, because they open their mouth to wide gape angles to deploy their filtering apparatus, ram filter feeders apparently switch between diametrically opposite swimming modes: highly efficient, streamlined 'beat-glide' swimming, and ram filter feeding, which has been hypothesized to be a high-cost feeding mode because of presumed increased drag. Ram filter-feeding forage fish are thought to play an important role in the flux of nutrients and energy in upwelling ecosystems; however, the biomechanics and energetics of this feeding mechanism remain poorly understood. We quantified the kinematics of an iconic forage fish, the northern anchovy, Engraulis mordax , during ram filter feeding and non-feeding, mouth-closed beat-glide swimming. Although many kinematic parameters between the two swimming modes were similar, we found that swimming speeds and tailbeat frequencies were significantly lower during ram feeding. Rather than maintain speed with the school, a speed which closely matches theoretical optimum filter-feeding speeds was consistently observed. Beat-glide swimming was characterized by high variability in all kinematic parameters, but variance in kinematic parameters was much lower during ram filter feeding. Under this mode, body kinematics are substantially modified, and E. mordax swims more slowly and with decreased lateral movement along the entire body, but most noticeably in the anterior. Our results suggest that hydrodynamic effects that come with deployment of the filtering anatomy may limit behavioral options during foraging and result in slower swimming speeds during ram filtration. © 2017. Published by The Company of Biologists Ltd.

  11. Comparing effects of transmitters within and among populations: application to swimming performance of juvenile Chinook salmon

    Science.gov (United States)

    Perry, Russell W.; Plumb, John M.; Fielding, Scott D.; Adams, Noah S.; Rondorf, Dennis W.

    2013-01-01

    The sensitivity of fish to a transmitter depends on factors such as environmental conditions, fish morphology, life stage, rearing history, and tag design. However, synthesizing general trends across studies is difficult because each study focuses on a particular performance measure, species, life stage, and transmitter model. These differences motivated us to develop simple metrics that allow effects of transmitters to be compared among different species, populations, or studies. First, we describe how multiple regression analysis can be used to quantify the effect of tag burden (transmitter mass relative to fish mass) on measures of physiological performance. Next, we illustrate how the slope and intercept parameters can be used to calculate two summary statistics: θ, which estimates the tag burden threshold above which the performance of tagged fish begins to decline relative to untagged fish; and k, which measures the percentage change in performance per percentage point increase in tag burden. When θ = 0, k provides a single measure of the tag's effect that can be compared among species, populations, or studies. We apply this analysis to two different experiments that measure the critical swimming speed (U crit) of tagged juvenile Chinook Salmon Oncorhynchus tshawytscha. In both experiments, U crit declined as tag burden increased, but we found no significant threshold in swimming performance. Estimates of θ ranged from −0.6% to 2.1% among six unique treatment groups, indicating that swimming performance began to decline at a relatively low tag burden. Estimates of k revealed that U crit of tagged fish declined by −2.68% to −4.86% for each 1% increase in tag burden. Both θ and k varied with the tag's antenna configuration, tag implantation method, and posttagging recovery time. Our analytical approach can be used to gain insights across populations to better understand factors affecting the ability of fish to carry a transmitter.

  12. Thermal acclimation in rainbow smelt, Osmerus mordax, leads to faster myotomal muscle contractile properties and improved swimming performance

    Directory of Open Access Journals (Sweden)

    John R. Woytanowski

    2013-01-01

    Rainbow smelt (Osmerus mordax display an impressive ability to acclimate to very cold water temperatures. These fish express both anti-freeze proteins and glycerol in their plasma, liver, muscle and other tissues to avoid freezing at sub-zero temperatures. Maintenance of glycerol levels requires active feeding in very cold water. To understand how these fish can maintain activity at cold temperatures, we explored thermal acclimation by the myotomal muscle of smelt exposed to cold water. We hypothesized that cold-acclimated fish would show enhanced swimming ability due to shifts in muscle contractile properties. We also predicted that shifts in swimming performance would be associated with changes in the expression patterns of muscle proteins such as parvalbumin (PV and myosin heavy chain (MyHC. Swimming studies show significantly faster swimming by smelt acclimated to 5°C compared to fish acclimated to 20°C when tested at a common test temperature of 10°C. The cold-acclimated fish also had faster muscle contractile properties, such as a maximum shortening velocity (Vmax almost double that of warm-acclimated fish at the same test temperature. Cold-acclimation is associated with a modest increase in PV levels in the swimming muscle. Fluorescence microscopy using anti-MyHC antibodies suggests that MyHC expression in the myotomal muscle may shift in response to exposure to cold water. The complex set of physiological responses that comprise cold-acclimation in smelt includes modifications in muscle function to permit active locomotion in cold water.

  13. Optimally efficient swimming in hyper-redundant mechanisms: control, design, and energy recovery

    International Nuclear Information System (INIS)

    Wiens, A J; Nahon, M

    2012-01-01

    Hyper-redundant mechanisms (HRMs), also known as snake-like robots, are highly adaptable during locomotion on land. Researchers are currently working to extend their capabilities to aquatic environments through biomimetic undulatory propulsion. In addition to increasing the versatility of the system, truly biomimetic swimming could also provide excellent locomotion efficiency. Unfortunately, the complexity of the system precludes the development of a functional solution to achieve this. To explore this problem, a rapid optimization process is used to generate efficient HRM swimming gaits. The low computational cost of the approach allows for multiple optimizations over a broad range of system conditions. By observing how these conditions affect optimal kinematics, a number of new insights are developed regarding undulatory swimming in robotic systems. Two key conditions are varied within the study, swimming speed and energy recovery. It is found that the swimmer mimics the speed control behaviour of natural fish and that energy recovery drastically increases the system's efficiency. Remarkably, this efficiency increase is accompanied by a distinct change in swimming kinematics. With energy recovery, the swimmer converges to a clearly anguilliform gait, without, it tends towards the carangiform mode. (paper)

  14. Stress response of lead-exposed rainbow trout (Oncorhynchus mykiss) during swimming performance and hypoxia challenges

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, K.A. [National Biological Service, La Crosse, WI (United States)]|[Univ. of Wisconsin, La Crosse, WI (United States); Caldwell, C.A. [National Biological Service, La Crosse, WI (United States); Sandheinrich, M.B. [Univ. of Wisconsin, La Crosse, WI (United States)

    1995-12-31

    Contaminants often invoke a stress response in aquatic organisms, and may compromise their capacity to respond to secondary stressors. This may reduce growth, reproduction and survival. The authors objectives were to assess the effects of lead and secondary stressors on hematology and blood chemistry of rainbow trout. After a 7 to 8-week aqueous exposure to Pb(100{micro}g/L), rainbow trout were challenged with forced swimming or hypoxia. Lead significantly reduced concentrations of 5-aminolevulinic acid dehydratase (ALAD), but not other constituents in the blood. Lead did not affect the swimming endurance of the fish. Hematocrit, mean cell hemoglobin content, and mean cell volume were significantly lower in Pb-exposed trout following the swimming challenge. Although hypoxia resulted in increased hematocrit and plasma glucose concentrations, there were no significant differences between the Pb and control groups. Hypoxia did not affect plasma chloride concentrations, although concentrations increased in Pb-exposed trout. There was no difference in lactic acid concentrations between Pb-exposed and control fish after forced swimming or hypoxia.

  15. Testing the potential effects of shellfish farming on swimming activity and spatial distribution of sole (Solea solea) in a mesocosm

    OpenAIRE

    Laffargue, Pascal; Begout, Marie-laure; Lagardere, Francoise

    2006-01-01

    Restructuring coastal fish nursery habitats by extensive shellfish fanning in the French part of the Bay of Biscay could influence fish physiology and behaviour and affect the ecological performance of the species. The influence of oyster-trestle cultivation installations on sole (Solea solea) swimming behaviour was investigated using an experimental pond mesocosm. A pen was constructed with three interconnected zones (two with bags of live oysters or oyster shells on trestles, and one free z...

  16. An analysis of the energetic cost of the branchial and cardiac pumps during sustained swimming in trout

    DEFF Research Database (Denmark)

    FARRELL, AP; STEFFENSEN, JF

    1987-01-01

    Experimental data are available for the oxygen cost of the branchial and cardiac pumps in fish. These data were used to theoretically analyze the relative oxygen cost of these pumps during rest and swimming in rainbow troutSalmo gairdneri. Efficiency of the heart increases with activity and so...

  17. Swimming of the Honey Bees

    Science.gov (United States)

    Roh, Chris; Gharib, Morteza

    2016-11-01

    When the weather gets hot, nursing honey bees nudge foragers to collect water for thermoregulation of their hive. While on their mission to collect water, foragers sometimes get trapped on the water surface, forced to interact with a different fluid environment. In this study, we present the survival strategy of the honey bees at the air-water interface. A high-speed videography and shadowgraph were used to record the honey bees swimming. A unique thrust mechanism through rapid vibration of their wings at 60 to 150 Hz was observed. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  18. The critical velocity in swimming.

    Science.gov (United States)

    di Prampero, Pietro E; Dekerle, Jeanne; Capelli, Carlo; Zamparo, Paola

    2008-01-01

    In supra-maximal exercise to exhaustion, the critical velocity (cv) is conventionally calculated from the slope of the distance (d) versus time (t) relationship: d = I + St. I is assumed to be the distance covered at the expense of the anaerobic capacity, S the speed maintained on the basis of the subject's maximal O(2) uptake (VO2max) This approach is based on two assumptions: (1) the energy cost of locomotion per unit distance (C) is constant and (2) VO2max is attained at the onset of exercise. Here we show that cv and the anaerobic distance (d (anaer)) can be calculated also in swimming, where C increases with the velocity, provided that VO2max its on-response, and the C versus v relationship are known. d (anaer) and cv were calculated from published data on maximal swims for the four strokes over 45.7, 91.4 and 182.9 m, on 20 elite male swimmers (18.9 +/- 0.9 years, 75.9 +/- 6.4 kg), whose VO2max and C versus speed relationship were determined, and compared to I and S obtained from the conventional approach. cv was lower than S (4, 16, 7 and 11% in butterfly, backstroke, breaststroke and front crawl) and I (=11.6 m on average in the four strokes) was lower than d (anaer). The latter increased with the distance: average, for all strokes: 38.1, 60.6 and 81.3 m over 45.7, 91.4 and 182.9 m. It is concluded that the d versus t relationship should be utilised with some caution when evaluating performance in swimmers.

  19. Body roll in swimming: a review.

    Science.gov (United States)

    Psycharakis, Stelios G; Sanders, Ross H

    2010-02-01

    In this article, we present a critical review of the swimming literature on body roll, for the purposes of summarizing and highlighting existing knowledge, identifying the gaps and limitations, and stimulating further research. The main research findings can be summarized as follows: swimmers roll their shoulders significantly more than their hips; swimmers increase hip roll but maintain shoulder roll when fatigued; faster swimmers roll their shoulders less than slower swimmers during a 200-m swim; roll asymmetries, temporal differences in shoulder roll and hip roll, and shoulder roll side dominance exist in front crawl swimming, but there is no evidence to suggest that they affect swimming performance; and buoyancy contributes strongly to generating body roll in front crawl swimming. Based on and stimulated by current knowledge, future research should focus on the following areas: calculation of body roll for female swimmers and for backstroke swimming; differences in body roll between breathing and non-breathing cycles; causes of body roll asymmetries and their relation to motor laterality; body roll analysis across a wide range of velocities and swimming distances; exploration of the association between body roll and the magnitude and direction of propulsive/resistive forces developed during the stroke cycle; and the influence of kicking actions on the generation of body roll.

  20. Krill (Meganyctiphanes norvegica) swim faster at night

    KAUST Repository

    Klevjer, Thor A.

    2011-05-01

    Krill are key members in marine food webs, and measurement of swimming speed is vital to assess their bioenergetic budgets, feeding, and encounters with predators. We document a consistent and marked diel signal in swimming speed of krill in their natural habitat that is not related to diel vertical migration. The results were obtained using a bottom-mounted, upward-looking echo sounder at 150-m depth in the Oslofjord, Norway, spanning 5 months from late autumn to spring at a temporal resolution of ~1–2 records s−1. Swimming speed was assessed using acoustic target tracking of individual krill. At the start of the registration period, both daytime and nocturnal average swimming speeds of Meganyctiphanes norvegica were ~ 3.5 cm s−1 (~ 1 body lengths ([bl] s−1) in waters with oxygen concentrations of ~ 15–20% O2 saturation. Following intrusion of more oxygenated water, nocturnal average swimming speeds increased to ~ 10 cm s−1 (~ 3 bl s−1), i.e., more than double that of daytime swimming speeds in the same period. We hypothesize that krill activity during the first period was limited by oxygen, and the enhanced swimming at night subsequent to the water renewal is due to increased feeding activity under lessened danger of predation in darkness.

  1. SWIM EVERYDAY TO KEEP DEMENTIA AWAY

    Directory of Open Access Journals (Sweden)

    Nirmal Singh

    2005-03-01

    Full Text Available A sound mind resides in a sound body. Many individuals with an active lifestyle show sharp mental skills at an advanced age. Regular exercise has been shown to exert numerous beneficial effects on brawn as well as brain. The present study was undertaken to evaluate the influence of swimming on memory of rodents. A specially designed hexagonal water maze was used for the swimming exposures of animals. The learning and memory parameters were measured using exteroceptive behavioral models such as Elevated plus-maze, Hebb-Williams maze and Passive avoidance apparatus. The rodents (rats and mice were divided into twelve groups. The swimming exposure to the rodents was for 10- minute period during each session and there were two swimming exposures on each day. Rats and mice were subjected to swimming for -15 and -30 consecutive days. Control group animals were not subjected to swimming during above period. The learning index and memory score of all the animals was recorded on 1st, 2nd, 15th, 16th, 30th and 31st day employing above exteroceptive models. It was observed that rodents that underwent swimming regularly for 30- days showed sharp memories, when tested on above behavioral models whereas, control group animals showed decline in memory scores. Those animals, which underwent swimming for 15- days only showed good memory on 16th day, which however, declined after 30-days. These results emphasize the role of regular physical exercise particularly swimming in the maintenance and promotion of brain functions. The underlying physiological mechanism for improvement of memory appears to be the result of enhanced neurogenesis.

  2. Experimental Confirmation of an Aquatic Swimming Motion Theoretically of Very Low Drag and High Efficiency

    Science.gov (United States)

    2016-08-24

    aid in producing a functional, practical prototype that can be further developed and refined for use in a Naval Intelligence , Surveillance, and...AUV stems from a fishing trip by Dr. Vorus, on which he noticed a “water snake slithering through the surfactant field of 9 spring pollen covering...the little-exploited anguilliform mode exhibited in some aquatic animal swimming; the Anguilla includes the snake , eel, lamprey, and leach, among

  3. Muscle temperature in free-swimming giant Atlantic bluefin tuna (Thunnus thynnus L.).

    Science.gov (United States)

    Stevens; Kanwisher; Careymaltese cross FG

    2000-12-01

    Muscle temperature was measured by telemetry in giant Atlantic bluefin tuna whilst the tuna were free-swimming in large pounds. Muscle temperature tended to remain steady at about 24 degrees C; water temperature ranged from 9 to 17 degrees C. Muscle temperature was much less variable than stomach temperature in these fish. Muscle temperature varied less than 3 degrees C whereas stomach temperature varied by as much as 14 degrees C.

  4. Deltamethrin toxicity and impaired swimming behavior of two backswimmer species.

    Science.gov (United States)

    Gutiérrez, Yeisson; Tomé, Hudson V V; Guedes, Raul N C; Oliveira, Eugênio E

    2017-05-01

    Backswimmers (Hemiptera: Heteroptera: Notonectidae) are insect predators in a wide variety of freshwater habitats. These insects are well known through their role as mosquito biocontrol agents, their ability to prey on immature fishes and frogs, and because they are often the first to colonize aquatic habitats. As a consequence, these predators may face intended or unintended insecticide exposures that may lead to death or to impairment of essential behaviors (e.g., swimming and position in the water column). The toxicity of deltamethrin (a type II pyrethroid insecticide stressor) and the swimming activity of the backswimmers Buenoa tarsalis and Martarega bentoi were evaluated. Concentration-mortality and survival bioassays were conducted with the insecticide, which were compared with controls without deltamethrin. Deltamethrin was 26-fold more toxic to B. tarsalis (median lethal concentration [LC50] = 4.0 ng a.i./L) than to M. bentoi (LC50 = 102.5 ng a.i./L). The pattern of occupation of B. tarsalis, but not of M. bentoi, in the water column was also disrupted, and B. tarsalis was forced to stay near the water surface longer with exposure to deltamethrin. Thus, based on the findings, B. tarsalis was less resilient to deltamethrin exposure compared with M. bentoi, and the efficacy of swimming-dependent processes might be negatively affected (e.g., prey catching, partner encounter, and antipredator behaviors) for B. tarsalis under deltamethrin exposure. Environ Toxicol Chem 2017;36:1235-1242. © 2016 SETAC. © 2016 SETAC.

  5. Simulations of Unsteady Aquatic Locomotion: From Unsteadiness in Straight-Line Swimming to Fast-Starts.

    Science.gov (United States)

    Borazjani, Iman

    2015-10-01

    Unsteady aquatic locomotion is not an exception, but rather how animals often swim. It includes fast-starts (C-start or S-start), escape maneuvers, turns, acceleration/deceleration, and even during steady locomotion the swimming speed fluctuates, i.e., there is unsteadiness. Here, a review of the recent work on unsteady aquatic locomotion with emphasis on numerical simulations is presented. The review is started by an overview of different theoretical and numerical methods that have been used for unsteady swimming, and then the insights provided by these methods on (1) unsteadiness in straight-line swimming and (2) unsteady fast-starts and turns are discussed. The swimming speed's unsteady fluctuations during straight-line swimming are typically less than 3% of the average swimming speed, but recent simulations show that body shape affects fluctuations more than does body kinematics, i.e., changing the shape of the body generates larger fluctuations than does changing its kinematics. For fast-starts, recent simulations show that the best motion to maximize the distance traveled from rest are similar to the experimentally observed C-start maneuvers. Furthermore, another set of simulations, which are validated against measurements of flow in experiments with live fish, investigate the role of fins during the C-start. The simulations showed that most of the force is generated by the body of the fish (not by fins) during the first stage of the C-start when the fish bends itself into the C-shape. However, in the second stage, when it rapidly bends out of the C-shape, more than 70% of the instantaneous hydrodynamic force is produced by the tail. The effect of dorsal and anal fins was less than 5% of the instantaneous force in both stages, except for a short period of time (2 ms) just before the second stage. Therefore, the active control and the erection of the anal/dorsal fins might be related to retaining the stability of the sunfish against roll and pitch during the C

  6. A Review of Swimming Cues and Tips for Physical Education

    Science.gov (United States)

    Higginson, Kelsey; Barney, David

    2016-01-01

    Swimming is a low-impact activity that causes little stress on joints so it can be done for a lifetime. Many teachers may wish to teach swimming but do not have cues or ideas for doing so. This article reviews swimming cues, relays and equipment that can help a physical education teacher include a swimming unit in their curriculum. Certification…

  7. Swimming without a spine: Computational modeling and analysis of the swimming hydrodynamics of the Spanish Dancer.

    Science.gov (United States)

    Zhou, Zhuoyu; Mittal, Rajat

    2017-10-16

    Incompressible flow simulations are used to study the swimming of a Spanish Dancer (Hexabranchus sanguineus), a soft-bodied invertebrate marine gastropod that swims by combining body pitching with undulations of its large mantle. A simple model based on a field video is employed as the basis for the model and coupling of the flow with the body acceleration enables us to examine the free swimming of this animal. Simulations indicate propulsive efficiencies of up to about 57% and terminal swimming speeds of 1.33 body lengths per cycle. Examination of the effect of body planform on the swimming hydrodynamics suggests that the planform of this animal is likely adapted to enhance its swimming performance. © 2017 IOP Publishing Ltd.

  8. Dynamic Modelling of a CPG-Controlled Amphibious Biomimetic Swimming Robot

    Directory of Open Access Journals (Sweden)

    Rui Ding

    2013-04-01

    Full Text Available This paper focuses on the modelling and control problems of a self-propelled, multimodal amphibious robot. Inspired by the undulatory body motions of fish and dolphins, the amphibious robot propels itself underwater by oscillations of several modular fish-like propelling units coupled with a pair of pectoral fins capable of non-continuous 360 degree rotation. In order to mimic fish-like undulating propulsion, a control architecture based on Central Pattern Generator (CPG is applied to the amphibious robot for robust swimming gaits, including forward and backward swimming and turning, etc. With the simplification of the robot as a multi-link serial mechanism, a Lagrangian function is employed to establish the hydrodynamic model for steady swimming. The CPG motion control law is then imported into the Lagrangian-based dynamic model, where an associated system of kinematics and dynamics is formed to solve real-time movements and, further, to guide the exploration of the CPG parameters and steady locomotion gaits. Finally, comparative results between the simulations and experiments are provided to show the effectiveness of the built control models.

  9. Development of a Micro Swimming Robot Using Optimised Giant Magnetostrictive Thin Films

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2006-01-01

    Full Text Available A fish-like swimming micro robot is developed using an optimised fin actuator made of giant magnetostrictive films (GMFs. The force oscillation dynamic model of a GMF cantilever with variable cross-section area is derived, and the propulsive model of the fish robot in liquid is established. A discrete variate method for optimising caudal fin configuration is proposed to optimise its propulsive force and drive efficiency under the constraints of fixed surface area and sufficient fin end strength. Both theoretical analysis and experimental results have confirmed that the optimised caudal fin configuration can generate more powerful propulsion and improved efficiency.

  10. Swimming championship finalist positions on success in international swimming competitions.

    Science.gov (United States)

    Yustres, I; Martín, R; Fernández, L; González-Ravé, J M

    2017-01-01

    The primary goal was to determine whether the achievement of finalist positions in the Junior Championship was associated with the achievement of success in the International Swimming Federation (FINA) World Championship (WC). Secondary goals included analyzing the effect of various factors (gender, age, country, etc) on swimmers' performances. Data were obtained from FINA information about the finalists from 2007 to 2015 WCs and finalists from 2006 to 2013 Junior-WCs (2400 entries). Final filtered database just included swimmers who participated in both junior and senior WCs (719 entries). A univariate general linear model (GLM) was used to examine the association between time; origin (swimmer who participated in Junior WC or not); maintenance years (number of years achieving finalist positions); country; and age, adjusting for year of competition. An ordinal logistic regression (OLR) model was used to identify predictors of achieving the top positions. The origin variable was not significant in either the GLM or the OLR. The only significant variables in the GLM were maintenance years (F4,706 = 7.689; p getting better positions as you get more WCs (odds = 1.85). In conclusion, no evidence was obtained to conclude finalist position in Junior WC have influence in achieve success in FINA WC. Maintenance years in WCs have a positive impact to achieve better positions.

  11. Swimming championship finalist positions on success in international swimming competitions.

    Directory of Open Access Journals (Sweden)

    I Yustres

    Full Text Available The primary goal was to determine whether the achievement of finalist positions in the Junior Championship was associated with the achievement of success in the International Swimming Federation (FINA World Championship (WC. Secondary goals included analyzing the effect of various factors (gender, age, country, etc on swimmers' performances. Data were obtained from FINA information about the finalists from 2007 to 2015 WCs and finalists from 2006 to 2013 Junior-WCs (2400 entries. Final filtered database just included swimmers who participated in both junior and senior WCs (719 entries. A univariate general linear model (GLM was used to examine the association between time; origin (swimmer who participated in Junior WC or not; maintenance years (number of years achieving finalist positions; country; and age, adjusting for year of competition. An ordinal logistic regression (OLR model was used to identify predictors of achieving the top positions. The origin variable was not significant in either the GLM or the OLR. The only significant variables in the GLM were maintenance years (F4,706 = 7.689; p < .05 and year of competition (F4,706 = 23.239; p < .05. The OLR revealed a strong association (p < .001 between the position variable and maintenance years, getting better positions as you get more WCs (odds = 1.85. In conclusion, no evidence was obtained to conclude finalist position in Junior WC have influence in achieve success in FINA WC. Maintenance years in WCs have a positive impact to achieve better positions.

  12. Do fish have rights in artisanal fisheries?

    Directory of Open Access Journals (Sweden)

    Mustapha MK

    2013-09-01

    Full Text Available Artisanal fishers in developing world are unaware that fish are capable of suffering or discomfort, though researches have shown that fish do feel pain. Five fish welfare domains have been identified which constitute their rights in their environment. The needs of wild fish are usually provided in their natural, undisturbed and unperturbed aquatic environment, of which the fish will prefer. However, various anthropogenic activities by humans (including artisanal fisheries itself and some natural perturbations in the watershed, riparian zone, water body of the fish habitat and on the fish tend to take away these needs thereby compromising the fish welfare. These activities include environmental degradation, boat/canoe building, use of motorized engine boats/canoes, use of active and passive fishing gears, obnoxious cultural, religious and social fishing practices, fish harvesting, handling and processing among others. One way to understand the welfare needs of an individual fish is to understand its biology. Poor welfare conditions could then be assessed by how far the individual fish has deviated from the normal conditions. Non-intrusive signs based on the health, behavior, morphological anomalies, swimming, reduction in population and growth, outbreak of parasitic infections, injuries and loss of condition can be used to assess fish whose welfare has been compromised. Artisanal fishers should not only be concerned with catch, but, also the welfare of the fish being caught. This is because if the welfare of the fish is compromised, it is going to definitely affect the catch. As indispensable as fish is to humans, humans should not derive its pleasure at the expense of fish suffering. Human activities that impinge on the welfare of wild fish may not necessarily be stopped, but at least minimized in order to have continued sustainable artisanal exploitation of the fisheries.

  13. Swimming of Paramecium in confined channels

    Science.gov (United States)

    Jung, Sunghwan

    2012-02-01

    Many living organisms in nature have developed a few different swimming modes, presumably derived from hydrodynamic advantage. Paramecium is a ciliated protozoan covered by thousands of cilia with a few nanometers in diameter and tens of micro-meters in length and is able to exhibit both ballistic and meandering motions. First, we characterize ballistic swimming behaviors of ciliated microorganisms in glass capillaries of different diameters and explain the trajectories they trace out. We develop a theoretical model of an undulating sheet with a pressure gradient and discuss how it affects the swimming speed. Secondly, investigation into meandering swimmings within rectangular PDMS channels of dimension smaller than Paramecium length. We find that Paramecium executes a body-bend (an elastic buckling) using the cilia while it meanders. By considering an elastic beam model, we estimate and show the universal profile of forces it exerts on the walls. Finally, we discuss a few other locomotion of Paramecium in other extreme environments like gel.

  14. Ingestion of swimming pool water by recreational

    Data.gov (United States)

    U.S. Environmental Protection Agency — Swimming pool water ingestion data. This dataset is associated with the following publication: Dufour, A., L. Wymer, M. Magnuson, T. Behymer, and R. Cantu. Ingestion...

  15. Single and combined effects of microplastics and mercury on juveniles of the European seabass (Dicentrarchus labrax): Changes in behavioural responses and reduction of swimming velocity and resistance time.

    Science.gov (United States)

    Barboza, Luís Gabriel Antão; Vieira, Luís Russo; Guilhermino, Lúcia

    2018-05-01

    Microplastics and mercury are environmental pollutants of great concern. The main goal of the present study was to investigate the effects of these pollutants, both individually and in binary mixtures, on the swimming performance of juvenile European seabass, Dicentrarchus labrax. Microplastics alone, mercury alone and all the mixtures caused significant reduction of the swimming velocity and resistance time of fish. Moreover, changes in behavioural responses including lethargic and erratic swimming behaviour were observed. These results highlight that fish behavioural responses can be used as sensitive endpoint to establish the effects of contamination by microplastics and also emphasizes the need to assess the combined effects of microplastics and other environmental contaminants, with special attention to the effects on behavioural responses in fish and other aquatic species. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Effects of rearing density and dietary fat content on burst-swim performance and oxygen transport capacity in juvenile Atlantic salmon Salmo salar.

    Science.gov (United States)

    Hammenstig, D; Sandblom, E; Axelsson, M; Johnsson, J I

    2014-10-01

    The effects of hatchery rearing density (conventional or one third of conventional density) and feeding regime (high or reduced dietary fat levels) on burst-swim performance and oxygen transport capacity were studied in hatchery-reared Atlantic salmon Salmo salar, using wild fish as a reference group. There was no effect of rearing density or food regime on swimming performance in parr and smolts. The maximum swimming speed of wild parr was significantly higher than that of hatchery-reared conspecifics, while no such difference remained at the smolt stage. In smolts, relative ventricle mass was higher in wild S. salar compared with hatchery-reared fish. Moreover, wild S. salar had lower maximum oxygen consumption following a burst-swim challenge than hatchery fish. There were no effects of hatchery treatment on maximum oxygen consumption or relative ventricle mass. Haemoglobin and haematocrit levels, however, were lower in low-density fish than in fish reared at conventional density. Furthermore, dorsal-fin damage, an indicator of aggression, was similar in low-density reared and wild fish and lower than in S. salar reared at conventional density. Together, these results suggest that reduced rearing density is more important than reduced dietary fat levels in producing an S. salar smolt suitable for supplementary release. © 2014 The Fisheries Society of the British Isles.

  17. Divergence in physiological factors affecting swimming performance between anadromous and resident populations of brook charr Salvelinus fontinalis.

    Science.gov (United States)

    Crespel, A; Dupont-Prinet, A; Bernatchez, L; Claireaux, G; Tremblay, R; Audet, C

    2017-05-01

    In this study, an anadromous strain (L) and a freshwater-resident (R) strain of brook charr Salvelinus fontinalis as well as their reciprocal hybrids, were reared in a common environment and submitted to swimming tests combined with salinity challenges. The critical swimming speeds (U crit ) of the different crosses were measured in both fresh (FW) and salt water (SW) and the variations in several physiological traits (osmotic, energetic and metabolic capacities) that are predicted to influence swimming performance were documented. Anadromous and resident fish reached the same U crit in both FW and SW, with U crit being 14% lower in SW compared with FW. The strains, however, seemed to use different underlying strategies: the anadromous strain relied on its streamlined body shape and higher osmoregulatory capacity, while the resident strain had greater citrate synthase (FW) and lactate dehydrogenase (FW, SW) capacity and either greater initial stores or more efficient use of liver (FW, SW) and muscle (FW) glycogen during exercise. Compared with R ♀ L ♂ hybrids, L ♀ R ♂ hybrids had a 20% lower swimming speed, which was associated with a 24% smaller cardio-somatic index and higher physiological costs. Thus swimming performance depends on cross direction (i.e. which parental line was used as dam or sire). The study thus suggests that divergent physiological factors between anadromous and resident S. fontinalis may result in similar swimming capacities that are adapted to their respective lifestyles. © 2017 The Fisheries Society of the British Isles.

  18. Locomotion of free-swimming ghost knifefish: anal fin kinematics during four behaviors.

    Science.gov (United States)

    Youngerman, Eric D; Flammang, Brooke E; Lauder, George V

    2014-10-01

    The maneuverability demonstrated by the weakly electric ghost knifefish (Apteronotus albifrons) is a result of its highly flexible ribbon-like anal fin, which extends nearly three-quarters the length of its body and is composed of approximately 150 individual fin rays. To understand how movement of the anal fin controls locomotion we examined kinematics of the whole fin, as well as selected individual fin rays, during four locomotor behaviors executed by free-swimming ghost knifefish: forward swimming, backward swimming, heave (vertical) motion, and hovering. We used high-speed video (1000 fps) to examine the motion of the entire anal fin and we measured the three-dimensional curvature of four adjacent fin rays in the middle of the fin during each behavior to determine how individual fin rays bend along their length during swimming. Canonical discriminant analysis separated all four behaviors on anal fin kinematic variables and showed that forward and backward swimming behaviors contrasted the most: forward behaviors exhibited a large anterior wavelength and posterior amplitude while during backward locomotion the anal fin exhibited both a large posterior wavelength and anterior amplitude. Heave and hover behaviors were defined by similar kinematic variables; however, for each variable, the mean values for heave motions were generally greater than for hovering. Individual fin rays in the middle of the anal fin curved substantially along their length during swimming, and the magnitude of this curvature was nearly twice the previously measured maximum curvature for ray-finned fish fin rays during locomotion. Fin rays were often curved into the direction of motion, indicating active control of fin ray curvature, and not just passive bending in response to fluid loading. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Front Crawl Swimming Performance and Bi-Lateral Force Asymmetry during Land-Based and Tethered Swimming Tests

    OpenAIRE

    dos Santos, Karini B.; Bento, Paulo C. Barauce; Pereira, Gleber; Payton, Carl; Rodacki, André L.F.

    2017-01-01

    The aims of this study were to investigate whether land-based and tethered swimming strength tests can explain swimming performance in 200-meter front crawl and, whether these tests were able to identify bilateral symmetry in force production. In the first session, eighteen swimmers completed a maximum effort 200 m front crawl swim (swimming performance) and 15 seconds maximal effort tethered front crawl swim. In the second session, participants performed the upper extremity isometric strengt...

  20. Swimming performance, venous oxygen tension and cardiac performance of coronary-ligated rainbow trout, Oncorhynchus mykiss, exposed to progressive hypoxia

    DEFF Research Database (Denmark)

    Steffensen, J F; Farrell, A P

    1998-01-01

    We performed in vivo studies to examine the idea that cardiac work is impaired in rainbow trout (Oncorhynchus mykiss) below a certain venous PO2 threshold. We hypothesized that coronary-ligated fish, swimming continuously at a reasonably high water velocity (1.5 body lengths x s(-1)) and exposed...... to progressive hypoxia, would fatigue at higher venous PO2 and ambient water PO2 compared with sham-operated fish. However, we found that both the lowest venous PO2 that supported hypoxic swimming (9.9 torr for coronary-ligated fish and 11.1 torr for sham-operated fish) and the venous PO2 at fatigue (7.8 torr...... and 8.6 torr, respectively) were the same for coronary-ligated and sham-operated fish. Also, both groups quit swimming at the same water PO2 heart rate and hematocrit. Nevertheless, significant differences in cardiac performance did exist between the two groups. Whereas ventral aortic blood pressure...

  1. [Chlorine concentrations in the air of indoor swimming pools and their effects on swimming pool workers].

    Science.gov (United States)

    Fernández-Luna, Álvaro; Burillo, Pablo; Felipe, José Luis; Gallardo, Leonor; Tamaral, Francisco Manuel

    2013-01-01

    To describe chlorine levels in the air of indoor swimming pools in Castilla-La Mancha (Spain) and relate them to other chemical parameters in the installation and to the health problems perceived by swimming pool workers. We analyzed 21 pools with chlorine as chemical treatment in Castilla-La Mancha. The iodometry method was applied to measure chlorine concentrations in the air. The concentrations of free and combined chlorine in water, pH and temperature were also evaluated. Health problems were surveyed in 230 swimming pool workers in these facilities. The mean chlorine level in the air of swimming pools was 4.3 ± 2.3mg/m(3). The pH values were within the legal limits. The temperature parameters did not comply with regulations in 17 of the 21 pools analyzed. In the pools where chlorine values in the air were above the legal regulations, a significantly higher percentage of swimming pool workers perceived eye irritation, dryness and irritation of skin, and ear problems. Chlorine values in the air of indoor swimming pools were higher than those reported in similar studies. Most of the facilities (85%) exceeded the concentration of 1.5mg/m(3) established as the limit for the risk of irritating effects. The concentration of chlorine in indoor swimming pool air has a direct effect on the self-perceived health problems of swimming pool workers. Copyright © 2012 SESPAS. Published by Elsevier Espana. All rights reserved.

  2. Swimming performance in surf: the influence of experience.

    Science.gov (United States)

    Tipton, M; Reilly, T; Rees, A; Spray, G; Golden, F

    2008-11-01

    This study tested the hypothesis (H1) that surf swimming involves a quantifiable experience component. Sixty-five beach lifeguards with (n = 35) and without surf experience (n = 30) completed: a best effort 200-m swim in a 25-m pool, a calm and a surf sea; an anthropometric survey; maximum effort 30-s swim bench test; 50-m pool swim (25 m underwater). In both groups, time to swim 200 m was slower in calm seas than in the pool and slower in surf than in either calm seas or the pool (p surf conditions (p surf experience as a predictor of surf swim time (R(2) = 0.32, p surf swimming. This limits the usefulness of pool swim times and other land-based tests as predictors of surf swimming performance. The hypothesis (H1) is accepted.

  3. Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming

    Science.gov (United States)

    Chen, J.; Friesen, W. O.; Iwasaki, T.

    2011-01-01

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304

  4. Accelerometer-derived activity correlates with volitional swimming speed in lake sturgeon (Acipenser fulvescens)

    Science.gov (United States)

    Thiem, J.D.; Dawson, J.W.; Gleiss, A.C.; Martins, E.G.; Haro, Alexander J.; Castro-Santos, Theodore R.; Danylchuk, A.J.; Wilson, R.P.; Cooke, S.J.

    2015-01-01

    Quantifying fine-scale locomotor behaviours associated with different activities is challenging for free-swimming fish.Biologging and biotelemetry tools can help address this problem. An open channel flume was used to generate volitionalswimming speed (Us) estimates of cultured lake sturgeon (Acipenser fulvescens Rafinesque, 1817) and these were paired withsimultaneously recorded accelerometer-derived metrics of activity obtained from three types of data-storage tags. This studyexamined whether a predictive relationship could be established between four different activity metrics (tail-beat frequency(TBF), tail-beat acceleration amplitude (TBAA), overall dynamic body acceleration (ODBA), and vectorial dynamic body acceleration(VeDBA)) and the swimming speed of A. fulvescens. Volitional Us of sturgeon ranged from 0.48 to 2.70 m·s−1 (0.51–3.18 bodylengths (BL) · s−1). Swimming speed increased linearly with all accelerometer-derived metrics, and when all tag types werecombined, Us increased 0.46 BL·s−1 for every 1 Hz increase in TBF, and 0.94, 0.61, and 0.94 BL·s−1 for every 1g increase in TBAA,ODBA, and VeDBA, respectively. Predictive relationships varied among tag types and tag-specific parameter estimates of Us arepresented for all metrics. This use of acceleration data-storage tags demonstrated their applicability for the field quantificationof sturgeon swimming speed.

  5. Mechanisms underlying rhythmic locomotion: body-fluid interaction in undulatory swimming.

    Science.gov (United States)

    Chen, J; Friesen, W O; Iwasaki, T

    2011-02-15

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body-fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail.

  6. Fish Allergy

    Science.gov (United States)

    ... people often mistakenly eat fish. This happens in kitchens when fish gets into a food product because the staff use the same surfaces, utensils (like knives, cutting boards, or pans), or oil to prepare both fish and other foods. This ...

  7. Intermittent Swimming with a Flexible Propulsor

    Science.gov (United States)

    Akoz, Emre; Moored, Keith

    2017-11-01

    Aquatic animals use a variety of swimming gaits to propel themselves efficiently through the oceans. One type of gait known as intermittent or burst-and-coast swimming is used by species such as saithe, cod and trout. Recent studies have shown that this gait can save up to 60% of a swimmer's energy by exploiting an inviscid Garrick mechanism. These detailed studies have examined the effects of an intermittent swimming gait on rigid propulsors, yet the caudal fins of intermittent swimmers are in fact highly flexible propulsors. In this respect, to gain a comprehensive understanding of intermittent swimming, the effect of elasticity on the swimming performance and wake flow of an intermittent swimmer is investigated. To accomplish this a torsional spring structural model is strongly coupled to a fast boundary element method solver that captures the fluid-structure interaction of a two-dimensional self-propelled intermittently pitching hydrofoil. It is shown that flexibility introduces extra vortices to the coasting phase of motion that can either promote or diminish thrust production depending upon the hydrofoil parameters. An optimal intermittent flexible swimmer is shown to increase its efficiency by as much as 28% when compared to an optimal continuous flexible swimmer. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.

  8. Propulsive force asymmetry during tethered-swimming.

    Science.gov (United States)

    dos Santos, K B; Pereira, G; Papoti, M; Bento, P C B; Rodacki, A

    2013-07-01

    This study aimed to determine whether: i) tethe-red-swimming can be used to identify the asymmetry during front crawl swimming style; ii) swimmers that perform unilateral breathing present greater asymmetry in comparison to others that use bilateral breathing; iii) swimmers of best performance present smaller asymmetry than their counterparts; iv) repeated front crawl swimming movements influence body asymmetry. 18 swimmers were assessed for propulsive force parameters (peak force, mean force, impulse and rate of force development) during a maximal front crawl tethered-swimming test lasting 2 min. A factorial analysis showed that propulsive forces decreased at the beginning, intermediate and end of the test (pforce parameters (p>0.05). When performance was considered (below or above mean group time), a larger asymmetry was found in the sub-group of lower performance in comparison to those of best performance (pforces can be detected using tethered-swimming. The propulsive forces decreased during the test but asymmetries did not change under testing conditions. Although breathing preference did not influence asymmetry, swimmers with best performance were less asymmetric than their counterparts. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Environmental estrogen(s) induced swimming behavioural alterations in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Goundadkar, Basavaraj B; Katti, Pancharatna

    2017-09-01

    The present study is an attempt to investigate the effects of long-term (75days) exposure to environmental estrogens (EE) on the swimming behaviour of zebrafish (Danio rerio). Adult zebrafish were exposed semi-statically to media containing commonly detected estrogenic water contaminants (EE2, DES and BPA) at a concentration (5ng/L) much lower than environmentally recorded levels. Time spent in swimming, surface preference, patterns and path of swimming were recorded (6mins) for each fish using two video cameras on day 15, 30 60 and 75. Video clips were analysed using a software program. Results indicate that chronic exposure to EE leads to increased body weight and size of females, reduced (Pswimming time, delay in latency, increased (P<0.05) immobility, erratic movements and freezing episodes. We conclude that estrogenic contamination of natural aquatic systems induces alterations in locomotor behaviour and associated physiological disturbances in inhabitant fish fauna. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. SWIMMING BEHAVIOR OF DEVELOPMENTAL STAGES OF THE CALANOID COPEPOD TEMORA-LONGICORNIS AT DIFFERENT FOOD CONCENTRATIONS

    NARCIS (Netherlands)

    VANDUREN, LA; VIDELER, JJ

    1995-01-01

    The swimming behaviour of developmental stages of the marine calanoid copepod Temora longicornis was studied using 2-dimensional observations under a microscope and a 3-dimensional filming technique to analyze swimming mode, swimming speed and swimming trajectories under different food

  11. Swimming type inspection device and system thereof

    International Nuclear Information System (INIS)

    Ito, Arata; Kimura, Motohiko; Ito, Tomoyuki

    1998-01-01

    The present invention provides a swimming type inspection device which can be reduced in the size, easily accessible to each portion of a reactor, and increase the degree of freedom of swimming and visual range, and facilitate visual inspection. The swimming type inspection device comprises two photographing devices, a device which can obtain propelling force by rotation of impellers, two second propelling devices having impellers disposed in perpendicular to the rotating axis of the impellers of the first propelling device, a control device for controlling control signals of first and second propelling devices and driving devices therefor and control image signals of the photographing devices, and transmission section for wireless transmitting of the control signals and the image signals. (N.H.)

  12. Swimming and feeding of mixotrophic biflagellates

    DEFF Research Database (Denmark)

    Dölger, Julia; Nielsen, Lasse Tor; Kiørboe, Thomas

    2017-01-01

    with variable position next to a no-slip sphere. Utilizing the observations and the model we find that puller force arrangements favour feeding, whereas equatorial force arrangements favour fast and quiet swimming. We determine the capture rates of both passive and motile prey, and we show that the flow......Many unicellular flagellates are mixotrophic and access resources through both photosynthesis and prey capture. Their fitness depends on those processes as well as on swimming and predator avoidance. How does the flagellar arrangement and beat pattern of the flagellate affect swimming speed......, predation risk due to flow-sensing predators, and prey capture? Here, we describe measured flows around two species of mixotrophic, biflagellated haptophytes with qualitatively different flagellar arrangements and beat patterns. We model the near cell flows using two symmetrically arranged point forces...

  13. Quiet swimming at low Reynolds number

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Wadhwa, Navish; Kiørboe, Thomas

    2015-01-01

    The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode...... that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic organisms, we demonstrate that a three......-Stokeslet model of a swimming organism which uses breast stroke type kinematics is an example of such a quiet swimmer. We show that the fluid disturbance in both the near field and the far field is significantly reduced by appropriately arranging the propulsion apparatus, and we find that the far field power laws...

  14. Swimming economy: determinant factors and assessment issues

    Directory of Open Access Journals (Sweden)

    Giovanni Novaes

    2006-09-01

    Full Text Available Swimming economy is an important parameter in the control of the training process, since it has been demonstrated that this concept is related to the swimming performance. Swimming economy is affected by physiological and biomechanical constraints, therefore being a concept that reflects the swimmers´ adaptation to the liquid environment in those two domains. A review of the literature about swimming economy is presented, focusing some of the most relevant studies that have been conducted on this issue. Other than the biomechanical and physiological constraints, the swimming economy is influenced by other factors such as: swimming velocity, technical ability, training status, gender, age and anthropometric characteristics. Therefore a multitude of aspects are pertinent in the assessment of swimming economy and in the application of this concept in the control of the swimmers’ training process. A proper assessment of the swimming economy requires the direct measurement of the oxygen uptake. The choice of the protocol to assess the swimming economy must be carefully done. Particular attention must be paid to the oxygen uptake kinetics across the different levels of exercise intensity. Therefore, both exercise intensity and duration are to be considered. The attainment of swimming velocities as close as possible to the competition velocity is also an important issue. Although few studies have measured directly the oxygen uptake of top-level performers during swimming, the literature shows that a discontinuous protocol, with increasing exercise bouts of duration between three and six minutes seem appropriate to assess the swimming economy. RESUMO Economia de nado é um parâmetro importante no controle do processo de treinamento, desde que foi demonstrado que este conceito é relacionado ao desempenho de nado. Economia de nado é afetada por aspectosfisiológicos e biomecânicos, sendo então um conceito que reflete a adaptação de nadadores ao

  15. Virulent Naegleria fowleri in indoor swimming pool.

    Science.gov (United States)

    Kadlec, V; Skvárová, J; Cerva, L; Nebáznivá, D

    1980-01-01

    Naegleria fowleri was isolated from water during a hygienic inspection of a swimming pool in December 1977. This swimming pool was identified as a source of the infectious agent in the years 1962-1965, when a large outbreak of primary amoebic meningoencephalitis (PAME) occurred. First two strains of N. fowleri, pathogenic for white mice after intracerebral and intranasal inoculation, were isolated from water of outlet troughs, additional strains were then isolated from various places; particularly from a cavity in the damaged wall of the pool. The incubation temperature did not inhibit a simultaneous growth of amoebae of the genera Acanthamoeba, Flabellula, Hartmannella and Vahlkampfia in the primocultures. Epidemiological investigations did not reveal any new case of PAME in relation with the occurrence of pathogenic N. fowleri in the swimming pool.

  16. Analysis of swimming performance: perceptions and practices of US-based swimming coaches.

    Science.gov (United States)

    Mooney, Robert; Corley, Gavin; Godfrey, Alan; Osborough, Conor; Newell, John; Quinlan, Leo Richard; ÓLaighin, Gearóid

    2016-01-01

    In elite swimming, a broad range of methods are used to assess performance, inform coaching practices and monitor athletic progression. The aim of this paper was to examine the performance analysis practices of swimming coaches and to explore the reasons behind the decisions that coaches take when analysing performance. Survey data were analysed from 298 Level 3 competitive swimming coaches (245 male, 53 female) based in the United States. Results were compiled to provide a generalised picture of practices and perceptions and to examine key emerging themes. It was found that a disparity exists between the importance swim coaches place on biomechanical analysis of swimming performance and the types of analyses that are actually conducted. Video-based methods are most frequently employed, with over 70% of coaches using these methods at least monthly, with analyses being mainly qualitative in nature rather than quantitative. Barriers to the more widespread use of quantitative biomechanical analysis in elite swimming environments were explored. Constraints include time, cost and availability of resources, but other factors such as sources of information on swimming performance and analysis and control over service provision are also discussed, with particular emphasis on video-based methods and emerging sensor-based technologies.

  17. Propulsive efficiency of frog swimming with different feet and swimming patterns.

    Science.gov (United States)

    Jizhuang, Fan; Wei, Zhang; Bowen, Yuan; Gangfeng, Liu

    2017-04-15

    Aquatic and terrestrial animals have different swimming performances and mechanical efficiencies based on their different swimming methods. To explore propulsion in swimming frogs, this study calculated mechanical efficiencies based on data describing aquatic and terrestrial webbed-foot shapes and swimming patterns. First, a simplified frog model and dynamic equation were established, and hydrodynamic forces on the foot were computed according to computational fluid dynamic calculations. Then, a two-link mechanism was used to stand in for the diverse and complicated hind legs found in different frog species, in order to simplify the input work calculation. Joint torques were derived based on the virtual work principle to compute the efficiency of foot propulsion. Finally, two feet and swimming patterns were combined to compute propulsive efficiency. The aquatic frog demonstrated a propulsive efficiency (43.11%) between those of drag-based and lift-based propulsions, while the terrestrial frog efficiency (29.58%) fell within the range of drag-based propulsion. The results illustrate the main factor of swimming patterns for swimming performance and efficiency. © 2017. Published by The Company of Biologists Ltd.

  18. Propulsive efficiency of frog swimming with different feet and swimming patterns

    Directory of Open Access Journals (Sweden)

    Fan Jizhuang

    2017-04-01

    Full Text Available Aquatic and terrestrial animals have different swimming performances and mechanical efficiencies based on their different swimming methods. To explore propulsion in swimming frogs, this study calculated mechanical efficiencies based on data describing aquatic and terrestrial webbed-foot shapes and swimming patterns. First, a simplified frog model and dynamic equation were established, and hydrodynamic forces on the foot were computed according to computational fluid dynamic calculations. Then, a two-link mechanism was used to stand in for the diverse and complicated hind legs found in different frog species, in order to simplify the input work calculation. Joint torques were derived based on the virtual work principle to compute the efficiency of foot propulsion. Finally, two feet and swimming patterns were combined to compute propulsive efficiency. The aquatic frog demonstrated a propulsive efficiency (43.11% between those of drag-based and lift-based propulsions, while the terrestrial frog efficiency (29.58% fell within the range of drag-based propulsion. The results illustrate the main factor of swimming patterns for swimming performance and efficiency.

  19. Determination of a quantitative parameter to evaluate swimming technique based on the maximal tethered swimming test.

    Science.gov (United States)

    Soncin, Rafael; Mezêncio, Bruno; Ferreira, Jacielle Carolina; Rodrigues, Sara Andrade; Huebner, Rudolf; Serrão, Julio Cerca; Szmuchrowski, Leszek

    2017-06-01

    The aim of this study was to propose a new force parameter, associated with swimmers' technique and performance. Twelve swimmers performed five repetitions of 25 m sprint crawl and a tethered swimming test with maximal effort. The parameters calculated were: the mean swimming velocity for crawl sprint, the mean propulsive force of the tethered swimming test as well as an oscillation parameter calculated from force fluctuation. The oscillation parameter evaluates the force variation around the mean force during the tethered test as a measure of swimming technique. Two parameters showed significant correlations with swimming velocity: the mean force during the tethered swimming (r = 0.85) and the product of the mean force square root and the oscillation (r = 0.86). However, the intercept coefficient was significantly different from zero only for the mean force, suggesting that although the correlation coefficient of the parameters was similar, part of the mean velocity magnitude that was not associated with the mean force was associated with the product of the mean force square root and the oscillation. Thus, force fluctuation during tethered swimming can be used as a quantitative index of swimmers' technique.

  20. Paramecium swimming in a capillary tube

    Science.gov (United States)

    Jana, Saikat; Jung, Sunghwan

    2010-03-01

    Micro-organisms exhibit different strategies for swimming in complex environments. Many micro-swimmers such as paramecium congregate and tend to live near wall. We investigate how paramecium moves in a confined space as compared to its motion in an unbounded fluid. A new theoretical model based on Taylor's sheet is developed, to study such boundary effects. In experiments, paramecia are put inside capillary tubes and their swimming behavior is observed. The data obtained from experiments is used to test the validity of our theoretical model and understand how the cilia influence the locomotion of paramecia in confined geometries.

  1. Infections Unlikely to be Spread Through Swimming Pools

    Science.gov (United States)

    ... please visit the Information for Aquatics Professionals page. Pinworm & Swimming Pinworm infections are rarely spread through the use of swimming pools. Pinworm infections occur when a person swallows pinworm eggs ...

  2. Estimating energy expenditure during front crawl swimming using accelerometers

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Espinosa, Hugo G.; Van Thiel, David H

    2014-01-01

    The determination of energy expenditure is of major interest in training load and performance assessment. Small, wireless accelerometer units have the potential to characterise energy expenditure during swimming. The correlation between absorbed oxygen versus flume swimming speed and absorbed...

  3. Front Crawl Swimming Performance and Bi-Lateral Force Asymmetry during Land-Based and Tethered Swimming Tests

    Directory of Open Access Journals (Sweden)

    Karini B. dos Santos, Paulo C. Barauce Bento, Gleber Pereira, Carl Payton, André L.F. Rodacki

    2017-12-01

    Full Text Available The aims of this study were to investigate whether land-based and tethered swimming strength tests can explain swimming performance in 200-meter front crawl and, whether these tests were able to identify bilateral symmetry in force production. In the first session, eighteen swimmers completed a maximum effort 200 m front crawl swim (swimming performance and 15 seconds maximal effort tethered front crawl swim. In the second session, participants performed the upper extremity isometric strength test. Peak force production of tethered swimming and isometric strength tests were significantly correlated for the strongest and weakest sides (r = 0.58 and r = 0.63, respectively; p < 0.05, but only peak force production during tethered swimming correlated with 200 m swimming performance time (r = -0.55, p < 0.05. Bilateral asymmetries in peak force and rate of force development were similar between the tethered swimming and isometric strength tests (peak force: 13%, p = 0.24; rate of force development: 15%, p = 0.88 However, both tests detected significant difference of peak force and rate of force development between body sides. The tethered swimming test can partially explain the 200 m front crawl swimming performance. In addition, the land-based and tethered swimming tests may be used to identify bilateral asymmetry of swimming

  4. Front Crawl Swimming Performance and Bi-Lateral Force Asymmetry during Land-Based and Tethered Swimming Tests.

    Science.gov (United States)

    Dos Santos, Karini B; Bento, Paulo C Barauce; Pereira, Gleber; Payton, Carl; Rodacki, André L F

    2017-12-01

    The aims of this study were to investigate whether land-based and tethered swimming strength tests can explain swimming performance in 200-meter front crawl and, whether these tests were able to identify bilateral symmetry in force production. In the first session, eighteen swimmers completed a maximum effort 200 m front crawl swim (swimming performance) and 15 seconds maximal effort tethered front crawl swim. In the second session, participants performed the upper extremity isometric strength test. Peak force production of tethered swimming and isometric strength tests were significantly correlated for the strongest and weakest sides (r = 0.58 and r = 0.63, respectively; p force production during tethered swimming correlated with 200 m swimming performance time (r = -0.55, p force and rate of force development were similar between the tethered swimming and isometric strength tests (peak force: 13%, p = 0.24; rate of force development: 15%, p = 0.88) However, both tests detected significant difference of peak force and rate of force development between body sides. The tethered swimming test can partially explain the 200 m front crawl swimming performance. In addition, the land-based and tethered swimming tests may be used to identify bilateral asymmetry of swimming.

  5. Performance of Very Small Robotic Fish Equipped with CMOS Camera

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2015-10-01

    Full Text Available Underwater robots are often used to investigate marine animals. Ideally, such robots should be in the shape of fish so that they can easily go unnoticed by aquatic animals. In addition, lacking a screw propeller, a robotic fish would be less likely to become entangled in algae and other plants. However, although such robots have been developed, their swimming speed is significantly lower than that of real fish. Since to carry out a survey of actual fish a robotic fish would be required to follow them, it is necessary to improve the performance of the propulsion system. In the present study, a small robotic fish (SAPPA was manufactured and its propulsive performance was evaluated. SAPPA was developed to swim in bodies of freshwater such as rivers, and was equipped with a small CMOS camera with a wide-angle lens in order to photograph live fish. The maximum swimming speed of the robot was determined to be 111 mm/s, and its turning radius was 125 mm. Its power consumption was as low as 1.82 W. During trials, SAPPA succeeded in recognizing a goldfish and capturing an image of it using its CMOS camera.

  6. Training optimization of swimming of school-age children

    OpenAIRE

    Hudcová, Stanislava

    2011-01-01

    Subject matter: Training optimization of swimming of school-age children Objectives: The main goal of this research work is to suggest a model of advanced swimming training lessons with school-age children. Swimming training is practised in deep swimming pool. Next goal is to create an inventory of games and game disciplines which are suitable for training in deep water. Through the analysis of specialized literature and realization of experimental education we will be able to formulate new p...

  7. Specifies of teaching swimming to children with autism spectrum disorder

    OpenAIRE

    Baštová, Miroslava

    2017-01-01

    Title: Specifics of teaching swimming to children with autism spectrum disorder. Objectives: Creation and implementation of the concept of preparatory and basic swimming lessons for children with autism spectrum disorder. Evaluation of information on continuing education and the achieved level of swimming skills and swimming locomotion observed in children with autism spectrum disorder. Presentation and qualitative assessment of the four case studies and subsequent design of guidelines for sw...

  8. Impaired swim bladder inflation in early life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid.

    Science.gov (United States)

    Cavallin, Jenna E; Ankley, Gerald T; Blackwell, Brett R; Blanksma, Chad A; Fay, Kellie A; Jensen, Kathleen M; Kahl, Michael D; Knapen, Dries; Kosian, Patricia A; Poole, Shane T; Randolph, Eric C; Schroeder, Anthony L; Vergauwen, Lucia; Villeneuve, Daniel L

    2017-11-01

    Inflation of the posterior and/or anterior swim bladder is a process previously demonstrated to be regulated by thyroid hormones. We investigated whether inhibition of deiodinases, which convert thyroxine (T4) to the more biologically active form, 3,5,3'-triiodothyronine (T3), would impact swim bladder inflation. Two experiments were conducted using a model deiodinase inhibitor, iopanoic acid (IOP). First, fathead minnow embryos were exposed to 0.6, 1.9, or 6.0 mg/L or control water until 6 d postfertilization (dpf), at which time posterior swim bladder inflation was assessed. To examine anterior swim bladder inflation, a second study was conducted with 6-dpf larvae exposed to the same IOP concentrations until 21 dpf. Fish from both studies were sampled for T4/T3 measurements and gene transcription analyses. Incidence and length of inflated posterior swim bladders were significantly reduced in the 6.0 mg/L treatment at 6 dpf. Incidence of inflation and length of anterior swim bladder were significantly reduced in all IOP treatments at 14 dpf, but inflation recovered by 18 dpf. Throughout the larval study, whole-body T4 concentrations increased and T3 concentrations decreased in all IOP treatments. Consistent with hypothesized compensatory responses, deiodinase-2 messenger ribonucleic acid (mRNA) was up-regulated in the larval study, and thyroperoxidase mRNA was down-regulated in all IOP treatments in both studies. These results support the hypothesized adverse outcome pathways linking inhibition of deiodinase activity to impaired swim bladder inflation. Environ Toxicol Chem 2017;36:2942-2952. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  9. Efficacy of a modified tapering protocol on swimming performance ...

    African Journals Online (AJOL)

    Performance assessment following tapering consisted of 2 swims over a distance of 200 m, with a recovery period of 5 hours between swims. After resuming normal ... Total time and split times for each length, stroke rate, distance per stroke, and stroke index in a performance swim were determined as well as heart rate (HR) ...

  10. Isolation of Fungi in Swimming pools in Enugu, Nigeria | Mbata ...

    African Journals Online (AJOL)

    Background: It has been established that swimming pools contribute to the spread of fungal infections in susceptible hosts. Objectives: To isolate and identify fungi associated with swimming pools. Methods: A total of 147 samples from water and related areas of each swimming pool were tested for the presence of fungi.

  11. The fluid dynamics of swimming by jumping in copepods

    DEFF Research Database (Denmark)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-01-01

    Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic pr...

  12. Ion-swimming speed variation of Vibrio cholerae cells

    Indian Academy of Sciences (India)

    In the present work we report the variation in swimming speed of Vibrio cholerae with respect to the change in concentration of sodium ions in the medium. We have also studied the variation in swimming speed with respect to temperature. We find that the swimming speed initially shows a linear increase with the increase of ...

  13. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water

    International Nuclear Information System (INIS)

    Blake, R W

    2009-01-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number (∼0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive

  14. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water.

    Science.gov (United States)

    Blake, R W

    2009-03-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number ( approximately 0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid

  15. Swimming behaviour and ascent paths of brook trout in a corrugated culvert

    Science.gov (United States)

    Goerig, Elsa; Bergeron, Normand E.; Castro-Santos, Theodore R.

    2017-01-01

    Culverts may restrict fish movements under some hydraulic conditions such as shallow flow depths or high velocities. Although swimming capacity imposes limits to passage performance, behaviour also plays an important role in the ability of fish to overcome velocity barriers. Corrugated metal culverts are characterized by unsteady flow and existence of low‐velocity zones, which can improve passage success. Here, we describe swimming behaviour and ascent paths of 148 wild brook trout in a 1.5‐m section of a corrugated metal culvert located in Raquette Stream, Québec, Canada. Five passage trials were conducted in mid‐August, corresponding to specific mean cross‐sectional flow velocities ranging from 0.30 to 0.63 m/s. Fish were individually introduced to the culvert and their movements recorded with a camera located above the water. Lateral and longitudinal positions were recorded at a rate of 3 Hz in order to identify ascent paths. These positions were related to the distribution of flow depths and velocities in the culvert. Brook trout selected flow velocities from 0.2 to 0.5 m/s during their ascents, which corresponded to the available flow velocities in the culvert at the low‐flow conditions. This however resulted in the use of low‐velocity zones at higher flows, mainly located along the walls of the culvert. Some fish also used the corrugations for sheltering, although the behaviour was marginal and did not occur at the highest flow condition. This study improves knowledge on fish behaviour during culvert ascents, which is an important aspect for developing reliable and accurate estimates of fish passage ability.

  16. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi

    Directory of Open Access Journals (Sweden)

    Arjan P. Palstra

    2015-01-01

    Full Text Available Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (Uopt in m s-1 or body lengths s-1, BL s-1 were assessed and then applied to determine the effects of long-term forced and sustained swimming at Uopt on growth performance of juvenile yellowtail kingfish. Uopt was quantified in Blazka-type swim-tunnels for 145 mm, 206 mm and 311 mm juveniles resulting in values of: 1 0.70 m s-1 or 4.83 BL s-1, 2 0.82 m s-1 or 3.25 BL s-1 and 3 0.85 m s-1 or 2.73 BL s-1. Combined with literature data from larger fish, a relation of Uopt (BL s-1 = 234.07(BL-0.779 (R2= 0.9909 was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s-1 (‘swimmers’ or allowed to perform spontaneous activity at low water flow (‘resters’ in a newly designed 3,600 L oval flume (with flow created by an impeller driven by an electric motor, were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n= 23 showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n= 23. As both groups were fed equal rations, feed conversion ratio (FCR for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31% in the ventral aorta of swimmers vs. resters (44 ± 3 mL min-1 vs. 34 ± 3 mL min-1, respectively, under anesthesia. Thus growth performance can be rapidly improved by optimal swimming, without larger feed investments.

  17. Thyroid disrupting effects of halogenated and next generation chemicals on the swim bladder development of zebrafish.

    Science.gov (United States)

    Godfrey, Amy; Hooser, Blair; Abdelmoneim, Ahmed; Horzmann, Katharine A; Freemanc, Jennifer L; Sepúlveda, Maria S

    2017-12-01

    Endocrine disrupting chemicals (EDCs) can alter thyroid function and adversely affect growth and development. Halogenated compounds, such as perfluorinated chemicals commonly used in food packaging, and brominated flame retardants used in a broad range of products from clothing to electronics, can act as thyroid disruptors. Due to the adverse effects of these compounds, there is a need for the development of safer next generation chemicals. The objective of this study was to test the thyroid disruption potential of old use and next generation halogenated chemicals. Zebrafish embryos were exposed to three old use compounds, perfluorooctanoic acid (PFOA), tetrabromobisphenol A (TBBPA) and tris (1,3-dichloro-2-propyl) phosphate (TDCPP) and two next generation chemicals, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxdie (DOPO) and perfluorobutyric acid (PFBA). Sub-chronic (0-6days post fertilization (dpf)) and chronic (0-28dpf) exposures were conducted at 1% of the concentration known to kill 50% (LC 50 ) of the population. Changes in the surface area of the swim bladder as well as in expression levels of genes involved in the thyroid control of swim bladder inflation were measured. At 6dpf, zebrafish exposed to all halogenated chemicals, both old use and next generation, had smaller posterior swim bladder and increased expression in the gene encoding thyroid peroxidase, tpo and the genes encoding two swim bladder surfactant proteins, sp-a and sp-c. These results mirrored the effects of thyroid hormone-exposed positive controls. Fish exposed to a TPO inhibitor (methimazole, MMI) had a decrease in tpo expression levels at 28dpf. Effects on the anterior swim bladder at 28dpf, after exposure to MMI as well as both old and new halogenated chemicals, were the same, i.e., absence of SB in ∼50% of fish, which were also of smaller body size. Overall, our results suggest thyroid disruption by the halogenated compounds tested via the swim bladder surfactant system. However

  18. Predation, metabolic priming and early life-history rearing environment affect the swimming capabilities of growth hormone transgenic rainbow trout.

    Science.gov (United States)

    Crossin, Glenn T; Devlin, Robert H

    2017-08-01

    The period of first feeding, when young salmonid fishes emerge from natal stream beds, is one fraught with predation risk. Experiments conducted in semi-natural stream mesocosms have shown that growth hormone transgenic salmonids are at greater risk of predation than their non-transgenic siblings, due partly to the higher metabolic demands associated with transgenesis, which force risky foraging behaviours. This raises questions as to whether there are differences in the swim-performance of transgenic and non-transgenic fishes surviving predation experiments. We tested this hypothesis in wild-origin rainbow trout ( Oncorhynchus mykiss ) that were reared from first feeding in semi-natural stream mesocosms characterized by complex hydrodynamics, the presence of predators and oligotrophic conditions. Using an open-flume raceway, we swam fish and measured their capacity for burst-swimming against a sustained flow. We found a significant genotype effect on burst-performance, with transgenic fish sustaining performance longer than their wild-type siblings, both in predator and predator-free stream segments. Importantly, this effect occurred before differences in growth were discernable. We also found that mesocosm-reared fish had greater burst-performance than fish reared in the controlled hatchery environment, despite the latter being unexposed to predators and having abundant food. Our results suggest a potential interaction between predation and metabolic priming, which leads to greater burst capacity in transgenic trout. © 2017 The Author(s).

  19. Do all frogs swim alike? The effect of ecological specialization on swimming kinematics in frogs

    Czech Academy of Sciences Publication Activity Database

    Robovská-Havelková, P.; Aerts, P.; Roček, Zbyněk; Přikryl, Tomáš; Fabre, A.-C.; Herrel, A.

    2014-01-01

    Roč. 217, č. 20 (2014), s. 3637-3644 ISSN 0022-0949 Institutional support: RVO:67985831 Keywords : Anura * kinematics * locomotion * swimming Subject RIV: EG - Zoology Impact factor: 2.897, year: 2014

  20. Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Andrew J.; Philipp, D. P.; Suski, C. D.

    2010-11-20

    The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass, while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.

  1. Swimming obstructed by dead-water

    NARCIS (Netherlands)

    Ganzevles, S.P.M; Nuland, F.S.W.; Maas, L.; Toussaint, H.M.

    2009-01-01

    In nautical literature, ‘dead-water’ refers to the obstructive effect encountered by ships moving in stratified water due to the ship generating waves on an interface that separates different water masses. To investigate the hypothesis that open water swimming may also be obstructed by an encounter

  2. Swimming obstructed by dead-water

    NARCIS (Netherlands)

    Ganzevles, S.P.; Nuland, F.S.; Maas, L.R.; Toussaint, H.M.

    2009-01-01

    In nautical literature, 'dead-water' refers to the obstructive effect encountered by ships moving in stratified water due to the ship generating waves on an interface that separates different water masses. To investigate the hypothesis that open water swimming may also be obstructed by an encounter

  3. Surveillance and Conformity in Competitive Youth Swimming

    Science.gov (United States)

    Lang, Melanie

    2010-01-01

    Underpinned by a Foucauldian analysis of sporting practices, this paper identifies the disciplinary mechanism of surveillance at work in competitive youth swimming. It highlights the ways in which swimmers and their coaches are subject to and apply this mechanism to produce embodied conformity to normative behaviour and obedient, docile bodies.…

  4. Healthy Swimming Is a Partnership Effort

    Science.gov (United States)

    Grosse, Susan J.

    2009-01-01

    While one cannot control the water chemistry, he/she can control personal hygiene and facility cleanliness. Giardia and cryptosporidium (crypto) are only two of the many recreational water illnesses (RWIs) that can turn happy swim memories into serious illness situations. In this article, the author discusses three factors that determine how…

  5. What Research Tells the Coach About Swimming.

    Science.gov (United States)

    Faulkner, John A.

    This booklet is designed to make research findings about swimming available with interpretations for practical application. Chapter 1, "Physical Characteristics of Swimmers," discusses somatotyping, body composition, and growth. Chapter 2, "Physiological Characteristics of Swimmers," discusses resting rate, vital capacity, effects of water…

  6. Aerobic and anaerobic performances in tethered swimming.

    Science.gov (United States)

    Papoti, M; da Silva, A S R; Araujo, G G; Santiago, V; Martins, L E B; Cunha, S A; Gobatto, C A

    2013-08-01

    The purpose of this study was to investigate whether the critical force (CritF) and anaerobic impulse capacity (AIC) - estimated by tethered swimming - reflect the aerobic and anaerobic performance of swimmers. 12 swimmers performed incremental test in tethered swimming to determine lactate anaerobic threshold (AnTLAC), maximal oxygen uptake ( ˙VO2MAX) and force associated with the ˙VO2MAX (i ˙VO2MAX). The swimmers performed 4 exhaustive (tlim) exercise bouts (100, 110, 120 and 130% i ˙VO2MAX) to compute the CritF and AIC (F vs. 1/tlim model); a 30-s all-out tethered swimming bout to determine their anaerobic fitness (ANF); 100, 200, and 400-m time-trials to determine the swimming performance. CritF (57.09±11.77 N) did not differ from AnTLAC (53.96±11.52 N, (P>0.05) but was significantly lower than i ˙VO2MAX (71.02±8.36 N). In addition, CritF presented significant correlation with AnTLAC (r=0.76; Pswimming. © Georg Thieme Verlag KG Stuttgart · New York.

  7. How do amoebae swim and crawl?

    Directory of Open Access Journals (Sweden)

    Jonathan D Howe

    Full Text Available The surface behaviour of swimming amoebae was followed in cells bearing a cAR1-paGFP (cyclic AMP receptor fused to a photoactivatable-GFP construct. Sensitized amoebae were placed in a buoyant medium where they could swim toward a chemoattractant cAMP source. paGFP, activated at the cell's front, remained fairly stationary in the cell's frame as the cell advanced; the label was not swept rearwards. Similar experiments with chemotaxing cells attached to a substratum gave the same result. Furthermore, if the region around a lateral projection near a crawling cell's front is marked, the projection and the labelled cAR1 behave differently. The label spreads by diffusion but otherwise remains stationary in the cell's frame; the lateral projection moves rearwards on the cell (remaining stationary with respect to the substrate, so that it ends up outside the labelled region. Furthermore, as cAR1-GFP cells move, they occasionally do so in a remarkably straight line; this suggests they do not need to snake to move on a substratum. Previously, we suggested that the surface membrane of a moving amoeba flows from front to rear as part of a polarised membrane trafficking cycle. This could explain how swimming amoebae are able to exert a force against the medium. Our present results indicate that, in amoebae, the suggested surface flow does not exist: this implies that they swim by shape changes.

  8. Swimming of the pea crab (Pinnotheres pisum)

    NARCIS (Netherlands)

    Versteegh, C.P.C.; Muller, M.

    2014-01-01

    Aquatic organisms have to deal with different hydrodynamic regimes, depending on their size and speed during locomotion. The pea crab swims by beating the third and fourth pereiopod on opposite sides as pairs. Using particle tracking velocimetry and high-speed video recording, we quantify the

  9. [Lumbar hypermobility: where swimming becomes hydrotherapy].

    Science.gov (United States)

    Mergeay, D; De Neve, M

    1990-01-01

    In this paper the authors discuss the clinical problem of lumbar hypermobility. The therapeutical possibilities are resumed briefly. The philosophy of medical training therapy ("Heilgymnastik") is described. More extensive the extra-advantages of hydrotherapy (methodical back-stroke swimming) are searched for in a theoretical deductive way. The authors found that: 1. swimming is a low-impact sport so far as the articulations are concerned, 2. back-stroke is done mainly in a lumbar kyphosis, 3. swimming is also an excellent cardiopulmonary training, 4. when swimming the muscles of the shoulder girdle and pelvic girdle are trained in a nearly isokinetic way (power-endurance), 5. the short transverso-spinal muscles are indirectly trained in their tonic more than phasic stretch reflex (posture function), 6. the muscles of the trunk are trained in a nearly isometric way in the appropriate angles (erect position), 7. the position of the head in the water facilitates the abdominal muscles (tonic neck reflex), 8. the cool temperature of the water generates training-enhancing stress-responses, 9. endurance-training is ideal for the postural function of the lower back muscles (especially the deeper layers near the spine) which are anatomical and physiological suited for this purpose, 10. warming-up and cooling-down procedures prepare the neuromuscular, the cardiovascular and metabolic functions before the workout-session (a cold shower afterwards acts to tonicize the skin and muscles).

  10. Transmission of Mycobacterium marinum from fish to a very young child

    NARCIS (Netherlands)

    Doedens, Rienus A.; van der Sar, Astrid M.; Bitter, Wilbert; Scholvinck, Elisabeth H.

    Mycobacterium marinum causes tuberculosis in fish and can cause skin infections in humans who swim in contaminated water or who have direct contact with infected fish. We report the case study of an 18-month-old girl with M. marinum abscesses, who acquired the infection through indirect contact with

  11. Kick, Stroke and Swim: Complement Your Swimming Program by Engaging the Whole Body on Dry Land and in the Pool

    Science.gov (United States)

    Flynn, Susan; Duell, Kelly; Dehaven, Carole; Heidorn, Brent

    2017-01-01

    The Kick, Stroke and Swim (KSS) program can be used to engage students in swimming-skill acquisition and fitness training using a variety of modalities, strategies and techniques on dry land. Practicing swim strokes and techniques on land gives all levels of swimmers--from beginner to competitive--a kinesthetic awareness of the individual…

  12. ENERGETIC EXTREMES IN A HOSTILE HABITAT: FISH LOCOMOTION ON WAVE-SWEPT CORAL REEFS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2010-01-01

    Fulton, C.J., Johansen, J. L. and Steffensen, J.F. Abstract: Shallow wave-swept habitats are a major challenge for fish locomotion, where crashing waves produce water flows equivalent to cyclone-force winds. Here we document the exceptional locomotor energetics of Bluelined wrasse (Stethojulis...... bandanensis), which maintain tuna-like optimum swimming speeds (7.5 lengths per second) while using no more energy than a similar-sized fish swimming four times slower. Such high performance in S. bandanensis arises from their exceptional aerobic scope (22 times above RMR), streamlined rigid-body posture......, and wing-like fins that generate lift-based thrust at high speed. Literally flying underwater, Stethojulis and other winged-fin species are the most abundant fish in wave-swept coral reef habitats. We discuss the extreme swimming performance of these reef fishes within the context of other non...

  13. Swimming pool use and birth defect risk.

    Science.gov (United States)

    Agopian, A J; Lupo, Philip J; Canfield, Mark A; Mitchell, Laura E

    2013-09-01

    Swimming during pregnancy is recommended. However, the use of swimming pools is also associated with infection by water-borne pathogens and exposure to water disinfection byproducts, which are 2 mechanisms that are suspected to increase risk for birth defects. Thus, we evaluated the relationship between maternal swimming pool use during early pregnancy and risk for select birth defects in offspring. Data were evaluated for nonsyndromic cases with 1 of 16 types of birth defects (n = 191-1829) and controls (n = 6826) from the National Birth Defects Prevention Study delivered during 2000-2006. Logistic regression analyses were conducted separately for each birth defect type. Separate analyses were conducted to assess any pool use (yes vs no) and frequent use (5 or more occasions in 1 month) during the month before pregnancy through the third month of pregnancy. There was no significant positive association between any or frequent pool use and any of the types of birth defects, even after adjustment for several potential confounders (maternal race/ethnicity, age at delivery, education, body mass index, folic acid use, nulliparity, smoking, annual household income, surveillance center, and season of conception). Frequent pool use was significantly negatively associated with spina bifida (adjusted odds ratio, 0.68; 95% confidence interval, 0.47-0.99). Among offspring of women 20 years old or older, pool use was associated with gastroschisis (adjusted odds ratio, 1.3; 95% confidence interval, 1.0-1.8), although not significantly so. We observed little evidence suggesting teratogenic effects of swimming pool use. Because swimming is a common and suggested form of exercise during pregnancy, these results are reassuring. Copyright © 2013 Mosby, Inc. All rights reserved.

  14. Effect of dielectrophoretic force on swimming bacteria.

    Science.gov (United States)

    Tran, Ngoc Phu; Marcos

    2015-07-01

    Dielectrophoresis (DEP) has been applied widely in bacterial manipulation such as separating, concentrating, and focusing. Previous studies primarily focused on the collective effects of DEP force on the bacterial population. However, the influence of DEP force on the swimming of a single bacterium had not been investigated. In this study, we present a model to analyze the effect of DEP force on a swimming helically flagellated bacterium, particularly on its swimming direction and velocity. We consider a simple DEP force that acts along the X-direction, and its strength as well as direction varies with the X- and Y-positions. Resistive force theory is employed to compute the hydrodynamic force on the bacterium's flagellar bundle, and the effects of both DEP force and rotational diffusion on the swimming of the bacterium are simultaneously taken into consideration using the Fokker-Planck equation. We show the mechanism of how DEP force alters the orientation and velocity of the bacterium. In most cases, the DEP force dominantly influences the orientation of the swimming bacterium; however, when the DEP force strongly varies along the Y-direction, the rotational diffusion is also responsible for determining the bacterium's reorientation. More interestingly, the variance of DEP force along the Y-direction causes the bacterium to experience a translational velocity perpendicular to its primary axis, and this phenomenon could be utilized to focus the bacteria. Finally, we show the feasibility of applying our findings to achieve bacterial focusing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bending continuous structures with SMAs: a novel robotic fish design

    OpenAIRE

    Rossi, Claudio; Colorado Montaño, Julián; Coral Cuellar, William; Barrientos Cruz, Antonio

    2011-01-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature o...

  16. Estimating Burst Swim Speeds and Jumping Characteristics of Silver Carp (Hypophthalmichthys molitrix) Using Video Analyses and Principles of Projectile Physics

    Science.gov (United States)

    2016-09-01

    speeds, fish leap height, and horizontal distance traveled during a leap. SUMMARY: Hydraulic and vertical barriers to Silver Carp dispersal can be... determining swim speeds that are sustained (> 200 min endurance), prolonged (0.5 to 200 min endurance), or critical (variable endurance, typically...document the angle and height of their leaps. OBJECTIVES: Our intention in this study was to examine on-line videotaped Silver Carp leaps and use these

  17. Molecular fingerprinting of the myxozoan community in common carp suffering Swim Bladder Inflammation (SBI) identifies multiple etiological agents

    Czech Academy of Sciences Publication Activity Database

    Holzer, Astrid S.; Hartigan, Ashlie; Patra, Sneha; Pecková, Hana; Eszterbauer, E.

    2014-01-01

    Roč. 7, AUG 28 2014 (2014), s. 398 ISSN 1756-3305 R&D Projects: GA AV ČR(CZ) M200961205; GA ČR GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Cyprinus carpio carpio * swim bladder inflammation * fish disease * Myxozoa * molecular diagnostic * rDNA * in situ hybridisation Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.430, year: 2014

  18. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device

    International Nuclear Information System (INIS)

    Wen, Li; Lauder, George

    2013-01-01

    Recent advances in understanding fish locomotion with robotic devices have included the use of flapping foil robots that swim at a constant swimming speed. However, the speed of even steadily swimming live fishes is not constant because the fish center of mass oscillates axially throughout a tail beat cycle. In this paper, we couple a linear motor that produces controlled oscillations in the axial direction to a robotic flapping foil apparatus to model both axial and side to side oscillatory motions used by freely-swimming fishes. This experimental arrangement allows us to compensate for the substantial inertia of the carriage and motors that drive the oscillating foils. We identify a ‘critically-oscillated’ amplitude of axial motion at which the cyclic oscillations in axial locomotor force are greatly reduced throughout the flapping cycle. We studied the midline kinematics, power consumption and wake flow patterns of non-rigid foils with different lengths and flexural stiffnesses at a variety of axial oscillation amplitudes. We found that ‘critically-oscillated’ peak-to-peak axial amplitudes on the order of 1.0 mm and at the correct phase are sufficient to mimic center of mass motion, and that such amplitudes are similar to center of mass oscillations recorded for freely-swimming live fishes. Flow visualization revealed differences in wake flows of flexible foils between the ‘non-oscillated’ and ‘critically-oscillated’ states. Inertia-compensating methods provide a novel experimental approach for studying aquatic animal swimming, and allow instrumented robotic swimmers to display center of mass oscillations similar to those exhibited by freely-swimming fishes. (paper)

  19. Fish allergy and fish allergens

    DEFF Research Database (Denmark)

    Kuehn, A; Hilger, Christiane; Ollert, Markus

    2016-01-01

    Fish is one of the main elicitors for food allergies. For a long time, the clinical picture of fish allergy was reduced to the following features. First, fish-allergic patients suffer from a high IgE cross-reactivity among fishes so that they have to avoid all species. Second, clinically relevant...... symptoms are linked to the presence of IgE-antibodies recognizing parvalbumin, the fish panallergen. This view was challenged by results from recent studies as follows. 1. Allergic reactions which are limited to single or several fish species (mono-or oligosensitisations) apply not only to single cases...... review gives an overview on the clinical characteristics of fish allergy and the molecular properties of relevant fish allergens. The advancement of the IgE-based diagnosis using a panel of well-defined fish allergens from different species is in the focus of the discussion. © 2016 Dustri-Verlag Dr. Karl...

  20. Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus Tshawytscha) in the Klickitat River, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S.; Geist, David R.; Confederated Tribes and Bands of the Yakama Nation, Washington

    2002-08-30

    This report describes a study conducted by Pacific Northwest National Laboratory for the Bonneville Power Administration's Columbia Basin Fish and Wildlife Program during the fall of 2001. The objective was to study the migration and energy use of adult fall chinook salmon (Oncorhynchus tshawytscha) traveling up the Klickitat River to spawn. The salmon were tagged with either surgically implanted electromyogram (EMG) transmitters or gastrically implanted coded transmitters and were monitored with mobile and stationary receivers. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted passage of three waterfalls on the lower Klickitat River and as they traversed free-flowing stretches between, below, and above the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat River, 40% passed the first falls, 24% passed the second falls, and 20% made it to Lyle Falls. None of the EMG-tagged fish were able to pass Lyle Falls, either over the falls or via a fishway at Lyle Falls. Mean swimming speeds ranged from as low as 52.6 centimeters per second (cm s{sup -1}) between falls to as high as 189 (cm s{sup -1}) at falls passage. Fish swam above critical swimming speeds while passing the falls more often than while swimming between the falls (58.9% versus 1.7% of the transmitter signals). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (100.7 to 128.2 kilocalories [kcals] to traverse areas between or below falls versus 0.3 to 1.0 kcals to pass falls). Relationships between sex, length, and time of day on the success of falls passage were also examined. Average swimming speeds were highest during the day in all areas except at some waterfalls. There was no apparent relationship between either fish condition or length and successful passage of waterfalls in the lower Klickitat River. Female fall chinook salmon, however, had a much lower likelihood of

  1. Energetics of median and paired fin swimming, body and caudal fin swimming, and gait transition in parrotfish (Scarus schlegeli) and triggerfish (Rhinecanthus aculeatus)

    DEFF Research Database (Denmark)

    Korsmeyer, Keith E; Steffensen, John Fleng; Herskin, Jannik

    2002-01-01

    To determine the energetic costs of rigid-body, median or paired-fin (MPF) swimming versus undulatory, body-caudal fin (BCF) swimming, we measured oxygen consumption as a function of swimming speed in two MPF swimming specialists, Schlegel's parrotfish and Picasso triggerfish. The parrotfish swam.......1 L s(-1) (30 min U(crit)). In both species, the rates of increase in oxygen consumption with swimming speed were higher during BCF swimming than during rigid-body MPF swimming. Our results indicate that, for these species, undulatory swimming is energetically more costly than rigid-body swimming......, and therefore support the hypothesis that MPF swimming is more efficient. In addition, use of the BCF gait at higher swimming speed increased the cost of transport in both species beyond that predicted for MPF swimming at the same speeds. This suggests that, unlike for terrestrial locomotion, gait transition...

  2. A Correlational Analysis of Tethered Swimming, Swim Sprint Performance and Dry-land Power Assessments.

    Science.gov (United States)

    Loturco, I; Barbosa, A C; Nocentini, R K; Pereira, L A; Kobal, R; Kitamura, K; Abad, C C C; Figueiredo, P; Nakamura, F Y

    2016-03-01

    Swimmers are often tested on both dry-land and in swimming exercises. The aim of this study was to test the relationships between dry-land, tethered force-time curve parameters and swimming performances in distances up to 200 m. 10 young male high-level swimmers were assessed using the maximal isometric bench-press and quarter-squat, mean propulsive power in jump-squat, squat and countermovement jumps (dry-land assessments), peak force, average force, rate of force development (RFD) and impulse (tethered swimming) and swimming times. Pearson product-moment correlations were calculated among the variables. Peak force and average force were very largely correlated with the 50- and 100-m swimming performances (r=- 0.82 and -0.74, respectively). Average force was very-largely/largely correlated with the 50- and 100-m performances (r=- 0.85 and -0.67, respectively). RFD and impulse were very-largely correlated with the 50-m time (r=- 0.72 and -0.76, respectively). Tethered swimming parameters were largely correlated (r=0.65 to 0.72) with mean propulsive power in jump-squat, squat-jump and countermovement jumps. Finally, mean propulsive power in jump-squat was largely correlated (r=- 0.70) with 50-m performance. Due to the significant correlations between dry-land assessments and tethered/actual swimming, coaches are encouraged to implement strategies able to increase leg power in sprint swimmers. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Spatially constrained propulsion in jumping archer fish

    Science.gov (United States)

    Mendelson, Leah; Techet, Alexandra

    2016-11-01

    Archer fish jump multiple body lengths out of the water for prey capture with impressive accuracy. Their remarkable aim is facilitated by jumping from a stationary position directly below the free surface. As a result of this starting position, rapid acceleration to a velocity sufficient for reaching the target occurs with only a body length to travel before the fish leaves the water. Three-dimensional measurements of jumping kinematics and volumetric velocimetry using Synthetic Aperture PIV highlight multiple strategies for such spatially constrained acceleration. Archer fish rapidly extend fins at jump onset to increase added mass forces and modulate their swimming kinematics to minimize wasted energy when the body is partially out of the water. Volumetric measurements also enable assessment of efficiency during a jump, which is crucial to understanding jumping's role as an energetically viable hunting strategy for the fish.

  4. fish feed

    African Journals Online (AJOL)

    En-Joy

    with fishing nets. Fish were identified and authenticated at the Fishery section,. Department of Biological Sciences,. Ahmadu Bello University, Zaria, Nigeria ..... salmon.Aquaculture, 89: 301-314. GABRIEL, U. U., AKINROTIMI, O. A.,. BEKIBELE, D. O., ONUNKWO, D. N. and ANYANWU, P. E. (2007). Locally produced fish feed ...

  5. Fish Dishes.

    Science.gov (United States)

    Derby, Marie

    2003-01-01

    Describes an art project that was inspired by Greek pottery, specifically dishes shaped as fish. Explains that fourth-grade students drew a fish shape that was later used to create their clay version of the fish. Discusses how the students examined the pottery to make decisions about color and design. (CMK)

  6. Strategies for chemically healthy public swimming pools

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht

    Swimming pools are used around the world for recreational, rehabilitation and physical activity and therefore it is imperative that the water and air quality are safe for the health of the bathers. Chlorination is by far the most widely applied method to control pool water quality and to prevent...... spreading of pathogens between swimmers because of its residual disinfection effect. In addition to potential contamination of pathogenic microorganisms, swimming pool water is polluted by organic matter deposited from the bathers such as saliva, urine, sweat, hair and personal care products. Since chlorine...... is a strong oxidant it oxidizes the organic matter in the pool water and forms disinfection byproducts (DBPs). More than 100 different DBPs have been identified. Some of these have been found to be genotoxic and may pose an increased cancer risk for the bathers. The aim of this thesis was to give an overview...

  7. Swimming Dynamics of the Lyme Disease Spirochete

    Science.gov (United States)

    Vig, Dhruv K.; Wolgemuth, Charles W.

    2012-11-01

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat wave, a process driven by rotating internal flagella. We study B. burgdorferi’s swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology.

  8. Addition of fraction in swimming context

    Science.gov (United States)

    Putri, R. I. I.; Gunawan, M. S.; Zulkardi

    2017-12-01

    This study aimed to produce learning trajectory that can help students in learning fractions by using swimming context. The study involved 37 fourth grade students with different capabilities in Elementary School IBA, South Sumatra, Indonesia. This study used an instructional theory called Indonesian version of Realistic Mathematics Education (PMRI). This research used design research method with three stages: preliminary design, the design experiment, and retrospective analysis. Several techniques used for collecting data including a video recording of students interaction in the group discussion, students’ work, and interviewing the students. To conclude, the swimming context could stimulate students’ informal knowledge about the meaning of fractions in which it can be used in the additional learning either the same denominator or different denominator.

  9. Later life swimming performance and persistent heart damage following subteratogenic PAH mixture exposure in the Atlantic killifish (Fundulus heteroclitus).

    Science.gov (United States)

    Brown, Daniel R; Thompson, Jasmine; Chernick, Melissa; Hinton, David E; Di Giulio, Richard T

    2017-12-01

    High-level, acute exposures to individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures result in cardiac abnormalities in developing fish embryos. Whereas acute PAH exposures can be developmentally lethal, little is known about the later life consequences of early life, lower level PAH exposures in survivors. A population of PAH-adapted Fundulus heteroclitus from the PAH-contaminated Superfund site, Atlantic Wood Industries, Elizabeth River, Portsmouth, Virginia, United States, is highly resistant to acute PAH cardiac teratogenicity. We sought to determine and characterize long-term swimming performance and cardiac histological alterations of a subteratogenic PAH mixture exposure in both reference killifish and PAH-adapted Atlantic Wood killifish embryos. Killifish from a relatively uncontaminated reference site, King's Creek, Virginia, United States, and Atlantic Wood killifish were treated with dilutions of Elizabeth River sediment extract at 24 h post fertilization (hpf). Two proven subteratogenic dilutions, 0.1 and 1.0% Elizabeth River sediment extract (total PAH 5.04 and 50.4 µg/L, respectively), were used for embryo exposures. Then, at 5-mo post hatching, killifish were subjected to a swim performance test. A separate subset of these individuals was processed for cardiac histological analysis. Unexposed King's Creek killifish significantly outperformed the unexposed Atlantic Wood killifish in swimming performance as measured by Ucrit (i.e., critical swimming speed). However, King's Creek killifish exposed to Elizabeth River sediment extract (both 0.1 and 1.0%) showed significant declines in Ucrit. Histological analysis revealed the presence of blood in the pericardium of King's Creek killifish. Although Atlantic Wood killifish showed baseline performance deficits relative to King's Creek killifish, their pericardial cavities were nearly free of blood and atrial and ventricular alterations. These findings may explain, in part, the

  10. Quality versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches.

    Science.gov (United States)

    Nugent, Frank J; Comyns, Thomas M; Warrington, Giles D

    2017-06-01

    The debate over low-volume, high-intensity training versus high-volume, low-intensity training, commonly known as Quality versus Quantity, respectively, is a frequent topic of discussion among swimming coaches and academics. The aim of this study was to explore expert coaches' perceptions of quality and quantity coaching philosophies in competitive swimming and to investigate their current training practices. A purposeful sample of 11 expert swimming coaches was recruited for this study. The study was a mixed methods design and involved each coach participating in 1 semi-structured interview and completing 1 closed-ended questionnaire. The main findings of this study were that coaches felt quality training programmes would lead to short term results for youth swimmers, but were in many cases more appropriate for senior swimmers. The coaches suggested that quantity training programmes built an aerobic base for youth swimmers, promoted technical development through a focus on slower swimming and helped to enhance recovery from training or competition. However, the coaches continuously suggested that quantity training programmes must be performed with good technique and they felt this was a misunderstood element. This study was a critical step towards gaining a richer and broader understanding on the debate over Quality versus Quantity training from an expert swimming coaches' perspective which was not currently available in the research literature.

  11. Controlled-frequency breath swimming improves swimming performance and running economy.

    Science.gov (United States)

    Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S

    2015-02-01

    Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P swimming may improve muscular oxygen utilization during terrestrial exercise in novice swimmers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Quality Versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches

    Directory of Open Access Journals (Sweden)

    Nugent Frank J.

    2017-06-01

    Full Text Available The debate over low-volume, high-intensity training versus high-volume, low-intensity training, commonly known as Quality versus Quantity, respectively, is a frequent topic of discussion among swimming coaches and academics. The aim of this study was to explore expert coaches’ perceptions of quality and quantity coaching philosophies in competitive swimming and to investigate their current training practices. A purposeful sample of 11 expert swimming coaches was recruited for this study. The study was a mixed methods design and involved each coach participating in 1 semi-structured interview and completing 1 closed-ended questionnaire. The main findings of this study were that coaches felt quality training programmes would lead to short term results for youth swimmers, but were in many cases more appropriate for senior swimmers. The coaches suggested that quantity training programmes built an aerobic base for youth swimmers, promoted technical development through a focus on slower swimming and helped to enhance recovery from training or competition. However, the coaches continuously suggested that quantity training programmes must be performed with good technique and they felt this was a misunderstood element. This study was a critical step towards gaining a richer and broader understanding on the debate over Quality versus Quantity training from an expert swimming coaches’ perspective which was not currently available in the research literature.

  13. Anaerobic critical velocity in four swimming techniques.

    Science.gov (United States)

    Neiva, H P; Fernandes, R J; Vilas-Boas, J P

    2011-03-01

    The aim of this study was to assess critical velocity in order to control and evaluate anaerobic swimming training. 51 highly trained male swimmers performed maximal 15, 25, 37.5 and 50 m in the 4 swimming techniques to determine critical velocity from the distance-time relationship. Anaerobic critical velocity was compared with 100 m swimming performance and corresponding partials. Complementarily, 9 swimmers performed a 6×50 m (4 min interval) training series at front crawl individual anaerobic critical velocity, capillary blood lactate concentrations being assessed after each repetition. The mean±SD values of anaerobic critical velocity and its relationship with the 100 m event were: 1.61±0.07 (r=0.60, p=0.037), 1.53±0.05 (r=0.81, p=0.015), 1.33±0.05 (r=0.83, p=0.002), and 1.75±0.05 (r=0.74, p=0.001), for butterfly, backstroke, breaststroke and front crawl, respectively. However, differences between anaerobic critical velocity and performance were observed (with exception of the second half of the 100 m swimming events in breaststroke and butterfly). Lactate concentration values at the end of the series were 14.52±1.06 mmol.l (-1), which suggests that it was indeed an anaerobic training set. In this sense, anaerobic critical velocity can be used to prescribe anaerobic training intensities. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Propulsive force symmetry generated during butterfly swimming

    Directory of Open Access Journals (Sweden)

    Gustavo Soares Pereira

    2015-12-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2015v17n6p704   The aim of the study was to analyze the hand force symmetry in butterfly swimming. Fourteen male and female swimmers (18.4 ± 4.9 years old, 71.8 ± 14.6 kg of body mass, 1.78 ± 0.09 m of height and mean performance that corresponds to 74.9 ± 5.8% of the world record. Subjects performed three trials of 25 m of butterfly swimming at maximal speed. Mean and maximum forces were estimated for each hand using pressure sensors of the Aquanex System (Swimming Technology Research, USA. The comparisons between force values for dominant and non-dominant hands were made through Student’s T test for dependent samples (p<0.05. In addition, the symmetry Index (SI was calculated as a relative measure of the force applied by each hand. The mean and maximum force for the dominant hand corresponded, respectively, to 55.7 ± 14.7 N and 114.7 ± 39.6 N. For the non-dominant hand, values were 51.2 ± 14.7 N for mean force and 110.7 ± 36.7 N for maximum force. Significant differences were found between dominant and non-dominant hands for both variables (p<0.01. The symmetry index analysis showed mean values of 8.9% for mean force and of 12.6% for maximum force, and most swimmers presented values higher than 10% for mean and/or maximum forces. Further studies should be performed in order to investigate the relationship between hand force symmetry and swimming performance.

  15. Swimming Three Ice Miles within Fifteen Hours.

    Science.gov (United States)

    Stjepanovic, Mirko; Nikolaidis, Pantelis T.; Knechtle, Beat

    2017-08-31

    Ice Mile swimming (1608 m in water of below 5 °Celsius) is becoming increasingly popular. This case study aimed to identify body core temperature and selected haematological and biochemical parameters before and after repeated Ice Miles. An experienced ice swimmer completed three consecutive Ice Miles within 15 h. Swim times, body core temperatures, and selected urinary and haematological parameters were recorded. Body core temperature reached its maximum between 5, 8 and 15 min after immersion (37.7°C, 38.1°C, and 38.0°C, respectively). The swimmer suffered hypothermia during the first Ice Mile (35.4°C) and body core temperature dropped furthermore to 34.5°C during recovery after the first Ice Mile. He developed a metabolic acidosis in both the first and the last Ice Mile (pH 7.31 and pH 7.34, respectively). We observed hyperkalaemia ([K⁺] > 5.5 mM) after the second Ice Mile (6.9 mM). This was followed by a drop in [K⁺] to3.7 mM after the third Ice Mile. Anticipatory thermogenesis (i.e. an initial increase of body core temperature after immersion in ice cold water) seems to be a physiological response in a trained athlete. The results suggest that swimming in ice-cold water leads to a metabolic acidosis, which the swimmer compensates with hyperventilation (i.e. leading to respiratory alkalosis). The shift of serum [K⁺] could increase the risk of a cardiac arrhythmia. Further studies addressing the physiology and potential risks of Ice Mile swimming are required to substantiate this finding.

  16. Swimming in a granular frictional fluid

    Science.gov (United States)

    Goldman, Daniel

    2012-02-01

    X-ray imaging reveals that the sandfish lizard swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. To model the locomotion of the sandfish, we previously developed an empirical resistive force theory (RFT), a numerical sandfish model coupled to an experimentally validated Discrete Element Method (DEM) model of the granular medium, and a physical robot model. The models reveal that only grains close to the swimmer are fluidized, and that the thrust and drag forces are dominated by frictional interactions among grains and the intruder. In this talk I will use these models to discuss principles of swimming within these granular ``frictional fluids". The empirical drag force laws are measured as the steady-state forces on a small cylinder oriented at different angles relative to the displacement direction. Unlike in Newtonian fluids, resistive forces are independent of speed. Drag forces resemble those in viscous fluids while the ratio of thrust to drag forces is always larger in the granular media than in viscous fluids. Using the force laws as inputs, the RFT overestimates swimming speed by approximately 20%. The simulation reveals that this is related to the non-instantaneous increase in force during reversals of body segments. Despite the inaccuracy of the steady-state assumption, we use the force laws and a recently developed geometric mechanics theory to predict optimal gaits for a model system that has been well-studied in Newtonian fluids, the three-link swimmer. The combination of the geometric theory and the force laws allows us to generate a kinematic relationship between the swimmer's shape and position velocities and to construct connection vector field and constraint curvature function visualizations of the system dynamics. From these we predict optimal gaits for forward, lateral and rotational motion. Experiment and simulation are in accord with the theoretical prediction, and demonstrate that

  17. The effect of water temperature on routine swimming behaviour of new born guppies (Poecilia reticulata

    Directory of Open Access Journals (Sweden)

    Maud Kent

    2015-03-01

    Full Text Available Guppies have successfully established populations in places with thermal regimes very different from the Tropical conditions in their native range. This indicates a remarkable capacity for thermal adaptation. Given their vulnerability to predation as juveniles, acute changes in temperature, which can alter predator-prey relationships, can impact juvenile survival and have amplified consequences at the population level. To understand how temperature may impact juvenile survival and gain insight into their success as an invasive species, we researched the effect of acute temperature changes on the routine swimming behaviour of juvenile guppies. Using a novel 3-dimensional tracking technique, we calculated 4 routine swimming parameters, speed, depth, and variation in speed or depth, at 6 different test temperatures (17, 20, 23, 26, 29, or 32°C. These temperatures cover their natural thermal range and also extended past it in order to include upper and lower thermal limits. Using model selection, we found that body length and temperature had a significant positive relationship with speed. Variation in speed decreased with rising temperatures and fish swam slightly closer to the bottom at higher temperatures. All juveniles increased variation in depth at higher temperatures, though larger individuals maintained slightly more consistent depths. Our results indicate that guppies have a large thermal range and show substantial plasticity in routine swimming behaviours, which may account for their success as an invasive species.

  18. Multi-directional thrusting using oppositely traveling waves in knifefish swimming

    Science.gov (United States)

    Curet, Oscar; Maciver, Malcolm; Patankar, Neelesh

    2009-11-01

    Apteronotus albifrons, also known as the black ghost knifefish, generate a weak electric field for omnidirectional sensing. This is matched by an extraordinary multi-directional swimming ability that is achieved by undulating a ribbon-like anal fin. Forward or backward motion is generated by a traveling wave on the ribbon fin. We have discovered that, for hovering and vertical swimming, the knifefish use two oppositely traveling waves on the ribbon fin. To understand the hydrodynamic mechanism of hovering and heave we performed fully resolved simulations of self-propulsion of the knifefish. We used kinematic inputs based on experimental observations. We found that the counter propagating waves generate two opposite streamwise jets along the bottom edge of the ribbon fin. These two jets meet approximately at the mid-section along the fin length and are deflected downward. The resultant downward momentum imparted to the fluid creates an upward force on the fish body which can be used for hovering or vertical swimming. There is a vortex ring pair of opposite directions at the middle of the fin that is associated with this fluid flow. Further insight into how the knifefish control heave and hovering was obtained from the measurements of force generated by a robotic ribbon fin for different wave parameters.

  19. The effect of water temperature on routine swimming behaviour of new born guppies (Poecilia reticulata).

    Science.gov (United States)

    Kent, Maud; Ojanguren, Alfredo F

    2015-03-06

    Guppies have successfully established populations in places with thermal regimes very different from the Tropical conditions in their native range. This indicates a remarkable capacity for thermal adaptation. Given their vulnerability to predation as juveniles, acute changes in temperature, which can alter predator-prey relationships, can impact juvenile survival and have amplified consequences at the population level. To understand how temperature may impact juvenile survival and gain insight into their success as an invasive species, we researched the effect of acute temperature changes on the routine swimming behaviour of juvenile guppies. Using a novel 3-dimensional tracking technique, we calculated 4 routine swimming parameters, speed, depth, and variation in speed or depth, at 6 different test temperatures (17, 20, 23, 26, 29, or 32°C). These temperatures cover their natural thermal range and also extended past it in order to include upper and lower thermal limits. Using model selection, we found that body length and temperature had a significant positive relationship with speed. Variation in speed decreased with rising temperatures and fish swam slightly closer to the bottom at higher temperatures. All juveniles increased variation in depth at higher temperatures, though larger individuals maintained slightly more consistent depths. Our results indicate that guppies have a large thermal range and show substantial plasticity in routine swimming behaviours, which may account for their success as an invasive species. © 2015. Published by The Company of Biologists Ltd.

  20. Three-link Swimming in Sand

    Science.gov (United States)

    Hatton, R. L.; Ding, Yang; Masse, Andrew; Choset, Howie; Goldman, Daniel

    2011-11-01

    Many animals move within in granular media such as desert sand. Recent biological experiments have revealed that the sandfish lizard uses an undulatory gait to swim within sand. Models reveal that swimming occurs in a frictional fluid in which inertial effects are small and kinematics dominate. To understand the fundamental mechanics of swimming in granular media (GM), we examine a model system that has been well-studied in Newtonian fluids: the three-link swimmer. We create a physical model driven by two servo-motors, and a discrete element simulation of the swimmer. To predict optimal gaits we use a recent geometric mechanics theory combined with empirically determined resistive force laws for GM. We develop a kinematic relationship between the swimmer's shape and position velocities and construct connection vector field and constraint curvature function visualizations of the system dynamics. From these we predict optimal gaits for forward, lateral and rotational motion. Experiment and simulation are in accord with the theoretical predictions; thus geometric tools can be used to study locomotion in GM.

  1. The swimming of a perfect deforming helix

    Science.gov (United States)

    Koens, Lyndon; Zhang, Hang; Mourran, Ahmed; Lauga, Eric

    2017-11-01

    Many bacteria rotate helical flagellar filaments in order to swim. When at rest or rotated counter-clockwise these flagella are left handed helices but they undergo polymorphic transformations to right-handed helices when the motor is reversed. These helical deformations themselves can generate motion, with for example Rhodobacter sphaeroides using the polymorphic transformation of the flagellum to generate rotation, or Spiroplasma propagating a change of helix handedness across its body's length to generate forward motion. Recent experiments reported on an artificial helical microswimmer generating motion without a propagating change in handedness. Made of a temperature sensitive gel, these swimmers moved by changing the dimensions of the helix in a non-reciprocal way. Inspired by these results and helix's ubiquitous presence in the bacterial world, we investigate how a deforming helix moves within a viscous fluid. Maintaining a single handedness along its entire length, we discuss how a perfect deforming helix can create a non-reciprocal swimming stroke, identify its principle directions of motion, and calculate the swimming kinematics asymptotically.

  2. Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes.

    Science.gov (United States)

    Tytell, Eric D; Standen, Emily M; Lauder, George V

    2008-01-01

    Fish swimming has often been simplified into the motions of a two-dimensional slice through the horizontal midline, as though fishes live in a flat world devoid of a third dimension. While fish bodies do undulate primarily horizontally, this motion has important three-dimensional components, and fish fins can move in a complex three-dimensional manner. Recent results suggest that an understanding of the three-dimensional body shape and fin motions is vital for explaining the mechanics of swimming, and that two-dimensional representations of fish locomotion are misleading. In this study, we first examine axial swimming from the two-dimensional viewpoint, detailing the limitations of this view. Then we present data on the kinematics and hydrodynamics of the dorsal fin, the anal fin and the caudal fin during steady swimming and maneuvering in brook trout, Salvelinus fontinalis, bluegill sunfish, Lepomis macrochirus, and yellow perch, Perca flavescens. These fishes actively move the dorsal and anal fins during swimming, resulting in curvature along both anterio-posterior and dorso-ventral axes. The momentum imparted to the fluid by these fins comprises a substantial portion of total swimming force, adding to thrust and contributing to roll stability. While swimming, the caudal fin also actively curves dorso-ventrally, producing vortices separately from both its upper and lower lobes. This functional separation of the lobes may allow additional control of three-dimensional orientation, but probably reduces swimming efficiency. In contrast, fish may boost the caudal fin's efficiency by taking advantage of the flow from the dorsal and anal fins as it interacts with the flow around the caudal fin itself. During maneuvering, fish readily use their fins outside of the normal planes of motion. For example, the dorsal fin can flick laterally, orienting its surface perpendicular to the body, to help in turning and braking. These data demonstrate that, while fish do move

  3. Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming.

    Science.gov (United States)

    Maia, Anabela; Lauder, George V; Wilga, Cheryl D

    2017-11-01

    A key feature of fish functional design is the presence of multiple fins that allow thrust vectoring and redirection of fluid momentum to contribute to both steady swimming and maneuvering. A number of previous studies have analyzed the function of dorsal fins in teleost fishes in this context, but the hydrodynamic function of dorsal fins in freely swimming sharks has not been analyzed, despite the potential for differential functional roles between the anterior and posterior dorsal fins. Previous anatomical research has suggested a primarily stabilizing role for shark dorsal fins. We evaluated the generality of this hypothesis by using time-resolved particle image velocimetry to record water flow patterns in the wake of both the anterior and posterior dorsal fins in two species of freely swimming sharks: bamboo sharks ( Chiloscyllium plagiosum ) and spiny dogfish ( Squalus acanthias ). Cross-correlation analysis of consecutive images was used to calculate stroke-averaged mean longitudinal and lateral velocity components, and vorticity. In spiny dogfish, we observed a velocity deficit in the wake of the first dorsal fin and flow acceleration behind the second dorsal fin, indicating that the first dorsal fin experiences net drag while the second dorsal fin can aid in propulsion. In contrast, the wake of both dorsal fins in bamboo sharks displayed increased net flow velocity in the majority of trials, reflecting a thrust contribution to steady swimming. In bamboo sharks, fluid flow in the wake of the second dorsal fin had higher absolute average velocity than that for first dorsal fin, and this may result from a positive vortex interaction between the first and second dorsal fins. These data suggest that the first dorsal fin in spiny dogfish has primarily a stabilizing function, while the second dorsal fin has a propulsive function. In bamboo sharks, both dorsal fins can contribute thrust and should be considered as propulsive adjuncts to the body during steady

  4. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    Science.gov (United States)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  5. SWIMMING CLASSES IN JUNIOR HIGH SCHOOL STUDENTS’ OPINION

    Directory of Open Access Journals (Sweden)

    Grzegorz Bielec

    2013-02-01

    Full Text Available The role of modern physical education is not only to develop motor abilities of the students, but most of all prevent them from epidemic youth diseases such as obesity or postural defects. Positive attitudes to swimming as a long-life physical activity, instilled in adolescence should be beneficial in adult life. The group of 130 boys and 116 girls of 7th grade junior high school (mean age 14.6 was asked in the survey to present their opinion of obligatory swimming lessons at school. Students of both sexes claimed that they liked swimming classes because they could improve their swimming skills (59% of answers and because of health-related character of water exercises (38%. 33% of students regarded swimming lessons as boring and monotonous, and 25% of them complained about poor pool conditions like chlorine smell, crowded lanes, too low temperature. Majority of the surveyed students saw practical role of swimming in saving others life.

  6. The Physiology and Mechanics of Undulatory Swimming: A Student Laboratory Exercise Using Medicinal Leeches

    Science.gov (United States)

    Ellerby, David J.

    2009-01-01

    The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle…

  7. Laryngoscopy during swimming: A novel diagnostic technique to characterize swimming-induced laryngeal obstruction.

    Science.gov (United States)

    Walsted, Emil S; Swanton, Laura L; van van Someren, Ken; Morris, Tessa E; Furber, Matthew; Backer, Vibeke; Hull, James H

    2017-10-01

    Exercise-induced laryngeal obstruction (EILO) is a key differential diagnosis for respiratory symptoms in athletes and is particularly prevalent in aquatic athletes. A definitive diagnosis of EILO is dependent on laryngoscopy, performed continuously, while an athlete engages in the sport that precipitates their symptoms. This report provides the first description of the feasibility of performing continuous laryngoscopy during exercise in a swimming environment. The report describes the methodology and safety of the use of continuous laryngoscopy while swimming. Laryngoscope, 127:2298-2301, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  8. CPG Network Optimization for a Biomimetic Robotic Fish via PSO.

    Science.gov (United States)

    Yu, Junzhi; Wu, Zhengxing; Wang, Ming; Tan, Min

    2016-09-01

    In this brief, we investigate the parameter optimization issue of a central pattern generator (CPG) network governed forward and backward swimming for a fully untethered, multijoint biomimetic robotic fish. Considering that the CPG parameters are tightly linked to the propulsive performance of the robotic fish, we propose a method for determination of relatively optimized control parameters. Within the framework of evolutionary computation, we use a combination of dynamic model and particle swarm optimization (PSO) algorithm to seek the CPG characteristic parameters for an enhanced performance. The PSO-based optimization scheme is validated with extensive experiments conducted on the actual robotic fish. Noticeably, the optimized results are shown to be superior to previously reported forward and backward swimming speeds.

  9. Zebrafish swimming in the flow: a particle image velocimetry study

    OpenAIRE

    Mwaffo, Violet; Zhang, Peng; Romero Cruz, Sebastián; Porfiri, Maurizio

    2017-01-01

    Zebrafish is emerging as a species of choice for the study of a number of biomechanics problems, including balance development, schooling, and neuromuscular transmission. The precise quantification of the flow physics around swimming zebrafish is critical toward a mechanistic understanding of the complex swimming style of this fresh-water species. Although previous studies have elucidated the vortical structures in the wake of zebrafish swimming in placid water, the flow physics of zebrafish ...

  10. The swimming literacy of women in term sof self rescue

    OpenAIRE

    Vokurková, Eva

    2012-01-01

    Work name: The swimming literacy of women in term of self rescue Aim of work: To acquire and analyze data about the level of the swimming literacy and self rescue skills of women aged 18 - 72 years, whether they can handle and use them. Method: Literature search, creation of the questionnaire, implementation survey, data analysis and graphical presentation of results. Results: The analysis of the swimming literacy and self rescue skills of women. Key words: literacy, physical literacy, swimmi...

  11. Roll and Yaw of Paramecium swimming in a viscous fluid

    Science.gov (United States)

    Jung, Sunghwan; Jana, Saikat; Giarra, Matt; Vlachos, Pavlos

    2012-11-01

    Many free-swimming microorganisms like ciliates, flagellates, and invertebrates exhibit helical trajectories. In particular, the Paramecium spirally swims along its anterior direction by the beating of cilia. Due to the oblique beating stroke of cilia, the Paramecium rotates along its long axis as it swims forward. Simultaneously, this long axis turns toward the oral groove side. Combined roll and yaw motions of Paramecium result in swimming along a spiral course. Using Particle Image Velocimetry, we measure and quantify the flow field and fluid stress around Paramecium. We will discuss how the non-uniform stress distribution around the body induces this yaw motion.

  12. Morning Exercise: Enhancement of Afternoon Sprint-Swimming Performance.

    Science.gov (United States)

    McGowan, Courtney J; Pyne, David B; Thompson, Kevin G; Raglin, John S; Rattray, Ben

    2017-05-01

    An exercise bout completed several hours prior to an event may improve competitive performance later that same day. To examine the influence of morning exercise on afternoon sprint-swimming performance. Thirteen competitive swimmers (7 male, mean age 19 ± 3 y; 6 female, mean age 17 ± 3 y) completed a morning session of 1200 m of variedintensity swimming (SwimOnly), a combination of varied-intensity swimming and a resistance-exercise routine (SwimDry), or no morning exercise (NoEx). After a 6-h break, swimmers completed a 100-m time trial. Time-trial performance was faster in SwimOnly (1.6% ± 0.6, mean ± 90% confidence limit, P confidence limit], P = .04), body (0.2°C ± 0.1°C, P = .02), and skin temperatures (0.3°C ± 0.3°C, P = .02) were higher in SwimDry than in NoEx. Completion of a morning swimming session alone or together with resistance exercise can substantially enhance sprint-swimming performance completed later the same day.

  13. Biomechanical Analysis of the Swim-Start: A Review

    Directory of Open Access Journals (Sweden)

    Julien Vantorre, Didier Chollet, Ludovic Seifert

    2014-06-01

    Full Text Available This review updates the swim-start state of the art from a biomechanical standpoint. We review the contribution of the swim-start to overall swimming performance, the effects of various swim-start strategies, and skill effects across the range of swim-start strategies identified in the literature. The main objective is to determine the techniques to focus on in swimming training in the contemporary context of the sport. The phases leading to key temporal events of the swim-start, like water entry, require adaptations to the swimmer’s chosen technique over the course of a performance; we thus define the swim-start as the moment when preparation for take-off begins to the moment when the swimming pattern begins. A secondary objective is to determine the role of adaptive variability as it emerges during the swim-start. Variability is contextualized as having a functional role and operating across multiple levels of analysis: inter-subject (expert versus non-expert, inter-trial or intra-subject (through repetitions of the same movement, and inter-preference (preferred versus non-preferred technique. Regarding skill effects, we assume that swim-start expertise is distinct from swim stroke expertise. Highly skilled swim-starts are distinguished in terms of several factors: reaction time from the start signal to the impulse on the block, including the control and regulation of foot force and foot orientation during take-off; appropriate amount of glide time before leg kicking commences; effective transition from leg kicking to break-out of full swimming with arm stroking; overall maximal leg and arm propulsion and minimal water resistance; and minimized energy expenditure through streamlined body position. Swimmers who are less expert at the swim-start spend more time in this phase and would benefit from training designed to reduce: (i the time between reaction to the start signal and impulse on the block, and (ii the time in transition (i

  14. Zebrafish swimming in the flow: a particle image velocimetry study

    Directory of Open Access Journals (Sweden)

    Violet Mwaffo

    2017-11-01

    Full Text Available Zebrafish is emerging as a species of choice for the study of a number of biomechanics problems, including balance development, schooling, and neuromuscular transmission. The precise quantification of the flow physics around swimming zebrafish is critical toward a mechanistic understanding of the complex swimming style of this fresh-water species. Although previous studies have elucidated the vortical structures in the wake of zebrafish swimming in placid water, the flow physics of zebrafish swimming against a water current remains unexplored. In an effort to illuminate zebrafish swimming in a dynamic environment reminiscent of its natural habitat, we experimentally investigated the locomotion and hydrodynamics of a single zebrafish swimming in a miniature water tunnel using particle image velocimetry. Our results on zebrafish locomotion detail the role of flow speed on tail beat undulations, heading direction, and swimming speed. Our findings on zebrafish hydrodynamics offer a precise quantification of vortex shedding during zebrafish swimming and demonstrate that locomotory patterns play a central role on the flow physics. This knowledge may help clarify the evolutionary advantage of burst and cruise swimming movements in zebrafish.

  15. Behavioral changes in fish exposed to phytoestrogens

    International Nuclear Information System (INIS)

    Clotfelter, Ethan D.; Rodriguez, Alison C.

    2006-01-01

    We investigated the behavioral effects of exposure to waterborne phytoestrogens in male fighting fish, Betta splendens. Adult fish were exposed to a range of concentrations of genistein, equol, β-sitosterol, and the positive control 17β-estradiol. The following behaviors were measured: spontaneous swimming activity, latency to respond to a perceived intruder (mirror reflection), intensity of aggressive response toward a perceived intruder, probability of constructing a nest in the presence of a female, and the size of the nest constructed. We found few changes in spontaneous swimming activity, the latency to respond to the mirror, and nest size, and modest changes in the probability of constructing a nest. There were significant decreases, however, in the intensity of aggressive behavior toward the mirror following exposure to several concentrations, including environmentally relevant ones, of 17β-estradiol, genistein, and equol. This suggests that phytoestrogen contamination has the potential to significantly affect the behavior of free-living fishes. - Environmentally relevant concentrations of phytoestrogens reduce aggressive behavior in fish

  16. Front crawl swimming analysis using accelerometers

    DEFF Research Database (Denmark)

    Espinosa, Hugo G; Nordsborg, Nikolai Baastrup; Thiel, David V

    2015-01-01

    Biomechanical characteristics such as stroke rate and stroke length can be used to determine the velocity of a swimmer and can be analysed in both a swimming pool and a flume. The aim of the present preliminary study was to investigate the differences between the acceleration data collected from ...... movements (0.64 ≤ r ≤ 0.75). The correlation coefficients are (0.75 ≤ r ≤ 0.83) and (0.82 ≤ r ≤ 0.89) for the other two axes....

  17. Cortisol emphasizes the metabolic strategies employed by common carp, Cyprinus carpio at different feeding and swimming regimes.

    Science.gov (United States)

    Liew, Hon Jung; Chiarella, Daniela; Pelle, Antonella; Faggio, Caterina; Blust, Ronny; De Boeck, Gudrun

    2013-11-01

    The objective of this study was to investigate the interaction between feeding, exercise and cortisol on metabolic strategies of common carp over a 168h post-implant period. Feeding provided readily available energy and clearly increased muscle and liver protein and glycogen stores. Swimming, feeding and cortisol all induced aerobic metabolism by increasing oxygen consumption, and stimulated protein metabolism as demonstrated by the increased ammonia and urea excretion and ammonia quotient. Hypercortisol stimulated ammonia self-detoxifying mechanisms by enhancing ammonia and urea excretion, especially during severe exercise. At high swimming level, higher branchial clearance rates in cortisol treated fish succeeded in eliminating the elevation of endogenous ammonia, resulting in reduced plasma Tamm levels compared to control and sham implanted fish. Carp easily induced anaerobic metabolism, both during routine and active swimming, with elevated lactate levels as a consequence. Both feeding and cortisol treatment increased this dependence on anaerobic metabolism. Hypercortisol induced both glycogenesis and gluconeogenesis resulting in hyperglycemia and muscle and liver glycogen deposition, most likely as a protective mechanism for prolonged stress situations and primarily fuelled by protein mobilization. © 2013.

  18. Water Penetration into Middle Ear Through Ventilation Tubes in Children While Swimming

    Directory of Open Access Journals (Sweden)

    Mao-Che Wang

    2009-02-01

    Conclusion: Water penetration into the middle ear through ventilation tubes and middle ear infection are not likely when surface swimming. Children with ventilation tubes can enjoy swimming without protection in clean chlorinated swimming pools.

  19. Energetics of median and paired fin swimming, body and caudal fin swimming, and gait transition in parrotfish (Scarus schlegeli) and triggerfish (Rhinecanthus aculeatus)

    DEFF Research Database (Denmark)

    Korsmeyer, Keith E; Steffensen, John Fleng; Herskin, Jannik

    2002-01-01

    , and therefore support the hypothesis that MPF swimming is more efficient. In addition, use of the BCF gait at higher swimming speed increased the cost of transport in both species beyond that predicted for MPF swimming at the same speeds. This suggests that, unlike for terrestrial locomotion, gait transition......To determine the energetic costs of rigid-body, median or paired-fin (MPF) swimming versus undulatory, body-caudal fin (BCF) swimming, we measured oxygen consumption as a function of swimming speed in two MPF swimming specialists, Schlegel's parrotfish and Picasso triggerfish. The parrotfish swam...... exclusively with the pectoral fins at prolonged swimming speeds up to 3.2 total lengths per second (L s(-1); 30 min critical swimming speed, U(crit)). At higher speeds, gait transferred to a burst-and-coast BCF swimming mode that resulted in rapid fatigue. The triggerfish swam using undulations of the soft...

  20. Fish parasites

    DEFF Research Database (Denmark)

    This book contains 22 chapters on some of the most important parasitic diseases in wild and farmed fish. International experts give updated reviews and provide solutions to the problems......This book contains 22 chapters on some of the most important parasitic diseases in wild and farmed fish. International experts give updated reviews and provide solutions to the problems...

  1. Fish reproduction

    National Research Council Canada - National Science Library

    Rocha, Maria João; Arukwe, Augustine; Kapoor, B. G

    2008-01-01

    ... of reproductive systems is essential for such studies. Fishes comprise over 28,000 species, with a remarkable variability in morphology, physiology and environmental adaptation. Knowledge on fish reproduction is scattered across numerous sources that shows a dynamic research field. The Editors believe it to be an opportune moment for a...

  2. Fish assemblages

    Science.gov (United States)

    McGarvey, Daniel J.; Falke, Jeffrey A.; Li, Hiram W.; Li, Judith; Hauer, F. Richard; Lamberti, G.A.

    2017-01-01

    Methods to sample fishes in stream ecosystems and to analyze the raw data, focusing primarily on assemblage-level (all fish species combined) analyses, are presented in this chapter. We begin with guidance on sample site selection, permitting for fish collection, and information-gathering steps to be completed prior to conducting fieldwork. Basic sampling methods (visual surveying, electrofishing, and seining) are presented with specific instructions for estimating population sizes via visual, capture-recapture, and depletion surveys, in addition to new guidance on environmental DNA (eDNA) methods. Steps to process fish specimens in the field including the use of anesthesia and preservation of whole specimens or tissue samples (for genetic or stable isotope analysis) are also presented. Data analysis methods include characterization of size-structure within populations, estimation of species richness and diversity, and application of fish functional traits. We conclude with three advanced topics in assemblage-level analysis: multidimensional scaling (MDS), ecological networks, and loop analysis.

  3. Mechanical krill models for studying coordinated swimming

    Science.gov (United States)

    Montague, Alice; Lai, Hong Kuan; Samaee, Milad; Santhanakrishnan, Arvind

    2016-11-01

    The global biomass of Homo sapiens is about a third of the biomass of Euphausia superba, commonly known as the Antarctic krill. Krill participate in organized social behavior. Propulsive jets generated by individual krill in a school have been suggested to be important in providing hydrodynamic sensory cues. The importance of body positions and body angles on the wakes generated is challenging to study in free swimming krill. Our solution to study the flow fields of multiple krill was to develop mechanical krill robots. We designed krillbots using mostly 3D printed parts that are actuated by stepper motors. The krillbot limb lengths, angles, inter-limb spacing and pleopod stroke frequency were dynamically scaled using published data on free-swimming krill kinematics. The vertical and horizontal spacing between krillbots, as well as the body angle, are adjustable. In this study, we conducted particle image velocimetry (PIV) measurements with two tethered krillbots in a flow tank with no background flow. One krillbot was placed above and behind the other. Both krillbots were at a zero-degree body angle. Wake-body interactions visualized from PIV data will be presented.

  4. Viscoelasticity promotes collective swimming of sperm

    Science.gov (United States)

    Tung, Chih-Kuan; Harvey, Benedict B.; Fiore, Alyssa G.; Ardon, Florencia; Suarez, Susan S.; Wu, Mingming

    From flocking birds to swarming insects, interactions of organisms large and small lead to the emergence of collective dynamics. Here, we report striking collective swimming of bovine sperm, with sperm orienting in the same direction within each cluster, enabled by the viscoelasticity of the fluid. A long-chain polyacrylamide solution was used as a model viscoelastic fluid such that its rheology can be fine-tuned to mimic that of bovine cervical mucus. In viscoelastic fluid, sperm formed dynamic clusters, and the cluster size increased with elasticity of the polyacrylamide solution. In contrast, sperm swam randomly and individually in Newtonian fluids of similar viscosity. Analysis of the fluid motion surrounding individual swimming sperm indicated that sperm-fluid interaction is facilitated by the elastic component of the fluid. We note that almost all biological fluids (e.g. mucus and blood) are viscoelastic in nature, this finding highlights the importance of fluid elasticity in biological function. We will discuss what the orientation fluctuation within a cluster reveals about the interaction strength. Supported by NIH Grant 1R01HD070038.

  5. Modulation of the anticonvulsant effect of swim stress by agmatine.

    Science.gov (United States)

    Bahremand, Taraneh; Payandemehr, Pooya; Riazi, Kiarash; Noorian, Ali Reza; Payandemehr, Borna; Sharifzadeh, Mohammad; Dehpour, Ahmad Reza

    2018-01-01

    Agmatine is an endogenous l-arginine metabolite with neuroprotective effects in the stress-response system. It exerts anticonvulsant effects against several seizure paradigms. Swim stress induces an anticonvulsant effect by activation of endogenous antiseizure mechanisms. In this study, we investigated the interaction of agmatine with the anticonvulsant effect of swim stress in mice on pentylenetetrazole (PTZ)-induced seizure threshold. Then we studied the involvement of nitric oxide (NO) pathway and endogenous opioid system in that interaction. Swim stress induced an anticonvulsant effect on PTZ seizures which was opioid-independent in shorter than 1-min swim durations and opioid-dependent with longer swims, as it was completely reversed by pretreatment with naltrexone (NTX) (10mg/kg), an opioid receptor antagonist. Agmatine significantly enhanced the anticonvulsant effect of opioid-independent shorter swim stress, in which a combination of subthreshold swim stress duration (45s) and subeffective dose of agmatine (1mg/kg) revealed a significantly higher seizure threshold compared with either one. This effect was significantly reversed by NO synthase inhibitor N G -nitro-l-arginine (L-NAME (Nω-Nitro-L-arginine methyl ester), 5mg/kg), suggesting an NO-dependent mechanism, and was unaffected by NTX (10mg/kg), proving little role for endogenous opioids in the interaction. Our data suggest that pretreatment of animals with agmatine acts additively with short swim stress to exert anticonvulsant responses, possibly by mediating NO pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Biomechanical aspects of peak performance in human swimming

    NARCIS (Netherlands)

    Toussaint, H.M.; Truijens, M.J.

    2005-01-01

    Peak performances in sport require the full deployment of all the powers an athlete possesses. How factors such as mechanical power output, technique and drag, each individually, but also in concert, determine swimming performance is the subject of this enquiry. This overview of swimming

  7. Health risks associated with swimming at an inland river

    Science.gov (United States)

    Swimming exposure to fecally-contaminated oceans and lakes has been associated with an increased risk of gastrointestinal (GI) illness. Although treated and untreated sewage are often discharged to rivers, the health risks of swimming exposure on rivers has been less frequently ...

  8. Mitigating the impact of swimming pools on domestic water demand ...

    African Journals Online (AJOL)

    South Africa is a water-scarce country where the sustainable provision of water to its citizens is one of the most significant challenges faced. A recent study in Cape Town, South Africa, investigated the impact of residential swimming pools on household water demand and found that, on average, the presence of a swimming ...

  9. Protection of swimming-induced oxidative stress in some vital ...

    African Journals Online (AJOL)

    ... study of transaminase activities in liver and kidney. Results lead to conclude that the composite extract of above three plant parts has a therapeutic protective effect on forced swimming-induced oxidative stress in vital organs. Keywords: Brain tissues, metabolic organs, oxidative stress, phytotherapy, swimming, vitamin-E.

  10. 33 CFR 117.734 - Navesink River (Swimming River).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navesink River (Swimming River... BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.734 Navesink River (Swimming River). The Oceanic Bridge, mile 4.5, shall open on signal; except that, from December 1 through...

  11. Peculiarities of a backstroke swimming technique acceleration in elementary education

    Directory of Open Access Journals (Sweden)

    Liliya Sheyko

    2016-02-01

    Full Text Available Purpose: to research the possibility of intensification and improvement of the efficiency of swimming training for adults by use of accelerated learning backstroke swimming techniques. Material & Methods: the study involved a total of 43 people aged 30–40 years. Applied: analysis and generalization of scientific and methodological literature; analysis of the learning process of swimming training for adults; development and approbation of an accelerated backstroke swimming technique on the base of the recreational sports complex LLC «Technocom» (Kharkiv, Author's swimming school of U. Blyzniuk, teacher observation, experiment. Results: a study shows that developing of swimming skills of people tested occurs faster and more effectively if the accelerated procedure is used. Backstroke swimming skill formation time for examinees: check group had 26 to 36 lessons, there were 25 to 32 exercises with and without use of supporting means; the experimental group had 12 to 24 lessons with use of 15 exercises without supporting means. Conclusions: as a result of the experiment, it was found that the use of the proposed accelerated training method allows to intensify backstroke swimming learning process for people aged 30–40, due to training course total duration reduction (2 times and number of exercises used, and also allows to master quicker the main improving distance according to age of the engaged.

  12. Geometric Aspects of Force Controllability for a Swimming Model

    International Nuclear Information System (INIS)

    Khapalov, A. Y.

    2008-01-01

    We study controllability properties (swimming capabilities) of a mathematical model of an abstract object which 'swims' in the 2-D Stokes fluid. Our goal is to investigate how the geometric shape of this object affects the forces acting upon it. Such problems are of interest in biology and engineering applications dealing with propulsion systems in fluids

  13. Relationship between Muscle Strength and Front Crawl Swimming Velocity

    Directory of Open Access Journals (Sweden)

    Gola Radosław

    2014-08-01

    Full Text Available Purpose. competitive performance in swimming depends on a number of factors including, among others, the development of relevant muscle groups. The aim of the study was to clarify the relationship between muscle strength and swimming velocity and the role of individual muscle groups in front crawl swimming. Methods. sixteen physical education university students participated in the study. The strength values, defined as torque produced during isometric contractions, of eight upper and lower extremity muscle groups were measured. Data were compared with participants' front crawl swim times in the 25m and 50m distances. Results. correlation analysis demonstrated a relationship between muscle strength and swimming velocity. statistically significant relationships were observed between swimming velocity and the torque values of the elbow flexor and shoulder extensor muscles as well as the sum of upper extremity muscle torque values (p ⋋ 0.05. Conclusions. The results indicate the need for a focus on training those muscle groups identified as having a statistically significant relationship with swimming velocity for a given distance, as the sample showed deficiencies in the strength of those muscle groups responsible for generating propulsive force in the front crawl. Additionally, the collected data can serve as a diagnostic tool in evaluating the development of muscle groups critical for swimming performance.

  14. The determination of drag in front crawl swimming

    NARCIS (Netherlands)

    Toussaint, H.M.; Roos, P.E.; Kolmogorov, S.

    2004-01-01

    The measurement of drag while swimming (i.e. active drag) is a controversial issue. Therefore, in a group of six elite swimmers two active drag measurement methods were compared to assess whether both measure the same retarding force during swimming. In method 1 push-off forces are measured directly

  15. Children's Activity Levels and Lesson Context during Summer Swim Instruction

    Science.gov (United States)

    Schwamberger, Benjamin; Wahl-Alexander, Zachary

    2016-01-01

    Summer swim programs provide a unique opportunity to engage children in PA as well as an important lifesaving skill. Offering summer swim programs is critical, especially for minority populations who tend to have higher rates of drowning, specifically in youth populations. The purpose of this study was to determine the lesson context and…

  16. Assessing Water Quality: Staphylococci as Microbial Indicators in Swimming Pools.

    Science.gov (United States)

    Rivera, Jo. Bechaida T.; Adera, Tilahun

    1991-01-01

    This study suggests that staphylococci may be the preferred microbial indicators of swimming pool water quality because these organisms met all criteria for best microbial indicators in terms of amount of recovery, resistance to disinfectants, and risk to bathers using water samples from nine swimming pools in Linn and Benton Counties, Oregon. (30…

  17. Mitigating the impact of swimming pools on domestic water demand

    African Journals Online (AJOL)

    demand. The study shows the need to reduce the impact of swimming pools. This could include: pool covers to reduce evaporation, the recycling of backwash water, the use of rainwater to top up swimming pools, water use surcharges and, finally, appropriate regulation and enforcement to prevent the use of municipal water ...

  18. Physiological responses to swimming fatigue of juvenile white-leg ...

    African Journals Online (AJOL)

    Swimming performance is one of the crucial factors determining the lifestyle and survival of Penaeid shrimps. This study examined under controlled laboratory conditions, the physiological responses to swimming fatigue of juvenile white-leg shrimp Litopenaeus vannamei (8.85 ± 0.05 cm TL) exposed to different current ...

  19. A meta-analysis of steady undulatory swimming

    NARCIS (Netherlands)

    van Weerden, J. Fransje; Reid, Daniel A. P.; Hemelrijk, Charlotte K.

    The mechanics underlying undulatory swimming are of great general interest, both to biologists and to engineers. Over the years, more data of the kinematics of undulatory swimming have been reported. At present, an integrative analysis is needed to determine which general relations hold between

  20. Glucocorticoids facilitate the retention of acquired immobility during forced swimming

    NARCIS (Netherlands)

    Veldhuis, H D; De Korte, C C; De Kloet, E R

    1985-01-01

    The adrenalectomy-induced decrease in the level of immobility during a 5 min retest period in the Porsolt swimming test could be reversed by glucocorticoids administered s.c. 15 min after the initial forced swimming exposure. The synthetic glucocorticoids dexamethasone and RU 28362 were active in

  1. How to improve hygienic behaviour in holiday park swimming pools

    NARCIS (Netherlands)

    Stronks, I.; Keuten, M.G.A.

    2016-01-01

    Previous studies on contamination of swimming pool water showed that the hygienic behaviour of swimmers is the most important factor. The suggested hygienic behaviour is; having a pre-swim shower and using the toilet when nature calls. Knowing the importance of hygienic behaviour is one thing,

  2. Swimming efficiency in a shear-thinning fluid

    Science.gov (United States)

    Nganguia, Herve; Pietrzyk, Kyle; Pak, On Shun

    2017-12-01

    Micro-organisms expend energy moving through complex media. While propulsion speed is an important property of locomotion, efficiency is another factor that may determine the swimming gait adopted by a micro-organism in order to locomote in an energetically favorable manner. The efficiency of swimming in a Newtonian fluid is well characterized for different biological and artificial swimmers. However, these swimmers often encounter biological fluids displaying shear-thinning viscosities. Little is known about how this nonlinear rheology influences the efficiency of locomotion. Does the shear-thinning rheology render swimming more efficient or less? How does the swimming efficiency depend on the propulsion mechanism of a swimmer and rheological properties of the surrounding shear-thinning fluid? In this work, we address these fundamental questions on the efficiency of locomotion in a shear-thinning fluid by considering the squirmer model as a general locomotion model to represent different types of swimmers. Our analysis reveals how the choice of surface velocity distribution on a squirmer may reduce or enhance the swimming efficiency. We determine optimal shear rates at which the swimming efficiency can be substantially enhanced compared with the Newtonian case. The nontrivial variations of swimming efficiency prompt questions on how micro-organisms may tune their swimming gaits to exploit the shear-thinning rheology. The findings also provide insights into how artificial swimmers should be designed to move through complex media efficiently.

  3. EFFECT OF FLEXIBILITY ON THE RESULTS OF DOLPHIN SWIMMING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Slađana Tošić

    2011-09-01

    Full Text Available In order to determine the impact of flexibility on the results in swimming, we conducted a study on a sample of 50 female patients aged 11-14 years of age who are in the training process in the swimming clubs „Nis 2005“ and „Sveti Nikola“ in Nis. The study is applied to 14 measuring instruments that were divided into three groups: Measuring instruments for the assessment of flexibility (11; Measuring instruments for assessing the results of swimming (1; Measuring instruments for evaluation of morphological characteristics (2. The regression analysis determined the impact of flexibility on the results in swimming. The regression analysis didn't confirmed the assumption that there is a statistically significant effect of flexibility variables on results in swimming for female swimmers

  4. EFFECTS OF THREE FEEDBACK CONDITIONS ON AEROBIC SWIM SPEEDS

    Directory of Open Access Journals (Sweden)

    Pedro Pérez Soriano

    2009-03-01

    Full Text Available The purpose of this study was twofold: (a to develop an underwater chronometer capable to provide feedback while the athlete is swimming, as well as being a control tool for the coach, and (b to analyse its feedback effect on swim pace control compared with feedback provided by the coach and with no feedback, in 25 m and 50 m swimming pools. 30 male swimmers of national level volunteer to participate. Each swimmer swam 3 x 200 m at aerobic speed (AS and 3 x 200 m just under the anaerobic threshold speed (AnS, each swam repetition with a different feedback condition: chronometer, coach and without feedback. Results (a validate the chronometer system developed and (b show that swimmers pace control is affected by the type of feedback provided, the swim speed elected and the size of the swimming pool

  5. Biomimetic and bio-inspired robotics in electric fish research.

    Science.gov (United States)

    Neveln, Izaak D; Bai, Yang; Snyder, James B; Solberg, James R; Curet, Oscar M; Lynch, Kevin M; MacIver, Malcolm A

    2013-07-01

    Weakly electric knifefish have intrigued both biologists and engineers for decades with their unique electrosensory system and agile swimming mechanics. Study of these fish has resulted in models that illuminate the principles behind their electrosensory system and unique swimming abilities. These models have uncovered the mechanisms by which knifefish generate thrust for swimming forward and backward, hovering, and heaving dorsally using a ventral elongated median fin. Engineered active electrosensory models inspired by electric fish allow for close-range sensing in turbid waters where other sensing modalities fail. Artificial electrosense is capable of aiding navigation, detection and discrimination of objects, and mapping the environment, all tasks for which the fish use electrosense extensively. While robotic ribbon fin and artificial electrosense research has been pursued separately to reduce complications that arise when they are combined, electric fish have succeeded in their ecological niche through close coupling of their sensing and mechanical systems. Future integration of electrosense and ribbon fin technology into a knifefish robot should likewise result in a vehicle capable of navigating complex 3D geometries unreachable with current underwater vehicles, as well as provide insights into how to design mobile robots that integrate high bandwidth sensing with highly responsive multidirectional movement.

  6. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    Directory of Open Access Journals (Sweden)

    Chintan A Trivedi

    2013-05-01

    Full Text Available Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed towards the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim-triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.

  7. The effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action and growth performance of juvenile Chinese bream.

    Science.gov (United States)

    Peng, Jing; Cao, Zhen-Dong; Fu, Shi-Jian

    2014-10-01

    We investigated the effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action (SDA) and growth performance of juvenile Chinese bream (Parabramis pekinensis). The critical thermal maxima (CTmax), critical thermal minima (CTmin), lethal thermal maxima (LTmax), lethal thermal minima (LTmin), critical swimming speed (Ucrit) and fast-start escape response after 30 d acclimation to three constant temperatures (15, 20 and 25 °C) and one diel-fluctuating temperature (20±5 °C) were measured. In addition, feeding rate (FR), feeding efficiency (FE) and specific growth rate (SGR) were measured. The diel-fluctuating temperature group showed lower CTmin than the 20 °C group but a similar CTmax, indicating a wider thermal scope. SDA linearly increased with the temperature. Temperature variation between 20 and 25 °C had little effect on either swimming or growth performance. However, fish in the 15 °C group exhibited much poorer swimming and growth performance than those in the 20 °C group. Ucrit decreased slightly under low acclimation temperature due to the pronounced improvement in swimming efficiency under cold temperature. Fish in the diel-fluctuating temperature group fed more but exhibited similar SGR compared to 20 °C group, possibly due in part to an increase in energy expenditure to cope with the temperature fluctuation. The narrower thermal scope and lower CTmax of Chinese bream together with the conservation of CTmax with temperature acclimation, suggests that local water temperature elevations may have more profound effects on Chinese bream than on other fish species in the Three Gorges Reservoir. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Combined inhalation of beta2 -agonists improves swim ergometer sprint performance but not high-intensity swim performance

    DEFF Research Database (Denmark)

    Kalsen, Anders; Hostrup, Morten; Bangsbo, Jens

    2014-01-01

    ), in permitted doses within the World Anti-Doping Agency 2013 prohibited list, in elite swimmers with (AHR, n = 13) or without (non-AHR, n = 17) AHR. Maximal voluntary isometric contraction of m. quadriceps (MVC), sprint performance on a swim ergometer and performance in an exhaustive swim test at 110% of VO2max...

  9. Rajiform locomotion: three-dimensional kinematics of the pectoral fin surface during swimming in the freshwater stingray Potamotrygon orbignyi.

    Science.gov (United States)

    Blevins, Erin L; Lauder, George V

    2012-09-15

    Rajiform locomotion in fishes is dominated by distinctive undulations of expanded pectoral fins. Unlike other fishes, which typically interact with the fluid environment via multiple fins, undulating rays modulate a single control surface, the pectoral disc, to perform pelagic locomotion, maneuvering and other behaviors. Complex deformations of the broad, flexible pectoral fins occur as the undulating wave varies in three dimensions; pectoral fin kinematics and changes in waveform with swimming speed cannot be fully quantified by two-dimensional analyses of the fin margin. We present the first three-dimensional analysis of undulatory rajiform locomotion in a batoid, the freshwater stingray Potamotrygon orbignyi. Using three cameras (250 frames s(-1)), we gathered three-dimensional excursion data from 31 points on the pectoral fin during swimming at 1.5 and 2.5 disc lengths s(-1), describing the propulsive wave and contrasting waveforms between swimming speeds. Only a relatively small region of the pectoral fin (~25%) undulates with significant amplitude (>0.5 cm). Stingrays can maintain extreme lateral curvature of the distal fin margin in opposition to induced hydrodynamic loads, 'cupping' the edge of the pectoral fin into the flow, with potential implications for drag reduction. Wave amplitude increases across both anteroposterior and mediolateral fin axes. Along the anteroposterior axis, amplitude increases until the wave reaches mid-disc and then remains constant, in contrast to angulliform patterns of continuous amplitude increase. Increases in swimming speed are driven by both wave frequency and wavespeed, though multivariate analyses reveal a secondary role for amplitude.

  10. Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae.

    Science.gov (United States)

    Wolanski, Eric; Kingsford, Michael J

    2014-09-06

    A predictive model of the fate of coral reef fish larvae in a reef system is proposed that combines the oceanographic processes of advection and turbulent diffusion with the biological process of horizontal swimming controlled by olfactory and auditory cues within the timescales of larval development. In the model, auditory cues resulted in swimming towards the reefs when within hearing distance of the reef, whereas olfactory cues resulted in the larvae swimming towards the natal reef in open waters by swimming against the concentration gradients in the smell plume emanating from the natal reef. The model suggested that the self-seeding rate may be quite large, at least 20% for the larvae of rapidly developing reef fish species, which contrasted with a self-seeding rate less than 2% for non-swimming coral larvae. The predicted self-recruitment rate of reefs was sensitive to a number of parameters, such as the time at which the fish larvae reach post-flexion, the pelagic larval duration of the larvae, the horizontal turbulent diffusion coefficient in reefal waters and the horizontal swimming behaviour of the fish larvae in response to auditory and olfactory cues, for which better field data are needed. Thus, the model suggested that high self-seeding rates for reef fish are possible, even in areas where the 'sticky water' effect is minimal and in the absence of long-term trapping in oceanic fronts and/or large-scale oceanic eddies or filaments that are often argued to facilitate the return of the larvae after long periods of drifting at sea. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.

    Science.gov (United States)

    Shelton, Ryan M; Thornycroft, Patrick J M; Lauder, George V

    2014-06-15

    An undulatory pattern of body bending in which waves pass along the body from head to tail is a major mechanism of creating thrust in many fish species during steady locomotion. Analyses of live fish swimming have provided the foundation of our current understanding of undulatory locomotion, but our inability to experimentally manipulate key variables such as body length, flexural stiffness and tailbeat frequency in freely swimming fish has limited our ability to investigate a number of important features of undulatory propulsion. In this paper we use a mechanical flapping apparatus to create an undulatory wave in swimming flexible foils driven with a heave motion at their leading edge, and compare this motion with body bending patterns of bluegill sunfish (Lepomis macrochirus) and clown knifefish (Notopterus chitala). We found similar swimming speeds, Reynolds and Strouhal numbers, and patterns of curvature and shape between these fish and foils, suggesting that flexible foils provide a useful model for understanding fish undulatory locomotion. We swam foils with different lengths, stiffnesses and heave frequencies while measuring forces, torques and hydrodynamics. From measured forces and torques we calculated thrust and power coefficients, work and cost of transport for each foil. We found that increasing frequency and stiffness produced faster swimming speeds and more thrust. Increasing length had minimal impact on swimming speed, but had a large impact on Strouhal number, thrust coefficient and cost of transport. Foils that were both stiff and long had the lowest cost of transport (in mJ m(-1) g(-1)) at low cycle frequencies, and the ability to reach the highest speed at high cycle frequencies. © 2014. Published by The Company of Biologists Ltd.

  12. One Fish, Two Fish, Redfish, You Fish!

    Science.gov (United States)

    White, Katherine; Timmons, Maryellen; Medders, Paul

    2011-01-01

    The recreational fishing activity presented in this article provides a hands-on, problem-based experience for students; it unites biology, math, economics, environmental policy, and population dynamics concepts. In addition, the activity allows students to shape environmental policy in a realistic setting and evaluate their peers' work. By…

  13. Swimming and Persons with Mild Persistant Asthma

    Directory of Open Access Journals (Sweden)

    Mirjana Arandelovic

    2007-01-01

    Full Text Available The aim of our study was to analyze the effect of recreational swimming on lung function and bronchial hyperresponsiveness (BHR in patients with mild persistent asthma. This study included 65 patients with mild persistent asthma, who were divided into two groups: experimental group A (n = 45 and control group B (n = 20. Patients from both groups were treated with low doses of inhaled corticosteroids (ICS and short-acting β2 agonists salbutamol as needed. Our program for patients in group A was combined asthma education with swimming (twice a week on a 1-h basis for the following 6 months. At the end of the study, in Group A, we found a statistically significant increase of lung function parameters FEV1 (forced expiratory volume in 1 sec (3.55 vs. 3.65 (p < 0.01, FVC (forced vital capacity (4.27 vs. 4.37 (p < 0.05, PEF (peak expiratory flow (7.08 vs. 7.46 (p < 0.01, and statistically significant decrease of BHR (PD20 0.58 vs. 2.01 (p < 0.001. In Group B, there was a statistically significant improvement of FEV1 3.29 vs. 3.33 (p < 0.05 and although FVC, FEV1/FVC, and PEF were improved, it was not significant. When Groups A and B were compared at the end of the study, there was a statistically significant difference of FVC (4.01 vs. 4.37, FEV1 (3.33 vs. 3.55, PEF (6.79 vs.7.46, and variability (p <0.001, and statistically significantly decreased BHR in Group A (2.01 vs. 1.75 (p < 0.001. Engagement of patients with mild persistent asthma in recreational swimming in nonchlorinated pools, combined with regular medical treatment and education, leads to better improvement of their parameters of lung function and also to more significant decrease of their airway hyperresponsiveness compared to patients treated with traditional medicine

  14. Variation in brain organization of coral reef fish larvae according to life history traits.

    Science.gov (United States)

    Lecchini, David; Lecellier, Gael; Lanyon, Rynae Greta; Holles, Sophie; Poucet, Bruno; Duran, Emilio

    2014-01-01

    In coral reefs, one of the great mysteries of teleost fish ecology is how larvae locate the relatively rare patches of habitat to which they recruit. The recruitment of fish larvae to a reef, after a pelagic phase lasting between 10 and 120 days, depends strongly on larval ability to swim and detect predators, prey and suitable habitat via sensory cues. However, no information is available about the relationship between brain organization in fish larvae and their sensory and swimming abilities at recruitment. For the first time, we explore the structural diversity of brain organization (comparative sizes of brain subdivisions: telencephalon, mesencephalon, cerebellum, vagal lobe and inferior lobe) among larvae of 25 coral reef fish species. We then investigate links between variation in brain organization and life history traits (swimming ability, pelagic larval duration, social behavior, diel activity and cue use relying on sensory perception). After accounting for phylogeny with independent contrasts, we found that brain organization covaried with some life history traits: (1) fish larvae with good swimming ability (>20 cm/s), a long pelagic duration (>30 days), diurnal activity and strong use of cues relying on sensory perception for detection of recruitment habitat had a larger cerebellum than other species. (2) Fish larvae with a short pelagic duration (fish larvae exhibiting solitary behavior during their oceanic phase had larger inferior and vagal lobes. Overall, we hypothesize that a well-developed cerebellum may allow fish larvae to improve their chances of successful recruitment after a long pelagic phase in the ocean. Our study is the first one to bring together quantitative information on brain organization and the relative development of major brain subdivisions across coral reef fish larvae, and more specifically to address the way in which this variation correlates with the recruitment process.

  15. Swimming Performance of Adult Asian Carp: Field Assessment Using a Mobile Swim Tunnel

    Science.gov (United States)

    2016-08-01

    data are needed to manage invasive bigheaded or “ Asian ” carps (Figure 1). However, such data are limited within the scientific literature . The large...ERDC/TN ANSRP-16-1 August 2016 Approved for public release; distribution is unlimited. Swimming Performance of Adult Asian Carp: Field...these invasive species in North American waterways. Such data can be used to assess rates of movement (Konagaya and Cai 1987; 1989), the likelihood of

  16. Vortex dynamics in the wake of a mechanical fish

    Energy Technology Data Exchange (ETDEWEB)

    Bruecker, Christoph [TU Bergakademie Freiberg, Lehrstuhl fuer Stroemungslehre und Stroemungsmaschinen, Freiberg (Germany); Bleckmann, Horst [Poppelsdorfer Schloss, Zoologisches Institut Bonn, Bonn (Germany)

    2007-11-15

    This study focuses on the three-dimensional flow around a mechanical fish model, which reproduces the typical undulatory body and fin motion of a carangiform swimmer. The mechanical model consists of a flexible skeleton embedded in a soft transparent silicone body, which is connected with two cams to a flapping and bending hinge generating a traveling wave motion with increasing amplitude from anterior to posterior, extending to a combined heaving and pitching motion at the fin. The model is submerged in a water tank and towed at the characteristic swimming speed for the neutral swimming mode at U/V = 1. The method of Scanning Particle Image Velocimetry was used to analyze the three-dimensional time-dependent flow field in the axial and saggital planes. The results confirm the earlier observations that the wake develops into a chain of vortex rings which travel sidewards perpendicular to the swimming direction. However, instead of one single vortex shed at each tail beat half-cycle we observed a pair of two vortex rings being shed. Each pair consists of a larger main vortex ring corresponding to the tail beat start-stop vortex, while the second vortex ring is due to the body bending motion. The existence of the second vortex reflects the role of the body in undulatory swimming. A simplified model of the fish body comparing it to a plate with a hinged flap demonstrates the link between the sequence of kinematics and vortex shedding. (orig.)

  17. Forces and energetics of intermittent swimming

    Science.gov (United States)

    Floryan, Daniel; Van Buren, Tyler; Smits, Alexander J.

    2017-08-01

    Experiments are reported on intermittent swimming motions. Water tunnel experiments on a nominally two-dimensional pitching foil show that the mean thrust and power scale linearly with the duty cycle, from a value of 0.2 all the way up to continuous motions, indicating that individual bursts of activity in intermittent motions are independent of each other. This conclusion is corroborated by particle image velocimetry (PIV) flow visualizations, which show that the main vortical structures in the wake do not change with duty cycle. The experimental data also demonstrate that intermittent motions are generally energetically advantageous over continuous motions. When metabolic energy losses are taken into account, this conclusion is maintained for metabolic power fractions less than 1.

  18. Mechanical Study of Standard Six Beat Front Crawl Swimming by Using Swimming Human Simulation Model

    Science.gov (United States)

    Nakashima, Motomu

    There are many dynamical problems in front crawl swimming which have not been fully investigated by analytical approaches. Therefore, in this paper, standard six beat front crawl swimming is analyzed by the swimming human simulation model SWUM, which has been developed by the authors. First, the outline of the simulation model, the joint motion for one stroke cycle, and the specifications of calculation are described respectively. Next, contribution of each fluid force component and of each body part to the thrust, effect of the flutter kick, estimation of the active drag, roll motion, and the propulsive efficiency are discussed respectively. The following results were theoretically obtained: The thrust is produced at the upper limb by the normal drag force component. The flutter kick plays a role in raising the lower half of the body. The active drag coefficient in the simulation becomes 0.082. Buoyancy determines the primal wave of the roll motion fluctuation. The propulsive efficiency in the simulation becomes 0.2.

  19. Do all frogs swim alike? The effect of ecological specialization on swimming kinematics in frogs.

    Science.gov (United States)

    Robovska-Havelkova, Pavla; Aerts, Peter; Rocek, Zbynek; Prikryl, Tomas; Fabre, Anne-Claire; Herrel, Anthony

    2014-10-15

    Frog locomotion has attracted wide scientific interest because of the unusual and derived morphology of the frog pelvic girdle and hind limb. Previous authors have suggested that the design of the frog locomotor system evolved towards a specialized jumping morphology early in the radiation of the group. However, data on locomotion in frogs are biased towards a few groups and most of the ecological and functional diversity remains unexplored. Here, we examine the kinematics of swimming in eight species of frog with different ecologies. We use cineradiography to quantify movements of skeletal elements from the entire appendicular skeleton. Our results show that species with different ecologies do differ in the kinematics of swimming, with the speed of limb extension and especially the kinematics of the midfoot being different. Our results moreover suggest that this is not a phylogenetic effect because species from different clades with similar ecologies converge on the same swimming kinematics. We conclude that it is important to analyze frog locomotion in a broader ecological and evolutionary context if one is to understand the evolutionary origins of this behavior. © 2014. Published by The Company of Biologists Ltd.

  20. Investigation of gliding flight by flying fish

    Science.gov (United States)

    Park, Hyungmin; Jeon, Woo-Pyung; Choi, Haecheon

    2006-11-01

    The most successful flight capability of fish is observed in the flying fish. Furthermore, despite the difference between two medium (air and water), the flying fish is well evolved to have an excellent gliding performance as well as fast swimming capability. In this study, flying fish's morphological adaptation to gliding flight is experimentally investigated using dry-mounted darkedged-wing flying fish, Cypselurus Hiraii. Specifically, we examine the effects of the pectoral and pelvic fins on the aerodynamic performance considering (i) both pectoral and pelvic fins, (ii) pectoral fins only, and (iii) body only with both fins folded. Varying the attack angle, we measure the lift, drag and pitching moment at the free-stream velocity of 12m/s for each case. Case (i) has higher lift-to-drag ratio (i.e. longer gliding distance) and more enhanced longitudinal static stability than case (ii). However, the lift coefficient is smaller for case (i) than for case (ii), indicating that the pelvic fins are not so beneficial for wing loading. The gliding performance of flying fish is compared with those of other fliers and is found to be similar to those of insects such as the butterfly and fruitfly.

  1. Fast-moving soft electronic fish.

    Science.gov (United States)

    Li, Tiefeng; Li, Guorui; Liang, Yiming; Cheng, Tingyu; Dai, Jing; Yang, Xuxu; Liu, Bangyuan; Zeng, Zedong; Huang, Zhilong; Luo, Yingwu; Xie, Tao; Yang, Wei

    2017-04-01

    Soft robots driven by stimuli-responsive materials have unique advantages over conventional rigid robots, especially in their high adaptability for field exploration and seamless interaction with humans. The grand challenge lies in achieving self-powered soft robots with high mobility, environmental tolerance, and long endurance. We are able to advance a soft electronic fish with a fully integrated onboard system for power and remote control. Without any motor, the fish is driven solely by a soft electroactive structure made of dielectric elastomer and ionically conductive hydrogel. The electronic fish can swim at a speed of 6.4 cm/s (0.69 body length per second), which is much faster than previously reported untethered soft robotic fish driven by soft responsive materials. The fish shows consistent performance in a wide temperature range and permits stealth sailing due to its nearly transparent nature. Furthermore, the fish is robust, as it uses the surrounding water as the electric ground and can operate for 3 hours with one single charge. The design principle can be potentially extended to a variety of flexible devices and soft robots.

  2. Fish pelleting

    African Journals Online (AJOL)

    PUBLICATIONS1

    lion tonnes (Punch 2014). The increasing growth in .... CAS = critical stress (Pa) particulate density ..... Design and fabrication of fish meal pellet processing machine ... 59. T a b le 1. : W eig h t, efficien cy a n d d ry n ess o. f p ro cessed fish m ea. l p ellets. S a m p le. Tested. W eig h. t o f. In g red ien ts. (K g. ) W eig h. t o.

  3. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  4. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    International Nuclear Information System (INIS)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-01-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of [ 3 H]Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in [14C]iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress [an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures], although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results

  5. Transitions between three swimming gaits in Paramecium escape.

    Science.gov (United States)

    Hamel, Amandine; Fisch, Cathy; Combettes, Laurent; Dupuis-Williams, Pascale; Baroud, Charles N

    2011-05-03

    Paramecium and other protists are able to swim at velocities reaching several times their body size per second by beating their cilia in an organized fashion. The cilia beat in an asymmetric stroke, which breaks the time reversal symmetry of small scale flows. Here we show that Paramecium uses three different swimming gaits to escape from an aggression, applied in the form of a focused laser heating. For a weak aggression, normal swimming is sufficient and produces a steady swimming velocity. As the heating amplitude is increased, a higher acceleration and faster swimming are achieved through synchronized beating of the cilia, which begin by producing oscillating swimming velocities and later give way to the usual gait. Finally, escape from a life-threatening aggression is achieved by a "jumping" gait, which does not rely on the cilia but is achieved through the explosive release of a group of trichocysts in the direction of the hot spot. Measurements through high-speed video explain the role of trichocysts in defending against aggressions while showing unexpected transitions in the swimming of microorganisms. These measurements also demonstrate that Paramecium optimizes its escape pattern by taking advantage of its inertia.

  6. Health impact of disinfection by-products in swimming pools

    Directory of Open Access Journals (Sweden)

    Cristina M. Villanueva

    2012-12-01

    Full Text Available This article is focused on the epidemiological evidence on the health impacts related to disinfection by-products (DBPs in swimming pools, which is a chemical hazard generated as an undesired consequence to reduce the microbial pathogens. Specific DBPs are carcinogenic, fetotoxic and/or irritant to the airways according to experimental studies. Epidemiological evidence shows that swimming in pools during pregnancy is not associated with an increased risk of reproductive outcomes. An epidemiological study suggested an increased risk of bladder cancer with swimming pool attendance, although evidence is inconclusive. A higher prevalence of respiratory symptoms including asthma is found among swimming pool workers and elite swimmers, although the causality of this association is unclear. The body of evidence in children indicates that asthma is not increased by swimming pool attendance. Overall, the available knowledge suggests that the health benefits of swimming outweigh the potential health risks of chemical contamination. However, the positive effects of swimming should be enhanced by minimising potential risks.

  7. Physiological and biomechanical in different swimming intensities

    Directory of Open Access Journals (Sweden)

    Sebastião Iberes Lopes de Melo

    2004-06-01

    Full Text Available The objective of this study was to analyze the physiological and biomechanical responses of swimmers at different swimming intensities. The intentionally selected sample was composed by seven athletes with swimming times for qualifying on the Brazilian Swimming Championship. A series of 8x200 free style swimming at speeds of 80%, 85%, 90%, 95% and 100% of individual maximum effort was used as the task. A film camera of 60 Hz and an Accusport mMol lactimeter were used for data collection. Descriptive statistics, analysis of variance (ANOVA with “post-hoc” Tukey test and Spearman’s correlation were used for statistical analyses to identify the differences between athletes for the variables blood lactate, crawl stroke frequency (FB and dimension (BR at different intensities. The level of significance was set at 0.05. Based on the results, there were significant differences on swimming technique among effort intensities, for both the physiological and mechanical responses, especially at levels above 95% individual maximum effort. The high correlation between blood lactate and crawl stroke frequency and length, and between crawl stroke frequency and length, with the last two correlations being negative, indicated that the proposed series was adequate to analyze physiological and biomechanical response. It was concluded that as the intensity increases, there is a need for mechanical adjustments to enable the athletes to endure different speeds. It was also possible to establish the ideal swimming speed for each energetic zone, providing data for coaches and athletes to train both speed and technique within the specific energetic zones. RESUMO O objetivo deste estudo foi analisar as respostas fisiológicas e biomecânicas de nadadores em diferentes intensidades de nado. A amostra, intencionalmente escolhida, foi composta por sete atletas que possuíam índices de participação em campeonato brasileiro absoluto. Foi utilizada como tarefa de

  8. Declines in swimming performance with age: a longitudinal study of Masters swimming champions

    Directory of Open Access Journals (Sweden)

    Rubin RT

    2013-03-01

    Full Text Available Robert T Rubin,1,2 Sonia Lin,3 Amy Curtis,4 Daniel Auerbach,5 Charlene Win6 1Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; 2UCLA Bruin Masters Swim Club, Los Angeles, CA, USA; 3Saint Louis University School of Medicine, Saint Louis, MO, USA; 4Indiana University School of Medicine, Indianapolis, IN, USA; 5University of California, Berkeley, CA, USA; 6Loyola Marymount University, Los Angeles, CA, USA Introduction: Because of its many participants and thorough records, competitive Masters swimming offers a rich data source for determining the rate of physical decline associated with aging in physically fit individuals. The decline in performance among national champion swimmers, both men and women and in short and long swims, is linear, at about 0.6% per year up to age 70–75, after which it accelerates in quadratic fashion. These conclusions are based primarily on cross-sectional studies, and little is known about individual performance declines with aging. Herein we present performance profiles of 19 male and 26 female national and international champion Masters swimmers, ages 25 to 96 years, participating in competitions for an average of 23 years. Methods and results: Swimmers’ longitudinal data were compared with the fastest times of world record holders across ages 35–100 years by two regression methods. Neither method proved to accurately model this data set: compared with the rates of decline estimated from the world record data, which represent the best recorded times at given ages, there was bias toward shallower rates of performance decline in the longitudinal data, likely owing to a practice effect in some swimmers as they began their Masters programs. In swimmers’ later years, once maximum performance had been achieved, individual profiles followed the decline represented in the world records, and a few swimmers became the world record holders. In some instances

  9. Upper Caraş River (Danube watershed fish populations fragmentation – technical rehabilitation proposal

    Directory of Open Access Journals (Sweden)

    Voicu Răzvan

    2018-01-01

    Full Text Available We propose a technical solution for fish movement based on the flow of water over a spill threshold. Such barriers are common in the Danube system. The proposed system has a range of operating components which are easily detachable from the spill threshold, are resistant to corrosion and will not harm the fish. In fact, if designed to complement swimming abilities of target fish, it should provide adequate passage for both adults and juveniles. If implemented correctly, the design may offer a solution to help displaced fish recolonize upstream habitats.

  10. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

    2004-10-23

    Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to

  11. Pilot study on infant swimming classes and early motor development.

    Science.gov (United States)

    Dias, Jorge A B de S; Manoel, Edison de J; Dias, Roberta B de M; Okazaki, Victor H A

    2013-12-01

    Alberta Infant Motor Scale (AIMS) scores were examined before and after four months of swimming classes in 12 babies (ages 7 to 9 mo.) assigned to Experimental (n = 6) and Control (n = 6) groups matched on age and developmental status. Infants from both groups improved their developmental status from pre- to post-test; the Experimental group improved on mean percentile rank. The sample size and the discriminative power of the AIMS do not allow conclusive judgments on these group differences, hence on the effect of infant swimming classes. Nevertheless, a number of recommendations are made for future studies on the effect of swimming classes on infant motor development.

  12. Flow disturbances generated by feeding and swimming zooplankton

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Jiang, Haisong; Goncalves, R. J.

    2014-01-01

    to minimize the fluid disturbance that they produce. By means of particle image velocimetry, we describe the fluid disturbances produced by feeding and swimming in zooplankton with diverse propulsion mechanisms and ranging from 10-µm flagellates to greater than millimeter-sized copepods. We show...... that zooplankton, in which feeding and swimming are separate processes, produce flow disturbances during swimming with a much faster spatial attenuation (velocity u varies with distance r as u ∝ r−3 to r−4) than that produced by zooplankton for which feeding and propulsion are the same process (u ∝ r−1 to r−2...

  13. Optimal swimming strategies in mate searching pelagic copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2008-01-01

    Male copepods must swim to find females, but swimming increases the risk of meeting predators and is expensive in terms of energy expenditure. Here I address the trade-offs between gains and risks and the question of how much and how fast to swim using simple models that optimise the number...... of their energy storage and to scale with the square root of body length in contrast to the proportionality scaling in feeding copepods. Suspension feeding males may search and feed at the same time, but feeding is more efficient when hovering than when cruising. Therefore, females should mainly be hovering...

  14. Radon measurements in air in waterworks and indoor swimming pools - a primary mapping project

    International Nuclear Information System (INIS)

    Marinko, J.; Mjoenes, L.; Soederman, A.-L.

    2004-01-01

    In 2001 the Swedish Work Environment Authority asked five regional offices around the country; Falun, Malmoe, Vaexjoe, Umeaa and Oerebro, to measure radon in air in workplaces where water was likely to enhance radon levels indoors. Track etch detectors were used and placed in workplaces according to the SSI measurement protocol for determining the annual average radon concentration in homes. Rooms that are frequently used by employees were measured. The detectors were exposed between 1 to 3 months. 225 detectors were used in the project and analysed at the same laboratory. The results showed that the radon concentration in waterworks often is high. Measurements were made in 60 waterworks. Levels exceeding 1000 Bq/m 3 were found in 49 of them and levels exceeding 4000 Bq/m 3 were found in 21 waterworks. The variation between waterworks may be a result of the radon concentration in the raw water, the amount of radon gas escaping to the air when water is treated, the air exchange rate in the building and where the detectors were deployed. Measurements were made in 28 indoor swimming baths. The maximum level was 290 Bq/m 3 , but most concentrations were between 30 to 70 Bq/m 3 . The conclusion is that high radon levels do not seem to be a problem in indoor swimming baths. Maybe this is due to good ventilation or the fact that water often has been treated for radon before it is used in swimming pools. The results from measurement in food industries such as breweries showed no extreme radon levels except for a fish farm where levels over 1000 Bq/m 3 were measured in the farming room and 790 Bq/m 3 in the office. The radon concentrations in laundries were relatively low, between 30 and 170 Bq/m 3

  15. 36 CFR 3.17 - What regulations apply to swimming areas and beaches?

    Science.gov (United States)

    2010-07-01

    ... swimming areas and beaches? 3.17 Section 3.17 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.17 What regulations apply to swimming areas and beaches? (a) The superintendent may designate areas as swimming areas or swimming beaches in...

  16. On the development of inexpensive speed and position tracking system for swimming

    DEFF Research Database (Denmark)

    Trangbæk, Søren; Rasmussen, Cuno; Andersen, Thomas Bull

    2016-01-01

    A semi-automated tracking system was developed for the analysis of swimming, using cameras, an LED diode marker, and a red swim cap. Four experienced young swimmers were equipped with a marker and a swim cap and their position and speed was tracked throughout above-water and under-water swimming ...

  17. Hawaii ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for reef, marine, estuarine, and native stream fish species in coastal Hawaii. Vector polygons in this data...

  18. Louisiana ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for freshwater (inland) fish species in coastal Louisiana. Vector polygons represent water-bodies and other...

  19. Maryland ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and freshwater fish species in Maryland. Vector polygons in this data...

  20. Virginia ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine, estuarine, anadromous, and brackishwater fish species in Virginia. Vector polygons in this data...

  1. Pentastomid parasites in fish in the Olifants and Incomati River systems, South Africa

    Directory of Open Access Journals (Sweden)

    Wilmien J. Luus-Powell

    2008-09-01

    Full Text Available During parasitological field surveys of freshwater fish, sebekiid and subtriquetrid pentastome larvae were recovered from the body cavity or swim bladder of several fish species from various localities in Limpopo and Mpumalanga Provinces, South Africa. Sebekia wedli was recovered from the body cavity of Marcusenius macrolepidotus (Mormyridae from Flag Boshielo Dam, Limpopo Province, and Alofia sp. and Subtriquetra rileyi were found in the swim bladder of Oreochromis mossambicus (Cichlidae from the Phalaborwa Barrage, Limpopo Province. The latter species was also collected from the swim bladder of O. mossambicus in dams in the Phalaborwa region and the Ga-Selati River, Limpopo Province. A single specimen of Sebekia okavangoensis was present in the body cavity of Clarias gariepinus (Clariidae in a dam on a sugarcane farm in the Komatipoort region, Mpumalanga Province. Pentastomid infections in the Mormyridae and Clariidae represent new host records.

  2. Relationship between power m semi-tethered swimming using ergometer attachment and swimming performance in primary school swimmers

    OpenAIRE

    塩野谷, 明; 渋倉, 崇行; 小泉, 昌幸; 大庭, 昌昭; 立川, 厚太郎

    2001-01-01

    The purposes of this study were to measure the power in semi-tethered swimming (STS) of primary school swimmers and clarify the relationship between the power in STS and the performance in swimming Subjects were 56 primary school boys and 33 girls participated in the swimming competition for the primary school pupils in a provincial city To perform these purposes, each subject tried STS with 2.5kgf traction using the ergometer attachment and the power in STS was calculated by the product the ...

  3. Sexual ornaments, body morphology, and swimming performance in naturally hybridizing swordtails (teleostei: xiphophorus.

    Directory of Open Access Journals (Sweden)

    James B Johnson

    Full Text Available Determining the costs of sexual ornaments is complicated by the fact that ornaments are often integrated with other, non-sexual traits, making it difficult to dissect the effect of ornaments independent of other aspects of the phenotype. Hybridization can produce reduced phenotypic integration, allowing one to evaluate performance across a broad range of multivariate trait values. Here we assess the relationship between morphology and performance in the swordtails Xiphophorus malinche and X. birchmanni, two naturally-hybridizing fish species that differ extensively in non-sexual as well as sexual traits. We took advantage of novel trait variation in hybrids to determine if sexual ornaments incur a cost in terms of locomotor ability. For both fast-start and endurance swimming, hybrids performed at least as well as the two parental species. The sexually-dimorphic sword did not impair swimming performance per se. Rather, the sword negatively affected performance only when paired with a sub-optimal body shape. Studies seeking to quantify the costs of ornaments should consider that covariance with non-sexual traits may create the spurious appearance of costs.

  4. Boxfish swimming paradox resolved: forces by the flow of water around the body promote manoeuvrability.

    Science.gov (United States)

    Van Wassenbergh, S; van Manen, K; Marcroft, T A; Alfaro, M E; Stamhuis, E J

    2015-02-06

    The shape of the carapace protecting the body of boxfishes has been attributed an important hydrodynamic role in drag reduction and in providing automatic, flow-direction realignment and is therefore used in bioinspired design of cars. However, tight swimming-course stabilization is paradoxical given the frequent, high-performance manoeuvring that boxfishes display in their spatially complex, coral reef territories. Here, by performing flow-tank measurements of hydrodynamic drag and yaw moments together with computational fluid dynamics simulations, we reverse several assumptions about the hydrodynamic role of the boxfish carapace. Firstly, despite serving as a model system in aerodynamic design, drag-reduction performance was relatively low compared with more generalized fish morphologies. Secondly, the current theory of course stabilization owing to flow over the boxfish carapace was rejected, as destabilizing moments were found consistently. This solves the boxfish swimming paradox: destabilizing moments enhance manoeuvrability, which is in accordance with the ecological demands for efficient turning and tilting. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Consistent selection towards low activity phenotypes when catchability depends on encounters among human predators and fish.

    Directory of Open Access Journals (Sweden)

    Josep Alós

    Full Text Available Together with life-history and underlying physiology, the behavioural variability among fish is one of the three main trait axes that determines the vulnerability to fishing. However, there are only a few studies that have systematically investigated the strength and direction of selection acting on behavioural traits. Using in situ fish behaviour revealed by telemetry techniques as input, we developed an individual-based model (IBM that simulated the Lagrangian trajectory of prey (fish moving within a confined home range (HR. Fishers exhibiting various prototypical fishing styles targeted these fish in the model. We initially hypothesised that more active and more explorative individuals would be systematically removed under all fished conditions, in turn creating negative selection differentials on low activity phenotypes and maybe on small HR. Our results partly supported these general predictions. Standardised selection differentials were, on average, more negative on HR than on activity. However, in many simulation runs, positive selection pressures on HR were also identified, which resulted from the stochastic properties of the fishes' movement and its interaction with the human predator. In contrast, there was a consistent negative selection on activity under all types of fishing styles. Therefore, in situations where catchability depends on spatial encounters between human predators and fish, we would predict a consistent selection towards low activity phenotypes and have less faith in the direction of the selection on HR size. Our study is the first theoretical investigation on the direction of fishery-induced selection of behaviour using passive fishing gears. The few empirical studies where catchability of fish was measured in relation to passive fishing techniques, such as gill-nets, traps or recreational fishing, support our predictions that fish in highly exploited situations are, on average, characterised by low swimming activity

  6. Critical stroke rate as a parameter for evaluation in swimming

    Directory of Open Access Journals (Sweden)

    Marcos Franken

    2013-12-01

    Full Text Available The purpose of this study was to investigate the critical stroke rate (CSR compared to the average stroke rate (SR when swimming at the critical speed (CS. Ten competitive swimmers performed five 200 m trials at different velocities relative to their CS (90, 95, 100, 103 and 105% in front crawl. The CSR was significantly higher than the SR at 90% of the CS and lower at 105% of the CS. Stroke length (SL at 103 and 105% of the CS were lower than the SL at 90, 95, and 100% of the CS. The combination of the CS and CSR concepts can be useful for improving both aerobic capacity/power and technique. CS and CSR could be used to reduce the SR and increase the SL, when swimming at the CS pace, or to increase the swimming speed when swimming at the CSR.

  7. RFID Timing Antenna for Open Water Swimming Competitions

    Directory of Open Access Journals (Sweden)

    Helmut Woellik

    2018-03-01

    Full Text Available RFID timing is the common method for processing results in mass sport events. Typically, it is used in running, cycling and triathlon events, but with some modifications even swimming athletes in water can be detected. In open water swimming competitions, the distance between the athletes and the RFID antenna must be larger so that escort boats or small ships can pass the gate without getting into dangerous situations. In this paper a design of an underwater RFID antenna is presented which was used during swimming events, It could span a distance up to 12 m width inside a swimming channel or offshore. The whole construction was completely immerged under the water line. The electronic components were housed in some meter distance on the beach, in a boat or in a buoy. With a reading range up to 1.5 m distance a detection rate between 94.6% and 100% could be achieved.

  8. Allegheny County Public Swimming Pool, Hot Tub, and Spa Inspections

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Public swimming pool, hot tub, and spa facilities are licensed and inspected once each year to assure proper water quality, sanitation, lifeguard coverage and...

  9. Thermal analyses of solar swimming pool heating in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, I.

    2011-01-01

    Hotels and swimming clubs in Pakistan pay huge gas bills for heating Swimming pools in winter. Winter days in most parts of Pakistan remain sunny and unglazed low cost solar collectors may be used to extend the swimming season. Installing the pool in a wind-protected area, which receives unobstructed solar radiation, may further reduce the size of the solar collectors required to heat the swimming pools. The pools should be covered with plastic sheet to eliminate evaporative heat losses and to prevent dust and tree leaves falling in the pool. The results of the thermal analysis show that in some parts of the country, a solar exposed pool can maintain comfortable temperature simply by using a plastic sheet on the pool surface. On the other hand, there are cities where solar collector array equal to twice the surface area of the pool is required to keep desired temperature in winter. (author)

  10. Reliability of tethered swimming evaluation in age group swimmers.

    Science.gov (United States)

    Amaro, Nuno; Marinho, Daniel A; Batalha, Nuno; Marques, Mário C; Morouço, Pedro

    2014-06-28

    The aim of the present study was to examine the reliability of tethered swimming in the evaluation of age group swimmers. The sample was composed of 8 male national level swimmers with at least 4 years of experience in competitive swimming. Each swimmer performed two 30 second maximal intensity tethered swimming tests, on separate days. Individual force-time curves were registered to assess maximum force, mean force and the mean impulse of force. Both consistency and reliability were very strong, with Cronbach's Alpha values ranging from 0.970 to 0.995. All the applied metrics presented a very high agreement between tests, with the mean impulse of force presenting the highest. These results indicate that tethered swimming can be used to evaluate age group swimmers. Furthermore, better comprehension of the swimmers ability to effectively exert force in the water can be obtained using the impulse of force.

  11. The fractal harmonic law and its application to swimming suit

    Directory of Open Access Journals (Sweden)

    Kong Hai-Yan

    2012-01-01

    Full Text Available Decreasing friction force between a swimming suit and water is the key factor to design swimming suits. Water continuum mechanics forbids discontinuous fluids, but in angstrom scale water is indeed discontinuous. Swimming suit is smooth on large scale, but it is discontinuous when the scale becomes smaller. If fractal dimensions of swimming suit and water are the same, a minimum of friction force is predicted, which means fractal harmonization. In the paper, fractal harmonic law is introduced to design a swimsuit whose surface fractal dimensions on a macroscopic scale should be equal to or closed to the water's fractal dimensions on an Angstrom scale. Various possible microstructures of fabric are analyzed and a method to obtain perfect fractal structure of fabric is proposed by spraying nanofibers to its surface. The fractal harmonic law can be used to design a moving surface with a minimal friction.

  12. Reliability of Tethered Swimming Evaluation in Age Group Swimmers

    Directory of Open Access Journals (Sweden)

    Amaro Nuno

    2014-07-01

    Full Text Available The aim of the present study was to examine the reliability of tethered swimming in the evaluation of age group swimmers. The sample was composed of 8 male national level swimmers with at least 4 years of experience in competitive swimming. Each swimmer performed two 30 second maximal intensity tethered swimming tests, on separate days. Individual force-time curves were registered to assess maximum force, mean force and the mean impulse of force. Both consistency and reliability were very strong, with Cronbach's Alpha values ranging from 0.970 to 0.995. All the applied metrics presented a very high agreement between tests, with the mean impulse of force presenting the highest. These results indicate that tethered swimming can be used to evaluate age group swimmers. Furthermore, better comprehension of the swimmers ability to effectively exert force in the water can be obtained using the impulse of force.

  13. Swimming Behavior of Individual Zooplankters During Night-Time Foraging

    National Research Council Canada - National Science Library

    McGehee, Duncan

    1998-01-01

    Amatzia Genin, Jules Jaffe, Duncan McGehee developed a method for automatically tracking individual plankters swimming through the imaging volume, and applied the method to track approximately 280,000 animals...

  14. Fishing Access Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — The Vermont Fish & Wildlife Department maintains developed fishing access areas. These sites provide public access to waters in Vermont for shore fishing...

  15. Bending continuous structures with SMAs: a novel robotic fish design.

    Science.gov (United States)

    Rossi, C; Colorado, J; Coral, W; Barrientos, A

    2011-12-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.

  16. Bending continuous structures with SMAs: a novel robotic fish design

    International Nuclear Information System (INIS)

    Rossi, C; Colorado, J; Coral, W; Barrientos, A

    2011-01-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.

  17. Fish larvae exploit edge vortices along their dorsal and ventral fin folds to propel themselves

    NARCIS (Netherlands)

    Li, G.; Müller, U.K.; Leeuwen, van J.L.; Liu, Hao

    2016-01-01

    Larvae of bony fish swim in the intermediate Reynolds number (Re) regime,
    using body- and caudal-fin undulation to propel themselves. They share a
    median fin fold that transforms into separate median fins as they grow into
    juveniles. The fin fold was suggested to be an adaption for

  18. Biophysical processes leading to the ingress of temperate fish larvae into estuarine nursery areas: a review

    Czech Academy of Sciences Publication Activity Database

    Teodósio, M. A.; Paris, C. B.; Wolanski, E.; Morais, Pedro Miguel

    2016-01-01

    Roč. 183, A (2016), s. 187-202 ISSN 0272-7714 R&D Projects: GA ČR GA13-05872S Institutional support: RVO:68081766 Keywords : fish larvae * sense acuity * orientation * swimming strategies * recruitment model Subject RIV: EG - Zoology Impact factor: 2.176, year: 2016

  19. Fish axial muscle : structure-function relationships on a micro-level

    NARCIS (Netherlands)

    Spierts, I.L.Y.

    2000-01-01

    This paper discusses some examples of strong correlations between functions and structures in axial fish muscle on a micro-level. Muscle tissue needs a certain elasticity to cope with the diverse functional requirements necessary for swimming. During fast-starts of carp, muscles can be stretched up

  20. Shortlist masterplan wind Effect of pilling noise on the survival of fish larvae (pilot study)

    NARCIS (Netherlands)

    Bolle, L.J.; Jong, C.A.F.; Bierman, S.M.; Haan, de D.; Huijer, T.; Kaptein, D.; Lohman, M.; Tribuhl, S.V.; Beek, van F.A.; Damme, van C.J.G.; Berg, van den F.; Heul, van der J.W.; Keeken, van O.A.; Wessels, P.; Winter, H.V.

    2011-01-01

    Fish can suffer lethal damage to their swim bladder or other organs due to loud impulse sounds such as pile driving noise. However, detailed dose-response studies are still scarce, especially for the early life stages. In view of the rapid extension of offshore wind farms in the North Sea, there is

  1. Acquired versus innate prey capturing skills in super-precocial live-bearing fish

    NARCIS (Netherlands)

    Lankheet, Martin J.; Stoffers, Twan; Leeuwen, van Johan L.; Pollux, Bart J.A.

    2016-01-01

    Live-bearing fish start hunting for mobile prey within hours after birth, an example of extreme precociality. Because prenatal, in utero, development of this behaviour is constrained by the lack of free-swimming sensory-motor interactions, immediate success after birth depends on innate,

  2. Data from: Acquired versus innate prey capturing skills in super-precocial live-bearing fish

    NARCIS (Netherlands)

    Lankheet, M.J.M.; Stoffers, Twan; Leeuwen, van J.L.; Pollux, B.J.A.

    2016-01-01

    Live-bearing fish start hunting for mobile prey within hours after birth, an example of extreme precociality. Because prenatal, in utero, development of this behaviour is constrained by the lack of free-swimming sensory-motor interactions, immediate success after birth depends on innate,

  3. Involvement and Loyalty in Recreation Swimming in Greece: Investigating Relationships

    OpenAIRE

    Evangelia Kontogianni; Charilaos Kouthouris; Achilleas Barlas; Vasileiοs Voutselas

    2011-01-01

    Present study tested the validity of involvement scale (Kyle et al., 2004), examined differences according demographic characteristics and investigated possible relationships between involvement and attitudinal loyalty in context of recreational swimming. Three hundred and forty nine participants (61.9% females) from a major swimming sport center in northern Greece, completed the three dimensional involvement model of Kyle’s et al (2004), and Armitage & Conner’s (1999) attitudinal loyalty’s i...

  4. Swimming efficiency in a shear-thinning fluid

    OpenAIRE

    Nganguia, Herve; Pietrzyk, Kyle; Pak, On Shun

    2017-01-01

    Micro-organisms expend energy moving through complex media. While propulsion speed is an important property of locomotion, efficiency is another factor that may determine the swimming gait adopted by a micro-organism in order to locomote in an energetically favorable manner. The efficiency of swimming in a Newtonian fluid is well characterized for different biological and artificial swimmers. However, these swimmers often encounter biological fluids displaying shear-thinning viscosities. Litt...

  5. Mechanics of Undulatory Swimming in a Frictional Fluid

    OpenAIRE

    Ding, Yang; Sharpe, Sarah S.; Masse, Andrew; Goldman, Daniel I.

    2012-01-01

    The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to s...

  6. Trends in swimming training for individual medley events

    OpenAIRE

    Brtník, Tomáš

    2013-01-01

    Title: Trends in swimming training for individual medley events Objectives: The aim of our study was to analyze performance and training for 200 and 400 m individual medley events and describe new trends in training for these swimming events Methods: Our research design was a case study. We were interested in training of three swimmers of elite performance in the 200 and 400 m individual medley events. To identify cases, we used the analysis of documents and literature, to a limited extent, t...

  7. TEACHING OF BACKSTROKE SWIMMING YOUNGER SCHOOL AGE CHILDREN

    OpenAIRE

    Vopálenská, Zuzana

    2011-01-01

    TEACHING OF BACKSTROKE SWIMMING YOUNGER SCHOOL AGE CHILDREN Objectives: The main objective of this thesis is to create a digital video recording of a contemporary teaching method of backstroke swimming technique with younger school age children. A group who are from 6 to 9 years old participate in the research work. Methods: In this thesis we have in the first and second phase focused on collection datas from the literature and its other processing into a methodical series of exercises. In th...

  8. Study of Fungal Contamination of Indoor Public Swimming Pools

    OpenAIRE

    H Nanbakhsh; K Diba; K Hazarti

    2004-01-01

    Fungi are found in different environments with variable distribution patterns depending on various factors. The aim of this study was determination of fungal contaminants in public swimming pools in Uromia, Iran. The fungal contaminations of four indoor swimming pools were studied by using membrane filtration and swab sampling method. Samples were collected by a manual plastic pump, in a 200 ml sterilized bottle. All samples were collected within 2 hours and then transferred to the laboratory...

  9. London 2012 Paralympic swimming: passive drag and the classification system.

    Science.gov (United States)

    Oh, Yim-Taek; Burkett, Brendan; Osborough, Conor; Formosa, Danielle; Payton, Carl

    2013-09-01

    The key difference between the Olympic and Paralympic Games is the use of classification systems within Paralympic sports to provide a fair competition for athletes with a range of physical disabilities. In 2009, the International Paralympic Committee mandated the development of new, evidence-based classification systems. This study aims to assess objectively the swimming classification system by determining the relationship between passive drag and level of swimming-specific impairment, as defined by the current swimming class. Data were collected on participants at the London 2012 Paralympic Games. The passive drag force of 113 swimmers (classes 3-14) was measured using an electro-mechanical towing device and load cell. Swimmers were towed on the surface of a swimming pool at 1.5 m/s while holding their most streamlined position. Passive drag ranged from 24.9 to 82.8 N; the normalised drag (drag/mass) ranged from 0.45 to 1.86 N/kg. Significant negative associations were found between drag and the swimming class (τ = -0.41, p < 0.01) and normalised drag and the swimming class (τ = -0.60, p < 0.01). The mean difference in drag between adjacent classes was inconsistent, ranging from 0 N (6 vs 7) to 11.9 N (5 vs 6). Reciprocal Ponderal Index (a measure of slenderness) correlated moderately with normalised drag (r(P) = -0.40, p < 0.01). Although swimmers with the lowest swimming class experienced the highest passive drag and vice versa, the inconsistent difference in mean passive drag between adjacent classes indicates that the current classification system does not always differentiate clearly between swimming groups.

  10. The Ineffectiveness of Manual Treatment of Swimming Pools NNAJI ...

    African Journals Online (AJOL)

    Michael Horsfall

    period, the COD was above 80mg/l, the pH was between 6.2 and 7.1 as against 7.2 to 7.8 recommended by standards. The total plate count was within limits but ... strains of normal human flora have been found in chlorinated swimming pools ... mucus, saliva or skin in the swimming pool water or similar recreational water ...

  11. ENERGETIC EXTREMES IN REEF FISH OCCUPYING HARSH HABITATS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2009-01-01

    Christopher Fulton1, John Steffensen2, Jacob Johansen3 Indo-Pacific Fish Conference, Fremantle, Western Australia, May 2009 - Talk Abstract: Fish living in harsh habitats often display phenotypic features that allow them to deal with extreme and/or highly variable environmental conditions. We......-swept environment (up to 1 m s-1) whilst incurring a relatively low energetic cost of transport. Paddle-finned sister taxa, which have slightly more rounded fins and occupy sheltered habitats, displayed similar levels of energetic efficiency, but at swimming speeds less than half that of their wing...

  12. Evaluation of Artificial Caudal Fin for Fish Robot with Two Joints by Using Three-Dimensional Fluid-Structure Simulation

    Directory of Open Access Journals (Sweden)

    Yogo Takada

    2013-01-01

    Full Text Available A fish robot with image sensors is useful to research for underwater creatures such as fish. However, the propulsion velocity of a fish robot is very slow compared with live fish. It is necessary to swim at a speed several times faster than the speed of the current robots for various usages. Therefore, we are searching for the method of making the robot swim fast. The simulation before making the robot is important. We have made the computational simulation program of three-dimensional fluid-structure analysis. The flow around the caudal fin can be examined by analyzing the fin as an elastic body. We compared the results of numerical analysis with the results of PIV measurement. Both were agreed well. Because the performance of a fish robot with two joints is better than that of a fish robot with one joint, we searched for an excellent fin for the fish robot with two joints by using CFD. We confirmed that the swimming performance of a fish robot becomes very good when the caudal fin is rigid except for the root of the fin which is comparatively flexible.

  13. Performance evaluation of an improved fish robot actuated by piezoceramic actuators

    International Nuclear Information System (INIS)

    Nguyen, Q S; Heo, S; Park, H C; Byun, D

    2010-01-01

    This paper presents an improved fish robot actuated by four lightweight piezocomposite actuators. Our newly developed actuation mechanism is simple to fabricate because it works without gears. With the new actuation mechanism, the fish robot has a 30% smaller cross section than our previous model. Performance tests of the fish robot in water were carried out to measure the tail-beat angle, the thrust force, the swimming speed for various tail-beat frequencies from 1 to 5 Hz and the turning radius at the optimal frequency. The maximum swimming speed of the fish robot is 7.7 cm s −1 at a tail-beat frequency of 3.9 Hz. A turning experiment shows that the swimming direction of the fish robot can be controlled by changing the duty ratio of the driving voltage; the fish robot has a turning radius of 0.41 m for a left turn and 0.68 m for a right turn

  14. Behaviour of fish by-catch in the mouth of a crustacean trawl.

    Science.gov (United States)

    Queirolo, D; Gaete, E; Montenegro, I; Soriguer, M C; Erzini, K

    2012-06-01

    The behaviour of fish by-catch was recorded and characterized by in situ observations in the mouth of a crustacean trawl using an underwater camera system with artificial light, at depths between 106 and 461 m, along the central coast of Chile. The groups or species studied were rattails (family Macrouridae), Chilean hake Merluccius gayi gayi, sharks (orders Carcharhiniformes and Squaliformes), skates (family Rajidae), flatfishes (genus Hippoglossina) and small benthopelagic and demersal fishes (orders Osmeriformes, Stomiiformes, Gadiformes, Ophidiiformes and Perciformes). The fish behaviour was categorized in terms of (1) position in the water column, (2) initial orientation with respect to the trawl, (3) locomotion and (4) swimming speed with respect to the trawl. Rattails, sharks, skates and flatfishes were passive in response to the trawl and showed similar behavioural patterns, with most fishes observed sitting or touching the bottom with no swimming or other activity. Merluccius gayi gayi was the most active species, displaying a wide combination of behavioural responses when the trawl approached. This species showed several behavioural patterns, mainly characterized by swimming forward at variable speed. A fraction of small bentho-pelagic and demersal fishes also showed an active behaviour but always at lower speed than the trawl. The species-specific differences in behaviour in the mouth of the trawl suggest that improvements at the level of the footrope can be made to reduce by-catch, especially of passive species. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  15. Wearable inertial sensors in swimming motion analysis: a systematic review.

    Science.gov (United States)

    de Magalhaes, Fabricio Anicio; Vannozzi, Giuseppe; Gatta, Giorgio; Fantozzi, Silvia

    2015-01-01

    The use of contemporary technology is widely recognised as a key tool for enhancing competitive performance in swimming. Video analysis is traditionally used by coaches to acquire reliable biomechanical data about swimming performance; however, this approach requires a huge computational effort, thus introducing a delay in providing quantitative information. Inertial and magnetic sensors, including accelerometers, gyroscopes and magnetometers, have been recently introduced to assess the biomechanics of swimming performance. Research in this field has attracted a great deal of interest in the last decade due to the gradual improvement of the performance of sensors and the decreasing cost of miniaturised wearable devices. With the aim of describing the state of the art of current developments in this area, a systematic review of the existing methods was performed using the following databases: PubMed, ISI Web of Knowledge, IEEE Xplore, Google Scholar, Scopus and Science Direct. Twenty-seven articles published in indexed journals and conference proceedings, focusing on the biomechanical analysis of swimming by means of inertial sensors were reviewed. The articles were categorised according to sensor's specification, anatomical sites where the sensors were attached, experimental design and applications for the analysis of swimming performance. Results indicate that inertial sensors are reliable tools for swimming biomechanical analyses.

  16. Turtle mimetic soft robot with two swimming gaits.

    Science.gov (United States)

    Song, Sung-Hyuk; Kim, Min-Soo; Rodrigue, Hugo; Lee, Jang-Yeob; Shim, Jae-Eul; Kim, Min-Cheol; Chu, Won-Shik; Ahn, Sung-Hoon

    2016-05-04

    This paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas. This flipper actuator can mimic the continuous deformation of the forelimb of Chelonia mydas which could not be realized in previous motor based robot. This actuator can also produce two distinct motions that correspond to the two different swimming gaits of the Chelonia mydas, which are the routine and vigorous swimming gaits, by changing the applied current sequence of the SMA wires embedded in the flipper actuator. The generated thrust and the swimming efficiency in each swimming gait of the flipper actuator were measured and the results show that the vigorous gait has a higher thrust but a relatively lower swimming efficiency than the routine gait. The flipper actuator was implemented in a biomimetic turtle robot, and its average swimming speed in the routine and vigorous gaits were measured with the vigorous gait being capable of reaching a maximum speed of 11.5 mm s(-1).

  17. Schistosoma mansoni cercariae swim efficiently by exploiting an elastohydrodynamic coupling

    Science.gov (United States)

    Krishnamurthy, Deepak; Katsikis, Georgios; Bhargava, Arjun; Prakash, Manu

    2017-03-01

    The motility of many parasites is critical for infecting their host, as exemplified in the transmission cycle of the parasite Schistosoma mansoni. In its human infectious stage, submillimetre-scale forms of the parasite known as cercariae swim in freshwater and infect humans by penetrating the skin. This infection causes schistosomiasis, a disease comparable to malaria in global socio-economic impact. Given that cercariae do not feed and hence have a lifetime of around 12 hours, efficient motility is crucial for schistosomiasis transmission. Despite this, a first-principles understanding of how cercariae swim is lacking. Combining biological experiments, a novel theoretical model and its robotic realization, we show that cercariae use their forked tail to swim against gravity using a novel swimming gait, described here as a `T-swimmer gait'. During this gait, cercariae beat their tail periodically while maintaining an increased flexibility near their posterior and anterior ends. This flexibility allows an interaction between fluid drag and bending resistance--an elastohydrodynamic coupling, to naturally break time-reversal symmetry and enable locomotion at small length scales. Finally, we find that cercariae maintain this flexibility at an optimal regime for efficient swimming. We anticipate that our work sets the ground for linking the swimming of cercariae to disease transmission, and could potentially enable explorations of novel strategies for schistosomiasis control and prevention.

  18. Hormonal changes after supine posture, immersion, and swimming.

    Science.gov (United States)

    Viti, A; Lupo, C; Lodi, L; Bonifazi, M; Martelli, G

    1989-12-01

    This study was undertaken to evaluate the effects of the supine posture, immersion, and swimming on hormones involved in the regulation of hydrosaline equilibrium. Plasma levels of atrial natriuretic peptide (ANP), arginine vasopressin (AVP), plasma renin activity (PRA), and aldosterone (ALDO) were measured by radioimmunoassay in eight untrained young subjects (five males and three females). Blood samples were collected on different days: control morning samples in a relaxed standing posture before each test; after 20 min in a supine position; after 20 min of horizontal immersion in water at 28 degrees C; after 20 min of backstroke swimming (speed about 1 m/s). No changes occurred in AVP levels after each test. ALDO and PRA increased significantly only after swimming and were directly correlated. ANP increased significantly after immersion, but no further increase was observed after swimming. The hematocrit, which increased after swimming, was inversely correlated with ANP levels in the post-exercise samples. These data show that while ALDO and PRA increase only in response to swimming, even at moderate intensity, ANP probably requires more prolonged and intense exercise to reach a significantly higher level than in immersion.

  19. Swimming speed and foraging strategies of northern elephant seals

    Science.gov (United States)

    Hassrick, Jason L.; Crocker, Daniel E.; Zeno, Ramona L.; Blackwell, Susanna B.; Costa, Daniel P.; Le Boeuf, Burney J.

    2007-02-01

    We investigated swimming speed, a key variable in both the management of oxygen stores and foraging strategies, and its relationship to diving behaviour in northern elephant seals , Mirounga angustirostris. Swimming speed significantly reduced the dive duration and time at depth for presumed foraging dives, but increased with dive depth. This suggests that the extended duration of deep dives is made possible by physiological adjustments and not by changes in swimming speed or effort. Swimming speeds were similar across sex and age classes despite different predicted minimum cost of transport speeds. All seals exhibited characteristic dive shapes and swimming speed patterns that support their putative functions, but two-dimensional dive shapes and swimming angles varied between sexes and age classes. Mean dive angles on descent were markedly shallow, suggesting use of negative buoyancy to cover horizontal distance while diving. Buoyancy also appeared to affect two-dimensional dive shapes and ability to use extended gliding behaviours between surface and deep foraging zones. Significant differences in diving behaviour between sexes and between young and adult females were evident for various phases of the dive cycle, potentially resulting from physical constraints or differences in dive functionality.

  20. Intra-Cyclic Variation of Force and Swimming Performance.

    Science.gov (United States)

    Morouço, Pedro G; Barbosa, Tiago; Arellano, Raul; Vilas-Boas, João Paulo

    2017-12-28

    In front crawl swimming, the upper limbs alternate move with the aim of achieving a continuous application of force in the water, leading to lower intra-cyclic velocity variation (dv). This parameter has been identified as a crucial criterion for swimmers' evaluation, thus the present study aimed to examine the assessment of intra-cyclic force variation (dF) and to analyze its relationship with dv and swimming performance. Twenty-two high-level male swimmers performed a maximal effort 50-m front crawl time-trial and a 30-s maximal effort fully tethered swimming test, which were randomly assigned. Instantaneous velocity was obtained by a speedometer and force by a strain-gauge system. Similarity was observed between the tests, with dF attaining much higher magnitudes than dv (p swimming, with a high level of agreement for the stroke rate and blood lactate increase. Swimming velocity presented a strong negative linear relationship with dF (r = -0.826, p swimming performance. This investigation demonstrated that assessing dF is a promising approach for evaluating a swimmer's performance. From the experiments, this new parameter showed that swimmers with higher dF also present higher dv, leading to a decrease in performance.

  1. Swimming as physical activity and recreation for women

    Directory of Open Access Journals (Sweden)

    Yfanti Maria

    2014-01-01

    Full Text Available The present study reviews all data that establish swimming as an everyday lifestyle and recreational activity for women, since it promotes wellness, well-being and longevity. Swimming as a natural, physical activity is one of the most effective ways of exercise, since it affects and work outs the whole body. It is the most suitable sport for all age groups, because it combines beneficial results, for both body and soul and is also a low-risk-injury physical exercise. Aim of this study is to record the effect of recreational swimming in physical condition indexes and in quality of life in women. In particular to record the benefits, since studies have shown that swimming can help in prevention and treatment of chronic diseases and improves quality of life, of well-being and longevity. Results of all studies showed that swimming, as a great natural recreational activity has multiple beneficial effects on the female body that are not limited to the physical characteristics but are extended to the mental ones. Challenges for the application and development fields of this particular method of exercise, are the quality of service provided and the staffing of departments and programs in multiple carriers, private or public. Researchers and writers agree that there are great prospects for growth for women through partnerships, with programs and systematic research in the field of recreational swimming.

  2. Swimming of a Sea Butterfly with an Elongated Shell

    Science.gov (United States)

    Karakas, Ferhat; Maas, Amy E.; Murphy, David W.

    2017-11-01

    Sea butterflies (pteropods) are small, zooplanktonic marine snails which swim by flapping highly flexible parapodia. Previous studies show that the swimming hydrodynamics of Limacina helicina, a polar pteropod with a spiraled shell, is similar to tiny insect flight aerodynamics and that forward-backward pitching is key for lift generation. However, swimming by diverse pteropod species with different shell shapes has not been examined. We present measurements of the swimming of Cuvierina columnella, a warm water species with an elongated non-spiraled shell collected off the coast of Bermuda. With a body length of 9 mm, wing beat frequency of 4-6 Hz and swimming speed of 35 mm/s, these organisms swim at a Reynolds number of approximately 300, larger than that of L. helicina. High speed 3D kinematics acquired via two orthogonal cameras reveals that the elongated shell correlates with reduced body pitching and that the wings bend approximately 180 degrees in each direction, overlapping at the end of each half-stroke. Time resolved 2D flow measurements collected with a micro-PIV system reveal leading edge vortices present in both power and recovery strokes. Interactions between the overlapping wings and the shell also likely play a role in lift generation.

  3. Swimming of a Tiny Subtropical Sea Butterfly with Coiled Shell

    Science.gov (United States)

    Murphy, David; Karakas, Ferhat; Maas, Amy

    2017-11-01

    Sea butterflies, also known as pteropods, include a variety of small, zooplanktonic marine snails. Thecosomatous pteropods possess a shell and swim at low Reynolds numbers by beating their wing-like parapodia in a manner reminiscent of insect flight. In fact, previous studies of the pteropod Limacina helicina have shown that pteropod swimming hydrodynamics and tiny insect flight aerodynamics are dynamically similar. Studies of L. helicina swimming have been performed in polar (0 degrees C) and temperate conditions (12 degrees C). Here we present measurements of the swimming of Heliconoides inflatus, a smaller yet morphologically similar pteropod that lives in warm Bermuda seawater (21 degrees C) with a viscosity almost half that of the polar seawater. The collected H. inflatus have shell sizes less than 1.5 mm in diameter, beat their wings at frequencies up to 11 Hz, and swim upwards in sawtooth trajectories at speeds up to approximately 25 mm/s. Using three-dimensional wing and body kinematics collected with two orthogonal high speed cameras and time-resolved, 2D flow measurements collected with a micro-PIV system, we compare the effects of smaller body size and lower water viscosity on the flow physics underlying flapping-based swimming by pteropods and flight by tiny insects.

  4. Declines in swimming performance with age: a longitudinal study of Masters swimming champions

    OpenAIRE

    Rubin, Robert; Lin,; Curtis,; Auerbach,; Win,

    2013-01-01

    Robert T Rubin,1,2 Sonia Lin,3 Amy Curtis,4 Daniel Auerbach,5 Charlene Win6 1Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; 2UCLA Bruin Masters Swim Club, Los Angeles, CA, USA; 3Saint Louis University School of Medicine, Saint Louis, MO, USA; 4Indiana University School of Medicine, Indianapolis, IN, USA; 5University of California, Berkeley, CA, USA; 6Loyola Marymount University, Los Angeles, CA, USA Introduction: Because of i...

  5. Declines in swimming performance with age: a longitudinal study of Masters swimming champions

    Science.gov (United States)

    Rubin, Robert T; Lin, Sonia; Curtis, Amy; Auerbach, Daniel; Win, Charlene

    2013-01-01

    Introduction Because of its many participants and thorough records, competitive Masters swimming offers a rich data source for determining the rate of physical decline associated with aging in physically fit individuals. The decline in performance among national champion swimmers, both men and women and in short and long swims, is linear, at about 0.6% per year up to age 70–75, after which it accelerates in quadratic fashion. These conclusions are based primarily on cross-sectional studies, and little is known about individual performance declines with aging. Herein we present performance profiles of 19 male and 26 female national and international champion Masters swimmers, ages 25 to 96 years, participating in competitions for an average of 23 years. Methods and results Swimmers’ longitudinal data were compared with the fastest times of world record holders across ages 35–100 years by two regression methods. Neither method proved to accurately model this data set: compared with the rates of decline estimated from the world record data, which represent the best recorded times at given ages, there was bias toward shallower rates of performance decline in the longitudinal data, likely owing to a practice effect in some swimmers as they began their Masters programs. In swimmers’ later years, once maximum performance had been achieved, individual profiles followed the decline represented in the world records, and a few swimmers became the world record holders. In some instances, the individual profiles indicated performance better than the world record data; these swimmers achieved their times after the world record data were collected in 2005–2006. Conclusion Declining physiological functional capacity occurs with advancing age, and this is reflected in the performance decrements of aging Masters swimmers. Individual swimmers show different performance trajectories with aging, declines being mitigated by practice, which improves both physiological capacity

  6. Ordering dynamics in collectively swimming Surf Scoters.

    Science.gov (United States)

    Lukeman, Ryan

    2014-08-21

    One striking feature of collective motion in animal groups is a high degree of alignment among individuals, generating polarized motion. When order is lost, the dynamic process of reorganization, directly resulting from the individual interaction rules, provides significant information about both the nature of the rules, and how these rules affect the functioning of the collective. By analyzing trajectories of collectively swimming Surf Scoters (Melanitta perspicillata) during transitions between order and disorder, I find that individual speed and polarization are positively correlated in time, such that individuals move more slowly in groups exhibiting lower alignment. A previously validated zone-based model framework is used to specify interactions that permit repolarization while maintaining group cohesion and avoiding collisions. Polarization efficiency is optimized under the constraints of cohesion and collision-avoidance for alignment-dominated propulsion (versus autonomous propulsion), and for repulsion an order of magnitude larger than attraction and alignment. The relative strengths of interactions that optimize polarization also quantitatively recover the speed-polarization dependence observed in the data. Parameters determined here through optimizing polarization efficiency are essentially the same as those determined previously from a different approach: a best-fit model for polarized Surf Scoter movement data. The rules governing these flocks are therefore robust, accounting for behavior across a range of order and structure, and also highly responsive to perturbation. Flexibility and efficient repolarization offers an adaptive explanation for why specific interactions in such animal groups are used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Swimming in Semi-Synthetic Mucus

    Science.gov (United States)

    Rogowski, Louis; Woodruff, Benjamin; Liew, Amanda; Burns, Richard; Ali, Jamel; Kim, Hoyeon; Kim, Minjun

    2017-11-01

    Leveraging the fluid properties of human mucus is instrumental to perfecting artifical in vivo microscale swimming. Fiber networks, composed of mucin proteins, are the primary component contributing to mucus's viscoelastic properties. In addition to creating extreme bulk fluid properties, the fibers can cause microparticles to become entangled. Through experimentation, it was determined that magnetic three bead microrobotic swimmers are incapable of translational motion below a 7 Hz rotating magnetic field frequency. At higher mucus concentrations, three bead swimmers are tougher to form due to mucin fiber interference. However, entanglements with fibers allow two bead swimmers and single particles to be capable of translational motion; which is otherwise not possible in Newtonian fluids. Two bead swimmers have been demonstrated to be consistently controllable and perform well in even high mucus concentrations. Single particles have been observed to occasionally form mucin tails, creating a hybrid microswimmer. These novel mucus interactions allow for increased adaptability of microswimmers and provide a better understanding of in vivo fluid dynamics. NSF Award Number: 1712096.

  8. Resistive force theory for sand swimming

    Science.gov (United States)

    Ding, Yang; Maladen, Ryan; Li, Chen; Goldman, Daniel

    2009-11-01

    We discuss a resistive force theoryfootnotetextMaladen et. al, Science, 325, 314, 2009 that predicts the ratio of forward speed to wave speed (wave efficiency, η) of the sandfish lizard as it swims in granular media of varying volume fraction φ using a sinusoidal traveling wave body motion. In experiment η 0.5 independent of φ and is intermediate between η 0.2 for low Re Newtonian fluid undulatory swimmers like nematodes and η 0.9 for undulatory locomotion on a deformable surface. To predict η in granular media, we developed a resistive force model which balances thrust and drag force over the animal profile. We approximate the drag forces by measuring the force on a cylinder (a ``segment'' of the sandfish) oriented at different angles relative to the displacement direction. The model correctly predicts that η is independent of φ because the ratio of thrust to drag is independent of φ. The thrust component of the drag force is relatively larger in granular media than in low Re fluids, which explains why η in frictional granular media is greater than in viscous fluids.

  9. Nutrition for synchronized swimming: a review.

    Science.gov (United States)

    Lundy, Bronwen

    2011-10-01

    Synchronized swimming enjoys worldwide popularity and has been part of the formal Olympic program since 1984. Despite this, relatively little research has been conducted on participant nutrition practices and requirements, and there are significant gaps in the knowledge base despite the numerous areas in which nutrition could affect performance and safety. This review aimed to summarize current findings and identify areas requiring further research. Uniform physique in team or duet events may be more important than absolute values for muscularity or body fat, but a lean and athletic appearance remains key. Synchronized swimmers appear to have an increased risk of developing eating disorders, and there is evidence of delayed menarche, menstrual dysfunction, and lower bone density relative to population norms. Dietary practices remain relatively unknown, but micronutrient status for iron and magnesium may be compromised. More research is required across all aspects of nutrition status, anthropometry, and physiology, and both sports nutrition and sports medicine support may be required to reduce risks for participants.

  10. Biomechanical analysis of backstroke swimming starts.

    Science.gov (United States)

    de Jesus, K; de Jesus, K; Figueiredo, P; Gonçalves, P; Pereira, S; Vilas-Boas, J P; Fernandes, R J

    2011-07-01

    The relationships between the start time and kinematic, kinetic and electromyographic data were examined in order to establish the common features of an effective backstroke swimming start. Complementarily, different starting positions were analysed to identify the parameters that account for the fastest backstroke start time under different constraints. 6 high-level swimmers performed 4×15 m maximal trials of each start variants with different feet position: parallel and entirely submerged (BSFI) and above water surface (BSFE), being monitored with synchronized dual-media image, underwater platform plus handgrip with a load cell, and eletromyographic signal of RECTUS FEMORIS and GASTROCNEMIUS MEDIALIS. Mean and SD values of start time for BSFI and BSFE were 2.03 ± 0.19 and 2.14 ± 0.36 s, respectively. In both starts, high associations (r > =0.75, p < 0.001) were observed between start time and centre of mass resultant average velocity at glide phase and horizontal impulse at take-off for BSFI, and centre of mass horizontal position at the start signal for BSFE. It was concluded that the greater impulse during the take-off and its transformation into a fast underwater movement are determinant to decrease the start time at BSFI. Regarding BSFE, a greater centre of mass pool-wall approximation might imply a flatter take-off angle, compromising underwater velocity and starting performance. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Kinematics of swimming and thrust production during powerstroking bouts of the swim frenzy in green turtle hatchlings

    Directory of Open Access Journals (Sweden)

    David T. Booth

    2014-09-01

    Full Text Available Hatchling sea turtles emerge from nests, crawl down the beach and enter the sea where they typically enter a stereotypical hyperactive swimming frenzy. During this swim the front flippers are moved up and down in a flapping motion and are the primary source of thrust production. I used high-speed video linked with simultaneous measurement of thrust production in tethered hatchlings, along with high-speed video of free swimming hatchlings swimming at different water speeds in a swim flume to investigate the links between kinematics of front flipper movement, thrust production and swimming speed. In particular I tested the hypotheses that (1 increased swimming speed is achieved through an increased stroke rate; (2 force produced per stroke is proportional to stroke amplitude, (3 that forward thrust is produced during both the down and up phases of stroking; and (4 that peak thrust is produced towards the end of the downstroke cycle. Front flipper stroke rate was independent of water speed refuting the hypothesis that swimming speed is increased by increasing stroke rate. Instead differences in swimming speed were caused by a combination of varying flipper amplitude and the proportion of time spent powerstroking. Peak thrust produced per stroke varied within and between bouts of powerstroking, and these peaks in thrust were correlated with both flipper amplitude and flipper angular momentum during the downstroke supporting the hypothesis that stroke force is a function of stroke amplitude. Two distinct thrust production patterns were identified, monophasic in which a single peak in thrust was recorded during the later stages of the downstroke, and biphasic in which a small peak in thrust was recorded at the very end of the upstroke and this followed by a large peak in thrust during the later stages of the downstroke. The biphasic cycle occurs in ∼20% of hatchlings when they first started swimming, but disappeared after one to two hours of

  12. Kinematics of swimming and thrust production during powerstroking bouts of the swim frenzy in green turtle hatchlings

    Science.gov (United States)

    Booth, David T.

    2014-01-01

    ABSTRACT Hatchling sea turtles emerge from nests, crawl down the beach and enter the sea where they typically enter a stereotypical hyperactive swimming frenzy. During this swim the front flippers are moved up and down in a flapping motion and are the primary source of thrust production. I used high-speed video linked with simultaneous measurement of thrust production in tethered hatchlings, along with high-speed video of free swimming hatchlings swimming at different water speeds in a swim flume to investigate the links between kinematics of front flipper movement, thrust production and swimming speed. In particular I tested the hypotheses that (1) increased swimming speed is achieved through an increased stroke rate; (2) force produced per stroke is proportional to stroke amplitude, (3) that forward thrust is produced during both the down and up phases of stroking; and (4) that peak thrust is produced towards the end of the downstroke cycle. Front flipper stroke rate was independent of water speed refuting the hypothesis that swimming speed is increased by increasing stroke rate. Instead differences in swimming speed were caused by a combination of varying flipper amplitude and the proportion of time spent powerstroking. Peak thrust produced per stroke varied within and between bouts of powerstroking, and these peaks in thrust were correlated with both flipper amplitude and flipper angular momentum during the downstroke supporting the hypothesis that stroke force is a function of stroke amplitude. Two distinct thrust production patterns were identified, monophasic in which a single peak in thrust was recorded during the later stages of the downstroke, and biphasic in which a small peak in thrust was recorded at the very end of the upstroke and this followed by a large peak in thrust during the later stages of the downstroke. The biphasic cycle occurs in ∼20% of hatchlings when they first started swimming, but disappeared after one to two hours of swimming. The

  13. From Fishing to Fish Processing: Separation of Fish from Crustaceans in the Norway Lobster-Directed Multispecies Trawl Fishery Improves Seafood Quality.

    Science.gov (United States)

    Karlsen, Junita D; Krag, Ludvig Ahm; Albertsen, Christoffer Moesgaard; Frandsen, Rikke Petri

    2015-01-01

    Fishing gears have negative impacts on seafood quality, especially on fish in the mixed trawl fishery targeting Norway lobster (Nephrops norvegicus). In this fishery, which is worth about €80 millions in Denmark alone, the quality of fish can be significantly improved by simple gear changes. A trawl codend divided into an upper and lower codend was designed to separate fish from Norway lobster during the fishing process by encourage fish to swim into the upper codend by using a frame at the entrance of the lower codend. Separate codends for fish and Norway lobster in the same gear provide the opportunity to selectively reduce small low-value fish, which will reduce catch weight and sorting time onboard the vessel. For this horizontally divided test codend and a standard codend, in which the catch was mixed, quality assessments were performed on the same batches of fish during three steps of the value chain: i) aboard the fishing vessel; ii) at the Fishermen's Collection Central, and iii) in the production plant. Four species of fish and fillets from fish caught in the upper codend of the test codend were of significantly better quality for several of the assessed parameters compared with those caught in the standard codend: i) newly caught fish showed significantly less scale loss and discolourations and had significantly better texture; ii) landed fish had significantly better skin appearance and texture and significantly fewer discolourations; and iii) fillets showed significantly fewer blood spots and had significantly better texture. There were no differences in injuries for newly caught fish or gaping and bruises for fillets between the test and standard codends. The decrease in catch-related damages in the test codend is explained by little contact between fish and animals with hard or spiny surfaces due to successful separation of fish and Norway lobster into the upper and lower codends, respectively, and by lower catch weight in the upper codend of the

  14. Plastic debris collars: An underreported stressor in tropical reef fishes.

    Science.gov (United States)

    Nunes, Joséde Anchieta C C; Sampaio, Cláudio L S; Barros, Francisco; Leduc, Antoine O H C

    2017-10-30

    Plastic debris collar wrappings (PDCW) are involved in the frequent entanglement of several groups of marine animals. In fishes, however aside from 'ghost fishing', PDCW events are rarely documented, and no record of this occurrence exists in tropical reef fishes. Here, we present records for four species afflicted by plastic debris collars. Observations occurred during snorkeling, and included the silver mojarra Eucinostomus argenteus, Atlantic thread herring Ophistonema oglinum, tomtate grunt Haemulon aurolineatum and gray parrotfish Sparisoma axillare. While PDCW may not create an instantaneous source of mortality, our observations suggest that debilitating stress, created by reduced swimming performances, feeding and/or antipredator behavior are likely consequences for afflicted individuals. Given the importance of these performances on survival, reduction in fitness is expected. This note aims to report cases of PDCW and underscore that such interactions between fishes and plastic pollution may be more prevalent than previously expected in coastal reef habitats. Copyright © 2017. Published by Elsevier Ltd.

  15. Improved Swimming Performance in Hydrodynamically- coupled Airfoils

    Science.gov (United States)

    Heydari, Sina; Shelley, Michael J.; Kanso, Eva

    2017-11-01

    Collective motion is a widespread phenomenon in the animal kingdom from fish schools to bird flocks. Half of the known fish species are thought to exhibit schooling behavior during some phase of their life cycle. Schooling likely occurs to serve multiple purposes, including foraging for resources and protection from predators. Growing experimental and theoretical evidence supports the hypothesis that fish can benefit from the hydrodynamic interactions with their neighbors, but it is unclear whether this requires particular configurations or regulations. Here, we propose a physics-based approach that account for hydrodynamic interactions among swimmers based on the vortex sheet model. The benefit of this model is that it is scalable to a large number of swimmers. We start by examining the case of two swimmers, heaving plates, moving in parallel and in tandem. We find that for the same heaving amplitude and frequency, the coupled-swimmers move faster and more efficiently. This increase in velocity depends strongly on the configuration and separation distance between the swimmers. Our results are consistent with recent experimental findings on heaving airfoils and underline the role of fluid dynamic interactions in the collective behavior of swimmers.

  16. Comparative study the expression of calcium cycling genes in Bombay duck (Harpadon nehereus) and beltfish (Trichiurus lepturus) with different swimming activities.

    Science.gov (United States)

    Zhang, Hui; Audira, Gilbert; Li, Yuan; Xian, Weiwei; Varikkodan, Muhammed Muhsin; Hsiao, Chung-Der

    2017-06-01

    The contraction and relaxation events of the muscle is mediated by the coordination of many important calcium cycling proteins of ryanodine receptor (RYR), troponin C (TNNC), parvalbumin (PVALB), sarcoendoplasmic reticulum calcium transport ATPase (SERCA) and calsequestrin (CASQ). In higher vertebrates, the expression level of calcium cycling proteins are positively correlated to the muscle contraction/relaxation ability of the cell. In this study, we used RNAseq to explore the expression profile of calcium cycling genes between two marine fish of Bombay duck ( Harpadon nehereus ) and beltfish ( Trichiurus lepturus ) with poor and robust swimming activities, respectively. We have studied the hypothesis whether the expression level of calcium cycling proteins are also positive correlated to swimming ability in fish. We used Illumina sequencing technology (NextSeq500) to sequence, assemble and annotate the muscle transcriptome of Bombay duck for the first time. A total of 47,752,240 cleaned reads (deposited in NCBI SRA database with accession number of SRX1706379) were obtained from RNA sequencing and 26,288 unigenes (with N50 of 486 bp) were obtained after de novo assembling with Trinity software. BLASTX against NR, GO, KEGG and eggNOG databases show 100%, 65%, 26%, 94% and 88% annotation rate, respectively. Comparison of the dominantly expressed unigenes in fish muscle shows calcium cycling gene expression in beltfish (SRX1674471) is 1.4- to 51.6-fold higher than Bombay duck. Among five calcium cycling genes, the fold change results are very significant in CASQ (51.6 fold) and PVALB (9.1 fold) and both of them are responsive for calcium binding to reduce free calcium concentration in the sarcoendoplasmic reticulum and cytoplasm. In conclusion, we confirmed that the high abundant expression rate of calcium cycling genes in robust swimming fish species. The current muscle transcriptome and identified calcium cycling gene data can provide more insights into the

  17. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Directory of Open Access Journals (Sweden)

    Amneet Pal Singh Bhalla

    Full Text Available A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming or by forces imparted by the surrounding fluid ("passive" swimming, is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  18. A Forced Damped Oscillation Framework for Undulatory Swimming Provides New Insights into How Propulsion Arises in Active and Passive Swimming

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Patankar, Neelesh A.

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions (“active” swimming) or by forces imparted by the surrounding fluid (“passive” swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained. PMID:23785272

  19. ANTHROPOLOGICAL STUDENTS’ STATUS AND THE RESULTS’ SUCCESS IN SWIMMING

    Directory of Open Access Journals (Sweden)

    Simo Vuković

    2010-09-01

    Full Text Available Introduction The sample consisted of 31 tested students in 2009/10 academic year and 43 tested students in 2008/09. all of them were the second year male students at Faculty of Physical Education and Sport at the University in East Sarajevo, the students were 22 years and± 6 months old, on this sample, there was done the results’ comparison in the following parameters: 11 variables of the anthropological statusand 2 variables of the swimming the crawl at 50m and swimming the backstroke. The predicting variable of the anthropological status consisted of: height, weight, shoulders width, hips width, the skin’s fold of the back, the skin’s fold of the upper arm, the skin’s fold of the abdomen, the volume of the upper arm, the volume of the thigh, the volume of the shank and the diameter of the joint of the knee, the measuring variables referred to the results’ success in swimming the crawl at 50m and swimming the backstroke. The method of the study Apart from the descriptive statistics by which the measures of central tendencies are expressed: mean, minimum, maximum, standard deviation, there was used regressive analysis, for the correlation of the results of the anthropological status with the results of the swimming the crawl at 50m and swimming the backstroke. The results of the research and the conclusions There was done the results’ comparison of one group of students consisting of 31 tested male students in 2009/10 and 43 tested students in 2008/09. the comparison was shown by the measures of central tendencies of the descriptive statistics and by the regressive analysis of the group of 11 predicting variables of the anthropological students’ status and by the results of 2 measuring variables shown by the swimming the crawl at 50m and swimming the backstroke. Applying the regressive analysis there was got the list of the data which contained the data about the parameters of the regression and statistical quantities relevant for

  20. Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae

    International Nuclear Information System (INIS)

    Silva, Cátia S.E.; Novais, Sara C.; Lemos, Marco F.L.; Mendes, Susana; Oliveira, Ana P.; Gonçalves, Emanuel J.; Faria, Ana M.

    2016-01-01

    Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO 2 . However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO 2 , highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO 2 on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO 2 levels (control: ~ 600 μatm, pH = 8.03; medium: ~ 1000 μatm, pH = 7.85; high: ~ 1800 μatm, pH = 7.64) up to 15 days, after which critical swimming speed (U crit ), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress — superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism — total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO 2 leads to higher energetic costs and morphometric changes, with larger larvae in high pCO 2 treatment and smaller larvae in medium pCO 2 treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO 2 treatment may indicate that at higher pCO 2 levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO 2 levels on organisms. - Highlights: • Exposure to high pCO 2

  1. Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cátia S.E. [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal); MARE — Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria (Portugal); Novais, Sara C.; Lemos, Marco F.L.; Mendes, Susana [MARE — Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria (Portugal); Oliveira, Ana P. [IPMA — Instituto Português do Mar e da Atmosfera, Algés (Portugal); Gonçalves, Emanuel J. [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal); Faria, Ana M., E-mail: afaria@ispa.pt [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal)

    2016-09-01

    Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO{sub 2}. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO{sub 2}, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO{sub 2} on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO{sub 2} levels (control: ~ 600 μatm, pH = 8.03; medium: ~ 1000 μatm, pH = 7.85; high: ~ 1800 μatm, pH = 7.64) up to 15 days, after which critical swimming speed (U{sub crit}), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress — superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism — total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO{sub 2} leads to higher energetic costs and morphometric changes, with larger larvae in high pCO{sub 2} treatment and smaller larvae in medium pCO{sub 2} treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO{sub 2} treatment may indicate that at higher pCO{sub 2} levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO{sub 2} levels on

  2. The effects of dissolved oxygen levels on the metabolic interaction between digestion and locomotion in Cyprinid fishes with different locomotive and digestive performances.

    Science.gov (United States)

    Zhang, Wei; Cao, Zhen-Dong; Fu, Shi-Jian

    2012-07-01

    To test whether the effects of water oxygen concentration ([O(2)]) on the metabolic interaction between locomotion and digestion differ between fish species with different locomotive and digestive behaviours in normoxia, we investigated the swimming performance of fasted and fed fish at water [O(2)] of 1, 2 and 8 (normoxia) mg L(-1) (2.5, 5 and 20 kPa) at 25°C in three juvenile Cyprinidae fish species: goldfish (Carassius auratus), common carp (Cyprinus carpio) and qingbo (Spinibarbus sinensis). Digestion, taxon and water [O(2)] all had significant effects on the pre-exercise oxygen consumption rate [Formula: see text] and the swimming performance (P swimming performance and the lowest feeding [Formula: see text] at the saturated water [O(2)], and its active oxygen consumption rate [Formula: see text] and critical swimming speed (U (crit)) decreased the most with decreases in water [O(2)]. Qingbo exhibited a locomotion-priority metabolic mode at all three water [O(2)]. Digestion was sacrificed to locomotion in a postprandial swimming situation, but fed qingbo could not maintain their U (crit) at water [O(2)] of 2 and 1 mg L(-1). Goldfish showed the lowest swimming performance and the highest feeding [Formula: see text] at the saturated water [O(2)]. They exhibited a digestion-priority metabolic mode at high water [O(2)]. However, with a decrease in water [O(2)], the feeding [Formula: see text] decreased more acutely than the respiratory capacity; thus, digestion and locomotion performed independently in a postprandial swimming situation (i.e., an additive metabolic mode) at a water [O(2)] of 1 mg L(-1). The common carp showed moderate and balanced swimming performance and feeding [Formula: see text] at the saturated water [O(2)], and exhibited an additive metabolic mode at all 3 water [O(2)], because digestion, swimming and respiratory capacities decreased in parallel with the decrease in water [O(2)].

  3. A study of managerial job system of open water swimming

    Directory of Open Access Journals (Sweden)

    KHALIL SAMIRA

    2011-04-01

    Full Text Available Modern sports management plays a vital part in directing the sport organizations towards the ways ofprogress and development and treating the weakness points and increasing the efficacy of the strength points andincreasing the efficacy of the strength points whether in the championship sector or practice sector. Egypt isconsidered the first country that set up a union to organize the long distances swimming in estimation of theresults that were achieved by the Egyptian swimmers in this field. The sport unions are the link point betweenthe high formal authorities and the organizations of the base represented in the sport clubs. The researchernoticed the instability of the managerial and organizational positions in the swimming union that reflectednegatively on the number of swimmer and their national representation. It is noticed that the representation isonly one swimmer and the girls may not take part in these championships. The importance of this study isshown after the inclusion of the open water swimming in Beijing (2008 and the Olympiad included the openwater swimming for 10 km. for girls and men. The study sample consisted of (33 subjects among them (8members of board of directors, (11 coaches, (71 administrators, (7 referees. Data were collected throughanalysis of the records and documents of the plans and results of open water swimming races local andinternational and the questionnaire that was prepared by the researcher and includes the axes of planningorganizing – directing and controlling and its phrases are (84 phrases, The most important results the nondecidingof the goals of the technical committee of the open water swimming, the few numbers of the swimmerswho are qualified for the national representation. There is a limited attention in preparing the youngsters. Theorganizational structure of the union is suitable to achieve the required cooperation. There is a big dysfunctionin the control system linked to the work of the

  4. Benefits and Enjoyment of a Swimming Intervention for Youth With Cerebral Palsy: An RCT Study.

    Science.gov (United States)

    Declerck, Marlies; Verheul, Martine; Daly, Daniel; Sanders, Ross

    2016-01-01

    To investigate enjoyment and specific benefits of a swimming intervention for youth with cerebral palsy (CP). Fourteen youth with CP (aged 7 to 17 years, Gross Motor Function Classification System levels I to III) were randomly assigned to control and swimming groups. Walking ability, swimming skills, fatigue, and pain were assessed at baseline, after a 10-week swimming intervention (2/week, 40-50 minutes) or control period, after a 5-week follow-up and, for the intervention group, after a 20-week follow-up period. The level of enjoyment of each swim-session was assessed. Levels of enjoyment were high. Walking and swimming skills improved significantly more in the swimming than in the control group (P = .043; P = .002, respectively), whereas fatigue and pain did not increase. After 20 weeks, gains in walking and swimming skills were retained (P = .017; P = .016, respectively). We recommend a swimming program for youth with CP to complement a physical therapy program.

  5. [Swimming, physical activity and health: a historical perspective].

    Science.gov (United States)

    Conti, A A

    2015-01-01

    Swimming, which is the coordinated and harmonic movement of the human body inside a liquid medium by means of the combined action of the superior and inferior limbs, is a physical activity which is diffused throughout the whole world and it is practiced by healthy and non-healthy subjects. Swimming is one of the physical activities with less contraindications and, with limited exceptions, can be suggested to individuals of both sexes and of every age range, including the most advanced. Swimming requires energy both for the floating process and for the anterograde progression, with a different and variable osteo-arthro-muscular involvement according to the different styles. The energetic requirement is about four times that for running, with an overall efficiency inferior to 10%; the energetic cost of swimming in the female subject is approximately two thirds of that in the male subject. The moderate aerobic training typical of swimming is useful for diabetic and hypertensive individuals, for people with painful conditions of rachis, as also for obese and orthopaedic patients. Motor activity inside the water reduces the risk of muscular-tendinous lesions and, without loading the joints in excess, requires the harmonic activation of the whole human musculature. Swimming is an activity requiring multiple abilities, ranging from a sense of equilibrium to that of rhythm, from reaction speed to velocity, from joint mobility to resistance. The structured interest for swimming in the perspective of human health from the beginning of civilization, as described in this contribution, underlines the relevance attributed to this activity in the course of human history.

  6. Quantification of upper limb kinetic asymmetries in front crawl swimming.

    Science.gov (United States)

    Morouço, Pedro G; Marinho, Daniel A; Fernandes, Ricardo J; Marques, Mário C

    2015-04-01

    This study aimed at quantifying upper limb kinetic asymmetries in maximal front crawl swimming and to examine if these asymmetries would affect the contribution of force exertion to swimming performance. Eighteen high level male swimmers with unilateral breathing patterns and sprint or middle distance specialists, volunteered as participants. A load-cell was used to quantify the forces exerted in water by completing a 30s maximal front crawl tethered swimming test and a maximal 50 m free swimming was considered as a performance criterion. Individual force-time curves were obtained to calculate the mean and maximum forces per cycle, for each upper limb. Following, symmetry index was estimated and breathing laterality identified by questionnaire. Lastly, the pattern of asymmetries along the test was estimated for each upper limb using linear regression of peak forces per cycle. Asymmetrical force exertion was observed in the majority of the swimmers (66.7%), with a total correspondence of breathing laterality opposite to the side of the force asymmetry. Forces exerted by the dominant upper limb presented a higher decrease than from the non-dominant. Very strong associations were found between exerted forces and swimming performance, when controlling the isolated effect of symmetry index. Results point that force asymmetries occur in the majority of the swimmers, and that these asymmetries are most evident in the first cycles of a maximum bout. Symmetry index stood up as an influencing factor on the contribution of tethered forces over swimming performance. Thus, to some extent, a certain degree of asymmetry is not critical for short swimming performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The effect of thermal acclimation on aerobic scope and critical swimming speed in Atlantic salmon, Salmo salar.

    Science.gov (United States)

    Hvas, Malthe; Folkedal, Ole; Imsland, Albert; Oppedal, Frode

    2017-08-01

    The Atlantic salmon is extensively studied owing to conservation concerns and its economic importance in aquaculture. However, a thorough report of their aerobic capacity throughout their entire thermal niche has not been described. In this study, Atlantic salmon (∼450 g) were acclimated for 4 weeks at 3, 8, 13, 18 or 23°C, and then tested in a large Brett-type swimming respirometer in groups of 10 per trial. Both standard metabolic rate and active metabolic rate continued to increase with temperature, which resulted in an aerobic scope that also increased with temperature, but was statistically similar between 13, 18 and 23°C. The critical swimming speed peaked at 18°C (93.1±1.2 cm s -1 ), and decreased significantly at the extreme temperatures to 74.8±0.5 and 84.8±1.6 cm s -1 at 3 and 23°C, respectively. At 23°C, the accumulated mortality reached 20% over 4 weeks, while no fish died during acclimation at colder temperatures. Furthermore, fish at 23°C had poor appetite and lower condition factor despite still having a high aerobic scope, suggesting that oxygen uptake was not the limiting factor in the upper thermal niche boundary. In conclusion, Atlantic salmon were able to maintain a high aerobic capacity and good swimming capabilities throughout the entire thermal interval tested, thus demonstrating a high level of flexibility in respiratory capacity towards different temperature exposures. © 2017. Published by The Company of Biologists Ltd.

  8. The relationship between pectoral fin ray stiffness and swimming behavior in Labridae: insights into design, performance and ecology.

    Science.gov (United States)

    Aiello, Brett R; Hardy, Adam R; Cherian, Chery; Olsen, Aaron M; Ahn, Sihyun E; Hale, Melina E; Westneat, Mark W

    2018-01-09

    The functional capabilities of flexible, propulsive appendages are directly influenced by their mechanical properties. The fins of fishes have undergone extraordinary evolutionary diversification in structure and function, which raises questions of how fin mechanics relate to swimming behavior. In the fish family Labridae, pectoral fin swimming behavior ranges from rowing to flapping. Rowers are more maneuverable than flappers, but flappers generate greater thrust at high speeds and achieve greater mechanical efficiency at all speeds. Interspecific differences in hydrodynamic capability are largely dependent on fin kinematics and deformation, and are expected to correlate with fin stiffness. Here we examine fin ray stiffness in two closely related species that employ divergent swimming behaviors, the flapping Gomphosus varius and the rowing Halichoeres bivittatus To determine the spatial distribution of flexural stiffness across the fin, we performed three-point bending tests at the center of the proximal, middle and distal regions of four equally spaced fin rays. Pectoral fin ray flexural stiffness ranged from 0.0001 to 1.5109 µN m 2 , and the proximal regions of G. varius fin rays were nearly an order of magnitude stiffer than those of H. bivittatus In both species, fin ray flexural stiffness decreased exponentially along the proximodistal span of fin rays, and flexural stiffness decreased along the fin chord from the leading to the trailing edge. Furthermore, the proportion of fin area occupied by fin rays was significantly greater in G. varius than in H. bivittatus , suggesting that the proportion of fin ray to fin area contributes to differences in fin mechanics. © 2018. Published by The Company of Biologists Ltd.

  9. Studies on water turbine runner which fish can pass through: In case of single stage axial runner

    International Nuclear Information System (INIS)

    Shimizu, Yukimari; Maeda, Takao; Nagoshi, Osamu; Ieda, Kazuma; Shinma, Hisako; Hagimoto, Michiko

    1994-01-01

    The relationship between water turbine runner design and operation and the safe passage of fish through the turbine is studied. The kinds of fish used in the tests are a dace, a sweet fish and a small salmon. A single stage axial runner is used. The velocity and pressure distributions were measured inside the turbine casing and along the casing wall. Many pictures showing fish passing through the rotating runner were taken and analyzed. The swimming speed of the fish was examined from video recordings. Fish pass through the runner more rapidly when they can determine and choose the easier path. Injury and mortality of fish are affected by the runner speed and the location of impact of the runner on the fish body

  10. Flexion Reflex Can Interrupt and Reset the Swimming Rhythm.

    Science.gov (United States)

    Elson, Matthew S; Berkowitz, Ari

    2016-03-02

    The spinal cord can generate the hip flexor nerve activity underlying leg withdrawal (flexion reflex) and the rhythmic, alternating hip flexor and extensor activities underlying locomotion and scratching, even in the absence of brain inputs and movement-related sensory feedback. It has been hypothesized that a common set of spinal interneurons mediates flexion reflex and the flexion components of locomotion and scratching. Leg cutaneous stimuli that evoke flexion reflex can alter the timing of (i.e., reset) cat walking and turtle scratching rhythms; in addition, reflex responses to leg cutaneous stimuli can be modified during cat and human walking and turtle scratching. Both of these effects depend on the phase (flexion or extension) of the rhythm in which the stimuli occur. However, similar interactions between leg flexion reflex and swimming have not been reported. We show here that a tap to the foot interrupted and reset the rhythm of forward swimming in spinal, immobilized turtles if the tap occurred during the swim hip extensor phase. In addition, the hip flexor nerve response to an electrical foot stimulus was reduced or eliminated during the swim hip extensor phase. These two phase-dependent effects of flexion reflex on the swim rhythm and vice versa together demonstrate that the flexion reflex spinal circuit shares key components with or has strong interactions with the swimming spinal network, as has been shown previously for cat walking and turtle scratching. Therefore, leg flexion reflex circuits likely share key spinal interneurons with locomotion and scratching networks across limbed vertebrates generally. The spinal cord can generate leg withdrawal (flexion reflex), locomotion, and scratching in limbed vertebrates. It has been hypothesized that there is a common set of spinal cord neurons that produce hip flexion during flexion reflex, locomotion, and scratching based on evidence from studies of cat and human walking and turtle scratching. We show

  11. Examining self-training procedures in leisure swimming.

    Science.gov (United States)

    J Potdevin, Francois; Normani, Clement; Pelayo, Patrick

    2013-01-01

    This study investigated contents of training sessions from 387 regular swimmers involved in a recreational workout without supervision. We did use multiple correspondences analysis in order to identify self-trained swimmers typology in a sample from a social networking website, focusing on swimming practice. Self-reported parameters (n = 12) were age, gender, practice frequency, supervision in physical activity experiment, main training target, main reason for swimming choice, swimming session duration and distance, most used swimming stroke and material, quality of the training control, and training evolution during a year. Results have highlighted different training strategies and targets according to gender and age. Male strategy consists in performing higher distance (1818.8 ± 644.5 m vs. 1453.0 ± 603.3, p Backstroke is associated with people aged higher than 50. We also have established a connection between motives according to ages and long term strategies. The main motivation for middle aged people appears to be general health benefits by performing identical swimming session without evolution during a year. People aged from 20 to 30 are divided between an identical swimming session strategy and an increase in distance or in intensity strategy during a year. This population appears to be concerned about a global health benefits and a body shape effects. Suggestions are made to improve swimming practice environment during free time sessions according to the main results. Key PointsMale strategy consists in performing higher distance by using several swim stroke and gears involving upper body muscles whereas women are more concerned about effort duration and use breaststroke in majority.The main motivation for middle aged people appears to be general health benefits whereas people aged from 20 to 30 appears to be concerned about a global health benefits and a body shape effects.Excepted middle age people, recreational swimmers have low control quality of

  12. Evaluation of Fish Passage at Whitewater Parks Using 2D and 3D Hydraulic Modeling

    Science.gov (United States)

    Hardee, T.; Nelson, P. A.; Kondratieff, M.; Bledsoe, B. P.

    2016-12-01

    In-stream whitewater parks (WWPs) are increasingly popular recreational amenities that typically create waves by constricting flow through a chute to increase velocities and form a hydraulic jump. However, the hydraulic conditions these structures create can limit longitudinal habitat connectivity and potentially inhibit upstream fish migration, especially of native fishes. An improved understanding of the fundamental hydraulic processes and potential environmental effects of whitewater parks is needed to inform management decisions about Recreational In-Channel Diversions (RICDs). Here, we use hydraulic models to compute a continuous and spatially explicit description of velocity and depth along potential fish swimming paths in the flow field, and the ensemble of potential paths are compared to fish swimming performance data to predict fish passage via logistic regression analysis. While 3d models have been shown to accurately predict trout movement through WWP structures, 2d methods can provide a more cost-effective and manager-friendly approach to assessing the effects of similar hydraulic structures on fish passage when 3d analysis in not feasible. Here, we use 2d models to examine the hydraulics in several WWP structures on the North Fork of the St. Vrain River at Lyons, Colorado, and we compare these model results to fish passage predictions from a 3d model. Our analysis establishes a foundation for a practical, transferable and physically-rigorous 2d modeling approach for mechanistically evaluating the effects of hydraulic structures on fish passage.

  13. Fish hemoglobins

    Directory of Open Access Journals (Sweden)

    P.C. de Souza

    2007-06-01

    Full Text Available Vertebrate hemoglobin, contained in erythrocytes, is a globular protein with a quaternary structure composed of 4 globin chains (2 alpha and 2 beta and a prosthetic group named heme bound to each one. Having myoglobin as an ancestor, hemoglobin acquired the capacity to respond to chemical stimuli that modulate its function according to tissue requirements for oxygen. Fish are generally submitted to spatial and temporal O2 variations and have developed anatomical, physiological and biochemical strategies to adapt to the changing environmental gas availability. Structurally, most fish hemoglobins are tetrameric; however, those from some species such as lamprey and hagfish dissociate, being monomeric when oxygenated and oligomeric when deoxygenated. Fish blood frequently possesses several hemoglobins; the primary origin of this finding lies in the polymorphism that occurs in the globin loci, an aspect that may occasionally confer advantages to its carriers or even be a harmless evolutionary remnant. On the other hand, the functional properties exhibit different behaviors, ranging from a total absence of responses to allosteric regulation to drastic ones, such as the Root effect.

  14. Factors determining swimming efficiency observed in less skilled swimmers.

    Science.gov (United States)

    Kucia-Czyszczoń, Katarzyna; Dybińska, Ewa; Ambroży, Tadeusz; Chwała, Wiesław

    2013-01-01

    The dynamics of performance in professional sport requires a systematic improvement of the training process. Such activities should also include optimizing the children and youth training in these disciplines, where an early specialization operates. The main aim of this paper was to search for the relationship between swimmer's segmental kinematics (segmental velocities, stroke rate, stroke length, stroke index); the relationship between swimmer's technical skill level (in four competitive swimming techniques) and training overloads taking into consideration gender and age effect. The study group consisted of 121 swimmers (69 female and 52 male), of the Polish 12-15 age group swim team, volunteered to serve as subjects. Video-based methods and video equipment are being applied to assist qualitative and simple quantitative analysis for immediate feedback and research in swimming. Both technical skill level preparation and segmental kinematics of 12-15 year old swimmers proved to be highly conditioned by implemented training intensity (p trade at a level of significance p intensity of training showed high and very high correlation with the swimming efficiency, presented segmental kinematics and technical skill level, however, there appeared particularly pronounced relationship with the size of kinematic parameters taken into account in four competitive swimming techniques, components of the 100 m individual medley.

  15. Study on water evaporation rate from indoor swimming pools

    Science.gov (United States)

    Rzeźnik, Ilona

    2017-11-01

    The air relative humidity in closed spaces of indoor swimming pools influences significantly on users thermal comfort and the stability of the building structure, so its preservation on suitable level is very important. For this purpose, buildings are equipped with HVAC systems which provide adequate level of humidity. The selection of devices and their technical parameters is made using the mathematical models of water evaporation rate in the unoccupied and occupied indoor swimming pool. In the literature, there are many papers describing this phenomena but the results differ from each other. The aim of the study was the experimental verification of published models of evaporation rate in the pool. The tests carried out on a laboratory scale, using model of indoor swimming pool, measuring 99cm/68cm/22cm. The model was equipped with water spray installation with six nozzles to simulate conditions during the use of the swimming pool. The measurements were made for conditions of sports pools (water temperature 24°C) and recreational swimming pool (water temperature 34°C). According to the recommendations the air temperature was about 2°C higher than water temperature, and the relative humidity ranged from 40% to 55%. Models Shah and Biasin & Krumm were characterized by the best fit to the results of measurements on a laboratory scale.

  16. Swimming mechanics and propulsive efficiency in the chambered nautilus

    Science.gov (United States)

    Neil, Thomas R.

    2018-01-01

    The chambered nautilus (Nautilus pompilius) encounters severe environmental hypoxia during diurnal vertical movements in the ocean. The metabolic cost of locomotion (Cmet) and swimming performance depend on how efficiently momentum is imparted to the water and how long on-board oxygen stores last. While propulsive efficiency is generally thought to be relatively low in jet propelled animals, the low Cmet in Nautilus indicates that this is not the case. We measured the wake structure in Nautilus during jet propulsion swimming, to determine their propulsive efficiency. Animals swam with either an anterior-first or posterior-first orientation. With increasing swimming speed, whole cycle propulsive efficiency increased during posterior-first swimming but decreased during anterior-first swimming, reaching a maximum of 0.76. The highest propulsive efficiencies were achieved by using an asymmetrical contractile cycle in which the fluid ejection phase was relatively longer than the refilling phase, reducing the volume flow rate of the ejected fluid. Our results demonstrate that a relatively high whole cycle propulsive efficiency underlies the low Cmet in Nautilus, representing a strategy to reduce the metabolic demands in an animal that spends a significant part of its daily life in a hypoxic environment. PMID:29515819

  17. Muscle Activity during Dryland Swimming while Wearing a Triathlon Wetsuit

    Directory of Open Access Journals (Sweden)

    Ciro Agnelli

    2018-01-01

    Full Text Available Background: Triathletes typically wear a wetsuit during the swim portion of an event, but it is not clear if muscle activity is influenced by wearing a wetsuit. Purpose: To investigate if shoulder muscle activity was influenced by wearing a full-sleeve wetsuit vs. no wetsuit during dryland swimming. Methods: Participants (n=10 males; 179.1±13.2 cm; 91.2±7.25 kg; 45.6±10.5 years completed two dry land swimming conditions on a swim ergometer: No Wetsuit (NW and with Wetsuit (W. Electromyography (EMG of four upper extremity muscles was recorded (Noraxon telemetry EMG, 500 Hz during each condition: Trapezius (TRAP, Triceps (TRI, Anterior Deltoid (AD and Posterior Deltoid (PD. Each condition lasted 90 seconds with data collected during the last 60 seconds. Resistance setting was self-selected and remained constant for both conditions. Stroke rate was controlled at 60 strokes per minute by having participants match a metronome. Average (AVG and Root Mean Square (RMS EMG were calculated over 45 seconds and each were compared between conditions using a paired t-test (α=0.05 for each muscle. Results: PD and AD AVG and RMS EMG were each greater (on average 40.0% and 66.8% greater, respectively during W vs. NW (p0.05. Conclusion: The greater PD and AD muscle activity while wearing a wetsuit might affect swimming performance and /or stroke technique on long distance event.

  18. Study on water evaporation rate from indoor swimming pools

    Directory of Open Access Journals (Sweden)

    Rzeźnik Ilona

    2017-01-01

    Full Text Available The air relative humidity in closed spaces of indoor swimming pools influences significantly on users thermal comfort and the stability of the building structure, so its preservation on suitable level is very important. For this purpose, buildings are equipped with HVAC systems which provide adequate level of humidity. The selection of devices and their technical parameters is made using the mathematical models of water evaporation rate in the unoccupied and occupied indoor swimming pool. In the literature, there are many papers describing this phenomena but the results differ from each other. The aim of the study was the experimental verification of published models of evaporation rate in the pool. The tests carried out on a laboratory scale, using model of indoor swimming pool, measuring 99cm/68cm/22cm. The model was equipped with water spray installation with six nozzles to simulate conditions during the use of the swimming pool. The measurements were made for conditions of sports pools (water temperature 24°C and recreational swimming pool (water temperature 34°C. According to the recommendations the air temperature was about 2°C higher than water temperature, and the relative humidity ranged from 40% to 55%. Models Shah and Biasin & Krumm were characterized by the best fit to the results of measurements on a laboratory scale.

  19. Effects of bone-conducted music on swimming performance.

    Science.gov (United States)

    Tate, Angela R; Gennings, Chris; Hoffman, Regina A; Strittmatter, Andrew P; Retchin, Sheldon M

    2012-04-01

    Music has been shown to be a useful adjunct for many forms of exercise and has been observed to improve athletic performance in some settings. Nonetheless, because of the limited availability of practical applications of sound conduction in water, there are few studies of the effects of music on swimming athletes. The SwiMP3 is a novel device that uses bone conduction as a method to circumvent the obstacles to transmitting high fidelity sound in an aquatic environment. Thus, we studied the influence of music on swimming performance and enjoyment using the SwiMP3. Twenty-four competitive swimmers participated in a randomized crossover design study in which they completed timed swimming trials with and without the use of music delivered via bone conduction with the SwiMP3. Each participant swam four 50-m trials and one 800-m trial and then completed a physical enjoyment survey. Statistically significant improvements in swimming performance times were found in both the 50-m (0.32 seconds; p = 0.013) and 800-m (6.5 seconds; p = 0.031) trials with music using the SwiMP3. There was no significant improvement in physical enjoyment with the device as measured by a validated assessment tool. Bone-conducted music appears to have a salutary influence on swimming performance in a practice environment among competitive adult swimmers.

  20. In the making: SA-PIV applied to swimming practice

    Science.gov (United States)

    van Houwelingen, Josje; van de Water, Willem; Kunnen, Rudie; van Heijst, Gertjan; Clercx, Herman

    2017-11-01

    To understand and optimize the propulsion in human swimming, a deep understanding of the hydrodynamics of swimming is required. This is usually based on experiments and numerical simulations under laboratory conditions.. In this study, we bring basic fluid mechanics knowledge and experimental measurement techniques to analyze the flow towards the swimming practice itself. A flow visualization setup is build and placed in a regular swimming pool. The measurement volume contains five homogeneous air bubble curtains illuminated by ambient light. The bubbles in these curtains act as tracer particles. The bubble motion is captured by six cameras placed in the side wall of the pool. It is intended to apply SA-PIV (synthetic aperture PIV) for analyzing the flow structures on multiple planes in the measurement volume. The system has been calibrated and the calibration data are used to refocus on the planes of interest. Multiple preprocessing steps need to be executed to obtain the proper quality of images before applying PIV. With a specially programmed video card to process and analyze the images in real-time feedback about swimming performance will become possible. We report on the first experimental data obtained by this system.