WorldWideScience

Sample records for swimming fish embiotoca

  1. Pectoral fin beat frequency predicts oxygen consumption during spontaneous activity in a labriform swimming fish (Embiotoca lateralis)

    DEFF Research Database (Denmark)

    Tudorache, Christian; Jordan, Anders D.; Svendsen, Jon Christian

    2009-01-01

    The objective of this study was to identify kinematic variables correlated with oxygen consumption during spontaneous labriform swimming. Kinematic variables (swimming speed, change of speed, turning angle, turning rate, turning radius and pectoral fin beat frequency) and oxygen consumption (MO2......) of spontaneous swimming in Embiotoca lateralis were measured in a circular arena using video tracking and respirometry, respectively. The main variable influencing MO2 was pectoral fin beat frequency (r (2) = 0.71). No significant relationship was found between swimming speed and pectoral fin beat frequency....... Complementary to other methods within biotelemetry such as EMG it is suggested that such correlations of pectoral fin beat frequency may be used to measure the energy requirements of labriform swimming fish such as E. lateralis in the field, but need to be taken with great caution since movement and oxygen...

  2. Kinematics and energetic benefits of schooling in the labriform fish, striped surfperch Embiotoca lateralis

    DEFF Research Database (Denmark)

    Johansen, J. L.; Vaknin, R.; Steffensen, John Fleng

    2010-01-01

    Schooling can provide fish with a number of behavioural and ecological advantages, including increased food supply and reduced predator risk. Previous work suggests that fish swimming using body and caudal fin locomotion may also experience energetic advantages when trailing behind neighbours......, based on correlations between swimming speeds and pectoral fin beat frequency and between swimming speeds and oxygen consumption of solitary fish. In addition, leading individuals in a school were estimated to have higher oxygen consumption than solitary individuals swimming at the same speed, based....... However, little is known about the potential energetic advantages associated with schooling in fish that swim using their pectoral fins. Using the striped surfperch Embiotoca lateralis, a labriform fish that swims routinely with its pectoral fins, we found that pectoral fin beat frequencies were...

  3. Gait transition and oxygen consumption in swimming striped surfperch Embiotoca lateralis Agassiz

    DEFF Research Database (Denmark)

    Cannas, M.; Schaefer, J.; Domenici, P.

    2006-01-01

    A flow-through respirometer and swim tunnel was used to estimate the gait transition speed (Up-c) of striped surfperch Embiotoca lateralis, a labriform swimmer, and to investigate metabolic costs associated with gait transition. The Up-c was defined as the lowest speed at which fish decrease...... the use of pectoral fins significantly. While the tail was first recruited for manoeuvring at relatively low swimming speeds, the use of the tail at these low speeds [as low as 0·75 body (fork) lengths s-1, LF s-1) was rare (..., either in addition to pectoral fins or during burst-and-coast mode. Oxygen consumption increased exponentially with swimming speeds up to gait transition, and then levelled off. Similarly, cost of transport (CT) decreased with increasing speed, and then levelled off near Up-c. When speeds =Up...

  4. Swimming activity in marine fish.

    Science.gov (United States)

    Wardle, C S

    1985-01-01

    Marine fish are capable of swimming long distances in annual migrations; they are also capable of high-speed dashes of short duration, and they can occupy small home territories for long periods with little activity. There is a large effect of fish size on the distance fish migrate at slow swimming speeds. When chased by a fishing trawl the effect of fish size on swimming performance can decide their fate. The identity and thickness of muscle used at each speed and evidence for the timing of myotomes used during the body movement cycle can be detected using electromyogram (EMG) electrodes. The cross-sectional area of muscle needed to maintain different swimming speeds can be predicted by relating the swimming drag force to the muscle force. At maximum swimming speed one completed cycle of swimming force is derived in sequence from the whole cross-sectional area of the muscles along the two sides of the fish. This and other aspects of the swimming cycle suggest that each myotome might be responsible for generating forces involved in particular stages of the tail sweep. The thick myotomes at the head end shorten during the peak thrust of the tail blade whereas the thinner myotomes nearer the tail generate stiffness appropriate for transmission of these forces and reposition the tail for the next cycle.

  5. The evolution of phenotypic plasticity in fish swimming

    Science.gov (United States)

    Oufiero, Christopher E.; Whitlow, Katrina R.

    2016-01-01

    Abstract Fish have a remarkable amount of variation in their swimming performance, from within species differences to diversity among major taxonomic groups. Fish swimming is a complex, integrative phenotype and has the ability to plastically respond to a myriad of environmental changes. The plasticity of fish swimming has been observed on whole-organismal traits such as burst speed or critical swimming speed, as well as underlying phenotypes such as muscle fiber types, kinematics, cardiovascular system, and neuronal processes. Whether the plastic responses of fish swimming are beneficial seems to depend on the environmental variable that is changing. For example, because of the effects of temperature on biochemical processes, alterations of fish swimming in response to temperature do not seem to be beneficial. In contrast, changes in fish swimming in response to variation in flow may benefit the fish to maintain position in the water column. In this paper, we examine how this plasticity in fish swimming might evolve, focusing on environmental variables that have received the most attention: temperature, habitat, dissolved oxygen, and carbon dioxide variation. Using examples from previous research, we highlight many of the ways fish swimming can plastically respond to environmental variation and discuss potential avenues of future research aimed at understanding how plasticity of fish swimming might evolve. We consider the direct and indirect effects of environmental variation on swimming performance, including changes in swimming kinematics and suborganismal traits thought to predict swimming performance. We also discuss the role of the evolution of plasticity in shaping macroevolutionary patterns of diversity in fish swimming. PMID:29491937

  6. Undulatory fish swimming : from muscles to flow

    NARCIS (Netherlands)

    Müller, U.K.; Leeuwen, van J.L.

    2006-01-01

    Undulatory swimming is employed by many fish for routine swimming and extended sprints. In this biomechanical review, we address two questions: (i) how the fish's axial muscles power swimming; and (ii) how the fish's body and fins generate thrust. Fish have adapted the morphology of their axial

  7. Swimming Performance of Toy Robotic Fish

    Science.gov (United States)

    Petelina, Nina; Mendelson, Leah; Techet, Alexandra

    2015-11-01

    HEXBUG AquaBotsTM are a commercially available small robot fish that come in a variety of ``species''. These models have varying caudal fin shapes and randomly-varied modes of swimming including forward locomotion, diving, and turning. In this study, we assess the repeatability and performance of the HEXBUG swimming behaviors and discuss the use of these toys to develop experimental techniques and analysis methods to study live fish swimming. In order to determine whether these simple, affordable model fish can be a valid representation for live fish movement, two models, an angelfish and a shark, were studied using 2D Particle Image Velocimetry (PIV) and 3D Synthetic Aperture PIV. In a series of experiments, the robotic fish were either allowed to swim freely or towed in one direction at a constant speed. The resultant measurements of the caudal fin wake are compared to data from previous studies of a real fish and simplified flapping propulsors.

  8. Muscle dynamics in fish during steady swimming

    DEFF Research Database (Denmark)

    Shadwick, RE; Steffensen, JF; Katz, SL

    1998-01-01

    SYNOPSIS. Recent research in fish locomotion has been dominated by an interest in the dynamic mechanical properties of the swimming musculature. Prior observations have indicated that waves of muscle activation travel along the body of an undulating fish faster than the resulting waves of muscular...... position in swimming fish. Quantification of muscle contractile properties in cyclic contractions relies on in vitro experiments using strain and activation data collected in vivo. In this paper we discuss the relation between these parameters and body kinematics. Using videoradiographic data from swimming...... constant cross-section of red muscle along much of the body suggests that positive power for swimming is generated fairly uniformly along the length of the fish....

  9. Experimental hydrodynamics of swimming in fishes

    Science.gov (United States)

    Tytell, Eric Daniel

    2005-11-01

    The great diversity of fish body shapes suggests that they have adapted to different selective pressures. For many fishes, the pressures include hydrodynamic demands: swimming efficiently or accelerating rapidly, for instance. However, the hydrodynamic advantages or disadvantages to specific morphologies are poorly understood. In particular, eels have been considered inefficient swimmers, but they migrate long distances without feeding, a task that requires efficient swimming. This dissertation, therefore, begins with an examination of the swimming hydrodynamics of American eels, Anguilla rostrata, at steady swimming speeds from 0.5 to 2 body lengths (L) per second and during accelerations from -1.4 to 1.3 L s -2. The final chapter examines the hydrodynamic effects of body shape directly by describing three-dimensional flow around swimming bluegill sunfish, Lepomis macrochirus. In all chapters, flow is quantified using digital particle image velocimetry, and simultaneous kinematics are measured from high-resolution digital video. The wake behind a swimming eel in the horizontal midline plane is described first. Rather than producing a wake with fluid jets angled backwards, like in fishes such as sunfish, eels have a wake with exclusively lateral jets. The lack of downstream momentum indicates that eels balance the axial forces of thrust and drag evenly over time and over their bodies, and therefore do not change axial fluid momentum. This even balance, present at all steady swimming speeds, is probably due to the relatively uniform body shape of eels. As eels accelerate, thrust exceeds drag, axial momentum increases, and the wake approaches that of other fishes. During steady swimming, though, the lack of axial momentum prevents direct efficiency estimation. The effect of body shape was examined directly by measuring flow in multiple transverse planes along the body of bluegill sunfish swimming at 1.2 L s-1. The dorsal and anal fin, neglected in many previous

  10. Fish Swimming and Bird/Insect Flight

    Science.gov (United States)

    Wu, Theodore Yaotsu

    2011-01-01

    This expository review is devoted to fish swimming and bird/insect flight. (a) The simple waving motion of an elongated flexible ribbon plate of constant width propagating a wave distally down the plate to swim forward in a fluid, initially at rest, is first considered to provide a fundamental concept on energy conservation. It is generalized to include variations in body width and thickness, with appended dorsal, ventral and caudal fins shedding vortices to closely simulate fish swimming, for which a nonlinear theory is presented for large-amplitude propulsion. (b) For bird flight, the pioneering studies on oscillatory rigid wings are discussed with delineating a fully nonlinear unsteady theory for a two-dimensional flexible wing with arbitrary variations in shape and trajectory to provide a comparative study with experiments. (c) For insect flight, recent advances are reviewed by items on aerodynamic theory and modeling, computational methods, and experiments, for forward and hovering flights with producing leading-edge vortex to yield unsteady high lift. (d) Prospects are explored on extracting prevailing intrinsic flow energy by fish and bird to enhance thrust for propulsion. (e) The mechanical and biological principles are drawn together for unified studies on the energetics in deriving metabolic power for animal locomotion, leading to the surprising discovery that the hydrodynamic viscous drag on swimming fish is largely associated with laminar boundary layers, thus drawing valid and sound evidences for a resounding resolution to the long-standing fish-swim paradox proclaimed by Gray (1936, 1968 ).

  11. Energetics of swimming of schooling fish

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    , i.e. nearest neighbour distance, water temperature, gill oxygen extraction, gill ventilation capacity, etc. Fish swimming in a school have been shown to have energetic advantages when trailing behind neighbours, resulting in up to 20% energy saving. The effect of this energy saving is that the fish......Soc for experimental Biol Annual Meeting - Salzburg 2012 John F. Steffensen (University of Copenhagen, Denmark) When a fish school swims through the water, every individual consumes a certain amount of oxygen, which means that less will be available for the trailing fish in the school. In 1967 Mc......Farland and Moss reported that the oxygen saturation decreased approximately 30% from the front to the rear of an approximately 150-m long school of mullets swimming in normoxic water. They also observed that the decline in oxygen saturation at the rear resulted in the school disintegrating into smaller separate...

  12. Swimming in air-breathing fishes.

    Science.gov (United States)

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  13. Evaluation of swimming capability and potential velocity barrier problems for fish. Part B: New telemetric approaches to the assessment of fish swimming performance

    International Nuclear Information System (INIS)

    Scruton, D. A.; Goosney, R. G.; McKinley, R. S.; Booth, R. K.; Colavecchia, M.

    1998-08-01

    This report represents the second part of a study undertaken to develop information related to swimming capability of several important fish species. The study will provide biological design criteria to mitigate potential velocity barrier problems associated with hydroelectric power plants. This part of the report focuses on the development and evaluation of approaches to assessing locomotory activity, swimming performance and energy load costs to fish under naturally occurring conditions and in relation to potential barriers. The study involved implantation of a bio-sensitive radio transmitter (electromyogram (EMG)) tag in the swimming muscle of fish, calibration of locomotory ability and energetic scope, and subsequent use of EMG signals to assess swimming performance and metabolic costs in situ. Digital signal processing (DSP) with antennae switching was also used to study high speed swimming performance, behaviour, and migratory strategy in relation to ascent of an experimental flume. The techniques and technologies developed indicate the complexity of factors that regulate fish swimming energy expenditure that need to be considered in the design and operation of fish passage facilities. 84 refs., 6 tabs., figs., 2 appendices

  14. Swimming and muscle structure in fish

    NARCIS (Netherlands)

    Spierts, I.L.Y.

    1999-01-01

    In this series of studies the relations between swimming behaviour of fish in general and extreme swimming responses in particular (called fast starts or escape responses) and the structure and ontogeny of the muscle system was investigated. Special attention was paid to relate functional

  15. On burst-and-coast swimming performance in fish-like locomotion

    International Nuclear Information System (INIS)

    Chung, M-H

    2009-01-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  16. On burst-and-coast swimming performance in fish-like locomotion.

    Science.gov (United States)

    Chung, M-H

    2009-09-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  17. Swimming and other activities: applied aspects of fish swimming performance

    Science.gov (United States)

    Castro-Santos, Theodore R.; Farrell, A.P.

    2011-01-01

    Human activities such as hydropower development, water withdrawals, and commercial fisheries often put fish species at risk. Engineered solutions designed to protect species or their life stages are frequently based on assumptions about swimming performance and behaviors. In many cases, however, the appropriate data to support these designs are either unavailable or misapplied. This article provides an overview of the state of knowledge of fish swimming performance – where the data come from and how they are applied – identifying both gaps in knowledge and common errors in application, with guidance on how to avoid repeating mistakes, as well as suggestions for further study.

  18. Evaluation of swimming capability and potential velocity barrier problems for fish. Part A: Swimming performance of selected warm and cold water fish species relative to fish passage and fishway design

    International Nuclear Information System (INIS)

    Scruton, D. A.; Goosney, R. G.; McKinley, R. S.; Booth, R. K.; Peake, S.

    1998-08-01

    The objective of this study was to provide information about the swimming capability of several widely distributed, economically or recreationally important fish species, for use in mitigating potential velocity barrier problems associated with hydroelectric power facilities. Swimming capability of anadromous and landlocked Atlantic salmon, brook trout, brown trout, lake sturgeon, and walleye, collected from various locations throughout Canada, were investigated to develop criteria for sustained, prolonged, burst swimming performance characteristics of the study species, fish physiology, life history and migration distance on swimming performance. Swimming performance characteristics in the wild, especially the use of physiological telemetry, as well as development of new methodology for the measurement of burst speed was also central to the study. Models were derived to describe swimming capabilities for each study species/life stage in relation to fish length, water velocity, water temperature, and other significant environmental factors. The data will form the basis of guideline development and decision making to improve design and evaluation of fish passage facilities. A series of annotated bibliographies resulting from the study are described in Appendix B. 74 refs., 8 tabs., figs., 2 appendices

  19. Fluid Mechanics of Fish Swimming

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 1. Fluid Mechanics of Fish Swimming - Lift-based Propulsion. Jaywant H Arakeri. General Article Volume 14 Issue 1 January 2009 pp 32-46. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Biomechanics of swimming in developing larval fish

    NARCIS (Netherlands)

    Voesenek, Cees J.; Muijres, Florian T.; Leeuwen, Van Johan L.

    2018-01-01

    Most larvae of bony fish are able to swim almost immediately after hatching. Their locomotory system supports several vital functions: fish larvae make fast manoeuvres to escape from predators, aim accurately during suction feeding and maymigrate towards suitable future habitats. Owing to their

  1. TUNING IN TO FISH SWIMMING WAVES - BODY FORM, SWIMMING MODE AND MUSCLE FUNCTION

    NARCIS (Netherlands)

    WARDLE, CS; VIDELER, JJ; ALTRINGHAM, JD

    Most fish species swim with lateral body undulations running from head to tail, These waves run more slowly than the waves of muscle activation causing them, reflecting the effect of the interaction between the fish's body and the reactive forces from the water, The coupling between both waves

  2. In situ swimming speed and swimming behaviour of fish feeding on the krill Meganyctiphanes norvegica

    OpenAIRE

    Onsrud, M. S. R.; Kaartvedt, Stein; Breien, M. T.

    2005-01-01

    In situ swimming speed and swimming behaviour of dielly migrating planktivorous fish were studied at a 120-m-deep location. Acoustic target tracking was performed using a hull-mounted transducer and submersible transducers located on the sea bottom and free hanging in the water column. The original data displayed a relationship between distance to transducer and swimming speed. A simplistic smoother applied during post-processing, appeared to break this relationship. Target tracki...

  3. Measuring Ucrit and endurance: equipment choice influences estimates of fish swimming performance.

    Science.gov (United States)

    Kern, P; Cramp, R L; Gordos, M A; Watson, J R; Franklin, C E

    2018-01-01

    This study compared the critical swimming speed (U crit ) and endurance performance of three Australian freshwater fish species in different swim-test apparatus. Estimates of U crit measured in a large recirculating flume were greater for all species compared with estimates from a smaller model of the same recirculating flume. Large differences were also observed for estimates of endurance swimming performance between these recirculating flumes and a free-surface swim tunnel. Differences in estimates of performance may be attributable to variation in flow conditions within different types of swim chambers. Variation in estimates of swimming performance between different types of flumes complicates the application of laboratory-based measures to the design of fish passage infrastructure. © 2017 The Fisheries Society of the British Isles.

  4. Simulations of the burst and coast swimming behavior of fish

    Science.gov (United States)

    Zhou, Quan; Moored, Keith; Smits, Alexander

    2013-11-01

    An investigation into the burst and coast swimming behavior of fish is simulated with a 2-D, inviscid Boundary Element Method. The fish is modeled as a thin pitching panel that is allowed to free swim. A simple drag model is used where drag is proportional to the velocity squared in order to calculate the cruising velocity. The burst-coast behavior is modeled by a coasting phase, where the panel is motionless, and a burst phase, where the panel pitches with a single sine wave motion. Varying the frequency of the fin-beat and the duration of the duty cycle (the ratio of the burst-phase to the entire period), it is found that it is possible to alter swimming motion to yield a decrease of 50% in the cost of transport with no sacrifice of time-averaged cruising velocity. The analyses of the wake structure demonstrate how vortices shed by the fish affect and shape swimming dynamics. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-08-1-0642.

  5. Optimal swimming speed in head currents and effects on distance movement of winter-migrating fish

    DEFF Research Database (Denmark)

    Brodersen, J.; Nilsson, P.A.; Ammitzbøl, J.

    2008-01-01

    ecologically and economically important. We here use passive and active telemetry to study how winter migrating roach regulate swimming speed and distance travelled per day in response to variations in head current velocity. Furthermore, we provide theoretical predictions on optimal swimming speeds in head...... currents and relate these to our empirical results. We show that fish migrate farther on days with low current velocity, but travel at a greater ground speed on days with high current velocity. The latter result agrees with our predictions on optimal swimming speed in head currents, but disagrees...... with previously reported predictions suggesting that fish ground speed should not change with head current velocity. We suggest that this difference is due to different assumptions on fish swimming energetics. We conclude that fish are able to adjust both swimming speed and timing of swimming activity during...

  6. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.

    Science.gov (United States)

    Babu, Mannam Naga Praveen; Mallikarjuna, J M; Krishnankutty, P

    Two-dimensional velocity fields around a freely swimming freshwater black shark fish in longitudinal (XZ) plane and transverse (YZ) plane are measured using digital particle image velocimetry (DPIV). By transferring momentum to the fluid, fishes generate thrust. Thrust is generated not only by its caudal fin, but also using pectoral and anal fins, the contribution of which depends on the fish's morphology and swimming movements. These fins also act as roll and pitch stabilizers for the swimming fish. In this paper, studies are performed on the flow induced by fins of freely swimming undulatory carangiform swimming fish (freshwater black shark, L  = 26 cm) by an experimental hydrodynamic approach based on quantitative flow visualization technique. We used 2D PIV to visualize water flow pattern in the wake of the caudal, pectoral and anal fins of swimming fish at a speed of 0.5-1.5 times of body length per second. The kinematic analysis and pressure distribution of carangiform fish are presented here. The fish body and fin undulations create circular flow patterns (vortices) that travel along with the body waves and change the flow around its tail to increase the swimming efficiency. The wake of different fins of the swimming fish consists of two counter-rotating vortices about the mean path of fish motion. These wakes resemble like reverse von Karman vortex street which is nothing but a thrust-producing wake. The velocity vectors around a C-start (a straight swimming fish bends into C-shape) maneuvering fish are also discussed in this paper. Studying flows around flapping fins will contribute to design of bioinspired propulsors for marine vehicles.

  7. Analytical insights into optimality and resonance in fish swimming

    Science.gov (United States)

    Kohannim, Saba; Iwasaki, Tetsuya

    2014-01-01

    This paper provides analytical insights into the hypothesis that fish exploit resonance to reduce the mechanical cost of swimming. A simple body–fluid fish model, representing carangiform locomotion, is developed. Steady swimming at various speeds is analysed using optimal gait theory by minimizing bending moment over tail movements and stiffness, and the results are shown to match with data from observed swimming. Our analysis indicates the following: thrust–drag balance leads to the Strouhal number being predetermined based on the drag coefficient and the ratio of wetted body area to cross-sectional area of accelerated fluid. Muscle tension is reduced when undulation frequency matches resonance frequency, which maximizes the ratio of tail-tip velocity to bending moment. Finally, hydrodynamic resonance determines tail-beat frequency, whereas muscle stiffness is actively adjusted, so that overall body–fluid resonance is exploited. PMID:24430125

  8. Swimming performance of a biomimetic compliant fish-like robot

    Science.gov (United States)

    Epps, Brenden P.; Valdivia Y Alvarado, Pablo; Youcef-Toumi, Kamal; Techet, Alexandra H.

    2009-12-01

    Digital particle image velocimetry and fluorescent dye visualization are used to characterize the performance of fish-like swimming robots. During nominal swimming, these robots produce a ‘V’-shaped double wake, with two reverse-Kármán streets in the far wake. The Reynolds number based on swimming speed and body length is approximately 7500, and the Strouhal number based on flapping frequency, flapping amplitude, and swimming speed is 0.86. It is found that swimming speed scales with the strength and geometry of a composite wake, which is constructed by freezing each vortex at the location of its centroid at the time of shedding. Specifically, we find that swimming speed scales linearly with vortex circulation. Also, swimming speed scales linearly with flapping frequency and the width of the composite wake. The thrust produced by the swimming robot is estimated using a simple vortex dynamics model, and we find satisfactory agreement between this estimate and measurements made during static load tests.

  9. Optimal swimming speed in head currents and effects on distance movement of winter-migrating fish.

    Directory of Open Access Journals (Sweden)

    Jakob Brodersen

    Full Text Available Migration is a commonly described phenomenon in nature that is often caused by spatial and temporal differences in habitat quality. However, as migration requires energy, the timing of migration may depend not only on differences in habitat quality, but also on temporal variation in migration costs. Such variation can, for instance, arise from changes in wind or current velocity for migrating birds and fish, respectively. Whereas behavioural responses of birds to such changing environmental conditions have been relatively well described, this is not the case for fish, although fish migrations are both ecologically and economically important. We here use passive and active telemetry to study how winter migrating roach regulate swimming speed and distance travelled per day in response to variations in head current velocity. Furthermore, we provide theoretical predictions on optimal swimming speeds in head currents and relate these to our empirical results. We show that fish migrate farther on days with low current velocity, but travel at a greater ground speed on days with high current velocity. The latter result agrees with our predictions on optimal swimming speed in head currents, but disagrees with previously reported predictions suggesting that fish ground speed should not change with head current velocity. We suggest that this difference is due to different assumptions on fish swimming energetics. We conclude that fish are able to adjust both swimming speed and timing of swimming activity during migration to changes in head current velocity in order to minimize energy use.

  10. Flow Structures and Efficiency of Swimming Fish school: Numerical Study

    Science.gov (United States)

    Yatagai, Yuzuru; Hattori, Yuji

    2013-11-01

    The flow structure and energy-saving mechanism in fish school is numerically investigated by using the volume penalization method. We calculate the various patterns of configuration of fishes and investigate the relation between spatial arrangement and the performance of fish. It is found that the down-stream fish gains a hydrodynamic advantage from the upstream wake shed by the upstream fish. The most efficient configuration is that the downstream fish is placed in the wake. It reduces the drag force of the downstream fish in comparison with that in solo swimming.

  11. Effects of altered gravity on the swimming behaviour of fish

    Science.gov (United States)

    Hilbig, R.; Anken, R. H.; Sonntag, G.; Höhne, S.; Henneberg, J.; Kretschmer, N.; Rahmann, H.

    Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness-phenomena (SMS, a kinetosis). It has been argued that SMS during PAFs might not be based on microgravity alone but rather on changing accelerations from 0g to 2g. We test here the hypothesis that PAF-induced kinetosis is based on asymmetric statoliths (i.e., differently weighed statoliths on the right and the left side of the head), with asymmetric inputs to the brain being disclosed at microgravity. Since fish frequently reveal kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), we investigated (1) whether or not kinetotically swimming fish at microgravity would have a pronounced inner ear otolith asymmetry and (2) whether or not slow translational and continuously changing linear (vertical) acceleration on ground induced kinetosis. These latter accelerations were applied using a specially developed parabel-animal-container (PAC) to stimulate the cupular organs. The results suggest that the fish tested on ground can counter changing accelerations successfully without revealing kinetotic swimming patterns. Kinetosis could only be induced by PAFs. This finding suggests that it is indeed microgravity rather than changing accelerations, which induces kinetosis. Moreover, we demonstrate that fish swimming kinetotically during PAFs correlates with a higher otolith asymmetry in comparison to normally behaving animals in PAFs.

  12. Optimum swimming pathways of fish spawning migrations in rivers

    Science.gov (United States)

    McElroy, Brandon; DeLonay, Aaron; Jacobson, Robert

    2012-01-01

    Fishes that swim upstream in rivers to spawn must navigate complex fluvial velocity fields to arrive at their ultimate locations. One hypothesis with substantial implications is that fish traverse pathways that minimize their energy expenditure during migration. Here we present the methodological and theoretical developments necessary to test this and similar hypotheses. First, a cost function is derived for upstream migration that relates work done by a fish to swimming drag. The energetic cost scales with the cube of a fish's relative velocity integrated along its path. By normalizing to the energy requirements of holding a position in the slowest waters at the path's origin, a cost function is derived that depends only on the physical environment and not on specifics of individual fish. Then, as an example, we demonstrate the analysis of a migration pathway of a telemetrically tracked pallid sturgeon (Scaphirhynchus albus) in the Missouri River (USA). The actual pathway cost is lower than 105 random paths through the surveyed reach and is consistent with the optimization hypothesis. The implication—subject to more extensive validation—is that reproductive success in managed rivers could be increased through manipulation of reservoir releases or channel morphology to increase abundance of lower-cost migration pathways.

  13. Pelagic behaviour of reservoir fishes: sinusoidal swimming and associated behaviour

    OpenAIRE

    JAROLÍM, Oldřich

    2009-01-01

    Annotation Long-term fixed-location hydroacoustic study with uplooking transducer was performed during 2005 in Římov reservoir, Czech Republic. It dealt mainly with fish behaviour in the open water of reservoir, especially with sinusoidal swimming behaviour. The dependence of pelagic fish behaviour on environmental conditions was also studied.

  14. Body Fineness Ratio as a Predictor of Maximum Prolonged-Swimming Speed in Coral Reef Fishes

    Science.gov (United States)

    Walker, Jeffrey A.; Alfaro, Michael E.; Noble, Mae M.; Fulton, Christopher J.

    2013-01-01

    The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at U max. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax. For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax. For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax, which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies. PMID:24204575

  15. Go reconfigure: how fish change shape as they swim and evolve.

    Science.gov (United States)

    Long, John H; Porter, Marianne E; Root, Robert G; Liew, Chun Wai

    2010-12-01

    The bodies of fish change shape over propulsive, behavioral, developmental, and evolutionary time scales, a general phenomenon that we call "reconfiguration". Undulatory, postural, and form-reconfiguration can be distinguished, studied independently, and examined in terms of mechanical interactions and evolutionary importance. Using a combination of live, swimming fishes and digital robotic fish that are autonomous and self-propelled, we examined the functional relation between undulatory and postural reconfiguration in forward swimming, backward swimming, and yaw turning. To probe how postural and form reconfiguration interact, the yaw turning of leopard sharks was examined using morphometric and kinematic analyses. To test how undulatory reconfiguration might evolve, the digital robotic fish were subjected to selection for enhanced performance in a simulated ecology in which each individual had to detect and move towards a food source. In addition to the general issue of reconfiguration, these investigations are united by the fact that the dynamics of undulatory and postural reconfigurations are predicted to be determined, in part, by the structural stiffness of the fish's body. Our method defines undulatory reconfiguration as the combined, point-by-point periodic motion of the body, leaving postural reconfiguration as the combined deviations from undulatory reconfiguration. While undulatory reconfiguration appears to be the sole or primary propulsive driver, postural reconfiguration may contribute to propulsion in hagfish and it is correlated with differences in forward, and backward, swimming in lamprey. Form reconfigures over developmental time in leopard sharks in a manner that is consistent with an allometric scaling theory in which structural stiffness of the body is held constant. However, correlation of a form proxy for structural stiffness of the body suggests that body stiffness may scale in order to limit maximum postural reconfiguration during routine

  16. Abundance, Fishing Season and Management Strategy for Blue Swimming Crab (Portunus pelagicus) in Pangkajene Kepulauan, South Sulawesi, Indonesia.

    Science.gov (United States)

    Wiyono, Eko Sri; Ihsan

    2018-03-01

    In order to manage blue swimming crabs in Pangkajene Kepulauan, management measures are required. Since the environment which affects the abundance of the blue swimming crab varies seasonally, it is necessary to take into account the seasonal nature with the aim of developing a management strategy. The objectives of this study are to define the abundance of and fishing season of blue swimming crabs in the Pangkajene Kepulauan waters, South Sulawesi, Indonesia. The fishing season was analysed using seasonal index analysis, while fish abundance was analysed by means of Equilibrium-Schaefer. The result of this study demonstrated that fishermen allocate their fishing gear all year, although the fish catch is seasonal. Based on analysis of the result, the fishing season for the blue swimming crabs is short. The peak fishing season starts in May and finishes in June. However, in order to enable their families to earn a living, fishermen operated their fishing gear throughout the year. As a result, both catch landing and effort were close to maximum sustainable yield (MSY). In order to reduce fishing pressure, it is necessary to reduce fishing gear and have a seasonal arrangement regarding fishing gear allocation.

  17. Estimating fish swimming metrics and metabolic rates with accelerometers: the influence of sampling frequency.

    Science.gov (United States)

    Brownscombe, J W; Lennox, R J; Danylchuk, A J; Cooke, S J

    2018-06-21

    Accelerometry is growing in popularity for remotely measuring fish swimming metrics, but appropriate sampling frequencies for accurately measuring these metrics are not well studied. This research examined the influence of sampling frequency (1-25 Hz) with tri-axial accelerometer biologgers on estimates of overall dynamic body acceleration (ODBA), tail-beat frequency, swimming speed and metabolic rate of bonefish Albula vulpes in a swim-tunnel respirometer and free-swimming in a wetland mesocosm. In the swim tunnel, sampling frequencies of ≥ 5 Hz were sufficient to establish strong relationships between ODBA, swimming speed and metabolic rate. However, in free-swimming bonefish, estimates of metabolic rate were more variable below 10 Hz. Sampling frequencies should be at least twice the maximum tail-beat frequency to estimate this metric effectively, which is generally higher than those required to estimate ODBA, swimming speed and metabolic rate. While optimal sampling frequency probably varies among species due to tail-beat frequency and swimming style, this study provides a reference point with a medium body-sized sub-carangiform teleost fish, enabling researchers to measure these metrics effectively and maximize study duration. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Sustained swimming improves fish dietary nutrient assimilation efficiency and body composition of juvenile Brycon amazonicus

    Directory of Open Access Journals (Sweden)

    Gustavo Alberto Arbeláez-Rojas

    Full Text Available ABSTRACT Sustained swimming (SS usually promotes beneficial effects in growth and feed conversion of fishes. Although feed efficiency is improves at moderate water velocity, more information is required to determine the contributions of this factor on growth and body composition. Body composition and efficiency responses to the use of nutrients were determined in juvenile matrinxa Brycon amazonicus (Spix and Agassiz, 1829 fed with two dietary amounts of protein, 28 or 38% of crude protein (CP, and subjected to sustained swimming at a constant speed of 1.5 body lengths s−1 (BL s−1 or let to free swimming. The fish body composition under SS and fed with 28% of dietary protein showed 22% of increased in bulk protein and a 26% of decrease in water content in the white muscle. Red muscle depicted 70% less water content and a 10% more lipid. Nutrient retention was enhanced in fish subjected to SS and a higher gain of ethereal extract sustained was observed in the white muscle of exercised fish fed with 38% CP. The interaction between swimming and dietary protein resulted in a larger bulk of lipid in red muscle. Fish fed with 28% CP under SS at 1.5 BL s−1 presented the best utilization of dietary nutrients and body composition. Thus, this fish farming procedure is proposed as a promising management strategy for rearing matrinxa.

  19. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.

    Science.gov (United States)

    Marras, Stefano; Porfiri, Maurizio

    2012-08-07

    The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its 'engineered' member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a 'dummy'. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot-animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour.

  20. Fish and robots swimming together in a water tunnel: robot color and tail-beat frequency influence fish behavior.

    Directory of Open Access Journals (Sweden)

    Giovanni Polverino

    Full Text Available The possibility of integrating bioinspired robots in groups of live social animals may constitute a valuable tool to study the basis of social behavior and uncover the fundamental determinants of animal functions and dysfunctions. In this study, we investigate the interactions between individual golden shiners (Notemigonus crysoleucas and robotic fish swimming together in a water tunnel at constant flow velocity. The robotic fish is designed to mimic its live counterpart in the aspect ratio, body shape, dimension, and locomotory pattern. Fish positional preference with respect to the robot is experimentally analyzed as the robot's color pattern and tail-beat frequency are varied. Behavioral observations are corroborated by particle image velocimetry studies aimed at investigating the flow structure behind the robotic fish. Experimental results show that the time spent by golden shiners in the vicinity of the bioinspired robotic fish is the highest when the robot mimics their natural color pattern and beats its tail at the same frequency. In these conditions, fish tend to swim at the same depth of the robotic fish, where the wake from the robotic fish is stronger and hydrodynamic return is most likely to be effective.

  1. Fish and robots swimming together in a water tunnel: robot color and tail-beat frequency influence fish behavior.

    Science.gov (United States)

    Polverino, Giovanni; Phamduy, Paul; Porfiri, Maurizio

    2013-01-01

    The possibility of integrating bioinspired robots in groups of live social animals may constitute a valuable tool to study the basis of social behavior and uncover the fundamental determinants of animal functions and dysfunctions. In this study, we investigate the interactions between individual golden shiners (Notemigonus crysoleucas) and robotic fish swimming together in a water tunnel at constant flow velocity. The robotic fish is designed to mimic its live counterpart in the aspect ratio, body shape, dimension, and locomotory pattern. Fish positional preference with respect to the robot is experimentally analyzed as the robot's color pattern and tail-beat frequency are varied. Behavioral observations are corroborated by particle image velocimetry studies aimed at investigating the flow structure behind the robotic fish. Experimental results show that the time spent by golden shiners in the vicinity of the bioinspired robotic fish is the highest when the robot mimics their natural color pattern and beats its tail at the same frequency. In these conditions, fish tend to swim at the same depth of the robotic fish, where the wake from the robotic fish is stronger and hydrodynamic return is most likely to be effective.

  2. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild

    Science.gov (United States)

    Broell, Franziska; Taggart, Christopher T.

    2015-01-01

    This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming ‘efficiently’, is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time) in the wild. PMID:26673777

  3. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild.

    Directory of Open Access Journals (Sweden)

    Franziska Broell

    Full Text Available This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming 'efficiently', is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40, and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time in the wild.

  4. Intra- and Intersexual swim bladder dimorphisms in the plainfin midshipman fish (Porichthys notatus): Implications of swim bladder proximity to the inner ear for sound pressure detection.

    Science.gov (United States)

    Mohr, Robert A; Whitchurch, Elizabeth A; Anderson, Ryan D; Forlano, Paul M; Fay, Richard R; Ketten, Darlene R; Cox, Timothy C; Sisneros, Joseph A

    2017-11-01

    The plainfin midshipman fish, Porichthys notatus, is a nocturnal marine teleost that uses social acoustic signals for communication during the breeding season. Nesting type I males produce multiharmonic advertisement calls by contracting their swim bladder sonic muscles to attract females for courtship and spawning while subsequently attracting cuckholding type II males. Here, we report intra- and intersexual dimorphisms of the swim bladder in a vocal teleost fish and detail the swim bladder dimorphisms in the three sexual phenotypes (females, type I and II males) of plainfin midshipman fish. Micro-computerized tomography revealed that females and type II males have prominent, horn-like rostral swim bladder extensions that project toward the inner ear end organs (saccule, lagena, and utricle). The rostral swim bladder extensions were longer, and the distance between these swim bladder extensions and each inner-ear end organ type was significantly shorter in both females and type II males compared to that in type I males. Our results revealed that the normalized swim bladder length of females and type II males was longer than that in type I males while there was no difference in normalized swim bladder width among the three sexual phenotypes. We predict that these intrasexual and intersexual differences in swim bladder morphology among midshipman sexual phenotypes will afford greater sound pressure sensitivity and higher frequency detection in females and type II males and facilitate the detection and localization of conspecifics in shallow water environments, like those in which midshipman breed and nest. © 2017 Wiley Periodicals, Inc.

  5. A fish-like robot: Mechanics of swimming due to constraints

    Science.gov (United States)

    Tallapragada, Phanindra; Malla, Rijan

    2014-11-01

    It is well known that due to reasons of symmetry, a body with one degree of actuation cannot swim in an ideal fluid. However certain velocity constraints arising in fluid-body interactions, such as the Kutta condition classically applied at the trailing cusp of a Joukowski hydrofoil break this symmetry through vortex shedding. Thus Joukowski foils that vary shape periodically can be shown to be able to swim through vortex shedding. In general it can be shown that vortex shedding due to the Kutta condition is equivalent to nonintegrable constraints arising in the mechanics of finite-dimensional mechanical systems. This equivalence allows hydrodynamic problems involving vortex shedding, especially those pertaining to swimming and related phenomena to be framed in the context of geometric mechanics on manifolds. This formal equivalence also allows the design of bio inspired robots that swim not due to shape change but due to internal moving masses and rotors. Such robots lacking articulated joints are easy to design, build and control. We present such a fish-like robot that swims due to the rotation of internal rotors.

  6. Unconstrained and Noninvasive Measurement of Swimming Behavior of Small Fish Based on Ventilatory Signals

    Science.gov (United States)

    Kitayama, Shigehisa; Soh, Zu; Hirano, Akira; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao

    Ventilatory signal is a kind of bioelectric signals reflecting the ventilatory conditions of fish, and has received recent attention as an indicator for assessment of water quality, since breathing is adjusted by the respiratory center according to changes in the underwater environment surrounding the fish. The signals are thus beginning to be used in bioassay systems for water examination. Other than ventilatory conditions, swimming behavior also contains important information for water examination. The conventional bioassay systems, however, only measure either ventilatory signals or swimming behavior. This paper proposes a new unconstrained and noninvasive measurement method that is capable of conducting ventilatory signal measurement and behavioral analysis of fish at the same time. The proposed method estimates the position and the velocity of a fish in free-swimming conditions using power spectrum distribution of measured ventilatory signals from multiple electrodes. This allowed the system to avoid using a camera system which requires light sources. In order to validate estimation accuracy, the position and the velocity estimated by the proposed method were compared to those obtained from video analysis. The results confirmed that the estimated error of the fish positions was within the size of fish, and the correlation coefficient between the velocities was 0.906. The proposed method thus not only can measure the ventilatory signals, but also performs behavioral analysis as accurate as using a video camera.

  7. The Fastskin Revolution From Human Fish to Swimming Androids

    Directory of Open Access Journals (Sweden)

    Jennifer Craik

    2011-04-01

    Full Text Available The story of fastskin swimsuits reflects some of the challenges facing the impact of technology in postmodern culture. Introduced in 1999 and ratified for the Sydney 2000 Olympic Games, fastskin swimsuits were touted as revolutionising competitive swimming. Ten years later, they were banned by the world’s swimming regulatory body FINA (the Fédération Internationale de Natation, with the ban taking effect from January 2010 (Shipley 2009. The reason was the controversy caused by the large number of world records that were broken by competitors wearing polyurethane swimsuits, the next generation of the original fast skin suits. These suits were deemed to be providing an artificial advantage by increasing buoyancy and reducing drag. This had been an issue ever since they were introduced, yet FINA had approved the suits and, thereby, unleashed an unstoppable technological revolution of the sport of competitive swimming. Underlying this was the issue about its implications of the transformation of a sport based on the movement of the human body through water without the aid of artificial devices or apparatus. This article argues that the advent of the fastskin has not only transformed the art of swimming but has created a new image of the swimmer as a virtual android rather than a human fish. In turn, the image of the sport of swimming has been re-mapped as a technical artefact and sci-fi spectacle based on a radically transformed concept of the swimming body as a material object that has implications for the ideal of the fashionable body.

  8. Hydrodynamics of burst swimming fish larvae; a conceptual model approach

    NARCIS (Netherlands)

    Verhagen, J.H.G.

    2004-01-01

    Burst swimming of fish larvae is analysed from a hydrodynamic point of view. A picture of the expected flow pattern is presented based on information in literature on unsteady-flow patterns around obstacles in the intermediate Reynolds number region. It is shown that the acceleration stage of burst

  9. Disentangling and modeling interactions in fish with burst-and-coast swimming reveal distinct alignment and attraction behaviors

    Science.gov (United States)

    Calovi, Daniel S.; Litchinko, Alexandra; Lopez, Ugo; Chaté, Hugues; Sire, Clément

    2018-01-01

    The development of tracking methods for automatically quantifying individual behavior and social interactions in animal groups has open up new perspectives for building quantitative and predictive models of collective behavior. In this work, we combine extensive data analyses with a modeling approach to measure, disentangle, and reconstruct the actual functional form of interactions involved in the coordination of swimming in Rummy-nose tetra (Hemigrammus rhodostomus). This species of fish performs burst-and-coast swimming behavior that consists of sudden heading changes combined with brief accelerations followed by quasi-passive, straight decelerations. We quantify the spontaneous stochastic behavior of a fish and the interactions that govern wall avoidance and the reaction to a neighboring fish, the latter by exploiting general symmetry constraints for the interactions. In contrast with previous experimental works, we find that both attraction and alignment behaviors control the reaction of fish to a neighbor. We then exploit these results to build a model of spontaneous burst-and-coast swimming and interactions of fish, with all parameters being estimated or directly measured from experiments. This model quantitatively reproduces the key features of the motion and spatial distributions observed in experiments with a single fish and with two fish. This demonstrates the power of our method that exploits large amounts of data for disentangling and fully characterizing the interactions that govern collective behaviors in animals groups. PMID:29324853

  10. Fish-robot interactions in a free-swimming environment: Effects of speed and configuration of robots on live fish

    Science.gov (United States)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-03-01

    We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.

  11. How the body contributes to the wake in undulatory fish swimming: Flow fields of a swimming eel (Anguilla anguilla)

    NARCIS (Netherlands)

    Müller, Ulrike K.; Smit, Joris; Stamhuis, Eize J.; Videler, John J.

    2001-01-01

    Undulatory swimmers generate thrust by passing a transverse wave down their body. Thrust is generated not just at the tail, but also to a varying degree by the body, depending on the fish's morphology and swimming movements. To examine the mechanisms by which the body in particular contributes to

  12. The origin and evolution of the surfactant system in fish: insights into the evolution of lungs and swim bladders.

    Science.gov (United States)

    Daniels, Christopher B; Orgeig, Sandra; Sullivan, Lucy C; Ling, Nicholas; Bennett, Michael B; Schürch, Samuel; Val, Adalberto Luis; Brauner, Colin J

    2004-01-01

    Several times throughout their radiation fish have evolved either lungs or swim bladders as gas-holding structures. Lungs and swim bladders have different ontogenetic origins and can be used either for buoyancy or as an accessory respiratory organ. Therefore, the presence of air-filled bladders or lungs in different groups of fishes is an example of convergent evolution. We propose that air breathing could not occur without the presence of a surfactant system and suggest that this system may have originated in epithelial cells lining the pharynx. Here we present new data on the surfactant system in swim bladders of three teleost fish (the air-breathing pirarucu Arapaima gigas and tarpon Megalops cyprinoides and the non-air-breathing New Zealand snapper Pagrus auratus). We determined the presence of surfactant using biochemical, biophysical, and morphological analyses and determined homology using immunohistochemical analysis of the surfactant proteins (SPs). We relate the presence and structure of the surfactant system to those previously described in the swim bladders of another teleost, the goldfish, and those of the air-breathing organs of the other members of the Osteichthyes, the more primitive air-breathing Actinopterygii and the Sarcopterygii. Snapper and tarpon swim bladders are lined with squamous and cuboidal epithelial cells, respectively, containing membrane-bound lamellar bodies. Phosphatidylcholine dominates the phospholipid (PL) profile of lavage material from all fish analyzed to date. The presence of the characteristic surfactant lipids in pirarucu and tarpon, lamellar bodies in tarpon and snapper, SP-B in tarpon and pirarucu lavage, and SPs (A, B, and D) in swim bladder tissue of the tarpon provide strong evidence that the surfactant system of teleosts is homologous with that of other fish and of tetrapods. This study is the first demonstration of the presence of SP-D in the air-breathing organs of nonmammalian species and SP-B in actinopterygian

  13. Partition of aerobic and anaerobic swimming costs related to gait transitions in a labriform fish

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tudorache, Christian; Jordan, Anders Drud

    ) is below the Up-c, whereas both 1.9 and 2.3 bl s-1 are above the Up-c. Exercise oxygen consumption (MO2) while the fish were swimming at these speeds was determined. The presence and magnitude of excessive post exercise oxygen consumption (EPOC) was evaluated after the three swimming speeds....... There was no evidence of EPOC after swimming 1.4 and 1.9 bl s-1 indicating that the gait transition from pectoral oscillation to axial undulation is not a threshold for anaerobic metabolism. In contrast, swimming at 2.3 bl s-1 resulted in EPOC being 51.7 mg O2 kg-1 suggesting that anaerobic metabolism added about 34......% to the exercise MO2. E. lateralis switched to an unsteady burst and flap gait at 2.3 bl s-1. Burst activity correlated linearly and positively with the magnitude of the resulting EPOC. Collectively, these data suggest that steady axial propulsion does not lead to EPOC whereas transition to burst assisted swimming...

  14. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin

    Energy Technology Data Exchange (ETDEWEB)

    Low, K H; Chong, C W, E-mail: mkhlow@ntu.edu.s, E-mail: ch0018ee@ntu.edu.s [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2010-12-15

    In this paper, we aim to study the swimming performance of fish robots by using a statistical approach. A fish robot employing a carangiform swimming mode had been used as an experimental platform for the performance study. The experiments conducted aim to investigate the effect of various design parameters on the thrust capability of the fish robot with a flexible caudal fin. The controllable parameters associated with the fin include frequency, amplitude of oscillation, aspect ratio and the rigidity of the caudal fin. The significance of these parameters was determined in the first set of experiments by using a statistical approach. A more detailed parametric experimental study was then conducted with only those significant parameters. As a result, the parametric study could be completed with a reduced number of experiments and time spent. With the obtained experimental result, we were able to understand the relationship between various parameters and a possible adjustment of parameters to obtain a higher thrust. The proposed statistical method for experimentation provides an objective and thorough analysis of the effects of individual or combinations of parameters on the swimming performance. Such an efficient experimental design helps to optimize the process and determine factors that influence variability.

  15. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin.

    Science.gov (United States)

    Low, K H; Chong, C W

    2010-12-01

    In this paper, we aim to study the swimming performance of fish robots by using a statistical approach. A fish robot employing a carangiform swimming mode had been used as an experimental platform for the performance study. The experiments conducted aim to investigate the effect of various design parameters on the thrust capability of the fish robot with a flexible caudal fin. The controllable parameters associated with the fin include frequency, amplitude of oscillation, aspect ratio and the rigidity of the caudal fin. The significance of these parameters was determined in the first set of experiments by using a statistical approach. A more detailed parametric experimental study was then conducted with only those significant parameters. As a result, the parametric study could be completed with a reduced number of experiments and time spent. With the obtained experimental result, we were able to understand the relationship between various parameters and a possible adjustment of parameters to obtain a higher thrust. The proposed statistical method for experimentation provides an objective and thorough analysis of the effects of individual or combinations of parameters on the swimming performance. Such an efficient experimental design helps to optimize the process and determine factors that influence variability.

  16. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin

    International Nuclear Information System (INIS)

    Low, K H; Chong, C W

    2010-01-01

    In this paper, we aim to study the swimming performance of fish robots by using a statistical approach. A fish robot employing a carangiform swimming mode had been used as an experimental platform for the performance study. The experiments conducted aim to investigate the effect of various design parameters on the thrust capability of the fish robot with a flexible caudal fin. The controllable parameters associated with the fin include frequency, amplitude of oscillation, aspect ratio and the rigidity of the caudal fin. The significance of these parameters was determined in the first set of experiments by using a statistical approach. A more detailed parametric experimental study was then conducted with only those significant parameters. As a result, the parametric study could be completed with a reduced number of experiments and time spent. With the obtained experimental result, we were able to understand the relationship between various parameters and a possible adjustment of parameters to obtain a higher thrust. The proposed statistical method for experimentation provides an objective and thorough analysis of the effects of individual or combinations of parameters on the swimming performance. Such an efficient experimental design helps to optimize the process and determine factors that influence variability.

  17. Resolving shifting patterns of muscle energy use in swimming fish.

    Directory of Open Access Journals (Sweden)

    Shannon P Gerry

    Full Text Available Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.

  18. Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish

    Science.gov (United States)

    Gerry, Shannon P.; Ellerby, David J.

    2014-01-01

    Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858

  19. Spiral swimming behavior due to cranial and vertebral lesions associated with Cytophaga psychrophila infections in salmonid fishes

    Science.gov (United States)

    Kent, M.L.; Groff, J.M.; Morrison, J.K.; Yasutake, W.T.; Holt, R.A.

    1989-01-01

    C. psychrophila infections of the cranium and anterior vertebrae in salmonid fishes were associated with ataxia, spiral swimming along the axis of the fish, and death. The syndrome was observed in 2-10% of underyearling coho salmon Oncorhynchus kisutch, rainbow troutSalmo gairdneri, and steelhead trout S. gairdneri at several private, state, and federal hatcheries in Washington and Oregon, USA, between 1963 and 1987. Affected fish did not recover and ultimately died. Histological examination consistently revealed subacute to chronic periostitis, osteitis, meningitis, and ganglioneuritis. Inflammation and periosteal proliferation of the anterior vertebrae at the junction of the vertebral column with the cranium with extension into the cranial case was a consistent feature. The adjacent nervous tissue, particularly the medulla, was often compressed by the proliferative lesion, and this may have caused the ataxia. Though bacteria were seldom observed in these lesions. C. psychrophilawas isolated in culture from the cranial cavity of all affected fish that were tested. Epidemiological observations suggested that this bacterium is the causative agent because the spiral swimming behaviour and lesions were observed only in populations that had recovered from acute C. psychrophila infections.

  20. Intraspecific variation in aerobic and anaerobic locomotion

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tirsgård, Bjørn; Cordero, Gerardo A.

    2015-01-01

    to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; U crit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3...... respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg(-1). Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer...

  1. Swimming near the substrate: a simple robotic model of stingray locomotion

    International Nuclear Information System (INIS)

    Blevins, Erin; Lauder, George V

    2013-01-01

    Studies of aquatic locomotion typically assume that organisms move through unbounded fluid. However, benthic fishes swim close to the substrate and will experience significant ground effects, which will be greatest for fishes with wide spans such as benthic batoids and flatfishes. Ground effects on fixed-wing flight are well understood, but these models are insufficient to describe the dynamic interactions between substrates and undulating, oscillating fish. Live fish alter their swimming behavior in ground effect, complicating comparisons of near-ground and freestream swimming performance. In this study, a simple, stingray-inspired physical model offers insights into ground effects on undulatory swimmers, contrasting the self-propelled swimming speed, power requirements, and hydrodynamics of fins swimming with fixed kinematics near and far from a solid boundary. Contrary to findings for gliding birds and other fixed-wing fliers, ground effect does not necessarily enhance the performance of undulating fins. Under most kinematic conditions, fins do not swim faster in ground effect, power requirements increase, and the cost of transport can increase by up to 10%. The influence of ground effect varies with kinematics, suggesting that benthic fish might modulate their swimming behavior to minimize locomotor penalties and incur benefits from swimming near a substrate. (paper)

  2. Size and Cell Number of the Utricle in kinetotically swimming Fish: A parabolic Aircraft Flight Study

    Science.gov (United States)

    Baeuerle, A.; Anken, R.; Baumhauer, N.; Hilbig, R.; Rahmann, H.

    Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalisation of gravity in teleosteans) of fish swimming kinetotically during the μg-phases in the course of PAFs in comparison with animals from the same batch who swam normally. On the light microscopical level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100μm -μm), however, was reduced in kinetotic animals (p<0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in asymmetric inner ear otoliths as has been suggested earlier, but also in genetically predispositioned, malformed sensory epithelia. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).

  3. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest). Pile Perch, Striped Seaperch, and Rubberlip Seaperch

    Science.gov (United States)

    1989-07-01

    The largest of the teeth on vomer or palatines . surfperches, reaching a maximum length Branchiostegals 5-6; gill membranes of 47 cm TL (Eschmeyer et...Fritzsche 1982). dorsal surface. Fins dusky (Tarp 1952). Maximum length 44 cm total length (TL) (Eschmeyer et al. 1983). LIFE HISTORY Embiotoca lateralis...developed, shore. From 1958 to 1961, sport fused pharyngeal tooth plates that fishermen caught an estimated 5,000 enable the fish to crush hard-shelled

  4. Functions of fish skin: flexural stiffness and steady swimming of longnose gar, Lepisosteus osseus

    Science.gov (United States)

    Long; Hale; Mchenry; Westneat

    1996-01-01

    The functions of fish skin during swimming remain enigmatic. Does skin stiffen the body and alter the propagation of the axial undulatory wave? To address this question, we measured the skin's in situ flexural stiffness and in vivo mechanical role in the longnose gar Lepisosteus osseus. To measure flexural stiffness, dead gar were gripped and bent in a device that measured applied bending moment (N m) and the resulting midline curvature (m-1). From these values, the flexural stiffness of the body (EI in N m2) was calculated before and after sequential alterations of skin structure. Cutting of the dermis between two caudal scale rows significantly reduced the flexural stiffness of the body and increased the neutral zone of curvature, a region of bending without detectable stiffness. Neither bending property was significantly altered by the removal of a caudal scale row. These alterations in skin structure were also made in live gar and the kinematics of steady swimming was measured before and after each treatment. Cutting of the dermis between two caudal scale rows, performed under anesthesia, changed the swimming kinematics of the fish: tailbeat frequency (Hz) and propulsive wave speed (body lengths per second, L s-1) decreased, while the depth (in L) of the trailing edge of the tail increased. The decreases in tailbeat frequency and wave speed are consistent with predictions of the theory of forced, harmonic vibrations; wave speed, if equated with resonance frequency, is proportional to the square root of a structure's stiffness. While it did not significantly reduce the body's flexural stiffness, surgical removal of a caudal scale row resulted in increased tailbeat amplitude and the relative total hydrodynamic power. In an attempt to understand the specific function of the scale row, we propose a model in which a scale row resists medio-lateral force applied by a single myomere, thus functioning to enhance mechanical advantage for bending. Finally, surgical

  5. Deep RNA sequencing of the skeletal muscle transcriptome in swimming fish.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available Deep RNA sequencing (RNA-seq was performed to provide an in-depth view of the transcriptome of red and white skeletal muscle of exercised and non-exercised rainbow trout (Oncorhynchus mykiss with the specific objective to identify expressed genes and quantify the transcriptomic effects of swimming-induced exercise. Pubertal autumn-spawning seawater-raised female rainbow trout were rested (n = 10 or swum (n = 10 for 1176 km at 0.75 body-lengths per second in a 6,000-L swim-flume under reproductive conditions for 40 days. Red and white muscle RNA of exercised and non-exercised fish (4 lanes was sequenced and resulted in 15-17 million reads per lane that, after de novo assembly, yielded 149,159 red and 118,572 white muscle contigs. Most contigs were annotated using an iterative homology search strategy against salmonid ESTs, the zebrafish Danio rerio genome and general Metazoan genes. When selecting for large contigs (>500 nucleotides, a number of novel rainbow trout gene sequences were identified in this study: 1,085 and 1,228 novel gene sequences for red and white muscle, respectively, which included a number of important molecules for skeletal muscle function. Transcriptomic analysis revealed that sustained swimming increased transcriptional activity in skeletal muscle and specifically an up-regulation of genes involved in muscle growth and developmental processes in white muscle. The unique collection of transcripts will contribute to our understanding of red and white muscle physiology, specifically during the long-term reproductive migration of salmonids.

  6. On inappropriately used neuronal circuits as a possible basis of the ``loop-swimming'' behaviour of fish under reduced gravity: a theoretical study

    Science.gov (United States)

    Anken, R. H.; Rahmann, H.

    One hypothesis for the explanation of the so-called ``loop-swimming'' behaviour in fish when being subjected to reduced gravity assumes that the activities of the differently weighted otoliths of the two labyrinths are well compensated on ground but that a functional asymmetry is induced in weightlessness, resulting in a tonus asymmetry of the body and by this generating the ``loop-swimming'' behaviour. The basis of this abnormal behaviour has to be searched for in the central nervous system (cns), where the signal-transduction from the inner ear- related signal internalisation to the signal response takes place. Circuits within the CNS of fish, that could possibly generate the ``loop-swimming'', might be as follows: An asymmetric activation of vestibulospinal circuits would directly result in a tonus asymmetry of the body. An asymmetric activation of the oculomotor nucleus would generate an asymmetrical rotation of the eyes. This would cause in its turn asymmetric images on the two retinas, which were forwarded to the diencephalic accessory optic system (AOS). It is the task of the AOS to stabilize retinal images, thereby involving the cerebellum, which is the main integration center for sensory and motor modalities. With this, the cerebellar output would generate a tonus asymmetry of the body in order to make the body of the fish follow its eyes. Such movements (especially when assuming an open loop control) would end up in the aforementioned ``loop-swimming'' behaviour.

  7. Intraspecific variation in aerobic and anaerobic locomotion: gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata) do not exhibit a trade-off between maximum sustained swimming speed and minimum cost of transport

    Science.gov (United States)

    Svendsen, Jon C.; Tirsgaard, Bjørn; Cordero, Gerardo A.; Steffensen, John F.

    2015-01-01

    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; Ucrit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3) there is a trade-off between maximum sustained swimming speed (Usus) and minimum cost of transport (COTmin); and (4) variation in Usus correlates positively with optimum swimming speed (Uopt; i.e., the speed that minimizes energy expenditure per unit of distance traveled). Data collection involved swimming respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg−1. Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer, suggesting that the metabolic cost of burst swimming is similar across various types of locomotion. There was no correlation between Ucrit and MS or anaerobic capacity in S. aurata indicating that other factors, including morphological or biomechanical traits, influenced Ucrit. We found no evidence of a trade-off between Usus and COTmin. In fact, data revealed significant negative correlations between Usus and COTmin, suggesting that individuals with high Usus also exhibit low COTmin. Finally, there were positive correlations between Usus and Uopt. Our study demonstrates the energetic importance of anaerobic metabolism during unsteady swimming, and provides intraspecific evidence that superior maximum sustained swimming speed is associated with superior swimming economy and

  8. Fins improve the swimming performance of fish sperm: a hydrodynamic analysis of the Siberian sturgeon Acipenser baerii.

    Science.gov (United States)

    Gillies, Eric A; Bondarenko, Volodymyr; Cosson, Jacky; Pacey, Allan A

    2013-02-01

    The flagella of sturgeon sperm have an ultrastructure comprising paddle-like fins extending along most of their length. These fins are seen in several other marine and freshwater fish. The sperm of these fish are fast swimmers and are relatively short lived: it is therefore tempting to think of these fins as having evolved for hydrodynamic advantage, but the actual advantage they impart, at such a small length scale and slow speed, is unclear. The phrase "the fins improve hydrodynamic efficiency" is commonly found in biological literature, yet little hydrodynamic analysis has previously been used to support such conjectures. In this paper, we examine various hydrodynamic models of sturgeon sperm and investigate both swimming velocity and energy expenditure. All of the models indicate a modest hydrodynamic advantage of finned sperm, in both straight line swimming speed and a hydrodynamic efficiency measure. We find a hydrodynamic advantage for a flagellum with fins, over one without fins, of the order of 15-20% in straight line propulsive velocity and 10-15% in a hydrodynamic efficiency measure. Copyright © 2012 Wiley Periodicals, Inc.

  9. Quantifying fish swimming behavior in response to acute exposure of aqueous copper using computer assisted video and digital image analysis

    Science.gov (United States)

    Calfee, Robin D.; Puglis, Holly J.; Little, Edward E.; Brumbaugh, William G.; Mebane, Christopher A.

    2016-01-01

    Behavioral responses of aquatic organisms to environmental contaminants can be precursors of other effects such as survival, growth, or reproduction. However, these responses may be subtle, and measurement can be challenging. Using juvenile white sturgeon (Acipenser transmontanus) with copper exposures, this paper illustrates techniques used for quantifying behavioral responses using computer assisted video and digital image analysis. In previous studies severe impairments in swimming behavior were observed among early life stage white sturgeon during acute and chronic exposures to copper. Sturgeon behavior was rapidly impaired and to the extent that survival in the field would be jeopardized, as fish would be swept downstream, or readily captured by predators. The objectives of this investigation were to illustrate protocols to quantify swimming activity during a series of acute copper exposures to determine time to effect during early lifestage development, and to understand the significance of these responses relative to survival of these vulnerable early lifestage fish. With mortality being on a time continuum, determining when copper first affects swimming ability helps us to understand the implications for population level effects. The techniques used are readily adaptable to experimental designs with other organisms and stressors.

  10. Body dynamics and hydrodynamics of swimming larvae: a computational study

    NARCIS (Netherlands)

    Li, G.; Müller, U.K.; Leeuwen, van J.L.; Liu, H.

    2012-01-01

    To understand the mechanics of fish swimming, we need to know the forces exerted by the fluid and how these forces affect the motion of the fish. To this end, we developed a 3-D computational approach that integrates hydrodynamics and body dynamics. This study quantifies the flow around a swimming

  11. Simulation of swimming strings immersed in a viscous fluid flow

    Science.gov (United States)

    Huang, Wei-Xi; Sung, Hyung Jin

    2006-11-01

    In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.

  12. Disease resistance is related to inherent swimming performance in Atlantic salmon.

    Science.gov (United States)

    Castro, Vicente; Grisdale-Helland, Barbara; Jørgensen, Sven M; Helgerud, Jan; Claireaux, Guy; Farrell, Anthony P; Krasnov, Aleksei; Helland, Ståle J; Takle, Harald

    2013-01-21

    Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon.Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously). Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis) and gene expression analyses of the host response in selected organs. An inherently good swimming performance was associated with improved disease resistance, as good swimmers showed significantly better survival compared to poor swimmers in the viral challenge test. Differences in mortalities between poor and good swimmers were correlated with cardiac mRNA expression of virus responsive genes reflecting the infection status. Although not significant, fish trained at constant-velocity showed a trend towards higher survival than fish trained at either short or long intervals. Finally, only constant training at high intensity had a significant positive effect on fish growth compared to control trained fish. This is the first evidence suggesting that inherent swimming performance is associated with disease resistance in fish.

  13. Disease resistance is related to inherent swimming performance in Atlantic salmon

    Directory of Open Access Journals (Sweden)

    Castro Vicente

    2013-01-01

    Full Text Available Abstract Background Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon. Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously. Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis and gene expression analyses of the host response in selected organs. Results An inherently good swimming performance was associated with improved disease resistance, as good swimmers showed significantly better survival compared to poor swimmers in the viral challenge test. Differences in mortalities between poor and good swimmers were correlated with cardiac mRNA expression of virus responsive genes reflecting the infection status. Although not significant, fish trained at constant-velocity showed a trend towards higher survival than fish trained at either short or long intervals. Finally, only constant training at high intensity had a significant positive effect on fish growth compared to control trained fish. Conclusions This is the first evidence suggesting that inherent swimming performance is associated with disease resistance in fish.

  14. Do bacteria, not fish, produce 'fish kairomone'?

    NARCIS (Netherlands)

    Ringelberg, J.; Van Gool, E.

    1998-01-01

    Fish-associated chemicals enhance phototactic downward swimming in Daphnia. If perch were treated with the antibiotic ampicillin, this enhancement was significantly decreased. Therefore, not fish, but bacteria associated with fish, seem to produce this kairomone. [KEYWORDS: Diel vertical migration;

  15. Scaling the Thrust Production and Energetics of Inviscid Intermittent Swimming

    Science.gov (United States)

    Akoz, Emre; Moored, Keith

    2015-11-01

    Many fish have adopted an intermittent swimming gait sometimes referred as a burst-and-coast behavior. By using this gait, fish have been estimated at reducing their energetic cost of swimming by about 50%. Lighthill proposed that the skin friction drag of an undulating body can be around 400% greater than a rigidly-held coasting body, which may explain the energetic savings of intermittent swimming. Recent studies have confirmed the increase in skin friction drag over an undulating body, however, the increase is on the order of 20-70%. This more modest gain in skin friction drag is not sufficient to lead to the observed energy savings. Motivated by these observations, we investigate the inviscid mechanisms behind intermittent swimming for parameters typical of biology. We see that there is an energy savings at a fixed swimming speed for intermittent swimming as compared to continuous swimming. Then we consider three questions: What is the nature of the inviscid mechanism that leads to the observed energy savings, how do the forces and energetics of intermittent swimming scale with the swimming parameters, and what are the limitations to the benefit? Supported by the Office of Naval Research under Program Director Dr. Bob Brizzola, MURI grant number N00014-14-1-0533.

  16. Swimming performance of the small characin Bryconamericus stramineus (Characiformes: Characidae

    Directory of Open Access Journals (Sweden)

    Miriam A. de Castro

    2010-01-01

    Full Text Available Very little research has been conducted on the swimming capacity of Neotropical fish. The few studies available have focused on large migratory species. The present study used fixed and increasing velocity tests to determine prolonged and sustained speeds of the "pequira", Bryconamericus stramineus Eigenmann, 1908, a small, abundant species found in fish passages implemented at the Paraná basin, Brazil. The results of increasing velocity tests showed significant relationships between critical speeds, total and standard lengths, and body weight. When compared with other Neotropical fish, the "pequira" is able to swim faster than individuals of other species of similar length. The point of change from sustained to prolonged swimming was found to occur at an approximate speed of 8.7 lengths per second. These data provide guidance and criteria for design and proper maintenance of structures such as fishways, fish screens and other systems that aim to facilitate or avoid upstream passages as part of management strategies.

  17. Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L.

    NARCIS (Netherlands)

    Burgerhout, E.; Tudorache, C.; Brittijn, S.A.; Palstra, A.P.; Dirks, R.P.; Thillart, G.E.E.J.M.

    2013-01-01

    During migration, swimming in schools provides fish with a number of behavioural and ecological advantages, including increased food supply and reduced predation risk. Previous work shows that carangiform and tunniform swimming result in energetic advantages for individuals using a diamond swimming

  18. Disease resistance is related to inherent swimming performance in Atlantic salmon

    OpenAIRE

    Castro, Vicente; Grisdale-Helland, Barbara; Jørgensen, Sven Martin; Helgerud, Jan; Claireaux, Guy; Farrell, Anthony P.; Krasnov, Aleksei; Helland, Ståle; Takle, Harald Rune

    2013-01-01

    Background Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon. Atlantic salmon were first classified as either poor or good according to their swimming per...

  19. Aerobic capacity influences the spatial position of individuals within fish schools

    DEFF Research Database (Denmark)

    Killen, Shaun S.; Marras, Stefano; Steffensen, John Fleng

    2012-01-01

    the rear of schools. These trailing fish required fewer tail beats to swim at the same speed as individuals at the front of schools, indicating that posterior positions provide hydrodynamic benefits that reduce swimming costs. Conversely, fish with high aerobic capacity can withstand increased drag......The schooling behaviour of fish is of great biological importance, playing a crucial role in the foraging and predator avoidance of numerous species. The extent to which physiological performance traits affect the spatial positioning of individual fish within schools is completely unknown. Schools...... of juvenile mullet Liza aurata were filmed at three swim speeds in a swim tunnel, with one focal fish from each school then also measured for standard metabolic rate (SMR), maximal metabolic rate (MMR), aerobic scope (AS) and maximum aerobic swim speed. At faster speeds, fish with lower MMR and AS swam near...

  20. Fish under exercise

    NARCIS (Netherlands)

    Palstra, A.P.; Planas, J.V.

    2011-01-01

    Improved knowledge on the swimming physiology of fish and its application to fisheries science and aquaculture (i.e., farming a fitter fish) is currently needed in the face of global environmental changes, high fishing pressures, increased aquaculture production as well as increased concern on fish

  1. Fish positions relative to neighbours modulate the hydrodynamic advantages of schooling

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    ) and Paolo Domenici (CNR, Italy) Schooling behaviour is a widespread phenomenon shared by a large number of fish species. One of the most common benefits of swimming in a school is the hydrodynamic and energetic advantage obtained by its members. Fish occupying non-frontal positions can benefit from the flow...... generated by the caudal movement of fish swimming in the front. While previous work has demonstrated that trailing fish show a lower tail beat frequency (TBF) than leading fish , the extent to which schooling provides hydrodynamic advantages compared to swimming alone has not been quantified. We quantified...... of distances along the direction of locomotion, spanning one body length (BL) in the front (+1 BL) and behind (-1 BL) a neighbouring fish. We found a significant reduction in the mean TBF of fish when swimming in a school versus solitary fish . Furthermore, the TBF of the focal fish decreased linearly between...

  2. Efficient collective swimming by harnessing vortices through deep reinforcement learning.

    Science.gov (United States)

    Verma, Siddhartha; Novati, Guido; Koumoutsakos, Petros

    2018-06-05

    Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.

  3. Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds

    DEFF Research Database (Denmark)

    Herskin, J; Steffensen, JF

    1998-01-01

    Tail beat frequency of sea bass, Dicentrarchus labrax (L.) (23.5 ± 0·5 cm, LT), swimming at the front of a school was significantly higher than when swimming at the rear, for all water velocities tested from 14·8 to 32 cm s-1. The logarithm of oxygen consumption rate, and the tail beat frequency...... of solitary swimming sea bass (28·8 ± 0·4 cm, LT), were each correlated linearly with swimming speed, and also with one another. The tail beat frequency of individual fish was 9-14% lower when at the rear of a school than when at the front, corresponding to a 9-23% reduction in oxygen consumption rate....

  4. Model identification and controller design of a fish-like robot

    Science.gov (United States)

    Ariyanto, Irfan; Kang, Taesam; Chan, Wai Leung; Lee, Youngjae

    2007-04-01

    Robotic fish is an interesting and prospective subject to develop. The simplest fish swimming mode to be mimicked for fish robots is the ostraciiform mode which only requires caudal fin flapping. An almost submerged ostraciiform fish robot was constructed to study its swimming characteristics. The swimming direction can be controlled by changing the mean angle of caudal fin oscillation. Experiments were conducted to study the behavior of the fish robot and in particular, the transfer function between swimming path angular rate and mean angle of the caudal fin oscillation were identified. Error to signal ratio quantity was used to determine how well the model fits with the experimental data. This identification model was used to design a 2-degree-of-freedom PID controller that meets some specific requirements to improve the steering performance.

  5. Effect of morphological fin curl on the swimming performance and station-holding ability of juvenile shovelnose sturgeon

    Science.gov (United States)

    Deslauriers, David; Johnston, Ryan; Chipps, Steven R.

    2016-01-01

    We assessed the effect of fin-curl on the swimming and station-holding ability of juvenile shovelnose sturgeon Scaphirhynchus platorynchus (mean fork length = 17 cm; mean weight = 16 g; n = 21) using a critical swimming speed test performed in a small swim chamber (90 L) at 20°C. We quantified fin-curl severity using the pectoral fin index. Results showed a positive relationship between pectoral fin index and critical swimming speed indicative of reduced swimming performance displayed by fish afflicted with a pectoral fin index < 8%. Fin-curl severity, however, did not affect the station-holding ability of individual fish. Rather, fish affected with severe fin-curl were likely unable to use their pectoral fins to position their body adequately in the water column, which led to the early onset of fatigue. Results generated from this study should serve as an important consideration for future stocking practices.

  6. Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment.

    Science.gov (United States)

    Puga, Sónia; Pereira, Patrícia; Pinto-Ribeiro, Filipa; O'Driscoll, Nelson J; Mann, Erin; Barata, Marisa; Pousão-Ferreira, Pedro; Canário, João; Almeida, Armando; Pacheco, Mário

    2016-11-01

    The current study aims to shed light on the neurotoxicity of MeHg in fish (white seabream - Diplodus sargus) by the combined assessment of: (i) MeHg toxicokinetics in the brain, (ii) brain morphometry (volume and number of neurons plus glial cells in specific brain regions) and (iii) fish swimming behavior (endpoints associated with the motor performance and the fear/anxiety-like status). Fish were surveyed for all the components after 7 (E7) and 14 (E14) days of dietary exposure to MeHg (8.7μgg -1 ), as well as after a post-exposure period of 28days (PE28). MeHg was accumulated in the brain of D. sargus after a short time (E7) and reached a maximum at the end of the exposure period (E14), suggesting an efficient transport of this toxicant into fish brain. Divalent inorganic Hg was also detected in fish brain along the experiment (indicating demethylation reactions), although levels were 100-200 times lower than MeHg, which pinpoints the organic counterpart as the great liable for the recorded effects. In this regard, a decreased number of cells in medial pallium and optic tectum, as well as an increased hypothalamic volume, occurred at E7. Such morphometric alterations were followed by an impairment of fish motor condition as evidenced by a decrease in the total swimming time, while the fear/anxiety-like status was not altered. Moreover, at E14 fish swam a greater distance, although no morphometric alterations were found in any of the brain areas, probably due to compensatory mechanisms. Additionally, although MeHg decreased almost two-fold in the brain during post-exposure, the levels were still high and led to a loss of cells in the optic tectum at PE28. This is an interesting result that highlights the optic tectum as particularly vulnerable to MeHg exposure in fish. Despite the morphometric alterations reported in the optic tectum at PE28, no significant changes were found in fish behavior. Globally, the effects of MeHg followed a multiphasic profile, where

  7. A numerical study of linear and nonlinear kinematic models in fish swimming with the DSD/SST method

    Science.gov (United States)

    Tian, Fang-Bao

    2015-03-01

    Flow over two fish (modeled by two flexible plates) in tandem arrangement is investigated by solving the incompressible Navier-Stokes equations numerically with the DSD/SST method to understand the differences between the geometrically linear and nonlinear models. In the simulation, the motions of the plates are reconstructed from a vertically flowing soap film tunnel experiment with linear and nonlinear kinematic models. Based on the simulations, the drag, lift, power consumption, vorticity and pressure fields are discussed in detail. It is found that the linear and nonlinear models are able to reasonably predict the forces and power consumption of a single plate in flow. Moreover, if multiple plates are considered, these two models yield totally different results, which implies that the nonlinear model should be used. The results presented in this work provide a guideline for future studies in fish swimming.

  8. Inorganic mercury accumulation in brain following waterborne exposure elicits a deficit on the number of brain cells and impairs swimming behavior in fish (white seabream-Diplodus sargus).

    Science.gov (United States)

    Pereira, Patrícia; Puga, Sónia; Cardoso, Vera; Pinto-Ribeiro, Filipa; Raimundo, Joana; Barata, Marisa; Pousão-Ferreira, Pedro; Pacheco, Mário; Almeida, Armando

    2016-01-01

    The current study contributes to fill the knowledge gap on the neurotoxicity of inorganic mercury (iHg) in fish through the implementation of a combined evaluation of brain morphometric alterations (volume and total number of neurons plus glial cells in specific regions of the brain) and swimming behavior (endpoints related with the motor activity and mood/anxiety-like status). White seabream (Diplodus sargus) was exposed to realistic levels of iHg in water (2μgL(-1)) during 7 (E7) and 14 days (E14). After that, fish were allowed to recover for 28 days (PE28) in order to evaluate brain regeneration and reversibility of behavioral syndromes. A significant reduction in the number of cells in hypothalamus, optic tectum and cerebellum was found at E7, accompanied by relevant changes on swimming behavior. Moreover, the decrease in the number of neurons and glia in the molecular layer of the cerebellum was followed by a contraction of its volume. This is the first time that a deficit on the number of cells is reported in fish brain after iHg exposure. Interestingly, a recovery of hypothalamus and cerebellum occurred at E14, as evidenced by the identical number of cells found in exposed and control fish, and volume of cerebellum, which might be associated with an adaptive phenomenon. After 28 days post-exposure, the optic tectum continued to show a decrease in the number of cells, pointing out a higher vulnerability of this region. These morphometric alterations coincided with numerous changes on swimming behavior, related both with fish motor function and mood/anxiety-like status. Overall, current data pointed out the iHg potential to induce brain morphometric alterations, emphasizing a long-lasting neurobehavioral hazard. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Just Keep Swimming: Neuroendocrine, Metabolic, and Behavioral Changes After a Forced Swimming Test in Zebrafish.

    Science.gov (United States)

    da Rosa, João Gabriel Santos; Barcellos, Heloísa Helena de Alcântara; Idalencio, Renan; Marqueze, Alessandra; Fagundes, Michele; Rossini, Mainara; Variani, Cristiane; Balbinoti, Francine; Tietböhl, Tássia Michele Huff; Rosemberg, Denis Broock; Barcellos, Leonardo José Gil

    2017-02-01

    In this study, we show that an adaptation of the spinning test can be used as a model to study the exercise-exhaustion-recovery paradigm in fish. This forced swimming test promotes a wide range of changes in the hypothalamus-pituitary-interrenal axis functioning, intermediary metabolism, as well in fish behavior at both exercise and recovery periods. Our results pointed that this adapted spinning test can be considered a valuable tool for evaluating drugs and contaminant effects on exercised fish. This can be a suitable protocol both to environmental-to evaluate contaminants that act in fish energy mobilization and recovery after stressors-and translational perspectives-effects of drugs on exercised or stressed humans.

  10. Dynamic Modelling of a CPG-Controlled Amphibious Biomimetic Swimming Robot

    Directory of Open Access Journals (Sweden)

    Rui Ding

    2013-04-01

    Full Text Available This paper focuses on the modelling and control problems of a self-propelled, multimodal amphibious robot. Inspired by the undulatory body motions of fish and dolphins, the amphibious robot propels itself underwater by oscillations of several modular fish-like propelling units coupled with a pair of pectoral fins capable of non-continuous 360 degree rotation. In order to mimic fish-like undulating propulsion, a control architecture based on Central Pattern Generator (CPG is applied to the amphibious robot for robust swimming gaits, including forward and backward swimming and turning, etc. With the simplification of the robot as a multi-link serial mechanism, a Lagrangian function is employed to establish the hydrodynamic model for steady swimming. The CPG motion control law is then imported into the Lagrangian-based dynamic model, where an associated system of kinematics and dynamics is formed to solve real-time movements and, further, to guide the exploration of the CPG parameters and steady locomotion gaits. Finally, comparative results between the simulations and experiments are provided to show the effectiveness of the built control models.

  11. The effects of chronic cadmium exposure on repeat swimming performance and anaerobic metabolism in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis).

    Science.gov (United States)

    Cunningham, Jessie L; McGeer, James C

    2016-04-01

    This study investigates the effect of chronic Cd exposure on the ability to perform repeat swim challenges in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis). Fish were exposed to waterborne Cd (18nM) in moderately hard water (120mgL(-1) CaCO3) for 30 days. This level of exposure has been shown to cause sublethal physiological disruption and acclimation responses but no impairment of sustained swimming capacity (Ucrit) in single swim challenges. Swim trials were done over the course of the exposure and each one consisted of an initial swim to 85% of the Ucrit of control fish, a 30min recovery period and finally a second swim challenge to determine Ucrit. Plasma and tissue samples were collected before and after each of the swim periods. As expected from previous studies, Cd exposure resulted in significant accumulation of Cd in gills, liver and kidney but not in white muscle. Exposure also induced a loss of plasma Ca followed by subsequent recovery (in lake whitefish but not brown trout) with few mortalities (100% survival for lake whitefish and 93% for brown trout). Both control and exposed fish swam to 85% of the single swim Ucrit and no differences in performance were seen. The Ucrit of unexposed controls in the second swim challenges were not different from the single swim Ucrit. However, second swim performance was significantly reduced in Cd exposed fish, particularly after a week of exposure where 31% and 38% reductions were observed for brown trout and lake whitefish respectively. Swimming to 85% Ucrit resulted in metabolic expenditure with little recovery after 30min. Few differences were observed between control and Cd exposed fish with the exception of a reduction in resting white muscle ATP stores of Cd exposed fish after 1 week of exposure. The results show that chronic sublethal Cd exposure results in an impairment of swimming ability in repeat swim challenges but this impairment is generally not related to metabolic processes

  12. Morphological correlates of swimming activity in wild largemouth bass (Micropterus salmoides) in their natural environment.

    Science.gov (United States)

    Hanson, K C; Hasler, C T; Suski, C D; Cooke, S J

    2007-12-01

    Individual variation in morphology has been linked to organismal performance in numerous taxa. Recently, the relationship between functional morphology and swimming performance in teleost fishes has been studied in laboratory experiments. In this study, we evaluate the relationship between morphology and swimming activity of wild largemouth bass (Micropterus salmoides) during the reproductive period, providing the first data derived on free-swimming fish not exposed to forced swim trials in the laboratory. Sixteen male largemouth bass were angled from their nests, telemetered, and subsequently monitored by a whole-lake acoustic hydrophone array with sub-meter accuracy. Additionally, eleven morphological measurements were taken from digital images of each fish. A principal components analysis of the morphological measurements described 79.8% of the variance. PC1 was characterized by measures of overall body stoutness, PC2 was characterized by measures of the length and depth of the caudal region, and PC3 characterized individuals with relatively large anterior portions of the body and relatively small caudal areas. Of these variables, only PC3 showed significant relationships to swimming activity throughout the parental care period. PC3 was negatively correlated with multiple measures of swimming activity across the parental care period. Furthermore, swimming performance of individual male bass was noted to be repeatable across the parental care period indicating that this phenomenon extends beyond the laboratory.

  13. Warm water and cool nests are best. How global warming might influence hatchling green turtle swimming performance.

    Directory of Open Access Journals (Sweden)

    David T Booth

    Full Text Available For sea turtles nesting on beaches surrounded by coral reefs, the most important element of hatchling recruitment is escaping predation by fish as they swim across the fringing reef, and as a consequence hatchlings that minimize their exposure to fish predation by minimizing the time spent crossing the fringing reef have a greater chance of surviving the reef crossing. One way to decrease the time required to cross the fringing reef is to maximize swimming speed. We found that both water temperature and nest temperature influence swimming performance of hatchling green turtles, but in opposite directions. Warm water increases swimming ability, with hatchling turtles swimming in warm water having a faster stroke rate, while an increase in nest temperature decreases swimming ability with hatchlings from warm nests producing less thrust per stroke.

  14. The effects of chronic cadmium exposure on repeat swimming performance and anaerobic metabolism in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis)

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Jessie L.; McGeer, James C., E-mail: jmcgeer@wlu.ca

    2016-04-15

    Highlights: • Exposure to 18 nM waterborne Cd induced plasma Ca loss that recovered by day 30 for lake whitefish but not brown trout. • Ucrit measured after an initial swim to 85% of Ucrit and a 30 min rest period was reduced in 18 nM Cd exposed fish compared to controls. • Swimming to 85% of Ucrit resulted in decreased muscle glycogen and increased lactate that was not recovered in the 30 min recovery period. • Second swim impairment is not related to metabolic processes in white muscle. - Abstract: This study investigates the effect of chronic Cd exposure on the ability to perform repeat swim challenges in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis). Fish were exposed to waterborne Cd (18 nM) in moderately hard water (120 mg L{sup −1} CaCO{sub 3}) for 30 days. This level of exposure has been shown to cause sublethal physiological disruption and acclimation responses but no impairment of sustained swimming capacity (U{sub crit}) in single swim challenges. Swim trials were done over the course of the exposure and each one consisted of an initial swim to 85% of the U{sub crit} of control fish, a 30 min recovery period and finally a second swim challenge to determine U{sub crit}. Plasma and tissue samples were collected before and after each of the swim periods. As expected from previous studies, Cd exposure resulted in significant accumulation of Cd in gills, liver and kidney but not in white muscle. Exposure also induced a loss of plasma Ca followed by subsequent recovery (in lake whitefish but not brown trout) with few mortalities (100% survival for lake whitefish and 93% for brown trout). Both control and exposed fish swam to 85% of the single swim U{sub crit} and no differences in performance were seen. The Ucrit of unexposed controls in the second swim challenges were not different from the single swim Ucrit. However, second swim performance was significantly reduced in Cd exposed fish, particularly after a week of exposure

  15. Swimming with multiple propulsors: measurement and comparison of swimming gaits in three species of neotropical cichlids.

    Science.gov (United States)

    Feilich, Kara L

    2017-11-15

    Comparative studies of fish swimming have been limited by the lack of quantitative definitions of fish gaits. Traditionally, steady swimming gaits have been defined categorically by the fin or region of the body that is used as the main propulsor and named after major fish clades (e.g. carangiform, anguilliform, balistiform, labriform). This method of categorization is limited by the lack of explicit measurements, the inability to incorporate contributions of multiple propulsors and the inability to compare gaits across different categories. I propose an alternative framework for the definition and comparison of fish gaits based on the propulsive contribution of each structure (body and/or fin) being used as a propulsor relative to locomotor output, and demonstrate the effectiveness of this framework by comparing three species of neotropical cichlids with different body shapes. This approach is modular with respect to the number of propulsors considered, flexible with respect to the definition of the propulsive inputs and the locomotor output of interest, and designed explicitly to handle combinations of propulsors. Using this approach, gait can be defined as a trajectory through propulsive space, and gait transitions can be defined as discontinuities in the gait trajectory. By measuring and defining gait in this way, patterns of clustering corresponding to existing categorical definitions of gait may emerge, and gaits can be rigorously compared across categories. © 2017. Published by The Company of Biologists Ltd.

  16. Influence of robotic shoal size, configuration, and activity on zebrafish behavior in a free-swimming environment.

    Science.gov (United States)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-12-15

    In animal studies, robots have been recently used as a valid tool for testing a wide spectrum of hypotheses. These robots often exploit visual or auditory cues to modulate animal behavior. The propensity of zebrafish, a model organism in biological studies, toward fish with similar color patterns and shape has been leveraged to design biologically inspired robots that successfully attract zebrafish in preference tests. With an aim of extending the application of such robots to field studies, here, we investigate the response of zebrafish to multiple robotic fish swimming at different speeds and in varying arrangements. A soft real-time multi-target tracking and control system remotely steers the robots in circular trajectories during the experimental trials. Our findings indicate a complex behavioral response of zebrafish to biologically inspired robots. More robots produce a significant change in salient measures of stress, with a fast robot swimming alone causing more freezing and erratic activity than two robots swimming slowly together. In addition, fish spend more time in the proximity of a robot when they swim far apart than when the robots swim close to each other. Increase in the number of robots also significantly alters the degree of alignment of fish motion with a robot. Results from this study are expected to advance our understanding of robot perception by live animals and aid in hypothesis-driven studies in unconstrained free-swimming environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Simple phalanx pattern leads to energy saving in cohesive fish schooling.

    Science.gov (United States)

    Ashraf, Intesaaf; Bradshaw, Hanaé; Ha, Thanh-Tung; Halloy, José; Godoy-Diana, Ramiro; Thiria, Benjamin

    2017-09-05

    The question of how individuals in a population organize when living in groups arises for systems as different as a swarm of microorganisms or a flock of seagulls. The different patterns for moving collectively involve a wide spectrum of reasons, such as evading predators or optimizing food prospection. Also, the schooling pattern has often been associated with an advantage in terms of energy consumption. In this study, we use a popular aquarium fish, the red nose tetra fish, Hemigrammus bleheri , which is known to swim in highly cohesive groups, to analyze the schooling dynamics. In our experiments, fish swim in a shallow-water tunnel with controlled velocity, and stereoscopic video recordings are used to track the 3D positions of each individual in a school, as well as their tail-beating kinematics. Challenging the widespread idea of fish favoring a diamond pattern to swim more efficiently [Weihs D (1973) Nature 241:290-291], we observe that when fish are forced to swim fast-well above their free-swimming typical velocity, and hence in a situation where efficient swimming would be favored-the most frequent configuration is the "phalanx" or "soldier" formation, with all individuals swimming side by side. We explain this observation by considering the advantages of tail-beating synchronization between neighbors, which we have also characterized. Most importantly, we show that schooling is advantageous as compared with swimming alone from an energy-efficiency perspective.

  18. Unsteady turbulent boundary layers in swimming rainbow trout.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2015-05-01

    The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.02±0.09 L s(-1) (mean±s.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 4×10(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided. © 2015. Published by The Company of Biologists Ltd.

  19. Impaired swimming performance of acid-exposed Arctic charr, Salvelinus alpinus L

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, L.A. (North/South Consultants Inc., Winnipeg, MB (Canada)); Scherer, E. (Dept. of Fisheries and Oceans, Freshwater Inst. Science Lab., Winnipeg, MB (Canada))

    1988-01-01

    Effects of increased ambient acidity are of particular interest, as the formation of metabolic and respiratory acids and acceleration of branchial ion loss during vigorous swimming duplicates or compounds effects of exposure to environmental acidity. Three year old Arctic charr (Salvelinus alpinus L.) were exposed to five levels of acidity between pH 6 and pH 3.8. Swimming performance as determined by critical swimming speeds was 67.5 cm {center dot} s{sup -1} or 4.4 body lengths per second for untreated fish (pH 7.8). Performance declined sharply below pH 4.5; at pH 3.8 it was reduced by 35% after 7 days of exposure. Tailbeat frequencies and ventilation rates showed no dose-response effects. This would support the assumption that afferent and efferent neuromuscular functions may have remained unimpaired under increased ambient acidity so that the stimulus of directed water current continued to elicit forced swimming, causing (forcing) the fish to use the entire scope for activity available at the various pH levels. At swimming speeds between 20 and 50 cm {center dot} s{sup -1}, ventilation rates at all levels of acidity were higher than at the control level. Based on this, spontaneous, i.e., non-forced swimming activity may show a lower response threshold. 19 refs., 3 figs., 1 tab.

  20. Effects of dietary 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47) exposure on medaka (Oryzias latipes) swimming behavior.

    Science.gov (United States)

    Sastre, Salvador; Fernández Torija, Carlos; Carbonell, Gregoria; Rodríguez Martín, José Antonio; Beltrán, Eulalia María; González-Doncel, Miguel

    2018-02-01

    A diet fortified with 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47: 0, 10, 100, and 1000 ng/g) was dosed to 4-7-day-old post-hatch medaka fish for 40 days to evaluate the effects on the swimming activity of fish using a miniaturized swimming flume. Chlorpyrifos (CF)-exposed fish were selected as the positive control to assess the validity and sensitivity of the behavioral findings. After 20 and 40 days of exposure, the locomotor activity was analyzed for 6 min in a flume section (arena). The CF positive control for each time point were fish exposed to 50 ng CF/ml for 48 h. Swimming patterns, presented as two-dimensional heat maps of fish movement and positioning, were obtained by geostatistical analyses. The heat maps of the control groups at time point 20 revealed visually comparable swimming patterns to those of the BDE-47-treated groups. For the comparative fish positioning analysis, both the arenas were divided into 15 proportional areas. No statistical differences were found between residence times in the areas from the control groups and those from the BDE-47-treated groups. At time point 40, the heat map overall patterns of the control groups differed visually from that of the 100-ng BDE-47/g-treated group, but a comparative analysis of the residence times in the corresponding 15 areas did not reveal consistent differences. The relative distances traveled by the control and treated groups at time points 20 and 40 were also comparable. The heat maps of CF-treated fish at both time points showed contrasting swim patterns with respect to those of the controls. These differential patterns were statistically supported with differences in the residence times for different areas. The relative distances traveled by the CF-treated fish were also significantly shorter. These results confirm the validity of the experimental design and indicate that a dietary BDE-47 exposure does not affect forced swimming in medaka at growing stages. Copyright © 2017 Elsevier Ltd

  1. The effects of chronic cadmium exposure on repeat swimming performance and anaerobic metabolism in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis)

    International Nuclear Information System (INIS)

    Cunningham, Jessie L.; McGeer, James C.

    2016-01-01

    Highlights: • Exposure to 18 nM waterborne Cd induced plasma Ca loss that recovered by day 30 for lake whitefish but not brown trout. • Ucrit measured after an initial swim to 85% of Ucrit and a 30 min rest period was reduced in 18 nM Cd exposed fish compared to controls. • Swimming to 85% of Ucrit resulted in decreased muscle glycogen and increased lactate that was not recovered in the 30 min recovery period. • Second swim impairment is not related to metabolic processes in white muscle. - Abstract: This study investigates the effect of chronic Cd exposure on the ability to perform repeat swim challenges in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis). Fish were exposed to waterborne Cd (18 nM) in moderately hard water (120 mg L"−"1 CaCO_3) for 30 days. This level of exposure has been shown to cause sublethal physiological disruption and acclimation responses but no impairment of sustained swimming capacity (U_c_r_i_t) in single swim challenges. Swim trials were done over the course of the exposure and each one consisted of an initial swim to 85% of the U_c_r_i_t of control fish, a 30 min recovery period and finally a second swim challenge to determine U_c_r_i_t. Plasma and tissue samples were collected before and after each of the swim periods. As expected from previous studies, Cd exposure resulted in significant accumulation of Cd in gills, liver and kidney but not in white muscle. Exposure also induced a loss of plasma Ca followed by subsequent recovery (in lake whitefish but not brown trout) with few mortalities (100% survival for lake whitefish and 93% for brown trout). Both control and exposed fish swam to 85% of the single swim U_c_r_i_t and no differences in performance were seen. The Ucrit of unexposed controls in the second swim challenges were not different from the single swim Ucrit. However, second swim performance was significantly reduced in Cd exposed fish, particularly after a week of exposure where 31% and 38

  2. Impaired swim bladder inflation in early-life stage fathead ...

    Science.gov (United States)

    The present study investigated whether inhibition of deiodinase, the enzyme which converts thyroxine (T4) to the more biologically-active form, 3,5,3'-triiodothyronine (T3), would impact inflation of the posterior and/or anterior chamber of the swim bladder, processes previously demonstrated to be thyroid-hormone regulated. Two experiments were conducted using a model deiodinase inhibitor, iopanoic acid (IOP). In the first study, fathead minnow (Pimephales promelas) embryos were exposed to 0.6, 1.9, or 6.0 mg IOP/L or control water in a flow-through system until reaching 6 days post-fertilization (dpf) at which time posterior swim bladder inflation was assessed. To examine effects on anterior swim bladder inflation, a second study was conducted with 6 dpf larvae exposed to the same IOP concentrations until reaching 21 dpf. Fish from both studies were sampled for T4/T3 measurements, gene transcription analyses, and thyroid histopathology. In the embryo study, incidence and length of inflated posterior swim bladders were significantly reduced in the 6.0 mg/L treatment at 6 dpf. Incidence of inflation and length of anterior swim bladder in larval fish were significantly reduced in all IOP treatments at 14 dpf, but inflation recovered by 18 dpf. Throughout the larval study, whole body T4 concentrations were significantly increased and T3 concentrations were significantly decreased in all IOP treatments. Consistent with hypothesized compensatory responses, sig

  3. Entrainment, retention, and transport of freely swimming fish in junction gaps between commercial barges operating on the Illinois Waterway

    Science.gov (United States)

    Davis, Jeremiah J.; Jackson, P. Ryan; Engel, Frank; LeRoy, Jessica Z.; Neeley, Rebecca N.; Finney, Samuel T.; Murphy, Elizabeth A.

    2016-01-01

    Large Electric Dispersal Barriers were constructed in the Chicago Sanitary and Ship Canal (CSSC) to prevent the transfer of invasive fish species between the Mississippi River Basin and the Great Lakes Basin while simultaneously allowing the passage of commercial barge traffic. We investigated the potential for entrainment, retention, and transport of freely swimming fish within large gaps (> 50 m3) created at junction points between barges. Modified mark and capture trials were employed to assess fish entrainment, retention, and transport by barge tows. A multi-beam sonar system enabled estimation of fish abundance within barge junction gaps. Barges were also instrumented with acoustic Doppler velocity meters to map the velocity distribution in the water surrounding the barge and in the gap formed at the junction of two barges. Results indicate that the water inside the gap can move upstream with a barge tow at speeds near the barge tow travel speed. Water within 1 m to the side of the barge junction gaps was observed to move upstream with the barge tow. Observed transverse and vertical water velocities suggest pathways by which fish may potentially be entrained into barge junction gaps. Results of mark and capture trials provide direct evidence that small fish can become entrained by barges, retained within junction gaps, and transported over distances of at least 15.5 km. Fish entrained within the barge junction gap were retained in that space as the barge tow transited through locks and the Electric Dispersal Barriers, which would be expected to impede fish movement upstream.

  4. Vortex re-capturing and kinematics in human underwater undulatory swimming.

    Science.gov (United States)

    Hochstein, Stefan; Blickhan, Reinhard

    2011-10-01

    To maximize swimming speed athletes copy fish undulatory swimming during the underwater period after start and turn. The anatomical limitations may lead to deviations and may enforce compensating strategies. This has been investigated by analyzing the kinematics of two national female swimmers while swimming in a still water pool. Additionally, the flow around and behind the swimmers was measured with the aid of time-resolved particle image velocimetry (TR-2D-PIV). As compared to fish, the swimmers used undulatory waves characterized by much higher Strouhal numbers but very similar amplitude distributions along the body and Froude efficiencies. Vortices generated in the region of strongly flexing joints are suitable to be used pedally to enhance propulsion (vortex re-capturing). Complementing studies using numerical and technical modeling will help us to probe the efficiency of observed mechanisms and further improvements of the human strategy. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Flying fish accelerate at 5 G to leap from the water surface

    Science.gov (United States)

    Yang, Patricia; Phonekeo, Sulisay; Xu, Ke; Chang, Shui-Kai; Hu, David

    2013-11-01

    Flying fish can both swim underwater and glide in air. Transitioning from swimming to gliding requires penetration of the air-water interface, or breaking the ``surface tension barrier,'' a formidable task for juvenile flying fish measuring 1 to 5 cm in length. In this experimental investigation, we use high-speed videography to characterize the kinematics of juvenile flying fish as they leap from the water surface. During this process, which lasts 0.05 seconds, flying fish achieve body accelerations of 5 times earth's gravity and gliding speeds of 1.3 m/s, an order of magnitude higher than their steady swimming speed. We rationalize this anomalously high speed on the basis of the hydrodynamic and surface tension forces and torques experienced by the fish. Specifically, leaping fish experience skin friction forces only on the submerged part of their body, permitting them to achieve much higher speeds than in steady underwater swimming. We also perform experiments using a towed flying fish mimc to determine optimality of various parameters in this process, including body angle and start position with respect to the water surface.

  6. Dynamic Shape Capture of Free-Swimming Aquatic Life using Multi-view Stereo

    Science.gov (United States)

    Daily, David

    2017-11-01

    The reconstruction and tracking of swimming fish in the past has either been restricted to flumes, small volumes, or sparse point tracking in large tanks. The purpose of this research is to use an array of cameras to automatically track 50-100 points on the surface of a fish using the multi-view stereo computer vision technique. The method is non-invasive thus allowing the fish to swim freely in a large volume and to perform more advanced maneuvers such as rolling, darting, stopping, and reversing which have not been studied. The techniques for obtaining and processing the 3D kinematics and maneuvers of tuna, sharks, stingrays, and other species will be presented and compared. The National Aquarium and the Naval Undersea Warfare Center and.

  7. Unsteady bio-fluid dynamics in flying and swimming

    Science.gov (United States)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-08-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  8. Streamwise vortices destabilize swimming bluegill sunfish (Lepomis macrochirus).

    Science.gov (United States)

    Maia, Anabela; Sheltzer, Alex P; Tytell, Eric D

    2015-03-01

    In their natural environment, fish must swim stably through unsteady flows and vortices, including vertical vortices, typically shed by posts in a flow, horizontal cross-flow vortices, often produced by a step or a waterfall in a stream, and streamwise vortices, where the axis of rotation is aligned with the direction of the flow. Streamwise vortices are commonly shed by bluff bodies in streams and by ships' propellers and axial turbines, but we know little about their effects on fish. Here, we describe how bluegill sunfish use more energy and are destabilized more often in flow with strong streamwise vorticity. The vortices were created inside a sealed flow tank by an array of four turbines with similar diameter to the experimental fish. We measured oxygen consumption for seven sunfish swimming at 1.5 body lengths (BL) s(-1) with the turbines rotating at 2 Hz and with the turbines off (control). Simultaneously, we filmed the fish ventrally and recorded the fraction of time spent maneuvering side-to-side and accelerating forward. Separately, we also recorded lateral and ventral video for a combination of swimming speeds (0.5, 1.5 and 2.5 BL s(-1)) and turbine speeds (0, 1, 2 and 3 Hz), immediately after turning the turbines on and 10 min later to test for accommodation. Bluegill sunfish are negatively affected by streamwise vorticity. Spills (loss of heading), maneuvers and accelerations were more frequent when the turbines were on than in the control treatment. These unsteady behaviors, particularly acceleration, correlated with an increase in oxygen consumption in the vortex flow. Bluegill sunfish are generally fast to recover from roll perturbations and do so by moving their pectoral fins. The frequency of spills decreased after the turbines had run for 10 min, but was still markedly higher than in the control, showing that fish partially adapt to streamwise vorticity, but not completely. Coping with streamwise vorticity may be an important energetic

  9. Developmental intervals during the larval and juvenile stages of the Antarctic myctophid fish Electrona antarctica in relation to changes in feeding and swimming functions

    Science.gov (United States)

    Moteki, Masato; Tsujimura, Eri; Hulley, Percy-Alexander

    2017-06-01

    The Antarctic myctophid fish species Electrona antarctica is believed to play a key role in the Southern Ocean food web, but there have been few studies on its early life history. This study examined the developmental changes in the external morphology and osteology of E. antarctica from the early larva to juvenile stages through the transformation phase and inferred changes in its behaviour and feeding mode. Once the larvae reached 12-13 mm body length (BL), they adopted a primordial suction feeding mode along with the acquisition of early swimming capabilities. Thereafter, both swimming and feeding functions were enhanced through fin development and ossification and acquisition of elements of the jaw and suspensorium. These processes indicate that larvae transition from the planktonic to nektonic phase upon reaching 12-13 mm BL when they enhance their both swimming and feeding abilities with growth. Transformation occurred when larvae reached 19-21 mm BL with changes such as discontinuous increases in eye diameter and upper jaw length and the appearance of photophores and dense body pigmentation. Osteological development of swimming- and feeding-related structures were mostly complete after transformation. Rapid changes in external morphology and osteology during the transformation stage are most likely related to ontogenetic vertical migration into deep waters.

  10. Swimming performance, venous oxygen tension and cardiac performance of coronary-ligated rainbow trout, Oncorhynchus mykiss, exposed to progressive hypoxia

    DEFF Research Database (Denmark)

    Steffensen, J F; Farrell, A P

    1998-01-01

    We performed in vivo studies to examine the idea that cardiac work is impaired in rainbow trout (Oncorhynchus mykiss) below a certain venous PO2 threshold. We hypothesized that coronary-ligated fish, swimming continuously at a reasonably high water velocity (1.5 body lengths x s(-1)) and exposed...... to progressive hypoxia, would fatigue at higher venous PO2 and ambient water PO2 compared with sham-operated fish. However, we found that both the lowest venous PO2 that supported hypoxic swimming (9.9 torr for coronary-ligated fish and 11.1 torr for sham-operated fish) and the venous PO2 at fatigue (7.8 torr...... and 8.6 torr, respectively) were the same for coronary-ligated and sham-operated fish. Also, both groups quit swimming at the same water PO2 heart rate and hematocrit. Nevertheless, significant differences in cardiac performance did exist between the two groups. Whereas ventral aortic blood pressure...

  11. Establishing zebrafish as a novel exercise model: swimming economy, swimming-enhanced growth and muscle growth marker gene expression.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available BACKGROUND: Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: Individual zebrafish (n = 10 were able to swim at a critical swimming speed (U(crit of 0.548±0.007 m s(-1 or 18.0 standard body lengths (BL s(-1. The optimal swimming speed (U(opt at which energetic efficiency is highest was 0.396±0.019 m s(-1 (13.0 BL s(-1 corresponding to 72.26±0.29% of U(crit. The cost of transport at optimal swimming speed (COT(opt was 25.23±4.03 µmol g(-1 m(-1. A group-wise experiment was conducted with zebrafish (n = 83 swimming at U(opt for 6 h day(-1 for 5 days week(-1 for 4 weeks vs. zebrafish (n = 84 that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb, insulin-like growth factor 1 receptor a (igf1ra, troponin C (stnnc, slow myosin heavy chain 1 (smyhc1, troponin I2 (tnni2, myosin heavy polypeptide 2 (myhz2 and myostatin (mstnb. CONCLUSIONS/SIGNIFICANCE: From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture.

  12. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device

    International Nuclear Information System (INIS)

    Wen, Li; Lauder, George

    2013-01-01

    Recent advances in understanding fish locomotion with robotic devices have included the use of flapping foil robots that swim at a constant swimming speed. However, the speed of even steadily swimming live fishes is not constant because the fish center of mass oscillates axially throughout a tail beat cycle. In this paper, we couple a linear motor that produces controlled oscillations in the axial direction to a robotic flapping foil apparatus to model both axial and side to side oscillatory motions used by freely-swimming fishes. This experimental arrangement allows us to compensate for the substantial inertia of the carriage and motors that drive the oscillating foils. We identify a ‘critically-oscillated’ amplitude of axial motion at which the cyclic oscillations in axial locomotor force are greatly reduced throughout the flapping cycle. We studied the midline kinematics, power consumption and wake flow patterns of non-rigid foils with different lengths and flexural stiffnesses at a variety of axial oscillation amplitudes. We found that ‘critically-oscillated’ peak-to-peak axial amplitudes on the order of 1.0 mm and at the correct phase are sufficient to mimic center of mass motion, and that such amplitudes are similar to center of mass oscillations recorded for freely-swimming live fishes. Flow visualization revealed differences in wake flows of flexible foils between the ‘non-oscillated’ and ‘critically-oscillated’ states. Inertia-compensating methods provide a novel experimental approach for studying aquatic animal swimming, and allow instrumented robotic swimmers to display center of mass oscillations similar to those exhibited by freely-swimming fishes. (paper)

  13. How many fish in a tank? Constructing an automated fish counting system by using PTV analysis

    Science.gov (United States)

    Abe, S.; Takagi, T.; Takehara, K.; Kimura, N.; Hiraishi, T.; Komeyama, K.; Torisawa, S.; Asaumi, S.

    2017-02-01

    Because escape from a net cage and mortality are constant problems in fish farming, health control and management of facilities are important in aquaculture. In particular, the development of an accurate fish counting system has been strongly desired for the Pacific Bluefin tuna farming industry owing to the high market value of these fish. The current fish counting method, which involves human counting, results in poor accuracy; moreover, the method is cumbersome because the aquaculture net cage is so large that fish can only be counted when they move to another net cage. Therefore, we have developed an automated fish counting system by applying particle tracking velocimetry (PTV) analysis to a shoal of swimming fish inside a net cage. In essence, we treated the swimming fish as tracer particles and estimated the number of fish by analyzing the corresponding motion vectors. The proposed fish counting system comprises two main components: image processing and motion analysis, where the image-processing component abstracts the foreground and the motion analysis component traces the individual's motion. In this study, we developed a Region Extraction and Centroid Computation (RECC) method and a Kalman filter and Chi-square (KC) test for the two main components. To evaluate the efficiency of our method, we constructed a closed system, placed an underwater video camera with a spherical curved lens at the bottom of the tank, and recorded a 360° view of a swimming school of Japanese rice fish (Oryzias latipes). Our study showed that almost all fish could be abstracted by the RECC method and the motion vectors could be calculated by the KC test. The recognition rate was approximately 90% when more than 180 individuals were observed within the frame of the video camera. These results suggest that the presented method has potential application as a fish counting system for industrial aquaculture.

  14. Maximum swimming speeds of sailfish and three other large marine predatory fish species based on muscle contraction time and stride length: a myth revisited

    Directory of Open Access Journals (Sweden)

    Morten B. S. Svendsen

    2016-10-01

    Full Text Available Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s−1 but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s−1, followed by barracuda (6.2±1.0 m s−1, little tunny (5.6±0.2 m s−1 and dorado (4.0±0.9 m s−1; although size-corrected performance was highest in little tunny and lowest in sailfish. Contrary to previously reported estimates, our results suggest that sailfish are incapable of exceeding swimming speeds of 10-15 m s−1, which corresponds to the speed at which cavitation is predicted to occur, with destructive consequences for fin tissues.

  15. No evidence for a bioenergetic advantage from forced swimming in rainbow trout under a restrictive feeding regime

    Directory of Open Access Journals (Sweden)

    Peter Vilhelm Skov

    2015-02-01

    Full Text Available Sustained swimming at moderate speeds is considered beneficial in terms of the productive performance of salmonids, but the causative mechanisms have yet to be unequivocally established. In the present study, the effects of moderate exercise on the bioenergetics of rainbow trout were assessed during a 15 week growth experiment, in which fish were reared at three different current speeds: 1 BL s-1, 0.5 BL s-1 and still water (≈ 0 BL s-1. Randomly selected groups of 100 fish were distributed among twelve 600 L tanks and maintained on a restricted diet regime. Specific growth rate (SGR and feed conversion ratio (FCR were calculated from weight and length measurements every three weeks. Routine metabolic rate (RMR was measured every hour as rate of oxygen consumption in the tanks, and was positively correlated with swimming speed. Total ammonia nitrogen (TAN excretion rates showed a tendency to decrease with increasing swimming speeds, yet neither they nor the resulting nitrogen quotients (NQ indicated that swimming significantly reduced the fraction of dietary protein used to fuel metabolism. Energetic budgets revealed a positive correlation between energy expenditure and the current speed at which fish were reared, fish that were forced to swim and were fed restrictively consequentially had poorer growth and feed utilization. The results show that for rainbow trout, water current can negatively affect growth despite promoting minor positive changes in substrate utilization. We hypothesize that this may be the result of either a limited dietary energy supply from diet restriction being insufficient for both covering the extra costs of swimming and supporting enhanced growth.

  16. An analysis of the energetic cost of the branchial and cardiac pumps during sustained swimming in trout

    DEFF Research Database (Denmark)

    FARRELL, AP; STEFFENSEN, JF

    1987-01-01

    Experimental data are available for the oxygen cost of the branchial and cardiac pumps in fish. These data were used to theoretically analyze the relative oxygen cost of these pumps during rest and swimming in rainbow troutSalmo gairdneri. Efficiency of the heart increases with activity and so...... the relative oxygen cost of the cardiac pumps decreased from 4.6% at rest to 1.9% at the critical swimming speed. The relative oxygen cost of the branchial pump is significant in the resting and slowly swimming fish, being 10 to 15% of total oxygen uptake. However, when swimming trout switch to a ram mode...... of ventilation, a considerable saving in oxygen cost is accrued by switching the cost of ventilation from the branchial to the tail musculature. Thus, the relative oxygen cost of the branchial and cardiac pumps actually decreases at critical swimming speed compared to rest and therefore is unlikely to be a major...

  17. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.

    Science.gov (United States)

    Tytell, Eric D; Hsu, Chia-Yu; Williams, Thelma L; Cohen, Avis H; Fauci, Lisa J

    2010-11-16

    Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.

  18. Fluid-mediated stability and speed-increase for heaving hydrofoils swimming side-by-side

    Science.gov (United States)

    Newbolt, Joel; Zhang, Jun; Ristroph, Leif

    2017-11-01

    As an example of collective motion in active swimmers we study the fluid-mediated interaction between two heaving hydrofoils that swim with a fixed transverse separation (between the heaving mid-heights) but are free to independently choose their forward swimming speeds and positions. Experiments reveal that out-of-phase foils are attracted to a side-by-side configuration which also increases the swimming speed of the pair (up to 59% faster for our parameters), while in-phase foils are repelled from this configuration. Because this type of swimming is qualitatively similar to that of fish and birds this interaction could be important to schooling and flocking.

  19. Performance evaluation of an improved fish robot actuated by piezoceramic actuators

    International Nuclear Information System (INIS)

    Nguyen, Q S; Heo, S; Park, H C; Byun, D

    2010-01-01

    This paper presents an improved fish robot actuated by four lightweight piezocomposite actuators. Our newly developed actuation mechanism is simple to fabricate because it works without gears. With the new actuation mechanism, the fish robot has a 30% smaller cross section than our previous model. Performance tests of the fish robot in water were carried out to measure the tail-beat angle, the thrust force, the swimming speed for various tail-beat frequencies from 1 to 5 Hz and the turning radius at the optimal frequency. The maximum swimming speed of the fish robot is 7.7 cm s −1 at a tail-beat frequency of 3.9 Hz. A turning experiment shows that the swimming direction of the fish robot can be controlled by changing the duty ratio of the driving voltage; the fish robot has a turning radius of 0.41 m for a left turn and 0.68 m for a right turn

  20. Performance evaluation of an improved fish robot actuated by piezoceramic actuators

    Science.gov (United States)

    Nguyen, Q. S.; Heo, S.; Park, H. C.; Byun, D.

    2010-03-01

    This paper presents an improved fish robot actuated by four lightweight piezocomposite actuators. Our newly developed actuation mechanism is simple to fabricate because it works without gears. With the new actuation mechanism, the fish robot has a 30% smaller cross section than our previous model. Performance tests of the fish robot in water were carried out to measure the tail-beat angle, the thrust force, the swimming speed for various tail-beat frequencies from 1 to 5 Hz and the turning radius at the optimal frequency. The maximum swimming speed of the fish robot is 7.7 cm s - 1 at a tail-beat frequency of 3.9 Hz. A turning experiment shows that the swimming direction of the fish robot can be controlled by changing the duty ratio of the driving voltage; the fish robot has a turning radius of 0.41 m for a left turn and 0.68 m for a right turn.

  1. Environmental estrogen(s) induced swimming behavioural alterations in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Goundadkar, Basavaraj B; Katti, Pancharatna

    2017-09-01

    The present study is an attempt to investigate the effects of long-term (75days) exposure to environmental estrogens (EE) on the swimming behaviour of zebrafish (Danio rerio). Adult zebrafish were exposed semi-statically to media containing commonly detected estrogenic water contaminants (EE2, DES and BPA) at a concentration (5ng/L) much lower than environmentally recorded levels. Time spent in swimming, surface preference, patterns and path of swimming were recorded (6mins) for each fish using two video cameras on day 15, 30 60 and 75. Video clips were analysed using a software program. Results indicate that chronic exposure to EE leads to increased body weight and size of females, reduced (Pswimming time, delay in latency, increased (P<0.05) immobility, erratic movements and freezing episodes. We conclude that estrogenic contamination of natural aquatic systems induces alterations in locomotor behaviour and associated physiological disturbances in inhabitant fish fauna. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cruise and turning performance of an improved fish robot actuated by piezoceramic actuators

    Science.gov (United States)

    Nguyen, Quang Sang; Heo, Seok; Park, Hoon Cheol; Goo, Nam Seo; Byun, Doyoung

    2009-03-01

    The purpose of this study is improvement of a fish robot actuated by four light-weight piezocomposite actuators (LIPCAs). In the fish robot, we developed a new actuation mechanism working without any gear and thus the actuation mechanism was simple in fabrication. By using the new actuation mechanism, cross section of the fish robot became 30% smaller than that of the previous model. Performance tests of the fish robot in water were carried out to measure tail-beat angle, thrust force, swimming speed and turning radius for tail-beat frequencies from 1Hz to 5Hz. The maximum swimming speed of the fish robot was 7.7 cm/s at 3.9Hz tail-beat frequency. Turning experiment showed that swimming direction of the fish robot could be controlled with 0.41 m turning radius by controlling tail-beat angle.

  3. Mechanical design, fabrication, and test of biomimetic fish robot using LIPCA as artificial muscle

    Science.gov (United States)

    Wiguna, T.; Syaifuddin, M.; Park, Hoon C.; Heo, S.

    2006-03-01

    This paper presents a mechanical design, fabrication and test of biomimetic fish robot using the Lightweight Piezocomposite Curved Actuator (LIPCA). We have designed a mechanism for converting actuation of the LIPCA into caudal fin movement. This linkage mechanism consists of rack-pinion system and four-bar linkage. We also have tested four types of caudal fin in order to examine effect of different shape of caudal fin on thrust generation by tail beat. Subsequently, based on the caudal fin test, four caudal fins which resemble fish caudal fin shapes of ostraciiform, subcarangiform, carangiform and thunniform, respectively, are attached to the posterior part of the robotic fish. The swimming test using 300 V pp input with 1 Hz to 1.5 Hz frequency was conducted to investigate effect of changing tail beat frequency and shape of caudal fin on the swimming speed of the robotic fish. The maximum swimming speed was reached when the device was operated at its natural swimming frequency. At the natural swimming frequency 1 Hz, maximum swimming speeds of 1.632 cm/s, 1.776 cm/s, 1.612 cm/s and 1.51 cm/s were reached for ostraciiform-, subcarangiform-, carangiform- and thunniform-like caudal fins, respectively. Strouhal numbers, which are a measure of thrust efficiency, were calculated in order to examine thrust performance of the present biomimetic fish robot. We also approximated the net forward force of the robotic fish using momentum conservation principle.

  4. Hydroacoustic measurement of swimming speed of North Sea saithe in the field

    DEFF Research Database (Denmark)

    Pedersen, Jan

    2001-01-01

    Saithe Pollachius virens, tracked diurnally with a split-beam echosounder. showed no relationship between size and swimming speed. The average and the median swimming speeds were 1.05 m s(-1) (+/- 0.09 m s (-1)) and 0.93 m a (-1). respectively. However. ping-to-ping speeds up to 3.34 m s (-1) were...... measured for 25-29 cm fish, whose swimming speeds were significantly higher at night (1.08 m s(-1)) than during the day (0.72 m s(- 1)). The high average swimming speed could be related to the: foraging or streaming part of the population and not to potential weakness of the methodology. However....... the uncertainty or target location increased with depth and resulted in calculated average swimming speeds of 0.15 m s(-1) even for a stationary target. With increasing swimming speed the average error decreased to Om s ' for speeds >0.34 m s(-1). Species identity was verified by trawling in a pelagic layer...

  5. Schooling increases risk exposure for fish navigating past artificial barriers.

    Directory of Open Access Journals (Sweden)

    Bertrand H Lemasson

    Full Text Available Artificial barriers have become ubiquitous features in freshwater ecosystems and they can significantly impact a region's biodiversity. Assessing the risk faced by fish forced to navigate their way around artificial barriers is largely based on assays of individual swimming behavior. However, social interactions can significantly influence fish movement patterns and alter their risk exposure. Using an experimental flume, we assessed the effects of social interactions on the amount of time required for juvenile palmetto bass (Morone chrysops × M. saxatilis to navigate downstream past an artificial barrier. Fish were released either individually or in groups into the flume using flow conditions that approached the limit of their expected swimming stamina. We compared fish swimming behaviors under solitary and schooling conditions and measured risk as the time individuals spent exposed to the barrier. Solitary fish generally turned with the current and moved quickly downstream past the barrier, while fish in groups swam against the current and displayed a 23-fold increase in exposure time. Solitary individuals also showed greater signs of skittish behavior than those released in groups, which was reflected by larger changes in their accelerations and turning profiles. While groups displayed fission-fusion dynamics, inter-individual positions were highly structured and remained steady over time. These spatial patterns align with theoretical positions necessary to reduce swimming exertion through either wake capturing or velocity sheltering, but diverge from any potential gains from channeling effects between adjacent neighbors. We conclude that isolated performance trials and projections based on individual behaviors can lead to erroneous predictions of risk exposure along engineered structures. Our results also suggest that risk perception and behavior may be more important than a fish's swimming stamina in artificially modified systems.

  6. Schooling increases risk exposure for fish navigating past artificial barriers.

    Science.gov (United States)

    Lemasson, Bertrand H; Haefner, James W; Bowen, Mark D

    2014-01-01

    Artificial barriers have become ubiquitous features in freshwater ecosystems and they can significantly impact a region's biodiversity. Assessing the risk faced by fish forced to navigate their way around artificial barriers is largely based on assays of individual swimming behavior. However, social interactions can significantly influence fish movement patterns and alter their risk exposure. Using an experimental flume, we assessed the effects of social interactions on the amount of time required for juvenile palmetto bass (Morone chrysops × M. saxatilis) to navigate downstream past an artificial barrier. Fish were released either individually or in groups into the flume using flow conditions that approached the limit of their expected swimming stamina. We compared fish swimming behaviors under solitary and schooling conditions and measured risk as the time individuals spent exposed to the barrier. Solitary fish generally turned with the current and moved quickly downstream past the barrier, while fish in groups swam against the current and displayed a 23-fold increase in exposure time. Solitary individuals also showed greater signs of skittish behavior than those released in groups, which was reflected by larger changes in their accelerations and turning profiles. While groups displayed fission-fusion dynamics, inter-individual positions were highly structured and remained steady over time. These spatial patterns align with theoretical positions necessary to reduce swimming exertion through either wake capturing or velocity sheltering, but diverge from any potential gains from channeling effects between adjacent neighbors. We conclude that isolated performance trials and projections based on individual behaviors can lead to erroneous predictions of risk exposure along engineered structures. Our results also suggest that risk perception and behavior may be more important than a fish's swimming stamina in artificially modified systems.

  7. Relationship between the effect of dietary fat on swimming endurance and energy metabolism in aged mice.

    Science.gov (United States)

    Zhang, Guihua; Shirai, Nobuya; Suzuki, Hiramitsu

    2011-10-01

    The aim of this study was to investigate the effect of different dietary fats on alterations in endurance, energy metabolism, and plasma levels of interleukin-6 (IL-6) and minerals in mice. Male mice (aged 58 weeks) were fed diets containing 6% safflower oil, fish oil, or lard for 12 weeks. Swimming time to exhaustion, energy metabolism, and plasma IL-6 levels were subsequently determined. Mice fed safflower oil exhibited a marked increase in swimming time compared to the baseline level. Mice fed lard exhibited a significant decrease in swimming time, while mice on a fish oil diet exhibited a small decrease in swimming time. The final swimming time of mice fed safflower oil was significantly longer than that of animals fed lard. This improvement in endurance with dietary safflower oil was accompanied by decreased accumulation of lactate and less glycogen depletion during swimming. In the safflower oil group, muscle carnitine palmitoyltransferase activity increased significantly after swimming, while the plasma non-esterified fatty acid concentration decreased significantly. A trend to increased plasma IL-6 levels was observed in sedentary animals on a safflower oil diet compared to those on a lard diet. These results suggest that dietary safflower oil improves the swimming endurance of aged mice to a greater extent than lard, and that this effect appears to involve glycogen sparing through increased fatty acid utilization. Copyright © 2011 S. Karger AG, Basel.

  8. Cetacean Swimming with Prosthetic Limbs

    Science.gov (United States)

    Bode-Oke, Ayodeji; Ren, Yan; Dong, Haibo; Fish, Frank

    2016-11-01

    During entanglement in fishing gear, dolphins can suffer abrasions and amputations of flukes and fins. As a result, if the dolphin survives the ordeal, swimming performance is altered. Current rehabilitation technques is the use of prosthesis to regain swimming ability. In this work, analyses are focused on two dolphins with locomotive impairment; Winter (currently living in Clearwater Marine Aquarium in Florida) and Fuji (lived in Okinawa Churaumi Aquarium in Japan). Fuji lost about 75% of its fluke surface to necrosis (death of cells) and Winter lost its tail due to amputation. Both dolphins are aided by prosthetic tails that mimic the shape of a real dolphin tail. Using 3D surface reconstruction techniques and a high fidelity Computational Fluid Dynamics (CFD) flow solver, we were able to elucidate the kinematics and hydrodynamics and fluke deformation of these swimmers to clarify the effectiveness of prostheses in helping the dolphins regain their swimming ability. Associated with the performance, we identified distinct features in the wake structures that can explain this gap in the performance compared to a healthy dolphin. This work was supported by ONR MURI Grant Number N00014-14-1-0533.

  9. Environmental calcium and variation in yolk sac size influence swimming performance in larval lake sturgeon (Acipenser fulvescens)

    DEFF Research Database (Denmark)

    Deslauriers, David; Svendsen, Jon Christian; Genz, Janet

    2018-01-01

    , because the yolk sac is likely to affect drag forces during swimming. Testing swimming performance of larval A. fulvescens reared in four different calcium treatments spanning the range of 4-132 mg l-1 [Ca2+], this study found no treatment effects on the sprint swimming speed. A novel test of volitional...... reduced swimming performance and could be more susceptible to predation or premature downstream drift. Our study reveals how environmental factors and phenotypic variation influence locomotor performance in a larval fish....

  10. Performance of Very Small Robotic Fish Equipped with CMOS Camera

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2015-10-01

    Full Text Available Underwater robots are often used to investigate marine animals. Ideally, such robots should be in the shape of fish so that they can easily go unnoticed by aquatic animals. In addition, lacking a screw propeller, a robotic fish would be less likely to become entangled in algae and other plants. However, although such robots have been developed, their swimming speed is significantly lower than that of real fish. Since to carry out a survey of actual fish a robotic fish would be required to follow them, it is necessary to improve the performance of the propulsion system. In the present study, a small robotic fish (SAPPA was manufactured and its propulsive performance was evaluated. SAPPA was developed to swim in bodies of freshwater such as rivers, and was equipped with a small CMOS camera with a wide-angle lens in order to photograph live fish. The maximum swimming speed of the robot was determined to be 111 mm/s, and its turning radius was 125 mm. Its power consumption was as low as 1.82 W. During trials, SAPPA succeeded in recognizing a goldfish and capturing an image of it using its CMOS camera.

  11. Mammal-like muscles power swimming in a cold-water shark.

    Science.gov (United States)

    Bernal, Diego; Donley, Jeanine M; Shadwick, Robert E; Syme, Douglas A

    2005-10-27

    Effects of temperature on muscle contraction and powering movement are profound, outwardly obvious, and of great consequence to survival. To cope with the effects of environmental temperature fluctuations, endothermic birds and mammals maintain a relatively warm and constant body temperature, whereas most fishes and other vertebrates are ectothermic and conform to their thermal niche, compromising performance at colder temperatures. However, within the fishes the tunas and lamnid sharks deviate from the ectothermic strategy, maintaining elevated core body temperatures that presumably confer physiological advantages for their roles as fast and continuously swimming pelagic predators. Here we show that the salmon shark, a lamnid inhabiting cold, north Pacific waters, has become so specialized for endothermy that its red, aerobic, locomotor muscles, which power continuous swimming, seem mammal-like, functioning only within a markedly elevated temperature range (20-30 degrees C). These muscles are ineffectual if exposed to the cool water temperatures, and when warmed even 10 degrees C above ambient they still produce only 25-50% of the power produced at 26 degrees C. In contrast, the white muscles, powering burst swimming, do not show such a marked thermal dependence and work well across a wide range of temperatures.

  12. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.

    Science.gov (United States)

    Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  13. The effects of swimming pattern on the energy use of gilthead seabream (Sparus aurata L.)

    DEFF Research Database (Denmark)

    Steinhausen, Maria Faldborg; Steffensen, John Fleng; Andersen, Niels Gerner

    2010-01-01

    Oxygen consumption ( ) was measured for gilthead seabream (Sparus aurata) during spontaneous and forced activities. During spontaneous activity, the swimming pattern was analysed for the effect on   on the average speed (U), turning rate (¿) and change in speed (¿U). All swimming characteristics...... and   during forced activity was also established. During spontaneous activity, 2.5 times more energy was used than in forced swimming at a speed of 0.5 BL s-1. This indicates that spontaneous swimming costs may be considerably higher compared with those of a fixed swimming speed. However, comparing...... contributed significantly to the source of spontaneous swimming costs, and the models explained up to 58% of the variation in   Prediction of   of fish in field studies can thereby be improved if changes in speed and direction are determined in addition to swimming speed. A relationship between swimming speed...

  14. Spatial Expression of Otolith Matrix Protein-1 and Otolin-1 in Normally and Kinetotically Swimming Fish.

    Science.gov (United States)

    Weigele, Jochen; Franz-Odendaal, Tamara A; Hilbig, Reinhard

    2015-10-01

    Kinetosis (motion sickness) has been repeatedly shown to affect some fish of a given clutch following the transition from 1g to microgravity or from hypergravity to 1g. This susceptibility to kinetosis may be correlated with irregular inner ear otolith growth. Otoliths are mainly composed of calcium carbonate and matrix proteins, which play an important role in the process of otolith mineralization. Here, we examine the morphology of otoliths and the expression pattern of the major otolith proteins OMP-1 and otolin-1 in a series of hypergravity experiments. In the utricle, OMP-1 is present in centripetal (medial) and centrifugal (lateral) regions of the meshwork area. In the saccule, OMP-1 was expressed within a dorsal and a ventral narrow band of the meshwork area opposite to the periphery of the sulcus acusticus. In normal animals, the spatial expression pattern of OMP-1 reaches more posteriorly in the centrifugal aspect and is considerably broader in the centripetal portion of the utricle compared to kinetotic animals. However, otolin-1 was not expressed in the utricule. In the saccule, no differences were observed for either gene when comparing normal and kinetotically behaving fish. The difference in the utricular OMP-1 expression pattern between normally and kinetotically swimming fish indicates a different otolith morphology and thus a different geometry of the otoliths resting on the corresponding sensory maculae. As the utricle is the endorgan responsible for sensing gravity, the aberrant morphology of the utricular otoliths, based on OMP-1 expression, likely leads to the observed kinetotic behavior. © 2015 Wiley Periodicals, Inc.

  15. Effects of rearing density and dietary fat content on burst-swim performance and oxygen transport capacity in juvenile Atlantic salmon Salmo salar.

    Science.gov (United States)

    Hammenstig, D; Sandblom, E; Axelsson, M; Johnsson, J I

    2014-10-01

    The effects of hatchery rearing density (conventional or one third of conventional density) and feeding regime (high or reduced dietary fat levels) on burst-swim performance and oxygen transport capacity were studied in hatchery-reared Atlantic salmon Salmo salar, using wild fish as a reference group. There was no effect of rearing density or food regime on swimming performance in parr and smolts. The maximum swimming speed of wild parr was significantly higher than that of hatchery-reared conspecifics, while no such difference remained at the smolt stage. In smolts, relative ventricle mass was higher in wild S. salar compared with hatchery-reared fish. Moreover, wild S. salar had lower maximum oxygen consumption following a burst-swim challenge than hatchery fish. There were no effects of hatchery treatment on maximum oxygen consumption or relative ventricle mass. Haemoglobin and haematocrit levels, however, were lower in low-density fish than in fish reared at conventional density. Furthermore, dorsal-fin damage, an indicator of aggression, was similar in low-density reared and wild fish and lower than in S. salar reared at conventional density. Together, these results suggest that reduced rearing density is more important than reduced dietary fat levels in producing an S. salar smolt suitable for supplementary release. © 2014 The Fisheries Society of the British Isles.

  16. Stress response of lead-exposed rainbow trout (Oncorhynchus mykiss) during swimming performance and hypoxia challenges

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, K.A. [National Biological Service, La Crosse, WI (United States)]|[Univ. of Wisconsin, La Crosse, WI (United States); Caldwell, C.A. [National Biological Service, La Crosse, WI (United States); Sandheinrich, M.B. [Univ. of Wisconsin, La Crosse, WI (United States)

    1995-12-31

    Contaminants often invoke a stress response in aquatic organisms, and may compromise their capacity to respond to secondary stressors. This may reduce growth, reproduction and survival. The authors objectives were to assess the effects of lead and secondary stressors on hematology and blood chemistry of rainbow trout. After a 7 to 8-week aqueous exposure to Pb(100{micro}g/L), rainbow trout were challenged with forced swimming or hypoxia. Lead significantly reduced concentrations of 5-aminolevulinic acid dehydratase (ALAD), but not other constituents in the blood. Lead did not affect the swimming endurance of the fish. Hematocrit, mean cell hemoglobin content, and mean cell volume were significantly lower in Pb-exposed trout following the swimming challenge. Although hypoxia resulted in increased hematocrit and plasma glucose concentrations, there were no significant differences between the Pb and control groups. Hypoxia did not affect plasma chloride concentrations, although concentrations increased in Pb-exposed trout. There was no difference in lactic acid concentrations between Pb-exposed and control fish after forced swimming or hypoxia.

  17. Fish robotics and hydrodynamics

    Science.gov (United States)

    Lauder, George

    2010-11-01

    Studying the fluid dynamics of locomotion in freely-swimming fishes is challenging due to difficulties in controlling fish behavior. To provide better control over fish-like propulsive systems we have constructed a variety of fish-like robotic test platforms that range from highly biomimetic models of fins, to simple physical models of body movements during aquatic locomotion. First, we have constructed a series of biorobotic models of fish pectoral fins with 5 fin rays that allow detailed study of fin motion, forces, and fluid dynamics associated with fin-based locomotion. We find that by tuning fin ray stiffness and the imposed motion program we can produce thrust both on the fin outstroke and instroke. Second, we are using a robotic flapping foil system to study the self-propulsion of flexible plastic foils of varying stiffness, length, and trailing edge shape as a means of investigating the fluid dynamic effect of simple changes in the properties of undulating bodies moving through water. We find unexpected non-linear stiffness-dependent effects of changing foil length on self-propelled speed, and as well as significant effects of trailing edge shape on foil swimming speed.

  18. Ichthyophonus-induced cardiac damage: a mechanism for reduced swimming stamina in salmonids.

    Science.gov (United States)

    Kocan, R; Lapatra, S; Gregg, J; Winton, J; Hershberger, P

    2006-09-01

    Swimming stamina, measured as time-to-fatigue, was reduced by approximately two-thirds in rainbow trout experimentally infected with Ichthyophonus. Intensity of Ichthyophonus infection was most severe in cardiac muscle but multiple organs were infected to a lesser extent. The mean heart weight of infected fish was 40% greater than that of uninfected fish, the result of parasite biomass, infiltration of immune cells and fibrotic (granuloma) tissue surrounding the parasite. Diminished swimming stamina is hypothesized to be due to cardiac failure resulting from the combination of parasite-damaged heart muscle and low myocardial oxygen supply during sustained aerobic exercise. Loss of stamina in Ichthyophonus-infected salmonids could explain the poor performance previously reported for wild Chinook and sockeye salmon stocks during their spawning migration.

  19. Kinematics of ram filter feeding and beat-glide swimming in the northern anchovy Engraulis mordax.

    Science.gov (United States)

    Carey, Nicholas; Goldbogen, Jeremy A

    2017-08-01

    In the dense aquatic environment, the most adept swimmers are streamlined to reduce drag and increase the efficiency of locomotion. However, because they open their mouth to wide gape angles to deploy their filtering apparatus, ram filter feeders apparently switch between diametrically opposite swimming modes: highly efficient, streamlined 'beat-glide' swimming, and ram filter feeding, which has been hypothesized to be a high-cost feeding mode because of presumed increased drag. Ram filter-feeding forage fish are thought to play an important role in the flux of nutrients and energy in upwelling ecosystems; however, the biomechanics and energetics of this feeding mechanism remain poorly understood. We quantified the kinematics of an iconic forage fish, the northern anchovy, Engraulis mordax , during ram filter feeding and non-feeding, mouth-closed beat-glide swimming. Although many kinematic parameters between the two swimming modes were similar, we found that swimming speeds and tailbeat frequencies were significantly lower during ram feeding. Rather than maintain speed with the school, a speed which closely matches theoretical optimum filter-feeding speeds was consistently observed. Beat-glide swimming was characterized by high variability in all kinematic parameters, but variance in kinematic parameters was much lower during ram filter feeding. Under this mode, body kinematics are substantially modified, and E. mordax swims more slowly and with decreased lateral movement along the entire body, but most noticeably in the anterior. Our results suggest that hydrodynamic effects that come with deployment of the filtering anatomy may limit behavioral options during foraging and result in slower swimming speeds during ram filtration. © 2017. Published by The Company of Biologists Ltd.

  20. The effect of body coloration and group size on social partner preferences in female fighting fish (Betta splendens).

    Science.gov (United States)

    Blakeslee, C; McRobert, S P; Brown, A C; Clotfelter, E D

    2009-02-01

    Females of the fighting fish Betta splendens have been shown to associate with other B. splendens females in a manner reminiscent of shoaling behavior. Since body coloration varies dramatically in this species, and since body coloration has been shown to affect shoalmate choice in other species of fish, we examined the influence of body coloration on association preferences in female B. splendens. In dichotomous choice tests, B. splendens females spent more time swimming near groups of females (regardless of coloration) than swimming near an empty chamber, and chose to swim near fish of similar coloration to their own when choosing between two distinctly colored groups of females. When examining the interplay between body coloration and group size, focal fish spent more time swimming near larger groups (N=5) of similarly colored fish than swimming near an individual female of similar coloration. However, focal fish showed no preference when presented with an individual female of similar coloration and a larger group of females of dissimilar coloration. These results suggest that association choices in B. splendens females are strongly affected by both body coloration and by group size.

  1. Passive appendages improve the maneuverability of fish-like robots

    Science.gov (United States)

    Pollard, Beau; Tallapragada, Phanindra

    2017-11-01

    It is known that the passive mechanics of fish appendages play a role in the high efficiency of their swimming. A well known example of this is the experimental demonstration that a dead fish could swim upstream. However little is known about the role if any of passive deformations of a fish-like body that could aid in its maneuverability. Part of the difficulty investigating this lies in clearly separating the role of actuated body deformations and passive deformations in response to the fluid structure interaction. In this paper we compare the maneuverability of several fish shaped robotic models that possess varying numbers of passive appendages with a fish shaped robot that has no appendages. All the robots are propelled by the oscillations of an internal momentum wheel thereby eliminating any active deformations of the body. Our experiments clearly reveal the significant improvement in maneuverability of robots with passive appendages. In the broader context of swimming robots our experiments show that passive mechanisms could be useful to provide mechanical feedback that can help maneuverability and obstacle avoidance along with propulsive efficiency. This work was partly supported by a Grant from the NSF CMMI 1563315.

  2. Cortisol treatment affects locomotor activity and swimming behaviour of male smallmouth bass engaged in paternal care: A field study using acceleration biologgers.

    Science.gov (United States)

    Algera, Dirk A; Brownscombe, Jacob W; Gilmour, Kathleen M; Lawrence, Michael J; Zolderdo, Aaron J; Cooke, Steven J

    2017-11-01

    Paternal care, where the male provides sole care for the developing brood, is a common form of reproductive investment among teleost fish and ubiquitous in the Centrarchidae family. Throughout the parental care period, nesting males expend energy in a variety of swimming behaviours, including routine and burst swimming, vigilantly monitoring the nest area and protecting the brood from predators. Parental care is an energetically demanding period, which is presumably made even more difficult if fish are exposed to additional challenges such as those arising from human disturbance, resulting in activation of the hypothalamic-pituitary-interrenal axis (i.e., elevation of cortisol). To study this situation, we examined the effects of experimental manipulation of the stress hormone cortisol on locomotor activity and behaviour of nest guarding male smallmouth bass (Micropterus dolomieu). We exogenously elevated circulating cortisol levels (via intracoelomic implants) and attached tri-axial accelerometers to wild smallmouth bass for three days. During the recovery period (i.e., ≤4h post-release), cortisol-treated fish exhibited significantly reduced locomotor activity and performed significantly less burst and routine swimming relative to control fish, indicating cortisol uptake was rapid, as were the associated behavioural responses. Post-recovery (i.e., >4h post-release), fish with high cortisol exhibited lower locomotor activity and reduced routine swimming relative to controls. Fish were less active and reduced routine and burst swimming at night compared to daylight hours, an effect independent of cortisol treatment. Collectively, our results suggest that cortisol treatment (as a proxy for anthropogenic disturbance and stress) contributed to altered behaviour, and consequently cortisol-treated males decreased parental investment in their brood, which could have potential fitness implications. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Influence of swimming behavior of copepod nauplii on feeding of larval turbot (Scophthalmus maximus)

    DEFF Research Database (Denmark)

    Bruno, Eleonora; Højgaard, Jacob Kring; Hansen, Benni Winding

    2018-01-01

    Feeding in larval fish is influenced by a range of factors and among these are the morphological and behavioral characteristics of their prey. We investigated the influence of the swimming behavior of two species of calanoid copepods, Acartia tonsa and Temora longicornis, on larval turbot feeding....... The nauplii of these species represent two contrasting swimming behaviors: A. tonsa is a jump-sink type swimmer, while T. longicornis is a cruise swimming type. Three replicates of ten larvae aged 7 and 9 days post hatch (DPH) were observed feeding on one of the two copepod species using a 2-dimensional video...

  4. Automated visual tracking for studying the ontogeny of zebrafish swimming

    NARCIS (Netherlands)

    Fontaine, E.; Lentink, D.; Kranenbarg, S.; Müller, U.K.; Leeuwen, van J.L.; Barr, A.H.; Burdick, J.W.

    2008-01-01

    The zebrafish Danio rerio is a widely used model organism in studies of genetics, developmental biology, and recently, biomechanics. In order to quantify changes in swimming during all stages of development, we have developed a visual tracking system that estimates the posture of fish. Our current

  5. Anthropogenic chemical cues can alter the swimming behaviour of juvenile stages of a temperate fish.

    Science.gov (United States)

    Díaz-Gil, Carlos; Cotgrove, Lucy; Smee, Sarah Louise; Simón-Otegui, David; Hinz, Hilmar; Grau, Amalia; Palmer, Miquel; Catalán, Ignacio A

    2017-04-01

    Human pressure on coastal areas is affecting essential ecosystems including fish nursery habitats. Among these anthropogenic uses, the seasonal increment in the pressure due to leisure activities such as coastal tourism and yachting is an important environmental stressor in many coastal zones. These pressures may elicit understudied impacts due to, for example, sunscreens or other seasonal pollutants. The island of Majorca, northwest Mediterranean Sea, experiences one of the highest number of tourist visits per capita in the world, thus the surrounding coastal habitat is subject to high anthropogenic seasonal stress. Studies on early stages of fishes have observed responses to coastal chemical cues for the selection or avoidance of habitats. However, the potential interferences of human impacts on these signals are largely unknown. A choice chamber was used to determine water type preference and behaviour in naïve settled juvenile gilt-head sea bream (Sparus aurata), a temperate species of commercial interest. Fish were tested individually for behavioural changes with respect to water types from potential beneficial habitats, such as seawater with extract of the endemic seagrass Posidonia oceanica, anthropogenically influenced habitats such as water extracted from a commercial and recreational harbour and seawater mixed with sunscreen at concentrations observed in coastal waters. Using a Bayesian approach, we investigated a) water type preference; b) mean speed; and c) variance in the movement (as an indicator of burst swimming activity, or "sprint" behaviour) as behavioural descriptors with respect to water type. Fish spent similar percentage of time in treatment and control water types. However, movement descriptors showed that fish in sunscreen water moved slower (98.43% probability of being slower) and performed fewer sprints (90.1% probability of having less burst in speed) compared to control water. Less evident increases in sprints were observed in harbour

  6. Effect of water velocity on intermediary metabolism of juvenile matrinxã fish (Brycon amazonicus)

    OpenAIRE

    Arbeláez-Rojas, Gustavo Alberto; Moraes, Gilberto

    2013-01-01

    Background: determination of water velocity for optimum fish growth is fundamental since its duration and intensity can interfere with the metabolic preference for some biochemical paths, resulting in the use of specific substrates for fish growth. Objective: the purpose of this study was to assess the metabolic adjustments of juvenile matrinxã (Brycon amazonicus) reared under various sustained swimming conditions (SS). Methods: fish were subjected to SS for 90 days at five swimming speeds: 0...

  7. Anadromous fish behaviour important for fish passage

    International Nuclear Information System (INIS)

    Kynard, B.E.

    1993-01-01

    An understanding of the behavior of target fish species is necessary for proper design, location, and operation of a successful upstream or downstream fishway for anadromous migrants. Important fish behaviors are seasonal and daily timing of migration; rheotaxis and near field behavior; stimulus-response behavior; swimming capability; shoaling behavior; response to physical environmental factors such as illumination, sound, water depth, current velocity, and structure; response to chemicals; and response to biological factors such as competition for space and response to predators. The information on migrant fish behavior is reviewed, using examples from the literature on the behavior of eastern anadromous species, particularly Atlantic salmon (Salmo salar) and American shad (Alosa sapidissima). 87 refs

  8. Studies of evolutionary temperature adaptation: muscle function and locomotor performance in Antarctic fish.

    Science.gov (United States)

    Franklin, C E

    1998-09-01

    1. Studies of evolutionary temperature adaptation of muscle and locomotor performance in fish are reviewed with a focus on the Antarctic fauna living at subzero temperatures. 2. Only limited data are available to compare the sustained and burst swimming kinematics and performance of Antarctic, temperate and tropical species. Available data indicate that low temperatures limit maximum swimming performance and this is especially evident in fish larvae. 3. In a recent study, muscle performance in the Antarctic rock cod Notothenia coriiceps at 0 degree C was found to be sufficient to produce maximum velocities during burst swimming that were similar to those seen in the sculpin Myoxocephalus scorpius at 10 degrees C, indicating temperature compensation of muscle and locomotor performance in the Antarctic fish. However, at 15 degrees C, sculpin produce maximum swimming velocities greater than N. coriiceps at 0 degree C. 4. It is recommended that strict hypothesis-driven investigations using ecologically relevant measures of performance are undertaken to study temperature adaptation in Antarctic fish. Recent detailed phylogenetic analyses of the Antarctic fish fauna and their temperate relatives will allow a stronger experimental approach by helping to separate what is due to adaptation to the cold and what is due to phylogeny alone.

  9. Resurgence in Siamese fighting fish, Betta splendens.

    Science.gov (United States)

    da Silva, Stephanie P; Cançado, Carlos R X; Lattal, Kennon A

    2014-03-01

    Resurgence of previously reinforced responding was investigated in male Siamese fighting fish (Betta splendens). Swimming through a ring produced 15-s mirror presentations according to, with different fish, either a fixed-ratio 1 or a variable-interval 60-s schedule of reinforcement. When responding was stable, a differential-reinforcement-of-other-behavior schedule was substituted for the mirror-presentation schedule. Following this, mirror presentations were discontinued (extinction). During this latter phase, there were transient increases in the ring-swim response relative to the frequency of such responding during the differential-reinforcement-of-other behavior schedule. Resurgence was similar for the fish exposed previously to the fixed-ratio or to the variable-interval schedule. These results extend to Siamese fighting fish a well-established behavioral phenomenon previously not observed in this species or with this response topography, and only rarely reported following the removal of a non-consumable reinforcer. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Behavioral changes in fish exposed to phytoestrogens

    International Nuclear Information System (INIS)

    Clotfelter, Ethan D.; Rodriguez, Alison C.

    2006-01-01

    We investigated the behavioral effects of exposure to waterborne phytoestrogens in male fighting fish, Betta splendens. Adult fish were exposed to a range of concentrations of genistein, equol, β-sitosterol, and the positive control 17β-estradiol. The following behaviors were measured: spontaneous swimming activity, latency to respond to a perceived intruder (mirror reflection), intensity of aggressive response toward a perceived intruder, probability of constructing a nest in the presence of a female, and the size of the nest constructed. We found few changes in spontaneous swimming activity, the latency to respond to the mirror, and nest size, and modest changes in the probability of constructing a nest. There were significant decreases, however, in the intensity of aggressive behavior toward the mirror following exposure to several concentrations, including environmentally relevant ones, of 17β-estradiol, genistein, and equol. This suggests that phytoestrogen contamination has the potential to significantly affect the behavior of free-living fishes. - Environmentally relevant concentrations of phytoestrogens reduce aggressive behavior in fish

  11. ASSESSMENT OF MAXIMUM SUSTAINABLE SWIMMING PERFORMANCE IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    Science.gov (United States)

    Wilson; Egginton

    1994-07-01

    Levels of swimming activity in fishes have been divided into three categories on the basis of the time a given speed can be maintained before the onset of fatigue (Beamish, 1978): sustained (more than 200 min), prolonged (20 s to 200 min) and burst swimming (less than 20 s). The locomotory capacity of a given species reflects both its lifestyle and its body form, although definitions of performance may vary. It is generally accepted that only the aerobic ('red') muscle fibres should be active at truly sustainable swimming speeds, i.e. at speeds that can be maintained indefinitely without fatigue. However, the standard laboratory method of evaluating the maximum sustainable swimming speed (Ucrit; Brett, 1964) almost certainly entails the recruitment of at least some of the rapidly fatigable fast glycolytic ('white') fibres at sub-critical speeds and undoubtedly complicates the evaluation of maximal cardiovascular performance. It would therefore be useful to have an objective and reproducible measure of truly sustainable performance that, by definition, relies solely on aerobic muscle activity. Electromyography (EMG) has been used to examine the pattern of white muscle recruitment following thermal acclimation in striped bass, Morine saxatilis (Sisson and Sidell, 1987). We wished to incorporate this method into a study of the acclimatory responses to chronic changes in environmental temperature of the cardiovascular and locomotory systems in rainbow trout (Wilson and Egginton, 1992). The present communication presents results on the cardiovascular performance and blood chemistry, at rest and during maximal aerobic exercise, of rainbow trout acclimated to 11 °C, as a validation of the methodology currently in use with fish acclimated to seasonal temperature extremes (Taylor et al. 1992). Different acclimation temperatures are known to produce compensatory changes in the relative proportions of red and white muscle mass (Sidell and Moerland, 1989). The aim of these

  12. The Impact of Baby Swimming on Introductory and Elementary Swimming Training

    OpenAIRE

    Břízová, Gabriela

    2007-01-01

    THESIS ANNOTATION Title: The Impact of Baby Swimming on Introductory and Elementary Swimming Training Aim: To assess the impact of 'baby swimming' on the successfulness in introductory and partly in elementary swimming training, and to find out whether also other circumstances (for example the length of attendance at 'baby swimming') have some influence on introductory swimming training. Methods: We used a questionnaire method for the parents of children who had attended 'baby swimming' and f...

  13. Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish.

    Science.gov (United States)

    Gingerich, Andrew James; Philipp, David P; Suski, Cory D

    2010-03-01

    The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass, while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.

  14. Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Andrew J.; Philipp, D. P.; Suski, C. D.

    2010-11-20

    The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass, while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.

  15. Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus Tshawytscha) in the Klickitat River, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S.; Geist, David R.; Confederated Tribes and Bands of the Yakama Nation, Washington

    2002-08-30

    This report describes a study conducted by Pacific Northwest National Laboratory for the Bonneville Power Administration's Columbia Basin Fish and Wildlife Program during the fall of 2001. The objective was to study the migration and energy use of adult fall chinook salmon (Oncorhynchus tshawytscha) traveling up the Klickitat River to spawn. The salmon were tagged with either surgically implanted electromyogram (EMG) transmitters or gastrically implanted coded transmitters and were monitored with mobile and stationary receivers. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted passage of three waterfalls on the lower Klickitat River and as they traversed free-flowing stretches between, below, and above the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat River, 40% passed the first falls, 24% passed the second falls, and 20% made it to Lyle Falls. None of the EMG-tagged fish were able to pass Lyle Falls, either over the falls or via a fishway at Lyle Falls. Mean swimming speeds ranged from as low as 52.6 centimeters per second (cm s{sup -1}) between falls to as high as 189 (cm s{sup -1}) at falls passage. Fish swam above critical swimming speeds while passing the falls more often than while swimming between the falls (58.9% versus 1.7% of the transmitter signals). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (100.7 to 128.2 kilocalories [kcals] to traverse areas between or below falls versus 0.3 to 1.0 kcals to pass falls). Relationships between sex, length, and time of day on the success of falls passage were also examined. Average swimming speeds were highest during the day in all areas except at some waterfalls. There was no apparent relationship between either fish condition or length and successful passage of waterfalls in the lower Klickitat River. Female fall chinook salmon, however, had a much lower likelihood of

  16. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sjannie, E-mail: sjannie.lefevre@biology.au.dk [Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus (Denmark); Jensen, Frank B. [Department of Biology, University of Southern Denmark, Odense (Denmark); Huong, Do.T.T. [College of Aquaculture and Fisheries, Can Tho University, Can Tho City (Viet Nam); Wang, Tobias [Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus (Denmark); Phuong, Nguyen T. [College of Aquaculture and Fisheries, Can Tho University, Can Tho City (Viet Nam); Bayley, Mark [Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus (Denmark)

    2011-07-15

    In this study we investigated nitrite (NO{sub 2}{sup -}) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO{sub 2max}) and critical swimming speed (U{sub crit}) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC{sub 50} of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO{sub 2max} and U{sub crit}. The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO{sub 2max} and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish.

  17. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus.

    Science.gov (United States)

    Lefevre, Sjannie; Jensen, Frank B; Huong, Do T T; Wang, Tobias; Phuong, Nguyen T; Bayley, Mark

    2011-07-01

    In this study we investigated nitrite (NO₂⁻) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO(2max)) and critical swimming speed (U(crit)) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC₅₀ of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO(2max) and U(crit). The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO(2max) and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus

    International Nuclear Information System (INIS)

    Lefevre, Sjannie; Jensen, Frank B.; Huong, Do.T.T.; Wang, Tobias; Phuong, Nguyen T.; Bayley, Mark

    2011-01-01

    In this study we investigated nitrite (NO 2 - ) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO 2max ) and critical swimming speed (U crit ) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC 50 of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO 2max and U crit . The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO 2max and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish.

  19. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

    2004-10-23

    Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to

  20. Swimming level of pupils from elementary schools with own swimming pool

    OpenAIRE

    Zálupská, Klára

    2012-01-01

    Title: Swimming level of pupils from primary school with private swimming pool. Work objectives: The aim is to identify assess level of swimming of pupils from first to ninth grade of primary school with a private pool in Chomutov district using continuous swimming test with regular swimming lessons, which is started in the first grade and persists until the ninth grade. The condition was organizing a school swimming lessons once a week for 45 minutes in all grades. Methodology: Swimming leve...

  1. Unsteady propulsion by an intermittent swimming gait

    Science.gov (United States)

    Akoz, Emre; Moored, Keith W.

    2018-01-01

    Inviscid computational results are presented on a self-propelled swimmer modeled as a virtual body combined with a two-dimensional hydrofoil pitching intermittently about its leading edge. Lighthill (1971) originally proposed that this burst-and-coast behavior can save fish energy during swimming by taking advantage of the viscous Bone-Lighthill boundary layer thinning mechanism. Here, an additional inviscid Garrick mechanism is discovered that allows swimmers to control the ratio of their added mass thrust-producing forces to their circulatory drag-inducing forces by decreasing their duty cycle, DC, of locomotion. This mechanism can save intermittent swimmers as much as 60% of the energy it takes to swim continuously at the same speed. The inviscid energy savings are shown to increase with increasing amplitude of motion, increase with decreasing Lighthill number, Li, and switch to an energetic cost above continuous swimming for sufficiently low DC. Intermittent swimmers are observed to shed four vortices per cycle that form into groups that are self-similar with the DC. In addition, previous thrust and power scaling laws of continuous self-propelled swimming are further generalized to include intermittent swimming. The key is that by averaging the thrust and power coefficients over only the bursting period then the intermittent problem can be transformed into a continuous one. Furthermore, the intermittent thrust and power scaling relations are extended to predict the mean speed and cost of transport of swimmers. By tuning a few coefficients with a handful of simulations these self-propelled relations can become predictive. In the current study, the mean speed and cost of transport are predicted to within 3% and 18% of their full-scale values by using these relations.

  2. A Bioassay System Using Bioelectric Signals from Small Fish

    Science.gov (United States)

    Terawaki, Mitsuru; Soh, Zu; Hirano, Akira; Tsuji, Toshio

    Although the quality of tap water is generally examined using chemical assay, this method cannot be used for examination in real time. Against such a background, the technique of fish bioassay has attracted attention as an approach that enables constant monitoring of aquatic contamination. The respiratory rhythms of fish are considered an efficient indicator for the ongoing assessment of water quality, since they are sensitive to chemicals and can be indirectly measured from bioelectric signals generated by breathing. In order to judge aquatic contamination accurately, it is necessary to measure bioelectric signals from fish swimming freely as well as to stably discriminate measured signals, which vary between individuals. However, no bioassay system meeting the above requirements has yet been established. This paper proposes a bioassay system using bioelectric signals generated from small fish in free-swimming conditions. The system records signals using multiple electrodes to cover the extensive measurement range required in a free-swimming environment, and automatically discriminates changes in water quality from signal frequency components. This discrimination is achieved through an ensemble classification method using probability neural networks to solve the problem of differences between individual fish. The paper also reports on the results of related validation experiments, which showed that the proposed system was able to stably discriminate between water conditions before and after bleach exposure.

  3. Identification of myogenic regulatory genes in the muscle transcriptome of beltfish (Trichiurus lepturus: A major commercial marine fish species with robust swimming ability

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2016-06-01

    Full Text Available The beltfish (Trichiurus lepturus is considered as one of the most economically important marine fish in East Asia. It is a top predator with a robust swimming ability that is a good model to study muscle physiology in fish. In the present study, we used Illumina sequencing technology (NextSeq500 to sequence, assemble and annotate the muscle transcriptome of juvenile beltfish. A total of 57,509,280 clean reads (deposited in NCBI SRA database with accession number of SRX1674471 were obtained from RNA sequencing and 26,811 unigenes (with N50 of 1033 bp were obtained after de novo assembling with Trinity software. BLASTX against NR, GO, KEGG and eggNOG databases show 100%, 49%, 31% and 96% annotation rate, respectively. By mining beltfish muscle transcriptome, several key genes which play essential role on regulating myogenesis, including pax3, pax7, myf5, myoD, mrf4/myf6, myogenin and myostatin were identified with a low expression level. The muscle transcriptome of beltfish can provide some insight into the understanding of genome-wide transcriptome profile of teleost muscle tissue and give useful information to study myogenesis in juvenile/adult fish.

  4. Strouhal number for free swimming

    Science.gov (United States)

    Saadat, Mehdi; van Buren, Tyler; Floryan, Daniel; Smits, Alexander; Haj-Hariri, Hossein

    2015-11-01

    In this work, we present experimental results to explore the implications of free swimming for Strouhal number (as an outcome) in the context of a simple model for a fish that consists of a 2D virtual body (source of drag) and a 2D pitching foil (source of thrust) representing cruising with thunniform locomotion. The results validate the findings of Saadat and Haj-Hariri (2012): for pitching foils thrust coefficient is a function of Strouhal number for all gaits having amplitude less than a certain critical value. Equivalently, given the balance of thrust and drag forces at cruise, Strouhal number is only a function of the shape, i.e. drag coefficient and area, and essentially a constant for high enough swimming speeds for which the mild dependence of drag coefficient on the speed vanishes. Furthermore, a dimensional analysis generalizes the findings. A scaling analysis shows that the variation of Strouhal number with cruising speed is functionally related to the variation of body drag coefficient with speed. Supported by ONR MURI Grant N00014-14-1-0533.

  5. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    Science.gov (United States)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  6. Why do fish school?

    Institute of Scientific and Technical Information of China (English)

    Matz LARSSON

    2012-01-01

    Synchronized movements (schooling) emit complex and overlapping sound and pressure curves that might confuse the inner ear and lateral line organ (LLO) of a predator.Moreover,prey-fish moving close to each other may blur the electro-sensory perception of predators.The aim of this review is to explore mechanisms associated with synchronous swimming that may have contributed to increased adaptation and as a consequence may have influenced the evolution of schooling.The evolutionary development of the inner ear and the LLO increased the capacity to detect potential prey,possibly leading to an increased potential for cannibalism in the shoal,but also helped small fish to avoid joining larger fish,resulting in size homogeneity and,accordingly,an increased capacity for moving in synchrony.Water-movements and incidental sound produced as by-product of locomotion (ISOL) may provide fish with potentially useful information during swimming,such as neighbour body-size,speed,and location.When many fish move close to one another ISOL will be energetic and complex.Quiet intervals will be few.Fish moving in synchrony will have the capacity to discontinue movements simultaneously,providing relatively quiet intervals to allow the reception of potentially critical environmental signals.Besides,synchronized movements may facilitate auditory grouping of ISOL.Turning preference bias,well-functioning sense organs,good health,and skillful motor performance might be important to achieving an appropriate distance to school neighbors und aid the individual fish in reducing time spent in the comparatively less safe school periphery.Turning preferences in ancestral fish shoals might have helped fish to maintain groups and stay in formarion,reinforcing aforementioned predator confusion mechanisms,which possibly played a role in the lateralization of the vertebrate brain [Current Zoology 58 (1):116-128,2012].

  7. Fish, invertebrate and benthic surveys along the West coast of Hawaii from 2003-03-01 to 2017-03-01 (NCEI Accession 0164965)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish urchins and all other fish species are recorded in the return swim, during which divers swim more slowly carefully looking for smaller site-attached and semi...

  8. Neuromuscular Control of Rapid Linear Accelerations in Fish

    Science.gov (United States)

    2016-06-22

    sunfish, Lepomis macrochirus. Animals with flexible bodies, like fishes , face a tradeoff for rapid movements. To produce high forces, they must...2014 30-Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: Neuromuscular Control of Rapid Linear Accelerations in Fish The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 swimming, acceleration, fish , muscle, stiffness REPORT DOCUMENTATION PAGE 11. SPONSOR

  9. Optimally efficient swimming in hyper-redundant mechanisms: control, design, and energy recovery

    International Nuclear Information System (INIS)

    Wiens, A J; Nahon, M

    2012-01-01

    Hyper-redundant mechanisms (HRMs), also known as snake-like robots, are highly adaptable during locomotion on land. Researchers are currently working to extend their capabilities to aquatic environments through biomimetic undulatory propulsion. In addition to increasing the versatility of the system, truly biomimetic swimming could also provide excellent locomotion efficiency. Unfortunately, the complexity of the system precludes the development of a functional solution to achieve this. To explore this problem, a rapid optimization process is used to generate efficient HRM swimming gaits. The low computational cost of the approach allows for multiple optimizations over a broad range of system conditions. By observing how these conditions affect optimal kinematics, a number of new insights are developed regarding undulatory swimming in robotic systems. Two key conditions are varied within the study, swimming speed and energy recovery. It is found that the swimmer mimics the speed control behaviour of natural fish and that energy recovery drastically increases the system's efficiency. Remarkably, this efficiency increase is accompanied by a distinct change in swimming kinematics. With energy recovery, the swimmer converges to a clearly anguilliform gait, without, it tends towards the carangiform mode. (paper)

  10. Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae.

    Science.gov (United States)

    Wolanski, Eric; Kingsford, Michael J

    2014-09-06

    A predictive model of the fate of coral reef fish larvae in a reef system is proposed that combines the oceanographic processes of advection and turbulent diffusion with the biological process of horizontal swimming controlled by olfactory and auditory cues within the timescales of larval development. In the model, auditory cues resulted in swimming towards the reefs when within hearing distance of the reef, whereas olfactory cues resulted in the larvae swimming towards the natal reef in open waters by swimming against the concentration gradients in the smell plume emanating from the natal reef. The model suggested that the self-seeding rate may be quite large, at least 20% for the larvae of rapidly developing reef fish species, which contrasted with a self-seeding rate less than 2% for non-swimming coral larvae. The predicted self-recruitment rate of reefs was sensitive to a number of parameters, such as the time at which the fish larvae reach post-flexion, the pelagic larval duration of the larvae, the horizontal turbulent diffusion coefficient in reefal waters and the horizontal swimming behaviour of the fish larvae in response to auditory and olfactory cues, for which better field data are needed. Thus, the model suggested that high self-seeding rates for reef fish are possible, even in areas where the 'sticky water' effect is minimal and in the absence of long-term trapping in oceanic fronts and/or large-scale oceanic eddies or filaments that are often argued to facilitate the return of the larvae after long periods of drifting at sea. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. From fishing to fish processing: Separation of fish from crustaceans in the Norway lobster-directed multispecies trawl fishery improves seafood quality

    DEFF Research Database (Denmark)

    Karlsen, Junita Diana; Krag, Ludvig Ahm; Albertsen, Christoffer Moesgaard

    2015-01-01

    Fishing gears have negative impacts on seafood quality, especially on fish in the mixed trawl fishery targeting Norway lobster (Nephrops norvegicus). In this fishery, which is worth about €80 millions in Denmark alone, the quality of fish can be significantly improved by simple gear changes....... A trawl codend divided into an upper and lower codend was designed to separate fish from Norway lobster during the fishing process by encourage fish to swim into the upper codend by using a frame at the entrance of the lower codend. Separate codends for fish and Norway lobster in the same gear provide...... with hard or spiny surfaces due to successful separation of fish and Norway lobster into the upper and lower codends, respectively, and by lower catch weight in the upper codend of the test codend compared with the standard codend. The decrease in damages may also improve quality indirectly by inflicting...

  12. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi).

    Science.gov (United States)

    Palstra, Arjan P; Mes, Daan; Kusters, Kasper; Roques, Jonathan A C; Flik, Gert; Kloet, Kees; Blonk, Robbert J W

    2014-01-01

    Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (U opt in m s(-1) or body lengths s(-1), BL s(-1)) were assessed and then applied to determine the effects of long-term forced and sustained swimming at U opt on growth performance of juvenile yellowtail kingfish. U opt was quantified in Blazka-type swim-tunnels for 145, 206, and 311 mm juveniles resulting in values of: (1) 0.70 m s(-1) or 4.83 BL s(-1), (2) 0.82 m s(-1) or 3.25 BL s(-1), and (3) 0.85 m s(-1) or 2.73 BL s(-1). Combined with literature data from larger fish, a relation of U opt (BL s(-1)) = 234.07(BL)(-0.779) (R (2) = 0.9909) was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s(-1) ("swimmers") or allowed to perform spontaneous activity at low water flow ("resters") in a newly designed 3600 L oval flume (with flow created by an impeller driven by an electric motor), were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n = 23) showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n = 23). As both groups were fed equal rations, feed conversion ratio (FCR) for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31%) in the ventral aorta of swimmers vs. resters (44 ± 3 vs. 34 ± 3 mL min(-1), respectively, under anesthesia). Thus, growth performance can be rapidly improved by optimal swimming, without larger feed investments.

  13. Fish passage hydroelectric power plant Linne, Netherlands. Didson measurements

    International Nuclear Information System (INIS)

    Van Keeken, O.A.; Griffioen, A.B.

    2011-11-01

    The hydroelectric power plant in the Dutch Maas River near Linne has a fish deflection and passage system. For this study, two evenings in the months of August and September 2011 were dedicated to examining the extent to which fish approached and used the fish passage system. To establish the swimming behavior of the fish, a high-resolution sonar (DIDSON) was used, which generates moving images of fish in turbid waters, to study their behavior. [nl

  14. Swimming behaviour and ascent paths of brook trout in a corrugated culvert

    Science.gov (United States)

    Goerig, Elsa; Bergeron, Normand E.; Castro-Santos, Theodore R.

    2017-01-01

    Culverts may restrict fish movements under some hydraulic conditions such as shallow flow depths or high velocities. Although swimming capacity imposes limits to passage performance, behaviour also plays an important role in the ability of fish to overcome velocity barriers. Corrugated metal culverts are characterized by unsteady flow and existence of low‐velocity zones, which can improve passage success. Here, we describe swimming behaviour and ascent paths of 148 wild brook trout in a 1.5‐m section of a corrugated metal culvert located in Raquette Stream, Québec, Canada. Five passage trials were conducted in mid‐August, corresponding to specific mean cross‐sectional flow velocities ranging from 0.30 to 0.63 m/s. Fish were individually introduced to the culvert and their movements recorded with a camera located above the water. Lateral and longitudinal positions were recorded at a rate of 3 Hz in order to identify ascent paths. These positions were related to the distribution of flow depths and velocities in the culvert. Brook trout selected flow velocities from 0.2 to 0.5 m/s during their ascents, which corresponded to the available flow velocities in the culvert at the low‐flow conditions. This however resulted in the use of low‐velocity zones at higher flows, mainly located along the walls of the culvert. Some fish also used the corrugations for sheltering, although the behaviour was marginal and did not occur at the highest flow condition. This study improves knowledge on fish behaviour during culvert ascents, which is an important aspect for developing reliable and accurate estimates of fish passage ability.

  15. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement

    Science.gov (United States)

    Tan, Guang-Kun; Shen, Gong-Xin; Huang, Shuo-Qiao; Su, Wen-Han; Ke, Yu

    When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode (φ = - 75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S-H vortex-rings, S1 - H1 and S2 - H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two antisymmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25-0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.

  16. To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida) in Marine Turtles.

    Science.gov (United States)

    Domènech, Francesc; Tomás, Jesús; Crespo-Picazo, José Luis; García-Párraga, Daniel; Raga, Juan Antonio; Aznar, Francisco Javier

    2017-01-01

    Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80%) on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. Hatched nauplii crawled only on rough substrates and lacked the ability to swim. Only copepodites IV and V, and adults, were able to perform directional swimming. Legs 2, 3 and 4 played a major role in swimming and were only well-developed in these stages. Nauplii reared in wells with turtle skin readily fed on this item. Late copepodites and adults also fed on turtle skin but did not consume other potential food items such as fish skin, baleen plates or planktonic algae. Evidences suggest that the transmission of B. manatorum should rely on hosts' bodily contacts and/or swimming of late developmental stages between spatially close hosts. The possibility of long-ranged dispersal is unlikely for two reasons. First, all developmental stages seem to depend on turtle skin as a food resource. Second, the average clutch size of ovigerous females was small (turtles that occur at very low densities (turtles·km-2) in the western Mediterranean. The high prevalence of B. manatorum in loggerhead turtles in this area raises the question whether these turtles have contacts, or tend to closely aggregate, more than is currently believed.

  17. To Swim or Not to Swim: Potential Transmission of Balaenophilus manatorum (Copepoda: Harpacticoida in Marine Turtles.

    Directory of Open Access Journals (Sweden)

    Francesc Domènech

    Full Text Available Species of Balaenophilus are the only harpacticoid copepods that exhibit a widespread, obligate association with vertebrates, i.e., B. unisetus with whales and B. manatorum with marine turtles and manatees. In the western Mediterranean, juveniles of the loggerhead sea turtle, Caretta caretta are the only available hosts for B. manatorum, which has been found occurring at high prevalence (>80% on them. A key question is how these epibionts are transmitted from host to host. We investigated this issue based on experiments with live specimens of B. manatorum that were cultured with turtle skin. Specimens were obtained from head-started hatchlings of C. caretta from the western Mediterranean. Hatched nauplii crawled only on rough substrates and lacked the ability to swim. Only copepodites IV and V, and adults, were able to perform directional swimming. Legs 2, 3 and 4 played a major role in swimming and were only well-developed in these stages. Nauplii reared in wells with turtle skin readily fed on this item. Late copepodites and adults also fed on turtle skin but did not consume other potential food items such as fish skin, baleen plates or planktonic algae. Evidences suggest that the transmission of B. manatorum should rely on hosts' bodily contacts and/or swimming of late developmental stages between spatially close hosts. The possibility of long-ranged dispersal is unlikely for two reasons. First, all developmental stages seem to depend on turtle skin as a food resource. Second, the average clutch size of ovigerous females was small (< 70 eggs for free-living phases to successfully contact turtles that occur at very low densities (< 0.6 turtles·km-2 in the western Mediterranean. The high prevalence of B. manatorum in loggerhead turtles in this area raises the question whether these turtles have contacts, or tend to closely aggregate, more than is currently believed.

  18. Swim-training changes the spatio-temporal dynamics of skeletogenesis in zebrafish larvae (Danio rerio)

    NARCIS (Netherlands)

    Fiaz, A.W.; Leon-Kloosterziel, K.M.; Gort, G.; Schulte-Merker, S.; van Leeuwen, J.L.; Kranenbarg, S.

    2012-01-01

    Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical

  19. Evaluation of Artificial Caudal Fin for Fish Robot with Two Joints by Using Three-Dimensional Fluid-Structure Simulation

    Directory of Open Access Journals (Sweden)

    Yogo Takada

    2013-01-01

    Full Text Available A fish robot with image sensors is useful to research for underwater creatures such as fish. However, the propulsion velocity of a fish robot is very slow compared with live fish. It is necessary to swim at a speed several times faster than the speed of the current robots for various usages. Therefore, we are searching for the method of making the robot swim fast. The simulation before making the robot is important. We have made the computational simulation program of three-dimensional fluid-structure analysis. The flow around the caudal fin can be examined by analyzing the fin as an elastic body. We compared the results of numerical analysis with the results of PIV measurement. Both were agreed well. Because the performance of a fish robot with two joints is better than that of a fish robot with one joint, we searched for an excellent fin for the fish robot with two joints by using CFD. We confirmed that the swimming performance of a fish robot becomes very good when the caudal fin is rigid except for the root of the fin which is comparatively flexible.

  20. Effects of temperature on disease progression and swimming stamina in Ichthyophonus-infected rainbow trout, Oncorhynchus mykiss (Walbaum).

    Science.gov (United States)

    Kocan, R; Hershberger, P; Sanders, G; Winton, J

    2009-10-01

    Rainbow trout, Oncorhynchus mykiss, were infected with Ichthyophonus sp. and held at 10 degrees C, 15 degrees C and 20 degrees C for 28 days to monitor mortality and disease progression. Infected fish demonstrated more rapid onset of disease, higher parasite load, more severe host tissue reaction and reduced mean-day-to-death at higher temperature. In a second experiment, Ichthyophonus-infected fish were reared at 15 degrees C for 16 weeks then subjected to forced swimming at 10 degrees C, 15 degrees C and 20 degrees C. Stamina improved significantly with increased temperature in uninfected fish; however, this was not observed for infected fish. The difference in performance between infected and uninfected fish became significant at 15 degrees C (P = 0.02) and highly significant at 20 degrees C (P = 0.005). These results have implications for changes in the ecology of fish diseases in the face of global warming and demonstrate the effects of higher temperature on the progression and severity of ichthyophoniasis as well as on swimming stamina, a critical fitness trait of salmonids. This study helps explain field observations showing the recent emergence of clinical ichthyophoniasis in Yukon River Chinook salmon later in their spawning migration when water temperatures were high, as well as the apparent failure of a substantial percentage of infected fish to successfully reach their natal spawning areas.

  1. Effects of temperature on disease progression and swimming stamina in Ichthyophonus-infected rainbow trout, Oncorhynchus mykiss (Walbaum)

    Science.gov (United States)

    Kocan, R.; Hershberger, P.; Sanders, G.; Winton, J.

    2009-01-01

    Rainbow trout, Oncorhynchus mykiss, were infected with Ichthyophonus sp. and held at 10 ??C, 15 ??C and 20 ??C for 28 days to monitor mortality and disease progression. Infected fish demonstrated more rapid onset of disease, higher parasite load, more severe host tissue reaction and reduced mean-day-to-death at higher temperature. In a second experiment, Ichthyophonus-infected fish were reared at 15 ??C for 16 weeks then subjected to forced swimming at 10 ??C, 15 ??C and 20 ??C. Stamina improved significantly with increased temperature in uninfected fish; however, this was not observed for infected fish. The difference in performance between infected and uninfected fish became significant at 15 ??C (P = 0.02) and highly significant at 20 ??C (P = 0.005). These results have implications for changes in the ecology of fish diseases in the face of global warming and demonstrate the effects of higher temperature on the progression and severity of ichthyophoniasis as well as on swimming stamina, a critical fitness trait of salmonids. This study helps explain field observations showing the recent emergence of clinical ichthyophoniasis in Yukon River Chinook salmon later in their spawning migration when water temperatures were high, as well as the apparent failure of a substantial percentage of infected fish to successfully reach their natal spawning areas. ?? 2009 Blackwell Publishing Ltd.

  2. A Simple Method for Determination of Critical Swimming Velocity in Swimming Flume

    OpenAIRE

    高橋, 繁浩; 若吉, 浩二; Shigehiro, TAKAHASHI; Kohji, WAKAYOSHI; 中京大学; 奈良教育大学教育学部

    2001-01-01

    The purpose of this study was to investigate a simple method for determination of critical swimming velocity (Vcri). Vcri is defined by Wakayoshi et al. (1992) as the swimming speed which could theoretically be maintained forever without exhaustion, and is expressed as the slope of a regression line between swimming distance (D) and swimming time (T) obtained at various swimming speeds. To determine Vcri, 20 well-trained swimmers were measured at several swimming speeds ranging from 1.25 m/se...

  3. Real-Time Localization of Moving Dipole Sources for Tracking Multiple Free-Swimming Weakly Electric Fish

    Science.gov (United States)

    Jun, James Jaeyoon; Longtin, André; Maler, Leonard

    2013-01-01

    In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI) and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT) to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF) requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal’s positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole source

  4. Real-Time Localization of Moving Dipole Sources for Tracking Multiple Free-Swimming Weakly Electric Fish.

    Directory of Open Access Journals (Sweden)

    James Jaeyoon Jun

    Full Text Available In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal's positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole

  5. Single and combined effects of microplastics and mercury on juveniles of the European seabass (Dicentrarchus labrax): Changes in behavioural responses and reduction of swimming velocity and resistance time.

    Science.gov (United States)

    Barboza, Luís Gabriel Antão; Vieira, Luís Russo; Guilhermino, Lúcia

    2018-05-01

    Microplastics and mercury are environmental pollutants of great concern. The main goal of the present study was to investigate the effects of these pollutants, both individually and in binary mixtures, on the swimming performance of juvenile European seabass, Dicentrarchus labrax. Microplastics alone, mercury alone and all the mixtures caused significant reduction of the swimming velocity and resistance time of fish. Moreover, changes in behavioural responses including lethargic and erratic swimming behaviour were observed. These results highlight that fish behavioural responses can be used as sensitive endpoint to establish the effects of contamination by microplastics and also emphasizes the need to assess the combined effects of microplastics and other environmental contaminants, with special attention to the effects on behavioural responses in fish and other aquatic species. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Skin friction enhancement in a model problem of undulatory swimming

    Science.gov (United States)

    Ehrenstein, Uwe; Eloy, Christophe

    2013-10-01

    To calculate the energy costs of swimming, it is crucial to evaluate the drag force originating from skin friction. In this paper we examine the assumption, known as the 'Bone-Lighthill boundary-layer thinning hypothesis', that undulatory swimming motions induce a drag increase because of the compression of the boundary layer. Studying analytically an incoming flow along a flat plate moving at a normal velocity as a limit case of a yawed cylinder in uniform flow under the laminar boundary layer assumption, we demonstrate that the longitudinal drag scales as the square root of the normal velocity component. This analytical prediction is interpreted in the light of a three-dimensional numerical simulation result for a plate of finite length and width. An analogous two-dimensional Navier-Stokes problem by artificially accelerating the flow in a channel of finite height is proposed and solved numerically, showing the robustness of the analytical results. Solving the problem for an undulatory plate motion similar to fish swimming, we find a drag enhancement which can be estimated to be of the order of 20 %.

  7. Bending continuous structures with SMAs: a novel robotic fish design

    International Nuclear Information System (INIS)

    Rossi, C; Colorado, J; Coral, W; Barrientos, A

    2011-01-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.

  8. Bending continuous structures with SMAs: a novel robotic fish design.

    Science.gov (United States)

    Rossi, C; Colorado, J; Coral, W; Barrientos, A

    2011-12-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.

  9. Dispersal patterns, active behaviour, and flow environment during early life history of coastal cold water fishes.

    Science.gov (United States)

    Stanley, Ryan; Snelgrove, Paul V R; Deyoung, Brad; Gregory, Robert S

    2012-01-01

    During the pelagic larval phase, fish dispersal may be influenced passively by surface currents or actively determined by swimming behaviour. In situ observations of larval swimming are few given the constraints of field sampling. Active behaviour is therefore often inferred from spatial patterns in the field, laboratory studies, or hydrodynamic theory, but rarely are these approaches considered in concert. Ichthyoplankton survey data collected during 2004 and 2006 from coastal Newfoundland show that changes in spatial heterogeneity for multiple species do not conform to predictions based on passive transport. We evaluated the interaction of individual larvae with their environment by calculating Reynolds number as a function of ontogeny. Typically, larvae hatch into a viscous environment in which swimming is inefficient, and later grow into more efficient intermediate and inertial swimming environments. Swimming is therefore closely related to length, not only because of swimming capacity but also in how larvae experience viscosity. Six of eight species sampled demonstrated consistent changes in spatial patchiness and concomitant increases in spatial heterogeneity as they transitioned into more favourable hydrodynamic swimming environments, suggesting an active behavioural element to dispersal. We propose the tandem assessment of spatial heterogeneity and hydrodynamic environment as a potential approach to understand and predict the onset of ecologically significant swimming behaviour of larval fishes in the field.

  10. A biologically inspired artificial fish using flexible matrix composite actuators: analysis and experiment

    International Nuclear Information System (INIS)

    Zhang, Zhiye; Philen, Michael; Neu, Wayne

    2010-01-01

    A bio-inspired prototype fish using the flexible matrix composite (FMC) muscle technology for fin and body actuation is developed. FMC actuators are pressure driven muscle-like actuators capable of large displacements as well as large blocking forces. An analytical model of the artificial fish using FMC actuators is developed and analysis results are presented. An experimental prototype of the artificial fish having FMC artificial muscles has been completed and tested. Constant mean thrusts have been achieved in the laboratory for a stationary fish for different undulation frequencies around 1 Hz. The experimental results demonstrate that a nearly constant thrust can be achieved through tuning of excitation frequency for given body stiffness. Free swimming results show that the prototype can swim at approximately 0.3 m s −1

  11. Fish Passage Through Dams on the Upper Mississippi River

    National Research Council Canada - National Science Library

    Wilcox, Daniel

    1999-01-01

    .... I identified UMR migratory fish species, estimated current velocities through gate openings on UMR dams, compiled information on migration behavior, and estimated the swimming for north performance...

  12. Propulsive efficiency of frog swimming with different feet and swimming patterns

    Directory of Open Access Journals (Sweden)

    Fan Jizhuang

    2017-04-01

    Full Text Available Aquatic and terrestrial animals have different swimming performances and mechanical efficiencies based on their different swimming methods. To explore propulsion in swimming frogs, this study calculated mechanical efficiencies based on data describing aquatic and terrestrial webbed-foot shapes and swimming patterns. First, a simplified frog model and dynamic equation were established, and hydrodynamic forces on the foot were computed according to computational fluid dynamic calculations. Then, a two-link mechanism was used to stand in for the diverse and complicated hind legs found in different frog species, in order to simplify the input work calculation. Joint torques were derived based on the virtual work principle to compute the efficiency of foot propulsion. Finally, two feet and swimming patterns were combined to compute propulsive efficiency. The aquatic frog demonstrated a propulsive efficiency (43.11% between those of drag-based and lift-based propulsions, while the terrestrial frog efficiency (29.58% fell within the range of drag-based propulsion. The results illustrate the main factor of swimming patterns for swimming performance and efficiency.

  13. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi

    Directory of Open Access Journals (Sweden)

    Arjan P. Palstra

    2015-01-01

    Full Text Available Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (Uopt in m s-1 or body lengths s-1, BL s-1 were assessed and then applied to determine the effects of long-term forced and sustained swimming at Uopt on growth performance of juvenile yellowtail kingfish. Uopt was quantified in Blazka-type swim-tunnels for 145 mm, 206 mm and 311 mm juveniles resulting in values of: 1 0.70 m s-1 or 4.83 BL s-1, 2 0.82 m s-1 or 3.25 BL s-1 and 3 0.85 m s-1 or 2.73 BL s-1. Combined with literature data from larger fish, a relation of Uopt (BL s-1 = 234.07(BL-0.779 (R2= 0.9909 was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s-1 (‘swimmers’ or allowed to perform spontaneous activity at low water flow (‘resters’ in a newly designed 3,600 L oval flume (with flow created by an impeller driven by an electric motor, were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n= 23 showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n= 23. As both groups were fed equal rations, feed conversion ratio (FCR for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31% in the ventral aorta of swimmers vs. resters (44 ± 3 mL min-1 vs. 34 ± 3 mL min-1, respectively, under anesthesia. Thus growth performance can be rapidly improved by optimal swimming, without larger feed investments.

  14. Design and demonstration of a fish robot actuated by a SMA-driven actuation system

    Science.gov (United States)

    Le, Chan H.; Nguyen, Quang S.; Park, Hoon C.

    2010-04-01

    This paper presents a concept of a fish robot actuated by an SMA-based actuator. The bending-type actuator system is composed of a 0.1mm diameter SMA wire and a 0.5mm thick glass/epoxy strip. The SMA wire is installed to the bent composite strip. The actuator can produce about 200gf of blocking force and 3.5mm displacement at the center of the glass/epoxy strip. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed and thrust produced by the fish robot. The tail-beat angle is about 20° and the maximum swimming speed is about 1.6cm/s. The measured thrust is about 0.4gf when the fish robot is operated at 0.9Hz.

  15. Dispersal patterns, active behaviour, and flow environment during early life history of coastal cold water fishes.

    Directory of Open Access Journals (Sweden)

    Ryan Stanley

    Full Text Available During the pelagic larval phase, fish dispersal may be influenced passively by surface currents or actively determined by swimming behaviour. In situ observations of larval swimming are few given the constraints of field sampling. Active behaviour is therefore often inferred from spatial patterns in the field, laboratory studies, or hydrodynamic theory, but rarely are these approaches considered in concert. Ichthyoplankton survey data collected during 2004 and 2006 from coastal Newfoundland show that changes in spatial heterogeneity for multiple species do not conform to predictions based on passive transport. We evaluated the interaction of individual larvae with their environment by calculating Reynolds number as a function of ontogeny. Typically, larvae hatch into a viscous environment in which swimming is inefficient, and later grow into more efficient intermediate and inertial swimming environments. Swimming is therefore closely related to length, not only because of swimming capacity but also in how larvae experience viscosity. Six of eight species sampled demonstrated consistent changes in spatial patchiness and concomitant increases in spatial heterogeneity as they transitioned into more favourable hydrodynamic swimming environments, suggesting an active behavioural element to dispersal. We propose the tandem assessment of spatial heterogeneity and hydrodynamic environment as a potential approach to understand and predict the onset of ecologically significant swimming behaviour of larval fishes in the field.

  16. Behaviour of fish by-catch in the mouth of a crustacean trawl.

    Science.gov (United States)

    Queirolo, D; Gaete, E; Montenegro, I; Soriguer, M C; Erzini, K

    2012-06-01

    The behaviour of fish by-catch was recorded and characterized by in situ observations in the mouth of a crustacean trawl using an underwater camera system with artificial light, at depths between 106 and 461 m, along the central coast of Chile. The groups or species studied were rattails (family Macrouridae), Chilean hake Merluccius gayi gayi, sharks (orders Carcharhiniformes and Squaliformes), skates (family Rajidae), flatfishes (genus Hippoglossina) and small benthopelagic and demersal fishes (orders Osmeriformes, Stomiiformes, Gadiformes, Ophidiiformes and Perciformes). The fish behaviour was categorized in terms of (1) position in the water column, (2) initial orientation with respect to the trawl, (3) locomotion and (4) swimming speed with respect to the trawl. Rattails, sharks, skates and flatfishes were passive in response to the trawl and showed similar behavioural patterns, with most fishes observed sitting or touching the bottom with no swimming or other activity. Merluccius gayi gayi was the most active species, displaying a wide combination of behavioural responses when the trawl approached. This species showed several behavioural patterns, mainly characterized by swimming forward at variable speed. A fraction of small bentho-pelagic and demersal fishes also showed an active behaviour but always at lower speed than the trawl. The species-specific differences in behaviour in the mouth of the trawl suggest that improvements at the level of the footrope can be made to reduce by-catch, especially of passive species. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  17. PROPERTIES OF SWIMMING WATER

    Directory of Open Access Journals (Sweden)

    Tayfun KIR

    2004-10-01

    Full Text Available Swimming waters may be hazardous on human health. So, The physicians who work in the facilities, which include swimming areas, are responsible to prevent risks. To ensure hygiene of swimming water, European Swimming Water Directive offers microbiological, physical, and chemical criteria. [TAF Prev Med Bull 2004; 3(5.000: 103-104

  18. Transmission of Mycobacterium marinum from fish to a very young child

    NARCIS (Netherlands)

    Doedens, Rienus A.; van der Sar, Astrid M.; Bitter, Wilbert; Scholvinck, Elisabeth H.

    Mycobacterium marinum causes tuberculosis in fish and can cause skin infections in humans who swim in contaminated water or who have direct contact with infected fish. We report the case study of an 18-month-old girl with M. marinum abscesses, who acquired the infection through indirect contact with

  19. Swim-training changes the spatio-temporal dynamics of skeletogenesis in zebrafish larvae (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Ansa W Fiaz

    Full Text Available Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis.

  20. [Effects of starvation on the consumption of energy sources and swimming performance in juvenile Gambusia affinis and Tanichthys albonubes].

    Science.gov (United States)

    Li, Jiang-tao; Lin, Xiao-tao; Zhou, Chen-hui; Zeng, Peng; Xu, Zhong-neng; Sun, Jun

    2016-01-01

    To explore the consumption of energy sources and swimming performance of juvenile Gambusia affinis and Tanichthys albonubes after starvation, contents of glycogen, lipid and protein, burst swimming speeds (Uburst), and critical swimming speeds (Ucrit) at different starvation times (0, 10, 20, 30 and 40 days) were evaluated. The results showed that, at 0 day, contents of glycogen and lipid were significantly lower in G. affinis than those in T. albonubes, whereas no significant difference in content of protein between two experimental fish was found. Swimming speeds in G. affinis were significantly lower than those in T. albonubes for all swimming performances. After different starvation scenarios, content of glycogen both in G. affinis and T. albonubes decreased significantly in power function trend with starvation time and were close to zero after starvation for 10 days, whereas the contents of lipid and protein were linearly significantly decreased. The slope of line regression equation between content of lipid and starvation time in G. affinis was significantly lower than that in T. albonubes, whereas there was a significantly higher slope of line equation between content of protein and starvation time in G. affinis. 40 days later, the consumption rate of glycogen both in G. affinis and T. albonubes were significantly higher than that of lipid, while the consumption rate of protein was the least. Consumption amounts of glycogen in all experimental fish were the least, G. affinis consumed more protein than lipid, and T. albonubes consumed more lipid than protein. Uburst and Ucrit decreased significantly linearly with starvation time for all experimental fish. Slope of linear equation between Uburst and starvation time was not significantly different between G. affinis and T. albonubes. However, the straight slope between Ucrit and starvation time was significantly lower in G. affinis than that in T. albonubes. These findings indicated that there was close

  1. Cardiac and Metabolic Physiology of Early Larval Zebrafish (Danio rerio) Reflects Parental Swimming Stamina.

    Science.gov (United States)

    Gore, Matthew; Burggren, Warren W

    2012-01-01

    Swimming stamina in adult fish is heritable, it is unknown if inherited traits that support enhanced swimming stamina in offspring appear only in juveniles and/or adults, or if these traits actually appear earlier in the morphologically quite different larvae. To answer this question, mature adult zebrafish (Danio rerio) were subjected to a swimming performance test that allowed separation into low swimming stamina or high swimming stamina groups. Adults were then bred within their own performance groups. Larval offspring from each of the two groups, designated high (L(HSD)) and low stamina-derived larvae (L(LSD)), were then reared at 27°C in aerated water (21% O(2)). Routine (f(H),r) and active (f(H),a) heart rate, and routine [Formula: see text] and active [Formula: see text] mass-specific oxygen consumption were recorded from 5 days post fertilization (dpf) through 21 dpf, and gross cost of transport and factorial aerobic metabolic scope were derived from [Formula: see text] measurements. Heart rate generally ranged between 150 and 225 bpm in both L(HSD) and L(LSD) populations. However, significant (P stamina in adult parents also appear in their larval offspring well before attainment of juvenile or adult features.

  2. Seahorses under a changing ocean: the impact of warming and acidification on the behaviour and physiology of a poor-swimming bony-armoured fish.

    Science.gov (United States)

    Faleiro, Filipa; Baptista, Miguel; Santos, Catarina; Aurélio, Maria L; Pimentel, Marta; Pegado, Maria Rita; Paula, José Ricardo; Calado, Ricardo; Repolho, Tiago; Rosa, Rui

    2015-01-01

    Seahorses are currently facing great challenges in the wild, including habitat degradation and overexploitation, and how they will endure additional stress from rapid climate change has yet to be determined. Unlike most fishes, the poor swimming skills of seahorses, along with the ecological and biological constraints of their unique lifestyle, place great weight on their physiological ability to cope with climate changes. In the present study, we evaluate the effects of ocean warming (+4°C) and acidification (ΔpH = -0.5 units) on the physiological and behavioural ecology of adult temperate seahorses, Hippocampus guttulatus. Adult seahorses were found to be relatively well prepared to face future changes in ocean temperature, but not the combined effect of warming and acidification. Seahorse metabolism increased normally with warming, and behavioural and feeding responses were not significantly affected. However, during hypercapnia the seahorses exhibited signs of lethargy (i.e. reduced activity levels) combined with a reduction of feeding and ventilation rates. Nonetheless, metabolic rates were not significantly affected. Future ocean changes, particularly ocean acidification, may further threaten seahorse conservation, turning these charismatic fishes into important flagship species for global climate change issues.

  3. Controlled-frequency breath swimming improves swimming performance and running economy.

    Science.gov (United States)

    Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S

    2015-02-01

    Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P swimming may improve muscular oxygen utilization during terrestrial exercise in novice swimmers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Swimming-pool piles

    International Nuclear Information System (INIS)

    Trioulaire, M.

    1959-01-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10 13 . This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [fr

  5. A taste of the deep-sea: The roles of gustatory and tactile searching behaviour in the grenadier fish Coryphaenoides armatus

    Science.gov (United States)

    Bailey, David M.; Wagner, Hans-Joachim; Jamieson, Alan J.; Ross, Murray F.; Priede, Imants G.

    2007-01-01

    The deep-sea grenadier fishes ( Coryphaenoides spp.) are among the dominant predators and scavengers in the ocean basins that cover much of Earth's surface. Baited camera experiments were used to study the behaviour of these fishes. Despite the apparent advantages of rapidly consuming food, grenadiers attracted to bait spend a large proportion of their time in prolonged periods of non-feeding activity. Video analysis revealed that fish often adopted a head-down swimming attitude (mean of 21.3° between the fish and seafloor), with swimming velocity negatively related to attitude. The fish also swam around and along vertical and horizontal structures of the lander with their head immediately adjacent to the structure. We initially hypothesised that this behaviour was associated with the use of the short chin barbel in foraging. Barbel histology showed numerous taste buds in the skin, and a barbel nerve with about 20,000 axons in adult fish. A tracing experiment in one undamaged animal revealed the termination fields of the barbel neurons in the trigeminal and rhombencephalic regions, indicating both a mechanoreceptory and a gustatory role for the barbel. Our conclusion was that olfactory foraging becomes ineffective at close ranges and is followed by a search phase using tactile and gustatory sensing by the barbel. The development of this sensory method probably co-evolved alongside behavioural changes in swimming mechanics to allow postural stability at low swimming speeds.

  6. Conflicts between sensory performance and locomotion in weakly electric fish

    Science.gov (United States)

    Maciver, Malcolm; Shirgaonkar, Anup; Patankar, Neelesh

    2008-11-01

    The knifefish Apteronotus albifrons hunts for small water insects at night using a self-generated electric field to perceive its world. Using this unique sensory adaptation, the fish senses prey that are near its body with a detection volume that approximates a cylinder that has a length ten times its radius, similar to the fish's elongated body plan. If the fish swims straight, then the back portion of the actively generated detection volume is scanning fluid already scanned by the front portion, but the energy expended to overcome drag is minimized. If it swims with the body pitched, then the rate of volume scanned for prey is increased, but the energy needed to overcome body drag is also increased. In this work we examine the compromise the fish makes between minimizing energy in overcoming drag and maximizing scan rate. We use computational fluid dynamics simulations to assess the impact of changes in body pitch angle on drag, and computational neuroscience simulations to assess the shape and size of the prey detection volume and how body angle changes the scan volume rate.

  7. Estimating Burst Swim Speeds and Jumping Characteristics of Silver Carp (Hypophthalmichthys molitrix) Using Video Analyses and Principles of Projectile Physics

    Science.gov (United States)

    2016-09-01

    estimate all swim speeds for those water bodies. For this reason, statistical tests for significance were conducted on only the WR and IR estimates. An...was not statistically significant does not support this conclusion. In addition to direct estimates of burst swim speeds from videotape of fish...perspective. P. Domenici and B.G. Kapoor (ed.s), Boca Raton: CRC Press. Gray, J. 1953. How animals move. Cambridge , U.K.: University Press. Holliman, F. M

  8. Delta /sup 13/C fractionation in Tarbela dam fish

    International Nuclear Information System (INIS)

    Latif, Z.; Sajjad, M.I.; Bilal, R.; Tasneem, M.A.; Khan, I.H.; Ali, M.

    1998-01-01

    The paper focuses on the study of naturally occurring /sup 13/C fractionation in Tarbela dam fish. Craig noted that gamma /sup 13/C values for animal tissues fall in the range as their food supply. DeNiro and Epstein demonstrated clearly that the carbon isotope composition of an animal greatly depends on its diet. The above mentioned statements were observed while studying the isotopic composition of carbon in different parts of the fish. Living fish was purchased from the Haripur side of the Tarbela lake. Different portions were separated and fish diet was collected from the fish stomach. Samples were dried in the oven at 40-50 deg. C for five days. Ground, homogenized and ignited with research grade oxygen at 900-1000 deg. C. CO and CO /sub 2/ were produced and CO was converted to CO/sub 2/ by circulation over CuO gauge furnace at 900 deg. C. CO/sub 2/ was purified using 70 deg. C slush and analyzed on Varian Mat (GD-150) mass spectrometer for gamma /sup 13/C measurements. The results show that fish flesh sup/13 C value is nearly similar to fish diet gamma /sup 13/C. gamma /sup 13/C values to different parts of the fish departed from that of the diet in the sequence: fish swim bladder (-22.04) >ribs (2-22.26)>skin (122.91)>diet (123.22)>flesh (-23.40)> vertebral column (-24.07). It is concluded that diet is easily metabolized in the fish flesh and skin tissues through blood streams without causing any pronounced fractionation. Fractionation was observed in the fish endo skeleton system due to which fish ribs become enriched in gamma /sup 13/C than vertebral column. Fractionation was also detected in visceral muscles (swim bladder) of the fish as comparison with somatic axial trunk muscle (fish flesh). (author)

  9. Experimental parametric study of a biomimetic fish robot actuated by piezoelectric actuators

    Science.gov (United States)

    Wiguna, T.; Park, Hoon C.; Heo, S.; Goo, Nam S.

    2007-04-01

    This paper presents an experiment and parametric study of a biomimetic fish robot actuated by the Lightweight Piezocomposite Actuator (LIPCA). The biomimetic aspects in this work are the oscillating tail beat motion and shape of caudal fin. Caudal fins that resemble fins of BCF (Body and Caudal Fin) mode fish were made in order to perform parametric study concerning the effect of caudal fin characteristics on thrust production at an operating frequency range. The observed caudal fin characteristics are the shape, stiffness, area, and aspect ratio. It is found that a high aspect ratio caudal fin contributes to high swimming speed. The robotic fish propelled by artificial caudal fins shaped after thunniform-fish and mackerel caudal fins, which have relatively high aspect ratio, produced swimming speed as high as 2.364 cm/s and 2.519 cm/s, respectively, for a 300 V p-p input voltage excited at 0.9 Hz. Thrust performance of the biomimetic fish robot is examined by calculating Strouhal number, Froude number, Reynolds number, and power consumption.

  10. Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming

    Science.gov (United States)

    Chen, J.; Friesen, W. O.; Iwasaki, T.

    2011-01-01

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304

  11. Swimming Performance of Adult Asian Carp: Field Assessment Using a Mobile Swim Tunnel

    Science.gov (United States)

    2016-08-01

    ERDC/TN ANSRP-16-1 August 2016 Approved for public release; distribution is unlimited. Swimming Performance of Adult Asian Carp: Field...Assessment Using a Mobile Swim Tunnel by Jan Jeffrey Hoover, Jay A. Collins, Alan W. Katzenmeyer, and K. Jack Killgore PURPOSE: Empirical swim speed...test in traditional laboratory swim tunnels. Biologists from the Engineer Research and Development Center (ERDC) Environmental Laboratory (EL), with

  12. The influence of elements of synchronized swimming on technique of the selected swimming strokes

    OpenAIRE

    Široký, Michal

    2015-01-01

    Title: The influence of elements of synchronized swimming on technique of the selected swimming strokes Objectives: The objective of the thesis is to assess the effect of the elements of synchronized swimming at improving the techniques of swimming. Methods: The results were detected by overt observation with active participation and subsequent scaling on the ordinal scale 1 to 5. Results: The results show that the influence of the elements of synchronized swimming on improving the technique ...

  13. Functional testing of a fish sluice, Buchholz small hydro plant - Final report; Funktionskontrolle Fischschleuse, KWKW Buchholz - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ruhle, Ch. [Buero fuer Jagd- und Fischereifragen, Schmerikon (Switzerland); Scherrer, I. [Entegra Wasserkraft AG, St. Gallen (Switzerland)

    2009-01-15

    Since more than 100 years the diversion hydropower plant of Buchholz at the river Glatt (canton Saint Gall) has been out of operation. With its reactivation as run-of-river scheme, the river meadow, originated due to sedimentation in the former storage basin, with its beaver habitat, could be preserved. For the first time in Switzerland, a fish lock was implemented for the upstream passage way for fish. The fish lock was built directly into for stability reasons newly constructed secondary concrete at the downstream side of the old dam. At the upper lock opening a weir basked is installed, where the migrating fish are recorded. The examination proofed that the fish lock in principle is working for strong swimming fish species (qualitative proof of the performance control). In case of flood caused drift, the migrating fish seem to accept the fish passage. The attempt to quantify the proportion of the migrating willing fish which actually swim through the lock (quantitative proof of the performance control) did not produce satisfactory results. (authors)

  14. Swimming against the tide: explaining the Higgs

    CERN Multimedia

    Emma Sanders

    2012-01-01

    "Never before in the field of science journalism have so few journalists understood what so many physicists were telling them!" tweeted the UK Channel 4’s Tom Clarke from last December’s Higgs seminar. As a consequence, most coverage focused on debates over the use of the label “god particle” and the level of excitement of the physicists (high), whilst glossing over what this excitement was actually all about.   So what is the Higgs? Something fundamental. Something to do with mass. If your interest in physics is more than simply passing, you may find that rooms full of chattering politicians or the use of different footwear when walking through snow just don’t do the job in convincing you why the Higgs is so important. And if images of fish make you feel like a fish out of water - or at least one swimming against a strong current - then perhaps you would appreciate a different approach. The need for the Higgs Whilst gauge th...

  15. Effects of seasonal change on activity rhythms and swimming behavior of age-0 bluefish (Pomatomus saltatrix) and a description of gliding behavior

    OpenAIRE

    Stehlik, Linda L.

    2009-01-01

    Daily and seasonal activity rhythms, swimming speed, and modes of swimming were studied in a school of spring-spawned age-0 bluefish (Pomatomus saltatrix) for nine months in a 121-kL research aquarium. Temperature was lowered from 20° to 15°C, then returned to 20°C to match the seasonal cycle. The fish grew from a mean 198 mm to 320 mm (n= 67). Bluefish swam faster and in a more organized school during day (overall mean 47 cm/s) than at night (31 cm/s). Swimming speed declined in fall as t...

  16. Immune-Challenged Fish Up-Regulate Their Metabolic Scope to Support Locomotion.

    Directory of Open Access Journals (Sweden)

    Camille Bonneaud

    Full Text Available Energy-based trade-offs occur when investment in one fitness-related trait diverts energy away from other traits. The extent to which such trade-offs are shaped by limits on the rate of conversion of energy ingested in food (e.g. carbohydrates into chemical energy (ATP by oxidative metabolism rather than by the amount of food ingested in the first place is, however, unclear. Here we tested whether the ATP required for mounting an immune response will lead to a trade-off with ATP available for physical activity in mosquitofish (Gambusia holbrooki. To this end, we challenged fish either with lipopolysaccharide (LPS from E. coli or with Sheep Red Blood Cells (SRBC, and measured oxygen consumption at rest and during swimming at maximum speed 24h, 48h and 7 days post-challenge in order to estimate metabolic rates. Relative to saline-injected controls, only LPS-injected fish showed a significantly greater resting metabolic rate two days post-challenge and significantly higher maximal metabolic rates two and seven days post-challenge. This resulted in a significantly greater metabolic scope two days post-challenge, with LPS-fish transiently overcompensating by increasing maximal ATP production more than would be required for swimming in the absence of an immune challenge. LPS-challenged fish therefore increased their production of ATP to compensate physiologically for the energetic requirements of immune functioning. This response would avoid ATP shortages and allow fish to engage in an aerobically-challenging activity (swimming even when simultaneously mounting an immune response. Nevertheless, relative to controls, both LPS- and SRBC-fish displayed reduced body mass gain one week post-injection, and LPS-fish actually lost mass. The concomitant increase in metabolic scope and reduced body mass gain of LPS-challenged fish indicates that immune-associated trade-offs are not likely to be shaped by limited oxidative metabolic capacities, but may instead

  17. Model of Collective Fish Behavior with Hydrodynamic Interactions

    Science.gov (United States)

    Filella, Audrey; Nadal, François; Sire, Clément; Kanso, Eva; Eloy, Christophe

    2018-05-01

    Fish schooling is often modeled with self-propelled particles subject to phenomenological behavioral rules. Although fish are known to sense and exploit flow features, these models usually neglect hydrodynamics. Here, we propose a novel model that couples behavioral rules with far-field hydrodynamic interactions. We show that (1) a new "collective turning" phase emerges, (2) on average, individuals swim faster thanks to the fluid, and (3) the flow enhances behavioral noise. The results of this model suggest that hydrodynamic effects should be considered to fully understand the collective dynamics of fish.

  18. Pentastomid parasites in fish in the Olifants and Incomati River systems, South Africa

    Directory of Open Access Journals (Sweden)

    Wilmien J. Luus-Powell

    2008-09-01

    Full Text Available During parasitological field surveys of freshwater fish, sebekiid and subtriquetrid pentastome larvae were recovered from the body cavity or swim bladder of several fish species from various localities in Limpopo and Mpumalanga Provinces, South Africa. Sebekia wedli was recovered from the body cavity of Marcusenius macrolepidotus (Mormyridae from Flag Boshielo Dam, Limpopo Province, and Alofia sp. and Subtriquetra rileyi were found in the swim bladder of Oreochromis mossambicus (Cichlidae from the Phalaborwa Barrage, Limpopo Province. The latter species was also collected from the swim bladder of O. mossambicus in dams in the Phalaborwa region and the Ga-Selati River, Limpopo Province. A single specimen of Sebekia okavangoensis was present in the body cavity of Clarias gariepinus (Clariidae in a dam on a sugarcane farm in the Komatipoort region, Mpumalanga Province. Pentastomid infections in the Mormyridae and Clariidae represent new host records.

  19. Analysis of swimming performance: perceptions and practices of US-based swimming coaches.

    Science.gov (United States)

    Mooney, Robert; Corley, Gavin; Godfrey, Alan; Osborough, Conor; Newell, John; Quinlan, Leo Richard; ÓLaighin, Gearóid

    2016-01-01

    In elite swimming, a broad range of methods are used to assess performance, inform coaching practices and monitor athletic progression. The aim of this paper was to examine the performance analysis practices of swimming coaches and to explore the reasons behind the decisions that coaches take when analysing performance. Survey data were analysed from 298 Level 3 competitive swimming coaches (245 male, 53 female) based in the United States. Results were compiled to provide a generalised picture of practices and perceptions and to examine key emerging themes. It was found that a disparity exists between the importance swim coaches place on biomechanical analysis of swimming performance and the types of analyses that are actually conducted. Video-based methods are most frequently employed, with over 70% of coaches using these methods at least monthly, with analyses being mainly qualitative in nature rather than quantitative. Barriers to the more widespread use of quantitative biomechanical analysis in elite swimming environments were explored. Constraints include time, cost and availability of resources, but other factors such as sources of information on swimming performance and analysis and control over service provision are also discussed, with particular emphasis on video-based methods and emerging sensor-based technologies.

  20. The Effect of Swimming Experience on Acquisition and Retention of Swimming-Based Taste Aversion Learning in Rats

    Science.gov (United States)

    Masaki, Takahisa; Nakajima, Sadahiko

    2010-01-01

    Swimming endows rats with an aversion to a taste solution consumed before swimming. The present study explored whether the experience of swimming before or after the taste-swimming trials interferes with swimming-based taste aversion learning. Experiment 1 demonstrated that a single preexposure to 20 min of swimming was as effective as four or…

  1. Biophysical processes leading to the ingress of temperate fish larvae into estuarine nursery areas: A review

    Science.gov (United States)

    Teodósio, Maria Alexandra; Paris, Claire B.; Wolanski, Eric; Morais, Pedro

    2016-12-01

    A series of complementary hypotheses have been proposed to explain the recruitment of marine and temperate pelagic fish larvae originated from pelagic eggs in coastal environments. In this review, we propose a new and complementary hypothesis describing the biophysical processes intervening in the recruitment of temperate fish larvae into estuaries. This new hypothesis, the Sense Acuity And Behavioral (SAAB) hypothesis, recognizes that recruitment is unlikely if the larvae drift passively with the water currents, and that successful recruitment requires the sense acuity of temperate fish larvae and their behavioral response to the estuarine cues present in coastal areas. We propose that temperate fish larvae use a hierarchy of sensory cues (odor, sound, visual and geomagnetic cues) to detect estuarine nursery areas and to aid during navigation towards these areas. The sensorial acuity increases along ontogeny, which coincides with increased swimming capabilities. The swimming strategies of post-flexion larvae differ from offshore areas to the tidal zone. In offshore areas, innate behavior might lead larvae towards the coast guided by a sun compass or by the earth's geomagnetic field. In areas under limited influence of estuarine plumes (either in energetic nearshore areas or offshore), post-flexion larvae display a searching swimming behavior for estuarine disconnected patches (infotaxis strategy). After finding an estuarine plume, larvae may swim along the increasing cue concentration to ingress into the estuary. Here, larvae exhibit a rheotaxis behavior and avoid displacement by longshore currents by keeping bearing during navigation. When larvae reach the vicinity of an estuary, merging diel rhythms with feeding and predator avoidance strategies with tidally induced movements is essential to increase their chances of estuarine ingress. A fish larva recruitment model developed for the Ria Formosa lagoon supports the general framework of the SAAB hypothesis. In

  2. The nonlinear flexural response of a whole teleost fish: Contribution of scales and skin.

    Science.gov (United States)

    Szewciw, Lawrence; Zhu, Deju; Barthelat, Francois

    2017-12-01

    The scaled skin of fish is an intricate system that provides mechanical protection against hard and sharp puncture, while maintaining the high flexural compliance required for unhindered locomotion. This unusual combination of local hardness and global compliance makes fish skin an interesting model for bioinspired protective systems. In this work we investigate the flexural response of whole teleost fish, and how scales may affect global flexural stiffness. A bending moment is imposed on the entire body of a striped bass (Morone saxatilis). Imaging is used to measure local curvature, to generate moment-curvature curves as function of position along the entire axis of the fish. We find that the flexural stiffness is the highest in the thick middle portion of the fish, and lowest in the caudal and rostral ends. The flexural response is nonlinear, with an initial soft response followed by significant stiffening at larger flexural deformations. Low flexural stiffness at low curvatures promotes efficient swimming, while higher stiffness at high curvatures enables a possible tendon effect, where the mechanical energy at the end of a stroke is stored in the form of strain energy in the fish skin. To assess the contribution of the scales to stiffening we performed flexural tests with and without scales, following a careful protocol to take in account tissue degradation and the effects of temperature. Our findings suggest that scales do not substantially increase the whole body flexural stiffness of teleost fish over ranges of deformations which are typical of swimming and maneuvering. Teleost scales are thin and relatively flexible, so they can accommodate large flexural deformations. This finding is in contrast to the bulkier ganoid scales which were shown in previous reports to have a profound impact of global flexural deformations and swimming in fish like gar or Polypterus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effects of Microphallus turgidus (Trematoda: Microphallidae) on the predation, behavior, and swimming stamina of the grass shrimp Palaemonetes pugio.

    Science.gov (United States)

    Kunz, Alyssa K; Pung, Oscar J

    2004-06-01

    The effect of the trematode Microphallus turgidus on its second intermediate host, the grass shrimp, Palaemonetes pugio, was tested. To do so, we measured the susceptibility of infected and uninfected shrimp to predation by the mummichog, Fundulus heteroclitus. Shrimp behavior was compared in the presence and absence of a fish predator, and the swimming stamina and backthrust escape responses of infected and uninfected shrimp were measured. Infected shrimp were more likely to be eaten by a predator than uninfected shrimp, had lower swimming stamina, and spent more time swimming and less time motionless in the presence of a predator. There was no difference between backthrust distances traveled in response to a stimulus by either infected or uninfected shrimp. Thus, M. turgidus may increase the predation of P. pugio in the wild, possibly by affecting the swimming stamina and predator avoidance responses of the shrimp.

  4. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model

    Science.gov (United States)

    Reid, Daniel A. P.; Hildenbrandt, H.; Padding, J. T.; Hemelrijk, C. K.

    2012-02-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed analysis. Their insights may guide empirical work. Particularly the recently introduced multiparticle collision dynamics method may be suitable for the study of moving organisms because it is computationally fast, simple to implement, and has a continuous representation of space. As regards the study of hydrodynamics of moving organisms, the method has only been applied at low Reynolds numbers (below 120) for soft, permeable bodies, and static fishlike shapes. In the present paper we use it to study the hydrodynamics of an undulating fish at Reynolds numbers 1100-1500, after confirming its performance for a moving insect wing at Reynolds number 75. We measure (1) drag, thrust, and lift forces, (2) swimming efficiency and spatial structure of the wake, and (3) distribution of forces along the fish body. We confirm the resemblance between the simulated undulating fish and empirical data. In contrast to theoretical predictions, our model shows that for steadily undulating fish, thrust is produced by the rear 2/3 of the body and that the slip ratio U/V (with U the forward swimming speed and V the rearward speed of the body wave) correlates negatively (instead of positively) with the actual Froude efficiency of swimming. Besides, we show that the common practice of modeling individuals while constraining their sideways acceleration causes them to resemble unconstrained fish with a higher tailbeat frequency.

  5. Swimming pool granuloma

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  6. Effect of fish oil and coconut fat supplementation on depressive-type behavior and corticosterone levels of prenatally stressed male rats.

    Science.gov (United States)

    Borsonelo, Elizabethe Cristina; Suchecki, Deborah; Galduróz, José Carlos Fernandes

    2011-04-18

    Prenatal stress (PNS) during critical periods of brain development has been associated with numerous behavioral and/or mood disorders in later life. These outcomes may result from changes in the hypothalamic-pituitary-adrenal (HPA) axis activity, which, in turn, can be modulated by environmental factors, such as nutritional status. In this study, the adult male offspring of dams exposed to restraint stress during the last semester of pregnancy and fed different diets were evaluated for depressive-like behavior in the forced swimming test and for the corticosterone response to the test. Female Wistar rats were allocated to one of three groups: regular diet, diet supplemented with coconut fat or with fish oil, offered during pregnancy and lactation. When pregnancy was confirmed, they were distributed into control or stress groups. Stress consisted of restraint and bright light for 45 min, three times per day, in the last week of pregnancy. The body weight of the adult offspring submitted to PNS was lower than that of controls. In the forced swimming test, time of immobility was reduced and swimming was increased in PNS rats fed fish oil and plasma corticosterone levels immediately after the forced swimming test were lower in PNS rats fed regular diet than their control counterparts; this response was reduced in control rats whose mothers were fed fish oil and coconut fat. The present results indicate that coconut fat and fish oil influenced behavioral and hormonal responses to the forced swimming test in both control and PNS adult male rats. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Optimal energy-utilization ratio for long-distance cruising of a model fish

    Science.gov (United States)

    Liu, Geng; Yu, Yong-Liang; Tong, Bing-Gang

    2012-07-01

    The efficiency of total energy utilization and its optimization for long-distance migration of fish have attracted much attention in the past. This paper presents theoretical and computational research, clarifying the above well-known classic questions. Here, we specify the energy-utilization ratio (fη) as a scale of cruising efficiency, which consists of the swimming speed over the sum of the standard metabolic rate and the energy consumption rate of muscle activities per unit mass. Theoretical formulation of the function fη is made and it is shown that based on a basic dimensional analysis, the main dimensionless parameters for our simplified model are the Reynolds number (Re) and the dimensionless quantity of the standard metabolic rate per unit mass (Rpm). The swimming speed and the hydrodynamic power output in various conditions can be computed by solving the coupled Navier-Stokes equations and the fish locomotion dynamic equations. Again, the energy consumption rate of muscle activities can be estimated by the quotient of dividing the hydrodynamic power by the muscle efficiency studied by previous researchers. The present results show the following: (1) When the value of fη attains a maximum, the dimensionless parameter Rpm keeps almost constant for the same fish species in different sizes. (2) In the above cases, the tail beat period is an exponential function of the fish body length when cruising is optimal, e.g., the optimal tail beat period of Sockeye salmon is approximately proportional to the body length to the power of 0.78. Again, the larger fish's ability of long-distance cruising is more excellent than that of smaller fish. (3) The optimal swimming speed we obtained is consistent with previous researchers’ estimations.

  8. Intermittent sustained swimming in 'matrinxã' Brycon amazonicus (Bryconidae: Bryconinae: hematological and metabolic responses

    Directory of Open Access Journals (Sweden)

    Fernando Fabrizzi

    Full Text Available In fish, studies on a wide variety of physiological effects of exercise have been reported since a long time. It has been attributed special attention to some types of exercise, however, its application as a healthful practice in the rearing and welfare of farming fish is rising in last few years. In this particular, long-term intermittent sustained swimming (ISS has been not yet explored. In this work, the freshwater fish Brycon amazonicus was submitted to (ISS for 30 days at velocity of 1.0 body-length sec-1 for 12h interspaced by 12h under still water. Hematology and metabolism were evaluated. Exercised fish decreased 30% the erythrocyte number and hemoglobin was unvaried. The stores of liver glycogen and muscular triacylglycerol (TAG were increased and the metabolic profile was typically aerobic. The slight decrease of liver (TAG plus the full metabolic and hematic trait allow investing in this kind of exercise a beneficial practice in the rearing of fish species

  9. Diarrhea and Swimming

    Science.gov (United States)

    ... 888) 232-6348 Contact CDC–INFO Healthy Swimming Health Benefits of Water-based Exercise Swimmer Protection Steps of ... Disinfection Microbial Testing & Disinfection Swimming Pool Chemicals Injuries & Outdoor Health International Recreational Water RWIs, Swimmer Hygiene, & Behavioral ...

  10. Swimming level classification of young school age children and their success in a long distance swimming test

    OpenAIRE

    Nováková, Martina

    2010-01-01

    Title: Swimming level classification of young school age children and their success in a long distance swimming test Work objectives: The outcome of our work is comparison and evaluation of the initial and final swimming lenght in a test of long distance swimming. This test is taken during one swimming course. Methodology: Data which were obtained by testing a certain group of people and were statistically processed, showed the swimming level and performance of the young school age children. ...

  11. Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming.

    Science.gov (United States)

    Maia, Anabela; Lauder, George V; Wilga, Cheryl D

    2017-11-01

    A key feature of fish functional design is the presence of multiple fins that allow thrust vectoring and redirection of fluid momentum to contribute to both steady swimming and maneuvering. A number of previous studies have analyzed the function of dorsal fins in teleost fishes in this context, but the hydrodynamic function of dorsal fins in freely swimming sharks has not been analyzed, despite the potential for differential functional roles between the anterior and posterior dorsal fins. Previous anatomical research has suggested a primarily stabilizing role for shark dorsal fins. We evaluated the generality of this hypothesis by using time-resolved particle image velocimetry to record water flow patterns in the wake of both the anterior and posterior dorsal fins in two species of freely swimming sharks: bamboo sharks ( Chiloscyllium plagiosum ) and spiny dogfish ( Squalus acanthias ). Cross-correlation analysis of consecutive images was used to calculate stroke-averaged mean longitudinal and lateral velocity components, and vorticity. In spiny dogfish, we observed a velocity deficit in the wake of the first dorsal fin and flow acceleration behind the second dorsal fin, indicating that the first dorsal fin experiences net drag while the second dorsal fin can aid in propulsion. In contrast, the wake of both dorsal fins in bamboo sharks displayed increased net flow velocity in the majority of trials, reflecting a thrust contribution to steady swimming. In bamboo sharks, fluid flow in the wake of the second dorsal fin had higher absolute average velocity than that for first dorsal fin, and this may result from a positive vortex interaction between the first and second dorsal fins. These data suggest that the first dorsal fin in spiny dogfish has primarily a stabilizing function, while the second dorsal fin has a propulsive function. In bamboo sharks, both dorsal fins can contribute thrust and should be considered as propulsive adjuncts to the body during steady

  12. Water flow and fin shape polymorphism in coral reef fishes.

    Science.gov (United States)

    Binning, Sandra A; Roche, Dominique G

    2015-03-01

    Water flow gradients have been linked to phenotypic differences and swimming performance across a variety of fish assemblages. However, the extent to which water motion shapes patterns of phenotypic divergence within species remains unknown. We tested the generality of the functional relationship between swimming morphology and water flow by exploring the extent of fin and body shape polymorphism in 12 widespread species from three families (Acanthuridae, Labridae, Pomacentridae) of pectoral-fin swimming (labriform) fishes living across localized wave exposure gradients. The pectoral fin shape of Labridae and Acanthuridae species was strongly related to wave exposure: individuals with more tapered, higher aspect ratio (AR) fins were found on windward reef crests, whereas individuals with rounder, lower AR fins were found on leeward, sheltered reefs. Three of seven Pomacentridae species showed similar trends, and pectoral fin shape was also strongly related to wave exposure in pomacentrids when fin aspect ratios of three species were compared across flow habitats at very small spatial scales (fish body fineless ratio across habitats or depths. Contrary to our predictions, there was no pattern relating species' abundances to polymorphism across habitats (i.e., abundance was not higher at sites where morphology is better adapted to the environment). This suggests that there are behavioral and/or physiological mechanisms enabling some species to persist across flow habitats in the absence of morphological differences. We suggest that functional relationships between swimming morphology and water flow not only structure species assemblages, but are yet another important variable contributing to phenotypic differences within species. The close links between fin shape polymorphism and local water flow conditions appear to be important for understanding species' distributions as well as patterns of diversification across environmental gradients.

  13. ENERGETIC EXTREMES IN A HOSTILE HABITAT: FISH LOCOMOTION ON WAVE-SWEPT CORAL REEFS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2010-01-01

    , and wing-like fins that generate lift-based thrust at high speed. Literally flying underwater, Stethojulis and other winged-fin species are the most abundant fish in wave-swept coral reef habitats. We discuss the extreme swimming performance of these reef fishes within the context of other non......-scombrid and scombrid fishes, and illustrate how such performance has contributed to their domination of shallow coral reef habitats worldwide....

  14. Swimming ability and physiological response to swimming fatigue in ...

    African Journals Online (AJOL)

    The swimming endurance of kuruma shrimp, Marsupenaeus japonicus (11.04 ± 2.43 g) at five swimming speeds (23.0, 26.7, 31.0, 34.6 and 38.6 cm s-1) was determined in a circulating flume at 25.7 ± 0.7°C. The plasma glucose and total protein, hepatopancreas and pleopods muscle glycogen concentrations were ...

  15. Laryngoscopy during swimming

    DEFF Research Database (Denmark)

    Walsted, Emil S; Swanton, Laura L; van van Someren, Ken

    2017-01-01

    that precipitates their symptoms. This report provides the first description of the feasibility of performing continuous laryngoscopy during exercise in a swimming environment. The report describes the methodology and safety of the use of continuous laryngoscopy while swimming. Laryngoscope, 2017....

  16. Later life swimming performance and persistent heart damage following subteratogenic PAH mixture exposure in the Atlantic killifish (Fundulus heteroclitus).

    Science.gov (United States)

    Brown, Daniel R; Thompson, Jasmine; Chernick, Melissa; Hinton, David E; Di Giulio, Richard T

    2017-12-01

    High-level, acute exposures to individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures result in cardiac abnormalities in developing fish embryos. Whereas acute PAH exposures can be developmentally lethal, little is known about the later life consequences of early life, lower level PAH exposures in survivors. A population of PAH-adapted Fundulus heteroclitus from the PAH-contaminated Superfund site, Atlantic Wood Industries, Elizabeth River, Portsmouth, Virginia, United States, is highly resistant to acute PAH cardiac teratogenicity. We sought to determine and characterize long-term swimming performance and cardiac histological alterations of a subteratogenic PAH mixture exposure in both reference killifish and PAH-adapted Atlantic Wood killifish embryos. Killifish from a relatively uncontaminated reference site, King's Creek, Virginia, United States, and Atlantic Wood killifish were treated with dilutions of Elizabeth River sediment extract at 24 h post fertilization (hpf). Two proven subteratogenic dilutions, 0.1 and 1.0% Elizabeth River sediment extract (total PAH 5.04 and 50.4 µg/L, respectively), were used for embryo exposures. Then, at 5-mo post hatching, killifish were subjected to a swim performance test. A separate subset of these individuals was processed for cardiac histological analysis. Unexposed King's Creek killifish significantly outperformed the unexposed Atlantic Wood killifish in swimming performance as measured by Ucrit (i.e., critical swimming speed). However, King's Creek killifish exposed to Elizabeth River sediment extract (both 0.1 and 1.0%) showed significant declines in Ucrit. Histological analysis revealed the presence of blood in the pericardium of King's Creek killifish. Although Atlantic Wood killifish showed baseline performance deficits relative to King's Creek killifish, their pericardial cavities were nearly free of blood and atrial and ventricular alterations. These findings may explain, in part, the

  17. Accelerometer-derived activity correlates with volitional swimming speed in lake sturgeon (Acipenser fulvescens)

    Science.gov (United States)

    Thiem, J.D.; Dawson, J.W.; Gleiss, A.C.; Martins, E.G.; Haro, Alexander J.; Castro-Santos, Theodore R.; Danylchuk, A.J.; Wilson, R.P.; Cooke, S.J.

    2015-01-01

    Quantifying fine-scale locomotor behaviours associated with different activities is challenging for free-swimming fish.Biologging and biotelemetry tools can help address this problem. An open channel flume was used to generate volitionalswimming speed (Us) estimates of cultured lake sturgeon (Acipenser fulvescens Rafinesque, 1817) and these were paired withsimultaneously recorded accelerometer-derived metrics of activity obtained from three types of data-storage tags. This studyexamined whether a predictive relationship could be established between four different activity metrics (tail-beat frequency(TBF), tail-beat acceleration amplitude (TBAA), overall dynamic body acceleration (ODBA), and vectorial dynamic body acceleration(VeDBA)) and the swimming speed of A. fulvescens. Volitional Us of sturgeon ranged from 0.48 to 2.70 m·s−1 (0.51–3.18 bodylengths (BL) · s−1). Swimming speed increased linearly with all accelerometer-derived metrics, and when all tag types werecombined, Us increased 0.46 BL·s−1 for every 1 Hz increase in TBF, and 0.94, 0.61, and 0.94 BL·s−1 for every 1g increase in TBAA,ODBA, and VeDBA, respectively. Predictive relationships varied among tag types and tag-specific parameter estimates of Us arepresented for all metrics. This use of acceleration data-storage tags demonstrated their applicability for the field quantificationof sturgeon swimming speed.

  18. Ontogenic events and swimming behavior of larvae of the characid fish Salminus brasiliensis (Cuvier (Characiformes, Characidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    José Enemir dos Santos

    2002-03-01

    Full Text Available The larval ontogeny and swimming behavior of the characid fish Salminus brasiliensis (Cuvier, 1816 were studied under experimental laboratory conditions, from hatching to yolk absorption. At day 1, the larvae were transparent, with sparse dendrite chromatophores and a well-developed adhesive organ on the head. The retinal epithelial cells were initiating pigmentation. The branchial arches were at the initial phase of differentiation. The larvae were able to perform only vertical displacements and, when resting on the tank bottom, remained in lateral decumbency, in groups of 3 to 15 larvae. On day 2, the mouth was open, with conical teeth, and the digestive tube presented lumen and folded mucosa. The gaseous bladder and pectoral fins also were in differentiation. The larvae performed vertical and horizontal movements, adhered to the water surface by means of the adhesive organ or formed groups of three to six on the tank bottom. On day 3, the adhesive organ turned dorsal, the retina was pigmented, the digestive tube mucosa showed goblet cells, and the yolk sac exhausted. The larvae were now scattering in the water column forming no groups on the bottom.

  19. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.

    Science.gov (United States)

    Kim, Sung Hoon; Shin, Kyoosik; Hashi, Shuichiro; Ishiyama, Kazushi

    2012-09-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities.

  20. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator

    International Nuclear Information System (INIS)

    Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi; Shin, Kyoosik

    2012-01-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities. (paper)

  1. Model of skin friction enhancement in undulatory swimming

    Science.gov (United States)

    Ehrenstein, Uwe; Eloy, Christophe

    2012-11-01

    To estimate the energetic cost of undulatory swimming, it is crucial to evaluate the drag forces originating from skin friction. This topic has been controversial for decades, some claiming that animals use ingenious mechanisms to reduce the drag and others hypothesizing that the undulatory motion induces a drag increase because of the compression of the boundary layers. In this paper, we examine this latter hypothesis, known as the ``Bone-Lighthill boundary-layer thinning hypothesis''. Considering a plate of section s moving perpendicular to itself at velocity U⊥ and applying the boundary-layer approximation for the incoming flow, the drag force per unit surface is shown to scale as √{U⊥ / s }. An analogous two-dimensional Navier-Stokes problem by artificially accelerating the flow in a channel of finite height is solved numerically, showing the robustness of the analytical results. Solving the problem for an undulatory plate motion similar to fish swimming, we find a drag enhancement which can be estimated to be of the order of 20 to 100%, depending on the geometry and the motion. M.J. Lighthill, Proc. R. Soc. Lond. B 179, 125 (1971).

  2. Factors influencing termination of swimming career of children at sport swimming classes

    OpenAIRE

    Pištěková, Petra

    2007-01-01

    Title: The Cause ofan Early End ofPupils' Swimming Career The aim of the thesis: Determination ofthe most frequent reasons for an early end ofpupils' swimming career. Method: The reasons for an early end ofpupils' swimming career were discovered by using questionnaires. Forty-five former pupils from special sports elementary schools were questioned and then the data were compared with available literature. Results: Research investigated changes in the most frequent reasons for an early end of...

  3. Sustained exercise-trained juvenile black carp (Mylopharyngodon piceus at a moderate water velocity exhibit improved aerobic swimming performance and increased postprandial metabolic responses

    Directory of Open Access Journals (Sweden)

    Xiuming Li

    2018-02-01

    Full Text Available The objectives of this study were to examine whether sustained exercise training at four water velocities, i.e. nearly still water (control, 1 body length (BL s−1, 2 BL s−1 and 4 BL s−1, has effects on swimming performance and digestive metabolism in juvenile black carp (Mylopharyngodon piceus. The results demonstrated that fish subjected to sustained training at 2 and 4 BL s−1 showed significantly higher critical swimming speed (Ucrit and maximum metabolic rate (MMR over the control group. Fish subjected to sustained training at 1 and 2 BL s−1 showed a significantly (30 and 54% prolonged duration, 14 and 17% higher postprandial ṀO2 increment (i.e. ṀO2peak, and 62 and 92% more energy expended on specific dynamic action (SDA, respectively, after consuming a similar meal over fish kept in nearly still water. These results suggest that (1 sustained exercise training at a higher speed (2 or 4 BL s−1 had a positive influence on the aerobic swimming performance of juvenile M. piceus, which may be associated with improved aerobic metabolism; and (2 sustained exercise training at a lower speed (1 or 2 BL s−1 resulted in elevated postprandial metabolic responses in juvenile M. piceus.

  4. Testing the potential effects of shellfish farming on swimming activity and spatial distribution of sole (Solea solea) in a mesocosm

    OpenAIRE

    Laffargue, Pascal; Begout, Marie-laure; Lagardere, Francoise

    2006-01-01

    Restructuring coastal fish nursery habitats by extensive shellfish fanning in the French part of the Bay of Biscay could influence fish physiology and behaviour and affect the ecological performance of the species. The influence of oyster-trestle cultivation installations on sole (Solea solea) swimming behaviour was investigated using an experimental pond mesocosm. A pen was constructed with three interconnected zones (two with bags of live oysters or oyster shells on trestles, and one free z...

  5. Paramecia swimming in viscous flow

    Science.gov (United States)

    Zhang, P.; Jana, S.; Giarra, M.; Vlachos, P. P.; Jung, S.

    2015-12-01

    Ciliates like Paramecia exhibit fore-aft asymmetry in their body shapes, and preferentially swim in the direction of the slender anterior rather than the wider posterior. However, the physical reasons for this preference are not well understood. In this work, we propose that specific features of the fluid flow around swimming Paramecia confer some energetic advantage to the preferred swimming direction. Therefore, we seek to understand the effects of body asymmetry and swimming direction on the efficiency of swimming and the flux of fluid into the cilia layer (and thus of food into the oral groove), which we assumed to be primary factors in the energy budgets of these organisms. To this end, we combined numerical techniques (the boundary element method) and laboratory experiments (micro particle image velocimetry) to develop a quantitative model of the flow around a Paramecium and investigate the effect of the body shape on the velocity fields, as well as on the swimming and feeding behaviors. Both simulation and experimental results show that velocity fields exhibit fore-aft asymmetry. Moreover, the shape asymmetry revealed an increase of the fluid flux into the cilia layer compared to symmetric body shapes. Under the assumption that cilia fluid intake and feeding efficiency are primary factors in the energy budgets of Paramecia, our model predicts that the anterior swimming direction is energetically favorable to the posterior swimming direction.

  6. Pre-task music improves swimming performance.

    Science.gov (United States)

    Smirmaul, B P; Dos Santos, R V; Da Silva Neto, L V

    2015-12-01

    The purpose of this study was to investigate the effects of pre-task music on swimming performance and other psychological variables. A randomized counterbalanced within-subjects (experimental and control condition) design was employed. Eighteen regional level male swimmers performed two 200-m freestyle swimming time trials. Participants were exposed to either 5 minutes of self-selected music (pre-task music condition) or 5 minutes of silence (control condition) and, after 1 minute, performed the swimming task. Swimming time was significantly shorter (-1.44%) in the pre-task music condition. Listening to pre-task music increased motivation to perform the swimming task, while arousal remained unchanged. While fatigue increased after the swimming task in both conditions, vigor, ratings of perceived exertion and affective valence were unaltered. It is concluded, for the first time, that pre-task music improves swimming performance.

  7. 21 CFR 1250.89 - Swimming pools.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Swimming pools. 1250.89 Section 1250.89 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.89 Swimming pools. (a) Fill and draw swimming pools shall not be installed or used. (b) Swimming pools of the recirculation type shall be...

  8. 36 CFR 331.10 - Swimming.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Swimming. 331.10 Section 331.10 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY REGULATIONS..., KENTUCKY AND INDIANA § 331.10 Swimming. Swimming is prohibited unless authorized in writing by the District...

  9. 36 CFR 327.5 - Swimming.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Swimming. 327.5 Section 327.5 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY RULES AND REGULATIONS... Swimming. (a) Swimming, wading, snorkeling or scuba diving at one's own risk is permitted, except at...

  10. Measuring the bioenergetic cost of fish activity in situ using a globally dispersed radiotracer (137Cs)

    International Nuclear Information System (INIS)

    Rowan, D.J.; Rasmussen, J.B.

    1996-01-01

    The energetic cost of activity is an important component of the bioenergetic budget of fish, yet this parameter has rarely been quantified for wild populations. Using a 137 Cs mass balance approach, we estimated the annual bioenergetic budgets for individual age-classes of 19 species of North American freshwater fish. Immature fish have low activity-related metabolic costs that agree with estimates based on swimming speed or integer multipliers. Mature fish have 2- to 4-fold higher activity than immature fish and 2- to 4-fold higher activity than estimates based on swimming speed or integer multipliers. The higher activity in mature fish may be due to reproductive efforts. Underestimation of activity in conventional bioenergetics models leads to underestimation of consumption rates. Thus, our in situ and age-specific estimates of activity costs provide a means to improve bioenergetic predictions. Although our analysis was done on an annual basis, it is possible to use the 137 Cs technique over shorter intervals (weeks). The 137 Cs method has general applicability to aquatic systems because 137 Cs is globally dispersed and can be accurately measured in all aquatic organisms using gamma spectrometry. (author). 62 refs., 4 tabs., 4 figs

  11. Upper Caraş River (Danube watershed fish populations fragmentation – technical rehabilitation proposal

    Directory of Open Access Journals (Sweden)

    Voicu Răzvan

    2018-01-01

    Full Text Available We propose a technical solution for fish movement based on the flow of water over a spill threshold. Such barriers are common in the Danube system. The proposed system has a range of operating components which are easily detachable from the spill threshold, are resistant to corrosion and will not harm the fish. In fact, if designed to complement swimming abilities of target fish, it should provide adequate passage for both adults and juveniles. If implemented correctly, the design may offer a solution to help displaced fish recolonize upstream habitats.

  12. 43 CFR 423.36 - Swimming.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Swimming. 423.36 Section 423.36 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR... Swimming. (a) You may swim, wade, snorkel, scuba dive, raft, or tube at your own risk in Reclamation waters...

  13. Locomotor activity during the frenzy swim: analysing early swimming behaviour in hatchling sea turtles.

    Science.gov (United States)

    Pereira, Carla M; Booth, David T; Limpus, Colin J

    2011-12-01

    Swimming effort of hatchling sea turtles varies across species. In this study we analysed how swim thrust is produced in terms of power stroke rate, mean maximum thrust per power stroke and percentage of time spent power stroking throughout the first 18 h of swimming after entering the water, in both loggerhead and flatback turtle hatchlings and compared this with previous data from green turtle hatchlings. Loggerhead and green turtle hatchlings had similar power stroke rates and percentage of time spent power stroking throughout the trial, although mean maximum thrust was always significantly higher in green hatchlings, making them the most vigorous swimmers in our three-species comparison. Flatback hatchlings, however, were different from the other two species, with overall lower values in all three swimming variables. Their swimming effort dropped significantly during the first 2 h and kept decreasing significantly until the end of the trial at 18 h. These results support the hypothesis that ecological factors mould the swimming behaviour of hatchling sea turtles, with predator pressure being important in determining the strategy used to swim offshore. Loggerhead and green turtle hatchlings seem to adopt an intensely vigorous and energetically costly frenzy swim that would quickly take them offshore into the open ocean in order to reduce their exposure to near-shore aquatic predators. Flatback hatchlings, however, are restricted in geographic distribution and remain within the continental shelf region where predator pressure is probably relatively constant. For this reason, flatback hatchlings might use only part of their energy reserves during a less vigorous frenzy phase, with lower overall energy expenditure during the first day compared with loggerhead and green turtle hatchlings.

  14. Precision measurement of electric organ discharge timing from freely moving weakly electric fish.

    Science.gov (United States)

    Jun, James J; Longtin, André; Maler, Leonard

    2012-04-01

    Physiological measurements from an unrestrained, untethered, and freely moving animal permit analyses of neural states correlated to naturalistic behaviors of interest. Precise and reliable remote measurements remain technically challenging due to animal movement, which perturbs the relative geometries between the animal and sensors. Pulse-type electric fish generate a train of discrete and stereotyped electric organ discharges (EOD) to sense their surroundings actively, and rapid modulation of the discharge rate occurs while free swimming in Gymnotus sp. The modulation of EOD rates is a useful indicator of the fish's central state such as resting, alertness, and learning associated with exploration. However, the EOD pulse waveforms remotely observed at a pair of dipole electrodes continuously vary as the fish swims relative to the electrodes, which biases the judgment of the actual pulse timing. To measure the EOD pulse timing more accurately, reliably, and noninvasively from a free-swimming fish, we propose a novel method based on the principles of waveform reshaping and spatial averaging. Our method is implemented using envelope extraction and multichannel summation, which is more precise and reliable compared with other widely used threshold- or peak-based methods according to the tests performed under various source-detector geometries. Using the same method, we constructed a real-time electronic pulse detector performing an additional online pulse discrimination routine to enhance further the detection reliability. Our stand-alone pulse detector performed with high temporal precision (<10 μs) and reliability (error <1 per 10(6) pulses) and permits longer recording duration by storing only event time stamps (4 bytes/pulse).

  15. Comparative study the expression of calcium cycling genes in Bombay duck (Harpadon nehereus and beltfish (Trichiurus lepturus with different swimming activities

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2017-06-01

    Full Text Available The contraction and relaxation events of the muscle is mediated by the coordination of many important calcium cycling proteins of ryanodine receptor (RYR, troponin C (TNNC, parvalbumin (PVALB, sarcoendoplasmic reticulum calcium transport ATPase (SERCA and calsequestrin (CASQ. In higher vertebrates, the expression level of calcium cycling proteins are positively correlated to the muscle contraction/relaxation ability of the cell. In this study, we used RNAseq to explore the expression profile of calcium cycling genes between two marine fish of Bombay duck (Harpadon nehereus and beltfish (Trichiurus lepturus with poor and robust swimming activities, respectively. We have studied the hypothesis whether the expression level of calcium cycling proteins are also positive correlated to swimming ability in fish. We used Illumina sequencing technology (NextSeq500 to sequence, assemble and annotate the muscle transcriptome of Bombay duck for the first time. A total of 47,752,240 cleaned reads (deposited in NCBI SRA database with accession number of SRX1706379 were obtained from RNA sequencing and 26,288 unigenes (with N50 of 486 bp were obtained after de novo assembling with Trinity software. BLASTX against NR, GO, KEGG and eggNOG databases show 100%, 65%, 26%, 94% and 88% annotation rate, respectively. Comparison of the dominantly expressed unigenes in fish muscle shows calcium cycling gene expression in beltfish (SRX1674471 is 1.4- to 51.6-fold higher than Bombay duck. Among five calcium cycling genes, the fold change results are very significant in CASQ (51.6 fold and PVALB (9.1 fold and both of them are responsive for calcium binding to reduce free calcium concentration in the sarcoendoplasmic reticulum and cytoplasm. In conclusion, we confirmed that the high abundant expression rate of calcium cycling genes in robust swimming fish species. The current muscle transcriptome and identified calcium cycling gene data can provide more insights into the

  16. Fish screens at hydroelectric diversions

    International Nuclear Information System (INIS)

    Ott, R.F.

    1994-01-01

    Preventing downstream migrating fish from entering the turbines at hydroelectric projects is a standard mitigation goal of state and federal fishery management agencies. The object is to minimize the adverse impacts to the fish associated with the exclusion and passage through the bypass water conveyance facilities. In the western United States, most of the fishery management agencies have fish screen design criteria that focus on the approach and transportational velocities, maximum opening dimensions of the screen material, and the cleaning standards. Recently, more attention has been given to fish behavioral traits such as attraction and sustained and darting swimming speed, which has resulted in more attention to the position of the screens to the flow and the length of time the downstream migrants are exposed to the screens. Criteria for length of time of exposure, size and position of bypass, flow and velocities in the bypass entrances, discharge requirements back into the receiving water, and exposure to predation have created unique challenges to the fish screen designer. This paper discusses some of the more recent types of fixed fish screens that are being installed at hydroelectric plants that meet these challenges

  17. Hydrodynamic advantages of swimming by salp chains.

    Science.gov (United States)

    Sutherland, Kelly R; Weihs, Daniel

    2017-08-01

    Salps are marine invertebrates comprising multiple jet-propelled swimming units during a colonial life-cycle stage. Using theory, we show that asynchronous swimming with multiple pulsed jets yields substantial hydrodynamic benefit due to the production of steady swimming velocities, which limit drag. Laboratory comparisons of swimming kinematics of aggregate salps ( Salpa fusiformis and Weelia cylindrica ) using high-speed video supported that asynchronous swimming by aggregates results in a smoother velocity profile and showed that this smoother velocity profile is the result of uncoordinated, asynchronous swimming by individual zooids. In situ flow visualizations of W. cylindrica swimming wakes revealed that another consequence of asynchronous swimming is that fluid interactions between jet wakes are minimized. Although the advantages of multi-jet propulsion have been mentioned elsewhere, this is the first time that the theory has been quantified and the role of asynchronous swimming verified using experimental data from the laboratory and the field. © 2017 The Author(s).

  18. Swimming pool cleaner poisoning

    Science.gov (United States)

    Swimming pool cleaner poisoning occurs when someone swallows this type of cleaner, touches it, or breathes in ... The harmful substances in swimming pool cleaner are: Bromine ... copper Chlorine Soda ash Sodium bicarbonate Various mild acids

  19. "The fish becomes aware of the water in which it swims": revealing the power of culture in shaping teaching identity

    Science.gov (United States)

    Rahmawati, Yuli; Taylor, Peter Charles

    2017-08-01

    "The fish becomes aware of the water in which it swims" is a metaphor that represents Yuli's revelatory journey about the hidden power of culture in her personal identity and professional teaching practice. While engaging in a critical auto/ethnographic inquiry into her lived experience as a science teacher in Indonesian and Australian schools, she came to understand the powerful role of culture in shaping her teaching identity. Yuli realised that she is a product of cultural hybridity resulting from interactions of very different cultures—Javanese, Bimanese, Indonesian and Australian. Traditionally, Javanese and Indonesian cultures do not permit direct criticism of others. This influenced strongly the way she had learned to interact with students and caused her to be very sensitive to others. During this inquiry she learned the value of engaging students in open discourse and overt caring, and came to realise that teachers bringing their own cultures to the classroom can be both a source of power and a problem. In this journey, Yuli came to understand the hegemonic power of culture in her teaching identity, and envisioned how to empower herself as a good teacher educator of pre-service science teachers.

  20. A Correlational Analysis of Tethered Swimming, Swim Sprint Performance and Dry-land Power Assessments.

    Science.gov (United States)

    Loturco, I; Barbosa, A C; Nocentini, R K; Pereira, L A; Kobal, R; Kitamura, K; Abad, C C C; Figueiredo, P; Nakamura, F Y

    2016-03-01

    Swimmers are often tested on both dry-land and in swimming exercises. The aim of this study was to test the relationships between dry-land, tethered force-time curve parameters and swimming performances in distances up to 200 m. 10 young male high-level swimmers were assessed using the maximal isometric bench-press and quarter-squat, mean propulsive power in jump-squat, squat and countermovement jumps (dry-land assessments), peak force, average force, rate of force development (RFD) and impulse (tethered swimming) and swimming times. Pearson product-moment correlations were calculated among the variables. Peak force and average force were very largely correlated with the 50- and 100-m swimming performances (r=- 0.82 and -0.74, respectively). Average force was very-largely/largely correlated with the 50- and 100-m performances (r=- 0.85 and -0.67, respectively). RFD and impulse were very-largely correlated with the 50-m time (r=- 0.72 and -0.76, respectively). Tethered swimming parameters were largely correlated (r=0.65 to 0.72) with mean propulsive power in jump-squat, squat-jump and countermovement jumps. Finally, mean propulsive power in jump-squat was largely correlated (r=- 0.70) with 50-m performance. Due to the significant correlations between dry-land assessments and tethered/actual swimming, coaches are encouraged to implement strategies able to increase leg power in sprint swimmers. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Passage and behaviour of cultured Lake Sturgeon in a prototype side-baffle fish ladder: I. Ladder hydraulics and fish ascent

    Science.gov (United States)

    Kynard, B.; Pugh, D.; Parker, T.

    2011-01-01

    Research and development of a fish ladder for sturgeons requires understanding ladder hydraulics and sturgeon behaviour in the ladder to insure the ladder is safe and provides effective passage. After years of research and development, we designed and constructed a full-scale prototype side-baffle ladder inside a spiral flume (38.3m long??1m wide??1m high) on a 6% (1:16.5) slope with a 1.92-m rise in elevation (bottom to top) to test use by sturgeons. Twenty-eight triangular side baffles, each extending part way across the flume, alternated from inside wall to outside wall down the ladder creating two major flow habitats: a continuous, sinusoidal flow down the ladder through the vertical openings of side-baffles and an eddy below each side baffle. Ascent and behaviour was observed on 22 cultured Lake Sturgeon=LS (Acipenser fulvescens) repeatedly tested in groups as juveniles (as small as 105.1cm TL, mean) or as adults (mean TL, 118cm) during four periods (fall 2002 and 2003; spring 2003 and 2007). Percent of juveniles entering the ladder that ascended to the top was greater in spring (72.7%) than in fall (40.9-45.5%) and 90.9% of 11 adults, which ascended as juveniles, ascended to the top. Six LS (27.3%) never swam to the top and seven (31.8%) swam to the top in all tests, indicating great variability among individuals for ascent drive. Some LS swam directly to the top in <1min, but most rested in an eddy during ascent. Juveniles swimming through outside wall baffle slots (mean velocity, 1.2ms-1) swam at 1.8-2.2body lengthss-1 and 3.2-3.3tail beatss-1, either at or approaching prolonged swimming speed. The side-baffle ladder was stream-like and provided key factors for a sturgeon ladder: a continuous flow and no full cross-channel walls, abundant eddies for resting, an acceptable water depth, and a water velocity fish could ascend swimming 2bls-1. A side-baffle ladder passes LS and other moderate-swimming fishes. ?? 2011 Blackwell Verlag, Berlin.

  2. Healthy Swimming/Recreational Water

    Science.gov (United States)

    ... Medical Professionals En Español Publications, Data, & Statistics Healthy Swimming Resources Health Promotion Materials Find Your State Training & ... Announcements Outbreak Response Toolkits CDC at Work: Healthy Swimming Fast Facts Index of Water-Related Topics Model ...

  3. A merganser swims in the waters of KSC

    Science.gov (United States)

    1999-01-01

    A young female red-breasted merganser swims in the quicksilver water of the Merritt Island National Wildlife Refuge, which shares a boundary with Kennedy Space Center. Usually found from Alaska and Canada south to Nebraska, Oregon and Tennessee, hooded mergansers winter south to Mexico and the Gulf Coast, including KSC. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000- acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.

  4. Bending continuous structures with SMAs: a novel robotic fish design

    OpenAIRE

    Rossi, Claudio; Colorado Montaño, Julián; Coral Cuellar, William; Barrientos Cruz, Antonio

    2011-01-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature o...

  5. Comparative physiology and relative swimming performance of three redhorse (Moxostoma spp.) species: associations with fishway passage success.

    Science.gov (United States)

    Hatry, Charles; Thiem, Jason D; Binder, Thomas R; Hatin, Daniel; Dumont, Pierre; Stamplecoskie, Keith M; Molina, Juan M; Smokorowski, Karen E; Cooke, Steven J

    2014-01-01

    Our understanding of biological criteria to inform fish passage design is limited, partially due to the lack of understanding of biological motivators, cues, and constraints, as well as a lack of biological performance evaluations of structures once they are built. The Vianney-Legendre vertical slot fishway on the Richelieu River, Quebec, Canada, passes large numbers of migrating redhorse (Moxostoma spp.) upriver to spawning grounds each year. We evaluated the physiological capacity and relative swimming ability of three redhorse species (Moxostoma anisurum, Moxostoma carinatum, Moxostoma macrolepidotum; silver, river, and shorthead redhorse, respectively) to determine how these biotic factors relate to variation in fishway passage success and duration. Shorthead redhorse had higher maximum metabolic rates and were faster swimmers than silver and river redhorse at their species-specific peak migration temperatures. Blood lactate and glucose concentrations recovered more quickly for river redhorse than for silver and shorthead redhorse, and river redhorse placed second in terms of metabolic recovery and swim speed. Interestingly, fish sampled from the top of the fishway had nearly identical lactate, glucose, and pH values compared to control fish. Using passive integrated transponders in 2010 and 2012, we observed that passage success and duration were highly variable among redhorse species and were not consistent among years, suggesting that other factors such as water temperature and river flows may modulate passage success. Clearly, additional research is needed to understand how organismal performance, environmental conditions, and other factors (including abundance of conspecifics and other comigrants) interact with fishway features to dictate which fish will be successful and to inform research of future fishways. Our research suggests that there may be an opportunity for a rapid assessment approach where fish chased to exhaustion to determine maximal values

  6. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    Science.gov (United States)

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-10-23

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.

  7. Flow-structure Interaction Modeling of a Fish Caudal Fin during Steady Swimming

    Science.gov (United States)

    Liu, Geng; Geng, Biao; Zheng, Xudong; Xue, Qian; Dong, Haibo

    2017-11-01

    It's widely thought that the flexibilities of fish fins play critical roles in propulsive performance enhancement (such as thrust augment and efficiency improvement) in nature. In order to explore the formation mechanisms of the fish fin's flexible morphing and its hydrodynamic benefits as well, a high-fidelity flow-structure/membrane interaction modeling of the fish caudal fin is conducted in this work. Following the realistic configuration of the fish caudal fin, a thin membrane supported by a series of beams is constructed. The material properties of the membrane and the beams are reversely determined by the realistic fin morphing obtained from the high-speed videos and the high fidelity flow-structure interaction simulations. With the accurate material property, we investigate the interplay between structure, kinematics and fluid flow in caudal fin propulsion. Detailed analyses on the relationship between the flexural stiffness, fin morphing patterns, hydrodynamic forces and vortex dynamics are then conducted.

  8. Swimming Performance and Metabolism of Golden Shiners

    Science.gov (United States)

    The swimming ability and metabolism of golden shiners, Notemigonus crysoleucas, was examined using swim tunnel respirometery. The oxygen consumption and tail beat frequencies at various swimming speeds, an estimation of the standard metabolic rate, and the critical swimming speed (Ucrit) was determ...

  9. Son et lumière: Sound and light effects on spatial distribution and swimming behavior in captive zebrafish.

    Science.gov (United States)

    Shafiei Sabet, Saeed; Van Dooren, Dirk; Slabbekoorn, Hans

    2016-05-01

    Aquatic and terrestrial habitats are heterogeneous by nature with respect to sound and light conditions. Fish may extract signals and exploit cues from both ambient modalities and they may also select their sound and light level of preference in free-ranging conditions. In recent decades, human activities in or near water have altered natural soundscapes and caused nocturnal light pollution to become more widespread. Artificial sound and light may cause anxiety, deterrence, disturbance or masking, but few studies have addressed in any detail how fishes respond to spatial variation in these two modalities. Here we investigated whether sound and light affected spatial distribution and swimming behavior of individual zebrafish that had a choice between two fish tanks: a treatment tank and a quiet and light escape tank. The treatments concerned a 2 × 2 design with noisy or quiet conditions and dim or bright light. Sound and light treatments did not induce spatial preferences for the treatment or escape tank, but caused various behavioral changes in both spatial distribution and swimming behavior within the treatment tank. Sound exposure led to more freezing and less time spent near the active speaker. Dim light conditions led to a lower number of crossings, more time spent in the upper layer and less time spent close to the tube for crossing. No interactions were found between sound and light conditions. This study highlights the potential relevance for studying multiple modalities when investigating fish behavior and further studies are needed to investigate whether similar patterns can be found for fish behavior in free-ranging conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. No evidence for a bioenergetic advantage from forced swimming in rainbow trout under a restrictive feeding regime

    DEFF Research Database (Denmark)

    Skov, Peter Vilhelm; Lund, Ivar; Margarido Pargana, Alexandre

    2015-01-01

    during a 15 week growth experiment, in which fish were reared at three different current speeds: 1 BL s(-1), 0.5 BL s(-1) and still water (approximate to 0 BL s(-1)). Randomly selected groups of 100 fish were distributed among twelve 600 L tanks and maintained on a restricted diet regime. Specific growth...... rate (SGR) and feed conversion ratio (FCR) were calculated from weight and length measurements every 3 weeks. Routine metabolic rate (RMR) was measured every hour as rate of oxygen consumption in the tanks, and was positively correlated with swimming speed. Total ammonia nitrogen (TAN) excretion rates...

  11. Fish axial muscle : structure-function relationships on a micro-level

    NARCIS (Netherlands)

    Spierts, I.L.Y.

    2000-01-01

    This paper discusses some examples of strong correlations between functions and structures in axial fish muscle on a micro-level. Muscle tissue needs a certain elasticity to cope with the diverse functional requirements necessary for swimming. During fast-starts of carp, muscles can be stretched up

  12. Swimming literacy field hockey woman player ground.

    OpenAIRE

    Baštová, Miroslava

    2012-01-01

    Title: Swimming literacy field hockey woman player ground. Objectives: To obtain and analyze data on the level ground swimming literacy field hockey woman player. Their perception swimming literacy for life, the use of non-specific regeneration and as a training resource. Methods: Analysis of scientific literature, survey, case study, data analysis and graphical presentation of results. Results of the work: field hockey player as swimming literate, benefits swimming but not used as a means of...

  13. Polarized light sensitivity and orientation in coral reef fish post-larvae.

    Directory of Open Access Journals (Sweden)

    Igal Berenshtein

    Full Text Available Recent studies of the larvae of coral-reef fishes reveal that these tiny vertebrates possess remarkable swimming capabilities, as well as the ability to orient to olfactory, auditory, and visual cues. While navigation according to reef-generated chemicals and sounds can significantly affect dispersal, the effect is limited to the vicinity of the reef. Effective long-distance navigation requires at least one other capacity-the ability to maintain a bearing using, for example, a sun compass. Directional information in the sun's position can take the form of polarized-light related cues (i.e., e-vector orientation and percent polarization and/or non-polarized-light related cues (i.e., the direct image of the sun, and the brightness and spectral gradients. We examined the response to both types of cues using commercially-reared post-larvae of the spine-cheeked anemonefish Premnas biaculeatus. Initial optomotor trials indicated that the post-larval stages are sensitive to linearly polarized light. Swimming directionality was then tested using a Drifting In-Situ Chamber (DISC, which allowed us to examine the response of the post-larvae to natural variation in light conditions and to manipulated levels of light polarization. Under natural light conditions, 28 of 29 post-larvae showed significant directional swimming (Rayleigh's test p<0.05, R = 0.74±0.23, but to no particular direction. Swimming directionality was positively affected by sky clarity (absence of clouds and haze, which explained 38% of the observed variation. Moreover, post-larvae swimming under fully polarized light exhibited a distinct behavior of tracking the polarization axis, as it rotated along with the DISC. This behavior was not observed under partially-polarized illumination. We view these findings as an indication for the use of sun-related cues, and polarized light signal in specific, by orienting coral-reef fish larvae.

  14. Polarized light sensitivity and orientation in coral reef fish post-larvae.

    Science.gov (United States)

    Berenshtein, Igal; Kiflawi, Moshe; Shashar, Nadav; Wieler, Uri; Agiv, Haim; Paris, Claire B

    2014-01-01

    Recent studies of the larvae of coral-reef fishes reveal that these tiny vertebrates possess remarkable swimming capabilities, as well as the ability to orient to olfactory, auditory, and visual cues. While navigation according to reef-generated chemicals and sounds can significantly affect dispersal, the effect is limited to the vicinity of the reef. Effective long-distance navigation requires at least one other capacity-the ability to maintain a bearing using, for example, a sun compass. Directional information in the sun's position can take the form of polarized-light related cues (i.e., e-vector orientation and percent polarization) and/or non-polarized-light related cues (i.e., the direct image of the sun, and the brightness and spectral gradients). We examined the response to both types of cues using commercially-reared post-larvae of the spine-cheeked anemonefish Premnas biaculeatus. Initial optomotor trials indicated that the post-larval stages are sensitive to linearly polarized light. Swimming directionality was then tested using a Drifting In-Situ Chamber (DISC), which allowed us to examine the response of the post-larvae to natural variation in light conditions and to manipulated levels of light polarization. Under natural light conditions, 28 of 29 post-larvae showed significant directional swimming (Rayleigh's test p<0.05, R = 0.74±0.23), but to no particular direction. Swimming directionality was positively affected by sky clarity (absence of clouds and haze), which explained 38% of the observed variation. Moreover, post-larvae swimming under fully polarized light exhibited a distinct behavior of tracking the polarization axis, as it rotated along with the DISC. This behavior was not observed under partially-polarized illumination. We view these findings as an indication for the use of sun-related cues, and polarized light signal in specific, by orienting coral-reef fish larvae.

  15. Swimming education in Australian society.

    OpenAIRE

    Lynch, TJ

    2014-01-01

    Abstract: The purpose of this paper is to explore a community swimming program using autoethnography qualitative research. Autoethnography is an approach to research and writing that seeks to describe and systematically analyze (graphy) personal experience (auto) in order to understand cultural experience (ethno) (Ellis 2004; Holman Jones 2005). Through childhood reflection of lived swimming experiences, and adult life reflection of lived swimming teaching experiences as a primary school teac...

  16. Evaluation of Fish Passage at Whitewater Parks Using 2D and 3D Hydraulic Modeling

    Science.gov (United States)

    Hardee, T.; Nelson, P. A.; Kondratieff, M.; Bledsoe, B. P.

    2016-12-01

    In-stream whitewater parks (WWPs) are increasingly popular recreational amenities that typically create waves by constricting flow through a chute to increase velocities and form a hydraulic jump. However, the hydraulic conditions these structures create can limit longitudinal habitat connectivity and potentially inhibit upstream fish migration, especially of native fishes. An improved understanding of the fundamental hydraulic processes and potential environmental effects of whitewater parks is needed to inform management decisions about Recreational In-Channel Diversions (RICDs). Here, we use hydraulic models to compute a continuous and spatially explicit description of velocity and depth along potential fish swimming paths in the flow field, and the ensemble of potential paths are compared to fish swimming performance data to predict fish passage via logistic regression analysis. While 3d models have been shown to accurately predict trout movement through WWP structures, 2d methods can provide a more cost-effective and manager-friendly approach to assessing the effects of similar hydraulic structures on fish passage when 3d analysis in not feasible. Here, we use 2d models to examine the hydraulics in several WWP structures on the North Fork of the St. Vrain River at Lyons, Colorado, and we compare these model results to fish passage predictions from a 3d model. Our analysis establishes a foundation for a practical, transferable and physically-rigorous 2d modeling approach for mechanistically evaluating the effects of hydraulic structures on fish passage.

  17. Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming.

    Science.gov (United States)

    Choi, Kevin; Weber, Jean-Michel

    2016-03-15

    This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg(-1)·min(-1) and boost glucose disposal to 40.1 ± 13 μmol·kg(-1)·min(-1). These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise. Copyright © 2016 the American Physiological Society.

  18. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2016-12-15

    The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L) (mean±s.d.); N=6], swimming at 1.6±0.09 L s -1 (N=6) in an experimental flow channel (Reynolds number, Re=4×10 5 ) with medium turbulence (5.6% intensity) were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, l x =71±8 mm, N=3, and l x =110±13 mm, N=4, respectively) were approximated by a laminar boundary layer model, the Falkner-Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (l x =163±22 mm, N=3). The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment. © 2016. Published by The Company of Biologists Ltd.

  19. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water

    International Nuclear Information System (INIS)

    Blake, R W

    2009-01-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number (∼0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive

  20. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Blake, R W [Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada)], E-mail: blake@zoology.ubc.ca

    2009-03-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number ({approx}0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive

  1. SWIM EVERYDAY TO KEEP DEMENTIA AWAY

    Directory of Open Access Journals (Sweden)

    Nirmal Singh

    2005-03-01

    Full Text Available A sound mind resides in a sound body. Many individuals with an active lifestyle show sharp mental skills at an advanced age. Regular exercise has been shown to exert numerous beneficial effects on brawn as well as brain. The present study was undertaken to evaluate the influence of swimming on memory of rodents. A specially designed hexagonal water maze was used for the swimming exposures of animals. The learning and memory parameters were measured using exteroceptive behavioral models such as Elevated plus-maze, Hebb-Williams maze and Passive avoidance apparatus. The rodents (rats and mice were divided into twelve groups. The swimming exposure to the rodents was for 10- minute period during each session and there were two swimming exposures on each day. Rats and mice were subjected to swimming for -15 and -30 consecutive days. Control group animals were not subjected to swimming during above period. The learning index and memory score of all the animals was recorded on 1st, 2nd, 15th, 16th, 30th and 31st day employing above exteroceptive models. It was observed that rodents that underwent swimming regularly for 30- days showed sharp memories, when tested on above behavioral models whereas, control group animals showed decline in memory scores. Those animals, which underwent swimming for 15- days only showed good memory on 16th day, which however, declined after 30-days. These results emphasize the role of regular physical exercise particularly swimming in the maintenance and promotion of brain functions. The underlying physiological mechanism for improvement of memory appears to be the result of enhanced neurogenesis.

  2. The effect of thermal acclimation on aerobic scope and critical swimming speed in Atlantic salmon, Salmo salar.

    Science.gov (United States)

    Hvas, Malthe; Folkedal, Ole; Imsland, Albert; Oppedal, Frode

    2017-08-01

    The Atlantic salmon is extensively studied owing to conservation concerns and its economic importance in aquaculture. However, a thorough report of their aerobic capacity throughout their entire thermal niche has not been described. In this study, Atlantic salmon (∼450 g) were acclimated for 4 weeks at 3, 8, 13, 18 or 23°C, and then tested in a large Brett-type swimming respirometer in groups of 10 per trial. Both standard metabolic rate and active metabolic rate continued to increase with temperature, which resulted in an aerobic scope that also increased with temperature, but was statistically similar between 13, 18 and 23°C. The critical swimming speed peaked at 18°C (93.1±1.2 cm s -1 ), and decreased significantly at the extreme temperatures to 74.8±0.5 and 84.8±1.6 cm s -1 at 3 and 23°C, respectively. At 23°C, the accumulated mortality reached 20% over 4 weeks, while no fish died during acclimation at colder temperatures. Furthermore, fish at 23°C had poor appetite and lower condition factor despite still having a high aerobic scope, suggesting that oxygen uptake was not the limiting factor in the upper thermal niche boundary. In conclusion, Atlantic salmon were able to maintain a high aerobic capacity and good swimming capabilities throughout the entire thermal interval tested, thus demonstrating a high level of flexibility in respiratory capacity towards different temperature exposures. © 2017. Published by The Company of Biologists Ltd.

  3. ROV-based Underwater Vision System for Intelligent Fish Ethology Research

    Directory of Open Access Journals (Sweden)

    Rui Nian

    2013-09-01

    Full Text Available Fish ethology is a prospective discipline for ocean surveys. In this paper, one ROV-based system is established to perform underwater visual tasks with customized optical sensors installed. One image quality enhancement method is first presented in the context of creating underwater imaging models combined with homomorphic filtering and wavelet decomposition. The underwater vision system can further detect and track swimming fish from the resulting images with the strategies developed using curve evolution and particular filtering, in order to obtain a deeper understanding of fish behaviours. The simulation results have shown the excellent performance of the developed scheme, in regard to both robustness and effectiveness.

  4. Hooded mergansers swim in the waters of KSC

    Science.gov (United States)

    1999-01-01

    A male and two female hooded mergansers swim in the waters of the Merritt Island National Wildlife Refuge at Kennedy Space Center. The male displays its distinctive fan-shaped, black-bordered crest. Usually found from Alaska and Canada south to Nebraska, Oregon and Tennessee, hooded mergansers winter south to Mexico and the Gulf Coast, including KSC. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000-acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.

  5. Biomechanical Analysis of the Swim-Start: A Review

    Directory of Open Access Journals (Sweden)

    Julien Vantorre, Didier Chollet, Ludovic Seifert

    2014-06-01

    Full Text Available This review updates the swim-start state of the art from a biomechanical standpoint. We review the contribution of the swim-start to overall swimming performance, the effects of various swim-start strategies, and skill effects across the range of swim-start strategies identified in the literature. The main objective is to determine the techniques to focus on in swimming training in the contemporary context of the sport. The phases leading to key temporal events of the swim-start, like water entry, require adaptations to the swimmer’s chosen technique over the course of a performance; we thus define the swim-start as the moment when preparation for take-off begins to the moment when the swimming pattern begins. A secondary objective is to determine the role of adaptive variability as it emerges during the swim-start. Variability is contextualized as having a functional role and operating across multiple levels of analysis: inter-subject (expert versus non-expert, inter-trial or intra-subject (through repetitions of the same movement, and inter-preference (preferred versus non-preferred technique. Regarding skill effects, we assume that swim-start expertise is distinct from swim stroke expertise. Highly skilled swim-starts are distinguished in terms of several factors: reaction time from the start signal to the impulse on the block, including the control and regulation of foot force and foot orientation during take-off; appropriate amount of glide time before leg kicking commences; effective transition from leg kicking to break-out of full swimming with arm stroking; overall maximal leg and arm propulsion and minimal water resistance; and minimized energy expenditure through streamlined body position. Swimmers who are less expert at the swim-start spend more time in this phase and would benefit from training designed to reduce: (i the time between reaction to the start signal and impulse on the block, and (ii the time in transition (i

  6. Creatine supplementation and swim performance: a brief review.

    Science.gov (United States)

    Hopwood, Melissa J; Graham, Kenneth; Rooney, Kieron B

    2006-03-01

    Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle. Key PointsCreatine supplementation does not improve single sprint

  7. 1968 Listing of Swimming Pool Equipment.

    Science.gov (United States)

    National Sanitation Foundation, Ann Arbor, MI. Testing Lab.

    An up-to-date listing of swimming pool equipment including--(1) companies authorized to display the National Sanitation Foundation seal of approval, (2) equipment listed as meeting NSF swimming pool equipment standards relating to diatomite type filters, (3) equipment listed as meeting NSF swimming pool equipment standard relating to sand type…

  8. Paradigm Lost: Ocean Acidification Will Overturn the Concept of Larval-Fish Biophysical Dispersal

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Leis

    2018-02-01

    Full Text Available Most marine ecologists have in the past 25 years changed from supporting a passive-dispersal paradigm for larval marine fishes to supporting a biophysical-dispersal paradigm wherein the behaviour of larvae plays a central role. Research shows larvae of demersal perciform fishes have considerable swimming and orientation abilities over a major portion of their pelagic larval duration. These abilities depend on sensory function, and some recent research has indicated anthropogenic acidification of the oceans will by the end of the century result in sensory dysfunction. This could strongly alter the ability of fish larvae to orientate in the pelagic environment, to locate suitable settlement habitat, to bet-hedge, and to colonize new locations. This paper evaluates the available publications on the effects of acidification on senses and behaviours relevant to dispersal of fish early life-history stages. A large majority of studies tested CO2 values predicted for the middle to end of the century. Larvae of fourteen families—all but two perciform—were studied. However, half of studies used Damselfishes (Pomacentridae, and except for swimming, most studies used settlement-stage larvae or later stages. In spite of these taxonomic and ontogenetic restrictions, all but two studies on sensory function (chemosensation, hearing, vision, detection of estuarine cues found deleterious effects from acidification. The four studies on lateralization and settlement timing all found deleterious effects from acidification. No clear effect of acidification on swimming ability was found. If fish larvae cannot orientate due to sensory dysfunction, their dispersal will, in effect, conform to the passive dispersal paradigm. Modelling incorporating larval behaviour derived from empirical studies indicates that relative to active larvae, passive larvae will have less self-recruitment, higher median and mean dispersal distances, and lower settlement rates: further, bet

  9. Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins.

    Science.gov (United States)

    Wen, Li; Ren, Ziyu; Di Santo, Valentina; Hu, Kainan; Yuan, Tao; Wang, Tianmiao; Lauder, George V

    2018-04-10

    Although linear accelerations are an important common component of the diversity of fish locomotor behaviors, acceleration is one of the least-understood aspects of propulsion. Analysis of acceleration behavior in fishes with both spiny and soft-rayed median fins demonstrates that fin area is actively modulated when fish accelerate. We implemented an undulatory biomimetic robotic fish model with median fins manufactured using multimaterial three-dimensional printing-a spiny-rayed dorsal fin, soft-rayed dorsal/anal fins, and a caudal fin-whose stiffnesses span three orders of magnitude. We used an array of fluidic elastomeric soft actuators to mimic the dorsal/anal inclinator and erector/depressor muscles of fish, which allowed the soft fins to be erected or folded within 0.3 s. We experimentally show that the biomimetic soft dorsal/anal fin can withstand external loading. We found that erecting the soft dorsal/anal fins significantly enhanced the linear acceleration rate, up to 32.5% over the folded fin state. Surprisingly, even though the projected area of the body (in the lateral plane) increased 16.9% when the median fins were erected, the magnitude of the side force oscillation decreased by 24.8%, which may have led to significantly less side-to-side sway in the robotic swimmer. Visualization of fluid flow in the wake of median fins reveals that during linear acceleration, the soft dorsal fin generates a wake flow opposite in direction to that of the caudal fin, which creates propulsive jets with time-variant circulations and jet angles. Erectable/foldable fins provide a new design space for bioinspired underwater robots with structures that morph to adapt to different locomotor behaviors. This biorobotic fish model is also a potentially promising system for studying the dynamics of complex multifin fish swimming behaviors, including linear acceleration, steady swimming, and burst and coast, which are difficult to analyze in freely swimming fishes.

  10. Metabolic effects of exercise in the golden fish Salminus maxillosus "dourado" (Valenciennes, 1849

    Directory of Open Access Journals (Sweden)

    G. Moraes

    Full Text Available Strenuous exercise in fish is usually a consequence of migration, reproduction, and spawning. Varying among fishes, this kind of stress is associated with blood glucose and lactate increase, in relation to which two major groups are distinguishable: the "lactate releasers" and "non-lactate releasers". Unlike strenuous exercise, sustained swimming imposes a variety of effort that results in distinct kinetic types of blood lactate and glucose. Compared to Platichthys stellatus and Oncorhynchus mikyiss, blood lactate of Salminus maxillosus (dourado was lower after exercise, whereas recovery time was greater. Great demands were made of white muscle, and dourado is not a lactate releaser. Two different metabolic tendencies were observed in sustained and intense swimming. Gluconeogenesis was observed during recovery, as well as the alanine cycle which recomposes the lactate tissue pattern. Full recovery after intensive exertion required more than 24 hours.

  11. Is Fish Response related to Velocity and Turbulence Magnitudes? (Invited)

    Science.gov (United States)

    Wilson, C. A.; Hockley, F. A.; Cable, J.

    2013-12-01

    Riverine fish are subject to heterogeneous velocities and turbulence, and may use this to their advantage by selecting regions which balance energy expenditure for station holding whilst maximising energy gain through feeding opportunities. This study investigated microhabitat selection by guppies (Poecilia reticulata) in terms of the three-dimensional velocity structure generated by idealised boulders in an experimental flume. Velocity and turbulence influenced intra-species variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the high velocity and low turbulence region, whereas smaller guppies preferred the low velocity and high shear stress region directly behind the boulders. Male guppies selected the region of low velocity, indicating a possible reduced swimming ability due to hydrodynamic drag imposed by their fins. With increasing parasite (Gyrodactylus turnbulli) burden, fish preferentially selected the region of moderate velocity which had the lowest bulk measure of turbulence of all regions and was also the most spatially homogeneous velocity and turbulence region. Overall the least amount of time was spent in the recirculation zone which had the highest magnitude of shear stresses and mean vertical turbulent length scale to fish length ratio. Shear stresses were a factor of two greater than in the most frequented moderate velocity region, while mean vertical turbulent length scale to fish length ratio were six times greater. Indeed the mean longitudinal turbulent scale was 2-6 times greater than the fish length in all regions. While it is impossible to discriminate between these two turbulence parameters (shear stress and turbulent length to fish length ratio) in influencing the fish preference, our study infers that there is a bias towards fish spending more time in a region where both the bulk

  12. Bioinspiration from fish for smart material design and function

    International Nuclear Information System (INIS)

    Lauder, G V; Madden, P G A; Tangorra, J L; Anderson, E; Baker, T V

    2011-01-01

    Fish are a potentially rich source of inspiration for the design of smart materials. Fish exemplify the use of flexible materials to generate forces during locomotion, and a hallmark of fish functional design is the use of body and fin deformation to power propulsion and maneuvering. As a result of nearly 500 million years of evolutionary experimentation, fish design has a number of interesting features of note to materials engineers. In this paper we first provide a brief general overview of some key features of the mechanical design of fish, and then focus on two key properties of fish: the bilaminar mechanical design of bony fish fin rays that allows active muscular control of curvature, and the role of body flexibility in propulsion. After describing the anatomy of bony fish fin rays, we provide new data on their mechanical properties. Three-point bending tests and measurement of force inputs to and outputs from the fin rays show that these fin rays are effective displacement transducers. Fin rays in different regions of the fin differ considerably in their material properties, and in the curvature produced by displacement of one of the two fin ray halves. The mean modulus for the proximal (basal) region of the fin rays was 1.34 GPa, but this varied from 0.24 to 3.7 GPa for different fin rays. The distal fin region was less stiff, and moduli for the different fin rays measured varied from 0.11 to 0.67 GPa. These data are similar to those for human tendons (modulus around 0.5 GPa). Analysis of propulsion using flexible foils controlled using a robotic flapping device allows investigation of the effect of altering flexural stiffness on swimming speed. Flexible foils with the leading edge moved in a heave show a distinct peak in propulsive performance, while the addition of pitch input produces a broad plateau where the swimming speed is relatively unaffected by the flexural stiffness. Our understanding of the material design of fish and the control of tissue

  13. Structure, biomimetics, and fluid dynamics of fish skin surfaces*

    Science.gov (United States)

    Lauder, George V.; Wainwright, Dylan K.; Domel, August G.; Weaver, James C.; Wen, Li; Bertoldi, Katia

    2016-10-01

    The interface between the fluid environment and the surface of the body in swimming fishes is critical for both physiological and hydrodynamic functions. The skin surface in most species of fishes is covered with bony scales or toothlike denticles (in sharks). Despite the apparent importance of fish surfaces for understanding aquatic locomotion and near-surface boundary layer flows, relatively little attention has been paid to either the nature of surface textures in fishes or possible hydrodynamic effects of variation in roughness around the body surface within an individual and among species. Fish surfaces are remarkably diverse and in many bony fishes scales can have an intricate surface texture with projections, ridges, and comblike extensions. Shark denticles (or scales) are toothlike and project out of the skin to form a complexly textured surface that interacts with free-stream flow. Manufacturing biomimetic foils with fishlike surfaces allows hydrodynamic testing and we emphasize here the importance of dynamic test conditions where the effect of surface textures is assessed under conditions of self-propulsion. We show that simple two-dimensional foils with patterned cuts do not perform as well as a smooth control surface, but that biomimetic shark skin foils can swim at higher self-propelled speeds than smooth controls. When the arrangement of denticles on the foil surface is altered, we find that a staggered-overlapped pattern outperforms other arrangements. Flexible foils made of real shark skin outperform sanded controls when foils are moved with a biologically realistic motion program. We suggest that focus on the mechanisms of drag reduction by fish surfaces has been too limiting and an additional role of fish surface textures may be to alter leading edge vortices and flow patterns on moving surfaces in a way that enhances thrust. Analysis of water flow over an artificial shark skin foil under both static and dynamic conditions shows that a shear layer

  14. A Preliminary Assessment of Barotrauma Injuries and Acclimation Studies for Three Fish Species

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walker, Ricardo W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephenson, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-15

    Fish that pass hydro structures either through turbine passage, deep spill, or other deep pathways can experience rapid decreases in pressure that can result in barotrauma. In addition to morphology and physiology of the fish’s swim bladder, the severity of barotrauma is directly related to the volume of undissolved gas in fish prior to rapid decompression and the lowest pressure the fish experience as they pass hydro structures (termed the “nadir”). The volume of undissolved gas in fish is influenced by the depth of acclimation (the pressure at which the fish is neutrally buoyant); therefore, determining the depth where fish are neutrally buoyant is a critical precursor to determining the relationship between pressure changes and injury or mortality.

  15. Consistent selection towards low activity phenotypes when catchability depends on encounters among human predators and fish.

    Directory of Open Access Journals (Sweden)

    Josep Alós

    Full Text Available Together with life-history and underlying physiology, the behavioural variability among fish is one of the three main trait axes that determines the vulnerability to fishing. However, there are only a few studies that have systematically investigated the strength and direction of selection acting on behavioural traits. Using in situ fish behaviour revealed by telemetry techniques as input, we developed an individual-based model (IBM that simulated the Lagrangian trajectory of prey (fish moving within a confined home range (HR. Fishers exhibiting various prototypical fishing styles targeted these fish in the model. We initially hypothesised that more active and more explorative individuals would be systematically removed under all fished conditions, in turn creating negative selection differentials on low activity phenotypes and maybe on small HR. Our results partly supported these general predictions. Standardised selection differentials were, on average, more negative on HR than on activity. However, in many simulation runs, positive selection pressures on HR were also identified, which resulted from the stochastic properties of the fishes' movement and its interaction with the human predator. In contrast, there was a consistent negative selection on activity under all types of fishing styles. Therefore, in situations where catchability depends on spatial encounters between human predators and fish, we would predict a consistent selection towards low activity phenotypes and have less faith in the direction of the selection on HR size. Our study is the first theoretical investigation on the direction of fishery-induced selection of behaviour using passive fishing gears. The few empirical studies where catchability of fish was measured in relation to passive fishing techniques, such as gill-nets, traps or recreational fishing, support our predictions that fish in highly exploited situations are, on average, characterised by low swimming activity

  16. Morphometric partitioning of the respiratory surface area and diffusion capacity of the gills and swim bladder in juvenile Amazonian air-breathing fish, Arapaima gigas.

    Science.gov (United States)

    Fernandes, Marisa Narciso; da Cruz, André Luis; da Costa, Oscar Tadeu Ferreira; Perry, Steven Franklin

    2012-09-01

    The gills and the respiratory swim bladders of juvenile specimens (mean body mass 100g) of the basal teleost Arapaima gigas (Cuvier 1829) were evaluated using stereological methods in vertical sections. The surface areas, harmonic mean barrier thicknesses and morphometric diffusing capacities for oxygen and carbon dioxide were estimated. The average respiratory surface area of the swim bladder (2173 cm² kg⁻¹) exceeded that of the gills (780 cm² kg⁻¹) by a factor of 2.79. Due to the extremely thin air-blood barrier in the swim bladder (harmonic mean 0.22 μm) and the much thicker water-blood barrier of the gills (9.61 μm), the morphometric diffusing capacity for oxygen and carbon dioxide was 88 times greater in the swim bladder than in the gills. These data clearly indicate the importance of the swim bladder, even in juvenile A. gigas that still engage in aquatic respiration. Because of the much greater diffusion constant of CO₂ than O₂ in water, the gills also remain important for CO₂ release. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Radio Controlled Fish Robot RR-9

    OpenAIRE

    Cifanskis, S; Vība, J; Jakuševičs, V

    2015-01-01

    A remote-controlled underwater robot fish is described. For motion control three actuator drives are used: one actuator is for tail frequency exchange, the second actuator is for the left or right turnings and the third actuator provides neutral swimming or up and down diving. From the robot's center of mass motion theorem (according to the given total mass of robot) the proportional distribution of massesof structural elements is found. Experimental indoor and out...

  18. Anisotropic swim stress in active matter with nematic order

    Science.gov (United States)

    Yan, Wen; Brady, John F.

    2018-05-01

    Active Brownian particles (ABPs) transmit a swim pressure {{{\\Pi }}}{{swim}}=n\\zeta {D}{{swim}} to the container boundaries, where ζ is the drag coefficient, D swim is the swim diffusivity and n is the uniform bulk number density far from the container walls. In this work we extend the notion of the isotropic swim pressure to the anisotropic tensorial swim stress {{\\boldsymbol{σ }}}{{swim}}=-n\\zeta {{\\boldsymbol{D}}}{{swim}}, which is related to the anisotropic swim diffusivity {{\\boldsymbol{D}}}{{swim}}. We demonstrate this relationship with ABPs that achieve nematic orientational order via a bulk external field. The anisotropic swim stress is obtained analytically for dilute ABPs in both 2D and 3D systems. The anisotropy, defined as the ratio of the maximum to the minimum of the three principal stresses, is shown to grow exponentially with the strength of the external field. We verify that the normal component of the anisotropic swim stress applies a pressure {{{\\Pi }}}{{swim}}=-({{\\boldsymbol{σ }}}{{swim}}\\cdot {\\boldsymbol{n}})\\cdot {\\boldsymbol{n}} on a wall with normal vector {\\boldsymbol{n}}, and, through Brownian dynamics simulations, this pressure is shown to be the force per unit area transmitted by the active particles. Since ABPs have no friction with a wall, the difference between the normal and tangential stress components—the normal stress difference—generates a net flow of ABPs along the wall, which is a generic property of active matter systems.

  19. Swimming Pools and Molluscum Contagiosum

    Science.gov (United States)

    ... Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections Poxvirus Swimming Pools Recommend on Facebook Tweet Share Compartir The ... often ask if molluscum virus can spread in swimming pools. There is also concern that it can ...

  20. Thin Layer Sensory Cues Affect Antarctic Krill Swimming Kinematics

    Science.gov (United States)

    True, A. C.; Webster, D. R.; Weissburg, M. J.; Yen, J.

    2013-11-01

    A Bickley jet (laminar, planar free jet) is employed in a recirculating flume system to replicate thin shear and phytoplankton layers for krill behavioral assays. Planar laser-induced fluorescence (LIF) and particle image velocimetry (PIV) measurements quantify the spatiotemporal structure of the chemical and free shear layers, respectively, ensuring a close match to in situ hydrodynamic and biochemical conditions. Path kinematics from digitized trajectories of free-swimming Euphausia superba examine the effects of hydrodynamic sensory cues (deformation rate) and bloom level phytoplankton patches (~1000 cells/mL, Tetraselamis spp.) on krill behavior (body orientation, swimming modes and kinematics, path fracticality). Krill morphology is finely tuned for receiving and deciphering both hydrodynamic and chemical information that is vital for basic life processes such as schooling behaviors, predator/prey, and mate interactions. Changes in individual krill behavior in response to ecologically-relevant sensory cues have the potential to produce population-scale phenomena with significant ecological implications. Krill are a vital trophic link between primary producers (phytoplankton) and larger animals (seabirds, whales, fish, penguins, seals) as well as the subjects of a valuable commercial fishery in the Southern Ocean; thus quantifying krill behavioral responses to relevant sensory cues is an important step towards accurately modeling Antarctic ecosystems.

  1. Swimming strategy and body plan of the world’s largest fish: implications for foraging efficiency and thermoregulation

    Directory of Open Access Journals (Sweden)

    Mark eMeekan

    2015-09-01

    Full Text Available The largest animals in the oceans eat prey that are orders of magnitude smaller than themselves, implying strong selection for cost-effective foraging to meet their energy demands. Whale sharks (Rhincodon typus may be especially challenged by warm seas that elevate their metabolism and contain sparse prey resources. Using a combination of biologging and satellite tagging, we show that whale sharks use four strategies to save energy and improve foraging efficiency: 1 fixed, low power swimming, 2 constant low speed swimming, 3 gliding and 4 asymmetrical diving. These strategies increase foraging efficiency by 22 – 32% relative to swimming horizontally and resolve the energy-budget paradox of whale sharks. However, sharks in the open ocean must access food resources that reside in relatively cold waters (up to 20oC cooler than the surface at depths of 250-500 m during the daytime, where long, slow gliding descents, continuous ram ventilation of the gills and filter-feeding could rapidly cool the circulating blood and body tissues. We suggest that whale sharks may overcome this problem through their large size and a specialized body plan that isolates highly vascularized red muscle on the dorsal surface, allowing heat to be retained near the centre of the body within a massive core of white muscle. This could allow a warm-adapted species to maintain enhanced function of organs and sensory systems while exploiting food resources in deep, cool water.

  2. Acquired versus innate prey capturing skills in super-precocial live-bearing fish

    NARCIS (Netherlands)

    Lankheet, Martin J.; Stoffers, Twan; Leeuwen, van Johan L.; Pollux, Bart J.A.

    2016-01-01

    Live-bearing fish start hunting for mobile prey within hours after birth, an example of extreme precociality. Because prenatal, in utero, development of this behaviour is constrained by the lack of free-swimming sensory-motor interactions, immediate success after birth depends on innate,

  3. Effect of ectoparasite infestation density and life history stages on the swimming performance of Atlantic salmon Salmo salar

    Directory of Open Access Journals (Sweden)

    Samantha Bui

    2016-06-01

    Full Text Available To overcome sustainability obstacles and improve operations, the Atlantic salmon farming industry is testing novel approaches to production. Redistributing farm sites to offshore locations is one such solution; however, tolerance to high-current velocity sites must be considered, particularly if fish health status is compromised by parasites. We tested the effect of parasite density and life-history stage on the swimming performance of Atlantic salmon Salmo salar using a swim flume. Salmon with 3 different salmon lice Lepeophtheirus salmonis densities (0, 0.02 � 0.01 and 0.11 � 0.01 lice cm-2 [mean � SE] were tested across the 4 major life-history stages of lice (copepodid, chalimus, pre-adult and adult for critical swimming performance (Ucrit. Salmon Ucrit declined slightly by a mean of 0.04 to 0.10 body lengths s-1 with high parasite densities compared to uninfested and low densities, across the lice stages, while progression through the parasite life-history stages had little effect on swimming performance. Our results suggest that increasing infestation density of salmon lice incurs negative fitness consequences for farmed Atlantic salmon held in high-current velocity sites, with little difference in costs associated with attachment by different life-history stages of the lice.

  4. First known feeding trace of the eocene bottom-dwelling fish Notogoneus osculus and its paleontological significance.

    Directory of Open Access Journals (Sweden)

    Anthony J Martin

    Full Text Available BACKGROUND: The Green River Formation (early Eocene, about 42-53 Ma at and near Fossil Butte National Monument in Wyoming, USA, is world famous for its exquisitely preserved freshwater teleost fish in the former Fossil Lake. Nonetheless, trace fossils attributed to fish interacting with the lake bottom are apparently rare, and have not been associated directly with any fish species. Here we interpret the first known feeding and swimming trace fossil of the teleost Notogoneus osculus Cope (Teleostei: Gonorynchidae, which is also represented as a body fossil in the same stratum. METHODOLOGY/PRINCIPAL FINDINGS: A standard description of the trace fossil, identified as Undichna cf. U. simplicatas, was augmented by high-resolution digital images and spatial and mathematical analyses, which allowed for detailed interpretations of the anatomy, swimming mode, feeding behavior, and body size of the tracemaker. Our analysis indicates that the tracemaker was about 45 cm long; used its caudal, anal, and pelvic fins (the posterior half of its body to make the swimming traces; and used a ventrally oriented mouth to make overlapping feeding marks. We hypothesize that the tracemaker was an adult Notogoneus osculus. CONCLUSIONS/SIGNIFICANCE: Our results are the first to link a specific teleost tracemaker with a trace fossil from the Green River Formation, while also interpreting the size and relative age of the tracemaker. The normal feeding and swimming behaviors indicated by the trace fossil indicate temporarily oxygenated benthic conditions in the deepest part of Fossil Lake, counter to most paleoecological interpretations of this deposit. Lastly, our spatial and mathematical analyses significantly update and advance previous approaches to the study of teleost trace fossils.

  5. SWISTRACK - AN OPEN SOURCE, SOFTWARE PACKAGE APPLICABLE TO TRACKING OF FISH LOCOMOTION AND BEHAVIOUR

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2010-01-01

    including swimming speed, acceleration and directionality of movements as well as the examination of locomotory panems during swimming. SWiSlrdL:k, a [n: t; and downloadable software package (available from www.sourceforge.com) is widely used for tracking robots, humans and other animals. Accordingly......, Swistrack can be easily adopted for the tracking offish. Benefits associated with the free software include: • Contrast or marker based tracking enabling tracking of either the whole animal, or tagged marks placed upon the animal • The ability to track multiple tags placed upon an individual animal • Highly...... effective background subtraction algorithms and filters ensuring smooth tracking of fish • Application of tags of different colour enables the software to track multiple fish without the problem of track exchange between individuals • Low processing requirements enable tracking in real-time • Further...

  6. 2012 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  7. Kinematics of swimming and thrust production during powerstroking bouts of the swim frenzy in green turtle hatchlings

    Directory of Open Access Journals (Sweden)

    David T. Booth

    2014-09-01

    Full Text Available Hatchling sea turtles emerge from nests, crawl down the beach and enter the sea where they typically enter a stereotypical hyperactive swimming frenzy. During this swim the front flippers are moved up and down in a flapping motion and are the primary source of thrust production. I used high-speed video linked with simultaneous measurement of thrust production in tethered hatchlings, along with high-speed video of free swimming hatchlings swimming at different water speeds in a swim flume to investigate the links between kinematics of front flipper movement, thrust production and swimming speed. In particular I tested the hypotheses that (1 increased swimming speed is achieved through an increased stroke rate; (2 force produced per stroke is proportional to stroke amplitude, (3 that forward thrust is produced during both the down and up phases of stroking; and (4 that peak thrust is produced towards the end of the downstroke cycle. Front flipper stroke rate was independent of water speed refuting the hypothesis that swimming speed is increased by increasing stroke rate. Instead differences in swimming speed were caused by a combination of varying flipper amplitude and the proportion of time spent powerstroking. Peak thrust produced per stroke varied within and between bouts of powerstroking, and these peaks in thrust were correlated with both flipper amplitude and flipper angular momentum during the downstroke supporting the hypothesis that stroke force is a function of stroke amplitude. Two distinct thrust production patterns were identified, monophasic in which a single peak in thrust was recorded during the later stages of the downstroke, and biphasic in which a small peak in thrust was recorded at the very end of the upstroke and this followed by a large peak in thrust during the later stages of the downstroke. The biphasic cycle occurs in ∼20% of hatchlings when they first started swimming, but disappeared after one to two hours of

  8. Prey capture by freely swimming flagellates

    Science.gov (United States)

    Andersen, Anders; Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas

    2017-11-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. Here, we explore the dependence of swimming kinematics and prey clearance rate on flagellar arrangement and determine optimal flagellar arrangements and essential trade-offs. To describe near-cell flows around freely swimming flagellates we consider a model in which the cell is represented by a no-slip sphere and each flagellum by a point force. For uniflagellates pulled by a single flagellum the model suggests that a long flagellum favors fast swimming, whereas high clearance rate is favored by a very short flagellum. For biflagellates with both a longitudinal and a transversal flagellum we explore the helical swimming kinematics and the prey capture sites. We compare our predictions with observations of swimming kinematics, prey capture, and flows around common marine flagellates. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  9. Labriform propulsion in fishes: kinematics of flapping aquatic flight in the bird wrasse Gomphosus varius (Labridae)

    Science.gov (United States)

    Walker; Westneat

    1997-01-01

    Labriform, or pectoral fin, propulsion is the primary swimming mode for many fishes, even at high relative speeds. Although kinematic data are critical for evaluating hydrodynamic models of propulsion, these data are largely lacking for labriform swimmers, especially for species that employ an exclusively labriform mode across a broad range of speeds. We present data on pectoral fin locomotion in Gomphosus varius (Labridae), a tropical coral reef fish that uses a lift-based mechanism to fly under water at sustained speeds of 1­6 total body lengths s-1 (TL s-1). Lateral- and dorsal-view video images of three fish swimming in a flow tank at 1­4 TL s-1 were recorded at 60 Hz. From the two views, we reconstructed the three-dimensional motion of the center of mass, the fin tip and two fin chords for multiple fin beats of each fish at each of four speeds. In G. varius, the fin oscillates largely up and down: the stroke plane is tilted by approximately 20 ° from the vertical. Both frequency and the area swept by the pectoral fins increase with swimming speed. Interestingly, there are individual differences in how this area increases. Relative to the fish, the fin tip in lateral view moves along the path of a thin, inclined figure-of-eight. Relative to a stationary observer, the fin tip traces a sawtooth pattern, but the teeth are recumbent (indicating net backwards movement) only at the slowest speeds. Distal fin chords pitch nose downward during the downstroke and nose upward during the upstroke. Hydrodynamic angles of attack are largely positive during the downstroke and negative during the upstroke. The geometry of the fin and incident flow suggests that the fin is generating lift with large upward and small forward components during the downstroke. The negative incident angles during the upstroke suggest that the fin is generating largely thrust during the upstroke. In general, the large thrust is combined with a downward force during the upstroke, but the net

  10. Investigation of gliding flight by flying fish

    Science.gov (United States)

    Park, Hyungmin; Jeon, Woo-Pyung; Choi, Haecheon

    2006-11-01

    The most successful flight capability of fish is observed in the flying fish. Furthermore, despite the difference between two medium (air and water), the flying fish is well evolved to have an excellent gliding performance as well as fast swimming capability. In this study, flying fish's morphological adaptation to gliding flight is experimentally investigated using dry-mounted darkedged-wing flying fish, Cypselurus Hiraii. Specifically, we examine the effects of the pectoral and pelvic fins on the aerodynamic performance considering (i) both pectoral and pelvic fins, (ii) pectoral fins only, and (iii) body only with both fins folded. Varying the attack angle, we measure the lift, drag and pitching moment at the free-stream velocity of 12m/s for each case. Case (i) has higher lift-to-drag ratio (i.e. longer gliding distance) and more enhanced longitudinal static stability than case (ii). However, the lift coefficient is smaller for case (i) than for case (ii), indicating that the pelvic fins are not so beneficial for wing loading. The gliding performance of flying fish is compared with those of other fliers and is found to be similar to those of insects such as the butterfly and fruitfly.

  11. Molecular fingerprinting of the myxozoan community in common carp suffering Swim Bladder Inflammation (SBI) identifies multiple etiological agents

    Czech Academy of Sciences Publication Activity Database

    Holzer, Astrid S.; Hartigan, Ashlie; Patra, Sneha; Pecková, Hana; Eszterbauer, E.

    2014-01-01

    Roč. 7, AUG 28 2014 (2014), s. 398 ISSN 1756-3305 R&D Projects: GA AV ČR(CZ) M200961205; GA ČR GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Cyprinus carpio carpio * swim bladder inflammation * fish disease * Myxozoa * molecular diagnostic * rDNA * in situ hybridisation Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.430, year: 2014

  12. Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins.

    Science.gov (United States)

    Behbahani, Sanaz Bazaz; Tan, Xiaobo

    2016-05-04

    In this paper a novel flexible joint is proposed for robotic fish pectoral fins, which enables a swimming behavior emulating the fin motions of many aquatic animals. In particular, the pectoral fin operates primarily in the rowing mode, while undergoing passive feathering during the recovery stroke to reduce hydrodynamic drag on the fin. The latter enables effective locomotion even with symmetric base actuation during power and recovery strokes. A dynamic model is developed to facilitate the understanding and design of the joint, where blade element theory is used to calculate the hydrodynamic forces on the pectoral fins, and the joint is modeled as a paired torsion spring and damper. Experimental results on a robotic fish prototype are presented to illustrate the effectiveness of the joint mechanism, validate the proposed model, and indicate the utility of the proposed model for the optimal design of joint depth and stiffness in achieving the trade-off between swimming speed and mechanical efficiency.

  13. Geneva 24 hours swim

    CERN Document Server

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  14. Geneva 24 Hours Swim

    CERN Document Server

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  15. Optimal swimming strategies in mate searching pelagic copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2008-01-01

    Male copepods must swim to find females, but swimming increases the risk of meeting predators and is expensive in terms of energy expenditure. Here I address the trade-offs between gains and risks and the question of how much and how fast to swim using simple models that optimise the number...... of lifetime mate encounters. Radically different swimming strategies are predicted for different feeding behaviours, and these predictions are tested experimentally using representative species. In general, male swimming speeds and the difference in swimming speeds between the genders are predicted...... and observed to increase with increasing conflict between mate searching and feeding. It is high in ambush feeders, where searching (swimming) and feeding are mutually exclusive and low in species, where the matured males do not feed at all. Ambush feeding males alternate between stationary ambush feeding...

  16. Swimming efficiency in a shear-thinning fluid

    Science.gov (United States)

    Nganguia, Herve; Pietrzyk, Kyle; Pak, On Shun

    2017-12-01

    Micro-organisms expend energy moving through complex media. While propulsion speed is an important property of locomotion, efficiency is another factor that may determine the swimming gait adopted by a micro-organism in order to locomote in an energetically favorable manner. The efficiency of swimming in a Newtonian fluid is well characterized for different biological and artificial swimmers. However, these swimmers often encounter biological fluids displaying shear-thinning viscosities. Little is known about how this nonlinear rheology influences the efficiency of locomotion. Does the shear-thinning rheology render swimming more efficient or less? How does the swimming efficiency depend on the propulsion mechanism of a swimmer and rheological properties of the surrounding shear-thinning fluid? In this work, we address these fundamental questions on the efficiency of locomotion in a shear-thinning fluid by considering the squirmer model as a general locomotion model to represent different types of swimmers. Our analysis reveals how the choice of surface velocity distribution on a squirmer may reduce or enhance the swimming efficiency. We determine optimal shear rates at which the swimming efficiency can be substantially enhanced compared with the Newtonian case. The nontrivial variations of swimming efficiency prompt questions on how micro-organisms may tune their swimming gaits to exploit the shear-thinning rheology. The findings also provide insights into how artificial swimmers should be designed to move through complex media efficiently.

  17. Robotic Fish to Aid Animal Behavior Studies and Informal Science Learning

    Science.gov (United States)

    Phamduy, Paul

    The application of robotic fish in the fields of animal behavior and informal science learning are new and relatively untapped. In the context of animal behavior studies, robotic fish offers a consistent and customizable stimulus that could contribute to dissect the determinants of social behavior. In the realm of informal science learning, robotic fish are gaining momentum for the possibility of educating the general public simultaneously on fish physiology and underwater robotics. In this dissertation, the design and development of a number of robotic fish platforms and prototypes and their application in animal behavioral studies and informal science learning settings are presented. Robotic platforms for animal behavioral studies focused on the utilization replica or same scale prototypes. A novel robotic fish platform, featuring a three-dimensional swimming multi-linked robotic fish, was developed with three control modes varying in the level of robot autonomy offered. This platform was deployed at numerous science festivals and science centers, to obtain data on visitor engagement and experience.

  18. Free Swimming in Ground Effect

    Science.gov (United States)

    Cochran-Carney, Jackson; Wagenhoffer, Nathan; Zeyghami, Samane; Moored, Keith

    2017-11-01

    A free-swimming potential flow analysis of unsteady ground effect is conducted for two-dimensional airfoils via a method of images. The foils undergo a pure pitching motion about their leading edge, and the positions of the body in the streamwise and cross-stream directions are determined by the equations of motion of the body. It is shown that the unconstrained swimmer is attracted to a time-averaged position that is mediated by the flow interaction with the ground. The robustness of this fluid-mediated equilibrium position is probed by varying the non-dimensional mass, initial conditions and kinematic parameters of motion. Comparisons to the foil's fixed-motion counterpart are also made to pinpoint the effect that free swimming near the ground has on wake structures and the fluid-mediated forces over time. Optimal swimming regimes for near-boundary swimming are determined by examining asymmetric motions.

  19. PIT-tagging method for small fishes: A case study using sandeel ( Ammodytes tobianus )

    DEFF Research Database (Denmark)

    Jørgensen, Michelle Grace Pinto; Deurs, Mikael van; Butts, Ian

    2017-01-01

    Passive integrated transponder (PIT) tags are commonly used to assess fish movement for use in fisheries management. Here, we investigated physiological and behavioral effects of tagging on sandeels (Ammodytes tobianus) using PIT tags constituting 2.1 ± 0.9% of their body weight. Swimming stamina...

  20. Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones.

    Science.gov (United States)

    McLean, David L; Fetcho, Joseph R

    2009-10-28

    Studies of neuronal networks have revealed few general principles that link patterns of development with later functional roles. While investigating the neural control of movements, we recently discovered a topographic map in the spinal cord of larval zebrafish that relates the position of motoneurons and interneurons to their order of recruitment during swimming. Here, we show that the map reflects an orderly pattern of differentiation of neurons driving different movements. First, we use high-speed filming to show that large-amplitude swimming movements with bending along much of the body appear first, with smaller, regional swimming movements emerging later. Next, using whole-cell patch recordings, we demonstrate that the excitatory circuits that drive large-amplitude, fast swimming movements at larval stages are present and functional early on in embryos. Finally, we systematically assess the orderly emergence of spinal circuits according to swimming speed using transgenic fish expressing the photoconvertible protein Kaede to track neuronal differentiation in vivo. We conclude that a simple principle governs the development of spinal networks in which the neurons driving the fastest, most powerful swimming in larvae develop first with ones that drive increasingly weaker and slower larval movements layered on over time. Because the neurons are arranged by time of differentiation in the spinal cord, the result is a topographic map that represents the speed/strength of movements at which neurons are recruited and the temporal emergence of networks. This pattern may represent a general feature of neuronal network development throughout the brain and spinal cord.

  1. Quality versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches.

    Science.gov (United States)

    Nugent, Frank J; Comyns, Thomas M; Warrington, Giles D

    2017-06-01

    The debate over low-volume, high-intensity training versus high-volume, low-intensity training, commonly known as Quality versus Quantity, respectively, is a frequent topic of discussion among swimming coaches and academics. The aim of this study was to explore expert coaches' perceptions of quality and quantity coaching philosophies in competitive swimming and to investigate their current training practices. A purposeful sample of 11 expert swimming coaches was recruited for this study. The study was a mixed methods design and involved each coach participating in 1 semi-structured interview and completing 1 closed-ended questionnaire. The main findings of this study were that coaches felt quality training programmes would lead to short term results for youth swimmers, but were in many cases more appropriate for senior swimmers. The coaches suggested that quantity training programmes built an aerobic base for youth swimmers, promoted technical development through a focus on slower swimming and helped to enhance recovery from training or competition. However, the coaches continuously suggested that quantity training programmes must be performed with good technique and they felt this was a misunderstood element. This study was a critical step towards gaining a richer and broader understanding on the debate over Quality versus Quantity training from an expert swimming coaches' perspective which was not currently available in the research literature.

  2. Quality Versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches

    Directory of Open Access Journals (Sweden)

    Nugent Frank J.

    2017-06-01

    Full Text Available The debate over low-volume, high-intensity training versus high-volume, low-intensity training, commonly known as Quality versus Quantity, respectively, is a frequent topic of discussion among swimming coaches and academics. The aim of this study was to explore expert coaches’ perceptions of quality and quantity coaching philosophies in competitive swimming and to investigate their current training practices. A purposeful sample of 11 expert swimming coaches was recruited for this study. The study was a mixed methods design and involved each coach participating in 1 semi-structured interview and completing 1 closed-ended questionnaire. The main findings of this study were that coaches felt quality training programmes would lead to short term results for youth swimmers, but were in many cases more appropriate for senior swimmers. The coaches suggested that quantity training programmes built an aerobic base for youth swimmers, promoted technical development through a focus on slower swimming and helped to enhance recovery from training or competition. However, the coaches continuously suggested that quantity training programmes must be performed with good technique and they felt this was a misunderstood element. This study was a critical step towards gaining a richer and broader understanding on the debate over Quality versus Quantity training from an expert swimming coaches’ perspective which was not currently available in the research literature.

  3. A male hooded merganser swims in the waters of KSC

    Science.gov (United States)

    1999-01-01

    The distinctive fan-shaped, black-bordered crest and striped breast identify this hooded merganser, swimming in the waters of the Merritt Island National Wildlife Refuge at Kennedy Space Center. Usually found from Alaska and Canada south to Nebraska, Oregon and Tennessee, hooded mergansers winter south to Mexico and the Gulf Coast, including KSC. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000-acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.

  4. Data from: Acquired versus innate prey capturing skills in super-precocial live-bearing fish

    NARCIS (Netherlands)

    Lankheet, M.J.M.; Stoffers, Twan; Leeuwen, van J.L.; Pollux, B.J.A.

    2016-01-01

    Live-bearing fish start hunting for mobile prey within hours after birth, an example of extreme precociality. Because prenatal, in utero, development of this behaviour is constrained by the lack of free-swimming sensory-motor interactions, immediate success after birth depends on innate,

  5. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata)

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Banet, Amanda I.; Christensen, Rune Haubo Bojesen

    2013-01-01

    by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, MO2std or Ucrit. In contrast, data revealed strong...... swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming...

  6. Studies on water turbine runner which fish can pass through: In case of single stage axial runner

    International Nuclear Information System (INIS)

    Shimizu, Yukimari; Maeda, Takao; Nagoshi, Osamu; Ieda, Kazuma; Shinma, Hisako; Hagimoto, Michiko

    1994-01-01

    The relationship between water turbine runner design and operation and the safe passage of fish through the turbine is studied. The kinds of fish used in the tests are a dace, a sweet fish and a small salmon. A single stage axial runner is used. The velocity and pressure distributions were measured inside the turbine casing and along the casing wall. Many pictures showing fish passing through the rotating runner were taken and analyzed. The swimming speed of the fish was examined from video recordings. Fish pass through the runner more rapidly when they can determine and choose the easier path. Injury and mortality of fish are affected by the runner speed and the location of impact of the runner on the fish body

  7. Krill (Meganyctiphanes norvegica) swim faster at night

    KAUST Repository

    Klevjer, Thor A.

    2011-05-01

    Krill are key members in marine food webs, and measurement of swimming speed is vital to assess their bioenergetic budgets, feeding, and encounters with predators. We document a consistent and marked diel signal in swimming speed of krill in their natural habitat that is not related to diel vertical migration. The results were obtained using a bottom-mounted, upward-looking echo sounder at 150-m depth in the Oslofjord, Norway, spanning 5 months from late autumn to spring at a temporal resolution of ~1–2 records s−1. Swimming speed was assessed using acoustic target tracking of individual krill. At the start of the registration period, both daytime and nocturnal average swimming speeds of Meganyctiphanes norvegica were ~ 3.5 cm s−1 (~ 1 body lengths ([bl] s−1) in waters with oxygen concentrations of ~ 15–20% O2 saturation. Following intrusion of more oxygenated water, nocturnal average swimming speeds increased to ~ 10 cm s−1 (~ 3 bl s−1), i.e., more than double that of daytime swimming speeds in the same period. We hypothesize that krill activity during the first period was limited by oxygen, and the enhanced swimming at night subsequent to the water renewal is due to increased feeding activity under lessened danger of predation in darkness.

  8. Krill (Meganyctiphanes norvegica) swim faster at night

    KAUST Repository

    Klevjer, Thor A.; Kaartvedt, Stein

    2011-01-01

    Krill are key members in marine food webs, and measurement of swimming speed is vital to assess their bioenergetic budgets, feeding, and encounters with predators. We document a consistent and marked diel signal in swimming speed of krill in their natural habitat that is not related to diel vertical migration. The results were obtained using a bottom-mounted, upward-looking echo sounder at 150-m depth in the Oslofjord, Norway, spanning 5 months from late autumn to spring at a temporal resolution of ~1–2 records s−1. Swimming speed was assessed using acoustic target tracking of individual krill. At the start of the registration period, both daytime and nocturnal average swimming speeds of Meganyctiphanes norvegica were ~ 3.5 cm s−1 (~ 1 body lengths ([bl] s−1) in waters with oxygen concentrations of ~ 15–20% O2 saturation. Following intrusion of more oxygenated water, nocturnal average swimming speeds increased to ~ 10 cm s−1 (~ 3 bl s−1), i.e., more than double that of daytime swimming speeds in the same period. We hypothesize that krill activity during the first period was limited by oxygen, and the enhanced swimming at night subsequent to the water renewal is due to increased feeding activity under lessened danger of predation in darkness.

  9. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  10. Swimming in an Unsteady World

    Science.gov (United States)

    Koehl, M. A. R.

    2016-02-01

    When animals swim in marine habitats, the water through which they move is usually flowing. Therefore, an important part of understanding the physics of how animals swim in nature is determining how they interact with the fluctuating turbulent water currents in their environment. The research systems we have been using to address this question are microscopic marine animals swimming in turbulent, wavy water flow over spatially-complex communities of organisms growing on surfaces. Field measurements of water motion were used to design realistic turbulent flow in a laboratory wave-flume over different substrata, particle-image velocimetry was used to measure fine-scale, rapidly-varying water velocity vector fields, and planar laser-induced fluorescence was used to measure concentrations of chemical cues from the substratum. We used individual-based models of small animals swimming in this unsteady flow to determine how their trajectories and contacts with substrata were affected by their locomotion through the water, rotation by local shear, response to odors, and transport by ambient flow. We found that the shears, accelerations, and odor concentrations encountered by small swimmers fluctuate rapidly, with peaks much higher than mean values lasting fractions of a second. We identified ways in which the behavior of small, weak swimmers can bias how they are transported by ambient flow (e.g. sinking during brief encounters with shear or odor enhances settlement onto substrata below, whereas constant swimming enhances contact with surfaces above or beside larvae). Although microscopic organisms swim slowly relative to ambient water flow, their locomotory behavior in response to the rapidly-fluctuating shears and odors they encounter can affect where they are transported by ambient water movement.

  11. Sexual ornaments, body morphology, and swimming performance in naturally hybridizing swordtails (teleostei: xiphophorus.

    Directory of Open Access Journals (Sweden)

    James B Johnson

    Full Text Available Determining the costs of sexual ornaments is complicated by the fact that ornaments are often integrated with other, non-sexual traits, making it difficult to dissect the effect of ornaments independent of other aspects of the phenotype. Hybridization can produce reduced phenotypic integration, allowing one to evaluate performance across a broad range of multivariate trait values. Here we assess the relationship between morphology and performance in the swordtails Xiphophorus malinche and X. birchmanni, two naturally-hybridizing fish species that differ extensively in non-sexual as well as sexual traits. We took advantage of novel trait variation in hybrids to determine if sexual ornaments incur a cost in terms of locomotor ability. For both fast-start and endurance swimming, hybrids performed at least as well as the two parental species. The sexually-dimorphic sword did not impair swimming performance per se. Rather, the sword negatively affected performance only when paired with a sub-optimal body shape. Studies seeking to quantify the costs of ornaments should consider that covariance with non-sexual traits may create the spurious appearance of costs.

  12. Salmon jumping: behavior, kinematics and optimal conditions, with possible implications for fish passageway design

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, D V; Jordan, L K; Gordon, M S [Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606 (United States); Hertel, F S, E-mail: dlauritz@ccsf.ed, E-mail: fritz.hertel@csun.ed, E-mail: msgordon@ucla.ed, E-mail: ljordan@ucla.ed [Department of Biology, California State University-Northridge, Northridge, CA 91330 (United States)

    2010-09-15

    Behavioral and kinematic properties and capacities of wild migratory salmonid fishes swimming upstream and jumping up waterfalls generally have played only minor roles in the design and construction of passageways intended to help these fishes get past dams and other human-made obstacles blocking their movements. This paper reports the results of an experimental study of relevant behavioral and kinematic properties of adult kokanee salmon (Oncorhynchus nerka) jumping up waterfalls as they migrate upstream. We used a portable, adjustable apparatus to study in the field fish responding to artificial waterfalls under a range of flow conditions. We observed fish under conditions of varying water flow rates, pool depths, fall heights and fall angles. We analyzed digital video recordings of their behaviors. Kokanee salmon spontaneously jump up waterfalls within a relatively narrow range of conditions, including low flow speeds, near vertical angles and pool depth to fall height ratios near 1.0. Preferred values for each parameter are, to some extent, dependent on other parameters. In contrast to previous misconceptions, jumping behavior is initiated by running S-start accelerations from beneath the boils formed in the plunge pools below waterfalls, as opposed to C-start standing jumps from the surface. S-starts are immediately followed by burst swimming to the point of takeoff at the surface. These results can contribute to an improved basis for developing designs of fish passageways that may ultimately make them more effective and efficient.

  13. Salmon jumping: behavior, kinematics and optimal conditions, with possible implications for fish passageway design

    International Nuclear Information System (INIS)

    Lauritzen, D V; Jordan, L K; Gordon, M S; Hertel, F S

    2010-01-01

    Behavioral and kinematic properties and capacities of wild migratory salmonid fishes swimming upstream and jumping up waterfalls generally have played only minor roles in the design and construction of passageways intended to help these fishes get past dams and other human-made obstacles blocking their movements. This paper reports the results of an experimental study of relevant behavioral and kinematic properties of adult kokanee salmon (Oncorhynchus nerka) jumping up waterfalls as they migrate upstream. We used a portable, adjustable apparatus to study in the field fish responding to artificial waterfalls under a range of flow conditions. We observed fish under conditions of varying water flow rates, pool depths, fall heights and fall angles. We analyzed digital video recordings of their behaviors. Kokanee salmon spontaneously jump up waterfalls within a relatively narrow range of conditions, including low flow speeds, near vertical angles and pool depth to fall height ratios near 1.0. Preferred values for each parameter are, to some extent, dependent on other parameters. In contrast to previous misconceptions, jumping behavior is initiated by running S-start accelerations from beneath the boils formed in the plunge pools below waterfalls, as opposed to C-start standing jumps from the surface. S-starts are immediately followed by burst swimming to the point of takeoff at the surface. These results can contribute to an improved basis for developing designs of fish passageways that may ultimately make them more effective and efficient.

  14. Do fish have rights in artisanal fisheries?

    Directory of Open Access Journals (Sweden)

    Mustapha MK

    2013-09-01

    Full Text Available Artisanal fishers in developing world are unaware that fish are capable of suffering or discomfort, though researches have shown that fish do feel pain. Five fish welfare domains have been identified which constitute their rights in their environment. The needs of wild fish are usually provided in their natural, undisturbed and unperturbed aquatic environment, of which the fish will prefer. However, various anthropogenic activities by humans (including artisanal fisheries itself and some natural perturbations in the watershed, riparian zone, water body of the fish habitat and on the fish tend to take away these needs thereby compromising the fish welfare. These activities include environmental degradation, boat/canoe building, use of motorized engine boats/canoes, use of active and passive fishing gears, obnoxious cultural, religious and social fishing practices, fish harvesting, handling and processing among others. One way to understand the welfare needs of an individual fish is to understand its biology. Poor welfare conditions could then be assessed by how far the individual fish has deviated from the normal conditions. Non-intrusive signs based on the health, behavior, morphological anomalies, swimming, reduction in population and growth, outbreak of parasitic infections, injuries and loss of condition can be used to assess fish whose welfare has been compromised. Artisanal fishers should not only be concerned with catch, but, also the welfare of the fish being caught. This is because if the welfare of the fish is compromised, it is going to definitely affect the catch. As indispensable as fish is to humans, humans should not derive its pleasure at the expense of fish suffering. Human activities that impinge on the welfare of wild fish may not necessarily be stopped, but at least minimized in order to have continued sustainable artisanal exploitation of the fisheries.

  15. Analysis of Sport Nutrition and Diet for Swimming Athletes

    OpenAIRE

    Jun An

    2014-01-01

    This current study analyzed nutrition and dietary structure of swimming athletes to clarify issues in nutrition and dietary structure of swimming athletes, based on which we designed achievable nutrition and diet strategies to equip the swimming athletes with the tools to achieve an adequate sport nutrition which helps them improve results. Firstly, we collected literatures about nutrition and diet of swimming athletes. Secondly, 40 swimming athletes were assigned to the test group and the co...

  16. Improved Lighthill fish swimming model for bio-inspired robots - Modelling, computational aspects and experimental comparisons.

    OpenAIRE

    Porez , Mathieu; Boyer , Frédéric; Ijspeert , Auke

    2014-01-01

    International audience; The best known analytical model of swimming was originally developed by Lighthill and is known as large amplitude elongated body theory (LAEBT). Recently, this theory has been improved and adapted to robotics through a series of studies [Boyer et al., 2008, 2010; Candelier et al., 2011] ranging from hydrodynamic modelling to mobile multibody system dynamics. This article marks a further step towards the Lighthill theory. The LAEBT is ap- plied to one of the best bio-in...

  17. Trophic Groups Of Demersal Fish Of Santos Bay And Adjacent Continental Shelf, São Paulo State, Brazil: Temporal And Spatial Comparisons

    Directory of Open Access Journals (Sweden)

    Elizabeti Y. Muto

    2014-07-01

    Full Text Available The temporal and spatial variations of feeding habits and trophic groups of demersal fish species of Santos Bay and the adjacent continental shelf were investigated. The samples were taken in September 2005 and March 2006 by bottom otter trawling. The stomach content analysis of 2,328 specimens of 49 species showed most fish fed on a large range of food items but relied heavily on shrimp, crabs/swimming-crabs, amphipods, mysids, polychaetes, ophiuroids, squids, and teleosteans. The species were classified into ten trophic groups. Shrimp were an important food source in the Santos bay and inner shelf, while ophiuroids were important prey for predators of the middle shelf. Many species relied on crabs/swimming-crabs during the summer, especially on the middle shelf. The spatial and temporal variability in food resource utilization by fish were related to the pattern of distribution and abundance of their prey. The predation on shrimp and crabs/swimming-crabs seems to be related to the water mass dynamics of the region. Intraspecific comparisons demonstrated that most of the species display spatial and/or temporal variation in their diet. The demersal ichtyofauna can also be divided into the more general categories of piscivores, nektonic invertebrate feeders, benthic invertebrate feeders and planktonic invertebrate feeders.

  18. THE IMPACT OF TECHNICAL ABILITY TO SWIMMING PERFORMANCE OF THE MIXED SWIMMING AT 100m IN COLLEGE FASTO

    Directory of Open Access Journals (Sweden)

    Elvira Beganović

    2011-08-01

    Full Text Available The aim of this study was to determine the impact of technical ability to swim (the starting point, the techniques and turns, within each of these techniques of swimming (freestyle, backstroke, breaststroke and butterfly marked as input or predictor variables, the performance of mixed swimming in the 100m, marked as output or criterion variable. The study was conducted on a sample of 31 students, females, aged from 20-24 years, with the help of the testing (assessment, technical skills of swimming (start, the techniques and turns: OCJKSTR, OCJKTEH, OCJKOKR, OCJLSTR, OCJLTEH, OCJLOKR, OCJPSTR, OCJPTEH, OCJPOKR, OCJDSTR, OCJDTEH, OCJDOKR and mixed swimming in the 100m (OCJPM100, the following order: butterfly, back, breaststroke, freestyle. Analyzing the presented results of regression analysis can be stated that after testing (assessment of all predictor system statistically the most significant impact on the criterion variable had the following variables: assessment techniques freestyle (OCJKTEH, evaluation of starting breast stroke (OCJPSTR and assessment of breast stroke turns (OCJPOKR.

  19. (Important hygienic aspects for swimming pools (author's transl))

    Energy Technology Data Exchange (ETDEWEB)

    Somosi, G

    1981-01-01

    The major epidemics which occurred in Hungary and originated from water in swimming pools are reported. The difficulties encountered in producing epidemiological evidence and in monitoring infections originating from water in swimming pools are mentioned. The possibilities of controlling the water quality in swimming pools and of preventing infections are discussed. Reference is made to the existing bacteriological limit values in Hungary to be observed in the recirculation of water in swimming pools.

  20. Exercise-training intervention studies in competitive swimming.

    Science.gov (United States)

    Aspenes, Stian Thoresen; Karlsen, Trine

    2012-06-01

    Competitive swimming has a long history and is currently one of the largest Olympic sports, with 16 pool events. Several aspects separate swimming from most other sports such as (i) the prone position; (ii) simultaneous use of arms and legs for propulsion; (iii) water immersion (i.e. hydrostatic pressure on thorax and controlled respiration); (iv) propulsive forces that are applied against a fluctuant element; and (v) minimal influence of equipment on performance. Competitive swimmers are suggested to have specific anthropometrical features compared with other athletes, but are nevertheless dependent on physiological adaptations to enhance their performance. Swimmers thus engage in large volumes of training in the pool and on dry land. Strength training of various forms is widely used, and the energetic systems are addressed by aerobic and anaerobic swimming training. The aim of the current review was to report results from controlled exercise training trials within competitive swimming. From a structured literature search we found 17 controlled intervention studies that covered strength or resistance training, assisted sprint swimming, arms-only training, leg-kick training, respiratory muscle training, training the energy delivery systems and combined interventions across the aforementioned categories. Nine of the included studies were randomized controlled trials. Among the included studies we found indications that heavy strength training on dry land (one to five repetitions maximum with pull-downs for three sets with maximal effort in the concentric phase) or sprint swimming with resistance towards propulsion (maximal pushing with the arms against fixed points or pulling a perforated bowl) may be efficient for enhanced performance, and may also possibly have positive effects on stroke mechanics. The largest effect size (ES) on swimming performance was found in 50 m freestyle after a dry-land strength training regimen of maximum six repetitions across three

  1. From Fishing to Fish Processing: Separation of Fish from Crustaceans in the Norway Lobster-Directed Multispecies Trawl Fishery Improves Seafood Quality.

    Directory of Open Access Journals (Sweden)

    Junita D Karlsen

    Full Text Available Fishing gears have negative impacts on seafood quality, especially on fish in the mixed trawl fishery targeting Norway lobster (Nephrops norvegicus. In this fishery, which is worth about €80 millions in Denmark alone, the quality of fish can be significantly improved by simple gear changes. A trawl codend divided into an upper and lower codend was designed to separate fish from Norway lobster during the fishing process by encourage fish to swim into the upper codend by using a frame at the entrance of the lower codend. Separate codends for fish and Norway lobster in the same gear provide the opportunity to selectively reduce small low-value fish, which will reduce catch weight and sorting time onboard the vessel. For this horizontally divided test codend and a standard codend, in which the catch was mixed, quality assessments were performed on the same batches of fish during three steps of the value chain: i aboard the fishing vessel; ii at the Fishermen's Collection Central, and iii in the production plant. Four species of fish and fillets from fish caught in the upper codend of the test codend were of significantly better quality for several of the assessed parameters compared with those caught in the standard codend: i newly caught fish showed significantly less scale loss and discolourations and had significantly better texture; ii landed fish had significantly better skin appearance and texture and significantly fewer discolourations; and iii fillets showed significantly fewer blood spots and had significantly better texture. There were no differences in injuries for newly caught fish or gaping and bruises for fillets between the test and standard codends. The decrease in catch-related damages in the test codend is explained by little contact between fish and animals with hard or spiny surfaces due to successful separation of fish and Norway lobster into the upper and lower codends, respectively, and by lower catch weight in the upper

  2. Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies

    Science.gov (United States)

    Tytell, Eric D.

    Engineers and biologists have long desired to compare propulsive performance for fishes and underwater vehicles of different sizes, shapes, and modes of propulsion. Ideally, such a comparison would be made on the basis of either propulsive efficiency, total power output or both. However, estimating the efficiency and power output of self-propelled bodies, and particularly fishes, is methodologically challenging because it requires an estimate of thrust. For such systems traveling at a constant velocity, thrust and drag are equal, and can rarely be separated on the basis of flow measured in the wake. This problem is demonstrated using flow fields from swimming American eels, Anguilla rostrata, measured using particle image velocimetry (PIV) and high-speed video. Eels balance thrust and drag quite evenly, resulting in virtually no wake momentum in the swimming (axial) direction. On average, their wakes resemble those of self-propelled jet propulsors, which have been studied extensively. Theoretical studies of such wakes may provide methods for the estimation of thrust separately from drag. These flow fields are compared with those measured in the wakes of rainbow trout, Oncorhynchus mykiss, and bluegill sunfish, Lepomis macrochirus. In contrast to eels, these fishes produce wakes with axial momentum. Although the net momentum flux must be zero on average, it is neither spatially nor temporally homogeneous; the heterogeneity may provide an alternative route for estimating thrust. This review shows examples of wakes and velocity profiles from the three fishes, indicating challenges in estimating efficiency and power output and suggesting several routes for further experiments. Because these estimates will be complicated, a much simpler method for comparing performance is outlined, using as a point of comparison the power lost producing the wake. This wake power, a component of the efficiency and total power, can be estimated in a straightforward way from the flow

  3. Comparative jet wake structure and swimming performance of salps.

    Science.gov (United States)

    Sutherland, Kelly R; Madin, Laurence P

    2010-09-01

    Salps are barrel-shaped marine invertebrates that swim by jet propulsion. Morphological variations among species and life-cycle stages are accompanied by differences in swimming mode. The goal of this investigation was to compare propulsive jet wakes and swimming performance variables among morphologically distinct salp species (Pegea confoederata, Weelia (Salpa) cylindrica, Cyclosalpa sp.) and relate swimming patterns to ecological function. Using a combination of in situ dye visualization and particle image velocimetry (PIV) measurements, we describe properties of the jet wake and swimming performance variables including thrust, drag and propulsive efficiency. Locomotion by all species investigated was achieved via vortex ring propulsion. The slow-swimming P. confoederata produced the highest weight-specific thrust (T=53 N kg(-1)) and swam with the highest whole-cycle propulsive efficiency (eta(wc)=55%). The fast-swimming W. cylindrica had the most streamlined body shape but produced an intermediate weight-specific thrust (T=30 N kg(-1)) and swam with an intermediate whole-cycle propulsive efficiency (eta(wc)=52%). Weak swimming performance variables in the slow-swimming C. affinis, including the lowest weight-specific thrust (T=25 N kg(-1)) and lowest whole-cycle propulsive efficiency (eta(wc)=47%), may be compensated by low energetic requirements. Swimming performance variables are considered in the context of ecological roles and evolutionary relationships.

  4. EFFECTIVENESS OF DOUBLE WASH SWIM-UP VERSUS DOUBLE DENSITY GRADIENT SWIM-UP TECHNIQUE OF SPERM PREPARATION IN IN VITRO FERTILISATION

    Directory of Open Access Journals (Sweden)

    Srinivas Sangisapu

    2017-10-01

    Full Text Available BACKGROUND Recovery of optimum number of good quality of spermatozoa is an important component of In Vitro Fertilisation (IVF. This is achieved by sperm preparation methods involving separation and recovery of capacitated sperms. Double Wash Swim-up (DWSU and Double Density Gradient Swim-up (DDGSU are two most accepted methods. Cochrane systematic review (2007 finds no clear benefit of one method over the other in Intrauterine Insemination (IUI. Systematic review on effectiveness of these preparations in IVF is lacking. Effectiveness is generally assessed in terms recovery rates of the sperms. Capability of successful fertilisation of good quality oocytes should ideally be the functional endpoint for evaluating effectiveness of sperm preparation methods. The aim of the study is to1. Compare the successful fertilisation rates of oocytes inseminated by semen preparation of Double Wash Swim-up (DWSU vis-a-vis by Double Density Gradient Swim-up (DDGSU method. 2. Evaluate the effectiveness of fertilisation of oocytes by Double Wash Swim-up method (DWSU vis-a-vis Double Density Gradient Swim-up (DDGSU method. MATERIALS AND METHODS A retrospective cohort study was conducted on infertile couples undergoing IVF from June 2014 to June 2017 at an ART Centre of a tertiary care hospital. The male partners were normozoospermic and female partners were normoresponsive to controlled ovarian stimulation and oocyte retrieval. RESULTS 70 male partners were subjected to double wash swim-up and 64 underwent double density gradient swim-up preparation. 1296 good quality oocytes were retrieved in their respective female partners. 452 (61% out of 742 oocytes were successfully fertilised after insemination by semen prepared by DWSU method. 378 (68% oocytes out of 554 were fertilised by insemination with semen prepared by DDGSU method. There seems to be strong association (RR=1.12 of fertilisation success with oocytes exposed to semen prepared by Double Density Gradient

  5. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    Directory of Open Access Journals (Sweden)

    Chintan A Trivedi

    2013-05-01

    Full Text Available Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed towards the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim-triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.

  6. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    Science.gov (United States)

    Trivedi, Chintan A.; Bollmann, Johann H.

    2013-01-01

    Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback. PMID:23675322

  7. Critical evaluation of oxygen-uptake assessment in swimming.

    Science.gov (United States)

    Sousa, Ana; Figueiredo, Pedro; Pendergast, David; Kjendlie, Per-Ludvik; Vilas-Boas, João P; Fernandes, Ricardo J

    2014-03-01

    Swimming has become an important area of sport science research since the 1970s, with the bioenergetic factors assuming a fundamental performance-influencing role. The purpose of this study was to conduct a critical evaluation of the literature concerning oxygen-uptake (VO2) assessment in swimming, by describing the equipment and methods used and emphasizing the recent works conducted in ecological conditions. Particularly in swimming, due to the inherent technical constraints imposed by swimming in a water environment, assessment of VO2max was not accomplished until the 1960s. Later, the development of automated portable measurement devices allowed VO2max to be assessed more easily, even in ecological swimming conditions, but few studies have been conducted in swimming-pool conditions with portable breath-by-breath telemetric systems. An inverse relationship exists between the velocity corresponding to VO2max and the time a swimmer can sustain it at this velocity. The energy cost of swimming varies according to its association with velocity variability. As, in the end, the supply of oxygen (whose limitation may be due to central-O2 delivery and transportation to the working muscles-or peripheral factors-O2 diffusion and utilization in the muscles) is one of the critical factors that determine swimming performance, VO2 kinetics and its maximal values are critical in understanding swimmers' behavior in competition and to develop efficient training programs.

  8. Swimming and feeding of mixotrophic biflagellates

    DEFF Research Database (Denmark)

    Dölger, Julia; Nielsen, Lasse Tor; Kiørboe, Thomas

    2017-01-01

    Many unicellular flagellates are mixotrophic and access resources through both photosynthesis and prey capture. Their fitness depends on those processes as well as on swimming and predator avoidance. How does the flagellar arrangement and beat pattern of the flagellate affect swimming speed...... with variable position next to a no-slip sphere. Utilizing the observations and the model we find that puller force arrangements favour feeding, whereas equatorial force arrangements favour fast and quiet swimming. We determine the capture rates of both passive and motile prey, and we show that the flow...

  9. A female hooded merganser swims in the waters of KSC

    Science.gov (United States)

    1999-01-01

    A female hooded merganser swims solo in the waters of the Merritt Island National Wildlife Refuge at Kennedy Space Center. The male is distinguished by a fan-shaped, black-bordered crest and striped breast. Usually found from Alaska and Canada south to Nebraska, Oregon and Tennessee, hooded mergansers winter south to Mexico and the Gulf Coast, including KSC. The open water of the refuge provides wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds. The 92,000-acre refuge is also habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.

  10. Kick, Stroke and Swim: Complement Your Swimming Program by Engaging the Whole Body on Dry Land and in the Pool

    Science.gov (United States)

    Flynn, Susan; Duell, Kelly; Dehaven, Carole; Heidorn, Brent

    2017-01-01

    The Kick, Stroke and Swim (KSS) program can be used to engage students in swimming-skill acquisition and fitness training using a variety of modalities, strategies and techniques on dry land. Practicing swim strokes and techniques on land gives all levels of swimmers--from beginner to competitive--a kinesthetic awareness of the individual…

  11. Transitions between three swimming gaits in Paramecium escape.

    Science.gov (United States)

    Hamel, Amandine; Fisch, Cathy; Combettes, Laurent; Dupuis-Williams, Pascale; Baroud, Charles N

    2011-05-03

    Paramecium and other protists are able to swim at velocities reaching several times their body size per second by beating their cilia in an organized fashion. The cilia beat in an asymmetric stroke, which breaks the time reversal symmetry of small scale flows. Here we show that Paramecium uses three different swimming gaits to escape from an aggression, applied in the form of a focused laser heating. For a weak aggression, normal swimming is sufficient and produces a steady swimming velocity. As the heating amplitude is increased, a higher acceleration and faster swimming are achieved through synchronized beating of the cilia, which begin by producing oscillating swimming velocities and later give way to the usual gait. Finally, escape from a life-threatening aggression is achieved by a "jumping" gait, which does not rely on the cilia but is achieved through the explosive release of a group of trichocysts in the direction of the hot spot. Measurements through high-speed video explain the role of trichocysts in defending against aggressions while showing unexpected transitions in the swimming of microorganisms. These measurements also demonstrate that Paramecium optimizes its escape pattern by taking advantage of its inertia.

  12. Earth-strength magnetic field affects the rheotactic threshold of zebrafish swimming in shoals.

    Science.gov (United States)

    Cresci, Alessandro; De Rosa, Rosario; Putman, Nathan F; Agnisola, Claudio

    2017-02-01

    Rheotaxis, the unconditioned orienting response to water currents, is a main component of fish behavior. Rheotaxis is achieved using multiple sensory systems, including visual and tactile cues. Rheotactic orientation in open or low-visibility waters might also benefit from the stable frame of reference provided by the geomagnetic field, but this possibility has not been explored before. Zebrafish (Danio rerio) form shoals living in freshwater systems with low visibility, show a robust positive rheotaxis, and respond to geomagnetic fields. Here, we investigated whether a static magnetic field in the Earth-strength range influenced the rheotactic threshold of zebrafish in a swimming tunnel. The direction of the horizontal component of the magnetic field relative to water flow influenced the rheotactic threshold of fish as part of a shoal, but not of fish tested alone. Results obtained after disabling the lateral line of shoaling individuals with Co 2+ suggest that this organ system is involved in the observed magneto-rheotactic response. These findings constitute preliminary evidence that magnetic fields influence rheotaxis and suggest new avenues for further research. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Different behavioural responses of larval fish under microgravity and morphological correlates in the inner ear -a drop-tower study

    Science.gov (United States)

    Hilbig, Reinhard; Weigele, Jochen; Knie, Miriam; Hendrik Anken, Ralf

    In vertebrates altered gravitational environments such as weightlessness (microgravity, g) in-duce changes in central and peripheral interpretation of sensory input leading to alterations in motor behaviour (e.g., intersensory-conflicts) including space motion sickness, a sensory motor kinetosis normally accompanied by malaise and vomiting. In fish it had been repeatedly shown that some fish of a given batch reveal motion sickness after transition from hypergravity (pull up) to microgravity microgravity in the course of parabolic aircraft flight (PF= low quality microgravity = LQM) experiments or in the case of drop tower experiments at ZARM (Bre-men) immediately after release of the capsule. The drop-tower studies were designed to further elucidate the role of otolith asymmetry concerning an individually different susceptibility to kinetoses. In order to test, whether the differing results between the PF and the drop-tower experiment were based exclusively on the differing quality of diminished gravity, or, if further parameters of the PF and the drop-tower environment need to be taken into consideration (e.g., vibrations and changing accelerations during PFs or the brisk compression of the drop-capsule at its release) to explain the differing results, drop-tower flights were performed at a series of increasing accelerations, by centrifugation in the drop capsule. This simulation of "differ-ent micro" gravity was carried out in housing larval cichlid fish (Oreochromis mossambicus) within a centrifuge at high quality microgravity 10-6g (HQM) and 10-4g to 0.3g during the drop-tower flights. The percentual ratios of the swimming behaviour at drop-tower changed significantly according to the increasing acceleration force of the centrifuge during flight. With increasing acceleration (= detectable gravity for fish) the relative proportion of looping an d spinning movements decreased in favour of normal swimming an at 0.3g nearly no kinetotic behaviour was observed. When

  14. SWIMMING CLASSES IN JUNIOR HIGH SCHOOL STUDENTS’ OPINION

    Directory of Open Access Journals (Sweden)

    Grzegorz Bielec

    2013-02-01

    Full Text Available The role of modern physical education is not only to develop motor abilities of the students, but most of all prevent them from epidemic youth diseases such as obesity or postural defects. Positive attitudes to swimming as a long-life physical activity, instilled in adolescence should be beneficial in adult life. The group of 130 boys and 116 girls of 7th grade junior high school (mean age 14.6 was asked in the survey to present their opinion of obligatory swimming lessons at school. Students of both sexes claimed that they liked swimming classes because they could improve their swimming skills (59% of answers and because of health-related character of water exercises (38%. 33% of students regarded swimming lessons as boring and monotonous, and 25% of them complained about poor pool conditions like chlorine smell, crowded lanes, too low temperature. Majority of the surveyed students saw practical role of swimming in saving others life.

  15. Water Evaporation in Swimming Baths

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are repres......This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which...... are represented in instructions for carrying out and running swimming baths. If you follow the instructions you can achieve less investments, less heat consumption and a better comfort to the bathers....

  16. CREATINE SUPPLEMENTATION AND SWIM PERFORMANCE: A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Melissa J. Hopwood

    2006-03-01

    Full Text Available Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle

  17. Health impact of disinfection by-products in swimming pools

    Directory of Open Access Journals (Sweden)

    Cristina M. Villanueva

    2012-12-01

    Full Text Available This article is focused on the epidemiological evidence on the health impacts related to disinfection by-products (DBPs in swimming pools, which is a chemical hazard generated as an undesired consequence to reduce the microbial pathogens. Specific DBPs are carcinogenic, fetotoxic and/or irritant to the airways according to experimental studies. Epidemiological evidence shows that swimming in pools during pregnancy is not associated with an increased risk of reproductive outcomes. An epidemiological study suggested an increased risk of bladder cancer with swimming pool attendance, although evidence is inconclusive. A higher prevalence of respiratory symptoms including asthma is found among swimming pool workers and elite swimmers, although the causality of this association is unclear. The body of evidence in children indicates that asthma is not increased by swimming pool attendance. Overall, the available knowledge suggests that the health benefits of swimming outweigh the potential health risks of chemical contamination. However, the positive effects of swimming should be enhanced by minimising potential risks.

  18. Effects of offshore wind power on the pelagic fish; Effekter av havsbaserad vindkraft paa pelagisk fisk

    Energy Technology Data Exchange (ETDEWEB)

    Axenrot, Thomas (SLU, Institutionen foer Akvatiska Resurser, Soetvattenlaboratoriet (Sweden)); Didrikas, Tomas (AquaBiota Water Research AB (Sweden); Stockholms universitet (Sweden))

    2012-02-15

    Marine wind parks are being planned for and built in coastal and shallow offshore areas in response to an increasing demand for renewable energy. Today's knowledge is limited about possible effects on fish from habitat change and generated underwater sound when wind parks are running. There may also be consequences for the fishery. Studies on fish hearing have shown that many fishes hear low frequency sound like that produced by wind turbines. This study consists of two parts. The first part of the study investigated pelagic fish abundance and spatial distribution at one wind park and two reference areas (200 m to 10 km distance from fundaments) at five different occasions from 2005 through 2007 in the Kalmar Sound of the Baltic Sea. The highest fish densities was found in the most remote reference area. The difference between areas was statistically significant for fish of the size groups 30-80 mm (stickleback), 80-140 mm (sprat, small herring) and 140-250 mm (adult herring). For fish >250 mm, representing cod and salmon, no statistically significant difference between areas was observed. For one group (sticklebacks) Area was significantly pointed out as the most important factor for the observed differences in fish density. No data on fish densities in the investigated areas were collected before the wind park (Utgrunden 1) was built which is a drawback to this part of the study. The second part of the study focused on possible effects of underwater sound generated by wind turbines on fish behaviour in the close vicinity of the fundaments (2-35 m distance). Stationary horizontal acoustics was used to estimate fish abundance and swimming speed in relation to turbine rotor speed and electricity production. The changes of abundance were not consistent and difficult to interpret. Fish swimming speed decreased with increasing turbine rotor speed and electricity production. However, it cannot be distinguished if this was an effect of sound emitted by wind turbines

  19. Swimming dynamics of bidirectional artificial flagella

    NARCIS (Netherlands)

    Namdeo, S.; Khaderi, S. N.; Onck, P. R.

    2013-01-01

    We study magnetic artificial flagella whose swimming speed and direction can be controlled using light and magnetic field as external triggers. The dependence of the swimming velocity on the system parameters (e. g., length, stiffness, fluid viscosity, and magnetic field) is explored using a

  20. The hydrodynamics of swimming microorganisms

    International Nuclear Information System (INIS)

    Lauga, Eric; Powers, Thomas R

    2009-01-01

    Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies.

  1. Hydrodynamic attraction of swimming microorganisms by surfaces

    OpenAIRE

    Berke, Allison P.; Turner, Linda; Berg, Howard C.; Lauga, Eric

    2008-01-01

    Cells swimming in confined environments are attracted by surfaces. We measure the steady-state distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to their re-orientation in the direction parallel to the surfaces, as well as their attraction by the c...

  2. Zebrafish swimming in the flow: a particle image velocimetry study

    Directory of Open Access Journals (Sweden)

    Violet Mwaffo

    2017-11-01

    Full Text Available Zebrafish is emerging as a species of choice for the study of a number of biomechanics problems, including balance development, schooling, and neuromuscular transmission. The precise quantification of the flow physics around swimming zebrafish is critical toward a mechanistic understanding of the complex swimming style of this fresh-water species. Although previous studies have elucidated the vortical structures in the wake of zebrafish swimming in placid water, the flow physics of zebrafish swimming against a water current remains unexplored. In an effort to illuminate zebrafish swimming in a dynamic environment reminiscent of its natural habitat, we experimentally investigated the locomotion and hydrodynamics of a single zebrafish swimming in a miniature water tunnel using particle image velocimetry. Our results on zebrafish locomotion detail the role of flow speed on tail beat undulations, heading direction, and swimming speed. Our findings on zebrafish hydrodynamics offer a precise quantification of vortex shedding during zebrafish swimming and demonstrate that locomotory patterns play a central role on the flow physics. This knowledge may help clarify the evolutionary advantage of burst and cruise swimming movements in zebrafish.

  3. Quiet swimming at low Reynolds number

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Wadhwa, Navish; Kiørboe, Thomas

    2015-01-01

    The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode that elim......The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode...... that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic organisms, we demonstrate that a three......-Stokeslet model of a swimming organism which uses breast stroke type kinematics is an example of such a quiet swimmer. We show that the fluid disturbance in both the near field and the far field is significantly reduced by appropriately arranging the propulsion apparatus, and we find that the far field power laws...

  4. The fluid dynamics of swimming by jumping in copepods

    DEFF Research Database (Denmark)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-01-01

    Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic...... limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming...... kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods...

  5. Swimming of Paramecium in confined channels

    Science.gov (United States)

    Jung, Sunghwan

    2012-02-01

    Many living organisms in nature have developed a few different swimming modes, presumably derived from hydrodynamic advantage. Paramecium is a ciliated protozoan covered by thousands of cilia with a few nanometers in diameter and tens of micro-meters in length and is able to exhibit both ballistic and meandering motions. First, we characterize ballistic swimming behaviors of ciliated microorganisms in glass capillaries of different diameters and explain the trajectories they trace out. We develop a theoretical model of an undulating sheet with a pressure gradient and discuss how it affects the swimming speed. Secondly, investigation into meandering swimmings within rectangular PDMS channels of dimension smaller than Paramecium length. We find that Paramecium executes a body-bend (an elastic buckling) using the cilia while it meanders. By considering an elastic beam model, we estimate and show the universal profile of forces it exerts on the walls. Finally, we discuss a few other locomotion of Paramecium in other extreme environments like gel.

  6. The Fluid Dynamics of Competitive Swimming

    Science.gov (United States)

    Wei, Timothy; Mark, Russell; Hutchison, Sean

    2014-01-01

    Nowhere in sport is performance so dependent on the interaction of the athlete with the surrounding medium than in competitive swimming. As a result, understanding (at least implicitly) and controlling (explicitly) the fluid dynamics of swimming are essential to earning a spot on the medal stand. This is an extremely complex, highly multidisciplinary problem with a broad spectrum of research approaches. This review attempts to provide a historical framework for the fluid dynamics-related aspects of human swimming research, principally conducted roughly over the past five decades, with an emphasis on the past 25 years. The literature is organized below to show a continuous integration of computational and experimental technologies into the sport. Illustrations from the authors' collaborations over a 10-year period, coupling the knowledge and experience of an elite-level coach, a lead biomechanician at USA Swimming, and an experimental fluid dynamicist, are intended to bring relevance and immediacy to the review.

  7. The role of students’ self-confidence in relation with swimming routines, frequency, and tutor in swimming class

    Science.gov (United States)

    Hartoto, S.; Khory, F. D.; Prakoso, B. B.

    2018-01-01

    It is compulsory for prospective physical education teachers to have the ability to perform swimming. The average of students’ passing in swimming class has reached 72%. Most students who failed to pass the class are those who have had aquaphobia, the condition in which one failed to perceive a situation in a positive and objective, some of which are hard to detect. This perception may come from past experience and it could diminish students’ confidence. Furthermore, the lack of confidence in students may cause unsatisfactory learning results. Therefore it is critical for the teachers to have a comprehensive knowledge of their students’ past experience in formulating a lesson. This research used descriptive qualitative approach. The aim of this article is to investigate the correlation between students’ confidence level and swimming routines, frequency, and tutors in order to succeed swimming class. This article will attempt to describe the results of a research conducted to 139 students of Department of Sport Education Universitas Negeri Surabaya as prospective physical education teachers in Indonesia who took swimming class. Past experience and confidence level are measured by a questionnaire. The results of the research show that students who have a higher level of confidence are those who follow practice routines with adequate frequency and helped by a compatible tutor.

  8. Effect of inertia on laminar swimming and flying of an assembly of rigid spheres in an incompressible viscous fluid

    Science.gov (United States)

    Felderhof, B. U.

    2015-11-01

    A mechanical model of swimming and flying in an incompressible viscous fluid in the absence of gravity is studied on the basis of assumed equations of motion. The system is modeled as an assembly of rigid spheres subject to elastic direct interactions and to periodic actuating forces which sum to zero. Hydrodynamic interactions are taken into account in the virtual mass matrix and in the friction matrix of the assembly. An equation of motion is derived for the velocity of the geometric center of the assembly. The mean power is calculated as the mean rate of dissipation. The full range of viscosity is covered, so that the theory can be applied to the flying of birds, as well as to the swimming of fish or bacteria. As an example a system of three equal spheres moving along a common axis is studied.

  9. Comparison of physical fitness tests in swimming

    OpenAIRE

    Dostálová, Sabina

    2015-01-01

    Title: Comparison of physical fitness tests in swimming. Objective: The aim of this thesis is to evaluate specific tests, used while testing selected physical abilities in swimming. By specific tests we mean tests realized in the water. Selected tests are intended for swim coaches, who train junior to senior age groups. Methods: The chosen method was a comparison of studies, that pursue selected specific tests. We created partial conclusions for every test by summing up the results of differe...

  10. Biophysical processes leading to the ingress of temperate fish larvae into estuarine nursery areas: a review

    Czech Academy of Sciences Publication Activity Database

    Teodósio, M. A.; Paris, C. B.; Wolanski, E.; Morais, Pedro Miguel

    2016-01-01

    Roč. 183, A (2016), s. 187-202 ISSN 0272-7714 R&D Projects: GA ČR GA13-05872S Institutional support: RVO:68081766 Keywords : fish larvae * sense acuity * orientation * swimming strategies * recruitment model Subject RIV: EG - Zoology Impact factor: 2.176, year: 2016

  11. Effects of exercise training and coronary ablation on swimming performance, heart size, and cardiac enzymes in rainbow trout, Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    FARRELL, AP; JOHANSEN, JA; STEFFENSEN, JF

    1990-01-01

    Rainbow trout, Oncorhynchus mykiss, were exercise trained for 28-52 days. Trained fish were 13% larger and swam 12% faster in an aerobic swimming test. Training induced cardiac growth that was isometric with body growth, since ventricle mass relative to body mass was constant. The proportions...... of compact and spongy myocardia in the ventricle were also unchanged by training. Trained fish had significantly higher levels of citrate synthase, ß-hydroxyacyl CoA dehydrogenase, and hexokinase in both compact and spongy myocardium. Ligation of a 0.5- to 1.0-cm section of the coronary artery produced only...... a temporary interruption of coronary flow to the compact myocardium because new vessels grew around the ligation site in the majority of fish during the 28- to 52-day experiment. Nonetheless, coronary ligation resulted in a significantly smaller (17%) proportion of compact myocardium with lower levels...

  12. Reproductive-tactic-specific variation in sperm swimming speeds in a shell-brooding cichlid.

    Science.gov (United States)

    Fitzpatrick, J L; Desjardins, J K; Milligan, N; Montgomerie, R; Balshine, S

    2007-08-01

    Theory predicts that males experiencing elevated levels of sperm competition will invest more in gonads and produce faster-swimming sperm. Although there is ample evidence in support of the first prediction, few studies have examined sperm swimming speed in relation to sperm competition. In this study, we tested these predictions from sperm competition theory by examining sperm characteristics in Telmatochromis vittatus, a small shell-brooding cichlid fish endemic to Lake Tanganyika. Males exhibit four different reproductive tactics: pirate, territorial, satellite, and sneaker. Pirate males temporarily displace all other competing males from a shell nest, whereas sneaker males always release sperm in the presence of territorial and satellite males. Due to the fact that sneakers spawn in the presence of another male, sneakers face the highest levels of sperm competition and pirates the lowest, whereas satellites and territorials experience intermediate levels. In accordance with predictions, sperm from sneakers swam faster than sperm from males adopting the other reproductive tactics, whereas sperm from pirates was slowest. Interestingly, we were unable to detect any variation in sperm tail length among these reproductive tactics. Thus, sperm competition appears to have influenced sperm energetics in this species without having any influence on sperm size.

  13. Effect of boat noise and angling on lake fish behaviour

    DEFF Research Database (Denmark)

    Jacobsen, Lene; Baktoft, Henrik; Jepsen, Niels

    2014-01-01

    or (2) boating in short intervals combined with angling with artificial lures between engine runs. The response of the fish species was evaluated by high-resolution tracking using an automatic acoustic telemetry system and transmitters with sub-minute burst rates. Rutilus rutilus swimming speed......The effects of disturbances from recreational activities on the swimming speed and habitat use of roach Rutilus rutilus, perch Perca fluviatilis and pike Esox lucius were explored. Disturbances were applied for 4h as (1) boating in short intervals with a small outboard internal combustion engine...... the two types of disturbances (boating with and without angling), indicating that boating was the primary source of disturbance. This study highlights species-specific responses to recreational boating and may have implications for management of human recreational activities in lakes...

  14. Laryngoscopy during swimming: A novel diagnostic technique to characterize swimming-induced laryngeal obstruction.

    Science.gov (United States)

    Walsted, Emil S; Swanton, Laura L; van van Someren, Ken; Morris, Tessa E; Furber, Matthew; Backer, Vibeke; Hull, James H

    2017-10-01

    Exercise-induced laryngeal obstruction (EILO) is a key differential diagnosis for respiratory symptoms in athletes and is particularly prevalent in aquatic athletes. A definitive diagnosis of EILO is dependent on laryngoscopy, performed continuously, while an athlete engages in the sport that precipitates their symptoms. This report provides the first description of the feasibility of performing continuous laryngoscopy during exercise in a swimming environment. The report describes the methodology and safety of the use of continuous laryngoscopy while swimming. Laryngoscope, 127:2298-2301, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  15. The Effect of Concurrent Visual Feedback on Controlling Swimming Speed

    Directory of Open Access Journals (Sweden)

    Szczepan Stefan

    2016-03-01

    Full Text Available Introduction. Developing the ability to control the speed of swimming is an important part of swimming training. Maintaining a defined constant speed makes it possible for the athlete to swim economically at a low physiological cost. The aim of this study was to determine the effect of concurrent visual feedback transmitted by the Leader device on the control of swimming speed in a single exercise test. Material and methods. The study involved a group of expert swimmers (n = 20. Prior to the experiment, the race time for the 100 m distance was determined for each of the participants. In the experiment, the participants swam the distance of 100 m without feedback and with visual feedback. In both variants, the task of the participants was to swim the test distance in a time as close as possible to the time designated prior to the experiment. In the first version of the experiment (without feedback, the participants swam the test distance without receiving real-time feedback on their swimming speed. In the second version (with visual feedback, the participants followed a beam of light moving across the bottom of the swimming pool, generated by the Leader device. Results. During swimming with visual feedback, the 100 m race time was significantly closer to the time designated. The difference between the pre-determined time and the time obtained was significantly statistically lower during swimming with visual feedback (p = 0.00002. Conclusions. Concurrently transmitting visual feedback to athletes improves their control of swimming speed. The Leader device has proven useful in controlling swimming speed.

  16. Swimming-pool piles; Piles piscines

    Energy Technology Data Exchange (ETDEWEB)

    Trioulaire, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10{sup 13}. This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [French] En France, deux piles piscines, Melusine et Triton, viennent d'entrer en service. La pile piscine est l'outil de recherche ideal pour des flux de neutrons de l'ordre de 10{sup 13}. Ce type de pile peut interesser des maintenant de nombreux centres de recherches mais il faut reduire son prix de revient et rompre avec le conformisme de sa conception. Il y a avantage: - a enterrer la piscine; - a supprimer les canaux experimentaux; - a concentrer le circuit de refrigeration dans la piscine; - a effectuer toutes les manipulations dans l'eau; - a doubler le coeur. (auteur)

  17. Why you should ask your patients about their fishing hobbies.

    Science.gov (United States)

    Bakker, C V; Kardaun, S H; Wilting, K R; Diercks, G F H; Horváth, B

    2013-09-01

    Patients who use immunosuppressive agents, in particular medication that blocks tumour necrosis factor-a, are at risk for mycobacterial infections. Besides the typical Mycobacterium tuberculosis infection, a lso a typical mycobacterial disease may occur. Here we demonstrate two patients with such atypical mycobacterial infection due to swimming and fishing water contact. We propose that patients, before starting with immunosuppressive therapy, are counselled about risk factors for mycobacterial disease.

  18. Upward swimming of a sperm cell in shear flow.

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  19. Paramecium swimming in capillary tube

    Science.gov (United States)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2012-04-01

    Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.

  20. Optimal swimming of a sheet.

    Science.gov (United States)

    Montenegro-Johnson, Thomas D; Lauga, Eric

    2014-06-01

    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

  1. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  2. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E; Patankar, Neelesh A

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming) or by forces imparted by the surrounding fluid ("passive" swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  3. Flow disturbances generated by feeding and swimming zooplankton

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Jiang, Haisong; Goncalves, R. J.

    2014-01-01

    that zooplankton, in which feeding and swimming are separate processes, produce flow disturbances during swimming with a much faster spatial attenuation (velocity u varies with distance r as u ∝ r−3 to r−4) than that produced by zooplankton for which feeding and propulsion are the same process (u ∝ r−1 to r−2...... vortex rings, or by “breast-stroke swimming.” Both produce rapidly attenuating flows. The more “noisy” swimming of those that are constrained by a need to simultaneously feed is due to constantly beating flagella or appendages that are positioned either anteriorly or posteriorly on the (cell) body...

  4. Are parents just treading water? The impact of participation in swim lessons on parents' judgments of children's drowning risk, swimming ability, and supervision needs.

    Science.gov (United States)

    Morrongiello, Barbara A; Sandomierski, Megan; Schwebel, David C; Hagel, Brent

    2013-01-01

    Drowning is a leading cause of child mortality globally. Strategies that have been suggested to reduce pediatric drowning risk include increased parental awareness of children's swimming ability and drowning risk, improved adult supervision of child swimmers, and providing swim lessons to children. This study explored how parents' beliefs relevant to children's drowning risk, perception of children's swimming ability, and judgments of supervision needs changed as children aged two through 5 years accumulated experience in swim lessons, and compared a parent group who received regular, detailed feedback about their child's swim skills with one that did not. Parents completed questionnaire measures near the beginning and end of a series of 10 weekly swim lessons. Results revealed that parental accuracy in judging children's swimming abilities remained relatively poor even though it improved from the beginning to the end of the swim lessons. Supervision needs were underestimated and did not vary with program or change over the course of swim lessons. Children's ability to keep themselves from drowning was overestimated and did not change over lessons or vary with program; parents believed that children could save themselves from drowning by the age of 6.21 years. Parents who had experienced a close call for drowning showed greater awareness of children's drowning risk and endorsed more watchful and proximal supervision. Results suggest that expanding learn-to-swim programs to include a parent-focused component that provides detailed tracking of swim skills and delivers messaging targeting perceptions of children's drowning risk and supervision needs may serve to maximize the drowning protection afforded by these programs. Delivering messaging in the form of 'close-call' drowning stories may prove especially effective to impact parents' supervision practices in drowning risk situations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Multidisciplinary teaching in swimming: methodological reflection and proposal of check list

    Directory of Open Access Journals (Sweden)

    Sofia Canossa

    2007-12-01

    Full Text Available The present study proposes a new multidisciplinary approach related to teaching in swimming. Swimming is an interdisciplinary physical activity, which can be truly important at the level of the motor learning and experimentation in aquatic activities. In the present manuscript, it was compared the present reality of teaching in Swimming with a new perspective, this one with a multidisciplinary scope. Following the referred analysis, it was presented a discussion about the orientation and adequacy of the contents of the Swimming curriculum for children and youngsters, which are populations with specific characteristics and development necessities. In this sense, after stating the relevance of a multidisciplinary perspective, it was proposed a new approach for basic aquatic motor skills acquisition based on four disciplines: swimming, water polo, synchronised swimming and platform diving. This was made taking into account the initial stage of swimming teaching, i.e., aquatic readiness. This proposal aims mainly at implementing the teaching of Swimming at a multidisciplinary point of view that, in our opinion, is urgent, namely due to the small expression that the aquatic modalities traditionally considered as swimming satellites (water polo, synchronised swimming and platform diving have in the Portuguese sports context.

  6. Cardiac and metabolic physiology of early larval zebrafish (Danio rerio reflects parental swimming stamina

    Directory of Open Access Journals (Sweden)

    Warren W Burggren

    2012-02-01

    Full Text Available Swimming stamina in adult fish is heritable, it is unknown if inherited traits that support enhanced swimming stamina in offspring appear only in juveniles and/or adults, or if these traits actually appear earlier in the morphologically quite different larvae. To answer this question, mature adult zebrafish (Danio rerio were subjected to a swimming performance test that allowed separation into low swimming stamina or high swimming stamina groups. Adults were then bred within their own performance groups. Larval offspring from each of the two groups, designated high (LHSD and low stamina-derived larvae (LLSD, were then reared at 27°C in aerated water (21% O2. Routine (fH,r and active (fH,a heart rate, and routine (M.O2,r and active (M.O2,a mass-specific oxygen consumption were recorded from 5 days post fertilization (dpf through 21 dpf, and gross cost of transport and factorial aerobic metabolic scope were derived from M.O2 measurements. Heart rate generally ranged between 150 and 225 b•min-1 in both LHSD and LLSD populations. However, significant (P<0.05 differences existed between the LLSD and LHSD populations at 5 and 14 dpf in fH,r and at days 10 and 15 dpf in fH,a. M.O2,r was 0.04 to 0.32 μmol•mg-1•hr-1, while M.O2,a was 0.2 to 1.2 μmol•mg-1•hr-1. Significant (P<0.05 differences between the LLSD and LHSD populations in M.O2,r occurred at 7, 10 and 21 dpf and in M.O2,a at 7 dpf. Gross cost of transport was ~6-10 µmol O2 . µg-1 . m-1 at 5 dpf, peaking at 14-19 µmol O2 . µg-1 . m-1 at 7-10 dpf, before falling again to 5-6 µmol O2 . µg-1 . m-1 at 21 dpf, with gross cost of transport significantly higher in the LLSD population at 7 dpf. Collectively, these data indicate that inherited physiological differences contributing to enhanced stamina in adult parents appear in their larval offspring well before attainment of juvenile or adult features.

  7. A new data-mining method to search for behavioral properties that induce alignment and their involvement in social learning in medaka fish (Oryzias latipes.

    Directory of Open Access Journals (Sweden)

    Takashi Ochiai

    Full Text Available BACKGROUND: Coordinated movement in social animal groups via social learning facilitates foraging activity. Few studies have examined the behavioral cause-and-effect between group members that mediates this social learning. METHODOLOGY/PRINCIPAL FINDINGS: We first established a behavioral paradigm for visual food learning using medaka fish and demonstrated that a single fish can learn to associate a visual cue with a food reward. Grouped medaka fish (6 fish learn to respond to the visual cue more rapidly than a single fish, indicating that medaka fish undergo social learning. We then established a data-mining method based on Kullback-Leibler divergence (KLD to search for candidate behaviors that induce alignment and found that high-speed movement of a focal fish tended to induce alignment of the other members locally and transiently under free-swimming conditions without presentation of a visual cue. The high-speed movement of the informed and trained fish during visual cue presentation appeared to facilitate the alignment of naïve fish in response to some visual cues, thereby mediating social learning. Compared with naïve fish, the informed fish had a higher tendency to induce alignment of other naïve fish under free-swimming conditions without visual cue presentation, suggesting the involvement of individual recognition in social learning. CONCLUSIONS/SIGNIFICANCE: Behavioral cause-and-effect studies of the high-speed movement between fish group members will contribute to our understanding of the dynamics of social behaviors. The data-mining method used in the present study is a powerful method to search for candidates factors associated with inter-individual interactions using a dataset for time-series coordinate data of individuals.

  8. Handedness helps homing in swimming and flying animals.

    Science.gov (United States)

    Bandyopadhyay, Promode R; Leinhos, Henry A; Hellum, Aren M

    2013-01-01

    Swimming and flying animals rely on their ability to home on mobile targets. In some fish, physiological handedness and homing correlate, and dolphins exhibit handedness in their listening response. Here, we explore theoretically whether the actuators, sensors, and controllers in these animals follow similar laws of self-regulation, and how handedness affects homing. We find that the acoustic sensor (combined hydrophone-accelerometer) response maps are similar to fin force maps-modeled by Stuart-Landau oscillators-allowing localization by transitional vortex-propelled animals. The planar trajectories of bats in a room filled with obstacles are approximately reproduced by the states of a pair of strong and weak olivo-cerebellar oscillators. The stereoscopy of handedness reduces ambiguity near a mobile target, resulting in accelerated homing compared to even-handedness. Our results demonstrate how vortex-propelled animals may be localizing each other and circumventing obstacles in changing environments. Handedness could be useful in time-critical robot-assisted rescues in hazardous environments.

  9. A Review of Swimming Cues and Tips for Physical Education

    Science.gov (United States)

    Higginson, Kelsey; Barney, David

    2016-01-01

    Swimming is a low-impact activity that causes little stress on joints so it can be done for a lifetime. Many teachers may wish to teach swimming but do not have cues or ideas for doing so. This article reviews swimming cues, relays and equipment that can help a physical education teacher include a swimming unit in their curriculum. Certification…

  10. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gruensch, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  11. Two-Dimensional Self-Propelled Fish Motion in Medium: An Integrated Method for Deforming Body Dynamics and Unsteady Fluid Dynamics

    International Nuclear Information System (INIS)

    Yan, Yang; Yong-Liang, Yu; Bing-Gang, Tong; Guan-Hao, Wu

    2008-01-01

    We present (1) the dynamical equations of deforming body and (2) an integrated method for deforming body dynamics and unsteady fluid dynamics, to investigate a modelled freely self-propelled fish. The theoretical model and practical method is applicable for studies on the general mechanics of animal locomotion such as flying in air and swimming in water, particularly of free self-propulsion. The present results behave more credibly than the previous numerical studies and are close to the experimental results, and the aligned vortices pattern is discovered in cruising swimming

  12. A Forced Damped Oscillation Framework for Undulatory Swimming Provides New Insights into How Propulsion Arises in Active and Passive Swimming

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Patankar, Neelesh A.

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions (“active” swimming) or by forces imparted by the surrounding fluid (“passive” swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained. PMID:23785272

  13. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Directory of Open Access Journals (Sweden)

    Amneet Pal Singh Bhalla

    Full Text Available A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming or by forces imparted by the surrounding fluid ("passive" swimming, is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  14. Sodium bicarbonate improves swimming performance.

    Science.gov (United States)

    Lindh, A M; Peyrebrune, M C; Ingham, S A; Bailey, D M; Folland, J P

    2008-06-01

    Sodium bicarbonate ingestion has been shown to improve performance in single-bout, high intensity events, probably due to an increase in buffering capacity, but its influence on single-bout swimming performance has not been investigated. The effects of sodium bicarbonate supplementation on 200 m freestyle swimming performance were investigated in elite male competitors. Following a randomised, double blind counterbalanced design, 9 swimmers completed maximal effort swims on 3 separate occasions: a control trial (C); after ingestion of sodium bicarbonate (SB: NaHCO3 300 mg . kg (-1) body mass); and after ingestion of a placebo (P: CaCO3 200 mg . kg (-1) body mass). The SB and P agents were packed in gelatine capsules and ingested 90 - 60 min prior to each 200 m swim. Mean 200 m performance times were significantly faster for SB than C or P (1 : 52.2 +/- 4.7; 1 : 53.7 +/- 3.8; 1 : 54.0 +/- 3.6 min : ss; p bicarbonate were all elevated pre-exercise in the SB compared to C and P trials (p < 0.05). Post-200 m blood lactate concentrations were significantly higher following the SB trial compared with P and C (p < 0.05). It was concluded that SB supplementation can improve 200 m freestyle performance time in elite male competitors, most likely by increasing buffering capacity.

  15. Towards improved behavioural testing in aquatic toxicology: Acclimation and observation times are important factors when designing behavioural tests with fish.

    Science.gov (United States)

    Melvin, Steven D; Petit, Marie A; Duvignacq, Marion C; Sumpter, John P

    2017-08-01

    The quality and reproducibility of science has recently come under scrutiny, with criticisms spanning disciplines. In aquatic toxicology, behavioural tests are currently an area of controversy since inconsistent findings have been highlighted and attributed to poor quality science. The problem likely relates to limitations to our understanding of basic behavioural patterns, which can influence our ability to design statistically robust experiments yielding ecologically relevant data. The present study takes a first step towards understanding baseline behaviours in fish, including how basic choices in experimental design might influence behavioural outcomes and interpretations in aquatic toxicology. Specifically, we explored how fish acclimate to behavioural arenas and how different lengths of observation time impact estimates of basic swimming parameters (i.e., average, maximum and angular velocity). We performed a semi-quantitative literature review to place our findings in the context of the published literature describing behavioural tests with fish. Our results demonstrate that fish fundamentally change their swimming behaviour over time, and that acclimation and observational timeframes may therefore have implications for influencing both the ecological relevance and statistical robustness of behavioural toxicity tests. Our review identified 165 studies describing behavioural responses in fish exposed to various stressors, and revealed that the majority of publications documenting fish behavioural responses report extremely brief acclimation times and observational durations, which helps explain inconsistencies identified across studies. We recommend that researchers applying behavioural tests with fish, and other species, apply a similar framework to better understand baseline behaviours and the implications of design choices for influencing study outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Not all sharks are "swimming noses": variation in olfactory bulb size in cartilaginous fishes.

    Science.gov (United States)

    Yopak, Kara E; Lisney, Thomas J; Collin, Shaun P

    2015-03-01

    Olfaction is a universal modality by which all animals sample chemical stimuli from their environment. In cartilaginous fishes, olfaction is critical for various survival tasks including localizing prey, avoiding predators, and chemosensory communication with conspecifics. Little is known, however, about interspecific variation in olfactory capability in these fishes, or whether the relative importance of olfaction in relation to other sensory systems varies with regard to ecological factors, such as habitat and lifestyle. In this study, we have addressed these questions by directly examining interspecific variation in the size of the olfactory bulbs (OB), the region of the brain that receives the primary sensory projections from the olfactory nerve, in 58 species of cartilaginous fishes. Relative OB size was compared among species occupying different ecological niches. Our results show that the OBs maintain a substantial level of allometric independence from the rest of the brain across cartilaginous fishes and that OB size is highly variable among species. These findings are supported by phylogenetic generalized least-squares models, which show that this variability is correlated with ecological niche, particularly habitat. The relatively largest OBs were found in pelagic-coastal/oceanic sharks, especially migratory species such as Carcharodon carcharias and Galeocerdo cuvier. Deep-sea species also possess large OBs, suggesting a greater reliance on olfaction in habitats where vision may be compromised. In contrast, the smallest OBs were found in the majority of reef-associated species, including sharks from the families Carcharhinidae and Hemiscyllidae and dasyatid batoids. These results suggest that there is great variability in the degree to which these fishes rely on olfactory cues. The OBs have been widely used as a neuroanatomical proxy for olfactory capability in vertebrates, and we speculate that differences in olfactory capabilities may be the result of

  17. Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum.

    Science.gov (United States)

    Bignami, Sean; Sponaugle, Su; Cowen, Robert K

    2013-04-01

    Currently, ocean acidification is occurring at a faster rate than at any time in the last 300 million years, posing an ecological challenge to marine organisms globally. There is a critical need to understand the effects of acidification on the vulnerable larval stages of marine fishes, as there is potential for large ecological and economic impacts on fish populations and the human economies that rely on them. We expand upon the narrow taxonomic scope found in the literature today, which overlooks many life history characteristics of harvested species, by reporting on the larvae of Rachycentron canadum (cobia), a large, highly mobile, pelagic-spawning, widely distributed species with a life history and fishery value contrasting other species studied to date. We raised larval cobia through the first 3 weeks of ontogeny under conditions of predicted future ocean acidification to determine effects on somatic growth, development, otolith formation, swimming ability, and swimming activity. Cobia exhibited resistance to treatment effects on growth, development, swimming ability, and swimming activity at 800 and 2100 μatm pCO2 . However, these scenarios resulted in a significant increase in otolith size (up to 25% larger area) at the lowest pCO2 levels reported to date, as well as the first report of significantly wider daily otolith growth increments. When raised under more extreme scenarios of 3500 and 5400 μatm pCO2 , cobia exhibited significantly reduced size-at-age (up to 25% smaller) and a 2-3 days developmental delay. The robust nature of cobia may be due to the naturally variable environmental conditions this species currently encounters throughout ontogeny in coastal environments, which may lead to an increased acclimatization ability even during long-term exposure to stressors. © 2012 Blackwell Publishing Ltd.

  18. Fish passage hydroelectric power plant Linne, Netherlands. Didson measurements; Vispassage waterkrachtcentrale Linne. Didson metingen

    Energy Technology Data Exchange (ETDEWEB)

    Van Keeken, O.A.; Griffioen, A.B. [Institute for Marine Resources and Ecosystem Studies IMARES, Wageningen UR, IJmuiden (Netherlands)

    2011-11-15

    The hydroelectric power plant in the Dutch Maas River near Linne has a fish deflection and passage system. For this study, two evenings in the months of August and September 2011 were dedicated to examining the extent to which fish approached and used the fish passage system. To establish the swimming behavior of the fish, a high-resolution sonar (DIDSON) was used, which generates moving images of fish in turbid waters, to study their behavior. [Dutch] Bij de waterkrachtcentrale in de Maas bij Linne is een visafweer- en geleidingssysteem aangelegd. In deze studie werd op twee avonden verdeeld over de maanden augustus en september 2011 gekeken in hoeverre vissen het visgeleidingssysteem benaderden en gebruikten. Voor het vaststellen van het zwemgedrag van de vissen is gebruik gemaakt van de DIDSON, een hoge resolutie sonar waarmee bewegende beelden kunnen worden gemaakt van vis in troebel water om het gedrag te bestuderen.

  19. [Swimming, physical activity and health: a historical perspective].

    Science.gov (United States)

    Conti, A A

    2015-01-01

    Swimming, which is the coordinated and harmonic movement of the human body inside a liquid medium by means of the combined action of the superior and inferior limbs, is a physical activity which is diffused throughout the whole world and it is practiced by healthy and non-healthy subjects. Swimming is one of the physical activities with less contraindications and, with limited exceptions, can be suggested to individuals of both sexes and of every age range, including the most advanced. Swimming requires energy both for the floating process and for the anterograde progression, with a different and variable osteo-arthro-muscular involvement according to the different styles. The energetic requirement is about four times that for running, with an overall efficiency inferior to 10%; the energetic cost of swimming in the female subject is approximately two thirds of that in the male subject. The moderate aerobic training typical of swimming is useful for diabetic and hypertensive individuals, for people with painful conditions of rachis, as also for obese and orthopaedic patients. Motor activity inside the water reduces the risk of muscular-tendinous lesions and, without loading the joints in excess, requires the harmonic activation of the whole human musculature. Swimming is an activity requiring multiple abilities, ranging from a sense of equilibrium to that of rhythm, from reaction speed to velocity, from joint mobility to resistance. The structured interest for swimming in the perspective of human health from the beginning of civilization, as described in this contribution, underlines the relevance attributed to this activity in the course of human history.

  20. A meta-analysis of steady undulatory swimming

    NARCIS (Netherlands)

    van Weerden, J. Fransje; Reid, Daniel A. P.; Hemelrijk, Charlotte K.

    The mechanics underlying undulatory swimming are of great general interest, both to biologists and to engineers. Over the years, more data of the kinematics of undulatory swimming have been reported. At present, an integrative analysis is needed to determine which general relations hold between

  1. Plastic growth of the herbivorous reef fish Sparisoma viride: field evidence for a trade-off between growth and reproduction

    NARCIS (Netherlands)

    van Rooij, J.M.; Bruggemann, J.H.; Videler, J.J.; Breeman, A.M.

    The growth of different Life phases and social categories of the protogynous parrotfish Sparisoma viride was studied on a fringing reef on Bonaire (Netherlands Antilles) using mark-recapture procedures and by taking repeated stereographic measurements of free-swimming fish. Weight-growth was best

  2. The key kinematic determinants of undulatory underwater swimming at maximal velocity.

    Science.gov (United States)

    Connaboy, Chris; Naemi, Roozbeh; Brown, Susan; Psycharakis, Stelios; McCabe, Carla; Coleman, Simon; Sanders, Ross

    2016-01-01

    The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.

  3. Intra-abdominal pressure during swimming.

    Science.gov (United States)

    Moriyama, S; Ogita, F; Huang, Z; Kurobe, K; Nagira, A; Tanaka, T; Takahashi, H; Hirano, Y

    2014-02-01

    The present study aimed to determine the intra-abdominal pressure during front crawl swimming at different velocities in competitive swimmers and to clarify the relationships between stroke indices and changes in intra-abdominal pressure. The subjects were 7 highly trained competitive collegiate male swimmers. Intra-abdominal pressure was measured during front crawl swimming at 1.0, 1.2 and 1.4 m · s(-1) and during the Valsalva maneuver. Intra-abdominal pressure was taken as the difference between minimum and maximum values, and the mean of 6 stable front crawl stroke cycles was used. Stroke rate and stroke length were also measured as stroke indices. There were significant differences in stroke rate among all velocities (P pressure and stroke rate or stroke length (P pressure and stroke indices when controlling for swimming velocity. These findings do not appear to support the effectiveness of trunk training performed by competitive swimmers aimed at increasing intra-abdominal pressure. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Changes over swim lessons in parents' perceptions of children's supervision needs in drowning risk situations: "His swimming has improved so now he can keep himself safe".

    Science.gov (United States)

    Morrongiello, Barbara A; Sandomierski, Megan; Spence, Jeffrey R

    2014-07-01

    The aim of this longitudinal study was to determine how children's participation in swim lessons impacts parents' appraisals of children's drowning risk and need for supervision. Parents with 2-5-year old children enrolled in community swim lessons completed the same survey measures up to 4 times over an 8-month period. Multilevel regression analyses examining temporal relationships between parents' perceptions of their child's swim ability, supervision needs around water, and children's ability to keep themselves safe in drowning risk situations revealed that as children progressed through swim lessons, parents' perceptions of their child's swim ability and their belief that children are capable of keeping themselves safe around water increased. Further, the relation between parents' perceptions of swim ability and judgments of children's supervision needs was mediated through parents' judgment about their child's ability to secure their own safety near water. As parents perceive their child to be accumulating swim skills, they increasingly believe that children are capable of keeping themselves from drowning, and as a result, that less active parent supervision of their child is necessary. Implications of these findings for intervention efforts to counter this unwelcome way of thinking that may arise through continued participation in swim lessons are discussed. Incorporating a parent-focused component into children's learn-to-swim programs to promote more realistic appraisals of children's supervision needs and drowning risks may further enhance the positive benefits that swim lessons have for children's safety.

  5. Swimming Pool Safety

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Safety & Prevention Immunizations All Around At Home At Play ... Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to ...

  6. TECHNIQUE AND METHODOLOGY OF TRAINING IN SWIMMING CRAWL

    Directory of Open Access Journals (Sweden)

    Selim Alili

    2013-07-01

    Full Text Available The paper shows the technique and methodology training crawl swimming. Developed: the position of the head and body, footwork, hand movements, exercises for training footwork training drills and exercises for improving coordination technique on dry land and in water. Stated that accomplishes this swimmer swimming technique allows fast and is the fastest discipline. Therefore we can say that it is a favorite way of swimming and a pleasure to watch on the big stage.

  7. Wastewater Treatment Optimization for Fish Migration Using Harmony Search

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2014-01-01

    Full Text Available Certain types of fish migrate between the sea and fresh water to spawn. In order for them to swim without any breathing problem, river should contain enough oxygen. If fish is passing along the river in municipal area, it needs sufficient dissolved oxygen level which is influenced by dumped amount of wastewater into the river. If existing treatment methods such as settling and biological oxidation are not enough, we have to consider additional treatment methods such as microscreening filtration and nitrification. This study constructed a wastewater treatment optimization model for migratory fish, which considers three costs (filtration cost, nitrification cost, and irrigation cost and two environmental constraints (minimal dissolved oxygen level and maximal nitrate-nitrogen concentration. Results show that the metaheuristic technique such as harmony search could find good solutions robustly while calculus-based technique such as generalized reduced gradient method was trapped in local optima or even divergent.

  8. Ventilatory and Cardiovascular Regulation in the Air-Breathing Fish Pangasianodon Hypophthalmus

    DEFF Research Database (Denmark)

    Thomsen, Mikkel; Wang, Tobias; Bayley, Mark

    The air-breathing fish Pangasianodon hypophthalmus is abundant in the Mekong river system where it is also intensively cultured. In contrast to most other air-breathing fishes it has well developed gills as well as a highly traberculated swim bladder with a large surface area used for air-breathing...... systems provide information on when gill ventilation is insufficient for oxygen uptake and hence initiate air-breathing. Here we investigate the ventilatory and cardiovascular responses to changes in either in the external media or internally in the blood in resting fish. We found ventilation in P....... Its native waters have been shown to be periodically strongly hypoxic and hypercarbic, forcing P. hypophthalmus to switch from exclusively branchial ventilation to air-breathing to maintain its aerobic metabolism. This ability to switch respiratory media demands that the oxygen- and CO¬2 sensory...

  9. SWIM (Soil and Water Integrated Model)

    Energy Technology Data Exchange (ETDEWEB)

    Krysanova, V; Wechsung, F; Arnold, J; Srinivasan, R; Williams, J

    2000-12-01

    The model SWIM (Soil and Water Integrated Model) was developed in order to provide a comprehensive GIS-based tool for hydrological and water quality modelling in mesoscale and large river basins (from 100 to 10,000 km{sup 2}), which can be parameterised using regionally available information. The model was developed for the use mainly in Europe and temperate zone, though its application in other regions is possible as well. SWIM is based on two previously developed tools - SWAT and MATSALU (see more explanations in section 1.1). The model integrates hydrology, vegetation, erosion, and nutrient dynamics at the watershed scale. SWIM has a three-level disaggregation scheme 'basin - sub-basins - hydrotopes' and is coupled to the Geographic Information System GRASS (GRASS, 1993). A robust approach is suggested for the nitrogen and phosphorus modelling in mesoscale watersheds. SWIM runs under the UNIX environment. Model test and validation were performed sequentially for hydrology, crop growth, nitrogen and erosion in a number of mesoscale watersheds in the German part of the Elbe drainage basin. A comprehensive scheme of spatial disaggregation into sub-basins and hydrotopes combined with reasonable restriction on a sub-basin area allows performing the assessment of water resources and water quality with SWIM in mesoscale river basins. The modest data requirements represent an important advantage of the model. Direct connection to land use and climate data provides a possibility to use the model for analysis of climate change and land use change impacts on hydrology, agricultural production, and water quality. (orig.)

  10. Pacing in Swimming: A Systematic Review.

    Science.gov (United States)

    McGibbon, Katie E; Pyne, D B; Shephard, M E; Thompson, K G

    2018-03-20

    Pacing strategy, or how energy is distributed during exercise, can substantially impact athletic performance and is considered crucial for optimal performance in many sports. This is particularly true in swimming given the highly resistive properties of water and low mechanical efficiency of the swimming action. The aim of this systematic review was to determine the pacing strategies utilised by competitive swimmers in competition and their reproducibility, and to examine the impact of different pacing strategies on kinematic, metabolic and performance variables. This will provide valuable and practical information to coaches and sports science practitioners. The databases Web of Science, Scopus, SPORTDiscus and PubMed were searched for published articles up to 1 August 2017. A total of 23 studies examining pool-based swimming competitions or experimental trials in English-language and peer-reviewed journals were included in this review. In short- and middle-distance swimming events maintenance of swimming velocity is critical, whereas in long-distance events a low lap-to-lap variability and the ability to produce an end spurt in the final lap(s) are key. The most effective strategy in the individual medley (IM) is to conserve energy during the butterfly leg to optimise performance in subsequent legs. The pacing profiles of senior swimmers remain relatively stable irrespective of opponents, competition stage or type, and performance time. Implementing event-specific pacing strategies should benefit the performance of competitive swimmers. Given differences between swimmers, there is a need for greater individualisation when considering pacing strategy selection across distances and strokes.

  11. Mechanical Study of Standard Six Beat Front Crawl Swimming by Using Swimming Human Simulation Model

    Science.gov (United States)

    Nakashima, Motomu

    There are many dynamical problems in front crawl swimming which have not been fully investigated by analytical approaches. Therefore, in this paper, standard six beat front crawl swimming is analyzed by the swimming human simulation model SWUM, which has been developed by the authors. First, the outline of the simulation model, the joint motion for one stroke cycle, and the specifications of calculation are described respectively. Next, contribution of each fluid force component and of each body part to the thrust, effect of the flutter kick, estimation of the active drag, roll motion, and the propulsive efficiency are discussed respectively. The following results were theoretically obtained: The thrust is produced at the upper limb by the normal drag force component. The flutter kick plays a role in raising the lower half of the body. The active drag coefficient in the simulation becomes 0.082. Buoyancy determines the primal wave of the roll motion fluctuation. The propulsive efficiency in the simulation becomes 0.2.

  12. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II. Validation.

    Science.gov (United States)

    Gierszewski, Stefanie; Müller, Klaus; Smielik, Ievgen; Hütwohl, Jan-Marco; Kuhnert, Klaus-Dieter; Witte, Klaudia

    2017-02-01

    The use of computer animation in behavioral research is a state-of-the-art method for designing and presenting animated animals to live test animals. The major advantages of computer animations are: (1) the creation of animated animal stimuli with high variability of morphology and even behavior; (2) animated stimuli provide highly standardized, controlled and repeatable testing procedures; and (3) they allow a reduction in the number of live test animals regarding the 3Rs principle. But the use of animated animals should be attended by a thorough validation for each test species to verify that behavior measured with live animals toward virtual animals can also be expected with natural stimuli. Here we present results on the validation of a custom-made simulation for animated 3D sailfin mollies Poecilia latipinna and show that responses of live test females were as strong to an animated fish as to a video or a live male fish. Movement of an animated stimulus was important but female response was stronger toward a swimming 3D fish stimulus than to a "swimming" box. Moreover, male test fish were able to discriminate between animated male and female stimuli; hence, rendering the animated 3D fish a useful tool in mate-choice experiments with sailfin mollies.

  13. Swimming as physical activity and recreation for women

    Directory of Open Access Journals (Sweden)

    Yfanti Maria

    2014-01-01

    Full Text Available The present study reviews all data that establish swimming as an everyday lifestyle and recreational activity for women, since it promotes wellness, well-being and longevity. Swimming as a natural, physical activity is one of the most effective ways of exercise, since it affects and work outs the whole body. It is the most suitable sport for all age groups, because it combines beneficial results, for both body and soul and is also a low-risk-injury physical exercise. Aim of this study is to record the effect of recreational swimming in physical condition indexes and in quality of life in women. In particular to record the benefits, since studies have shown that swimming can help in prevention and treatment of chronic diseases and improves quality of life, of well-being and longevity. Results of all studies showed that swimming, as a great natural recreational activity has multiple beneficial effects on the female body that are not limited to the physical characteristics but are extended to the mental ones. Challenges for the application and development fields of this particular method of exercise, are the quality of service provided and the staffing of departments and programs in multiple carriers, private or public. Researchers and writers agree that there are great prospects for growth for women through partnerships, with programs and systematic research in the field of recreational swimming.

  14. Predictors of Swimming Ability among Children and Adolescents in the United States

    Directory of Open Access Journals (Sweden)

    Jennifer Pharr

    2018-02-01

    Full Text Available Swimming is an important source of physical activity and a life skill to prevent drowning. However, little research has been conducted to understand predictors of swimming ability. The purpose of this study was to understand factors that predict swimming ability among children and adolescents in the United States (US. This was a cross-sectional survey conducted between February and April of 2017 across five geographically diverse cities. Participants were accessed through the Young Christian Men’s Association (YMCA and included parents of children aged 4–11 years old and adolescents aged 12–17 years old. Independent t-test, analysis of variance (ANOVA, and univariate and multivariate analyses were conducted. Several factors were significant (p ≤ 0.05 predictors of swimming ability and explained 53% of the variance in swimming ability. Variables that were positively associated with swimming ability included: ability of parent(s to swim, child/adolescent age, a best friend who enjoys swimming, water-safety knowledge, pool open all year, and encouragement to swim from parent(s. Variables that were negatively associated with swimming ability included: fear of drowning, being African American, and being female. Interventions and programs to improve the swimming ability of children and adolescents could be developed with these predictors in mind.

  15. A COMPARATIVE-STUDY OF STIMULUS SELECTION IN THE FILIAL FOLLOWING RESPONSE OF FRY OF SUBSTRATE SPAWNING CICHLID FISH

    NARCIS (Netherlands)

    BAERENDS, GP

    This paper reports on experimental research undertaken to analyse the information processing mechanism by which the fry of substrate spawning cichlid fish visually recognise their guarding parent(s), already from the earliest time they are able to swim. The study is inspired by LORENZ' concept of

  16. Swimming training induces liver mitochondrial adaptations to oxidative stress in rats submitted to repeated exhaustive swimming bouts.

    Directory of Open Access Journals (Sweden)

    Frederico D Lima

    Full Text Available BACKGROUND AND AIMS: Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. METHODS: Wistar rats were divided into training (n = 14 and control (n = 14 groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7 and control (n = 7 rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. RESULTS: Trained group showed increased reduced glutathione (GSH content and reduced/oxidized (GSH/GSSG ratio, higher superoxide dismutase (MnSOD activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. CONCLUSIONS: Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance.

  17. Shape Optimization of Swimming Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, J.; Hosoi, A.E.

    2005-03-01

    The swimming behavior of a flexible sheet which moves by propagating deformation waves along its body was first studied by G. I. Taylor in 1951. In addition to being of theoretical interest, this problem serves as a useful model of the locomotion of gastropods and various micro-organisms. Although the mechanics of swimming via wave propagation has been studied extensively, relatively little work has been done to define or describe optimal swimming by this mechanism.We carry out this objective for a sheet that is separated from a rigid substrate by a thin film of viscous Newtonian fluid. Using a lubrication approximation to model the dynamics, we derive the relevant Euler-Lagrange equations to optimize swimming speed and efficiency. The optimization equations are solved numerically using two different schemes: a limited memory BFGS method that uses cubic splines to represent the wave profile, and a multi-shooting Runge-Kutta approach that uses the Levenberg-Marquardt method to vary the parameters of the equations until the constraints are satisfied. The former approach is less efficient but generalizes nicely to the non-lubrication setting. For each optimization problem we obtain a one parameter family of solutions that becomes singular in a self-similar fashion as the parameter approaches a critical value. We explore the validity of the lubrication approximation near this singular limit by monitoring higher order corrections to the zeroth order theory and by comparing the results with finite element solutions of the full Stokes equations.

  18. Guide for decontaminating swimming pool at schools

    International Nuclear Information System (INIS)

    Matsuhashi, Shimpei; Kurikami, Hiroshi; Yasuda, Ryo; Takano, Takao; Seko, Noriaki; Naganawa, Hirochika; Kuroki, Ryota; Saegusa, Jun

    2012-07-01

    Because of TEPCO Fukushima Dai-ichi Nuclear Power Plant accident due to the Great East Japan Earthquake, a huge amount of radioactive materials was widely dispersed and precipitated into the environment. Swimming pools in Fukushima prefectures were contaminated with the radioactives. We JAEA carried out several demonstration tests to decontaminate the radioactives and discharge the pool water safely. We concluded the results obtained from the tests as 'Guide for decontaminating Swimming Pool at School' and released it quickly. Following this, we also released the guide in English. This manuscript, as an experimental report of the swimming pool water decontamination, is consisted from the guide in Japanese and English prepared. (author)

  19. Guide for decontaminating swimming pool at schools

    Energy Technology Data Exchange (ETDEWEB)

    Matsuhashi, Shimpei; Kurikami, Hiroshi; Yasuda, Ryo; Takano, Takao; Seko, Noriaki; Naganawa, Hirochika; Kuroki, Ryota; Saegusa, Jun

    2012-07-15

    Because of TEPCO Fukushima Dai-ichi Nuclear Power Plant accident due to the Great East Japan Earthquake, a huge amount of radioactive materials was widely dispersed and precipitated into the environment. Swimming pools in Fukushima prefectures were contaminated with the radioactives. We JAEA carried out several demonstration tests to decontaminate the radioactives and discharge the pool water safely. We concluded the results obtained from the tests as 'Guide for decontaminating Swimming Pool at School' and released it quickly. Following this, we also released the guide in English. This manuscript, as an experimental report of the swimming pool water decontamination, is consisted from the guide in Japanese and English prepared. (author)

  20. Effect of swimming suit design on the energy demands of swimming.

    Science.gov (United States)

    Starling, R D; Costill, D L; Trappe, T A; Jozsi, A C; Trappe, S W; Goodpaster, B H

    1995-07-01

    Eight competitive male swimmers completed a standardized 365.8 m (400 yd) freestyle swimming trial at a fixed pace (approximately 90% of maximal effort) while wearing a torso swim suit (TOR) or a standard racing suit (STD). Oxygen uptake (VO2), blood lactate, heart rate (HR), and distance per stroke (DPS) measurements were obtained. In addition, a video-computer system was used to collect velocity data during a prone underwater glide following a maximal leg push-off from the side of the pool while wearing the TOR and STD suits. These data were used to calculate the total distance covered during the glides. VO2 (3.76 +/- 0.16 vs 3.92 +/- 0.18 l.min-1) and lactate (8.08 +/- 0.53 vs, 9.66 +/- 0.66 mM) were significantly (P 0.05) between the TOR (170.1 +/- 5.1 b.min-1) and STD (173.5 +/- 5.7 b.min-1) trials. DPS was significantly greater during the TOR (2.70 +/- 0.066 m.stroke-1) versus STD (2.58 +/- 0.054 m.stroke-1) trial. A significantly greater total distance was covered during the prone glide while wearing the TOR (2.05 +/- 0.067 m) compared to the STD (2.00 +/- 0.080 m) suit. These findings demonstrate that a specially designed torso suit reduces the energy demand of swimming compared to a standard racing suit which may be due to a reduction in body drag.

  1. 76 FR 60732 - Drawbridge Operation Regulations; Navesink (Swimming) River, NJ

    Science.gov (United States)

    2011-09-30

    ... Operation Regulations; Navesink (Swimming) River, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... (Swimming) River between Oceanic and Locust Point, New Jersey. The deviation is necessary to facilitate...: The Oceanic Bridge, across the Navesink (Swimming) River, mile 4.5, between Oceanic and Locust Point...

  2. Fish Individual-based Numerical Simulator (FINS): A particle-based model of juvenile salmonid movement and dissolved gas exposure history in the Columbia River Basin

    International Nuclear Information System (INIS)

    Scheibe, Timothy D.; Richmond, Marshall C.

    2002-01-01

    This paper describes a numerical model of juvenile salmonid migration in the Columbia and Snake Rivers. The model, called the Fish Individual-based Numerical Simulator or FINS, employs a discrete, particle-based approach to simulate the migration and history of exposure to dissolved gases of individual fish. FINS is linked to a two-dimensional (vertically-averaged) hydrodynamic simulator that quantifies local water velocity, temperature, and dissolved gas levels as a function of river flow rates and dam operations. Simulated gas exposure histories can be input to biological mortality models to predict the effects of various river configurations on fish injury and mortality due to dissolved gas supersaturation. Therefore, FINS serves as a critical linkage between hydrodynamic models of the river system and models of biological impacts. FINS was parameterized and validated based on observations of individual fish movements collected using radiotelemetry methods during 1997 and 1998 . A quasi-inverse approach was used to decouple fish swimming movements from advection with the local water velocity, allowing inference of time series of non-advective displacements of individual fish from the radiotelemetry data. Statistical analyses of these displacements are presented, and confirm that strong temporal correlation of fish swimming behavior persists in some cases over several hours. A correlated random-walk model was employed to simulate the observed migration behavior, and parameters of the model were estimated that lead to close correspondence between predictions and observations

  3. Fish predation by semi-aquatic spiders: a global pattern.

    Directory of Open Access Journals (Sweden)

    Martin Nyffeler

    Full Text Available More than 80 incidences of fish predation by semi-aquatic spiders--observed at the fringes of shallow freshwater streams, rivers, lakes, ponds, swamps, and fens--are reviewed. We provide evidence that fish predation by semi-aquatic spiders is geographically widespread, occurring on all continents except Antarctica. Fish predation by spiders appears to be more common in warmer areas between 40° S and 40° N. The fish captured by spiders, usually ranging from 2-6 cm in length, are among the most common fish taxa occurring in their respective geographic area (e.g., mosquitofish [Gambusia spp.] in the southeastern USA, fish of the order Characiformes in the Neotropics, killifish [Aphyosemion spp.] in Central and West Africa, as well as Australian native fish of the genera Galaxias, Melanotaenia, and Pseudomugil. Naturally occurring fish predation has been witnessed in more than a dozen spider species from the superfamily Lycosoidea (families Pisauridae, Trechaleidae, and Lycosidae, in two species of the superfamily Ctenoidea (family Ctenidae, and in one species of the superfamily Corinnoidea (family Liocranidae. The majority of reports on fish predation by spiders referred to pisaurid spiders of the genera Dolomedes and Nilus (>75% of observed incidences. There is laboratory evidence that spiders from several more families (e.g., the water spider Argyroneta aquatica [Cybaeidae], the intertidal spider Desis marina [Desidae], and the 'swimming' huntsman spider Heteropoda natans [Sparassidae] predate fish as well. Our finding of such a large diversity of spider families being engaged in fish predation is novel. Semi-aquatic spiders captured fish whose body length exceeded the spiders' body length (the captured fish being, on average, 2.2 times as long as the spiders. Evidence suggests that fish prey might be an occasional prey item of substantial nutritional importance.

  4. Fish predation by semi-aquatic spiders: a global pattern.

    Science.gov (United States)

    Nyffeler, Martin; Pusey, Bradley J

    2014-01-01

    More than 80 incidences of fish predation by semi-aquatic spiders--observed at the fringes of shallow freshwater streams, rivers, lakes, ponds, swamps, and fens--are reviewed. We provide evidence that fish predation by semi-aquatic spiders is geographically widespread, occurring on all continents except Antarctica. Fish predation by spiders appears to be more common in warmer areas between 40° S and 40° N. The fish captured by spiders, usually ranging from 2-6 cm in length, are among the most common fish taxa occurring in their respective geographic area (e.g., mosquitofish [Gambusia spp.] in the southeastern USA, fish of the order Characiformes in the Neotropics, killifish [Aphyosemion spp.] in Central and West Africa, as well as Australian native fish of the genera Galaxias, Melanotaenia, and Pseudomugil). Naturally occurring fish predation has been witnessed in more than a dozen spider species from the superfamily Lycosoidea (families Pisauridae, Trechaleidae, and Lycosidae), in two species of the superfamily Ctenoidea (family Ctenidae), and in one species of the superfamily Corinnoidea (family Liocranidae). The majority of reports on fish predation by spiders referred to pisaurid spiders of the genera Dolomedes and Nilus (>75% of observed incidences). There is laboratory evidence that spiders from several more families (e.g., the water spider Argyroneta aquatica [Cybaeidae], the intertidal spider Desis marina [Desidae], and the 'swimming' huntsman spider Heteropoda natans [Sparassidae]) predate fish as well. Our finding of such a large diversity of spider families being engaged in fish predation is novel. Semi-aquatic spiders captured fish whose body length exceeded the spiders' body length (the captured fish being, on average, 2.2 times as long as the spiders). Evidence suggests that fish prey might be an occasional prey item of substantial nutritional importance.

  5. EFFECTS OF THREE FEEDBACK CONDITIONS ON AEROBIC SWIM SPEEDS

    Directory of Open Access Journals (Sweden)

    Pedro Pérez Soriano

    2009-03-01

    Full Text Available The purpose of this study was twofold: (a to develop an underwater chronometer capable to provide feedback while the athlete is swimming, as well as being a control tool for the coach, and (b to analyse its feedback effect on swim pace control compared with feedback provided by the coach and with no feedback, in 25 m and 50 m swimming pools. 30 male swimmers of national level volunteer to participate. Each swimmer swam 3 x 200 m at aerobic speed (AS and 3 x 200 m just under the anaerobic threshold speed (AnS, each swam repetition with a different feedback condition: chronometer, coach and without feedback. Results (a validate the chronometer system developed and (b show that swimmers pace control is affected by the type of feedback provided, the swim speed elected and the size of the swimming pool

  6. Analysis of the swimming velocity of cadmium-stressed Daphnia magna

    International Nuclear Information System (INIS)

    Baillieul, M.; Blust, R.

    1999-01-01

    The swimming velocity of the waterflea Daphnia magna is dependent on its body size. Therefore, environmental factors like toxic stress that influence growth also influence swimming velocity. An experiment was set up to test whether exposure to cadmium would reduce only growth, with a concomitant decrease in velocity, or whether it would reduce velocity below the swimming velocity of similarly-sized control animals. Daphnids were exposed for 10 days to free cadmium ion concentrations ranging from 1x10 -8 to 1x10 -7 M Cd 2+ , and body size and swimming velocity were measured every 2 days. The results showed that cadmium decreased both growth and velocity, i.e. exposed daphnids swam slower than similarly-sized control daphnids. Swimming velocity provided no indication of successful acclimation in any cadmium treatment. Food consumption and assimilation were reduced by exposure to cadmium. This reduced food intake may have, at least partially, caused the decreased growth rates. However, since reduced food intake does not affect swimming velocity, the reduced swimming velocity must be attributed to toxic effects of cadmium, other than those on food intake. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Research on Relative Age in Hungarian Swimming

    Directory of Open Access Journals (Sweden)

    Nagy Nikoletta

    2015-12-01

    Full Text Available In 2017, the 19th World Swimming Championship will be organized in Hungary. Up to now, many people have already been working with swimmers to achieve good results. However, in the next period they must work even harder to ensure that the national swimmers of a country as small as Hungary can achieve the outstanding results of their predecessors. Since high-level competitions in swimming have become more intense, innovations including scientific studies are needed during preparation for the event. The purpose of this paper is to present the major results of an independent study carried out by the authors about the relative age of the best Hungarian swimmers with the aim of contributing to their preparation. The research population consisted of selected age groups of swimmers registered by the Hungarian Swimming Association (N=400. The method for data collection was an analysis of documents. To evaluate the data, the Chi-square and Kruskal-Wallis tests were used. The results are presented according to the period of the competitor’s date of birth, gender, and age group. The results confirm only partly the hypothesis that people born in the first quarters of the year play a dominant role in Hungarian national swimming teams. In the conclusion, the authors recommend further research on relative age in swimming and in other sports.

  8. Infections Unlikely to be Spread Through Swimming Pools

    Science.gov (United States)

    ... Water Home Infections Unlikely to be Spread Through Swimming Pools Language: English (US) Español (Spanish) Recommend on ... included below. Infections Unlikely to be Spread by Swimming Pools Head Lice Head lice are unlikely to ...

  9. THE EFFECTS OF DIFFERENT MODELS OF SWIMMING TRAINING (DEFINED IN RELATION TO ANAEROBIC THRESHOLD ON THE INCREASE OF SWIM SPEED

    Directory of Open Access Journals (Sweden)

    Dragan Krivokapić

    2007-05-01

    Full Text Available On the sample of 32 fourth grade students of some Belgrade highs schools, who had the physical education classes carried out at the city’s swimming pools, an attempt was made to evaluate the effects of the two different programmes of swimming training in different intensity zones, defi ned relative to the anaerobic threshold. The examinees were divided into two groups out of 15 i.e. 17 participants who were not (according to statistics signifi cantly different in terms of average time and heart frequency during the 400 m swimming test and heart frequency and time measured after 50 m in the moment of reaching the anaerobic threshold. The fi rst training model consisted of swimming at the intensity level within the zone below anaerobic threshold, while the second model involved occasional swimming at a higher intensity sometimes surpassing the anaerobic threshold. The experimentalprogramme with both sub-groups lasted 8 weeks with 3 training sessions per week, 2 ‘of which we’re identical for both experimental groups, with the third one differing regarding the swimming intensity, this in the fi rst group being still in the zone below, and in the second group occasionally in the zone above the anaerobic threshold. The amount of training and the duration were the same in both programmes. The aim of the research , was to evaluate and to compare the effects of the two training models, using as the basic criteria possible changes of average time and heart frequency during the 400 m swimming test and heart frequency and time measured after 50 m in the moment of reaching the anaerobic thereshold. On the basis of the statistical analysis of the obtained data, it is possible to conclude that in both experimental groups there were statistically signifi cant changes of average values concerning all the physiological variables. Although the difference in effi ciency of applied experimental programmes is not defi ned, we can claim that both of experimental

  10. Basic Land Drills for Swimming Stroke Acquisition

    Science.gov (United States)

    Zhang, Peng

    2014-01-01

    Teaching swimming strokes can be a challenging task in physical education. The purpose of the article is to introduce 12 on land drills that can be utilized to facilitate the learning of swimming strokes, including elementary back stroke, sidestroke, front crawl, back stroke, breaststroke, and butterfly. Each drill consists of four components…

  11. Synergistic impacts by an invasive amphipod and an invasive fish explain native gammarid extinction.

    Science.gov (United States)

    Beggel, S; Brandner, J; Cerwenka, A F; Geist, J

    2016-07-14

    Worldwide freshwater ecosystems are increasingly affected by invasive alien species. In particular, Ponto-Caspian gobiid fishes and amphipods are suspected to have pronounced effects on aquatic food webs. However, there is a lack of systematic studies mechanistically testing the potential synergistic effects of invasive species on native fauna. In this study we investigated the interrelations between the invasive amphipod Dikerogammarus villosus and the invasive fish species Neogobius melanostomus in their effects on the native amphipod Gammarus pulex. We hypothesized selective predation by the fish as a driver for displacement of native species resulting in potential extinction of G. pulex. The survival of G. pulex in the presence of N. melanostomus in relation to the presence of D. villosus and availability of shelter was analyzed in the context of behavioural differences between the amphipod species. Gammarus pulex had a significantly higher susceptibility to predation by N. melanostomus compared to D. villosus in all experiments, suggesting preferential predation by this fish on native gammarids. Furthermore, the presence of D. villosus significantly increased the vulnerability of G. pulex to fish predation. Habitat structure was an important factor for swimming activity of amphipods and their mortality, resulting in a threefold decrease in amphipods consumed with shelter habitat structures provided. Behavioral differences in swimming activity were additionally responsible for higher predation rates on G. pulex. Intraguild predation could be neglected within short experimental durations. The results of this study provide evidence for synergistic effects of the two invasive Ponto-Caspian species on the native amphipod as an underlying process of species displacements during invasion processes. Prey behaviour and monotonous habitat structures additionally contribute to the decline of the native gammarid fauna in the upper Danube River and elsewhere.

  12. Turtle mimetic soft robot with two swimming gaits.

    Science.gov (United States)

    Song, Sung-Hyuk; Kim, Min-Soo; Rodrigue, Hugo; Lee, Jang-Yeob; Shim, Jae-Eul; Kim, Min-Cheol; Chu, Won-Shik; Ahn, Sung-Hoon

    2016-05-04

    This paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas. This flipper actuator can mimic the continuous deformation of the forelimb of Chelonia mydas which could not be realized in previous motor based robot. This actuator can also produce two distinct motions that correspond to the two different swimming gaits of the Chelonia mydas, which are the routine and vigorous swimming gaits, by changing the applied current sequence of the SMA wires embedded in the flipper actuator. The generated thrust and the swimming efficiency in each swimming gait of the flipper actuator were measured and the results show that the vigorous gait has a higher thrust but a relatively lower swimming efficiency than the routine gait. The flipper actuator was implemented in a biomimetic turtle robot, and its average swimming speed in the routine and vigorous gaits were measured with the vigorous gait being capable of reaching a maximum speed of 11.5 mm s(-1).

  13. Warm-up and performance in competitive swimming.

    Science.gov (United States)

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  14. Interação do exercício de natação sustentada e da densidade de estocagem no desempenho e na composição corporal de juvenis de matrinxã Brycon amazonicus Sustained swimming and stocking density interaction in the performance and body composition of matrinxã Brycon amazonicus juveniles

    Directory of Open Access Journals (Sweden)

    Gustavo Alberto Arbeláez-Rojas

    2009-02-01

    Full Text Available O objetivo deste estudo foi estimar o efeito da densidade de estocagem associada ao exercício de natação moderada no desempenho e na composição corporal de juvenis de matrinxã (Brycon amazonicus. Foram utilizados peixes com comprimento e peso médio inicial de 12,3±0,5cm e 18,4±0,1g, os quais foram distribuídos ao acaso em dois grupos: o primeiro grupo de peixes foi estocado em três densidades correspondendo a 88, 176 e 353 peixes m-3 e foi condicionado a nadar a uma velocidade de 1,0cc s-1 (comprimento corporal por segundo em tanques circulares de 250L, durante 70 dias. O segundo grupo de peixes foi mantido nas mesmas densidades em água parada (sem exercício perfazendo no total seis tratamentos com três repetições. Foram estimados parâmetros de desempenho e da composição corporal, particularmente do músculo branco e do músculo vermelho de ambos os grupos. Os resultados mostraram que o exercício e a densidade afetaram significativamente o crescimento e a composição dos músculos do matrinxã. O grupo de peixes criados sob exercício moderado na densidade de 176 peixes m-3 apresentou melhor desempenho (PThe aim of the present study was to gauge the effect of stocking density associated to the sustained swimming on the performance and body composition of matrinxã (Brycon amazonicus juveniles. The fish were initially sized at 12.3±0.5cm length and 18.4g±0.1g weight. They were distributed randomly in two groups: the first was arranged into three densities of 88, 176 and 353 fish m-3 and conditioned to swim at 1.0BL sec-1 in circular tanks of 250L for 70 days; the second was arranged in the same fish densities but in static waters performing six treatments with three repetitions. Performance and body compositions were estimated in white and red muscles for both groups. The results express the growth and muscle composition change in response to the exercise and fish density. The fish maintained in moderate swimming at 176

  15. Presence and select determinants of organophosphate flame retardants in public swimming pools

    International Nuclear Information System (INIS)

    Teo, Tiffany L.L.; Coleman, Heather M.; Khan, Stuart J.

    2016-01-01

    The occurrence of five organophosphate flame retardants (PFRs) consisting of tributyl phosphate (TNBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1.3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) in swimming pools were investigated. Fifteen chlorinated public swimming pools were sampled, including indoor pools, outdoor pools and spa pools. The analyses were carried out using isotope dilution gas chromatography tandem mass spectrometry. All five PFRs were detected in swimming pool waters with concentrations ranging from 5–27 ng/L (TNBP), 7–293 ng/L (TCEP), 62–1180 ng/L (TCIPP), 10–670 ng/L (TDCIPP) and 8–132 ng/L (TPHP). The concentrations of PFRs were generally higher in indoor swimming pools compared to outdoor swimming pools. In municipal water supplies, used to fill the swimming pools in three of the sampling locations, the five PFRs were all below the limit of quantifications, eliminating this as the source. Potential leaching of PFRs from commonly used swimming equipment, including newly purchased kickboards and swimsuits was investigated. These experiments revealed that PFRs leached from swimsuits, and may be a source of PFRs in swimming pools. A quantitative risk assessment revealed that the health risk to PFRs via swimming pools was generally low and below commonly applied health risk benchmarks. - Highlights: • TNBP, TCEP, TCIPP, TDCIPP and TPHP were detected in chlorinated swimming pools. • PFRs were below the LOQ in fill water samples collected from 3 locations. • TCIPP was observed to have the highest concentrations in swimming pools. • PFRs are leaching from swimsuits and may be a source in swimming pools. • Health risks through oral and dermal exposure to PFRs in swimming pools were low.

  16. Presence and select determinants of organophosphate flame retardants in public swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Teo, Tiffany L.L., E-mail: tiffany.teo@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington NSW 2052 (Australia); Coleman, Heather M., E-mail: h.coleman@ulster.ac.uk [Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Jordanstown, County Antrim BT37 0QB, Northern Ireland (United Kingdom); Khan, Stuart J., E-mail: s.khan@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington NSW 2052 (Australia)

    2016-11-01

    The occurrence of five organophosphate flame retardants (PFRs) consisting of tributyl phosphate (TNBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1.3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) in swimming pools were investigated. Fifteen chlorinated public swimming pools were sampled, including indoor pools, outdoor pools and spa pools. The analyses were carried out using isotope dilution gas chromatography tandem mass spectrometry. All five PFRs were detected in swimming pool waters with concentrations ranging from 5–27 ng/L (TNBP), 7–293 ng/L (TCEP), 62–1180 ng/L (TCIPP), 10–670 ng/L (TDCIPP) and 8–132 ng/L (TPHP). The concentrations of PFRs were generally higher in indoor swimming pools compared to outdoor swimming pools. In municipal water supplies, used to fill the swimming pools in three of the sampling locations, the five PFRs were all below the limit of quantifications, eliminating this as the source. Potential leaching of PFRs from commonly used swimming equipment, including newly purchased kickboards and swimsuits was investigated. These experiments revealed that PFRs leached from swimsuits, and may be a source of PFRs in swimming pools. A quantitative risk assessment revealed that the health risk to PFRs via swimming pools was generally low and below commonly applied health risk benchmarks. - Highlights: • TNBP, TCEP, TCIPP, TDCIPP and TPHP were detected in chlorinated swimming pools. • PFRs were below the LOQ in fill water samples collected from 3 locations. • TCIPP was observed to have the highest concentrations in swimming pools. • PFRs are leaching from swimsuits and may be a source in swimming pools. • Health risks through oral and dermal exposure to PFRs in swimming pools were low.

  17. Simulated front crawl swimming performance related to critical speed and critical power.

    Science.gov (United States)

    Toussaint, H M; Wakayoshi, K; Hollander, A P; Ogita, F

    1998-01-01

    Competitive pool swimming events range in distance from 50 to 1500 m. Given the difference in performance times (+/- 23-1000 s), the contribution of the aerobic and anaerobic energy systems changes considerably with race distance. In training practice the regression line between swimming distance and time (Distance = critical velocity x time + anaerobic swimming capacity) is used to determine the individual capacity of the aerobic and anaerobic metabolic pathways. Although there is confidence that critical velocity and anaerobic swimming capacity are fitness measures that separate aerobic and anaerobic components, a firm theoretical basis for the interpretation of these results does not exist. The purpose of this study was to evaluate the critical power concept and anaerobic swimming capacity as measures of the aerobic and anaerobic capacity using a modeling approach. A systems model was developed that relates the mechanics and energetics involved in front crawl swimming performance. From actual swimming flume measurements, the time dependent aerobic and anaerobic energy release was modeled. Data derived from the literature were used to relate the energy cost of front crawl swimming to swimming velocity. A balance should exist between the energy cost to swim a distance in a certain time and the concomitant aerobic and anaerobic energy release. The ensuing model was used to predict performance times over a range of distances (50-1500 m) and to calculate the regression line between swimming distance and time. Using a sensitivity analysis, it was demonstrated that the critical velocity is indicative for the capacity of the aerobic energy system. Estimates of the anaerobic swimming capacity, however, were influenced by variations in both anaerobic and aerobic energy release. Therefore, it was concluded that the anaerobic swimming capacity does not provide a reliable estimate of the anaerobic capacity.

  18. Biochemical and hematological changes following the 120-km open-water marathon swim.

    Science.gov (United States)

    Drygas, Wojciech; Rębowska, Ewa; Stępień, Ewa; Golański, Jacek; Kwaśniewska, Magdalena

    2014-09-01

    Data on physiological effects and potential risks of a ultraendurance swimming are scarce. This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim on the Warta River, Poland. Pre-swimming examinations revealed favorable conditions (blood pressure, 110/70 mmHg; rest heart rate, 54 beats/minute, ejection fraction, 60%, 20.2 metabolic equivalents in a maximal exercise test). The swimming time and distance covered were 27 h 33 min and 120 km, respectively. Blood samples for hematological and biochemical parameters were collected 30 min, 4 hrs, 10 hrs and 8 days after the swim. The body temperature of the swimmer was 36.7°C before and 35.1°C after the swim. The hematological parameters remained within the reference range in the postexercise period except for leucocytes (17.5 and 10.6 x G/l noted 30 minutes and 4 hours after the swim, respectively). Serum urea, aspartate aminotransferase and C-reactive protein increased above the reference range reaching 11.3 mmol/l, 1054 nmol/l/s and 25.9 mg/l, respectively. Symptomatic hyponatremia was not observed. Although the results demonstrate that an experienced athlete is able to complete an ultra-marathon swim without negative health consequences, further studies addressing the potential risks of marathon swimming are required. Key pointsData on biochemical changes due to long-distance swimming are scarce.This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim.An experienced athlete is able to complete an ultra-marathon swim without serious health consequences.Regarding the growing popularity of marathon swimming further studies addressing the potential risks of such exhaustive exercise are required.

  19. Innovative water withdrawal system re-establishes fish migration runs

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    This article described a unique water withdrawal and fish bypass structure that is under construction in Oregon to re-establish anadromous fish runs and to improve water quality downstream of the Round Butte dam. Portland General Electric and the Confederated Tribes of the Warm Springs Reservation, which co-own the dam, have committed to re-establish fish runs in response to concerns over the declining numbers of salmon and trout in the region. Water intakes are routinely added at hydroelectric facilities to protect native fish in compliance with the Federal Energy Regulatory Commission and the Clean Water Act. The Round Butte Hydroelectric project had a complex set of challenges whereby surface-current directions had to be changed to help migrating salmon swim easily into a fish handling area and create a fish collection system. CH2M HILL designed the system which consists of a large floating structure, an access bridge, a large vertical conduit and a base structure resting on the lake bed. Instead of using 2D CAD file methods, CH2M HILL decided to take advantage of 3D models to visualize the complex geometry of these structures. The 3D models were used to help designers and consultants understand the issues, resolve conflicts and design solutions. The objective is to have the system operating by the 2009 migrating season. 1 ref., 4 figs

  20. Swimming-induced pulmonary oedema an uncommon condition diagnosed with POCUS ultrasound.

    Science.gov (United States)

    Alonso, Joaquín Valle; Chowdhury, Motiur; Borakati, Raju; Gankande, Upali

    2017-12-01

    Swimming Induced Pulmonary Edema, or SIPE, is an emerging condition occurring in otherwise healthy individuals during surface swimming or diving that is characterized by cough, dyspnea, hemoptysis, and hypoxemia. It is typically found in those who spend time in cold water exercise with heavy swimming and surface swimming, such as civilian training for iron Man, triathalon, and military training. We report the case of a highly trained young female swimmer in excellent cardiopulmonary health, who developed acute alveolar pulmonary oedema in an open water swimming training diagnosed in the emergency department using POCUS ultrasound. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Heart rate variability and swimming.

    Science.gov (United States)

    Koenig, Julian; Jarczok, Marc N; Wasner, Mieke; Hillecke, Thomas K; Thayer, Julian F

    2014-10-01

    Professionals in the domain of swimming have a strong interest in implementing research methods in evaluating and improving training methods to maximize athletic performance and competitive outcome. Heart rate variability (HRV) has gained attention in research on sport and exercise to assess autonomic nervous system activity underlying physical activity and sports performance. Studies on swimming and HRV are rare. This review aims to summarize the current evidence on the application of HRV in swimming research and draws implications for future research. A systematic search of databases (PubMed via MEDLINE, PSYNDEX and Embase) according to the PRISMA statement was employed. Studies were screened for eligibility on inclusion criteria: (a) empirical investigation (HRV) in humans (non-clinical); (b) related to swimming; (c) peer-reviewed journal; and (d) English language. The search revealed 194 studies (duplicates removed), of which the abstract was screened for eligibility. Fourteen studies meeting the inclusion criteria were included in the review. Included studies broadly fell into three classes: (1) control group designs to investigate between-subject differences (i.e. swimmers vs. non-swimmers, swimmers vs. other athletes); (2) repeated measures designs on within-subject differences of interventional studies measuring HRV to address different modalities of training or recovery; and (3) other studies, on the agreement of HRV with other measures. The feasibility and possibilities of HRV within this particular field of application are well documented within the existing literature. Future studies, focusing on translational approaches that transfer current evidence in general practice (i.e. training of athletes) are needed.

  2. Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae

    International Nuclear Information System (INIS)

    Silva, Cátia S.E.; Novais, Sara C.; Lemos, Marco F.L.; Mendes, Susana; Oliveira, Ana P.; Gonçalves, Emanuel J.; Faria, Ana M.

    2016-01-01

    Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO_2. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO_2, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO_2 on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO_2 levels (control: ~ 600 μatm, pH = 8.03; medium: ~ 1000 μatm, pH = 7.85; high: ~ 1800 μatm, pH = 7.64) up to 15 days, after which critical swimming speed (U_c_r_i_t), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress — superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism — total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO_2 leads to higher energetic costs and morphometric changes, with larger larvae in high pCO_2 treatment and smaller larvae in medium pCO_2 treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO_2 treatment may indicate that at higher pCO_2 levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO_2 levels on organisms. - Highlights: • Exposure to high pCO_2

  3. Swimming of a Sea Butterfly with an Elongated Shell

    Science.gov (United States)

    Karakas, Ferhat; Maas, Amy E.; Murphy, David W.

    2017-11-01

    Sea butterflies (pteropods) are small, zooplanktonic marine snails which swim by flapping highly flexible parapodia. Previous studies show that the swimming hydrodynamics of Limacina helicina, a polar pteropod with a spiraled shell, is similar to tiny insect flight aerodynamics and that forward-backward pitching is key for lift generation. However, swimming by diverse pteropod species with different shell shapes has not been examined. We present measurements of the swimming of Cuvierina columnella, a warm water species with an elongated non-spiraled shell collected off the coast of Bermuda. With a body length of 9 mm, wing beat frequency of 4-6 Hz and swimming speed of 35 mm/s, these organisms swim at a Reynolds number of approximately 300, larger than that of L. helicina. High speed 3D kinematics acquired via two orthogonal cameras reveals that the elongated shell correlates with reduced body pitching and that the wings bend approximately 180 degrees in each direction, overlapping at the end of each half-stroke. Time resolved 2D flow measurements collected with a micro-PIV system reveal leading edge vortices present in both power and recovery strokes. Interactions between the overlapping wings and the shell also likely play a role in lift generation.

  4. Stirring by swimming bodies

    International Nuclear Information System (INIS)

    Thiffeault, Jean-Luc; Childress, Stephen

    2010-01-01

    We consider the stirring of an inviscid fluid caused by the locomotion of bodies through it. The swimmers are approximated by non-interacting cylinders or spheres moving steadily along straight lines. We find the displacement of fluid particles caused by the nearby passage of a swimmer as a function of an impact parameter. We use this to compute the effective diffusion coefficient from the random walk of a fluid particle under the influence of a distribution of swimming bodies. We compare with the results of simulations. For typical sizes, densities and swimming velocities of schools of krill, the effective diffusivity in this model is five times the thermal diffusivity. However, we estimate that viscosity increases this value by two orders of magnitude.

  5. EFFECT OF FLEXIBILITY ON THE RESULTS OF DOLPHIN SWIMMING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Slađana Tošić

    2011-09-01

    Full Text Available In order to determine the impact of flexibility on the results in swimming, we conducted a study on a sample of 50 female patients aged 11-14 years of age who are in the training process in the swimming clubs „Nis 2005“ and „Sveti Nikola“ in Nis. The study is applied to 14 measuring instruments that were divided into three groups: Measuring instruments for the assessment of flexibility (11; Measuring instruments for assessing the results of swimming (1; Measuring instruments for evaluation of morphological characteristics (2. The regression analysis determined the impact of flexibility on the results in swimming. The regression analysis didn't confirmed the assumption that there is a statistically significant effect of flexibility variables on results in swimming for female swimmers

  6. 36 CFR 3.17 - What regulations apply to swimming areas and beaches?

    Science.gov (United States)

    2010-07-01

    ... swimming areas and beaches? 3.17 Section 3.17 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.17 What regulations apply to swimming areas and beaches? (a) The superintendent may designate areas as swimming areas or swimming beaches in...

  7. On the development of inexpensive speed and position tracking system for swimming

    DEFF Research Database (Denmark)

    Trangbæk, Søren; Rasmussen, Cuno; Andersen, Thomas Bull

    2016-01-01

    A semi-automated tracking system was developed for the analysis of swimming, using cameras, an LED diode marker, and a red swim cap. Four experienced young swimmers were equipped with a marker and a swim cap and their position and speed was tracked throughout above-water and under-water swimming...

  8. Swimming of Microorganisms Viewed from String and Membrane Theories

    OpenAIRE

    Kawamura, Masako; Sugamoto, Akio; Nojiri, Shin'ichi

    1993-01-01

    Swimming of microorganisms is studied from a viewpoint of extended objects (strings and membranes) swimming in the incompressible f luid of low Reynolds number. The flagellated motion is analyzed in two dimensional fluid, by using the method developed in the ciliated motion with the Joukowski transformation. Discussion is given on the conserved charges and the algebra which are associated with the area (volume)- preserving diffeomorphisms giving the swimming motion of microorganisms. It is al...

  9. Ovarian and uterine alterations following forced swimming: An immunohistochemical study.

    Science.gov (United States)

    Seyed Saadat, Seyedeh Nazanin; Mohammadghasemi, Fahimeh; Ebrahimi, Hannan; Rafati Sajedi, Hanieh; Chatrnour, Gelayol

    2016-10-01

    Physical exercise is known to be a stressor stimulus that leads to reproductive disruption. The aim of this study was to evaluate the effect of forced swimming on the uterus and ovaries in mice. Adult mice (N=24) were divided into the following three groups: A, control; B, swimming in water (10 o C); and C, swimming in water (23 o C). Swimmers swam for 5 min daily for 5 consecutive days/ wk during 2 wks. An enzyme linked immunosorbent assay was used to determine serum estradiol, follicle stimulating hormone (FSH) and testosterone levels. Immunohistochemistry was performed to study apoptotic cells or estrogen receptor (ER) expression in uterine epithelial cells and ovaries. ANOVA was used for statistical analysis. Swimming in both groups reduced the serum FSH and estradiol levels (pForced swimming of 2 wks duration reduces the serum levels of FSH and estradiol without having effects on apoptosis in the ovaries or uteri of mice. Over a long period of time, forced swimming may have an adverse effect on fertility.

  10. The swimming polarity of multicellular magnetotactic prokaryotes can change during an isolation process employing magnets: evidence of a relation between swimming polarity and magnetic moment intensity.

    Science.gov (United States)

    de Melo, Roger Duarte; Acosta-Avalos, Daniel

    2017-09-01

    Magnetotactic microorganisms are characterized by swimming in the direction of an applied magnetic field. In nature, two types of swimming polarity have been observed: north-seeking microorganisms that swim in the same direction as the magnetic field, and south-seeking microorganisms that swim in the opposite direction. The present work studies the reversal in the swimming polarity of the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis following an isolation process using high magnetic fields from magnets. The proportion of north- and south-seeking organisms was counted as a function of the magnetic field intensity used during the isolation of the organisms from sediment. It was observed that the proportion of north-seeking organisms increased when the magnetic field was increased. The magnetic moment for north- and south-seeking populations was estimated using the U-turn method. The average magnetic moment was higher for north- than south-seeking organisms. The results suggest that the reversal of swimming polarity must occur during the isolation process in the presence of high magnetic fields and magnetic field gradients. It is shown for the first time that the swimming polarity reversal depends on the magnetic moment intensity of multicellular magnetotactic prokaryotes, and new studies must be undertaken to understand the role of magnetic moment polarity and oxygen gradients in determination of swimming polarity.

  11. Feeding of swimming Paramecium with fore-aft asymmetry in viscous fluid

    Science.gov (United States)

    Zhang, Peng; Jana, Saikat; Giarra, Matthew; Vlachos, Pavlos; Jung, Sunghwan

    2013-11-01

    Swimming behaviours and feeding efficiencies of Paramecium Multimicronucleatum with fore-aft asymmetric body shapes are studied experimentally and numerically. Among various possible swimming ways, ciliates typically exhibit only one preferred swimming directions in favorable conditions. Ciliates, like Paramecia, with fore-aft asymmetric shapes preferably swim towards the slender anterior while feeding fluid to the oral groove located at the center of the body. Since both feeding and swimming efficiencies are influenced by fluid motions around the body, it is important to reveal the fluid mechanics around a moving object. Experimentally, μ-PIV methods are employed to characterize the source-dipole streamline patterns and fluid motions around Paramecium. Numerical simulations by boundary element methods are also used to evaluate surface stresses and velocities, which give insights into the efficiencies of swimming and feeding depending on body asymmetry. It is concluded that a slender anterior and fat posterior increases the combined efficiency of swimming and feeding, which matches well with actual shapes of Paramecium. Discrepancies between experiments and simulations are also discussed.

  12. Design, Implementation and Control of a Fish Robot with Undulating Fins

    Directory of Open Access Journals (Sweden)

    Mohsen Siahmansouri

    2011-11-01

    Full Text Available Biomimetic robots can potentially perform better than conventional robots in underwater vehicle designing. This paper describes the design of the propulsion system and depth control of a robotic fish. In this study, inspired by knife fish, we have designed and implemented an undulating fin to produce propulsive force. This undulating fin is a segmental anal fin that produces sinusoidal wave to propel the robot. The relationship between the individual fin segment and phase angles with the overall fin trajectory has also been discussed. This propulsive force can be adjusted and directed for fish robot manoeuvre by a mechanical system with two servomotors. These servomotors regulate the direction and depth of swimming. A wireless remote control system is designed to adjust the servomotors which enables us to control revolution, speed and phase differences of neighbor servomotors of fins. Finally, Field trials are conducted in an outdoor pool to demonstrate the relationship between robotic fish speed and fin parameters like phase difference, the number of phase and undulatory amplitude.

  13. Biomechanical aspects of peak performance in human swimming

    NARCIS (Netherlands)

    Toussaint, H.M.; Truijens, M.J.

    2005-01-01

    Peak performances in sport require the full deployment of all the powers an athlete possesses. How factors such as mechanical power output, technique and drag, each individually, but also in concert, determine swimming performance is the subject of this enquiry. This overview of swimming

  14. Velocidade crítica de natação (Ucrit de matrinxã (Brycon amazonicus após exposição à hipoxia Critical swimming speed of matrinxã (Brycon amazonicus exposed to hypoxia

    Directory of Open Access Journals (Sweden)

    Marcio Soares Ferreira

    2010-12-01

    Full Text Available A primeira resposta ao estresse é a fuga, que depende do desempenho natatório e de ajustes fisiológicos. Este estudo investigou a velocidade crítica de natação (Ucrit de matrinxã após exposição à hipoxia. Para isso, os peixes foram expostos à hipoxia, sendo uma parte do grupo analisada antes e outra após natação forçada, por meio da Ucrit. A hipoxia resultou no aumento de lactato, glicose, cortisol e hematócrito. Mudanças nos níveis de sódio e potássio, bem como os valores de Ucrit não foram observadas. Sugere-se que o matrinxã seja sensível à hipoxia, mas os ajustes fisiológicos são suficientes para manter seu desempenho natatório.Escape is the first response of fish to stress, that depends on the swimming performance and the physiological adjustments. This study has investigated the critical swimming speed (Ucrit of matrinxã after exposure to hypoxia. To achieve that, the fishes were exposed to hypoxia and analyzed before and after forced swimming, using Ucrit. The hypoxia caused an increase of lactate, glucose, cortisol and hematocrit. No changes of plasma sodium and potassium levels, as well as the Ucrit, were observed. We suggest that matrinxã is sensitive to hypoxia, but the physiological adjustments are sufficient to keep its swimming performance.

  15. Roll and Yaw of Paramecium swimming in a viscous fluid

    Science.gov (United States)

    Jung, Sunghwan; Jana, Saikat; Giarra, Matt; Vlachos, Pavlos

    2012-11-01

    Many free-swimming microorganisms like ciliates, flagellates, and invertebrates exhibit helical trajectories. In particular, the Paramecium spirally swims along its anterior direction by the beating of cilia. Due to the oblique beating stroke of cilia, the Paramecium rotates along its long axis as it swims forward. Simultaneously, this long axis turns toward the oral groove side. Combined roll and yaw motions of Paramecium result in swimming along a spiral course. Using Particle Image Velocimetry, we measure and quantify the flow field and fluid stress around Paramecium. We will discuss how the non-uniform stress distribution around the body induces this yaw motion.

  16. An implantable two axis micromanipulator made with a 3D printer for recording neural activity in free-swimming fish.

    Science.gov (United States)

    Rogers, Loranzie S; Van Wert, Jacey C; Mensinger, Allen F

    2017-08-15

    Chronically implanted electrodes allow monitoring neural activity from free moving animals. While a wide variety of implanted headstages, microdrives and electrodes exist for terrestrial animals, few have been developed for use with aquatic animals. A two axis micromanipulator was fabricated with a Formlabs 3D printer for implanting electrodes into free-swimming oyster toadfish (Opsanus tau). The five piece manipulator consisted of a base, body, electrode holder, manual screw drive and locking nut. The manipulator measured approximately 25×20×30mm (l×w×h) and weighed 5.28g after hand assembly. Microwire electrodes were inserted successfully with the manipulator to record high fidelity signals from the anterior lateral line nerve of the toadfish. The micromanipulator allowed the chronically implanted electrodes to be repositioned numerous times to record from multiple sites and extended successful recording time in the toadfish by several days. Three dimensional printing allowed an inexpensive (<$US 5 material), two axis micromanipulator to be printed relatively rapidly (<2h) to successfully record from multiple sites in the anterior lateral line nerve of free-swimming toadfish. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The swimming program effects on the gross motor function, mental adjustment to the aquatic environment, and swimming skills in children with cerebral palsy: A pilot study

    Directory of Open Access Journals (Sweden)

    Jorgić Bojan

    2012-01-01

    Full Text Available The aim of this research was to determine the swimming program effects on the gross motor function, mental adjustment to the aquatic environment and the ability to move in the water and swim in children with cerebral palsy. The sample consisted of seven children (4 boys and 3 girls with spastic cerebral palsy and an average age of 9y 5mo ± 1y 3 mo. The swimming program lasted 6 weeks, with two swimming sessions per week. Each session lasted 45 minutes. The swimming program included the application of the Halliwick Method and swimming exercises which are used in a healthy population. The GMFM test was used for the assessment of gross motor functions. The WOTA2 test was applied to assess mental adjustment and swimming skills. The Wilcoxon matched pairs test was used to determine the statistically significant differences between the initial and final measuring. The results have indicated that there was statistically significant differences in the E dimension (p=0.04 and the total score T (p=0.03 of the GMFM test, then for mental adjustment to the aquatic environment WMA (p=0.02, ability to move in water andswimming skills WSW (p=0.03 and the overall result WTO (p=0.02 of the WOTA2 test. The applied swimming program had a statistically significant effect on the improvement in walking, running and jumping as well as the overall gross motor functions of children with cerebral palsy. The applied program also contributed to a statistically significant influence on the increase in mental adjustment to the aquatic environment and the ability to move in water and swim.

  18. Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish.

    Science.gov (United States)

    Johansen, J L; Messmer, V; Coker, D J; Hoey, A S; Pratchett, M S

    2014-04-01

    Large-bodied fish are critical for sustaining coral reef fisheries, but little is known about the vulnerability of these fish to global warming. This study examined the effects of elevated temperatures on the movement and activity patterns of the common coral trout Plectropomus leopardus (Serranidae), which is an important fishery species in tropical Australia and throughout the Indo West-Pacific. Adult fish were collected from two locations on Australia's Great Barrier Reef (23°S and 14°S) and maintained at one of four temperatures (24, 27, 30, 33 °C). Following >4 weeks acclimation, the spontaneous swimming speeds and activity patterns of individuals were recorded over a period of 12 days. At 24-27 °C, spontaneous swimming speeds of common coral trout were 0.43-0.45 body lengths per second (bls(-1)), but dropped sharply to 0.29 bls(-1) at 30 °C and 0.25 bls(-1) at 33 °C. Concurrently, individuals spent 9.3-10.6% of their time resting motionless on the bottom at 24-27 °C, but this behaviour increased to 14.0% at 30 °C and 20.0% of the time at 33 °C (mean ± SE). The impact of temperature was greatest for smaller individuals (55 cm TL) were first affected by 30 °C and 33 °C, respectively. Importantly, there was some indication that populations can adapt to elevated temperature if presented with adequate time, as the high-latitude population decreased significantly in swimming speeds at both 30 °C and 33 °C, while the low-latitude population only showed significant reductions at 33 °C. Given that movement and activity patterns of large mobile species are directly related to prey encounter rates, ability to capture prey and avoid predators, any reductions in activity patterns are likely to reduce overall foraging and energy intake, limit the energy available for growth and reproduction, and affect the fitness and survival of individuals and populations. © 2013 John Wiley & Sons Ltd.

  19. The economics of age-group swimming in Ontario.

    Science.gov (United States)

    Eynon, R B; Kitchen, P D; Semotiuk, D M

    1980-09-01

    This study investigated the socio-economic status of the parents of Ontario swimmers and parental expenditures, in terms of time and money, in support of competitive swimming. Questionnaires were mailed to a sample of 400 families of Ontario competitive swimmers. Spearman rho analyses were used to determine the relationships of membership fee, total cost and total time spent by the parents to the ability and age of the swimmer and the number of hours of practice and swim meets. Parents of Ontario competitive swimmers are upper middle class and devote a great deal of their time (X = 433 hours) and money (X = $744.00) annually to competitive swimming. Total expenditures and time spend by the parents were greater for those children were young and also for those whose children demonstrated greater ability (i.e., closer to Ontario record). Spearman rho analyses suggested that membership fees are not determined on the basis of age, number of practice hours or number of swim meets.

  20. Swimming pool special; Zwembadspecial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    This issue includes a few articles and messages on the use of heat pump systems in swimming pools. [Dutch] Dit nummer bevat onder meer een paar artikelen over het gebruik van warmtepompsystemen in zwembaden.

  1. Comparison of expert and nonexpert swimmers' opinions about the value, potency, and activity of four standard swimming strokes and underwater undulatory swimming.

    Science.gov (United States)

    Collard, L; Oboeuf, A

    2009-04-01

    Underwater undulatory swimming (UUS) is often perceived to be a nonessential aspect of aquatic propulsion. Given their solid theoretical and practical training in swimming, physical education students should be capable of judging the true value of the "fifth stroke," since it appears to be the most efficient technique in high level, competitive swimming. To compare opinions and connotations associated with the stroke and the four official strokes (butterfly, backstroke, breaststroke, and crawl), 198 students (32 of whom were expert swimmers; M age = 20.6 yr., SD = 1.2), were surveyed using the semantic differential of Osgood, Suci, and Tannenbaum. Although answers of expert and nonexpert swimmers differed significantly (p stroke was less attractive, less powerful, and less rapid than the four surface strokes (d = 2.88 for the expert swimmers). Putting one arm in front of the other and repeating the sequence still remains the most solidly held representation of "the right way" to swim. However, the high observed standard deviations for the underwater undulatory stimulus (SD > or = 1.1 with SD max = 3 for the expert swimmers) attests to the view being less strongly held by swimming specialists.

  2. Design of extended length submerged traveling screen and submerged bar screen fish guidance equipment

    International Nuclear Information System (INIS)

    Bardy, D.; Lindstrom, M.; Fechner, D.

    1991-01-01

    The hydropower projects on the Snake and lower Columbia Rivers in the Pacific Northwest are unique because these rivers are also the spawning grounds for migratory salmon. The salmon swim upstream from the ocean, lay their eggs, and die. The newly hatched fingerlings must then make their way past the hydroelectric dams to the ocean. Two separate bypass systems are needed, one to pass the adult fish going upstream, and one to pass the fingerlings going downstream. This paper addresses the design considerations for two of the components of the downstream migrant fish passage facilities, the extended Submerged Traveling Screen and Submerged Bar Screen

  3. Sex differences associated with intermittent swim stress.

    Science.gov (United States)

    Warner, Timothy A; Libman, Matthew K; Wooten, Katherine L; Drugan, Robert C

    2013-11-01

    Various animal models of depression have been used to seek a greater understanding of stress-related disorders. However, there is still a great need for novel research in this area, as many individuals suffering from depression are resistant to current treatment methods. Women have a higher rate of depression, highlighting the need to investigate mechanisms of sex differences. Therefore, we employed a new animal model to assess symptoms of depression, known as intermittent swim stress (ISS). In this model, the animal experiences 100 trials of cold water swim stress. ISS has already been shown to cause signs of behavioral depression in males, but has yet to be assessed in females. Following ISS exposure, we looked at sex differences in the Morris water maze and forced swim test. The results indicated a spatial learning effect only in the hidden platform task between male and female controls, and stressed and control males. A consistent spatial memory effect was only seen for males exposed to ISS. In the forced swim test, both sexes exposed to ISS exhibited greater immobility, and the same males and females also showed attenuated climbing and swimming, respectively. The sex differences could be due to different neural substrates for males and females. The goal of this study was to provide the first behavioral examination of sex differences following ISS exposure, so the stage of estrous cycle was not assessed for the females. This is a necessary future direction for subsequent experiments. The current article highlights the importance of sex differences in response to stress.

  4. London 2012 Paralympic swimming: passive drag and the classification system.

    Science.gov (United States)

    Oh, Yim-Taek; Burkett, Brendan; Osborough, Conor; Formosa, Danielle; Payton, Carl

    2013-09-01

    The key difference between the Olympic and Paralympic Games is the use of classification systems within Paralympic sports to provide a fair competition for athletes with a range of physical disabilities. In 2009, the International Paralympic Committee mandated the development of new, evidence-based classification systems. This study aims to assess objectively the swimming classification system by determining the relationship between passive drag and level of swimming-specific impairment, as defined by the current swimming class. Data were collected on participants at the London 2012 Paralympic Games. The passive drag force of 113 swimmers (classes 3-14) was measured using an electro-mechanical towing device and load cell. Swimmers were towed on the surface of a swimming pool at 1.5 m/s while holding their most streamlined position. Passive drag ranged from 24.9 to 82.8 N; the normalised drag (drag/mass) ranged from 0.45 to 1.86 N/kg. Significant negative associations were found between drag and the swimming class (τ = -0.41, p < 0.01) and normalised drag and the swimming class (τ = -0.60, p < 0.01). The mean difference in drag between adjacent classes was inconsistent, ranging from 0 N (6 vs 7) to 11.9 N (5 vs 6). Reciprocal Ponderal Index (a measure of slenderness) correlated moderately with normalised drag (r(P) = -0.40, p < 0.01). Although swimmers with the lowest swimming class experienced the highest passive drag and vice versa, the inconsistent difference in mean passive drag between adjacent classes indicates that the current classification system does not always differentiate clearly between swimming groups.

  5. Fish skin bacteria: Colonial and cellular hydrophobicity.

    Science.gov (United States)

    Sar, N; Rosenberg, E

    1987-05-01

    Bacteria were desorbed from the skin of healthy, fast-swimming fish by several procedures, including brief exposure to sonic oscillation and treatment with nontoxic surface active agents. The surface properties of these bacteria were studied by measuring their adhesion to hexadecane, as well as by a newly developed, simple method for studying the hydrophobicity of bacterial lawns. This method, referred to as the "Direction of Spreading" (DOS) method, consists of recording the direction to which a water drop spreads when introduced at the border between bacterial lawns and other surfaces. Of the 13 fish skin isolates examined, two strains were as hydrophobic as polystyrene by the DOS method. Suspended cells of one of these strains adhered strongly to hexadecane (84%), whereas cells of the other strain adhered poorly (13%). Another strain which was almost as hydrophobic as polystyrene by the DOS method did not adhere to hexadecane at all. Similarly, lawns of three other strains were more hydrophobic than glass by the DOS method, but cell suspensions prepared from these colonies showed little or no adhesion to hexadecane. The high colonial but relatively low cellular hydrophobicity could be due to a hydrophobic slime that is removed during the suspension and washing procedures. The possibility that specific bacteria assist in fish locomotion by changing the surface properties of the fish skin and by producing drag-reducing polymers is discussed.

  6. Swim speed, behavior, and movement of North Atlantic right whales (Eubalaena glacialis in coastal waters of northeastern Florida, USA.

    Directory of Open Access Journals (Sweden)

    James H W Hain

    Full Text Available In a portion of the coastal waters of northeastern Florida, North Atlantic right whales (Eubalaena glacialis occur close to shore from December through March. These waters are included within the designated critical habitat for right whales. Data on swim speed, behavior, and direction of movement--with photo-identification of individual whales--were gathered by a volunteer sighting network working alongside experienced scientists and supplemented by aerial observations. In seven years (2001-2007, 109 tracking periods or "follows" were conducted on right whales during 600 hours of observation from shore-based observers. The whales were categorized as mother-calf pairs, singles and non-mother-calf pairs, and groups of 3 or more individuals. Sample size and amount of information obtained was largest for mother-calf pairs. Swim speeds varied within and across observation periods, individuals, and categories. One category, singles and non mother-calf pairs, was significantly different from the other two--and had the largest variability and the fastest swim speeds. Median swim speed for all categories was 1.3 km/h (0.7 kn, with examples that suggest swim speeds differ between within-habitat movement and migration-mode travel. Within-habitat right whales often travel back-and-forth in a north-south, along-coast, direction, which may cause an individual to pass by a given point on several occasions, potentially increasing anthropogenic risk exposure (e.g., vessel collision, fishing gear entanglement, harassment. At times, mothers and calves engaged in lengthy stationary periods (up to 7.5 h that included rest, nursing, and play. These mother-calf interactions have implications for communication, learning, and survival. Overall, these behaviors are relevant to population status, distribution, calving success, correlation to environmental parameters, survey efficacy, and human-impacts mitigation. These observations contribute important parameters to

  7. Mechanics of undulatory swimming in a frictional fluid.

    Science.gov (United States)

    Ding, Yang; Sharpe, Sarah S; Masse, Andrew; Goldman, Daniel I

    2012-01-01

    The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.

  8. Correlated evolution of body and fin morphology in the cichlid fishes.

    Science.gov (United States)

    Feilich, Kara L

    2016-10-01

    Body and fin shapes are chief determinants of swimming performance in fishes. Different configurations of body and fin shapes can suit different locomotor specializations. The success of any configuration is dependent upon the hydrodynamic interactions between body and fins. Despite the importance of body-fin interactions for swimming, there are few data indicating whether body and fin configurations evolve in concert, or whether these structures vary independently. The cichlid fishes are a diverse family whose well-studied phylogenetic relationships make them ideal for the study of macroevolution of ecomorphology. This study measured body, and caudal and median fin morphology from radiographs of 131 cichlid genera, using morphometrics and phylogenetic comparative methods to determine whether these traits exhibit correlated evolution. Partial least squares canonical analysis revealed that body, caudal fin, dorsal fin, and anal fin shapes all exhibited strong correlated evolution consistent with locomotor ecomorphology. Major patterns included the evolution of deep body profiles with long fins, suggestive of maneuvering specialization; and the evolution of narrow, elongate caudal peduncles with concave tails, a combination that characterizes economical cruisers. These results demonstrate that body shape evolution does not occur independently of other traits, but among a suite of other morphological changes that augment locomotor specialization. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  9. Is swimming during pregnancy a safe exercise?

    DEFF Research Database (Denmark)

    Juhl, Mette; Kogevinas, Manolis; Andersen, Per Kragh

    2010-01-01

    ,486 singleton pregnancies. Recruitment to The Danish National Birth Cohort took place 1996-2002. Using Cox, linear and logistic regression analyses, depending on the outcome, we compared swimmers with physically inactive pregnant women; to separate a possible swimming effect from an effect of exercise......BACKGROUND: Exercise in pregnancy is recommended in many countries, and swimming is considered by many to be an ideal activity for pregnant women. Disinfection by-products in swimming pool water may, however, be associated with adverse effects on various reproductive outcomes. We examined......, bicyclists were included as an additional comparison group. RESULTS: Risk estimates were similar for swimmers and bicyclists, including those who swam throughout pregnancy and those who swam more than 1.5 hours per week. Compared with nonexercisers, women who swam in early/mid-pregnancy had a slightly...

  10. Declines in swimming performance with age: a longitudinal study of Masters swimming champions

    Directory of Open Access Journals (Sweden)

    Rubin RT

    2013-03-01

    Full Text Available Robert T Rubin,1,2 Sonia Lin,3 Amy Curtis,4 Daniel Auerbach,5 Charlene Win6 1Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; 2UCLA Bruin Masters Swim Club, Los Angeles, CA, USA; 3Saint Louis University School of Medicine, Saint Louis, MO, USA; 4Indiana University School of Medicine, Indianapolis, IN, USA; 5University of California, Berkeley, CA, USA; 6Loyola Marymount University, Los Angeles, CA, USA Introduction: Because of its many participants and thorough records, competitive Masters swimming offers a rich data source for determining the rate of physical decline associated with aging in physically fit individuals. The decline in performance among national champion swimmers, both men and women and in short and long swims, is linear, at about 0.6% per year up to age 70–75, after which it accelerates in quadratic fashion. These conclusions are based primarily on cross-sectional studies, and little is known about individual performance declines with aging. Herein we present performance profiles of 19 male and 26 female national and international champion Masters swimmers, ages 25 to 96 years, participating in competitions for an average of 23 years. Methods and results: Swimmers’ longitudinal data were compared with the fastest times of world record holders across ages 35–100 years by two regression methods. Neither method proved to accurately model this data set: compared with the rates of decline estimated from the world record data, which represent the best recorded times at given ages, there was bias toward shallower rates of performance decline in the longitudinal data, likely owing to a practice effect in some swimmers as they began their Masters programs. In swimmers’ later years, once maximum performance had been achieved, individual profiles followed the decline represented in the world records, and a few swimmers became the world record holders. In some instances

  11. Biochemical and Hematological Changes Following the 120-Km Open-Water Marathon Swim

    Directory of Open Access Journals (Sweden)

    Wojciech Drygas, Ewa Rębowska, Ewa Stępień, Jacek Golański, Magdalena Kwaśniewska

    2014-09-01

    Full Text Available Data on physiological effects and potential risks of a ultraendurance swimming are scarce. This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim on the Warta River, Poland. Pre-swimming examinations revealed favorable conditions (blood pressure, 110/70 mmHg; rest heart rate, 54 beats/minute, ejection fraction, 60%, 20.2 metabolic equivalents in a maximal exercise test. The swimming time and distance covered were 27 h 33 min and 120 km, respectively. Blood samples for hematological and biochemical parameters were collected 30 min, 4 hrs, 10 hrs and 8 days after the swim. The body temperature of the swimmer was 36.7°C before and 35.1°C after the swim. The hematological parameters remained within the reference range in the postexercise period except for leucocytes (17.5 and 10.6 x G/l noted 30 minutes and 4 hours after the swim, respectively. Serum urea, aspartate aminotransferase and C-reactive protein increased above the reference range reaching 11.3 mmol/l, 1054 nmol/l/s and 25.9 mg/l, respectively. Symptomatic hyponatremia was not observed. Although the results demonstrate that an experienced athlete is able to complete an ultra-marathon swim without negative health consequences, further studies addressing the potential risks of marathon swimming are required.

  12. 33 CFR 117.734 - Navesink River (Swimming River).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navesink River (Swimming River). 117.734 Section 117.734 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Swimming River). The Oceanic Bridge, mile 4.5, shall open on signal; except that, from December 1 through...

  13. Circular swimming in mice after exposure to a high magnetic field.

    Science.gov (United States)

    Houpt, Thomas A; Houpt, Charles E

    2010-06-16

    There is increasing evidence that exposure to high magnetic fields of 4T and above perturbs the vestibular system of rodents and humans. Performance in a swim test is a sensitive test of vestibular function. In order to determine the effect of magnet field exposure on swimming in mice, mice were exposed for 30 min within a 14.1T superconducting magnet and then tested at different times after exposure in a 2-min swim test. As previously observed in open field tests, mice swam in tight counter-clockwise circles when tested immediately after magnet exposure. The counter-clockwise orientation persisted throughout the 2-min swim test. The tendency to circle was transient, because no significant circling was observed when mice were tested at 3 min or later after magnet exposure. However, mice did show a decrease in total distance swum when tested between 3 and 40 min after magnet exposure. The decrease in swimming distance was accompanied by a pronounced postural change involving a counter-clockwise twist of the pelvis and hindlimbs that was particularly severe in the first 15s of the swim test. Finally, no persistent difference from sham-exposed mice was seen in the swimming of magnet-exposed mice when tested 60 min, 24h, or 96 h after magnet exposure. This suggests that there is no long-lasting effect of magnet exposure on the ability of mice to orient or swim. The transient deficits in swimming and posture seen shortly after magnet exposure are consistent with an acute perturbation of the vestibular system by the high magnetic field. (c) 2010 Elsevier Inc. All rights reserved.

  14. The Physiology and Mechanics of Undulatory Swimming: A Student Laboratory Exercise Using Medicinal Leeches

    Science.gov (United States)

    Ellerby, David J.

    2009-01-01

    The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle…

  15. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    International Nuclear Information System (INIS)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-01-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of [ 3 H]Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in [14C]iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress [an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures], although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results

  16. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  17. On the swimming motion of spheroidal magnetotactic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui Zhen; Kong Dali; Zhang Keke [Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom); Pan Yongxin, E-mail: kzhang@ex.ac.uk [Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China)

    2012-10-15

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  18. On the swimming motion of spheroidal magnetotactic bacteria

    International Nuclear Information System (INIS)

    Cui Zhen; Kong Dali; Zhang Keke; Pan Yongxin

    2012-01-01

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  19. Water Penetration into Middle Ear Through Ventilation Tubes in Children While Swimming

    Directory of Open Access Journals (Sweden)

    Mao-Che Wang

    2009-02-01

    Conclusion: Water penetration into the middle ear through ventilation tubes and middle ear infection are not likely when surface swimming. Children with ventilation tubes can enjoy swimming without protection in clean chlorinated swimming pools.

  20. Role of Pectoral Fin Flexibility in Robotic Fish Performance

    Science.gov (United States)

    Bazaz Behbahani, Sanaz; Tan, Xiaobo

    2017-08-01

    Pectoral fins play a vital role in the maneuvering and locomotion of fish, and they have become an important actuation mechanism for robotic fish. In this paper, we explore the effect of flexibility of robotic fish pectoral fins on the robot locomotion performance and mechanical efficiency. A dynamic model for the robotic fish is presented, where the flexible fin is modeled as multiple rigid elements connected via torsional springs and dampers. Blade element theory is used to capture the hydrodynamic force on the fin. The model is validated with experimental results obtained on a robotic fish prototype, equipped with 3D-printed fins of different flexibility. The model is then used to analyze the impacts of fin flexibility and power/recovery stroke speed ratio on the robot swimming speed and mechanical efficiency. It is found that, in general, flexible fins demonstrate advantages over rigid fins in speed and efficiency at relatively low fin-beat frequencies, while rigid fins outperform flexible fins at higher frequencies. For a given fin flexibility, the optimal frequency for speed performance differs from the optimal frequency for mechanical efficiency. In addition, for any given fin, there is an optimal power/recovery stroke speed ratio, typically in the range of 2-3, that maximizes the speed performance. Overall, the presented model offers a promising tool for fin flexibility and gait design, to achieve speed and efficiency objectives for robotic fish actuated with pectoral fins.

  1. Solar collectors for swimming pools still going strong

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    According to the opinion of the experts, solar energy heating may be technically 'mature' but the profitability is by no means that far. However, solar systems are a good alternative for heating the water in swimming pools. Four solar collector systems developed by different firms to heat swimming pools, including prices, are presented.

  2. Social conformity and propagation of information in collective U-turns of fish schools.

    Science.gov (United States)

    Lecheval, Valentin; Jiang, Li; Tichit, Pierre; Sire, Clément; Hemelrijk, Charlotte K; Theraulaz, Guy

    2018-04-25

    Moving animal groups such as schools of fishes or flocks of birds often undergo sudden collective changes of their travelling direction as a consequence of stochastic fluctuations in heading of the individuals. However, the mechanisms by which these behavioural fluctuations arise at the individual level and propagate within a group are still unclear. In this study, we combine an experimental and theoretical approach to investigate spontaneous collective U-turns in groups of rummy-nose tetra ( Hemigrammus rhodostomus ) swimming in a ring-shaped tank. U-turns imply that fish switch their heading between the clockwise and anticlockwise direction. We reconstruct trajectories of individuals moving alone and in groups of different sizes. We show that the group decreases its swimming speed before a collective U-turn. This is in agreement with previous theoretical predictions showing that speed decrease facilitates an amplification of fluctuations in heading in the group, which can trigger U-turns. These collective U-turns are mostly initiated by individuals at the front of the group. Once an individual has initiated a U-turn, the new direction propagates through the group from front to back without amplification or dampening, resembling the dynamics of falling dominoes. The mean time between collective U-turns sharply increases as the size of the group increases. We develop an Ising spin model integrating anisotropic and asymmetrical interactions between fish and their tendency to follow the majority of their neighbours nonlinearly (social conformity). The model quantitatively reproduces key features of the dynamics and the frequency of collective U-turns observed in experiments. © 2018 The Author(s).

  3. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed.

    Science.gov (United States)

    Ren, Ziyu; Yang, Xingbang; Wang, Tianmiao; Wen, Li

    2016-02-08

    Recent advances in understanding fish locomotion with robotic devices have included the use of biomimetic flapping based and fin undulatory locomotion based robots, treating two locomotions separately from each other. However, in most fish species, patterns of active movements of fins occur in concert with the body undulatory deformation during swimming. In this paper, we describe a biomimetic robotic caudal fin programmed with individually actuated fin rays to mimic the fin motion of the Bluegill Sunfish (Lepomis macrochirus) and coupled with heave and pitch oscillatory motions adding to the robot to mimic the peduncle motion which is derived from the undulatory fish body. Multiple-axis force and digital particle image velocimetry (DPIV) experiments from both the vertical and horizontal planes behind the robotic model were conducted under different motion programs and flow speeds. We found that both mean thrust and lift could be altered by changing the phase difference (φ) from 0° to 360° between the robotic caudal peduncle and the fin ray motion (spanning from 3 mN to 124 mN). Notably, DPIV results demonstrated that the caudal fin generated multiple wake flow patterns in both the vertical and horizontal planes by varying φ. Vortex jet angle and thrust impulse also varied significantly both in these two planes. In addition, the vortex shedding position along the spanwise tail direction could be shifted around the mid-sagittal position between the upper and lower lobes by changing the phase difference. We hypothesize that the fish caudal fin may serve as a flexible vectoring propeller during swimming and may be critical for the high maneuverability of fish.

  4. Noncontact Cohesive Swimming of Bacteria in Two-Dimensional Liquid Films.

    Science.gov (United States)

    Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel B; Wu, Yilin

    2017-07-07

    Bacterial swimming in confined two-dimensional environments is ubiquitous in nature and in clinical settings. Characterizing individual interactions between swimming bacteria in 2D confinement will help to understand diverse microbial processes, such as bacterial swarming and biofilm formation. Here we report a novel motion pattern displayed by flagellated bacteria in 2D confinement: When two nearby cells align their moving directions, they tend to engage in cohesive swimming without direct cell body contact, as a result of hydrodynamic interaction but not flagellar intertwining. We further found that cells in cohesive swimming move with higher directional persistence, which can increase the effective diffusivity of cells by ∼3 times as predicted by computational modeling. As a conserved behavior for peritrichously flagellated bacteria, cohesive swimming in 2D confinement may be key to collective motion and self-organization in bacterial swarms; it may also promote bacterial dispersal in unsaturated soils and in interstitial space during infections.

  5. Radon measurements in air in waterworks and indoor swimming pools - a primary mapping project

    International Nuclear Information System (INIS)

    Marinko, J.; Mjoenes, L.; Soederman, A.-L.

    2004-01-01

    In 2001 the Swedish Work Environment Authority asked five regional offices around the country; Falun, Malmoe, Vaexjoe, Umeaa and Oerebro, to measure radon in air in workplaces where water was likely to enhance radon levels indoors. Track etch detectors were used and placed in workplaces according to the SSI measurement protocol for determining the annual average radon concentration in homes. Rooms that are frequently used by employees were measured. The detectors were exposed between 1 to 3 months. 225 detectors were used in the project and analysed at the same laboratory. The results showed that the radon concentration in waterworks often is high. Measurements were made in 60 waterworks. Levels exceeding 1000 Bq/m 3 were found in 49 of them and levels exceeding 4000 Bq/m 3 were found in 21 waterworks. The variation between waterworks may be a result of the radon concentration in the raw water, the amount of radon gas escaping to the air when water is treated, the air exchange rate in the building and where the detectors were deployed. Measurements were made in 28 indoor swimming baths. The maximum level was 290 Bq/m 3 , but most concentrations were between 30 to 70 Bq/m 3 . The conclusion is that high radon levels do not seem to be a problem in indoor swimming baths. Maybe this is due to good ventilation or the fact that water often has been treated for radon before it is used in swimming pools. The results from measurement in food industries such as breweries showed no extreme radon levels except for a fish farm where levels over 1000 Bq/m 3 were measured in the farming room and 790 Bq/m 3 in the office. The radon concentrations in laundries were relatively low, between 30 and 170 Bq/m 3

  6. Swimming mechanics and propulsive efficiency in the chambered nautilus

    Science.gov (United States)

    Neil, Thomas R.; Askew, Graham N.

    2018-02-01

    The chambered nautilus (Nautilus pompilius) encounters severe environmental hypoxia during diurnal vertical movements in the ocean. The metabolic cost of locomotion (Cmet) and swimming performance depend on how efficiently momentum is imparted to the water and how long on-board oxygen stores last. While propulsive efficiency is generally thought to be relatively low in jet propelled animals, the low Cmet in Nautilus indicates that this is not the case. We measured the wake structure in Nautilus during jet propulsion swimming, to determine their propulsive efficiency. Animals swam with either an anterior-first or posterior-first orientation. With increasing swimming speed, whole cycle propulsive efficiency increased during posterior-first swimming but decreased during anterior-first swimming, reaching a maximum of 0.76. The highest propulsive efficiencies were achieved by using an asymmetrical contractile cycle in which the fluid ejection phase was relatively longer than the refilling phase, reducing the volume flow rate of the ejected fluid. Our results demonstrate that a relatively high whole cycle propulsive efficiency underlies the low Cmet in Nautilus, representing a strategy to reduce the metabolic demands in an animal that spends a significant part of its daily life in a hypoxic environment.

  7. Tracing metabolic routes of dietary carbohydrate and protein in rainbow trout (Oncorhynchus mykiss) using stable isotopes ([¹³C]starch and [¹⁵N]protein): effects of gelatinisation of starches and sustained swimming.

    Science.gov (United States)

    Felip, Olga; Ibarz, Antoni; Fernández-Borràs, Jaume; Beltrán, Marta; Martín-Pérez, Miguel; Planas, Josep V; Blasco, Josefina

    2012-03-01

    Here we examined the use of stable isotopes, [¹³C]starch and [¹⁵N]protein, as dietary tracers to study carbohydrate assimilation and distribution and protein utilisation, respectively, by rainbow trout (Oncorhynchus mykiss). The capacity of glucose uptake and use by tissues was studied, first, by varying the digestibility of carbohydrate-rich diets (30 % carbohydrate), using raw starch and gelatinised starch (GS) and, second, by observing the effects of two regimens of activity (voluntary swimming, control; sustained swimming at 1·3 body lengths/s, exercise) on the GS diet. Isotopic ratio enrichment (¹³C and ¹⁵N) of the various tissue components (protein, lipid and glycogen) was measured in the liver, muscles, viscera and the rest of the fish at 11 and 24 h after a forced meal. A level of 30 % of digestible carbohydrates in the food exceeded the capacity of rainbow trout to use this nutrient, causing long-lasting hyperglycaemia that raises glucose uptake by tissues, and the synthesis of glycogen and lipid in liver. Total 13C recovered 24 h post-feeding in the GS group was lower than at 11 h, indicating a proportional increase in glucose oxidation, although the deposition of lipids in white muscle (WM) increased. Prolonged hyperglycaemia was prevented by exercise, since sustained swimming enhances the use of dietary carbohydrates, mainly through conversion to lipids in liver and oxidation in muscles, especially in red muscle (RM). Higher recoveries of total 15N for exercised fish at 24 h, mainly into the protein fraction of both RM and WM, provide evidence that sustained swimming improves protein deposition, resulting in an enhancement of the protein-sparing effect.

  8. Impulsive sounds change European seabass swimming patterns: Influence of pulse repetition interval

    International Nuclear Information System (INIS)

    Neo, Y.Y.; Ufkes, E.; Kastelein, R.A.; Winter, H.V.; Cate, C. ten; Slabbekoorn, H.

    2015-01-01

    Highlights: • We exposed impulsive sounds of different repetition intervals to European seabass. • Immediate behavioural changes mirrored previous indoor & outdoor studies. • Repetition intervals influenced the impacts differentially but not the recovery. • Sound temporal patterns may be more important than some standard metrics. - Abstract: Seismic shootings and offshore pile-driving are regularly performed, emitting significant amounts of noise that may negatively affect fish behaviour. The pulse repetition interval (PRI) of these impulsive sounds may vary considerably and influence the behavioural impact and recovery. Here, we tested the effect of four PRIs (0.5–4.0 s) on European seabass swimming patterns in an outdoor basin. At the onset of the sound exposures, the fish swam faster and dived deeper in tighter shoals. PRI affected the immediate and delayed behavioural changes but not the recovery time. Our study highlights that (1) the behavioural changes of captive European seabass were consistent with previous indoor and outdoor studies; (2) PRI could influence behavioural impact differentially, which may have management implications; (3) some acoustic metrics, e.g. SEL cum , may have limited predictive power to assess the strength of behavioural impacts of noise. Noise impact assessments need to consider the contribution of sound temporal structure

  9. Do intracoelomic telemetry transmitters alter the post-release behaviour of migratory fish?

    Science.gov (United States)

    Wilson, Alexander D.M.; Hayden, Todd A.; Vandergoot, Christopher S.; Kraus, Richard T.; Dettmers, John M.; Cooke, Steven J.; Charles C. Krueger,

    2016-01-01

    Electronic tags have become a common tool in fish research, enhancing our understanding of how fish interact with their environment and move among different habitats, for estimating mortality and recording internal physiological states. An often-untested assumption of electronic tagging studies is that tagged fish are representative of untagged conspecifics and thus show ‘normal’ behaviour (e.g. movement rates, swimming activity, feeding). Here, we use a unique data set for potamadromous walleye (Sander vitreus) in Lake Huron and Lake Erie tributaries to assess whether the lack of appropriate controls in electronic tagging could seriously affect behavioural data. We used fish tagged in previous years and compared their migratory behaviour during the spawning season to fish tagged in a current year at the same location. The objective of the study was to determine whether intracoelomic acoustic tag implantation altered downstream movement of walleye after spawning. Fish tagged in a given season travelled slower downstream from two river spawning sites than fish tagged in previous years. Fish tagged one or two years earlier showed no differences between each other in downstream travel time, in contrast to fish tagged in a given year. Our results support notions that standard collection and intracoelomic tagging procedures can alter short-term behaviour (i.e. days, weeks, months), and as such, researchers should use caution when interpreting data collected over such time periods. Further, whenever possible, researchers should also explicitly evaluate post-tagging effects on behaviour as part of their experimental objectives.

  10. Wearable inertial sensors in swimming motion analysis: a systematic review.

    Science.gov (United States)

    de Magalhaes, Fabricio Anicio; Vannozzi, Giuseppe; Gatta, Giorgio; Fantozzi, Silvia

    2015-01-01

    The use of contemporary technology is widely recognised as a key tool for enhancing competitive performance in swimming. Video analysis is traditionally used by coaches to acquire reliable biomechanical data about swimming performance; however, this approach requires a huge computational effort, thus introducing a delay in providing quantitative information. Inertial and magnetic sensors, including accelerometers, gyroscopes and magnetometers, have been recently introduced to assess the biomechanics of swimming performance. Research in this field has attracted a great deal of interest in the last decade due to the gradual improvement of the performance of sensors and the decreasing cost of miniaturised wearable devices. With the aim of describing the state of the art of current developments in this area, a systematic review of the existing methods was performed using the following databases: PubMed, ISI Web of Knowledge, IEEE Xplore, Google Scholar, Scopus and Science Direct. Twenty-seven articles published in indexed journals and conference proceedings, focusing on the biomechanical analysis of swimming by means of inertial sensors were reviewed. The articles were categorised according to sensor's specification, anatomical sites where the sensors were attached, experimental design and applications for the analysis of swimming performance. Results indicate that inertial sensors are reliable tools for swimming biomechanical analyses.

  11. Swimming of a Tiny Subtropical Sea Butterfly with Coiled Shell

    Science.gov (United States)

    Murphy, David; Karakas, Ferhat; Maas, Amy

    2017-11-01

    Sea butterflies, also known as pteropods, include a variety of small, zooplanktonic marine snails. Thecosomatous pteropods possess a shell and swim at low Reynolds numbers by beating their wing-like parapodia in a manner reminiscent of insect flight. In fact, previous studies of the pteropod Limacina helicina have shown that pteropod swimming hydrodynamics and tiny insect flight aerodynamics are dynamically similar. Studies of L. helicina swimming have been performed in polar (0 degrees C) and temperate conditions (12 degrees C). Here we present measurements of the swimming of Heliconoides inflatus, a smaller yet morphologically similar pteropod that lives in warm Bermuda seawater (21 degrees C) with a viscosity almost half that of the polar seawater. The collected H. inflatus have shell sizes less than 1.5 mm in diameter, beat their wings at frequencies up to 11 Hz, and swim upwards in sawtooth trajectories at speeds up to approximately 25 mm/s. Using three-dimensional wing and body kinematics collected with two orthogonal high speed cameras and time-resolved, 2D flow measurements collected with a micro-PIV system, we compare the effects of smaller body size and lower water viscosity on the flow physics underlying flapping-based swimming by pteropods and flight by tiny insects.

  12. Numerical and experimental investigations of human swimming motions.

    Science.gov (United States)

    Takagi, Hideki; Nakashima, Motomu; Sato, Yohei; Matsuuchi, Kazuo; Sanders, Ross H

    2016-08-01

    This paper reviews unsteady flow conditions in human swimming and identifies the limitations and future potential of the current methods of analysing unsteady flow. The capability of computational fluid dynamics (CFD) has been extended from approaches assuming steady-state conditions to consideration of unsteady/transient conditions associated with the body motion of a swimmer. However, to predict hydrodynamic forces and the swimmer's potential speeds accurately, more robust and efficient numerical methods are necessary, coupled with validation procedures, requiring detailed experimental data reflecting local flow. Experimental data obtained by particle image velocimetry (PIV) in this area are limited, because at present observations are restricted to a two-dimensional 1.0 m(2) area, though this could be improved if the output range of the associated laser sheet increased. Simulations of human swimming are expected to improve competitive swimming, and our review has identified two important advances relating to understanding the flow conditions affecting performance in front crawl swimming: one is a mechanism for generating unsteady fluid forces, and the other is a theory relating to increased speed and efficiency.

  13. Health risks associated with swimming at an inland river

    Science.gov (United States)

    Swimming exposure to fecally-contaminated oceans and lakes has been associated with an increased risk of gastrointestinal (GI) illness. Although treated and untreated sewage are often discharged to rivers, the health risks of swimming exposure on rivers has been less frequently ...

  14. Estimating energy expenditure during front crawl swimming using accelerometers

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Espinosa, Hugo G.; Van Thiel, David H

    2014-01-01

    The determination of energy expenditure is of major interest in training load and performance assessment. Small, wireless accelerometer units have the potential to characterise energy expenditure during swimming. The correlation between absorbed oxygen versus flume swimming speed and absorbed oxy...

  15. Physiological Trade-Offs Along a Fast-Slow Lifestyle Continuum in Fishes: What Do They Tell Us about Resistance and Resilience to Hypoxia?

    Science.gov (United States)

    Stoffels, Rick J

    2015-01-01

    It has recently been suggested that general rules of change in ecological communities might be found through the development of functional relationships between species traits and performance. The physiological, behavioural and life-history traits of fishes are often organised along a fast-slow lifestyle continuum (FSLC). With respect to resistance (capacity for population to resist change) and resilience (capacity for population to recover from change) to environmental hypoxia, the literature suggests that traits enhancing resilience may come at the expense of traits promoting resistance to hypoxia; a trade-off may exist. Here I test whether three fishes occupying different positions along the FSLC trade-off resistance and resilience to environmental hypoxia. Static respirometry experiments were used to determine resistance, as measured by critical oxygen tension (Pcrit), and capacity for (RC) and magnitude of metabolic reduction (RM). Swimming respirometry experiments were used to determine aspects of resilience: critical (Ucrit) and optimal swimming speed (Uopt), and optimal cost of transport (COTopt). Results pertaining to metabolic reduction suggest a resistance gradient across species described by the inequality Melanotaenia fluviatilis (fast lifestyle) fishes occupying different positions on the FSLC trade-off resistance and resilience to hypoxia. However, the scope of inferences that can be drawn from an individual study is narrow, and so steps towards general, trait-based rules of fish community change along environmental gradients are discussed.

  16. Swimming behavior and prey retention of the polychaete larvae Polydora ciliata (Johnston)

    DEFF Research Database (Denmark)

    Hansen, B.W.; Jakobsen, Hans Henrik; Andersen, Anders Peter

    2010-01-01

    in specific feeding rates and the observed increase in the difference between upward and downward swimming speeds with larval size. We estimated a critical larval length above which the buoyancy-corrected weight of the larva exceeds the propulsion force generated by the ciliary swimming apparatus and thus......The behavior of the ubiquitous estuarine planktotrophic spionid polychaete larvae Polydora ciliata was studied. We describe ontogenetic changes in morphology, swimming speed and feeding rates and have developed a simple swimming model using low Reynolds number hydrodynamics. In the model we assumed...... that the ciliary swimming apparatus is primarily composed of the prototroch and secondarily by the telotroch. The model predicted swimming speeds and feeding rates that corresponded well with the measured speeds and rates. Applying empirical data to the model, we were able to explain the profound decrease...

  17. Swimming black-crowned night-herons (Nycticorax nycticorax) Kleptoparasitize American coots (Fulica americana)

    DEFF Research Database (Denmark)

    Graves, Gary R.

    2015-01-01

    I observed black-crowned night-herons (Nycticorax nycticorax) swimming and kleptoparasitizing American coots (Fulica americana) at an artificial lake in Pinal County, Arizona. This appears to be the first record of interspecific kleptoparasitism by a swimming ardeid.......I observed black-crowned night-herons (Nycticorax nycticorax) swimming and kleptoparasitizing American coots (Fulica americana) at an artificial lake in Pinal County, Arizona. This appears to be the first record of interspecific kleptoparasitism by a swimming ardeid....

  18. Quiet swimming at low Reynolds number

    Science.gov (United States)

    Andersen, Anders; Wadhwa, Navish; Kiørboe, Thomas

    2015-04-01

    The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic organisms, we demonstrate that a three-Stokeslet model of a swimming organism which uses breast stroke type kinematics is an example of such a quiet swimmer. We show that the fluid disturbance in both the near field and the far field is significantly reduced by appropriately arranging the propulsion apparatus, and we find that the far field power laws are valid surprisingly close to the organism. Finally, we discuss point force models as a general framework for hypothesis generation and experimental exploration of fluid mediated predator-prey interactions in the planktonic world.

  19. The differential optomotor response of the four-eyed fish Anableps anableps.

    Science.gov (United States)

    Albensi, B C; Powell, J H

    1998-01-01

    The perception of motion is important for the survival and reproduction of many animals, including fish. In the laboratory, support for this idea comes from the observation that many fish show a tendency to follow a series of stripes revolving around a circular aquarium. This response, known as the optomotor response (OMR), is recognized as an innate behavior in many species. The 'four-eyed' fishes of the genus Anableps are an unusual fish from Central and South America and actually have only two eyes. Each eye is divided into upper and lower halves internally and externally. This peculiar dual visual system allows Anableps to feed on creatures that swim or land near or on the water surface or to flee from flying predators attacking from above. It was hypothesized that Anableps should also possess the OMR. We used the OMR as a test to investigate potential differential visual processing in Anableps on normal and 'blinded' fish (the eyes are actually covered--not physically blinded). It was found that the OMR does exist in Anableps and that the strength of this response is dependent on the visual field being tested--a stronger OMR was seen as a result of visual stimulation from the aerial environment.

  20. Sperm proteins in teleostean and chondrostean (sturgeon) fishes.

    Science.gov (United States)

    Li, Ping; Hulak, Martin; Linhart, Otomar

    2009-11-01

    Sperm proteins in the seminal plasma and spermatozoa of teleostean and chondrostean have evolved adaptations due to the changes in the reproductive environment. Analysis of the composition and functions of these proteins provides new insights into sperm motility and fertilising abilities, thereby creating possibilities for improving artificial reproduction and germplasm resource conservation technologies (e.g. cryopreservation). Seminal plasma proteins are involved in the protection of spermatozoa during storage in the reproductive system, whereas all spermatozoa proteins contribute to the swimming and fertilising abilities of sperm. Compared to mammalian species, little data are available on fish sperm proteins and their functions. We review here the current state of the art in this field and focus on relevant subjects that require attention. Future research should concentrate on protein functions and their mode of action in fish species, especially on the role of spermatozoa surface proteins during fertilisation and on a description of sturgeon sperm proteins.