WorldWideScience

Sample records for swimming diving including

  1. Development of a Simulation Model for Swimming with Diving Fins

    Directory of Open Access Journals (Sweden)

    Motomu Nakashima

    2018-02-01

    Full Text Available The simulation model to assess the performance of diving fin was developed by extending the swimming human simulation model SWUM. A diving fin was modeled as a series of five rigid plates and connected to the human model by springs and dampers. These plates were connected to each other by virtual springs and dampers, and fin’s bending property was represented by springs and dampers as well. An actual diver’s swimming motion with fins was acquired by a motion capture experiment. In order to determine the bending property of the fin, two bending tests on land were conducted. In addition, an experiment was conducted in order to determine the fluid force coefficients in the fluid force model for the fin. Finally, using all measured and identified information, a simulation, in which the experimental situation was reproduced, was carried out. It was confirmed that the diver in the simulation propelled forward in the water successfully.

  2. CERN Scuba Diving Club

    CERN Multimedia

    Club Subaquatique du CERN

    2017-01-01

    Interested in scuba diving? Fancy a fun trial dive? Like every year, the CERN Scuba Diving Club is organizing two free trial dive sessions. Where? Varembé Swimming Pool, Avenue Giuseppe Motta 46, 1202 Genève When? 25th October and 1st November at 19:15 (one session per participant) Price? Trial dives are FREE! Swimming pool entrance 5,40 CHF. What to bring? Swimwear, towel, shower necessities and a padlock – diving equipment will be provided by the CSC. For more information and to subscribe, follow the link below: http://cern.ch/csc-baptemes-2017 Looking forward to meeting you!

  3. Regulation of stroke pattern and swim speed across a range of current velocities: Diving by common eiders wintering in polynyas in the Canadian Arctic

    NARCIS (Netherlands)

    Heath, J.P.; Gilchrist, H.G.; Ydenberg, R.C.

    2006-01-01

    Swim speed during diving has important energetic consequences. Not only do costs increase as drag rises non-linearly with increasing speed, but speed also affects travel time to foraging patches and therefore time and energy budgets over the entire dive cycle. However, diving behaviour has rarely

  4. The marine mammal dive response is exercise modulated to maximize aerobic dive duration.

    Science.gov (United States)

    Davis, Randall W; Williams, Terrie M

    2012-08-01

    When aquatically adapted mammals and birds swim submerged, they exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues and organs is reduced. The most intense dive response occurs during forced submersion which conserves blood oxygen for the brain and heart, thereby preventing asphyxiation. In free-diving animals, the dive response is less profound, and energy metabolism remains aerobic. However, even this relatively moderate bradycardia seems diametrically opposed to the normal cardiovascular response (i.e., tachycardia and peripheral vasodilation) during physical exertion. As a result, there has been a long-standing paradox regarding how aquatic mammals and birds exercise while submerged. We hypothesized based on cardiovascular modeling that heart rate must increase to ensure adequate oxygen delivery to active muscles. Here, we show that heart rate (HR) does indeed increase with flipper or fluke stroke frequency (SF) during voluntary, aerobic dives in Weddell seals (HR = 1.48SF - 8.87) and bottlenose dolphins (HR = 0.99SF + 2.46), respectively, two marine mammal species with different evolutionary lineages. These results support our hypothesis that marine mammals maintain aerobic muscle metabolism while swimming submerged by combining elements of both dive and exercise responses, with one or the other predominating depending on the level of exertion.

  5. 36 CFR 327.5 - Swimming.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Swimming. 327.5 Section 327.5 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY RULES AND REGULATIONS... Swimming. (a) Swimming, wading, snorkeling or scuba diving at one's own risk is permitted, except at...

  6. 43 CFR 423.36 - Swimming.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Swimming. 423.36 Section 423.36 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR... Swimming. (a) You may swim, wade, snorkel, scuba dive, raft, or tube at your own risk in Reclamation waters...

  7. The Effect of a Diving Mask on Intraocular Pressure in a Healthy Population

    Directory of Open Access Journals (Sweden)

    Catherina Josephine Goenadi

    2016-06-01

    Full Text Available Purpose: Swimming goggles increase the intraocular pressure (IOP via the periorbital frame pressure and suction effect. In comparison, diving masks have a larger frame rim and incorporate the nose. The exact effect(s of diving masks on IOP is unknown. This study evaluates the influence of diving masks on IOP in normal, healthy subjects. Methods: Tonometry was performed in both eyes of all subjects with an AVIA®Tono-Pen by a single investigator. Measurements were taken at baseline without the diving mask and with the subjects wearing a small-volume, double-window diving mask, but with the mask lenses removed. Two IOP readings in each eye were measured, and an additional reading was measured if the difference between the initial 2 was ≥2 mm Hg. Central corneal thickness (CCT was also measured in each eye, using a contact pachymeter (OcuScan®Alcon. Results: Forty eyes of 20 healthy volunteers (age 29.7 ± 9.3 years; range 21–52 were included. The mean CCT was 544.4 ± 43.5 µm. The mean IOP before the diving mask was worn had been 17.23 ± 2.18 mm Hg (n = 40. The IOP decreased by 0.43 mm Hg (p < 0.05 to 16.80 ± 2.57 mm Hg after the diving mask had been put on. There was no correlation between IOP change and age (r = 0.143, p = 0.337, gender (r = –0.174, p = 0.283 or CCT (r = –0.123, p = 0.445. Conclusion: There was no increase in IOP after the diving mask had been worn. A small but statistically significant decrease in IOP was observed. This study demonstrates that unlike swimming goggles, the strap tension and frame pressure on the periorbital tissue from a diving mask does not increase IOP. Diving masks may be a suitable alternative to swimming goggles for patients with advanced glaucoma or glaucoma filtration surgery.

  8. Board Diving Regulations in Public Swimming Pools and Risk of Injury.

    Science.gov (United States)

    Williams, David; Odin, Louise

    2016-06-01

    Public session access to diving boards is one of the stepping stones for those wishing to develop their skills in the sport of diving. The extent to which certain dive forms are considered risky (forward/backward/rotations) and therefore not permitted is a matter for local pool managers. In Study 1, 20 public pools with diving facilities responded to a U.K. survey concerning their diving regulation policy and related injury incidence in the previous year. More restrictive regulation of dive forms was not associated with a decrease in injuries (rs [42] = -0.20, p = 0.93). In Study 2, diving risk perception and attitudes towards regulation were compared between experienced club divers (N = 22) and nondivers (N = 22). Risk was perceived to be lower for those with experience, and these people favored less regulation. The findings are interpreted in terms of a risk thermostat model, where for complex physical performance activities such as diving, individuals may exercise caution in proportion to their ability and previous experience of success and failure related to the activity. Though intuitively appealing, restrictive regulation of public pool diving may be ineffective in practice because risk is not simplistically associated with dive forms, and divers are able to respond flexibly to risk by exercising caution where appropriate. © 2015 Society for Risk Analysis.

  9. Underwater laboratory: Teaching physics through diving practice

    International Nuclear Information System (INIS)

    Favale, F.

    2013-01-01

    Diving education and diving science and technology may be a useful tool in teaching physics in non–physics-oriented High School courses. In this paper we present an activity which combines some simple theoretical aspects of fluid statics, fluid dynamics and gas behavior under pressure with diving experience, where the swimming pool and the sea are used as a laboratory. This topic had previously been approached in a pure experimental way in school laboratory, but some particular experiments became much more attractive and meaningful to the students when they could use their bodies to perform them directly in water. The activity was carried out with groups of students from Italian High School classes in different situations.

  10. Multidisciplinary teaching in swimming: methodological reflection and proposal of check list

    Directory of Open Access Journals (Sweden)

    Sofia Canossa

    2007-12-01

    Full Text Available The present study proposes a new multidisciplinary approach related to teaching in swimming. Swimming is an interdisciplinary physical activity, which can be truly important at the level of the motor learning and experimentation in aquatic activities. In the present manuscript, it was compared the present reality of teaching in Swimming with a new perspective, this one with a multidisciplinary scope. Following the referred analysis, it was presented a discussion about the orientation and adequacy of the contents of the Swimming curriculum for children and youngsters, which are populations with specific characteristics and development necessities. In this sense, after stating the relevance of a multidisciplinary perspective, it was proposed a new approach for basic aquatic motor skills acquisition based on four disciplines: swimming, water polo, synchronised swimming and platform diving. This was made taking into account the initial stage of swimming teaching, i.e., aquatic readiness. This proposal aims mainly at implementing the teaching of Swimming at a multidisciplinary point of view that, in our opinion, is urgent, namely due to the small expression that the aquatic modalities traditionally considered as swimming satellites (water polo, synchronised swimming and platform diving have in the Portuguese sports context.

  11. Diving Simulation concerning Adélie Penguin

    Science.gov (United States)

    Ito, Shinichiro; Harada, Masanori

    Penguins are sea birds that swim using lift and drag forces by flapping their wings like other birds. Although diving data can be obtained using a micro-data logger which has improved in recent years, all the necessary diving conditions for analysis cannot be acquired. In order to determine all these hard-to-get conditions, the posture and lift and drag forces of penguins were theoretically calculated by the technique used in the analysis of the optimal flight path of aircrafts. In this calculation, the actual depth and speed of the dive of an Adélie penguin (Pygoscelis adeliae) were utilized. Then, the calculation result and experimental data were compared, and found to be in good agreement. Thus, it is fully possible to determine the actual conditions of dive by this calculation, even those that cannot be acquired using a data logger.

  12. The cardiovascular and endocrine responses to voluntary and forced diving in trained and untrained rats

    Science.gov (United States)

    DiNovo, Karyn. M.; Connolly, Tiffanny M.

    2010-01-01

    The mammalian diving response, consisting of apnea, bradycardia, and increased total peripheral resistance, can be modified by conscious awareness, fear, and anticipation. We wondered whether swim and dive training in rats would 1) affect the magnitude of the cardiovascular responses during voluntary and forced diving, and 2) whether this training would reduce or eliminate any stress due to diving. Results indicate Sprague-Dawley rats have a substantial diving response. Immediately upon submersion, heart rate (HR) decreased by 78%, from 453 ± 12 to 101 ± 8 beats per minute (bpm), and mean arterial pressure (MAP) decreased 25%, from 143 ± 1 to 107 ± 5 mmHg. Approximately 4.5 s after submergence, MAP had increased to a maximum 174 ± 3 mmHg. Blood corticosterone levels indicate trained rats find diving no more stressful than being held by a human, while untrained rats find swimming and diving very stressful. Forced diving is stressful to both trained and untrained rats. The magnitude of bradycardia was similar during both voluntary and forced diving, while the increase in MAP was greater during forced diving. The diving response of laboratory rats, therefore, appears to be dissimilar from that of other animals, as most birds and mammals show intensification of diving bradycardia during forced diving compared with voluntary diving. Rats may exhibit an accentuated antagonism between the parasympathetic and sympathetic branches of the autonomic nervous system, such that in the autonomic control of HR, parasympathetic activity overpowers sympathetic activity. Additionally, laboratory rats may lack the ability to modify the degree of parasympathetic outflow to the heart during an intense cardiorespiratory response (i.e., the diving response). PMID:19923359

  13. Swimming Performance of Toy Robotic Fish

    Science.gov (United States)

    Petelina, Nina; Mendelson, Leah; Techet, Alexandra

    2015-11-01

    HEXBUG AquaBotsTM are a commercially available small robot fish that come in a variety of ``species''. These models have varying caudal fin shapes and randomly-varied modes of swimming including forward locomotion, diving, and turning. In this study, we assess the repeatability and performance of the HEXBUG swimming behaviors and discuss the use of these toys to develop experimental techniques and analysis methods to study live fish swimming. In order to determine whether these simple, affordable model fish can be a valid representation for live fish movement, two models, an angelfish and a shark, were studied using 2D Particle Image Velocimetry (PIV) and 3D Synthetic Aperture PIV. In a series of experiments, the robotic fish were either allowed to swim freely or towed in one direction at a constant speed. The resultant measurements of the caudal fin wake are compared to data from previous studies of a real fish and simplified flapping propulsors.

  14. King penguins adjust their diving behaviour with age.

    Science.gov (United States)

    Le Vaillant, Maryline; Wilson, Rory P; Kato, Akiko; Saraux, Claire; Hanuise, Nicolas; Prud'homme, Onésime; Le Maho, Yvon; Le Bohec, Céline; Ropert-Coudert, Yan

    2012-11-01

    Increasing experience in long-lived species is fundamental to improving breeding success and ultimately individual fitness. Diving efficiency of marine animals is primarily determined by their physiological and mechanical characteristics. This efficiency may be apparent via examination of biomechanical performance (e.g. stroke frequency and amplitude, change in buoyancy or body angle, etc.), which itself may be modulated according to resource availability, particularly as a function of depth. We investigated how foraging and diving abilities vary with age in a long-lived seabird. During two breeding seasons, small accelerometers were deployed on young (5 year old) and older (8/9 year old) brooding king penguins (Aptenodytes patagonicus) at the Crozet Archipelago, Indian Ocean. We used partial dynamic body acceleration (PDBA) to quantify body movement during dive and estimate diving cost. During the initial part of the descent, older birds exerted more effort for a given speed but younger penguins worked harder in relation to performance at greater depths. Younger birds also worked harder per unit speed for virtually the whole of the ascent. We interpret these differences using a model that takes into account the upthrust and drag to which the birds are subjected during the dive. From this, we suggest that older birds inhale more at the surface but that an increase in the drag coefficient is the factor leading to the increased effort to swim at a given speed by the younger birds at greater depths. We propose that this higher drag may be the result of young birds adopting less hydrodynamic postures or less direct trajectories when swimming or even having a plumage in poorer condition.

  15. Processing of acceleration and dive data on-board satellite relay tags to investigate diving and foraging behaviour in free-ranging marine predators.

    Science.gov (United States)

    Cox, Sam L; Orgeret, Florian; Gesta, Mathieu; Rodde, Charles; Heizer, Isaac; Weimerskirch, Henri; Guinet, Christophe

    2018-01-01

    Biologging technologies are changing the way in which the marine environment is observed and monitored. However, because device retrieval is typically required to access the high-resolution data they collect, their use is generally restricted to those animals that predictably return to land. Data abstraction and transmission techniques aim to address this, although currently these are limited in scope and do not incorporate, for example, acceleration measurements which can quantify animal behaviours and movement patterns over fine-scales.In this study, we present a new method for the collection, abstraction and transmission of accelerometer data from free-ranging marine predators via the Argos satellite system. We test run the technique on 20 juvenile southern elephant seals Mirounga leonina from the Kerguelen Islands during their first months at sea following weaning. Using retrieved archival data from nine individuals that returned to the colony, we compare and validate abstracted transmissions against outputs from established accelerometer processing procedures.Abstracted transmissions included estimates, across five segments of a dive profile, of time spent in prey catch attempt (PrCA) behaviours, swimming effort and pitch. These were then summarised and compared to archival outputs across three dive phases: descent, bottom and ascent. Correlations between the two datasets were variable but generally good (dependent on dive phase, marginal R 2 values of between .45 and .6 to >.9) and consistent between individuals. Transmitted estimates of PrCA behaviours and swimming effort were positively biased to those from archival processing.Data from this study represent some of the first remotely transmitted quantifications from accelerometers. The methods presented and analysed can be used to provide novel insight towards the behaviours and movements of free-ranging marine predators, such as juvenile southern elephant seals, from whom logger retrieval is challenging

  16. Swimming-induced pulmonary oedema an uncommon condition diagnosed with POCUS ultrasound.

    Science.gov (United States)

    Alonso, Joaquín Valle; Chowdhury, Motiur; Borakati, Raju; Gankande, Upali

    2017-12-01

    Swimming Induced Pulmonary Edema, or SIPE, is an emerging condition occurring in otherwise healthy individuals during surface swimming or diving that is characterized by cough, dyspnea, hemoptysis, and hypoxemia. It is typically found in those who spend time in cold water exercise with heavy swimming and surface swimming, such as civilian training for iron Man, triathalon, and military training. We report the case of a highly trained young female swimmer in excellent cardiopulmonary health, who developed acute alveolar pulmonary oedema in an open water swimming training diagnosed in the emergency department using POCUS ultrasound. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Physiological constraints and energetic costs of diving behaviour in marine mammals: a review of studies using trained Steller sea lions diving in the open ocean.

    Science.gov (United States)

    Rosen, David A S; Hindle, Allyson G; Gerlinsky, Carling D; Goundie, Elizabeth; Hastie, Gordon D; Volpov, Beth L; Trites, Andrew W

    2017-01-01

    Marine mammals are characterized as having physiological specializations that maximize the use of oxygen stores to prolong time spent under water. However, it has been difficult to undertake the requisite controlled studies to determine the physiological limitations and trade-offs that marine mammals face while diving in the wild under varying environmental and nutritional conditions. For the past decade, Steller sea lions (Eumetopias jubatus) trained to swim and dive in the open ocean away from the physical confines of pools participated in studies that investigated the interactions between diving behaviour, energetic costs, physiological constraints, and prey availability. Many of these studies measured the cost of diving to understand how it varies with behaviour and environmental and physiological conditions. Collectively, these studies show that the type of diving (dive bouts or single dives), the level of underwater activity, the depth and duration of dives, and the nutritional status and physical condition of the animal affect the cost of diving and foraging. They show that dive depth, dive and surface duration, and the type of dive result in physiological adjustments (heart rate, gas exchange) that may be independent of energy expenditure. They also demonstrate that changes in prey abundance and nutritional status cause sea lions to alter the balance between time spent at the surface acquiring oxygen (and offloading CO 2 and other metabolic by-products) and time spent at depth acquiring prey. These new insights into the physiological basis of diving behaviour further our understanding of the potential scope for behavioural responses of marine mammals to environmental changes, the energetic significance of these adjustments, and the consequences of approaching physiological limits.

  18. Postnatal cocaine exposure: effects on behavior of rats in forced swim test.

    Science.gov (United States)

    Magalhães, Ana; Tavares, Maria Amélia; de Sousa, Liliana

    2002-06-01

    Exposure to cocaine in early periods of postnatal life has adverse effects on behavior, namely, it induces the display of anxiety and fear-like behaviors that are associated with stress and depression. This study examined the effects of early developmental cocaine exposure in several categories of behavior observed in forced swim test. Male and female Wistar rats were given 15 mg/kg of cocaine hydrochloride/body weight/day, subcutaneously, in two daily doses, from postnatal day (PND) 1 to PND27. Controls were saline injected in the same protocol. In PND26-PND27, rats were placed in a swimming pool during 5 min in two sessions. The categories of behavior studied in this work included horizontal and vertical rotation, vibrissae clean, head clean, fast and slow swim, struggling, floating, sliding, diving, head-diving, and wagging head. Results showed differences in the frequencies of several behavioral categories that allowed the discrimination of the behaviors that may constitute "behavioral despair" indicators, as well as which behaviors are most affected by cocaine exposure. Cocaine groups were less active and more immobile than controls. These results suggest that postnatal exposure to cocaine can produce depression-like effects and affect the ability of these animals to cope with stress situations.

  19. Buoyancy Regulation and the Energetics of Diving in Dolphins Seals, Sea Lions and Sea Otters

    National Research Council Canada - National Science Library

    Costa, Daniel

    1998-01-01

    We examined swim speed and ascent descent rates in sea lions and elephant seals in order to make comparisons in their diving strategies and how these may be effected by different strategies of buoyancy regulation...

  20. Physical and energy requirements of competitive swimming events.

    Science.gov (United States)

    Pyne, David B; Sharp, Rick L

    2014-08-01

    The aquatic sports competitions held during the summer Olympic Games include diving, open-water swimming, pool swimming, synchronized swimming, and water polo. Elite-level performance in each of these sports requires rigorous training and practice to develop the appropriate physiological, biomechanical, artistic, and strategic capabilities specific to each sport. Consequently, the daily training plans of these athletes are quite varied both between and within the sports. Common to all aquatic athletes, however, is that daily training and preparation consumes several hours and involves frequent periods of high-intensity exertion. Nutritional support for this high-level training is a critical element of the preparation of these athletes to ensure the energy and nutrient demands of the training and competition are met. In this article, we introduce the fundamental physical requirements of these sports and specifically explore the energetics of human locomotion in water. Subsequent articles in this issue explore the specific nutritional requirements of each aquatic sport. We hope that such exploration will provide a foundation for future investigation of the roles of optimal nutrition in optimizing performance in the aquatic sports.

  1. Diving behavior of the reef manta ray links coral reefs with adjacent deep pelagic habitats

    KAUST Repository

    Braun, Camrin D.

    2014-02-06

    Recent successful efforts to increase protection for manta rays has highlighted the lack of basic ecological information, including vertical and horizontal movement patterns, available for these species. We deployed pop-up satellite archival transmitting tags on nine reef manta rays, Manta alfredi, to determine diving behaviors and vertical habitat use. Transmitted and archived data were obtained from seven tagged mantas over deployment periods of 102-188 days, including three recovered tags containing 2.6 million depth, temperature, and light level data points collected every 10 or 15 seconds. Mantas frequented the upper 10 m during daylight hours and tended to occupy deeper water throughout the night. Six of the seven individuals performed a cumulative 76 deep dives (>150 m) with one individual reaching 432 m, extending the known depth range of this coastal, reef-oriented species and confirming its role as an ecological link between epipelagic and mesopelagic habitats. Mean vertical velocities calculated from high-resolution dive data (62 dives >150 m) from three individuals suggested that mantas may use gliding behavior during travel and that this behavior may prove more efficient than continuous horizontal swimming. The behaviors in this study indicate manta rays provide a previously unknown link between the epi- and mesopelagic layers of an extremely oligotrophic marine environment and provide evidence of a third marine species that utilizes gliding to maximize movement efficiency. © 2014 Braun et al.

  2. Biosonar, diving and movements of two tagged white-beaked dolphin in Icelandic waters

    DEFF Research Database (Denmark)

    Rasmussen, Marianne H.; Akamatsu, Tomonari; Teilmann, Jonas

    2013-01-01

    For the first time bio-logging tags were attached to free-ranging white-beaked dolphins, Lagenorhynchus albirostris. A satellite tag was attached to one animal while an acoustic A-tag, a time-depth recorder and a VHF transmitter complex was attached to a second dolphin with a suction cup....... The satellite tag transmitted for 201 days, during which time the dolphin stayed in the coastal waters of western Iceland. The acoustic tag complex was on the second animal for 13 hours and 40 minutes and provided the first insight in echolocation behaviour of a free-ranging white-beaked dolphin. The tag...... registered 162 dives. The dolphin dove to a maximum depth of 45 m, which is about the depth of the bay in which the dolphin was swimming. Two basic types of dives were identified; U-shaped and V-shaped dives. The dolphin used more time in U-shaped dives, more clicks and sonar signals with shorter click...

  3. Predicting performance in competitive apnea diving, part II: dynamic apnoea.

    Science.gov (United States)

    Schagatay, Erika

    2010-03-01

    Part I of this series of articles identified the main physiological factors defining the limits of static apnea, while this paper reviews the factors involved when physical work is added in the dynamic distance disciplines, performed in shallow water in a swimming pool. Little scientific work has been done concerning the prerequisites and limitations of swimming with or without fins whilst breath holding to extreme limits. Apneic duration influences all competitive apnea disciplines, and can be prolonged by any means that increase gas storage or tolerance to asphyxia, or reduce metabolic rate, as reviewed in the first article. For horizontal underwater distance swimming, the main challenge is to restrict metabolism despite the work, and to direct blood flow only to areas where demand is greatest, to allow sustained function. Here, work economy, local tissue energy and oxygen stores and the anaerobic capacity of the muscles are key components. Improvements in swimming techniques and, especially in swimming with fins, equipment have already contributed to enhanced performance and may do so further. High lactate levels observed after competition swims suggest a high anaerobic component, and muscle hypoxia could ultimately limit muscle work and swimming distance. However, the frequency of syncope, especially in swimming without fins, suggests that cerebral oxygenation may often be compromised before this occurs. In these pool disciplines, safety is high and the dive can be interrupted by the competitor or safety diver within seconds. The safety routines in place during pool competitions are described.

  4. [Diving accidents. Emergency treatment of serious diving accidents].

    Science.gov (United States)

    Schröder, S; Lier, H; Wiese, S

    2004-11-01

    Decompression injuries are potentially life-threatening incidents mainly due to a rapid decline in ambient pressure. Decompression illness (DCI) results from the presence of gas bubbles in the blood and tissue. DCI may be classified as decompression sickness (DCS) generated from the liberation of gas bubbles following an oversaturation of tissues with inert gas and arterial gas embolism (AGE) mainly due to pulmonary barotrauma. People working under hyperbaric pressure, e.g. in a caisson for general construction under water, and scuba divers are exposed to certain risks. Diving accidents can be fatal and are often characterized by organ dysfunction, especially neurological deficits. They have become comparatively rare among professional divers and workers. However, since recreational scuba diving is gaining more and more popularity there is an increasing likelihood of severe diving accidents. Thus, emergency staff working close to areas with a high scuba diving activity, e.g. lakes or rivers, may be called more frequently to a scuba diving accident. The correct and professional emergency treatment on site, especially the immediate and continuous administration of normobaric oxygen, is decisive for the outcome of the accident victim. The definitive treatment includes rapid recompression with hyperbaric oxygen. The value of adjunctive medication, however, remains controversial.

  5. Breath-Hold Diving.

    Science.gov (United States)

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  6. Accident rates at a busy diving centre.

    Science.gov (United States)

    Davis, Michael; Malcolm, Kate

    2008-06-01

    Dear Editor, The Poor Knights Islands in Northland, New Zealand, is a world-famous, temperate-water, diving tourism destination, popularised many years ago by Jacques Cousteau. By far the largest dive operator there is Dive! Tutukaka, with five vessels carrying up to 30 divers, operating on a regular basis throughout the year. Dive! Tutukaka is required to keep a detailed, daily vessel manifest. Thus, the number of divers is known accurately and all incidents are recorded by the Skipper or the Chief Divemaster on board. Although all dives are logged (time in, time out and maximum depth for every diver) and kept permanently, these data were not utilised for this brief report. Each customer does two dives on a trip and there are between one and four divemasters on board who may do one, two or more dives a day (van der Hulst G, unpublished observations). Thus the accident rate per diver is known, and it is assumed that the rate per dive is very close to half this figure. In addition, under health and safety regulations all non-diving injuries both on shore and on board are documented, but these will include some non-divers. For the three financial years between July 2005 and 14 June 2008, 32,302 customers dived with Dive! Tutukaka, approximately 63,000 dives (a small minority did only one dive). Over the same period, there were an estimated 7,600 dives conducted by the divemasters. The injuries documented during this time are shown in Table 1. There were seven cases of decompression illness (DCI), a rate of about 1 per 10,000 divers (0.5 per 10,000 dives). Two of the seven DCI cases involved serious neurological injury. There was one further possible case of DCI who did not seek medical advice. If this diver is included then the rate is 1.14 per 10,000 divers. More minor diving injuries and incidents occurred at a rate of approximately 2 per 10,000 divers. Non-diving injuries occurred rarely, the most common being various musculo-skeletal injuries to staff, requiring

  7. Effect of forced swim stress on wistar albino rats in various behavioral parameters

    Directory of Open Access Journals (Sweden)

    Ambareesha Kondam, Nilesh N Kate, Gaja Lakshmi, Suresh M, Chandrashekar M.

    2012-09-01

    Full Text Available Introduction: Stress is an important factor of depression that causes the changes in various body systems. The forced swim test is a commonly used stressor test where rats are forced to swim in specially constructed tanks for a particular period where there is behavioral activation characterized by vigorous swimming and diving to search for alternate routes of escape. Animal health including human has been shown to be affected by the stressful events of life inducing situation which alters cognition, learning memory and emotional responses, causing mental disorders like depression and anxiety and stress in rats. Methods: The experiment was carried out with 12 healthy albino Wistar female rats weighing about 150-180gms. The animals were randomly divided into two groups of six animals each. Group – I (control, Group – II (Stressed Group. Group –II rats are placed in plastic tanks for 45minutes for15 days. Temperature of water was maintained at 20˚C. During stress phase, the animals will be trained for forced swim test, behavioral changes observed by open field apparatus for emotions, and eight arm maze for memory & leaning, elevated plus maze for anxiety. Results: Forced swim stress causes to a significant change (p<0.05 on cognitive functions: motivation, learning and memory. Forced swim stress is the factor damaging the hippocampus causes repeated immobilization and produce atrophy of dendrites of pyramidal neurons and neuroendocrinological disturbances, controlled by the hypothalamo-pituitary-adrenal axis (HPA. Repeated stress in the form of forced swimming activates the free radical processes leading to an increase in lipid peroxidation in many tissues. Conclusion: This study reveals the effect of repeated forced swim stress causes wide range of adaptive changes in the central nervous system including the elevation of serotonin (5-HT metabolism and an increased susceptibility to affective disorders. The earlier findings have reported

  8. Swimming performance of a bio-inspired robotic vessel with undulating fin propulsion.

    Science.gov (United States)

    Liu, Hanlin; Curet, Oscar M

    2018-06-18

    Undulatory fin propulsion exhibits high degree of maneuver control -- an ideal for underwater vessels exploring complex environments. In this work, we developed and tested a self-contained, free-swimming robot with a single undulating fin running along the length of the robot, which controls both forward motion and directional maneuvers. We successfully replicated several maneuvers including forward swimming, reversed motion, diving, station-keeping and vertical swimming. For each maneuver, a series of experiments were performed as a function of fin frequency, wavelength and traveling wave direction to measure swimming velocities, orientation angles and mean power consumption. In addition, three-dimensional flow fields were measured during forward swimming and station-keeping using volumetric particle image velocimetry (PIV). The efficiency for forward swimming was compared using three metrics: cost of transport, wave efficiency and Strouhal number. The results indicate that the cost of transport exhibits a V-shape trend with the minimum value at low swimming velocity. The robot can reach optimal wave efficiency and locomotor performance at a range of 0.2 to 0.4 St. Volumetric PIV data reveal the shed of vortex tubes generated by the fin during forward swimming and station keeping. For forward swimming, a series of vortex tubes are shed off the fin edge with a lateral and downward direction with respect to the longitudinal axis of the fin. For station keeping, flow measurements suggest that the vortex tubes are shed at the mid-section of the fin while the posterior and anterior segment of the vortex stay attached to the fin. These results agree with the previous vortex structures based on simulations and 2D PIV. The further development of this vessel with high maneuverability and station keeping performance can be used for oceanography, coastal exploration, defense, oil industry and other marine industries where operations are unsafe or impractical for divers or

  9. REFERENCE RANGES AND AGE-RELATED AND DIVING EXERCISE EFFECTS ON HEMATOLOGY AND SERUM CHEMISTRY OF FEMALE STELLER SEA LIONS ( EUMETOPIAS JUBATUS).

    Science.gov (United States)

    Gerlinsky, Carling D; Haulena, Martin; Trites, Andrew W; Rosen, David A S

    2018-03-01

    Decreased health may have lowered the birth and survival rates of Steller sea lions ( Eumetopias jubatus) in the Gulf of Alaska and Aleutian Islands over the past 30 yr. Reference ranges for clinical hematology and serum chemistry parameters needed to assess the health of wild sea lion populations are limited. Here, blood parameters were serially measured in 12 captive female Steller sea lions ranging in age from 3 wk to 16 yr to establish baseline values and investigate age-related changes. Whether diving activity affects hematology parameters in animals swimming in the ocean compared with animals in a traditional aquarium setting was also examined. Almost all blood parameters measured exhibited significant changes with age. Many of the age-related changes reflected developmental life history changes, including a change in diet during weaning, an improvement of diving capacity, and the maturity of the immune system. Mean corpuscular hemoglobin and mean corpuscular volume were also higher in the ocean diving group compared with the aquarium group, likely reflecting responses to increased exercise regimes. These data provide ranges of hematology and serum chemistry values needed to evaluate and compare the health and nutritional status of captive and wild Steller sea lions.

  10. Buoyancy under control: underwater locomotor performance in a deep diving seabird suggests respiratory strategies for reducing foraging effort.

    Directory of Open Access Journals (Sweden)

    Timothée R Cook

    Full Text Available BACKGROUND: Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag and report locomotor adjustments to the change of buoyancy with depth. METHODOLOGY/PRINCIPAL FINDINGS: Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with. CONCLUSIONS/SIGNIFICANCE: Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants--as in other families of diving seabirds--of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control.

  11. EX1606 Dive05 Ancillary Data Collection including reports, kmls, spreadsheets, and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1606: CAPSTONE Wake Island...

  12. EX1606 Dive04 Ancillary Data Collection including reports, kmls, spreadsheets, and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1606: CAPSTONE Wake Island...

  13. EX1606 Dive13 Ancillary Data Collection including reports, kmls, spreadsheets, and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1606: CAPSTONE Wake Island...

  14. EX1606 Dive09 Ancillary Data Collection including reports, kmls, spreadsheets, and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1606: CAPSTONE Wake Island...

  15. EX1606 Dive10 Ancillary Data Collection including reports, kmls, spreadsheets, and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1606: CAPSTONE Wake Island...

  16. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea.

    Science.gov (United States)

    Hasler, Harald; Ott, Jörg A

    2008-10-01

    Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world's most dived (>30,000 dives y(-1)). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined by the point intercept sampling method in the reef crest zone (3m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance of corallivorous and herbivorous fish was evident. At heavily used dive sites, diver-related sedimentation rates significantly decreased with increasing distance from the entrance, indicating poor buoyancy regulation at the initial phase of the dive. The results show a high negative impact of current SCUBA diving intensities on coral communities and coral condition. Corallivorous and herbivorous fishes are apparently not yet affected, but are endangered if coral cover decline continues. Reducing the number of dives per year, ecologically sustainable dive plans for individual sites, and reinforcing the environmental education of both dive guides and recreational divers are essential to conserve the ecological and the aesthetic qualities of these dive sites.

  17. The effect of pre-dive ingestion of dark chocolate on endothelial function after a scuba dive.

    Science.gov (United States)

    Theunissen, Sigrid; Balestra, Costantino; Boutros, Antoine; De Bels, David; Guerrero, François; Germonpré, Peter

    2015-03-01

    The aim of the study was to observe the effects of dark chocolate on endothelial function after scuba diving. Forty-two male scuba divers were divided into two groups: a control (n=21) and a chocolate group (n=21). They performed a 33-metres deep scuba-air dive for 20 minutes in a diving pool (Nemo 33, Brussels). Water temperature was 33⁰C. The chocolate group ingested 30 g of dark chocolate (86% cocoa) 90 minutes before the dive. Flow-mediated dilatation (FMD), digital photoplethysmography and nitric oxide (NO) and peroxynitrites (ONOO-) levels were measured before and after the scuba dive in both groups. A significant decrease in FMD was observed in the control group after the dive (91±7% (mean±95% confidence interval) of pre-dive values; Pchocolate group (105±5% of pre-dive values; Pchocolate group (154±73% of pre-dive values; P=0.04). A significant reduction in ONOO- was observed in the control group (84±12% of pre-dive values; P=0.003) whereas no variation was shown after the dive with chocolate intake (100±28% of pre-dive values; ns). Ingestion of 30 g of dark chocolate 90 minutes before scuba diving prevented post-dive endothelial dysfunction, as the antioxidants contained in dark chocolate probably scavenge free radicals.

  18. Optimal diving behaviour and respiratory gas exchange in birds.

    Science.gov (United States)

    Halsey, Lewis G; Butler, Patrick J

    2006-11-01

    This review discusses the advancements in our understanding of the physiology and behaviour of avian diving that have been underpinned by optimal foraging theory and the testing of optimal models. To maximise their foraging efficiency during foraging periods, diving birds must balance numerous factors that are directly or indirectly related to the replenishment of the oxygen stores and the removal of excess carbon dioxide. These include (1) the time spent underwater (which diminishes the oxygen supply, increases carbon dioxide levels and may even include a build up of lactate due to anaerobic metabolism), (2) the time spent at the surface recovering from the previous dive and preparing for the next (including reloading their oxygen supply, decreasing their carbon dioxide levels and possibly also metabolising lactate) and (3) the trade-off between maximising oxygen reserves for consumption underwater by taking in more air to the respiratory system, and minimising the energy costs of positive buoyancy caused by this air, to maximise the time available underwater to forage. Due to its importance in avian diving, replenishment of the oxygen stores has become integral to models of optimal diving, which predict the time budgeting of animals foraging underwater. While many of these models have been examined qualitatively, such tests of predictive trends appear fallible and only quantifiable support affords strong evidence of their predictive value. This review describes how the quantification of certain optimal diving models, using tufted ducks, indeed demonstrates some predictive success. This suggests that replenishment of the oxygen stores and removal of excess carbon dioxide have significant influences on the duration of the surface period between dives. Nevertheless, present models are too simplistic to be robust predictors of diving behaviour for individual animals and it is proposed that they require refinement through the incorporation of other variables that also

  19. Comparative incidences of decompression illness in repetitive, staged, mixed-gas decompression diving: is 'dive fitness' an influencing factor?

    Science.gov (United States)

    Sayer, Martin Dj; Akroyd, Jim; Williams, Guy D

    2008-06-01

    Wreck diving at Bikini Atoll consists of a relatively standard series of decompression dives with maximum depths in the region of 45-55 metres' sea water (msw). In a typical week of diving at Bikini, divers can perform up to 12 decompression dives to these depths over seven days; on five of those days, divers can perform two decompression dives per day. All the dives employ multi-level, staged decompression schedules using air and surface-supplied nitrox containing 80% oxygen. Bikini is serviced by a single diving operator and so a relatively precise record exists both of the actual number of dives undertaken and of the decompression illness incidents both for customer divers and the dive guides. The dive guides follow exactly the dive profiles and decompression schedules of the customers. Each dive guide will perform nearly 400 decompression dives a year, with maximum depths mostly around 50 msw, compared with an average of 10 (maximum of 12) undertaken typically by each customer diver in a week. The incidence of decompression illness for the customer population (presumed in the absence of medical records) is over ten times higher than that for the dive guides. The physiological reasons for such a marked difference are discussed in terms of customer demographics and dive-guide acclimatization to repetitive decompression stress. The rates of decompression illness for a range of diving populations are reviewed.

  20. Dive Into Python 3

    CERN Document Server

    Pilgrim, Mark

    2009-01-01

    Mark Pilgrim's Dive Into Python 3 is a hands-on guide to Python 3 (the latest version of the Python language) and its differences from Python 2. As in the original book, Dive Into Python, each chapter starts with a real, complete code sample, proceeds to pick it apart and explain the pieces, and then puts it all back together in a summary at the end. This book includes: * Example programs completely rewritten to illustrate powerful new concepts now available in Python 3: sets, iterators, generators, closures, comprehensions, and much more* A detailed case study of porting a major library from

  1. DeepDive: Declarative Knowledge Base Construction.

    Science.gov (United States)

    De Sa, Christopher; Ratner, Alex; Ré, Christopher; Shin, Jaeho; Wang, Feiran; Wu, Sen; Zhang, Ce

    2016-03-01

    The dark data extraction or knowledge base construction (KBC) problem is to populate a SQL database with information from unstructured data sources including emails, webpages, and pdf reports. KBC is a long-standing problem in industry and research that encompasses problems of data extraction, cleaning, and integration. We describe DeepDive, a system that combines database and machine learning ideas to help develop KBC systems. The key idea in DeepDive is that statistical inference and machine learning are key tools to attack classical data problems in extraction, cleaning, and integration in a unified and more effective manner. DeepDive programs are declarative in that one cannot write probabilistic inference algorithms; instead, one interacts by defining features or rules about the domain. A key reason for this design choice is to enable domain experts to build their own KBC systems. We present the applications, abstractions, and techniques of DeepDive employed to accelerate construction of KBC systems.

  2. Scuba Diving Safety

    Science.gov (United States)

    ... a no-decompression dive, even in a pressurized airplane. If your dive required decompression stops, don’t ... Alert Network Last Updated: May 1, 2017 This article was contributed by: familydoctor.org editorial staff Categories: ...

  3. Blood oxygen depletion is independent of dive function in a deep diving vertebrate, the northern elephant seal.

    Directory of Open Access Journals (Sweden)

    Jessica U Meir

    Full Text Available Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O2 measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris, demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O2 stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O2 utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest. This is the first account linking behavior at this level with in vivo blood O2 measurements in an animal freely diving at sea, allowing us to assess patterns of O2 utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O2 store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O2 depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O2 demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O2 store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its

  4. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Ott, Jörg A.

    2008-01-01

    Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world’s most dived (>30,000dives y−1). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined...... to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance...... by the point intercept sampling method in the reef crest zone (3 m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject...

  5. Short- and long-term effects of diving on pulmonary function

    Directory of Open Access Journals (Sweden)

    Kay Tetzlaff

    2017-03-01

    Full Text Available The diving environment provides a challenge to the lung, including exposure to high ambient pressure, altered gas characteristics and cardiovascular effects on the pulmonary circulation. Several factors associated with diving affect pulmonary function acutely and can potentially cause prolonged effects that may accumulate gradually with repeated diving exposure. Evidence from experimental deep dives and longitudinal studies suggests long-term adverse effects of diving on the lungs in commercial deep divers, such as the development of small airways disease and accelerated loss of lung function. In addition, there is an accumulating body of evidence that diving with self-contained underwater breathing apparatus (scuba may not be associated with deleterious effects on pulmonary function. Although changes in pulmonary function after single scuba dives have been found to be associated with immersion, ambient cold temperatures and decompression stress, changes in lung function were small and suggest a low likelihood of clinical significance. Recent evidence points to no accelerated loss of lung function in military or recreational scuba divers over time. Thus, the impact of diving on pulmonary function largely depends on factors associated with the individual diving exposure. However, in susceptible subjects clinically relevant worsening of lung function may occur even after single shallow-water scuba dives.

  6. A forensic diving medicine examination of a highly publicised scuba diving fatality.

    Science.gov (United States)

    Edmonds, Carl

    2012-12-01

    A high-profile diving death occurred in 2003 at the site of the wreck of the SS Yongala off the Queensland coast. The victim's buddy, her husband, was accused of her murder and found guilty of manslaughter in an Australian court. A detailed analysis of all the evidence concerning this fatality suggests alternative medical reasons for her death. The value of decompression computers in determining the diving details and of CT scans in clarifying autopsy findings is demonstrated. The victim was medically, physically and psychologically unfit to undertake the fatal dive. She was inexperienced and inadequately supervised. She was over-weighted and exposed for the first time to difficult currents. The analysis of the dive demonstrates how important it is to consider the interaction of all factors and to not make deductions from individual items of information. It also highlights the importance of early liaison between expert divers, technicians, diving clinicians and pathologists, if inappropriate conclusions are to be avoided.

  7. Ants swimming in pitcher plants: kinematics of aquatic and terrestrial locomotion in Camponotus schmitzi.

    Science.gov (United States)

    Bohn, Holger Florian; Thornham, Daniel George; Federle, Walter

    2012-06-01

    Camponotus schmitzi ants live in symbiosis with the Bornean pitcher plant Nepenthes bicalcarata. Unique among ants, the workers regularly dive and swim in the pitcher's digestive fluid to forage for food. High-speed motion analysis revealed that C. schmitzi ants swim at the surface with all legs submerged, with an alternating tripod pattern. Compared to running, swimming involves lower stepping frequencies and larger phase delays within the legs of each tripod. Swimming ants move front and middle legs faster and keep them more extended during the power stroke than during the return stroke. Thrust estimates calculated from three-dimensional leg kinematics using a blade-element approach confirmed that forward propulsion is mainly achieved by the front and middle legs. The hind legs move much less, suggesting that they mainly serve for steering. Experiments with tethered C. schmitzi ants showed that characteristic swimming movements can be triggered by submersion in water. This reaction was absent in another Camponotus species investigated. Our study demonstrates how insects can use the same locomotory system and similar gait patterns for moving on land and in water. We discuss insect adaptations for aquatic/amphibious lifestyles and the special adaptations of C. schmitzi to living on an insect-trapping pitcher plant.

  8. Environmental Physiology and Diving Medicine

    Directory of Open Access Journals (Sweden)

    Gerardo Bosco

    2018-02-01

    Full Text Available Man’s experience and exploration of the underwater environment has been recorded from ancient times and today encompasses large sections of the population for sport enjoyment, recreational and commercial purpose, as well as military strategic goals. Knowledge, respect and maintenance of the underwater world is an essential development for our future and the knowledge acquired over the last few dozen years will change rapidly in the near future with plans to establish secure habitats with specific long-term goals of exploration, maintenance and survival. This summary will illustrate briefly the physiological changes induced by immersion, swimming, breath-hold diving and exploring while using special equipment in the water. Cardiac, circulatory and pulmonary vascular adaptation and the pathophysiology of novel syndromes have been demonstrated, which will allow selection of individual characteristics in order to succeed in various environments. Training and treatment for these new microenvironments will be suggested with description of successful pioneers in this field. This is a summary of the physiology and the present status of pathology and therapy for the field.

  9. EX1605L3 Dive05 Ancillary Data Collection including reports, kmls, spreadsheets, and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1605L3: CAPSTONE CNMI &...

  10. EX1605L3 Dive02 Ancillary Data Collection including reports, kmls, spreadsheets, and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1605L3: CAPSTONE CNMI &...

  11. EX1605L3 Dive07 Ancillary Data Collection including reports, kmls, spreadsheets, and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1605L3: CAPSTONE CNMI &...

  12. EX1605L3 Dive19 Ancillary Data Collection including reports, kmls, spreadsheets, and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1605L3: CAPSTONE CNMI &...

  13. EX1605L3 Dive12 Ancillary Data Collection including reports, kmls, spreadsheets, and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1605L3: CAPSTONE CNMI &...

  14. EX1605L3 Dive01 Ancillary Data Collection including reports, kmls, spreadsheets, and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1605L3: CAPSTONE CNMI &...

  15. EX1605L3 Dive13 Ancillary Data Collection including reports, kmls, spreadsheets, and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1605L3: CAPSTONE CNMI &...

  16. EX1605L3 Dive20 Ancillary Data Collection including reports, kmls, spreadsheets, and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1605L3: CAPSTONE CNMI &...

  17. Recreational technical diving part 1: an introduction to technical diving methods and activities.

    Science.gov (United States)

    Mitchell, Simon J; Doolette, David J

    2013-06-01

    Technical divers use gases other than air and advanced equipment configurations to conduct dives that are deeper and/or longer than typical recreational air dives. The use of oxygen-nitrogen (nitrox) mixes with oxygen fractions higher than air results in longer no-decompression limits for shallow diving, and faster decompression from deeper dives. For depths beyond the air-diving range, technical divers mix helium, a light non-narcotic gas, with nitrogen and oxygen to produce 'trimix'. These blends are tailored to the depth of intended use with a fraction of oxygen calculated to produce an inspired oxygen partial pressure unlikely to cause cerebral oxygen toxicity and a nitrogen fraction calculated to produce a tolerable degree of nitrogen narcosis. A typical deep technical dive will involve the use of trimix at the target depth with changes to gases containing more oxygen and less inert gas during the decompression. Open-circuit scuba may be used to carry and utilise such gases, but this is very wasteful of expensive helium. There is increasing use of closed-circuit 'rebreather' devices. These recycle expired gas and potentially limit gas consumption to a small amount of inert gas to maintain the volume of the breathing circuit during descent and the amount of oxygen metabolised by the diver. This paper reviews the basic approach to planning and execution of dives using these methods to better inform physicians of the physical demands and risks.

  18. Foraging dives by post-breeding northern pintails

    Science.gov (United States)

    Miller, Michael R.

    1983-01-01

    Dabbling ducks (Anatini), including Northern Pintails (Anas acuta), typically feed by “tipping-up” (Bellrose, Ducks, Geese, and Swans of North America, Stackpole Books, Harrisburg, Pennsylvania, 1976) in shallow water. Pintails are not as adapted for diving as members of Aythyini or Oxyurini (Catlett and Johnston, Comp. Biochem. Physiol. 47A:925-931, 1974); however, incidents of foraging dives by small numbers of pintails have been reported (Chapman et al., Br. Birds 52:60, 1959; Bourget and Chapdelaine, Wildfowl 26:55-57, 1975). This paper reports on forage diving by a flock of several hundred pintails. Ecological explanations are suggested to account for the behavior and comparisons with tip-up feeding are presented.

  19. PROPERTIES OF SWIMMING WATER

    Directory of Open Access Journals (Sweden)

    Tayfun KIR

    2004-10-01

    Full Text Available Swimming waters may be hazardous on human health. So, The physicians who work in the facilities, which include swimming areas, are responsible to prevent risks. To ensure hygiene of swimming water, European Swimming Water Directive offers microbiological, physical, and chemical criteria. [TAF Prev Med Bull 2004; 3(5.000: 103-104

  20. Grey Nurse Shark ( Carcharias taurus) Diving Tourism: Tourist Compliance and Shark Behaviour at Fish Rock, Australia

    Science.gov (United States)

    Smith, Kirby; Scarr, Mark; Scarpaci, Carol

    2010-11-01

    Humans can dive with critically endangered grey nurse sharks ( Carcharias taurus) along the east coast of Australia. This study investigated both compliance of tourist divers to a code of conduct and legislation and the behaviour of grey nurse sharks in the presence of divers. A total of 25 data collection dives were conducted from December 2008 to January 2009. Grey nurse shark and diver behaviour were documented using 2-min scan samples and continuous observation. The proportion of time spent observing human-shark interactions was 9.4% of total field time and mean human-shark interaction time was 15.0 min. Results were used to gauge the effectiveness of current management practices for the grey nurse shark dive industry at Fish Rock in New South Wales, Australia. Grey nurse shark dive tourists were compliant to stipulations in the code of conduct and legislation (compliance ranged from 88 to 100%). The research detailed factors that may promote compliance in wildlife tourism operations such as the clarity of the stipulations, locality of the target species and diver perceptions of sharks. Results indicated that grey nurse sharks spent the majority of their time milling (85%) followed by active swimming (15%). Milling behaviour significantly decreased in the presence of more than six divers. Distance between sharks and divers, interaction time and number of sharks were not significantly correlated with grey nurse shark school behaviour. Jaw gaping, rapid withdrawal and stiff or jerky movement were the specific behaviours of grey nurse sharks that occurred most frequently and were associated with distance between divers and sharks and the presence of six or more divers. Revision of the number of divers allowed per interaction with a school of grey nurse sharks and further research on the potential impacts that shark-diving tourism may pose to grey nurse sharks is recommended.

  1. Grey nurse shark (Carcharias taurus) diving tourism: Tourist compliance and shark behaviour at Fish Rock, Australia.

    Science.gov (United States)

    Smith, Kirby; Scarr, Mark; Scarpaci, Carol

    2010-11-01

    Humans can dive with critically endangered grey nurse sharks (Carcharias taurus) along the east coast of Australia. This study investigated both compliance of tourist divers to a code of conduct and legislation and the behaviour of grey nurse sharks in the presence of divers. A total of 25 data collection dives were conducted from December 2008 to January 2009. Grey nurse shark and diver behaviour were documented using 2-min scan samples and continuous observation. The proportion of time spent observing human-shark interactions was 9.4% of total field time and mean human-shark interaction time was 15.0 min. Results were used to gauge the effectiveness of current management practices for the grey nurse shark dive industry at Fish Rock in New South Wales, Australia. Grey nurse shark dive tourists were compliant to stipulations in the code of conduct and legislation (compliance ranged from 88 to 100%). The research detailed factors that may promote compliance in wildlife tourism operations such as the clarity of the stipulations, locality of the target species and diver perceptions of sharks. Results indicated that grey nurse sharks spent the majority of their time milling (85%) followed by active swimming (15%). Milling behaviour significantly decreased in the presence of more than six divers. Distance between sharks and divers, interaction time and number of sharks were not significantly correlated with grey nurse shark school behaviour. Jaw gaping, rapid withdrawal and stiff or jerky movement were the specific behaviours of grey nurse sharks that occurred most frequently and were associated with distance between divers and sharks and the presence of six or more divers. Revision of the number of divers allowed per interaction with a school of grey nurse sharks and further research on the potential impacts that shark-diving tourism may pose to grey nurse sharks is recommended.

  2. Averaged Propulsive Body Acceleration (APBA Can Be Calculated from Biologging Tags That Incorporate Gyroscopes and Accelerometers to Estimate Swimming Speed, Hydrodynamic Drag and Energy Expenditure for Steller Sea Lions.

    Directory of Open Access Journals (Sweden)

    Colin Ware

    Full Text Available Forces due to propulsion should approximate forces due to hydrodynamic drag for animals horizontally swimming at a constant speed with negligible buoyancy forces. Propulsive forces should also correlate with energy expenditures associated with locomotion-an important cost of foraging. As such, biologging tags containing accelerometers are being used to generate proxies for animal energy expenditures despite being unable to distinguish rotational movements from linear movements. However, recent miniaturizations of gyroscopes offer the possibility of resolving this shortcoming and obtaining better estimates of body accelerations of swimming animals. We derived accelerations using gyroscope data for swimming Steller sea lions (Eumetopias jubatus, and determined how well the measured accelerations correlated with actual swimming speeds and with theoretical drag. We also compared dive averaged dynamic body acceleration estimates that incorporate gyroscope data, with the widely used Overall Dynamic Body Acceleration (ODBA metric, which does not use gyroscope data. Four Steller sea lions equipped with biologging tags were trained to swim alongside a boat cruising at steady speeds in the range of 4 to 10 kph. At each speed, and for each dive, we computed a measure called Gyro-Informed Dynamic Acceleration (GIDA using a method incorporating gyroscope data with accelerometer data. We derived a new metric-Averaged Propulsive Body Acceleration (APBA, which is the average gain in speed per flipper stroke divided by mean stroke cycle duration. Our results show that the gyro-based measure (APBA is a better predictor of speed than ODBA. We also found that APBA can estimate average thrust production during a single stroke-glide cycle, and can be used to estimate energy expended during swimming. The gyroscope-derived methods we describe should be generally applicable in swimming animals where propulsive accelerations can be clearly identified in the signal

  3. Deadly diving? Physiological and behavioural management of decompression stress in diving mammals

    Science.gov (United States)

    Hooker, S. K.; Fahlman, A.; Moore, M. J.; Aguilar de Soto, N.; Bernaldo de Quirós, Y.; Brubakk, A. O.; Costa, D. P.; Costidis, A. M.; Dennison, S.; Falke, K. J.; Fernandez, A.; Ferrigno, M.; Fitz-Clarke, J. R.; Garner, M. M.; Houser, D. S.; Jepson, P. D.; Ketten, D. R.; Kvadsheim, P. H.; Madsen, P. T.; Pollock, N. W.; Rotstein, D. S.; Rowles, T. K.; Simmons, S. E.; Van Bonn, W.; Weathersby, P. K.; Weise, M. J.; Williams, T. M.; Tyack, P. L.

    2012-01-01

    Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years. PMID:22189402

  4. Poor flight performance in deep-diving cormorants.

    Science.gov (United States)

    Watanabe, Yuuki Y; Takahashi, Akinori; Sato, Katsufumi; Viviant, Morgane; Bost, Charles-André

    2011-02-01

    Aerial flight and breath-hold diving present conflicting morphological and physiological demands, and hence diving seabirds capable of flight are expected to face evolutionary trade-offs regarding locomotory performances. We tested whether Kerguelen shags Phalacrocorax verrucosus, which are remarkable divers, have poor flight capability using newly developed tags that recorded their flight air speed (the first direct measurement for wild birds) with propeller sensors, flight duration, GPS position and depth during foraging trips. Flight air speed (mean 12.7 m s(-1)) was close to the speed that minimizes power requirement, rather than energy expenditure per distance, when existing aerodynamic models were applied. Flights were short (mean 92 s), with a mean summed duration of only 24 min day(-1). Shags sometimes stayed at the sea surface without diving between flights, even on the way back to the colony, and surface durations increased with the preceding flight durations; these observations suggest that shags rested after flights. Our results indicate that their flight performance is physiologically limited, presumably compromised by their great diving capability (max. depth 94 m, duration 306 s) through their morphological adaptations for diving, including large body mass (enabling a large oxygen store), small flight muscles (to allow for large leg muscles for underwater propulsion) and short wings (to decrease air volume in the feathers and hence buoyancy). The compromise between flight and diving, as well as the local bathymetry, shape the three-dimensional foraging range (<26 km horizontally, <94 m vertically) in this bottom-feeding cormorant.

  5. EX1504L2 Dive09 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  6. EX1504L4 Dive08 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L4: Campaign to Address...

  7. EX1504L4 Dive01 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L4: Campaign to Address...

  8. EX1504L2 Dive04 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  9. EX1504L2 Dive02 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  10. EX1504L4 Dive10 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L4: Campaign to Address...

  11. EX1504L3 Dive02 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L3: CAPSTONE Leg III:...

  12. EX1504L4 Dive07 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L4: Campaign to Address...

  13. EX1504L2 Dive07 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  14. EX1504L3 Dive06 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L3: CAPSTONE Leg III:...

  15. EX1504L4 Dive05 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L4: Campaign to Address...

  16. EX1504L4 Dive13 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L4: Campaign to Address...

  17. EX1504L4 Dive04 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L4: Campaign to Address...

  18. EX1504L2 Dive13 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  19. EX1504L2 Dive12 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  20. EX1504L3 Dive07 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L3: CAPSTONE Leg III:...

  1. EX1504L2 Dive17 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  2. EX1504L2 Dive11 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  3. EX1504L4 Dive03 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L4: Campaign to Address...

  4. EX1504L2 Dive03 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  5. EX1504L2 Dive14 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  6. EX1504L2 Dive18 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  7. EX1504L3 Dive04 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L3: CAPSTONE Leg III:...

  8. EX1504L2 Dive08 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  9. EX1504L4 Dive02 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L4: Campaign to Address...

  10. EX1504L2 Dive05 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  11. EX1504L4 Dive11 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L4: Campaign to Address...

  12. EX1504L2 Dive15 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  13. EX1504L4 Dive12 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L4: Campaign to Address...

  14. EX1504L2 Dive06 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  15. EX1504L4 Dive09 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L4: Campaign to Address...

  16. EX1504L2 Dive10 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L2: Campaign to Address...

  17. EX1504L4 Dive06 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L4: Campaign to Address...

  18. EX1504L3 Dive03 Ancillary Data Collection including reports, kmls, spreadsheets, images and data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard suite of ancillary data files generated through a scripting process following an ROV dive on NOAA Ship Okeanos Explorer during EX1504L3: CAPSTONE Leg III:...

  19. Scuba diving accidents.

    Science.gov (United States)

    Dembert, M L

    1977-08-01

    The principal scuba diving medical problems of barotrauma, air embolism and decompression sickness have as their pathophysiologic basis the Ideal Gas Law and Boyle's Law. Hyperbaric chamber recompression therapy is the only definitive treatment of air embolism and decompression sickness. However, with a basic knowledge of diving medicine, the family physician can provide effective supportive care to the patient prior to initiation of hyperbaric therapy.

  20. Dive Tourism and Local Communities: Active Participation or Subject to Impacts?Case Studies from Malaysia

    OpenAIRE

    Daldeniz, Bilge; Hampton, Mark P.

    2013-01-01

    Dive tourism impacts were examined in three Malaysian islands: Perhentian(backpackers), Redang (package tourism) and Mabul (upmarket dive tourism). Qualitative local participation approaches were applied to investigate whether host communities were merely reactive to dive tourism’s impacts. Dive tourism affected many aspects of community life. Besides physical/environmental impacts (new infrastructure), research found varied economic impacts including employment/business opportunities and dif...

  1. First aid kits for recreational dive boats, what should they contain?

    Science.gov (United States)

    Pye, Jacqueline; Greenhalgh, Trisha

    2010-09-01

    Well-equipped first-aid kits are necessary but not always provided on recreational dive boats. We aimed to review the types of illness and injury likely to be encountered on such boats and inform a content list for such kits. We conducted a 3-round Delphi study by email using a volunteer panel of 18 experts drawn from diving, dive medicine and nursing. In round 1, panellists shared examples of illnesses and injuries they had come across personally. These scenarios were circulated along with findings from a literature review, including existing recommendations. In rounds 2 and 3, the list of kit for dive boats in different settings was iteratively refined through online discussion and feedback. Passengers and crew on recreational dive boats may encounter a range of medical problems from minor injuries to serious accidents and non-dive-related illnesses. Recommended kit varied depending on context and setting (e.g. distance from land, qualifications and experience of crew). Consensus was quickly reached on key first-aid items but experts' views on emergency medicines differed. The study highlights the diversity of medical problems encountered on recreational dive boats. We offer preliminary guidance on the content of suitable first-aid kits and suggest areas for further research. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Analytical approximations of diving-wave imaging in constant-gradient medium

    KAUST Repository

    Stovas, Alexey

    2014-06-24

    Full-waveform inversion (FWI) in practical applications is currently used to invert the direct arrivals (diving waves, no reflections) using relatively long offsets. This is driven mainly by the high nonlinearity introduced to the inversion problem when reflection data are included, which in some cases require extremely low frequency for convergence. However, analytical insights into diving waves have lagged behind this sudden interest. We use analytical formulas that describe the diving wave’s behavior and traveltime in a constant-gradient medium to develop insights into the traveltime moveout of diving waves and the image (model) point dispersal (residual) when the wrong velocity is used. The explicit formulations that describe these phenomena reveal the high dependence of diving-wave imaging on the gradient and the initial velocity. The analytical image point residual equation can be further used to scan for the best-fit linear velocity model, which is now becoming a common sight as an initial velocity model for FWI. We determined the accuracy and versatility of these analytical formulas through numerical tests.

  3. 29 CFR 1910.410 - Qualifications of dive team.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Qualifications of dive team. 1910.410 Section 1910.410... Requirements § 1910.410 Qualifications of dive team. (a) General. (1) Each dive team member shall have the experience or training necessary to perform assigned tasks in a safe and healthful manner. (2) Each dive team...

  4. Functional properties of myoglobins from five whale species with different diving capacities.

    Science.gov (United States)

    Helbo, Signe; Fago, Angela

    2012-10-01

    Whales show an exceptionally wide range of diving capabilities and many express high amounts of the O(2) carrier protein myoglobin (Mb) in their muscle tissues, which increases their aerobic diving capacity. Although previous studies have mainly focused on the muscle Mb concentration and O(2) carrying capacity as markers of diving behavior in whales, it still remains unexplored whether whale Mbs differ in their O(2) affinities and nitrite reductase and peroxidase enzymatic activities, all functions that could contribute to differences in diving capacities. In this study, we have measured the functional properties of purified Mbs from five toothed whales and two baleen whales and have examined their correlation with average dive duration. Results showed that some variation in functional properties exists among whale Mbs, with toothed whale Mbs having higher O(2) affinities and nitrite reductase activities (similar to those of horse Mb) compared with baleen whale Mbs. However, these differences did not correlate with average dive duration. Instead, a significant correlation was found between whale Mb concentration and average duration and depth of dives, and between O(2) affinity and nitrite reductase activity when including horse Mb. Despite the fact that the functional properties showed little species-specific differences in vitro, they may still contribute to enhancing diving capacity as a result of the increased muscle Mb concentration found in extreme divers. In conclusion, Mb concentration rather than specific functional reactivities may support whale diving performance.

  5. Children’s Understanding of No Diving Warning Signs: Implications for Preventing Childhood Injury

    Directory of Open Access Journals (Sweden)

    Barbara A. Morrongiello

    2016-07-01

    Full Text Available The current study examined children’s understanding of No Diving warning signs. Normally-developing 7 to 10 year olds were asked questions to assess their understanding of text, images, and main messages on No Diving warning signs. These structured interviews were audio recorded and responses were later coded. Results revealed that children understood the behavior advised against (diving, why it is prohibited (can hit head on the bottom, and what can happen (serious injury including hospitalization. They understood that breaking your neck results in limitations in mobility and can occur from diving, but they did not anticipate that such an injury is likely to occur. There were no gender and few age differences, but diving experience was associated with children significantly downplaying their risk of injury. The findings suggest that having No Diving warning signs explicitly mention a broken neck, may serve to remind children of this potential consequence at the time of decision making. Active adult supervision is particularly important for children who have prior positive diving experiences.

  6. Optimal diving under the risk of predation.

    Science.gov (United States)

    Heithaus, Michael R; Frid, Alejandro

    2003-07-07

    Many air-breathing aquatic foragers may be killed by aerial or subsurface predators while recovering oxygen at the surface; yet the influence of predation risk on time allocation during dive cycles is little known in spite of numerous studies on optimal diving. We modeled diving behavior under the risk of predation at the surface. The relationship between time spent at the surface and the risk of death is predicted to influence the optimal surface interval, regardless of whether foragers accumulate energy at a constant rate while at the food patch, deplete food resources over the course of the dive, or must search for food during the dive. When instantaneous predation risk during a single surface interval decreases with time spent at the surface, a diver should increase its surface interval relative to that which maximizes energy intake, thereby increasing dive durations and reducing the number of surfacings per foraging bout. When instantaneous risk over a single surface interval does not change or increases with increasing time at the surface, divers should decrease their surface interval (and consequently their dive duration) relative to that which maximizes energy intake resulting in more dives per foraging bout. The fitness consequences of selecting a suboptimal surface interval vary with the risk function and the way divers harvest energy when at depth. Finally, predation risk during surface intervals should have important consequences for habitat selection and other aspects of the behavioral ecology of air-breathing aquatic organisms.

  7. Dive and Explore: An Interactive Exhibit That Simulates Making an ROV Dive to a Submarine Volcano, Hatfield Marine Science Visitor Center, Newport, Oregon

    Science.gov (United States)

    Weiland, C.; Chadwick, W. W.; Hanshumaker, W.; Osis, V.; Hamilton, C.

    2002-12-01

    We have created a new interactive exhibit in which the user can sit down and simulate that they are making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. This new public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. The exhibit is designed to look like the real ROPOS control console and includes three video monitors, a PC, a DVD player, an overhead speaker, graphic panels, buttons, lights, dials, and a seat in front of a joystick. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. The user can choose between 1 of 3 different dives sites in the caldera of Axial Volcano. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the joystick. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. The user can then choose a different dive or make the same dive again. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. The exhibit software was created

  8. Surfacers change their dive tactics depending on the aim of the dive: evidence from simultaneous measurements of breaths and energy expenditure

    Science.gov (United States)

    Okuyama, Junichi; Tabata, Runa; Nakajima, Kana; Arai, Nobuaki; Kobayashi, Masato; Kagawa, Shiro

    2014-01-01

    Air-breathing divers are assumed to have evolved to apportion their time between surface and underwater periods to maximize the benefit gained from diving activities. However, whether they change their time allocation depending on the aim of the dive is still unknown. This may be particularly crucial for ‘surfacers’ because they dive for various purposes in addition to foraging. In this study, we counted breath events at the surface and estimated oxygen consumption during resting, foraging and other dives in 11 green turtles (Chelonia mydas) in the wild. Breath events were counted by a head-mounted acceleration logger or direct observation based on an animal-borne video logger, and oxygen consumption was estimated by measuring overall dynamic body acceleration. Our results indicate that green turtles maximized their submerged time, following this with five to seven breaths to replenish oxygen for resting dives. However, they changed their dive tactic during foraging and other dives; they surfaced without depleting their estimated stores of oxygen, followed by only a few breaths for effective foraging and locomotion. These dichotomous surfacing tactics would be the result of behavioural modifications by turtles depending on the aim of each dive. PMID:25297856

  9. Risso's dolphins plan foraging dives.

    Science.gov (United States)

    Arranz, Patricia; Benoit-Bird, Kelly J; Southall, Brandon L; Calambokidis, John; Friedlaender, Ari S; Tyack, Peter L

    2018-02-28

    Humans remember the past and use that information to plan future actions. Lab experiments that test memory for the location of food show that animals have a similar capability to act in anticipation of future needs, but less work has been done on animals foraging in the wild. We hypothesized that planning abilities are critical and common in breath-hold divers who adjust each dive to forage on prey varying in quality, location and predictability within constraints of limited oxygen availability. We equipped Risso's dolphins with sound-and-motion recording tags to reveal where they focus their attention through their externally observable echolocation and how they fine tune search strategies in response to expected and observed prey distribution. The information from the dolphins was integrated with synoptic prey data obtained from echosounders on an underwater vehicle. At the start of the dives, whales adjusted their echolocation inspection ranges in ways that suggest planning to forage at a particular depth. Once entering a productive prey layer, dolphins reduced their search range comparable to the scale of patches within the layer, suggesting that they were using echolocation to select prey within the patch. On ascent, their search range increased, indicating that they decided to stop foraging within that layer and started searching for prey in shallower layers. Information about prey, learned throughout the dive, was used to plan foraging in the next dive. Our results demonstrate that planning for future dives is modulated by spatial memory derived from multi-modal prey sampling (echoic, visual and capture) during earlier dives. © 2018. Published by The Company of Biologists Ltd.

  10. Analysis of swimming performance: perceptions and practices of US-based swimming coaches.

    Science.gov (United States)

    Mooney, Robert; Corley, Gavin; Godfrey, Alan; Osborough, Conor; Newell, John; Quinlan, Leo Richard; ÓLaighin, Gearóid

    2016-01-01

    In elite swimming, a broad range of methods are used to assess performance, inform coaching practices and monitor athletic progression. The aim of this paper was to examine the performance analysis practices of swimming coaches and to explore the reasons behind the decisions that coaches take when analysing performance. Survey data were analysed from 298 Level 3 competitive swimming coaches (245 male, 53 female) based in the United States. Results were compiled to provide a generalised picture of practices and perceptions and to examine key emerging themes. It was found that a disparity exists between the importance swim coaches place on biomechanical analysis of swimming performance and the types of analyses that are actually conducted. Video-based methods are most frequently employed, with over 70% of coaches using these methods at least monthly, with analyses being mainly qualitative in nature rather than quantitative. Barriers to the more widespread use of quantitative biomechanical analysis in elite swimming environments were explored. Constraints include time, cost and availability of resources, but other factors such as sources of information on swimming performance and analysis and control over service provision are also discussed, with particular emphasis on video-based methods and emerging sensor-based technologies.

  11. Impacts of Artificial Reefs and Diving Tourism

    Directory of Open Access Journals (Sweden)

    Sandra Jakšić

    2013-10-01

    Full Text Available Coral reefs are currently endangered throughout the world. One of the main activities responsible for this is scuba-diving. Scuba-diving on coral reefs was not problematic in the begging, but due to popularization of the new sport, more and more tourists desired to participate in the activity. Mass tourism, direct contact of the tourists with the coral reefs and unprofessional behavior underwater has a negative effect on the coral reefs. The conflict between nature preservation and economy benefits related to scuba-diving tourism resulted in the creation of artificial reefs, used both to promote marine life and as tourists attractions, thereby taking the pressure off the natural coral reefs. Ships, vehicles and other large structures can be found on the coastal sea floor in North America, Australia, Japan and Europe. The concept of artificial reefs as a scuba-diving attraction was developed in Florida. The main goal was to promote aquaculture, with the popularization of scuba-diving attractions being a secondary effect. The aim of this paper is to determine the effects of artificial reefs on scuba-diving tourism, while taking into account the questionnaire carried out among 18 divers

  12. Medical Management and Risk Reduction of the Cardiovascular Effects of Underwater Diving.

    Science.gov (United States)

    Whayne, Thomas F

    2017-06-20

    Undersea diving is a sport and commercial industry. Knowledge of potential problems began with Caisson disease or "the bends", first identified with compressed air in the construction of tunnels under rivers in the 19th century. Subsequently, there was the commercially used old-fashioned diving helmet attached to a suit, with compressed air pumped down from the surface. Breathhold diving, with no supplementary source of air or other breathing mixture, is also a sport as well as a commercial fishing tool in some parts of the world. There has been an evolution to self-contained underwater breathing apparatus (SCUBA) diving with major involvement as a recreational sport but also of major commercial importance. Knowledge of the physiology and cardiovascular plus other medical problems associated with the various forms of diving have evolved extensively. The major medical catastrophes of SCUBA diving are air embolism and decompression sickness (DCS). Understanding of the essential referral to a hyperbaric recompression chamber for these problems is critical, as well as immediate measures until that recompression is achieved. These include the administration of 100% oxygen and rehydration with intravenous normal saline. Undersea diving continues to expand, especially as a sport, and a basic understanding of the associated preventive and emergency medicine will decrease complications and save lives. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Dive characteristics can predict foraging success in Australian fur seals (Arctocephalus pusillus doriferus as validated by animal-borne video

    Directory of Open Access Journals (Sweden)

    Beth L. Volpov

    2016-03-01

    Full Text Available Dive characteristics and dive shape are often used to infer foraging success in pinnipeds. However, these inferences have not been directly validated in the field with video, and it remains unclear if this method can be applied to benthic foraging animals. This study assessed the ability of dive characteristics from time-depth recorders (TDR to predict attempted prey capture events (APC that were directly observed on animal-borne video in Australian fur seals (Arctocephalus pusillus doriferus, n=11. The most parsimonious model predicting the probability of a dive with ≥1 APC on video included only descent rate as a predictor variable. The majority (94% of the 389 total APC were successful, and the majority of the dives (68% contained at least one successful APC. The best model predicting these successful dives included descent rate as a predictor. Comparisons of the TDR model predictions to video yielded a maximum accuracy of 77.5% in classifying dives as either APC or non-APC or 77.1% in classifying dives as successful verses unsuccessful. Foraging intensity, measured as either total APC per dive or total successful APC per dive, was best predicted by bottom duration and ascent rate. The accuracy in predicting total APC per dive varied based on the number of APC per dive with maximum accuracy occurring at 1 APC for both total (54% and only successful APC (52%. Results from this study linking verified foraging dives to dive characteristics potentially opens the door to decades of historical TDR datasets across several otariid species.

  14. 1968 Listing of Swimming Pool Equipment.

    Science.gov (United States)

    National Sanitation Foundation, Ann Arbor, MI. Testing Lab.

    An up-to-date listing of swimming pool equipment including--(1) companies authorized to display the National Sanitation Foundation seal of approval, (2) equipment listed as meeting NSF swimming pool equipment standards relating to diatomite type filters, (3) equipment listed as meeting NSF swimming pool equipment standard relating to sand type…

  15. Sports-related lung injury during breath-hold diving

    Directory of Open Access Journals (Sweden)

    Tanja Mijacika

    2016-12-01

    Full Text Available The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise. In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition. According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage.

  16. Scuba Club

    CERN Multimedia

    Club subaquatique

    2011-01-01

    Free Trial Dive Ever thought of exploring the surrealistic world of scuba diving? Well, now you can start by joining the CERN Scuba Diving Club. A big activity of the club is to provide training, within the French Federation system, for beginners right through to monitor level. The level 1 course starts this Autumn in the Varembé swimming pool in Geneva. Curious? Then why not come along for a free trial dive in Varembé swimming pool on the 12th or 19th of October 2011. Just bring your swim wear and we will provide the rest. Offer open to adults, minimum age limit 14 years. To sign up, send an email to subaqua@cern.ch

  17. Diving accidents in sports divers in Orkney waters.

    Science.gov (United States)

    Trevett, A J; Forbes, R; Rae, C K; Sheehan, C; Ross, J; Watt, S J; Stephenson, R

    2001-12-01

    Scapa Flow in Orkney is one of the major world centres for wreck diving. Because of the geography of Orkney and the nature of the diving, it is possible to make relatively accurate estimates of the number of dives taking place. The denominator of dive activity allows the unusual opportunity of precise calculation of accident rates. In 1999, one in every 178 sports divers visiting Orkney was involved in a significant accident, in 2000 the figure was one in 102. Some of these accidents appear to have been predictable and could be avoided by better education and preparation of visiting divers.

  18. Estimates of the radiological dose to people living on Bikini Island for two weeks while diving in and around the sunken ships in Bikini Lagoon

    International Nuclear Information System (INIS)

    Robison, W.L.

    1990-09-01

    Bikini Island and Bikini Lagoon were contaminated by fallout from nuclear weapons tests conducted at the atoll by the United States from 1946 to 1958. The second test, Baker, of the Crossroads series was an underwater detonation in 1946 that sank several ships in the lagoon, including the USS Saratoga and the Japanese battleship Nagato. The ships received high-intensity gamma-ray and neutron bombardment from the Baker test, which induced radioactivity in the metal structures. Some of the tests conducted after the Baker shot (there were 21 tests in all) injected contaminated carbonate particles into the air, some of which were deposited across the lagoon surface. Most of this contaminated soil then settled onto the ships' decks and other structures and on the lagoon bottom. These sunken ships provide an interesting location for divers. Recreational diving and swimming in and around the ships raises the question of the potential radiological dose from the radionuclides present in or on the ships and in the lagoon sediments. The purpose of this paper, therefore, is to present an analysis of the potential radiological dose to persons who would dive near the sunken ships and live on Bikini Island for a short period of time

  19. Extracting Databases from Dark Data with DeepDive.

    Science.gov (United States)

    Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng

    2016-01-01

    DeepDive is a system for extracting relational databases from dark data : the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data - scientific papers, Web classified ads, customer service notes, and so on - were instead in a relational database, it would give analysts a massive and valuable new set of "big data." DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference.

  20. The Impact of Baby Swimming on Introductory and Elementary Swimming Training

    OpenAIRE

    Břízová, Gabriela

    2007-01-01

    THESIS ANNOTATION Title: The Impact of Baby Swimming on Introductory and Elementary Swimming Training Aim: To assess the impact of 'baby swimming' on the successfulness in introductory and partly in elementary swimming training, and to find out whether also other circumstances (for example the length of attendance at 'baby swimming') have some influence on introductory swimming training. Methods: We used a questionnaire method for the parents of children who had attended 'baby swimming' and f...

  1. Swimming level of pupils from elementary schools with own swimming pool

    OpenAIRE

    Zálupská, Klára

    2012-01-01

    Title: Swimming level of pupils from primary school with private swimming pool. Work objectives: The aim is to identify assess level of swimming of pupils from first to ninth grade of primary school with a private pool in Chomutov district using continuous swimming test with regular swimming lessons, which is started in the first grade and persists until the ninth grade. The condition was organizing a school swimming lessons once a week for 45 minutes in all grades. Methodology: Swimming leve...

  2. Deep-Diving California Sea Lions: Are They Pushing Their Physiological Limit

    Science.gov (United States)

    2015-09-30

    highly variable. Venous oxygen content can actually increase during short duration dives. This suggests very little muscle blood flow and evven the use...the sea lion, the emperor penguin (Aptenodytes forsteri), another animal that dives on inspiration with a large respiratory O2 store, also can...in deep-diving emperor penguins (Wright et al. 2014), and in deep-diving bottlenose dolphins (Tursiops truncatus), which also dive on inspiration

  3. Dive and Explore: An Interactive Web Visualization that Simulates Making an ROV Dive to an Active Submarine Volcano

    Science.gov (United States)

    Weiland, C.; Chadwick, W. W.

    2004-12-01

    Several years ago we created an exciting and engaging multimedia exhibit for the Hatfield Marine Science Center that lets visitors simulate making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. The public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. We are now completing a revision to the project that will make this engaging virtual exploration accessible to a much larger audience. With minor modifications we will be able to put the exhibit onto the world wide web so that any person with internet access can view and learn about exciting volcanic and hydrothermal activity at Axial Seamount on the Juan de Fuca Ridge. The modifications address some cosmetic and logistic ISSUES confronted in the museum environment, but will mainly involve compressing video clips so they can be delivered more efficiently over the internet. The web version, like the museum version, will allow users to choose from 1 of 3 different dives sites in the caldera of Axial Volcano. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the computer mouse. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are

  4. Human Bone Matrix Changes During Deep Saturation Dives

    Science.gov (United States)

    2008-08-08

    urine concentrations of Ntx have been demonstrated in bone diseases such as osteoporosis, primary hyperthyroidism , and Paget’s disease. Also... loss in divers, and that the differentials likely came from the gas- induced osmosis model.30 4 The same facility was used for both dives and...Other demographic data such as age, height, weight , and diving experience were also collected for later correlational analyses. The dive took place

  5. Diving bradycardia: a mechanism of defence against hypoxic damage.

    Science.gov (United States)

    Alboni, Paolo; Alboni, Marco; Gianfranchi, Lorella

    2011-06-01

    A feature of all air-breathing vertebrates, diving bradycardia is triggered by apnoea and accentuated by immersion of the face or whole body in cold water. Very little is known about the afferents of diving bradycardia, whereas the efferent part of the reflex circuit is constituted by the cardiac vagal fibres. Diving bradycardia is associated with vasoconstriction of selected vascular beds and a reduction in cardiac output. The diving response appears to be more pronounced in mammals than in birds. In humans, the bradycardic response to diving varies greatly from person to person; the reduction in heart rate generally ranges from 15 to 40%, but a small proportion of healthy individuals can develop bradycardia below 20 beats/min. During prolonged dives, bradycardia becomes more pronounced because of activation of the peripheral chemoreceptors by a reduction in the arterial partial pressure of oxygen (O2), responsible for slowing of heart rate. The vasoconstriction is associated with a redistribution of the blood flow, which saves O2 for the O2-sensitive organs, such as the heart and brain. The results of several investigations carried out both in animals and in humans show that the diving response has an O2-conserving effect, both during exercise and at rest, thus lengthening the time to the onset of serious hypoxic damage. The diving response can therefore be regarded as an important defence mechanism for the organism.

  6. Persistent (patent) foramen ovale (PFO): implications for safe diving.

    Science.gov (United States)

    Germonpré, Peter

    2015-06-01

    of high-risk diving or DCI, has yet to be confirmed. Studying PFO-related DCI provides us with unique opportunities to learn more about the effect of gas bubbles in various tissues, including the central vascular bed and neurological tissue. It may also serve to educate divers that safe diving is something that needs to be learned, not something that can be implanted.

  7. High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins.

    Science.gov (United States)

    Meir, Jessica U; Ponganis, Paul J

    2009-10-01

    The emperor penguin (Aptenodytes forsteri) thrives in the Antarctic underwater environment, diving to depths greater than 500 m and for durations longer than 23 min. To examine mechanisms underlying the exceptional diving ability of this species and further describe blood oxygen (O2) transport and depletion while diving, we characterized the O2-hemoglobin (Hb) dissociation curve of the emperor penguin in whole blood. This allowed us to (1) investigate the biochemical adaptation of Hb in this species, and (2) address blood O2 depletion during diving, by applying the dissociation curve to previously collected partial pressure of O2 (PO2) profiles to estimate in vivo Hb saturation (SO2) changes during dives. This investigation revealed enhanced Hb-O2 affinity (P50=28 mmHg, pH 7.5) in the emperor penguin, similar to high-altitude birds and other penguin species. This allows for increased O2 at low blood PO2 levels during diving and more complete depletion of the respiratory O2 store. SO2 profiles during diving demonstrated that arterial SO2 levels are maintained near 100% throughout much of the dive, not decreasing significantly until the final ascent phase. End-of-dive venous SO2 values were widely distributed and optimization of the venous blood O2 store resulted from arterialization and near complete depletion of venous blood O2 during longer dives. The estimated contribution of the blood O2 store to diving metabolic rate was low and highly variable. This pattern is due, in part, to the influx of O2 from the lungs into the blood during diving, and variable rates of tissue O2 uptake.

  8. Using stimulation of the diving reflex in humans to teach integrative physiology.

    Science.gov (United States)

    Choate, Julia K; Denton, Kate M; Evans, Roger G; Hodgson, Yvonne

    2014-12-01

    During underwater submersion, the body responds by conserving O2 and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be stimulated in the practical laboratory setting using breath holding and facial immersion in water. Our undergraduate physiology students complete a laboratory class in which they investigate the effects of stimulating the diving reflex on cardiovascular variables, which are recorded and calculated with a Finapres finger cuff. These variables include heart rate, cardiac output, stroke volume, total peripheral resistance, and arterial pressures (mean, diastolic, and systolic). Components of the diving reflex are stimulated by 1) facial immersion in cold water (15°C), 2) breathing with a snorkel in cold water (15°C), 3) facial immersion in warm water (30°C), and 4) breath holding in air. Statistical analysis of the data generated for each of these four maneuvers allows the students to consider the factors that contribute to the diving response, such as the temperature of the water and the location of the sensory receptors that initiate the response. In addition to providing specific details about the equipment, protocols, and learning outcomes, this report describes how we assess this practical exercise and summarizes some common student misunderstandings of the essential physiological concepts underlying the diving response. Copyright © 2014 The American Physiological Society.

  9. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial.

    Directory of Open Access Journals (Sweden)

    Vincent Souday

    Full Text Available To test the hypothesis whether enriched air nitrox (EAN breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression.Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2 in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes. Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler.Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0-3.5] vs. 8 [4.5-10]; P < 0.001. Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217. Weak correlations were observed between bubble scores and age or body mass index, respectively.EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing.ISRCTN 31681480.

  10. Sponge divers of the Aegean and medical consequences of risky compressed-air dive profiles.

    Science.gov (United States)

    Toklu, Akin Savas; Cimsit, Maide

    2009-04-01

    Historically, Turkey once had a substantial number of professional sponge divers, a population known for a relatively high incidence of diving-related conditions such as decompression sickness (DCS) and dysbaric osteonecrosis (DON). Sponge diving ended in the mid-1980s when nearly all of the sponges in the Aegean and Mediterranean Seas contracted a bacterial disease and the occupation became unprofitable. We reviewed the records of Turkish sponge divers for information on their level of knowledge, diving equipment, dive profiles, and occupational health problems. Information was collected by: 1) interviewing former sponge divers near Bodrum, where most of them had settled; 2) reviewing the relevant literature; and 3) examining the medical records of sponge divers who underwent recompression treatment. These divers used three types of surface-supplied equipment, including hard helmets, Fernez apparatus, and hookahs; the latter were preferred because they allowed divers the greatest freedom of movement while harvesting sponges underwater. These divers used profiles that we now know involved a high risk for DCS and DON. We were able to access the records of 58 divers who had received recompression treatment. All of the cases involved severe DCS and delays from dive to recompression that averaged 72 h. Complete resolution of symptoms occurred in only 11 cases (19%). Thus, we were able to document the several factors that contributed to the risks in this occupational group, including unsafe dive profiles, resistance to seeking treatment, long delays before recompression, and the fact that recompression treatment used air rather than oxygen.

  11. Suitability Analysis For Scuba Diving To Develop Marine Tourism At Saebus Island, East Java, Indonesia

    Science.gov (United States)

    Wijaya, Putranto; Putra, Tri; Hidayat, Fatra; Levraeni, Chandra; Rizmaadi, Mada; Ambariyanto, Ambariyanto

    2018-02-01

    Indonesian government currently has policies to improve the performance of the tourism sector, including marine tourism. One of the attractions of marine tourism is the coral ecosystem especially through scuba diving activities. The purpose of this study was to determine the suitability of the coral ecosystem on Saebus Island, East Java, to find appropriate locations for scuba diving activities. Purposive samplings were done around the island to determine four stations which will be assessed through suitability analysis. Tourism Suitability Index was used to assess all stations for scuba diving activities. The result showed that all four stations were categorized as very suitable with the score: 85%, 85%, 85% and 83%, respectively. Several aspects that need to be improved and anticipated for diving at all stations are coral coverage and water current. These results suggest that there are several spots around Saebus Island that are suitable for diving site, and can be promoted as marine tourism destination.

  12. [Diagnosis and treatment of diving accidents. New German guidelines for diving accidents 2014-2017].

    Science.gov (United States)

    Jüttner, B; Wölfel, C; Liedtke, H; Meyne, K; Werr, H; Bräuer, T; Kemmerer, M; Schmeißer, G; Piepho, T; Müller, O; Schöppenthau, H

    2015-06-01

    In 2015 the German Society for Diving and Hyperbaric Medicine (GTÜM) and the Swiss Underwater and Hyperbaric Medical Society (SUHMS) published the updated guidelines on diving accidents 2014-2017. These multidisciplinary guidelines were developed within a structured consensus process by members of the German Interdisciplinary Association for Intensive Care and Emergency Medicine (DIVI), the Sports Divers Association (VDST), the Naval Medical Institute (SchiffMedInst), the Social Accident Insurance Institution for the Building Trade (BG BAU), the Association of Hyperbaric Treatment Centers (VDD) and the Society of Occupational and Environmental Medicine (DGAUM). This consensus-based guidelines project (development grade S2k) with a representative group of developers was conducted by the Association of Scientific Medical Societies in Germany. It provides information and instructions according to up to date evidence to all divers and other lay persons for first aid recommendations to physician first responders and emergency physicians as well as paramedics and all physicians at therapeutic hyperbaric chambers for the diagnostics and treatment of diving accidents. To assist in implementing the guideline recommendations, this article summarizes the rationale, purpose and the following key action statements: on-site 100% oxygen first aid treatment, still patient positioning and fluid administration are recommended. Hyperbaric oxygen (HBO) recompression remains unchanged the established treatment in severe cases with no therapeutic alternatives. The basic treatment scheme recommended for diving accidents is hyperbaric oxygenation at 280 kPa. For quality management purposes there is a need in the future for a nationwide register of hyperbaric therapy.

  13. Safety Priorities and Underestimations in Recreational Scuba Diving Operations: A European Study Supporting the Implementation of New Risk Management Programmes

    Directory of Open Access Journals (Sweden)

    Serena Lucrezi

    2018-03-01

    Full Text Available Introduction: Scuba diving is an important marine tourism sector, but requires proper safety standards to reduce the risks and increase accessibility to its market. To achieve safety goals, safety awareness and positive safety attitudes in recreational scuba diving operations are essential. However, there is no published research exclusively focusing on scuba divers’ and dive centres’ perceptions toward safety. This study assessed safety perceptions in recreational scuba diving operations, with the aim to inform and enhance safety and risk management programmes within the scuba diving tourism industry.Materials and Methods: Two structured questionnaire surveys were prepared by the organisation Divers Alert Network and administered online to scuba diving operators in Italy and scuba divers in Europe, using a mixture of convenience and snowball sampling. Questions in the survey included experience and safety offered at the dive centre; the buddy system; equipment and accessories for safe diving activities; safety issues in the certification of new scuba divers; incidents/accidents; and attitudes toward safety.Results: 91 scuba diving centres and 3,766 scuba divers participated in the study. Scuba divers gave importance to safety and the responsiveness of service providers, here represented by the dive centres. However, they underestimated the importance of a personal emergency action/assistance plan and, partly, of the buddy system alongside other safety procedures. Scuba divers agreed that some risks, such as those associated with running out of gas, deserve attention. Dive centres gave importance to aspects such as training and emergency action/assistance plans. However, they were limitedly involved in safety campaigning. Dive centres’ perceptions of safety in part aligned with those of scuba divers, with some exceptions.Conclusion: Greater responsibility is required in raising awareness and educating scuba divers, through participation in

  14. Safety Priorities and Underestimations in Recreational Scuba Diving Operations: A European Study Supporting the Implementation of New Risk Management Programmes

    Science.gov (United States)

    Lucrezi, Serena; Egi, Salih Murat; Pieri, Massimo; Burman, Francois; Ozyigit, Tamer; Cialoni, Danilo; Thomas, Guy; Marroni, Alessandro; Saayman, Melville

    2018-01-01

    Introduction: Scuba diving is an important marine tourism sector, but requires proper safety standards to reduce the risks and increase accessibility to its market. To achieve safety goals, safety awareness and positive safety attitudes in recreational scuba diving operations are essential. However, there is no published research exclusively focusing on scuba divers’ and dive centres’ perceptions toward safety. This study assessed safety perceptions in recreational scuba diving operations, with the aim to inform and enhance safety and risk management programmes within the scuba diving tourism industry. Materials and Methods: Two structured questionnaire surveys were prepared by the organisation Divers Alert Network and administered online to scuba diving operators in Italy and scuba divers in Europe, using a mixture of convenience and snowball sampling. Questions in the survey included experience and safety offered at the dive centre; the buddy system; equipment and accessories for safe diving activities; safety issues in the certification of new scuba divers; incidents/accidents; and attitudes toward safety. Results: 91 scuba diving centres and 3,766 scuba divers participated in the study. Scuba divers gave importance to safety and the responsiveness of service providers, here represented by the dive centres. However, they underestimated the importance of a personal emergency action/assistance plan and, partly, of the buddy system alongside other safety procedures. Scuba divers agreed that some risks, such as those associated with running out of gas, deserve attention. Dive centres gave importance to aspects such as training and emergency action/assistance plans. However, they were limitedly involved in safety campaigning. Dive centres’ perceptions of safety in part aligned with those of scuba divers, with some exceptions. Conclusion: Greater responsibility is required in raising awareness and educating scuba divers, through participation in prevention

  15. Safety Priorities and Underestimations in Recreational Scuba Diving Operations: A European Study Supporting the Implementation of New Risk Management Programmes.

    Science.gov (United States)

    Lucrezi, Serena; Egi, Salih Murat; Pieri, Massimo; Burman, Francois; Ozyigit, Tamer; Cialoni, Danilo; Thomas, Guy; Marroni, Alessandro; Saayman, Melville

    2018-01-01

    Introduction: Scuba diving is an important marine tourism sector, but requires proper safety standards to reduce the risks and increase accessibility to its market. To achieve safety goals, safety awareness and positive safety attitudes in recreational scuba diving operations are essential. However, there is no published research exclusively focusing on scuba divers' and dive centres' perceptions toward safety. This study assessed safety perceptions in recreational scuba diving operations, with the aim to inform and enhance safety and risk management programmes within the scuba diving tourism industry. Materials and Methods: Two structured questionnaire surveys were prepared by the organisation Divers Alert Network and administered online to scuba diving operators in Italy and scuba divers in Europe, using a mixture of convenience and snowball sampling. Questions in the survey included experience and safety offered at the dive centre; the buddy system; equipment and accessories for safe diving activities; safety issues in the certification of new scuba divers; incidents/accidents; and attitudes toward safety. Results: 91 scuba diving centres and 3,766 scuba divers participated in the study. Scuba divers gave importance to safety and the responsiveness of service providers, here represented by the dive centres. However, they underestimated the importance of a personal emergency action/assistance plan and, partly, of the buddy system alongside other safety procedures. Scuba divers agreed that some risks, such as those associated with running out of gas, deserve attention. Dive centres gave importance to aspects such as training and emergency action/assistance plans. However, they were limitedly involved in safety campaigning. Dive centres' perceptions of safety in part aligned with those of scuba divers, with some exceptions. Conclusion: Greater responsibility is required in raising awareness and educating scuba divers, through participation in prevention campaigns

  16. Dark chocolate reduces endothelial dysfunction after successive breath-hold dives in cool water.

    Science.gov (United States)

    Theunissen, Sigrid; Schumacker, Julie; Guerrero, François; Tillmans, Frauke; Boutros, Antoine; Lambrechts, Kate; Mazur, Aleksandra; Pieri, Massimo; Germonpré, Peter; Balestra, Costantino

    2013-12-01

    The aim of this study is to observe the effects of dark chocolate on endothelial function after a series of successive apnea dives in non-thermoneutral water. Twenty breath-hold divers were divided into two groups: a control group (8 males and 2 females) and a chocolate group (9 males and 1 female). The control group was asked to perform a series of dives to 20 m adding up to 20 min in the quiet diving pool of Conflans-Ste-Honorine (Paris, France), water temperature was 27 °C. The chocolate group performed the dives 1 h after ingestion of 30 g of dark chocolate. Flow-mediated dilatation (FMD), digital photoplethysmography, nitric oxide (NO), and peroxynitrite ONOO−) levels were measured before and after each series of breath-hold dives. A significant decrease in FMD was observed in the control group after the dives (95.28 ± 2.9 % of pre-dive values, p chocolate group (104.1 ± 2.9 % of pre-dive values, p chocolate group (98.44 ± 31.86 %, p > 0.05). No differences in digital photoplethysmography and peroxynitrites were observed between before and after the dives. Antioxidants contained in dark chocolate scavenge free radicals produced during breath-hold diving. Ingestion of 30 g of dark chocolate 1 h before the dive can thus prevent endothelial dysfunction which can be observed after a series of breath-hold dives.

  17. A Simple Method for Determination of Critical Swimming Velocity in Swimming Flume

    OpenAIRE

    高橋, 繁浩; 若吉, 浩二; Shigehiro, TAKAHASHI; Kohji, WAKAYOSHI; 中京大学; 奈良教育大学教育学部

    2001-01-01

    The purpose of this study was to investigate a simple method for determination of critical swimming velocity (Vcri). Vcri is defined by Wakayoshi et al. (1992) as the swimming speed which could theoretically be maintained forever without exhaustion, and is expressed as the slope of a regression line between swimming distance (D) and swimming time (T) obtained at various swimming speeds. To determine Vcri, 20 well-trained swimmers were measured at several swimming speeds ranging from 1.25 m/se...

  18. Biology-Inspired Robust Dive Plane Control of Non-Linear AUV Using Pectoral-Like Fins

    Directory of Open Access Journals (Sweden)

    Subramanian Ramasamy

    2010-01-01

    Full Text Available The development of a control system for the dive plane control of non-linear biorobotic autonomous underwater vehicles, equipped with pectoral-like fins, is the subject of this paper. Marine animals use pectoral fins for swimming smoothly. The fins are assumed to be oscillating with a combined pitch and heave motion and therefore produce unsteady control forces. The objective is to control the depth of the vehicle. The mean angle of pitch motion of the fin is used as a control variable. A computational-fluid-dynamics-based parameterisation of the fin forces is used for control system design. A robust servo regulator for the control of the depth of the vehicle, based on the non-linear internal model principle, is derived. For the control law derivation, an exosystem of third order is introduced, and the non-linear time-varying biorobotic autonomous underwater vehicle model, including the fin forces, is represented as a non-linear autonomous system in an extended state space. The control system includes the internal model of a k-fold exosystem, where k is a positive integer chosen by the designer. It is shown that in the closed-loop system, all the harmonic components of order up to k of the tracking error are suppressed. Simulation results are presented which show that the servo regulator accomplishes accurate depth control despite uncertainties in the model parameters.

  19. Diving response in rats: role of the subthalamic vasodilator area.

    Directory of Open Access Journals (Sweden)

    Eugene Golanov

    2016-09-01

    Full Text Available Diving response is a powerful integrative response targeted toward survival of the hypoxic/anoxic conditions. Being present in all animals and humans it allows to survive adverse conditions like diving. Earlier we discovered that forehead stimulation affords neuroprotective effect decreasing infarction volume triggered by permanent occlusion of the middle cerebral artery in rats. We hypothesized that cold stimulation of the forehead induces diving response in rats, which, in turn, exerts neuroprotection. We compared autonomic (AP, HR, CBF and EEG responses to the known diving response-triggering stimulus, ammonia stimulation of the nasal mucosa, cold stimulation of the forehead, and cold stimulation of the glabrous skin of the tail base in anesthetized rats. Responses in AP, HR, CBF and EEG to cold stimulation of the forehead and ammonia vapors instillation into the nasal cavity were comparable and differed significantly from responses to the cold stimulation of the tail base. Excitotoxic lesion of the subthalamic vasodilator area, which is known to participate in CBF regulation and to afford neuroprotection upon excitation, failed to affect autonomic components of the diving response evoked by forehead cold stimulation or nasal mucosa ammonia stimulation. We conclude that cold stimulation of the forehead triggers physiological response comparable to the response evoked by ammonia vapor instillation into the nasal cavity, which considered as stimulus triggering protective diving response. These observations may explain the neuroprotective effect of the forehead stimulation. Data demonstrate that subthalamic vasodilator area does not directly participate in the autonomic adjustments accompanying diving response, however, it is involved in diving-evoked modulation of EEG. We suggest that forehead stimulation can be employed as a stimulus capable of triggering oxygen-conserving diving response and can be used for neuroprotective therapy.

  20. Comparative jet wake structure and swimming performance of salps.

    Science.gov (United States)

    Sutherland, Kelly R; Madin, Laurence P

    2010-09-01

    Salps are barrel-shaped marine invertebrates that swim by jet propulsion. Morphological variations among species and life-cycle stages are accompanied by differences in swimming mode. The goal of this investigation was to compare propulsive jet wakes and swimming performance variables among morphologically distinct salp species (Pegea confoederata, Weelia (Salpa) cylindrica, Cyclosalpa sp.) and relate swimming patterns to ecological function. Using a combination of in situ dye visualization and particle image velocimetry (PIV) measurements, we describe properties of the jet wake and swimming performance variables including thrust, drag and propulsive efficiency. Locomotion by all species investigated was achieved via vortex ring propulsion. The slow-swimming P. confoederata produced the highest weight-specific thrust (T=53 N kg(-1)) and swam with the highest whole-cycle propulsive efficiency (eta(wc)=55%). The fast-swimming W. cylindrica had the most streamlined body shape but produced an intermediate weight-specific thrust (T=30 N kg(-1)) and swam with an intermediate whole-cycle propulsive efficiency (eta(wc)=52%). Weak swimming performance variables in the slow-swimming C. affinis, including the lowest weight-specific thrust (T=25 N kg(-1)) and lowest whole-cycle propulsive efficiency (eta(wc)=47%), may be compensated by low energetic requirements. Swimming performance variables are considered in the context of ecological roles and evolutionary relationships.

  1. Survey of Current Best Practices for Diving in Contaminated Water

    National Research Council Canada - National Science Library

    Steigleman, W

    2002-01-01

    .... Navy divers operating in contaminated water. This survey attempted to identify the current best practices and equipment for diving in contaminated water, including personal protective equipment as well as hazard identification, diver training...

  2. Exercise-training intervention studies in competitive swimming.

    Science.gov (United States)

    Aspenes, Stian Thoresen; Karlsen, Trine

    2012-06-01

    Competitive swimming has a long history and is currently one of the largest Olympic sports, with 16 pool events. Several aspects separate swimming from most other sports such as (i) the prone position; (ii) simultaneous use of arms and legs for propulsion; (iii) water immersion (i.e. hydrostatic pressure on thorax and controlled respiration); (iv) propulsive forces that are applied against a fluctuant element; and (v) minimal influence of equipment on performance. Competitive swimmers are suggested to have specific anthropometrical features compared with other athletes, but are nevertheless dependent on physiological adaptations to enhance their performance. Swimmers thus engage in large volumes of training in the pool and on dry land. Strength training of various forms is widely used, and the energetic systems are addressed by aerobic and anaerobic swimming training. The aim of the current review was to report results from controlled exercise training trials within competitive swimming. From a structured literature search we found 17 controlled intervention studies that covered strength or resistance training, assisted sprint swimming, arms-only training, leg-kick training, respiratory muscle training, training the energy delivery systems and combined interventions across the aforementioned categories. Nine of the included studies were randomized controlled trials. Among the included studies we found indications that heavy strength training on dry land (one to five repetitions maximum with pull-downs for three sets with maximal effort in the concentric phase) or sprint swimming with resistance towards propulsion (maximal pushing with the arms against fixed points or pulling a perforated bowl) may be efficient for enhanced performance, and may also possibly have positive effects on stroke mechanics. The largest effect size (ES) on swimming performance was found in 50 m freestyle after a dry-land strength training regimen of maximum six repetitions across three

  3. The hydrodynamics of swimming microorganisms

    International Nuclear Information System (INIS)

    Lauga, Eric; Powers, Thomas R

    2009-01-01

    Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies.

  4. 29 CFR 1926.1076 - Qualifications of dive team.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Qualifications of dive team. 1926.1076 Section 1926.1076 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1926.1076 Qualifications of dive team. Note: The requirements applicable to construction work under...

  5. Winter and spring diving behavior of bowhead whales relative to prey

    KAUST Repository

    Heide-Jørgensen, Mads

    2013-10-23

    Background Little is known about bowhead whale (Balaena mysticetus) foraging behavior and what concentrations of prey are required to balance the energetic trade-offs of feeding. We used satellite telemetry, archival depth recorders, and water column echo sounding data to study bowhead whale diving behavior relative to prey depth and concentration in Disko Bay, West Greenland. Results Between March and May 2008 to 2011, nine bowhead whales were tagged in Disko Bay, West Greenland with instruments that collected data on location and diving over a period of 1 to 33 days. The frequency of U-dives (presumed to be foraging dives) was low during winter months but more than doubled in spring concurrent with a decrease in diving depth. The mean speed of the horizontal bottom phase of the U-dives was 0.9 ms-1 and on average, whales spent 37% of their time at the bottom phase of the dive. In March, bowhead whales presumably fed on copepods (Calanus spp.) close to the seabed (between 100 and 400 m). In April and May, after the copepods ascended to shallower depths, bowhead whales also dove to shallower depths (approximately 30 m) more often. However, echo sounding surveys in the vicinity of feeding whales in early May indicated that patches of copepods could still be found close to the seabed. Conclusions There was a marked change in diving behavior from winter through spring and this was likely in response to the changes in sea ice conditions, primary production and potential copepod abundance in the upper part of the water column. Depth and duration of dives changed significantly during this period; however, other dive parameters (for example the proportion of time spent feeding on the bottom of U-dives) remained fairly constant indicating a constant feeding effort. Bowhead whales target copepods at or close to the seabed in winter months in Disko Bay and continue feeding on copepods when they migrate to the surface. However, bowhead whales leave West Greenland before peak

  6. The evolution of phenotypic plasticity in fish swimming

    Science.gov (United States)

    Oufiero, Christopher E.; Whitlow, Katrina R.

    2016-01-01

    Abstract Fish have a remarkable amount of variation in their swimming performance, from within species differences to diversity among major taxonomic groups. Fish swimming is a complex, integrative phenotype and has the ability to plastically respond to a myriad of environmental changes. The plasticity of fish swimming has been observed on whole-organismal traits such as burst speed or critical swimming speed, as well as underlying phenotypes such as muscle fiber types, kinematics, cardiovascular system, and neuronal processes. Whether the plastic responses of fish swimming are beneficial seems to depend on the environmental variable that is changing. For example, because of the effects of temperature on biochemical processes, alterations of fish swimming in response to temperature do not seem to be beneficial. In contrast, changes in fish swimming in response to variation in flow may benefit the fish to maintain position in the water column. In this paper, we examine how this plasticity in fish swimming might evolve, focusing on environmental variables that have received the most attention: temperature, habitat, dissolved oxygen, and carbon dioxide variation. Using examples from previous research, we highlight many of the ways fish swimming can plastically respond to environmental variation and discuss potential avenues of future research aimed at understanding how plasticity of fish swimming might evolve. We consider the direct and indirect effects of environmental variation on swimming performance, including changes in swimming kinematics and suborganismal traits thought to predict swimming performance. We also discuss the role of the evolution of plasticity in shaping macroevolutionary patterns of diversity in fish swimming. PMID:29491937

  7. Predictors of Swimming Ability among Children and Adolescents in the United States

    Directory of Open Access Journals (Sweden)

    Jennifer Pharr

    2018-02-01

    Full Text Available Swimming is an important source of physical activity and a life skill to prevent drowning. However, little research has been conducted to understand predictors of swimming ability. The purpose of this study was to understand factors that predict swimming ability among children and adolescents in the United States (US. This was a cross-sectional survey conducted between February and April of 2017 across five geographically diverse cities. Participants were accessed through the Young Christian Men’s Association (YMCA and included parents of children aged 4–11 years old and adolescents aged 12–17 years old. Independent t-test, analysis of variance (ANOVA, and univariate and multivariate analyses were conducted. Several factors were significant (p ≤ 0.05 predictors of swimming ability and explained 53% of the variance in swimming ability. Variables that were positively associated with swimming ability included: ability of parent(s to swim, child/adolescent age, a best friend who enjoys swimming, water-safety knowledge, pool open all year, and encouragement to swim from parent(s. Variables that were negatively associated with swimming ability included: fear of drowning, being African American, and being female. Interventions and programs to improve the swimming ability of children and adolescents could be developed with these predictors in mind.

  8. Propulsive efficiency of frog swimming with different feet and swimming patterns

    Directory of Open Access Journals (Sweden)

    Fan Jizhuang

    2017-04-01

    Full Text Available Aquatic and terrestrial animals have different swimming performances and mechanical efficiencies based on their different swimming methods. To explore propulsion in swimming frogs, this study calculated mechanical efficiencies based on data describing aquatic and terrestrial webbed-foot shapes and swimming patterns. First, a simplified frog model and dynamic equation were established, and hydrodynamic forces on the foot were computed according to computational fluid dynamic calculations. Then, a two-link mechanism was used to stand in for the diverse and complicated hind legs found in different frog species, in order to simplify the input work calculation. Joint torques were derived based on the virtual work principle to compute the efficiency of foot propulsion. Finally, two feet and swimming patterns were combined to compute propulsive efficiency. The aquatic frog demonstrated a propulsive efficiency (43.11% between those of drag-based and lift-based propulsions, while the terrestrial frog efficiency (29.58% fell within the range of drag-based propulsion. The results illustrate the main factor of swimming patterns for swimming performance and efficiency.

  9. Scuba Club

    CERN Multimedia

    Club subaquatique

    2011-01-01

    Ever thought of exploring the surrealistic world of scuba diving? Well, now you can start by joining the CERN Scuba Diving Club. Since 1963, the CSC has been organising diving trips, lessons and much more to thousands of divers. The main activity of the club is providing training, within the French Federation system, for beginners right through to monitor level. The level 1 course starts this autumn in the Varembé swimming pool in Geneva. Twice a year, the CSC organizes an outing to the Mediterranean. Open to all, the first is usually held in May to finalise the level 1 training while the second, more of a family event, is in the autumn. An excellent atmosphere is guaranteed! Other activities include an underwater photography and video section as well as an underwater biology section. The two are complementary and are animated by qualified and experienced teachers. Curious? Then why not come along for a free trial dive in Varembé swimming pool on the 12th and 19th of October 2011....

  10. Ketogenic diet for high partial pressure oxygen diving.

    Science.gov (United States)

    Valadao, Jason M; Vigilante, John A; DiGeorge, Nicholas W; O'Connor, Sunila E; Bear, Alexandria; Kenyon, Jeffrey; Annis, Heather; Dituri, Joseph; Dituri, Amy E; Whelan, Harry T

    2014-01-01

    A ketogenic diet (KD) may decrease central nervous system oxygen toxicity symptoms in divers, and in view of this implication a feasibility/ toxicity pilot study was performed to demonstrate tolerance of KD while performing normal diving profiles. The exact mechanism of neuroprotection from the KD remains unknown; however, evidence to support the efficacy of the KD in reducing seizures is present in epilepsy and oxygen toxicity studies, and may provide valuable insight in diving activities. Three divers (two males and one female ages 32-45 with a history of deep diving and high pO2 exposure) on the KD made dives to varying depths in Hawaii using fully closed-circuit MK-15 and Inspiration rebreathers. These rebreathers have an electronically controlled set point, allowing the divers to monitor and control the oxygen level in the breathing loop, which can be varied manually by the divers. Oxygen level was varied during descent, bottom depth and ascent (decompression). Divers fasted for 12-18 hours before diet initiation. The ketosis level was verified by urinating on a Ketostix (reagent strips for urinalysis). Ketosis was achieved and was easily monitored with Ketostix in the simulated operational environment. The KD did not interfere with the diving mission; no seizure activity or signs or symptoms of CNS toxicity were observed, and there were no adverse effects noted by the divers while on the KD.

  11. Cocoa Beach, Oculina Banks Clelia Dive 617 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are from one of from fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance...

  12. Sebastian Pinnacles, Oculina Banks Clelia Dive 618 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  13. Sebastian Pinnacles, Oculina Banks Clelia Dive 614 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  14. Sebastian Pinnacles, Oculina Banks Clelia Dive 615 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  15. Sebastian Pinnacles, Oculina Banks Clelia Dive 619 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  16. Jeff's Reef, Oculina Banks Clelia Dive 606 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These are data from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  17. Chapman's Reef, Oculina Banks Clelia Dive 620 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  18. Jeff's Reef Oculina Banks Clelia Dive 607 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These are data from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  19. A Review of Swimming Cues and Tips for Physical Education

    Science.gov (United States)

    Higginson, Kelsey; Barney, David

    2016-01-01

    Swimming is a low-impact activity that causes little stress on joints so it can be done for a lifetime. Many teachers may wish to teach swimming but do not have cues or ideas for doing so. This article reviews swimming cues, relays and equipment that can help a physical education teacher include a swimming unit in their curriculum. Certification…

  20. Water safety and drowning

    Science.gov (United States)

    ... among people of all ages. Learning and practicing water safety is important to prevent drowning accidents. ... Water safety tips for all ages include: Learn CPR . Never swim alone. Never dive into water unless ...

  1. 50 CFR 640.22 - Gear and diving restrictions.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear and diving restrictions. 640.22... ATLANTIC Management Measures § 640.22 Gear and diving restrictions. (a) Prohibited gear and methods. (1) A spiny lobster may not be taken in the EEZ with a spear, hook, or similar device, or gear containing such...

  2. THE INFLUENCE OF AUTONOMOUS DIVING ON SENSES AND MENTAL PROCESSES

    OpenAIRE

    Dragan Krivokapić

    2010-01-01

    Diving is classified within a group of sports accompanied with an increased risk, yet it is a sport of full biological significance. Diving implies change of immediate human environment. Water, as the natural ambient for diving issues specific demands to the organism, which in turn influence decrease in psychophysical abilities when underwater, and in some instances, immediately after emerging from it. The most important factors influencing decrease in psychophysical abilities are: immersion,...

  3. Biomechanical Analysis of the Swim-Start: A Review

    Directory of Open Access Journals (Sweden)

    Julien Vantorre, Didier Chollet, Ludovic Seifert

    2014-06-01

    Full Text Available This review updates the swim-start state of the art from a biomechanical standpoint. We review the contribution of the swim-start to overall swimming performance, the effects of various swim-start strategies, and skill effects across the range of swim-start strategies identified in the literature. The main objective is to determine the techniques to focus on in swimming training in the contemporary context of the sport. The phases leading to key temporal events of the swim-start, like water entry, require adaptations to the swimmer’s chosen technique over the course of a performance; we thus define the swim-start as the moment when preparation for take-off begins to the moment when the swimming pattern begins. A secondary objective is to determine the role of adaptive variability as it emerges during the swim-start. Variability is contextualized as having a functional role and operating across multiple levels of analysis: inter-subject (expert versus non-expert, inter-trial or intra-subject (through repetitions of the same movement, and inter-preference (preferred versus non-preferred technique. Regarding skill effects, we assume that swim-start expertise is distinct from swim stroke expertise. Highly skilled swim-starts are distinguished in terms of several factors: reaction time from the start signal to the impulse on the block, including the control and regulation of foot force and foot orientation during take-off; appropriate amount of glide time before leg kicking commences; effective transition from leg kicking to break-out of full swimming with arm stroking; overall maximal leg and arm propulsion and minimal water resistance; and minimized energy expenditure through streamlined body position. Swimmers who are less expert at the swim-start spend more time in this phase and would benefit from training designed to reduce: (i the time between reaction to the start signal and impulse on the block, and (ii the time in transition (i

  4. Infections Unlikely to be Spread Through Swimming Pools

    Science.gov (United States)

    ... Water Home Infections Unlikely to be Spread Through Swimming Pools Language: English (US) Español (Spanish) Recommend on ... included below. Infections Unlikely to be Spread by Swimming Pools Head Lice Head lice are unlikely to ...

  5. Swimming strategy and body plan of the world’s largest fish: implications for foraging efficiency and thermoregulation

    Directory of Open Access Journals (Sweden)

    Mark eMeekan

    2015-09-01

    Full Text Available The largest animals in the oceans eat prey that are orders of magnitude smaller than themselves, implying strong selection for cost-effective foraging to meet their energy demands. Whale sharks (Rhincodon typus may be especially challenged by warm seas that elevate their metabolism and contain sparse prey resources. Using a combination of biologging and satellite tagging, we show that whale sharks use four strategies to save energy and improve foraging efficiency: 1 fixed, low power swimming, 2 constant low speed swimming, 3 gliding and 4 asymmetrical diving. These strategies increase foraging efficiency by 22 – 32% relative to swimming horizontally and resolve the energy-budget paradox of whale sharks. However, sharks in the open ocean must access food resources that reside in relatively cold waters (up to 20oC cooler than the surface at depths of 250-500 m during the daytime, where long, slow gliding descents, continuous ram ventilation of the gills and filter-feeding could rapidly cool the circulating blood and body tissues. We suggest that whale sharks may overcome this problem through their large size and a specialized body plan that isolates highly vascularized red muscle on the dorsal surface, allowing heat to be retained near the centre of the body within a massive core of white muscle. This could allow a warm-adapted species to maintain enhanced function of organs and sensory systems while exploiting food resources in deep, cool water.

  6. Antioxidants may Attenuate Plasma Erythropoietin Decline after Hyperbaric Oxygen Diving.

    Science.gov (United States)

    Mutzbauer, T S; Schneider, M; Neubauer, B; Weiss, M; Tetzlaff, K

    2015-11-01

    According to previous studies, plasma erythropoietin (EPO) may decrease after hyperbaric oxygen exposure due to oxidative stress. It is hypothesized that the decrease of EPO can be attenuated by oxygen free radical scavengers.The aim of the present study was to evaluate whether EPO plasma levels can be influenced by oral application of vitamin C and E before repeated hyperbaric oxygen exposure during diving. 16 healthy male police task force divers performed 3 morning dives on oxygen within a regular diving schedule on 3 consecutive days. They were randomized into either the placebo group or the vitamin group, receiving 1 g ascorbic acid and 600 IU D-α-tocopherol orally 60 min before the dive. Blood samples for EPO measurement were taken on days 1, 2, and 3 at T1, T3 and T5 60 min before and at T2, T4 and T6 60 min after each dive, respectively. A moderate decrease of EPO was observed beginning at T3 until T6 in the placebo group. The EPO concentrations in the vitamin group did not show relevant variations compared to baseline. Radical scavenging vitamins C and D may counteract hyperbaric oxygen related mechanisms reducing EPO production in hyperbaric oxygen exposure during diving. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Diving under a microscope--a new simple and versatile in vitro diving device for fluorescence and confocal microscopy allowing the controls of hydrostatic pressure, gas pressures, and kinetics of gas saturation.

    Science.gov (United States)

    Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël

    2013-06-01

    How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.

  8. Controlled-frequency breath swimming improves swimming performance and running economy.

    Science.gov (United States)

    Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S

    2015-02-01

    Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P swimming may improve muscular oxygen utilization during terrestrial exercise in novice swimmers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Scuba Diving and Kinesiology: Development of an Academic Program

    Science.gov (United States)

    Kovacs, Christopher R.; Walter, Daniel

    2015-01-01

    The use of scuba diving as a recreational activity within traditional university instructional programs has been well established. Departments focusing on kinesiology, physical education, or exercise science have often provided scuba diving lessons as part of their activity-based course offerings. However, few departments have developed an…

  10. THE INFLUENCE OF AUTONOMOUS DIVING ON SENSES AND MENTAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Dragan Krivokapić

    2010-09-01

    Full Text Available Diving is classified within a group of sports accompanied with an increased risk, yet it is a sport of full biological significance. Diving implies change of immediate human environment. Water, as the natural ambient for diving issues specific demands to the organism, which in turn influence decrease in psychophysical abilities when underwater, and in some instances, immediately after emerging from it. The most important factors influencing decrease in psychophysical abilities are: immersion, increased ambient pressure, characteristics of diving equipment and atmosphere separation. The senses and the mental processes of the diver are significantly altered during the autonomous diving. Loss of self-weight perception and pressure put on joints cause disorders in function of kinesthetic senses and vestibular apparatus, which in turn becomes reflected on proprioception. Coldness of water, especially at grater depths, induces decline in pain sensation as well as in aptness and mobility of fingers. Sight remains normal, but the image received is slightly changed due to refraction of light on boundary surfaces. Visual field is narrowed down to fit the limited diving mask field of view. At the same time, diffusion of light and color absorption brings about the loss of both ability to perceive things and contrasts when at depths .Objects tend to appear bigger and closer underwater. Hearing is changed owing to the fact that the sound is not carried through the air but through the water, yet the speed of transmission causes only slight difference of left and right ear stimulation. Mental processes, informationassessment, creation of clear mental images of the actual moment, abstract thinking, decision making, etc. are not effective and precise. This state can be partly ascribed to the above mentioned problems with senses, partly to the greater influence of emotional as opposed to rational, but also to the narcotic effect of nitrogen that is produced while

  11. Swimming-pool piles

    International Nuclear Information System (INIS)

    Trioulaire, M.

    1959-01-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10 13 . This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [fr

  12. Basic Land Drills for Swimming Stroke Acquisition

    Science.gov (United States)

    Zhang, Peng

    2014-01-01

    Teaching swimming strokes can be a challenging task in physical education. The purpose of the article is to introduce 12 on land drills that can be utilized to facilitate the learning of swimming strokes, including elementary back stroke, sidestroke, front crawl, back stroke, breaststroke, and butterfly. Each drill consists of four components…

  13. Endothelial function and cardiovascular stress markers after a single dive in aging rats (ApoE knockout rats)

    DEFF Research Database (Denmark)

    Berenji Ardestani, Simin; Pedersen, Michael

    Diving exposes body to a variety of stressors during the dive itself, and gas bubbles that develop during the decompression (ascent) phase. The compressed gas breath augments partial pressure of oxygen (PO2) causing the oxygen concentration of the blood to increase above normal (hyperoxia) likely...... causing excessive oxidative stress, including transient endothelial dysfunction in venous and arterial vessels....

  14. To what extent might N2 limit dive performance in king penguins?

    Science.gov (United States)

    Fahlman, A; Schmidt, A; Jones, D R; Bostrom, B L; Handrich, Y

    2007-10-01

    A mathematical model was used to explore if elevated levels of N2, and risk of decompression sickness (DCS), could limit dive performance (duration and depth) in king penguins (Aptenodytes patagonicus). The model allowed prediction of blood and tissue (central circulation, muscle, brain and fat) N2 tensions (P(N2)) based on different cardiac outputs and blood flow distributions. Estimated mixed venous P(N2) agreed with values observed during forced dives in a compression chamber used to validate the assumptions of the model. During bouts of foraging dives, estimated mixed venous and tissue P(N2) increased as the bout progressed. Estimated mean maximum mixed venous P(N2) upon return to the surface after a dive was 4.56+/-0.18 atmospheres absolute (ATA; range: 4.37-4.78 ATA). This is equivalent to N2 levels causing a 50% DCS incidence in terrestrial animals of similar mass. Bout termination events were not associated with extreme mixed venous N2 levels. Fat P(N2) was positively correlated with bout duration and the highest estimated fat P(N2) occurred at the end of a dive bout. The model suggested that short and shallow dives occurring between dive bouts help to reduce supersaturation and thereby DCS risk. Furthermore, adipose tissue could also help reduce DCS risk during the first few dives in a bout by functioning as a sink to buffer extreme levels of N2.

  15. Diving and Environmental Simulation Team

    Data.gov (United States)

    Federal Laboratory Consortium — The Diving and Environmental Simulation Team focuses on ways to optimize the performance and safety of Navy divers. Our goal is to increase mission effectiveness by...

  16. Health impact of disinfection by-products in swimming pools

    Directory of Open Access Journals (Sweden)

    Cristina M. Villanueva

    2012-12-01

    Full Text Available This article is focused on the epidemiological evidence on the health impacts related to disinfection by-products (DBPs in swimming pools, which is a chemical hazard generated as an undesired consequence to reduce the microbial pathogens. Specific DBPs are carcinogenic, fetotoxic and/or irritant to the airways according to experimental studies. Epidemiological evidence shows that swimming in pools during pregnancy is not associated with an increased risk of reproductive outcomes. An epidemiological study suggested an increased risk of bladder cancer with swimming pool attendance, although evidence is inconclusive. A higher prevalence of respiratory symptoms including asthma is found among swimming pool workers and elite swimmers, although the causality of this association is unclear. The body of evidence in children indicates that asthma is not increased by swimming pool attendance. Overall, the available knowledge suggests that the health benefits of swimming outweigh the potential health risks of chemical contamination. However, the positive effects of swimming should be enhanced by minimising potential risks.

  17. 29 CFR Appendix C to Subpart T to... - Alternative Conditions Under § 1910.401(a)(3) for Recreational Diving Instructors and Diving...

    Science.gov (United States)

    2010-07-01

    ...) Include documentation of the O2-analysis procedures and the O2 fraction when delivering the charged tanks...-activity test; (ii) The RoTap shaker and nested-sieves test; (iii) The Navy Experimental Diving Unit (“NEDU... statistical analyses: (i) Use of a nitrox breathing-gas mixture that has an O2 fraction maintained at 0.28...

  18. Are parents just treading water? The impact of participation in swim lessons on parents' judgments of children's drowning risk, swimming ability, and supervision needs.

    Science.gov (United States)

    Morrongiello, Barbara A; Sandomierski, Megan; Schwebel, David C; Hagel, Brent

    2013-01-01

    Drowning is a leading cause of child mortality globally. Strategies that have been suggested to reduce pediatric drowning risk include increased parental awareness of children's swimming ability and drowning risk, improved adult supervision of child swimmers, and providing swim lessons to children. This study explored how parents' beliefs relevant to children's drowning risk, perception of children's swimming ability, and judgments of supervision needs changed as children aged two through 5 years accumulated experience in swim lessons, and compared a parent group who received regular, detailed feedback about their child's swim skills with one that did not. Parents completed questionnaire measures near the beginning and end of a series of 10 weekly swim lessons. Results revealed that parental accuracy in judging children's swimming abilities remained relatively poor even though it improved from the beginning to the end of the swim lessons. Supervision needs were underestimated and did not vary with program or change over the course of swim lessons. Children's ability to keep themselves from drowning was overestimated and did not change over lessons or vary with program; parents believed that children could save themselves from drowning by the age of 6.21 years. Parents who had experienced a close call for drowning showed greater awareness of children's drowning risk and endorsed more watchful and proximal supervision. Results suggest that expanding learn-to-swim programs to include a parent-focused component that provides detailed tracking of swim skills and delivers messaging targeting perceptions of children's drowning risk and supervision needs may serve to maximize the drowning protection afforded by these programs. Delivering messaging in the form of 'close-call' drowning stories may prove especially effective to impact parents' supervision practices in drowning risk situations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Common metabolic constraints on dive duration in endothermic and ectothermic vertebrates

    Directory of Open Access Journals (Sweden)

    April Hayward

    2016-10-01

    Full Text Available Dive duration in air-breathing vertebrates is thought to be constrained by the volume of oxygen stored in the body and the rate at which it is consumed (i.e., “oxygen store/usage hypothesis”. The body mass-dependence of dive duration among endothermic vertebrates is largely supportive of this model, but previous analyses of ectothermic vertebrates show no such body mass-dependence. Here we show that dive duration in both endotherms and ectotherms largely support the oxygen store/usage hypothesis after accounting for the well-established effects of temperature on oxygen consumption rates. Analyses of the body mass and temperature dependence of dive duration in 181 species of endothermic vertebrates and 29 species of ectothermic vertebrates show that dive duration increases as a power law with body mass, and decreases exponentially with increasing temperature. Thus, in the case of ectothermic vertebrates, changes in environmental temperature will likely impact the foraging ecology of divers.

  20. Swimming pool special; Zwembadspecial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    This issue includes a few articles and messages on the use of heat pump systems in swimming pools. [Dutch] Dit nummer bevat onder meer een paar artikelen over het gebruik van warmtepompsystemen in zwembaden.

  1. Winter and spring diving behavior of bowhead whales relative to prey

    KAUST Repository

    Heide-Jø rgensen, Mads; Laidre, Kristin L; Nielsen, Nynne H; Hansen, Rikke G; Rø stad, Anders

    2013-01-01

    There was a marked change in diving behavior from winter through spring and this was likely in response to the changes in sea ice conditions, primary production and potential copepod abundance in the upper part of the water column. Depth and duration of dives changed significantly during this period; however, other dive parameters (for example the proportion of time spent feeding on the bottom of U-dives) remained fairly constant indicating a constant feeding effort. Bowhead whales target copepods at or close to the seabed in winter months in Disko Bay and continue feeding on copepods when they migrate to the surface. However, bowhead whales leave West Greenland before peak abundance of copepods occurs at the surface.

  2. Swimming Performance of Adult Asian Carp: Field Assessment Using a Mobile Swim Tunnel

    Science.gov (United States)

    2016-08-01

    ERDC/TN ANSRP-16-1 August 2016 Approved for public release; distribution is unlimited. Swimming Performance of Adult Asian Carp: Field...Assessment Using a Mobile Swim Tunnel by Jan Jeffrey Hoover, Jay A. Collins, Alan W. Katzenmeyer, and K. Jack Killgore PURPOSE: Empirical swim speed...test in traditional laboratory swim tunnels. Biologists from the Engineer Research and Development Center (ERDC) Environmental Laboratory (EL), with

  3. Provisional report on diving-related fatalities in Australian waters 2008.

    Science.gov (United States)

    Lippmann, John; Walker, Douglas; Lawrence, Chris; Fock, Andrew; Wodak, Thomas; Harris, Richard; Jamieson, Scott

    2013-03-01

    An individual case review of diving-related deaths, reported as occurring in Australia in 2008, was conducted as part of the DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident and details from the post-mortem examination, where available, are provided. In total, there were 19 reported fatalities (the same as for 2007), 17 involving males. Twelve deaths occurred while snorkelling and/or breath-hold diving,and six while scuba diving. One diver died while using surface-supply breathing apparatus. Two breath-hold divers appear to have died as a result of apnoeic hypoxia, at least one case likely associated with hyperventilation. Two deaths resulted from trauma: one from impact with a boat and the other from an encounter with a great white shark. Cardiac-related issues were thought to have contributed to the deaths of five snorkellers and at least two, possibly three, scuba divers. Trauma from a marine creature, snorkelling or diving alone, apnoeic hypoxia and pre-existing medical conditions were once again features in several deaths in this series.

  4. Experimental hydrodynamics of swimming in fishes

    Science.gov (United States)

    Tytell, Eric Daniel

    2005-11-01

    The great diversity of fish body shapes suggests that they have adapted to different selective pressures. For many fishes, the pressures include hydrodynamic demands: swimming efficiently or accelerating rapidly, for instance. However, the hydrodynamic advantages or disadvantages to specific morphologies are poorly understood. In particular, eels have been considered inefficient swimmers, but they migrate long distances without feeding, a task that requires efficient swimming. This dissertation, therefore, begins with an examination of the swimming hydrodynamics of American eels, Anguilla rostrata, at steady swimming speeds from 0.5 to 2 body lengths (L) per second and during accelerations from -1.4 to 1.3 L s -2. The final chapter examines the hydrodynamic effects of body shape directly by describing three-dimensional flow around swimming bluegill sunfish, Lepomis macrochirus. In all chapters, flow is quantified using digital particle image velocimetry, and simultaneous kinematics are measured from high-resolution digital video. The wake behind a swimming eel in the horizontal midline plane is described first. Rather than producing a wake with fluid jets angled backwards, like in fishes such as sunfish, eels have a wake with exclusively lateral jets. The lack of downstream momentum indicates that eels balance the axial forces of thrust and drag evenly over time and over their bodies, and therefore do not change axial fluid momentum. This even balance, present at all steady swimming speeds, is probably due to the relatively uniform body shape of eels. As eels accelerate, thrust exceeds drag, axial momentum increases, and the wake approaches that of other fishes. During steady swimming, though, the lack of axial momentum prevents direct efficiency estimation. The effect of body shape was examined directly by measuring flow in multiple transverse planes along the body of bluegill sunfish swimming at 1.2 L s-1. The dorsal and anal fin, neglected in many previous

  5. The influence of elements of synchronized swimming on technique of the selected swimming strokes

    OpenAIRE

    Široký, Michal

    2015-01-01

    Title: The influence of elements of synchronized swimming on technique of the selected swimming strokes Objectives: The objective of the thesis is to assess the effect of the elements of synchronized swimming at improving the techniques of swimming. Methods: The results were detected by overt observation with active participation and subsequent scaling on the ordinal scale 1 to 5. Results: The results show that the influence of the elements of synchronized swimming on improving the technique ...

  6. The diel vertical migration patterns and individual swimming behavior of overwintering sprat Sprattus sprattus

    KAUST Repository

    Solberg, Ingrid

    2016-11-27

    We addressed the behavioral patterns and DVM dynamics of sprat overwintering in a 150 m Norwegian fjord with increasing hypoxia by depth. An upward-facing echosounder deployed at the bottom and cabled to shore provided 4 months of continuous acoustic data. This enabled detailed studies of individual behavior, specifically allowing assessment of individual vertical migrations at dusk and dawn in relation to light, analysis of so-called rise-and-sink swimming, and investigation of the sprat’ swimming activity and behavior in severely hypoxic waters. Field campaigns supplemented the acoustic studies. The acoustic records showed that the main habitat for sprat was the upper ∼ 65 m where oxygen concentrations were ⩾ 0.7 mL O2 L-1. The sprat schooled at ∼ 50 m during daytime and initiated an upward migration about 1 hour prior to sunset. While some sprat migrated to surface waters, other individuals interrupted the ascent when at ∼20-30 m, and returned to deeper waters ∼ 20-50 min after sunset. Sprat at depth was on average larger, yet individuals made excursions to- and from upper layers. Sprat were swimming in a “rise and sink” pattern at depth, likely related to negative buoyancy. Short-term dives into waters with less than 0.45 mL O2 L-1 were interpreted as feeding forays for abundant overwintering Calanus spp. The deep group of sprat initiated a dawn ascent less than 1 hour before sunrise, ending at 20-30 m where they formed schools. They subsequently returned to deeper waters about ∼20 min prior to sunrise. Measurements of surface light intensities indicated that the sprat experienced lower light levels in upper waters at dawn than at dusk. The vertical swimming speed varied significantly between the behavioral tasks. The mixed DVM patterns and dynamic nocturnal behavior of sprat persisted throughout winter, likely shaped by individual strategies involving optimized feeding and predator avoidance, as well as relating to temperature, hypoxia and

  7. Zebrafish swimming in the flow: a particle image velocimetry study

    Directory of Open Access Journals (Sweden)

    Violet Mwaffo

    2017-11-01

    Full Text Available Zebrafish is emerging as a species of choice for the study of a number of biomechanics problems, including balance development, schooling, and neuromuscular transmission. The precise quantification of the flow physics around swimming zebrafish is critical toward a mechanistic understanding of the complex swimming style of this fresh-water species. Although previous studies have elucidated the vortical structures in the wake of zebrafish swimming in placid water, the flow physics of zebrafish swimming against a water current remains unexplored. In an effort to illuminate zebrafish swimming in a dynamic environment reminiscent of its natural habitat, we experimentally investigated the locomotion and hydrodynamics of a single zebrafish swimming in a miniature water tunnel using particle image velocimetry. Our results on zebrafish locomotion detail the role of flow speed on tail beat undulations, heading direction, and swimming speed. Our findings on zebrafish hydrodynamics offer a precise quantification of vortex shedding during zebrafish swimming and demonstrate that locomotory patterns play a central role on the flow physics. This knowledge may help clarify the evolutionary advantage of burst and cruise swimming movements in zebrafish.

  8. How man-made interference might cause gas bubble emboli in deep diving whales

    Directory of Open Access Journals (Sweden)

    Andreas eFahlman

    2014-01-01

    Full Text Available Recent cetacean mass strandings in close temporal and spatial association with sonar activity has raised the concern that anthropogenic sound may harm breath-hold diving marine mammals. Necropsy results of the stranded whales have shown evidence of bubbles in the tissues, similar to those in human divers suffering from decompression sickness (DCS. It has been proposed that changes in behavior or physiological responses during diving could increase tissue and blood N2 levels, thereby increasing DCS risk. Dive data recorded from sperm, killer, long-finned pilot, Blainville’s beaked and Cuvier’s beaked whales before and during exposure to low- (1-2 kHz and mid- (2-7 kHz frequency active sonar were used to estimate the changes in blood and tissue N2 tension (PN2. Our objectives were to determine if differences in 1 dive behavior or 2 physiological responses to sonar are plausible risk factors for bubble formation. The theoretical estimates indicate that all species may experience high N2 levels. However, unexpectedly, deep diving generally result in higher end-dive PN2 as compared with shallow diving. In this focused review we focus on three possible explanations: 1 We revisit an old hypothesis that CO2, because of its much higher diffusivity, form bubble precursors that continue to grow in N2 supersaturated tissues. Such a mechanism would be less dependent on the alveolar collapse depth but affected by elevated levels of CO2 following a burst of activity during sonar exposure. 2 During deep dives, a greater duration of time might be spent at depths where gas exchange continues as compared with shallow dives. The resulting elevated levels of N2 in deep diving whales might also make them more susceptible to anthropogenic disturbances. 3 Extended duration of dives even at depths beyond where the alveoli collapse could result in slow continuous accumulation of N2 in the adipose tissues that eventually becomes a liability.

  9. Taking the plunge

    CERN Multimedia

    2008-01-01

    On 8 and 15 October, 58 people took the plunge and headed to the Varembé swimming pool in Geneva for their first taste of scuba diving at one of the CERN scuba club’s free trial dives. Club president Alberto Pace, left, taking a new recruit on his first dive. The CERN scuba club was making waves down at the Varembe swimming pool on Wednesday 15 October. Thirty-six people turned up to the club’s second free trial dive. "It was fantastic," said Jörg, one of the new recruits, after his first ever dive. "I’ve always wanted to try diving and this was a free lesson, so I thought I would come and have a go." Fourteen of the club’s fully qualified instructors were there to give one-on-one tuition. After a first dive in the normal pool the new divers moved into the deep pool. Some took to the water like fish, and at one point an impromptu game of aqua-Frisbee broke out, five metres below the surface. Richard Catherall, who organi...

  10. Is swimming during pregnancy a safe exercise?

    DEFF Research Database (Denmark)

    Juhl, Mette; Kogevinas, Manolis; Andersen, Per Kragh

    2010-01-01

    ,486 singleton pregnancies. Recruitment to The Danish National Birth Cohort took place 1996-2002. Using Cox, linear and logistic regression analyses, depending on the outcome, we compared swimmers with physically inactive pregnant women; to separate a possible swimming effect from an effect of exercise......BACKGROUND: Exercise in pregnancy is recommended in many countries, and swimming is considered by many to be an ideal activity for pregnant women. Disinfection by-products in swimming pool water may, however, be associated with adverse effects on various reproductive outcomes. We examined......, bicyclists were included as an additional comparison group. RESULTS: Risk estimates were similar for swimmers and bicyclists, including those who swam throughout pregnancy and those who swam more than 1.5 hours per week. Compared with nonexercisers, women who swam in early/mid-pregnancy had a slightly...

  11. Central Experimental Oculina Research Reserve, Oculina Banks Clelia Dive 612 Narrative 2001 - Videotape and Visual Observations from Submersible Dives to the Oculina Banks Deep Sea Coral Reefs (NODC Accession 0047190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are from one of fourteen 2001 submersible "Clelia" dives. Narratives including habitat descriptions and estimates of megafaunal species abundance were...

  12. Field validation of Tasmania's aquaculture industry bounce-diving schedules using Doppler analysis of decompression stress.

    Science.gov (United States)

    Smart, David R; Van den Broek, Cory; Nishi, Ron; Cooper, P David; Eastman, David

    2014-09-01

    Tasmania's aquaculture industry produces over 40,000 tonnes of fish annually, valued at over AUD500M. Aquaculture divers perform repetitive, short-duration bounce dives in fish pens to depths up to 21 metres' sea water (msw). Past high levels of decompression illness (DCI) may have resulted from these 'yo-yo' dives. This study aimed to assess working divers, using Doppler ultrasonic bubble detection, to determine if yo-yo diving was a risk factor for DCI, determine dive profiles with acceptable risk and investigate productivity improvement. Field data were collected from working divers during bounce diving at marine farms near Hobart, Australia. Ascent rates were less than 18 m·min⁻¹, with routine safety stops (3 min at 3 msw) during the final ascent. The Kisman-Masurel method was used to grade bubbling post dive as a means of assessing decompression stress. In accordance with Defence Research and Development Canada Toronto practice, dives were rejected as excessive risk if more than 50% of scores were over Grade 2. From 2002 to 2008, Doppler data were collected from 150 bounce-dive series (55 divers, 1,110 bounces). Three series of bounce profiles, characterized by in-water times, were validated: 13-15 msw, 10 bounces inside 75 min; 16-18 msw, six bounces inside 50 min; and 19-21 msw, four bounces inside 35 min. All had median bubble grades of 0. Further evaluation validated two successive series of bounces. Bubble grades were consistent with low-stress dive profiles. Bubble grades did not correlate with the number of bounces, but did correlate with ascent rate and in-water time. These data suggest bounce diving was not a major factor causing DCI in Tasmanian aquaculture divers. Analysis of field data has improved industry productivity by increasing the permissible number of bounces, compared to earlier empirically-derived tables, without compromising safety. The recommended Tasmanian Bounce Diving Tables provide guidance for bounce diving to a depth of 21 msw

  13. The Effect of Swimming Experience on Acquisition and Retention of Swimming-Based Taste Aversion Learning in Rats

    Science.gov (United States)

    Masaki, Takahisa; Nakajima, Sadahiko

    2010-01-01

    Swimming endows rats with an aversion to a taste solution consumed before swimming. The present study explored whether the experience of swimming before or after the taste-swimming trials interferes with swimming-based taste aversion learning. Experiment 1 demonstrated that a single preexposure to 20 min of swimming was as effective as four or…

  14. Paralysis from sport and diving accidents.

    Science.gov (United States)

    Schmitt, H; Gerner, H J

    2001-01-01

    To examine the causes of sport-related spinal cord injuries that developed into paraplegia or tetraplegia, and to compare data from different sports with previous studies in the same geographical region. A retrospective epidemiological study and comparison with previous studies. The Orthopedic Department, specializing in the treatment and rehabilitation of paralyzed patients, at the University of Heidelberg, Germany. Between 1985 and 1997, 1,016 cases of traumatic spinal cord injury presented at the Orthopedic Department at the University of Heidelberg: 6.8% were caused by sport and 7.7% by diving accidents. Sport-related spinal cord injuries with paralysis. A total of 1.016 cases of traumatic spinal cord injury were reviewed. Of these, 14.5% were caused by sport accidents (n = 69) or diving accidents (n = 78). Age of patients ranged from 9 to 52 years. 83% were male. 77% of the patients developed tetraplegia, and 23%, paraplegia. 16 of the sport accidents resulted from downhill skiing, 9 resulted from horseback riding, 7 from modern air sports, 6 from gymnastics, 5 from trampolining, and 26 from other sports. Previous analyses had revealed that paraplegia had mainly occurred from gymnastics, trampolining, or high diving accidents. More recently, however, the number of serious spinal injuries caused by risk-filled sports such as hang gliding and paragliding has significantly increased (p = 0.095), as it has for horseback riding and skiing. Examinations have shown that all patients who were involved in diving accidents developed tetraplegia. An analysis of injury from specific sports is still under way. Analysis of accidents resulting in damage to the spinal cord in respect to different sports shows that sports that have become popular during the last 10 years show an increasing risk of injury. Modern air sports hold the most injuries. Injury-preventing strategies also are presented.

  15. Swimming-induced pulmonary edema in a tropical climate: a case report.

    Science.gov (United States)

    Kwek, Wmj; Seah, M; Chow, W

    2017-01-01

    Swimming-induced pulmonary edema (SIPE) occurs during strenuous physical exertion in cold water and has been reported in scuba divers, free-diving competitors, combat swimmers, and triathletes. We describe a case of SIPE in a combat swimmer in warm tropical waters. A 21-year old diver trainee developed dyspnea, chest discomfort and hemoptysis after performing a 2-km sea swim in water temperatures of around 30°C. Over a two-hour period, his oxygen saturations deteriorated. Chest X-ray showed pulmonary edema. He was admitted to the general ward for observation and was given supportive treatment. His symptoms resolved over two days. Repeat CXR was normal. He was reviewed and certified fit to continue with diver training. Much of the earlier literature on SIPE describes the development of symptoms after exposure to temperate waters as one main risk factor. This case highlights the risk of development of SIPE in warm tropical waters. With a low reported incidence of SIPE in warm waters, this condition is likely to be underdiagnosed. There is therefore a need to increase local awareness of SIPE in the medical community. A deliberate effort to collate data on SIPE in our local community will help us to better understand the pathophysiology of SIPE in the context of a tropical climate. Development of SIPE in tropical waters suggests that other risk factors may be predominant. There should be a high index of suspicion when any strenuous in-water activity is conducted so that timely treatment may be instituted.

  16. Socio-economic aspects of the tiger shark diving industry within the ...

    African Journals Online (AJOL)

    Understanding socio-economic aspects of the tiger shark Galeocerdo cuvier diving industry, including information on participant expectations, experiences and expenditure, is necessary for the effective management of the Aliwal Shoal Marine Protected Area on the east coast of South Africa. Between January and ...

  17. Diving-related visual loss in the setting of angioid streaks: report of two cases.

    Science.gov (United States)

    Angulo Bocco, Maria I; Spielberg, Leigh; Coppens, Greet; Catherine, Janet; Verougstraete, Claire; Leys, Anita M

    2012-01-01

    The purpose of this study was to report diving-related visual loss in the setting of angioid streaks. Observational case reports of two patients with angioid streaks suffering sudden visual loss immediately after diving. Two young adult male patients presented with visual loss after diving headfirst. Funduscopy revealed angioid streaks, peau d'orange, subretinal hemorrhages, and ruptures of Bruch membrane. Choroidal neovascularization developed during follow-up. Both patients had an otherwise uneventful personal and familial medical history. In patients with angioid streaks, diving headfirst can lead to subretinal hemorrhages and traumatic ruptures in Bruch membrane and increase the risk of maculopathy. Ophthalmologists should caution patients with angioid streaks against diving headfirst.

  18. Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L.

    NARCIS (Netherlands)

    Burgerhout, E.; Tudorache, C.; Brittijn, S.A.; Palstra, A.P.; Dirks, R.P.; Thillart, G.E.E.J.M.

    2013-01-01

    During migration, swimming in schools provides fish with a number of behavioural and ecological advantages, including increased food supply and reduced predation risk. Previous work shows that carangiform and tunniform swimming result in energetic advantages for individuals using a diamond swimming

  19. Swimming pool granuloma

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001357.htm Swimming pool granuloma To use the sharing features on this page, please enable JavaScript. A swimming pool granuloma is a long-term (chronic) skin ...

  20. Solar collectors for swimming pools still going strong

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    According to the opinion of the experts, solar energy heating may be technically 'mature' but the profitability is by no means that far. However, solar systems are a good alternative for heating the water in swimming pools. Four solar collector systems developed by different firms to heat swimming pools, including prices, are presented.

  1. The influence of oxygen and carbon dioxide on diving behaviour of tufted ducks, Aythya fuligula.

    Science.gov (United States)

    Halsey, Lewis; Reed, Jane Z; Woakes, Anthony; Butler, Patrick

    2003-01-01

    While optimal diving models focus on the diver's oxygen (O(2)) stores as the predominant factor influencing diving behaviour, many vertebrate species surface from a dive before these stores are exhausted and may commence another dive well after their O(2) stores have been resaturated. This study investigates the influence of hypoxia and also hypercapnia on the dive cycle of tufted ducks, Aythya fuligula, in terms of surface duration and dive duration. The birds were trained to surface into a respirometer box after each dive to a feeding tray so that rates of O(2) uptake (VO2) and carbon dioxide output (VCO2) at the surface could be measured. Although Vco2 initially lagged behind Vo2, both respiratory gas stores were close to full adjustment after the average surface duration, indicating that they probably had a similar degree of influence on surface duration. Chemoreceptors, which are known to influence diving behaviour, detect changes in O(2) and CO(2) partial pressures in the arterial blood. Thus, the need to restore blood gas levels appears to be a strong stimulus to continue ventilation. Mean surface duration coincided with peak instantaneous respiratory exchange ratio due to predive anticipatory hyperventilation causing hypocapnia. For comparison, the relationship between surface duration and O(2) uptake in reanalysed data for two grey seals indicated that one animal tended to dive well after fully restocking its O(2) stores, while the other dived at the point of full restocking. More CO(2) is exchanged than O(2) in tufted ducks during the last few breaths before the first dive of a bout, serving to reduce CO(2) stores and suggesting that hypercapnia rather than hypoxia is more often the limiting factor on asphyxia tolerance during dives. Indeed, according to calculations of O(2) stores and O(2) consumption rates over modal diving durations, a lack of O(2) does not seem to be associated with the termination of a dive in tufted ducks. However, factors other

  2. Heart rate variability and swimming.

    Science.gov (United States)

    Koenig, Julian; Jarczok, Marc N; Wasner, Mieke; Hillecke, Thomas K; Thayer, Julian F

    2014-10-01

    Professionals in the domain of swimming have a strong interest in implementing research methods in evaluating and improving training methods to maximize athletic performance and competitive outcome. Heart rate variability (HRV) has gained attention in research on sport and exercise to assess autonomic nervous system activity underlying physical activity and sports performance. Studies on swimming and HRV are rare. This review aims to summarize the current evidence on the application of HRV in swimming research and draws implications for future research. A systematic search of databases (PubMed via MEDLINE, PSYNDEX and Embase) according to the PRISMA statement was employed. Studies were screened for eligibility on inclusion criteria: (a) empirical investigation (HRV) in humans (non-clinical); (b) related to swimming; (c) peer-reviewed journal; and (d) English language. The search revealed 194 studies (duplicates removed), of which the abstract was screened for eligibility. Fourteen studies meeting the inclusion criteria were included in the review. Included studies broadly fell into three classes: (1) control group designs to investigate between-subject differences (i.e. swimmers vs. non-swimmers, swimmers vs. other athletes); (2) repeated measures designs on within-subject differences of interventional studies measuring HRV to address different modalities of training or recovery; and (3) other studies, on the agreement of HRV with other measures. The feasibility and possibilities of HRV within this particular field of application are well documented within the existing literature. Future studies, focusing on translational approaches that transfer current evidence in general practice (i.e. training of athletes) are needed.

  3. Diarrhea and Swimming

    Science.gov (United States)

    ... 888) 232-6348 Contact CDC–INFO Healthy Swimming Health Benefits of Water-based Exercise Swimmer Protection Steps of ... Disinfection Microbial Testing & Disinfection Swimming Pool Chemicals Injuries & Outdoor Health International Recreational Water RWIs, Swimmer Hygiene, & Behavioral ...

  4. Safety of antimalarial medications for use while scuba diving in malaria Endemic Regions.

    Science.gov (United States)

    Petersen, Kyle; Regis, David P

    2016-01-01

    Recreational diving occurs annually in areas of the world where malaria is endemic. The safety and efficacy of antimalarials for travelers in a hyperbaric environment is unknown. Of particular concern would be medications with adverse effects that could either mimic diving related illnesses such as barotrauma, decompression sickness (DCS) and gas toxicities, or increase the risk for such illnesses. We conducted a review of PubMed and Cochrane databases to determine rates of neurologic adverse effects or other effects from antimalarials that may be a problem in the diving environment. One case report was found on diving and mefloquine. Multiple case reports and clinical trials were found describing neurologic adverse effects of the major chemoprophylactic medications atovaquone/proguanil, chloroquine, doxycycline, mefloquine, and primaquine. Of the available literature, atovaquone/proguanil and doxycycline are most likely the safest agents and should be preferred; atovaquone/proguanil is superior due to reduced rates of sunburn in the marine environment. Primaquine also appears to be safe, but has reduced efficacy against P. falciparum ; mefloquine possesses the highest rate of neurologic side effects and therefore these agents should be limited to extreme cases of patients intolerant to other agents. Chloroquine appears unsafe in the hyperbaric environment and should be avoided. More studies are required to include database reviews of returned divers traveling to malaria endemic areas and randomized controlled trials in the hyperbaric environments.

  5. 'Sea legs': sharpened Romberg test after three days on a live-aboard dive boat.

    Science.gov (United States)

    Gibbs, Clinton R; Commons, Katherine H; Brown, Lawrence H; Blake, Denise F

    2010-12-01

    The sharpened Romberg test (SRT) is commonly used by diving and hyperbaric physicians as an indicator of neurological decompression illness (DCI). People who spend a prolonged time on a boat at sea experience impairment in their balance on returning to shore, a condition known as mal de debarquement ('sea legs'). This conditioning of the vestibular system to the rocking motion of a boat at sea may impact on the utility of the SRT in assessing a diver with potential DCI after a live-aboard dive trip. To assess the impact 'sea legs' has on the SRT after three days on a live-aboard dive trip. Thirty-nine staff and passengers of a three-day, live-aboard dive trip performed a SRT before and after their journey, with assessment of potential variables, including middle ear barotrauma, alcohol consumption, sea-sickness and occult DCI. There was no statistically significant impact on SRT performance, with 100% completion pre-trip and 35 out of 36 divers (97.2%) post-trip. There were trends towards more attempts being required and time needed for successful SRT post-trip, but these were not statistically significant. There was a small, but noteworthy incidence of middle-ear barotrauma, with seven people affected pre-trip, and 13 post-trip. There was a higher incidence in student divers. Middle-ear barotrauma did not appear to have a direct impact on SRT performance. There was no significant impact on SRT performance resulting from 'sea legs' after three days at sea. Recreational divers, especially dive students, have a substantial incidence of mild middle ear barotrauma.

  6. Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus.

    Directory of Open Access Journals (Sweden)

    Benjamin Ponitz

    Full Text Available This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon's body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred.

  7. Diving of great shearwaters (Puffinus gravis in cold and warm water regions of the South Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Robert A Ronconi

    Full Text Available BACKGROUND: Among the most widespread seabirds in the world, shearwaters of the genus Puffinus are also some of the deepest diving members of the Procellariiformes. Maximum diving depths are known for several Puffinus species, but dive depths or diving behaviour have never been recorded for great shearwaters (P. gravis, the largest member of this genus. This study reports the first high sampling rate (2 s of depth and diving behaviour for Puffinus shearwaters. METHODOLOGY/PRINCIPAL FINDINGS: Time-depth recorders (TDRs were deployed on two female great shearwaters nesting on Inaccessible Island in the South Atlantic Ocean, recording 10 consecutive days of diving activity. Remote sensing imagery and movement patterns of 8 males tracked by satellite telemetry over the same period were used to identify probable foraging areas used by TDR-equipped females. The deepest and longest dive was to 18.9 m and lasted 40 s, but most (>50% dives were <2 m deep. Diving was most frequent near dawn and dusk, with <0.5% of dives occurring at night. The two individuals foraged in contrasting oceanographic conditions, one in cold (8 to 10°C water of the Sub-Antarctic Front, likely 1000 km south of the breeding colony, and the other in warmer (10 to 16°C water of the Sub-tropical Frontal Zone, at the same latitude as the colony, possibly on the Patagonian Shelf, 4000 km away. The cold water bird spent fewer days commuting, conducted four times as many dives as the warm water bird, dived deeper on average, and had a greater proportion of bottom time during dives. CONCLUSIONS/SIGNIFICANCE: General patterns of diving activity were consistent with those of other shearwaters foraging in cold and warm water habitats. Great shearwaters are likely adapted to forage in a wide range of oceanographic conditions, foraging mostly with shallow dives but capable of deep diving.

  8. Presence and select determinants of organophosphate flame retardants in public swimming pools

    International Nuclear Information System (INIS)

    Teo, Tiffany L.L.; Coleman, Heather M.; Khan, Stuart J.

    2016-01-01

    The occurrence of five organophosphate flame retardants (PFRs) consisting of tributyl phosphate (TNBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1.3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) in swimming pools were investigated. Fifteen chlorinated public swimming pools were sampled, including indoor pools, outdoor pools and spa pools. The analyses were carried out using isotope dilution gas chromatography tandem mass spectrometry. All five PFRs were detected in swimming pool waters with concentrations ranging from 5–27 ng/L (TNBP), 7–293 ng/L (TCEP), 62–1180 ng/L (TCIPP), 10–670 ng/L (TDCIPP) and 8–132 ng/L (TPHP). The concentrations of PFRs were generally higher in indoor swimming pools compared to outdoor swimming pools. In municipal water supplies, used to fill the swimming pools in three of the sampling locations, the five PFRs were all below the limit of quantifications, eliminating this as the source. Potential leaching of PFRs from commonly used swimming equipment, including newly purchased kickboards and swimsuits was investigated. These experiments revealed that PFRs leached from swimsuits, and may be a source of PFRs in swimming pools. A quantitative risk assessment revealed that the health risk to PFRs via swimming pools was generally low and below commonly applied health risk benchmarks. - Highlights: • TNBP, TCEP, TCIPP, TDCIPP and TPHP were detected in chlorinated swimming pools. • PFRs were below the LOQ in fill water samples collected from 3 locations. • TCIPP was observed to have the highest concentrations in swimming pools. • PFRs are leaching from swimsuits and may be a source in swimming pools. • Health risks through oral and dermal exposure to PFRs in swimming pools were low.

  9. Presence and select determinants of organophosphate flame retardants in public swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Teo, Tiffany L.L., E-mail: tiffany.teo@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington NSW 2052 (Australia); Coleman, Heather M., E-mail: h.coleman@ulster.ac.uk [Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Jordanstown, County Antrim BT37 0QB, Northern Ireland (United Kingdom); Khan, Stuart J., E-mail: s.khan@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Kensington NSW 2052 (Australia)

    2016-11-01

    The occurrence of five organophosphate flame retardants (PFRs) consisting of tributyl phosphate (TNBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1.3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) in swimming pools were investigated. Fifteen chlorinated public swimming pools were sampled, including indoor pools, outdoor pools and spa pools. The analyses were carried out using isotope dilution gas chromatography tandem mass spectrometry. All five PFRs were detected in swimming pool waters with concentrations ranging from 5–27 ng/L (TNBP), 7–293 ng/L (TCEP), 62–1180 ng/L (TCIPP), 10–670 ng/L (TDCIPP) and 8–132 ng/L (TPHP). The concentrations of PFRs were generally higher in indoor swimming pools compared to outdoor swimming pools. In municipal water supplies, used to fill the swimming pools in three of the sampling locations, the five PFRs were all below the limit of quantifications, eliminating this as the source. Potential leaching of PFRs from commonly used swimming equipment, including newly purchased kickboards and swimsuits was investigated. These experiments revealed that PFRs leached from swimsuits, and may be a source of PFRs in swimming pools. A quantitative risk assessment revealed that the health risk to PFRs via swimming pools was generally low and below commonly applied health risk benchmarks. - Highlights: • TNBP, TCEP, TCIPP, TDCIPP and TPHP were detected in chlorinated swimming pools. • PFRs were below the LOQ in fill water samples collected from 3 locations. • TCIPP was observed to have the highest concentrations in swimming pools. • PFRs are leaching from swimsuits and may be a source in swimming pools. • Health risks through oral and dermal exposure to PFRs in swimming pools were low.

  10. Swimming level classification of young school age children and their success in a long distance swimming test

    OpenAIRE

    Nováková, Martina

    2010-01-01

    Title: Swimming level classification of young school age children and their success in a long distance swimming test Work objectives: The outcome of our work is comparison and evaluation of the initial and final swimming lenght in a test of long distance swimming. This test is taken during one swimming course. Methodology: Data which were obtained by testing a certain group of people and were statistically processed, showed the swimming level and performance of the young school age children. ...

  11. Swimming ability and physiological response to swimming fatigue in ...

    African Journals Online (AJOL)

    The swimming endurance of kuruma shrimp, Marsupenaeus japonicus (11.04 ± 2.43 g) at five swimming speeds (23.0, 26.7, 31.0, 34.6 and 38.6 cm s-1) was determined in a circulating flume at 25.7 ± 0.7°C. The plasma glucose and total protein, hepatopancreas and pleopods muscle glycogen concentrations were ...

  12. Laryngoscopy during swimming

    DEFF Research Database (Denmark)

    Walsted, Emil S; Swanton, Laura L; van van Someren, Ken

    2017-01-01

    that precipitates their symptoms. This report provides the first description of the feasibility of performing continuous laryngoscopy during exercise in a swimming environment. The report describes the methodology and safety of the use of continuous laryngoscopy while swimming. Laryngoscope, 2017....

  13. Tourism in Antarctica : Increasing Diversity and the Legal Criteria for Authorisation

    NARCIS (Netherlands)

    Bastmeijer, C.J.

    2003-01-01

    Both the intensity and the diversity of tourist activities in Antarctica are increasing. Activities conducted in the Antarctic today include ski-expeditions, mountain climbing, marathons, long-distance swimming and scuba diving. In this article the question is discussed whether the Protocol on

  14. Desmopression Prevents Immersion Diuresis and Improves Physical Performance After Long Duration Dives

    National Research Council Canada - National Science Library

    Nyquist, P. A; Schrot, J; Thomas, J. R; Hyde, D; Taylor, W. R

    2005-01-01

    .... Before the experimental dive, subjects received 40 microg of Desmopressin intranasally. Before and after each dive blood samples were taken, performance assessments were performed, and urine, electrolyte and hematologic values were determined...

  15. A Simple Probabilistic Model for Estimating the Risk of Standard Air Dives

    National Research Council Canada - National Science Library

    Van Liew, H. D; Flynn, E. T

    2004-01-01

    ...) to be estimated in air dives. Using logistic regression, we focus on the total times spent at decompression stops For calibration data, we use carefully controlled experimental dives recorded in the U.S...

  16. Factors influencing termination of swimming career of children at sport swimming classes

    OpenAIRE

    Pištěková, Petra

    2007-01-01

    Title: The Cause ofan Early End ofPupils' Swimming Career The aim of the thesis: Determination ofthe most frequent reasons for an early end ofpupils' swimming career. Method: The reasons for an early end ofpupils' swimming career were discovered by using questionnaires. Forty-five former pupils from special sports elementary schools were questioned and then the data were compared with available literature. Results: Research investigated changes in the most frequent reasons for an early end of...

  17. Lung function after cold-water dives with a standard scuba regulator or full-face-mask during wintertime.

    Science.gov (United States)

    Uhlig, Florian; Muth, Claus-Martin; Tetzlaff, Kay; Koch, Andreas; Leberle, Richard; Georgieff, Michael; Winkler, Bernd E

    2014-06-01

    Full-face-masks (FFM) prevent the diver's face from cold and can support nasal breathing underwater. The aim of the study was to evaluate the effect of the use of FFMs on lung function and wellbeing. Twenty-one, healthy, non-asthmatic divers performed two cold-water dives (4⁰C, 25 min, 10 metres' depth) - one with a FFM and the other with a standard scuba regulator (SSR). Spirometry was performed before and after each dive and well-being and cold sensation were assessed after the dives. Significant decreases in forced vital capacity (FVC), forced expiratory volume in one second (FEV₁) and midexpiratory flow at 75% of FVC (MEF₇₅) occurred after both FFM and SSR dives. Changes in FVC and FEV₁ did not differ significantly between FFM and SSR dives. However, the mid-expiratory flows measured at 50% and 25% of FVC (MEF₅₀ and MEF₂₅) were significantly lower 10 minutes after the FFM dive compared to 10 minutes after the SSR dive. The wellbeing and cold sensation of the divers were significantly improved with FFM dives compared to SSR dives. Cold-water dives during wintertime can be associated with airway narrowing. During cold-water dives, the use of a FFM appears to reduce the cold sensation and enhance the well-being of the divers. However, a FFM does not appear to prevent airway narrowing in healthy, non-asthmatic subjects.

  18. Can foraging ecology drive the evolution of body size in a diving endotherm?

    Directory of Open Access Journals (Sweden)

    Timothée R Cook

    Full Text Available Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.

  19. Fish Swimming and Bird/Insect Flight

    Science.gov (United States)

    Wu, Theodore Yaotsu

    2011-01-01

    This expository review is devoted to fish swimming and bird/insect flight. (a) The simple waving motion of an elongated flexible ribbon plate of constant width propagating a wave distally down the plate to swim forward in a fluid, initially at rest, is first considered to provide a fundamental concept on energy conservation. It is generalized to include variations in body width and thickness, with appended dorsal, ventral and caudal fins shedding vortices to closely simulate fish swimming, for which a nonlinear theory is presented for large-amplitude propulsion. (b) For bird flight, the pioneering studies on oscillatory rigid wings are discussed with delineating a fully nonlinear unsteady theory for a two-dimensional flexible wing with arbitrary variations in shape and trajectory to provide a comparative study with experiments. (c) For insect flight, recent advances are reviewed by items on aerodynamic theory and modeling, computational methods, and experiments, for forward and hovering flights with producing leading-edge vortex to yield unsteady high lift. (d) Prospects are explored on extracting prevailing intrinsic flow energy by fish and bird to enhance thrust for propulsion. (e) The mechanical and biological principles are drawn together for unified studies on the energetics in deriving metabolic power for animal locomotion, leading to the surprising discovery that the hydrodynamic viscous drag on swimming fish is largely associated with laminar boundary layers, thus drawing valid and sound evidences for a resounding resolution to the long-standing fish-swim paradox proclaimed by Gray (1936, 1968 ).

  20. Paramecia swimming in viscous flow

    Science.gov (United States)

    Zhang, P.; Jana, S.; Giarra, M.; Vlachos, P. P.; Jung, S.

    2015-12-01

    Ciliates like Paramecia exhibit fore-aft asymmetry in their body shapes, and preferentially swim in the direction of the slender anterior rather than the wider posterior. However, the physical reasons for this preference are not well understood. In this work, we propose that specific features of the fluid flow around swimming Paramecia confer some energetic advantage to the preferred swimming direction. Therefore, we seek to understand the effects of body asymmetry and swimming direction on the efficiency of swimming and the flux of fluid into the cilia layer (and thus of food into the oral groove), which we assumed to be primary factors in the energy budgets of these organisms. To this end, we combined numerical techniques (the boundary element method) and laboratory experiments (micro particle image velocimetry) to develop a quantitative model of the flow around a Paramecium and investigate the effect of the body shape on the velocity fields, as well as on the swimming and feeding behaviors. Both simulation and experimental results show that velocity fields exhibit fore-aft asymmetry. Moreover, the shape asymmetry revealed an increase of the fluid flux into the cilia layer compared to symmetric body shapes. Under the assumption that cilia fluid intake and feeding efficiency are primary factors in the energy budgets of Paramecia, our model predicts that the anterior swimming direction is energetically favorable to the posterior swimming direction.

  1. Swimming activity in marine fish.

    Science.gov (United States)

    Wardle, C S

    1985-01-01

    Marine fish are capable of swimming long distances in annual migrations; they are also capable of high-speed dashes of short duration, and they can occupy small home territories for long periods with little activity. There is a large effect of fish size on the distance fish migrate at slow swimming speeds. When chased by a fishing trawl the effect of fish size on swimming performance can decide their fate. The identity and thickness of muscle used at each speed and evidence for the timing of myotomes used during the body movement cycle can be detected using electromyogram (EMG) electrodes. The cross-sectional area of muscle needed to maintain different swimming speeds can be predicted by relating the swimming drag force to the muscle force. At maximum swimming speed one completed cycle of swimming force is derived in sequence from the whole cross-sectional area of the muscles along the two sides of the fish. This and other aspects of the swimming cycle suggest that each myotome might be responsible for generating forces involved in particular stages of the tail sweep. The thick myotomes at the head end shorten during the peak thrust of the tail blade whereas the thinner myotomes nearer the tail generate stiffness appropriate for transmission of these forces and reposition the tail for the next cycle.

  2. Diving physiology of seabirds and marine mammals: Relevance, challenges and some solutions for field studies.

    Science.gov (United States)

    Andrews, Russel D; Enstipp, Manfred R

    2016-12-01

    To fully understand how diving seabirds and marine mammals balance the potentially conflicting demands of holding their breath while living their lives underwater (and maintaining physiological homeostasis during exercise, feeding, growth, and reproduction), physiological studies must be conducted with animals in their natural environments. The purpose of this article is to review the importance of making physiological measurements on diving animals in field settings, while acknowledging the challenges and highlighting some solutions. The most extreme divers are great candidates for study, especially in a comparative and mechanistic context. However, physiological data are also required of a wide range of species for problems relating to other disciplines, in particular ecology and conservation biology. Physiological data help with understanding and predicting the outcomes of environmental change, and the direct impacts of anthropogenic activities. Methodological approaches that have facilitated the development of field-based diving physiology include the isolated diving hole protocol and the translocation paradigm, and while there are many techniques for remote observation, animal-borne biotelemetry, or "biologging", has been critical. We discuss issues related to the attachment of instruments, the retrieval of data and sensing of physiological variables, while also considering negative impacts of tagging. This is illustrated with examples from a variety of species, and an in-depth look at one of the best studied and most extreme divers, the emperor penguin (Aptenodytes forsteri). With a variety of approaches and high demand for data on the physiology of diving seabirds and marine mammals, the future of field studies is bright. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Pre-task music improves swimming performance.

    Science.gov (United States)

    Smirmaul, B P; Dos Santos, R V; Da Silva Neto, L V

    2015-12-01

    The purpose of this study was to investigate the effects of pre-task music on swimming performance and other psychological variables. A randomized counterbalanced within-subjects (experimental and control condition) design was employed. Eighteen regional level male swimmers performed two 200-m freestyle swimming time trials. Participants were exposed to either 5 minutes of self-selected music (pre-task music condition) or 5 minutes of silence (control condition) and, after 1 minute, performed the swimming task. Swimming time was significantly shorter (-1.44%) in the pre-task music condition. Listening to pre-task music increased motivation to perform the swimming task, while arousal remained unchanged. While fatigue increased after the swimming task in both conditions, vigor, ratings of perceived exertion and affective valence were unaltered. It is concluded, for the first time, that pre-task music improves swimming performance.

  4. Diving the wreck: risk and injury in sport scuba diving.

    Science.gov (United States)

    Hunt, J C

    1996-07-01

    This paper utilizes psychoanalytic theory to examine risk and injury in the case of a male deep sea diver. It examines the unconscious conflicts which appeared to fuel the diver's involvement in deep diving and to lead to a near fatal incident of decompression sickness. Particular attention is paid to the role of the diver's father in the evolution of the preoedipal and oedipal fantasies and conflicts which appear to be linked to the injury. The research is based on interviews with and fieldwork among recreational and deep divers.

  5. Disinfection by-product formation of UV treated swimming pool water

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2015-01-01

    Water samples from 3 indoor swimming pool facilities were tested to evaluate UV-induced effects on swimming pool water chemistry. Concentration change of several DBPs was investigated in experiments including medium pressure UV treatment with and without chlorine and post-UV chlorination. Post-UV...

  6. A Review of SCUBA Diving Impacts and Implication for Coral Reefs Conservation and Tourism Management

    Directory of Open Access Journals (Sweden)

    Zainal Abidin Siti Zulaiha

    2014-01-01

    Full Text Available Dive tourism has become important in term of magnitude and significantly contributes to regional economies. Nevertheless, in the absence of proper controls and enforcement, unplanned tourism growth has caused environmental degradation which undermines the long-term sustainability of the tourism industry. The purpose of this paper is to explore factors that contribute to the SCUBA diving impacts on coral and fish communities. This paper explains the causes of a certain event, validating the problem of impacts, defining the core issues and identifies possible causes leading to an effect. The phenomenon of diving impacts on coral reefs is a result of intensive use of dive site over the long-term. The divers can reduce their impacts towards coral reefs through responsible diving behaviors. The causes of cumulative diver’s contacts are more complicated than it seems. In response, this paper proposes the best mitigation strategies that need to be considered for future dive tourism management.

  7. Diving behavior of the Atlantic walrus in high Arctic Greenland and Canada

    DEFF Research Database (Denmark)

    Garde, Eva; Jung-Madsen, Signe; Ditlevsen, Susanne

    2018-01-01

    Investigations of diving behavior of the Atlantic walrus (Odobenus rosmarus rosmarus) in the high Arctic Greenland and Canada are important for understanding behavioral adaptations and area utilization of this Arctic benthic feeder. Furthermore, such information along with estimations of annual......% CI: 1.0–2.6). Based on dive rates, time at depth, haul-out and percentage of feeding dives Alexandra Fjord and Princess Mary Bay in NE Canada and Carey Island in NW Greenland were identified as the most important areas for walrus feeding during summer. Walrus predation on the standing bivalve biomass...

  8. 21 CFR 1250.89 - Swimming pools.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Swimming pools. 1250.89 Section 1250.89 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.89 Swimming pools. (a) Fill and draw swimming pools shall not be installed or used. (b) Swimming pools of the recirculation type shall be...

  9. Oxygen Toxicity and Special Operations Forces Diving: Hidden and Dangerous

    Directory of Open Access Journals (Sweden)

    Thijs T. Wingelaar

    2017-07-01

    Full Text Available In Special Operations Forces (SOF closed-circuit rebreathers with 100% oxygen are commonly utilized for covert diving operations. Exposure to high partial pressures of oxygen (PO2 could cause damage to the central nervous system (CNS and pulmonary system. Longer exposure time and higher PO2 leads to faster development of more serious pathology. Exposure to a PO2 above 1.4 ATA can cause CNS toxicity, leading to a wide range of neurologic complaints including convulsions. Pulmonary oxygen toxicity develops over time when exposed to a PO2 above 0.5 ATA and can lead to inflammation and fibrosis of lung tissue. Oxygen can also be toxic for the ocular system and may have systemic effects on the inflammatory system. Moreover, some of the effects of oxygen toxicity are irreversible. This paper describes the pathophysiology, epidemiology, signs and symptoms, risk factors and prediction models of oxygen toxicity, and their limitations on SOF diving.

  10. Diving response after a one-week diet and overnight fasting.

    Science.gov (United States)

    Ghiani, Giovanna; Marongiu, Elisabetta; Olla, Sergio; Pinna, Marco; Pusceddu, Matteo; Palazzolo, Girolamo; Sanna, Irene; Roberto, Silvana; Crisafulli, Antonio; Tocco, Filippo

    2016-01-01

    We hypothesized that overnight fasting after a short dietary period, especially with carbohydrates, could allow performing breath-hold diving with no restraint for diaphragm excursion and blood shift and without any increase of metabolism, and in turn improve the diving response. During two separate sessions, 8 divers carried out two trials: (A) a 30-m depth dive, three hours after a normal breakfast and (B) a dive to the same depth, but after following a diet and fasting overnight. Each test consisted of 3 apnea phases: descent, static and ascent whose durations were measured by a standard chronometer. An impedance cardiograph, housed in an underwater torch, provided data on trans-thoracic fluid index (TFI), stroke volume (SV), heart rate (HR) and cardiac output (CO). Mean blood pressure (MBP), arterial O2 saturation (SaO2), blood glucose (Glu) and blood lactate (BLa) were also collected. In condition B, duration of the static phase of the dive was longer than A (37.8 ± 7.4 vs. 27.3 ± 8.4 s respectively, P fasting was lower than breakfast one (-2.6 ± 5.1 vs. 5.7 ± 7.6 ml, P fasting was lower than the same phase after breakfast (-0.4 ± 0.5 vs. 0.4 ± 0.5 L · min(-1) respectively, P fasting, SaO2 was higher than A (92.0 ± 2.7 vs. 89.4 ± 2.9 % respectively, P health.

  11. [Swimming, physical activity and health: a historical perspective].

    Science.gov (United States)

    Conti, A A

    2015-01-01

    Swimming, which is the coordinated and harmonic movement of the human body inside a liquid medium by means of the combined action of the superior and inferior limbs, is a physical activity which is diffused throughout the whole world and it is practiced by healthy and non-healthy subjects. Swimming is one of the physical activities with less contraindications and, with limited exceptions, can be suggested to individuals of both sexes and of every age range, including the most advanced. Swimming requires energy both for the floating process and for the anterograde progression, with a different and variable osteo-arthro-muscular involvement according to the different styles. The energetic requirement is about four times that for running, with an overall efficiency inferior to 10%; the energetic cost of swimming in the female subject is approximately two thirds of that in the male subject. The moderate aerobic training typical of swimming is useful for diabetic and hypertensive individuals, for people with painful conditions of rachis, as also for obese and orthopaedic patients. Motor activity inside the water reduces the risk of muscular-tendinous lesions and, without loading the joints in excess, requires the harmonic activation of the whole human musculature. Swimming is an activity requiring multiple abilities, ranging from a sense of equilibrium to that of rhythm, from reaction speed to velocity, from joint mobility to resistance. The structured interest for swimming in the perspective of human health from the beginning of civilization, as described in this contribution, underlines the relevance attributed to this activity in the course of human history.

  12. Parasympathetic preganglionic cardiac motoneurons labeled after voluntary diving

    Directory of Open Access Journals (Sweden)

    W Michael ePanneton

    2014-01-01

    Full Text Available A dramatic bradycardia is induced by underwater submersion in vertebrates. The location of parasympathetic preganglionic cardiac motor neurons driving this aspect of the diving response was investigated using cFos immunohistochemistry combined with retrograde transport of cholera toxin subunit B (CTB to double-label neurons. After pericardial injections of CTB, trained rats voluntarily dove underwater, and their heart rates dropped immediately to 95±2bpm, an 80% reduction. After immunohistochemical processing, the vast majority of CTB labeled neurons were located in the reticular formation from the rostral cervical spinal cord to the facial motor nucleus, confirming previous studies. Labeled neurons caudal to the rostral ventrolateral medulla were usually spindle-shaped aligned along an oblique line running from the dorsal vagal nucleus to the ventrolateral reticular formation, while those more rostrally were multipolar with extended dendrites. Nine percent of retrogradely-labeled neurons were positive for both cFos and CTB after diving and 74% of these were found rostral to the obex. CTB also was transported transganglionically in primary afferent fibers, resulting in large granular deposits in dorsolateral, ventrolateral, and commissural subnuclei of the nucleus tractus solitarii and finer deposits in lamina I and IV-V of the trigeminocervical complex. The overlap of parasympathetic preganglionic cardiac motor neurons activated by diving with those activated by baro- and chemoreceptors in the rostral ventrolateral medulla is discussed. Thus the profound bradycardia seen with underwater submersion reinforces the notion that the mammalian diving response is the most powerful autonomic reflex known.

  13. 36 CFR 331.10 - Swimming.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Swimming. 331.10 Section 331.10 Parks, Forests, and Public Property CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY REGULATIONS..., KENTUCKY AND INDIANA § 331.10 Swimming. Swimming is prohibited unless authorized in writing by the District...

  14. Locomotor activity during the frenzy swim: analysing early swimming behaviour in hatchling sea turtles.

    Science.gov (United States)

    Pereira, Carla M; Booth, David T; Limpus, Colin J

    2011-12-01

    Swimming effort of hatchling sea turtles varies across species. In this study we analysed how swim thrust is produced in terms of power stroke rate, mean maximum thrust per power stroke and percentage of time spent power stroking throughout the first 18 h of swimming after entering the water, in both loggerhead and flatback turtle hatchlings and compared this with previous data from green turtle hatchlings. Loggerhead and green turtle hatchlings had similar power stroke rates and percentage of time spent power stroking throughout the trial, although mean maximum thrust was always significantly higher in green hatchlings, making them the most vigorous swimmers in our three-species comparison. Flatback hatchlings, however, were different from the other two species, with overall lower values in all three swimming variables. Their swimming effort dropped significantly during the first 2 h and kept decreasing significantly until the end of the trial at 18 h. These results support the hypothesis that ecological factors mould the swimming behaviour of hatchling sea turtles, with predator pressure being important in determining the strategy used to swim offshore. Loggerhead and green turtle hatchlings seem to adopt an intensely vigorous and energetically costly frenzy swim that would quickly take them offshore into the open ocean in order to reduce their exposure to near-shore aquatic predators. Flatback hatchlings, however, are restricted in geographic distribution and remain within the continental shelf region where predator pressure is probably relatively constant. For this reason, flatback hatchlings might use only part of their energy reserves during a less vigorous frenzy phase, with lower overall energy expenditure during the first day compared with loggerhead and green turtle hatchlings.

  15. Research on Relative Age in Hungarian Swimming

    Directory of Open Access Journals (Sweden)

    Nagy Nikoletta

    2015-12-01

    Full Text Available In 2017, the 19th World Swimming Championship will be organized in Hungary. Up to now, many people have already been working with swimmers to achieve good results. However, in the next period they must work even harder to ensure that the national swimmers of a country as small as Hungary can achieve the outstanding results of their predecessors. Since high-level competitions in swimming have become more intense, innovations including scientific studies are needed during preparation for the event. The purpose of this paper is to present the major results of an independent study carried out by the authors about the relative age of the best Hungarian swimmers with the aim of contributing to their preparation. The research population consisted of selected age groups of swimmers registered by the Hungarian Swimming Association (N=400. The method for data collection was an analysis of documents. To evaluate the data, the Chi-square and Kruskal-Wallis tests were used. The results are presented according to the period of the competitor’s date of birth, gender, and age group. The results confirm only partly the hypothesis that people born in the first quarters of the year play a dominant role in Hungarian national swimming teams. In the conclusion, the authors recommend further research on relative age in swimming and in other sports.

  16. Pacing in Swimming: A Systematic Review.

    Science.gov (United States)

    McGibbon, Katie E; Pyne, D B; Shephard, M E; Thompson, K G

    2018-03-20

    Pacing strategy, or how energy is distributed during exercise, can substantially impact athletic performance and is considered crucial for optimal performance in many sports. This is particularly true in swimming given the highly resistive properties of water and low mechanical efficiency of the swimming action. The aim of this systematic review was to determine the pacing strategies utilised by competitive swimmers in competition and their reproducibility, and to examine the impact of different pacing strategies on kinematic, metabolic and performance variables. This will provide valuable and practical information to coaches and sports science practitioners. The databases Web of Science, Scopus, SPORTDiscus and PubMed were searched for published articles up to 1 August 2017. A total of 23 studies examining pool-based swimming competitions or experimental trials in English-language and peer-reviewed journals were included in this review. In short- and middle-distance swimming events maintenance of swimming velocity is critical, whereas in long-distance events a low lap-to-lap variability and the ability to produce an end spurt in the final lap(s) are key. The most effective strategy in the individual medley (IM) is to conserve energy during the butterfly leg to optimise performance in subsequent legs. The pacing profiles of senior swimmers remain relatively stable irrespective of opponents, competition stage or type, and performance time. Implementing event-specific pacing strategies should benefit the performance of competitive swimmers. Given differences between swimmers, there is a need for greater individualisation when considering pacing strategy selection across distances and strokes.

  17. Scientific Diving Training Course. Red Sea & Gulf of Aden Programme (PERSGA).

    Science.gov (United States)

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents the scientific diving training course organized by the Arab League Educational, Cultural and Scientific Organization (ALECSO) for the Program for Environmental Studies, Red Sea and Gulf of Aden (PERSGA). This course of six weeks duration aims to produce a person who is capable of carrying out scientific diving tasks in the…

  18. The key kinematic determinants of undulatory underwater swimming at maximal velocity.

    Science.gov (United States)

    Connaboy, Chris; Naemi, Roozbeh; Brown, Susan; Psycharakis, Stelios; McCabe, Carla; Coleman, Simon; Sanders, Ross

    2016-01-01

    The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.

  19. Hydrodynamic advantages of swimming by salp chains.

    Science.gov (United States)

    Sutherland, Kelly R; Weihs, Daniel

    2017-08-01

    Salps are marine invertebrates comprising multiple jet-propelled swimming units during a colonial life-cycle stage. Using theory, we show that asynchronous swimming with multiple pulsed jets yields substantial hydrodynamic benefit due to the production of steady swimming velocities, which limit drag. Laboratory comparisons of swimming kinematics of aggregate salps ( Salpa fusiformis and Weelia cylindrica ) using high-speed video supported that asynchronous swimming by aggregates results in a smoother velocity profile and showed that this smoother velocity profile is the result of uncoordinated, asynchronous swimming by individual zooids. In situ flow visualizations of W. cylindrica swimming wakes revealed that another consequence of asynchronous swimming is that fluid interactions between jet wakes are minimized. Although the advantages of multi-jet propulsion have been mentioned elsewhere, this is the first time that the theory has been quantified and the role of asynchronous swimming verified using experimental data from the laboratory and the field. © 2017 The Author(s).

  20. Ascorbic acid supplementation diminishes microparticle elevations and neutrophil activation following SCUBA diving.

    Science.gov (United States)

    Yang, Ming; Barak, Otto F; Dujic, Zeljko; Madden, Dennis; Bhopale, Veena M; Bhullar, Jasjeet; Thom, Stephen R

    2015-08-15

    Predicated on evidence that diving-related microparticle generation is an oxidative stress response, this study investigated the role that oxygen plays in augmenting production of annexin V-positive microparticles associated with open-water SCUBA diving and whether elevations can be abrogated by ascorbic acid. Following a cross-over study design, 14 male subjects ingested placebo and 2-3 wk later ascorbic acid (2 g) daily for 6 days prior to performing either a 47-min dive to 18 m of sea water while breathing air (∼222 kPa N2/59 kPa O2) or breathing a mixture of 60% O2/balance N2 from a tight-fitting face mask at atmospheric pressure for 47 min (∼40 kPa N2/59 kPa O2). Within 30 min after the 18-m dive in the placebo group, neutrophil activation, and platelet-neutrophil interactions occurred, and the total number of microparticles, as well as subgroups bearing CD66b, CD41, CD31, CD142 proteins or nitrotyrosine, increased approximately twofold. No significant elevations occurred among divers after ingesting ascorbic acid, nor were elevations identified in either group after breathing 60% O2. Ascorbic acid had no significant effect on post-dive intravascular bubble production quantified by transthoracic echocardiography. We conclude that high-pressure nitrogen plays a key role in neutrophil and microparticle-associated changes with diving and that responses can be abrogated by dietary ascorbic acid supplementation. Copyright © 2015 the American Physiological Society.

  1. Cerebral magnetic resonance imaging of compressed air divers in diving accidents.

    Science.gov (United States)

    Gao, G K; Wu, D; Yang, Y; Yu, T; Xue, J; Wang, X; Jiang, Y P

    2009-01-01

    To investigate the characteristics of the cerebral magnetic resonance imaging (MRI) of compressed air divers in diving accidents, we conducted an observational case series study. MRI of brain were examined and analysed on seven cases compressed air divers complicated with cerebral arterial gas embolism CAGE. There were some characteristics of cerebral injury: (1) Multiple lesions; (2) larger size; (3) Susceptible to parietal and frontal lobe; (4) Both cortical grey matter and subcortical white matter can be affected; (5) Cerebellum is also the target of air embolism. The MRI of brain is an sensitive method for detecting cerebral lesions in compressed air divers in diving accidents. The MRI should be finished on divers in diving accidents within 5 days.

  2. Swimming pool cleaner poisoning

    Science.gov (United States)

    Swimming pool cleaner poisoning occurs when someone swallows this type of cleaner, touches it, or breathes in ... The harmful substances in swimming pool cleaner are: Bromine ... copper Chlorine Soda ash Sodium bicarbonate Various mild acids

  3. A Correlational Analysis of Tethered Swimming, Swim Sprint Performance and Dry-land Power Assessments.

    Science.gov (United States)

    Loturco, I; Barbosa, A C; Nocentini, R K; Pereira, L A; Kobal, R; Kitamura, K; Abad, C C C; Figueiredo, P; Nakamura, F Y

    2016-03-01

    Swimmers are often tested on both dry-land and in swimming exercises. The aim of this study was to test the relationships between dry-land, tethered force-time curve parameters and swimming performances in distances up to 200 m. 10 young male high-level swimmers were assessed using the maximal isometric bench-press and quarter-squat, mean propulsive power in jump-squat, squat and countermovement jumps (dry-land assessments), peak force, average force, rate of force development (RFD) and impulse (tethered swimming) and swimming times. Pearson product-moment correlations were calculated among the variables. Peak force and average force were very largely correlated with the 50- and 100-m swimming performances (r=- 0.82 and -0.74, respectively). Average force was very-largely/largely correlated with the 50- and 100-m performances (r=- 0.85 and -0.67, respectively). RFD and impulse were very-largely correlated with the 50-m time (r=- 0.72 and -0.76, respectively). Tethered swimming parameters were largely correlated (r=0.65 to 0.72) with mean propulsive power in jump-squat, squat-jump and countermovement jumps. Finally, mean propulsive power in jump-squat was largely correlated (r=- 0.70) with 50-m performance. Due to the significant correlations between dry-land assessments and tethered/actual swimming, coaches are encouraged to implement strategies able to increase leg power in sprint swimmers. © Georg Thieme Verlag KG Stuttgart · New York.

  4. The potential for dive tourism led entrepreneurial marine protected areas in Curacao

    NARCIS (Netherlands)

    Groot, de J.; Bush, S.R.

    2010-01-01

    Despite the successful establishment of marine protected areas in the Netherlands Antilles, such as Saba and Bonaire, government-led protection of the reefs surrounding Curacao has repeatedly failed. In the absence of effective state regulation, dive operations have taken de facto control over dive

  5. Healthy Swimming/Recreational Water

    Science.gov (United States)

    ... Medical Professionals En Español Publications, Data, & Statistics Healthy Swimming Resources Health Promotion Materials Find Your State Training & ... Announcements Outbreak Response Toolkits CDC at Work: Healthy Swimming Fast Facts Index of Water-Related Topics Model ...

  6. The death of buddy diving?

    Science.gov (United States)

    Cooper, P David

    2011-12-01

    Dear Editor, By focussing on the details of the Watson case, I believe Bryan Walpole has missed the thrust of my earlier letter. I agree this was a complex case, which is why I deliberately avoided the murky specifics in order to consider the 'big-picture' ramifications of the judgement. My concerns relate to the potential consequences of the unintended interplay between unrelated developments in the medical and legal arenas. Taken together, I believe these developments threaten the very institution of buddy diving. I have been unable to verify Dr Walpole's claim that the statute under which Mr Watson was convicted has not been used previously in a criminal trial. I must, however, refute his assertion that this legislation is some sort of idiosyncratic historical hangover or legal curiosity unique to Queensland. Although the original legislation pre-dates Australian federation, this statute has survived intact through 110 years of reviews and amendments to the Queensland Criminal Code. The application of this 19th century law to the Watson case now provides a direct, post-federation, 21st century relevance. Nor is Queensland alone in having such a statute on its books. Section 151 of the Criminal Code Act in Dr Walpole's home state of Tasmania states "When a person undertakes to do any act, the omission to do which is or may be dangerous to human life or health, it is his duty to do that act." Similar statutes can also be found in the legislation of other Australian states and as far afield as New Zealand and Canada. The phrasing of the relevant sections is, in many cases, almost identical to Queensland's, reflecting the common judicial heritage of these places. Even if this ruling's reach extended no further than the Queensland border its ramifications would be immense. Tourism statistics reveal that over 1.2 million visitors perform nearly 3.5 million dives/snorkels in Queensland each year. An estimated 93% of international divers visiting Australia stopover in

  7. Effects of oxygen-enriched air on cognitive performance during SCUBA-diving - an open-water study.

    Science.gov (United States)

    Brebeck, Anne-Kathrin; Deussen, Andreas; Schmitz-Peiffer, Henning; Range, Ursula; Balestra, Costantino; Cleveland, Sinclair; Schipke, Jochen D

    2017-01-01

    Backround: Nitrogen narcosis impairs cognitive function, a fact relevant during SCUBA-diving. Oxygen-enriched air (nitrox) became popular in recreational diving, while evidence of its advantages over air is limited. Compare effects of nitrox28 and air on two psychometric tests. In this prospective, double-blind, open-water study, 108 advanced divers (38 females) were randomized to an air or a nitrox-group for a 60-min dive to 24 m salt water. Breathing gas effects on cognitive performance were assessed during the dive using a short- and long-term memory test and a number connection test. Nitrox28 divers made fewer mistakes only on the long-term memory test (p = 0.038). Female divers remembered more items than male divers (p < 0.001). There were no significant differences in the number connection test between the groups. Likely owing to the comparatively low N 2 reduction and the conservative dive, beneficial nitrox28 effects to diver performance were moderate but could contribute to diving safety.

  8. Beneficial effect of enriched air nitrox on bubble formation during scuba diving. An open-water study.

    Science.gov (United States)

    Brebeck, Anne-Kathrin; Deussen, Andreas; Range, Ursula; Balestra, Costantino; Cleveland, Sinclair; Schipke, Jochen D

    2018-03-01

    Bubble formation during scuba diving might induce decompression sickness. This prospective randomised and double-blind study included 108 advanced recreational divers (38 females). Fifty-four pairs of divers, 1 breathing air and the other breathing nitrox28 undertook a standardised dive (24 ± 1 msw; 62 ± 5min) in the Red Sea. Venous gas bubbles were counted (Doppler) 30-air) vs. 11% (air28®) (n.s.) were bubble-free after a dive. Independent of sampling time and breathing gas, there were more bubbles in the jugular than in the femoral vein. More bubbles were counted in the air-group than in the air28-group (pooled vein: early: 1845 vs. 948; P = 0.047, late: 1817 vs. 953; P = 0.088). The number of bubbles was sex-dependent. Lastly, 29% of female air divers but only 14% of male divers were bubble-free (P = 0.058). Air28® helps to reduce venous gas emboli in recreational divers. The bubble number depended on the breathing gas, sampling site and sex. Thus, both exact reporting the dive and in particular standardising sampling characteristics seem mandatory to compare results from different studies to further investigate the hitherto incoherent relation between inert gas bubbles and DCS.

  9. Ear Problems in Swimmers

    Directory of Open Access Journals (Sweden)

    Mao-Che Wang

    2005-08-01

    Full Text Available Acute diffuse otitis externa (swimmer's ear, otomycosis, exostoses, traumatic eardrum perforation, middle ear infection, and barotraumas of the inner ear are common problems in swimmers and people engaged in aqua activities. The most common ear problem in swimmers is acute diffuse otitis externa, with Pseudomonas aeruginosa being the most common pathogen. The symptoms are itching, otalgia, otorrhea, and conductive hearing loss. The treatment includes frequent cleansing of the ear canal, pain control, oral or topical medications, acidification of the ear canal, and control of predisposing factors. Swimming in polluted waters and ear-canal cleaning with cotton-tip applicators should be avoided. Exostoses are usually seen in people who swim in cold water and present with symptoms of accumulated debris, otorrhea and conductive hearing loss. The treatment for exostoses is transmeatal surgical removal of the tumors. Traumatic eardrum perforations may occur during water skiing or scuba diving and present with symptoms of hearing loss, otalgia, otorrhea, tinnitus and vertigo. Tympanoplasty might be needed if the perforations do not heal spontaneously. Patients with chronic otitis media with active drainage should avoid swimming, while patients who have undergone mastoidectomy and who have no cavity problems may swim. For children with ventilation tubes, surface swimming is safe in a clean, chlorinated swimming pool. Sudden sensorineural hearing loss and some degree of vertigo may occur after diving because of rupture of the round or oval window membrane.

  10. Swimming Performance and Metabolism of Golden Shiners

    Science.gov (United States)

    The swimming ability and metabolism of golden shiners, Notemigonus crysoleucas, was examined using swim tunnel respirometery. The oxygen consumption and tail beat frequencies at various swimming speeds, an estimation of the standard metabolic rate, and the critical swimming speed (Ucrit) was determ...

  11. Ecological carrying capacity assessment of diving site: A case study of Mabul Island, Malaysia.

    Science.gov (United States)

    Zhang, Li-Ye; Chung, Shan-Shan; Qiu, Jian-Wen

    2016-12-01

    Despite considered a non-consumptive use of the marine environment, diving-related activities can cause damages to coral reefs. It is imminent to assess the maximum numbers of divers that can be accommodated by a diving site before it is subject to irreversible deterioration. This study aimed to assess the ecological carrying capacity of a diving site in Mabul Island, Malaysia. Photo-quadrat line transect method was used in the benthic survey. The ecological carrying capacity was assessed based on the relationship between the number of divers and the proportion of diver damaged hard corals in Mabul Island. The results indicated that the proportion of diver damaged hard corals occurred exponentially with increasing use. The ecological carrying capacity of Mabul Island is 15,600-16,800 divers per diving site per year at current levels of diver education and training with a quarterly threshold of 3900-4200 per site. Our calculation shows that management intervention (e.g. limiting diving) is justified at 8-14% of hard coral damage. In addition, the use of coral reef dominated diving sites should be managed according to their sensitivity to diver damage and the depth of the reefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The Curious Question of Exercise-Induced Pulmonary Edema

    Directory of Open Access Journals (Sweden)

    Melissa L. Bates

    2011-01-01

    Full Text Available The question of whether pulmonary edema develops during exercise on land is controversial. Yet, the development of pulmonary edema during swimming and diving is well established. This paper addresses the current controversies that exist in the field of exercise-induced pulmonary edema on land and with water immersion. It also discusses the mechanisms by which pulmonary edema can develop during land exercise, swimming, and diving and the current gaps in knowledge that exist. Finally, this paper discusses how these fields can continue to advance and the areas where clinical knowledge is lacking.

  13. The diving mouthpiece and the conditions of the temporomandibular joints. Preliminary study

    Directory of Open Access Journals (Sweden)

    Walczyńska – Dragon Karolina

    2016-06-01

    Full Text Available The article presents the results of research on the effects of a long-term exposure to non-physiological location of anatomical elements of the masticatory organ in the course of diving. The said exposure is connected with the utilisation of various types of diving mouthpieces.

  14. The neuropsychology of repeated 1- and 3-meter springboard diving among college athletes.

    Science.gov (United States)

    Zillmer, Eric A

    2003-01-01

    This study examined the neuropsychological effects of repeated springboard diving. It was hypothesized that the impact velocity, which can range from 20 to 30 mph, and accompanying deceleration in the water may lead to concussions and affect the diver's cognitive function. Six varsity National Collegiate Athletic Association Division 1 springboard divers participated in the study. Each diver performed a total of 50 practice dives from either the 1- or 3-m springboard. After each set of 10 dives, the participants were immediately evaluated at poolside using the Symbol Digit Modalities Test, the Stroop Color Word Test, and the Trail Making Test B. Baseline testing revealed, consistent with their athletic specialty, clear neurocognitive strengths among the divers on tests sensitive to proprioception, motor speed, and visual-spatial organization. Results from the serial assessments indicated no detectable neuropsychological deficits among competitive divers compared to baseline testing. Skilled diving at the collegiate level appears to be a safe sport and water appears to present the perfect medium for gradual deceleration. More studies, however, are warranted for 5-, 7.5-, and 10-m platform diving since the impact velocity of the diver from these heights is higher.

  15. Swimming literacy field hockey woman player ground.

    OpenAIRE

    Baštová, Miroslava

    2012-01-01

    Title: Swimming literacy field hockey woman player ground. Objectives: To obtain and analyze data on the level ground swimming literacy field hockey woman player. Their perception swimming literacy for life, the use of non-specific regeneration and as a training resource. Methods: Analysis of scientific literature, survey, case study, data analysis and graphical presentation of results. Results of the work: field hockey player as swimming literate, benefits swimming but not used as a means of...

  16. Water Safety (Recreational)

    Science.gov (United States)

    Playing in the water - whether swimming, boating or diving - can be fun. It can also be dangerous, especially for children. Being safe can ... injuries and drowning. To stay safe in the water Avoid alcohol when swimming or boating Wear a ...

  17. Onboard Acoustic Recording from Diving Elephant Seals

    National Research Council Canada - National Science Library

    Fletcher, Stacia

    1996-01-01

    The aim of this project was to record sounds impinging on free-ranging northern elephant seals, Mirounga angustirostris, a first step in determining the importance of LFS to these animals as they dive...

  18. Using Stimulation of the Diving Reflex in Humans to Teach Integrative Physiology

    Science.gov (United States)

    Choate, Julia K.; Denton, Kate M.; Evans, Roger G.; Hodgson, Yvonne

    2014-01-01

    During underwater submersion, the body responds by conserving O[subscript 2] and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be…

  19. Provisional Crown Dislodgement during Scuba Diving: A Case of Barotrauma

    OpenAIRE

    Gulve, Meenal Nitin; Gulve, Nitin Dilip

    2013-01-01

    Changes in ambient pressure, for example, during flying, diving, or hyperbaric oxygen therapy, can lead to barotrauma. Although it may seem that this issue was neglected in dental education and research in recent decades, familiarity with and understanding of these facts may be of importance for dental practitioners. We report the case of a patient who experienced barotrauma involving dislodgement of a provisional crown during scuba diving. Patients who are exposed to pressure changes as a pa...

  20. Options for modulating intra-specific competition in colonial pinnipeds: the case of harbour seals (Phoca vitulina in the Wadden Sea

    Directory of Open Access Journals (Sweden)

    Rory P. Wilson

    2015-06-01

    Full Text Available Colonial pinnipeds may be subject to substantial consumptive competition because they are large, slow-moving central place foragers. We examined possible mechanisms for reducing this competition by examining the diving behaviour of harbour seals (Phoca vitulina after equipping 34 seals (11 females, 23 males foraging from three locations; Rømø, Denmark and Lorenzenplate and Helgoland, Germany, in the Wadden Sea area with time-depth recorders. Analysis of 319,021 dives revealed little between-colony variation but appreciable inter-sex differences, with males diving deeper than females, but for shorter periods. Males also had higher vertical descent rates. This result suggests that males may have higher overall swim speeds, which would increase higher oxygen consumption, and may explain the shorter dive durations compared to females. Intersex variation in swim speed alone is predicted to lead to fundamental differences in the time use of three-dimensional space, which may help reduce consumptive competition in harbour seals and other colonial pinnipeds.

  1. Swimming education in Australian society.

    OpenAIRE

    Lynch, TJ

    2014-01-01

    Abstract: The purpose of this paper is to explore a community swimming program using autoethnography qualitative research. Autoethnography is an approach to research and writing that seeks to describe and systematically analyze (graphy) personal experience (auto) in order to understand cultural experience (ethno) (Ellis 2004; Holman Jones 2005). Through childhood reflection of lived swimming experiences, and adult life reflection of lived swimming teaching experiences as a primary school teac...

  2. Aerobic dive limits of seals with mutant myoglobin using combined thermochemical and physiological data

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Davis, Randall W.; Kepp, Kasper Planeta

    2013-01-01

    This paper presents an integrated model of convective O2-transport, aerobic dive limits (ADL), and thermochemical data for oxygen binding to mutant myoglobin (Mb), used to quantify the impact of mutations in Mb on the dive limits of Weddell seals (Leptonychotes weddellii). We find that wild-type ...... that such conditions are mostly selected upon in seals. The model is capable of roughly quantifying the physiological impact of single-protein mutations and thus bridges an important gap between animal physiology and molecular (protein) evolution.......This paper presents an integrated model of convective O2-transport, aerobic dive limits (ADL), and thermochemical data for oxygen binding to mutant myoglobin (Mb), used to quantify the impact of mutations in Mb on the dive limits of Weddell seals (Leptonychotes weddellii). We find that wild-type Mb...... traits are only superior under specific behavioral and physiological conditions that critically prolong the ADL, action radius, and fitness of the seals. As an extreme example, the mutations in the conserved His-64 reduce ADL up to 14±2 min for routine aerobic dives, whereas many other mutations...

  3. 76 FR 67480 - Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB...

    Science.gov (United States)

    2011-11-01

    ...] Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB) Approval... Commercial Diving Operations Standard (29 CFR part 1910, subpart T). DATES: Comments must be submitted... existing Standard on Commercial Diving Operations (29 CFR part 1910, Subpart [[Page 67481

  4. Physiological Monitoring in Diving Mammals

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Physiological Monitoring in Diving Mammals Andreas...825-2025 email: andreas.fahlman@tamucc.edu Peter L. Tyack School of Biology Sea Mammal Research Unit Scottish Oceans Institute...OBJECTIVES This project is separated into three aims: Aim 1: Develop a new generation of tags/data logger for marine mammals that will

  5. Judging complex movement performances for excellence: a principal components analysis-based technique applied to competitive diving.

    Science.gov (United States)

    Young, Cole; Reinkensmeyer, David J

    2014-08-01

    Athletes rely on subjective assessment of complex movements from coaches and judges to improve their motor skills. In some sports, such as diving, snowboard half pipe, gymnastics, and figure skating, subjective scoring forms the basis for competition. It is currently unclear whether this scoring process can be mathematically modeled; doing so could provide insight into what motor skill is. Principal components analysis has been proposed as a motion analysis method for identifying fundamental units of coordination. We used PCA to analyze movement quality of dives taken from USA Diving's 2009 World Team Selection Camp, first identifying eigenpostures associated with dives, and then using the eigenpostures and their temporal weighting coefficients, as well as elements commonly assumed to affect scoring - gross body path, splash area, and board tip motion - to identify eigendives. Within this eigendive space we predicted actual judges' scores using linear regression. This technique rated dives with accuracy comparable to the human judges. The temporal weighting of the eigenpostures, body center path, splash area, and board tip motion affected the score, but not the eigenpostures themselves. These results illustrate that (1) subjective scoring in a competitive diving event can be mathematically modeled; (2) the elements commonly assumed to affect dive scoring actually do affect scoring (3) skill in elite diving is more associated with the gross body path and the effect of the movement on the board and water than the units of coordination that PCA extracts, which might reflect the high level of technique these divers had achieved. We also illustrate how eigendives can be used to produce dive animations that an observer can distort continuously from poor to excellent, which is a novel approach to performance visualization. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Swimming and Children with Attention-Deficit Hyperactive Disorder: A Winning Combination

    Science.gov (United States)

    Dail, Teresa; Smith, Caroline

    2016-01-01

    The benefits of swimming for children with disabilities include improved motor skills, physical fitness, executive brain function and improved social skills. Swimming can also be an activity that provides a positive environment for children suffering from attention-deficit hyperactive disorder (ADHD). This article provides an overview of ADHD and…

  7. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    Science.gov (United States)

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-05

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. SWIM EVERYDAY TO KEEP DEMENTIA AWAY

    Directory of Open Access Journals (Sweden)

    Nirmal Singh

    2005-03-01

    Full Text Available A sound mind resides in a sound body. Many individuals with an active lifestyle show sharp mental skills at an advanced age. Regular exercise has been shown to exert numerous beneficial effects on brawn as well as brain. The present study was undertaken to evaluate the influence of swimming on memory of rodents. A specially designed hexagonal water maze was used for the swimming exposures of animals. The learning and memory parameters were measured using exteroceptive behavioral models such as Elevated plus-maze, Hebb-Williams maze and Passive avoidance apparatus. The rodents (rats and mice were divided into twelve groups. The swimming exposure to the rodents was for 10- minute period during each session and there were two swimming exposures on each day. Rats and mice were subjected to swimming for -15 and -30 consecutive days. Control group animals were not subjected to swimming during above period. The learning index and memory score of all the animals was recorded on 1st, 2nd, 15th, 16th, 30th and 31st day employing above exteroceptive models. It was observed that rodents that underwent swimming regularly for 30- days showed sharp memories, when tested on above behavioral models whereas, control group animals showed decline in memory scores. Those animals, which underwent swimming for 15- days only showed good memory on 16th day, which however, declined after 30-days. These results emphasize the role of regular physical exercise particularly swimming in the maintenance and promotion of brain functions. The underlying physiological mechanism for improvement of memory appears to be the result of enhanced neurogenesis.

  9. Oxygen minimum zone: An important oceanographic habitat for deep-diving northern elephant seals, Mirounga angustirostris.

    Science.gov (United States)

    Naito, Yasuhiko; Costa, Daniel P; Adachi, Taiki; Robinson, Patrick W; Peterson, Sarah H; Mitani, Yoko; Takahashi, Akinori

    2017-08-01

    Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota-poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging. Here, we assessed the feeding rate of 14 female northern elephant seals determined by jaw motion events (JME) and dive cycle time to examine how feeding rates varied with dive depth, particularly in the OMZ. We also obtained video footage from seal-mounted videos to understand their feeding in the OMZ. While the diel vertical migration pattern was apparent for most depths of the JME, some very deep dives, beyond the normal diel depth ranges, occurred episodically during daylight hours. The midmesopelagic zone was the main foraging zone for all seals. Larger seals tended to show smaller numbers of JME and lower feeding rates than smaller seals during migration, suggesting that larger seals tended to feed on larger prey to satisfy their metabolic needs. Larger seals also dived frequently to the deep OMZ, possibly because of a greater diving ability than smaller seals, suggesting their dependency on food in the deeper depth zones. Video observations showed that seals encountered the rarely reported ragfish ( Icosteus aenigmaticus ) in the depths of the OMZ, which failed to show an escape response from the seals, suggesting that low oxygen concentrations might reduce prey mobility. Less mobile prey in OMZ would enhance the efficiency of foraging in this zone, especially for large seals that can dive deeper and longer. We suggest that the OMZ plays an important role in structuring the mesopelagic ecosystem and for the survival and evolution of elephant seals.

  10. Creatine supplementation and swim performance: a brief review.

    Science.gov (United States)

    Hopwood, Melissa J; Graham, Kenneth; Rooney, Kieron B

    2006-03-01

    Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle. Key PointsCreatine supplementation does not improve single sprint

  11. Dive Tourism and the Entrepreneurial Process in the Perhentian Islands, Malaysia

    OpenAIRE

    Jeyacheya, Julia; Hampton, Mark P.

    2016-01-01

    Dive tourism is a high growth, niche sector for island and coastal developing nations and is propelled predominantly by local tourism entrepreneurs and small businesses. This chapter examines dive tourism in peninsula Malaysia and particularly the factors influencing the entrepreneurial process. Much research on tourism entrepreneurs is derived from analysing business in the developed world, and has focused on the individual, not the process. Significantly less research exists for middle inco...

  12. In situ swimming speed and swimming behaviour of fish feeding on the krill Meganyctiphanes norvegica

    OpenAIRE

    Onsrud, M. S. R.; Kaartvedt, Stein; Breien, M. T.

    2005-01-01

    In situ swimming speed and swimming behaviour of dielly migrating planktivorous fish were studied at a 120-m-deep location. Acoustic target tracking was performed using a hull-mounted transducer and submersible transducers located on the sea bottom and free hanging in the water column. The original data displayed a relationship between distance to transducer and swimming speed. A simplistic smoother applied during post-processing, appeared to break this relationship. Target tracki...

  13. 76 FR 9817 - Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB...

    Science.gov (United States)

    2011-02-22

    ...] Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB) Approval... Commercial Diving Operations Standard (29 CFR part 1910, subpart T). DATES: Comments must be submitted... obtaining information (29 U.S.C. 657). Subpart T applies to diving and related support operations conducted...

  14. Wearable inertial sensors in swimming motion analysis: a systematic review.

    Science.gov (United States)

    de Magalhaes, Fabricio Anicio; Vannozzi, Giuseppe; Gatta, Giorgio; Fantozzi, Silvia

    2015-01-01

    The use of contemporary technology is widely recognised as a key tool for enhancing competitive performance in swimming. Video analysis is traditionally used by coaches to acquire reliable biomechanical data about swimming performance; however, this approach requires a huge computational effort, thus introducing a delay in providing quantitative information. Inertial and magnetic sensors, including accelerometers, gyroscopes and magnetometers, have been recently introduced to assess the biomechanics of swimming performance. Research in this field has attracted a great deal of interest in the last decade due to the gradual improvement of the performance of sensors and the decreasing cost of miniaturised wearable devices. With the aim of describing the state of the art of current developments in this area, a systematic review of the existing methods was performed using the following databases: PubMed, ISI Web of Knowledge, IEEE Xplore, Google Scholar, Scopus and Science Direct. Twenty-seven articles published in indexed journals and conference proceedings, focusing on the biomechanical analysis of swimming by means of inertial sensors were reviewed. The articles were categorised according to sensor's specification, anatomical sites where the sensors were attached, experimental design and applications for the analysis of swimming performance. Results indicate that inertial sensors are reliable tools for swimming biomechanical analyses.

  15. Swimming of a Tiny Subtropical Sea Butterfly with Coiled Shell

    Science.gov (United States)

    Murphy, David; Karakas, Ferhat; Maas, Amy

    2017-11-01

    Sea butterflies, also known as pteropods, include a variety of small, zooplanktonic marine snails. Thecosomatous pteropods possess a shell and swim at low Reynolds numbers by beating their wing-like parapodia in a manner reminiscent of insect flight. In fact, previous studies of the pteropod Limacina helicina have shown that pteropod swimming hydrodynamics and tiny insect flight aerodynamics are dynamically similar. Studies of L. helicina swimming have been performed in polar (0 degrees C) and temperate conditions (12 degrees C). Here we present measurements of the swimming of Heliconoides inflatus, a smaller yet morphologically similar pteropod that lives in warm Bermuda seawater (21 degrees C) with a viscosity almost half that of the polar seawater. The collected H. inflatus have shell sizes less than 1.5 mm in diameter, beat their wings at frequencies up to 11 Hz, and swim upwards in sawtooth trajectories at speeds up to approximately 25 mm/s. Using three-dimensional wing and body kinematics collected with two orthogonal high speed cameras and time-resolved, 2D flow measurements collected with a micro-PIV system, we compare the effects of smaller body size and lower water viscosity on the flow physics underlying flapping-based swimming by pteropods and flight by tiny insects.

  16. Underwater and Dive Station Work-Site Noise Surveys

    National Research Council Canada - National Science Library

    Wolgemuth, Keith S; Cudahy, Edward A; Schwaller, Derek W

    2008-01-01

    Previous work performed by the Naval Submarine Medical Research Laboratory (NSMRL) had developed in-water permissible continuous noise exposure guidance Work performed by the Navy Experimental Diving Unit...

  17. The swimming program effects on the gross motor function, mental adjustment to the aquatic environment, and swimming skills in children with cerebral palsy: A pilot study

    Directory of Open Access Journals (Sweden)

    Jorgić Bojan

    2012-01-01

    Full Text Available The aim of this research was to determine the swimming program effects on the gross motor function, mental adjustment to the aquatic environment and the ability to move in the water and swim in children with cerebral palsy. The sample consisted of seven children (4 boys and 3 girls with spastic cerebral palsy and an average age of 9y 5mo ± 1y 3 mo. The swimming program lasted 6 weeks, with two swimming sessions per week. Each session lasted 45 minutes. The swimming program included the application of the Halliwick Method and swimming exercises which are used in a healthy population. The GMFM test was used for the assessment of gross motor functions. The WOTA2 test was applied to assess mental adjustment and swimming skills. The Wilcoxon matched pairs test was used to determine the statistically significant differences between the initial and final measuring. The results have indicated that there was statistically significant differences in the E dimension (p=0.04 and the total score T (p=0.03 of the GMFM test, then for mental adjustment to the aquatic environment WMA (p=0.02, ability to move in water andswimming skills WSW (p=0.03 and the overall result WTO (p=0.02 of the WOTA2 test. The applied swimming program had a statistically significant effect on the improvement in walking, running and jumping as well as the overall gross motor functions of children with cerebral palsy. The applied program also contributed to a statistically significant influence on the increase in mental adjustment to the aquatic environment and the ability to move in water and swim.

  18. Large-scale extraction of gene interactions from full-text literature using DeepDive.

    Science.gov (United States)

    Mallory, Emily K; Zhang, Ce; Ré, Christopher; Altman, Russ B

    2016-01-01

    A complete repository of gene-gene interactions is key for understanding cellular processes, human disease and drug response. These gene-gene interactions include both protein-protein interactions and transcription factor interactions. The majority of known interactions are found in the biomedical literature. Interaction databases, such as BioGRID and ChEA, annotate these gene-gene interactions; however, curation becomes difficult as the literature grows exponentially. DeepDive is a trained system for extracting information from a variety of sources, including text. In this work, we used DeepDive to extract both protein-protein and transcription factor interactions from over 100,000 full-text PLOS articles. We built an extractor for gene-gene interactions that identified candidate gene-gene relations within an input sentence. For each candidate relation, DeepDive computed a probability that the relation was a correct interaction. We evaluated this system against the Database of Interacting Proteins and against randomly curated extractions. Our system achieved 76% precision and 49% recall in extracting direct and indirect interactions involving gene symbols co-occurring in a sentence. For randomly curated extractions, the system achieved between 62% and 83% precision based on direct or indirect interactions, as well as sentence-level and document-level precision. Overall, our system extracted 3356 unique gene pairs using 724 features from over 100,000 full-text articles. Application source code is publicly available at https://github.com/edoughty/deepdive_genegene_app russ.altman@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  19. Establishing zebrafish as a novel exercise model: swimming economy, swimming-enhanced growth and muscle growth marker gene expression.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available BACKGROUND: Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: Individual zebrafish (n = 10 were able to swim at a critical swimming speed (U(crit of 0.548±0.007 m s(-1 or 18.0 standard body lengths (BL s(-1. The optimal swimming speed (U(opt at which energetic efficiency is highest was 0.396±0.019 m s(-1 (13.0 BL s(-1 corresponding to 72.26±0.29% of U(crit. The cost of transport at optimal swimming speed (COT(opt was 25.23±4.03 µmol g(-1 m(-1. A group-wise experiment was conducted with zebrafish (n = 83 swimming at U(opt for 6 h day(-1 for 5 days week(-1 for 4 weeks vs. zebrafish (n = 84 that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb, insulin-like growth factor 1 receptor a (igf1ra, troponin C (stnnc, slow myosin heavy chain 1 (smyhc1, troponin I2 (tnni2, myosin heavy polypeptide 2 (myhz2 and myostatin (mstnb. CONCLUSIONS/SIGNIFICANCE: From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture.

  20. Anisotropic swim stress in active matter with nematic order

    Science.gov (United States)

    Yan, Wen; Brady, John F.

    2018-05-01

    Active Brownian particles (ABPs) transmit a swim pressure {{{\\Pi }}}{{swim}}=n\\zeta {D}{{swim}} to the container boundaries, where ζ is the drag coefficient, D swim is the swim diffusivity and n is the uniform bulk number density far from the container walls. In this work we extend the notion of the isotropic swim pressure to the anisotropic tensorial swim stress {{\\boldsymbol{σ }}}{{swim}}=-n\\zeta {{\\boldsymbol{D}}}{{swim}}, which is related to the anisotropic swim diffusivity {{\\boldsymbol{D}}}{{swim}}. We demonstrate this relationship with ABPs that achieve nematic orientational order via a bulk external field. The anisotropic swim stress is obtained analytically for dilute ABPs in both 2D and 3D systems. The anisotropy, defined as the ratio of the maximum to the minimum of the three principal stresses, is shown to grow exponentially with the strength of the external field. We verify that the normal component of the anisotropic swim stress applies a pressure {{{\\Pi }}}{{swim}}=-({{\\boldsymbol{σ }}}{{swim}}\\cdot {\\boldsymbol{n}})\\cdot {\\boldsymbol{n}} on a wall with normal vector {\\boldsymbol{n}}, and, through Brownian dynamics simulations, this pressure is shown to be the force per unit area transmitted by the active particles. Since ABPs have no friction with a wall, the difference between the normal and tangential stress components—the normal stress difference—generates a net flow of ABPs along the wall, which is a generic property of active matter systems.

  1. Swimming Pools and Molluscum Contagiosum

    Science.gov (United States)

    ... Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections Poxvirus Swimming Pools Recommend on Facebook Tweet Share Compartir The ... often ask if molluscum virus can spread in swimming pools. There is also concern that it can ...

  2. Diel Variation in Beaked Whale Diving Behavior

    National Research Council Canada - National Science Library

    Baird, Robin; Webster, Daniel L; Schorr, Gregory S; McSweeney, Daniel J

    2008-01-01

    ...) occurred at similar rates during the day and night for Blainville's beaked whales (daymean=0.38 h-1; nightmean=0.46 h-1), and there were no significant diel differences in depths, durations, ascent or descent rates for deep dives...

  3. Behaviour and kinematics of continuous ram filtration in bowhead whales (Balaena mysticetus)

    DEFF Research Database (Denmark)

    Simon, Malene Juul; Johnson, Mark; Madsen, Peter Teglberg

    2009-01-01

    Balaenid whales perform long breath-hold foraging dives despite a high drag from their ram filtration of zooplankton. To maximize the volume of prey acquired in a dive with limited oxygen supplies, balaenids must either filter feed only occasionally when prey density is particularly high, or they......Balaenid whales perform long breath-hold foraging dives despite a high drag from their ram filtration of zooplankton. To maximize the volume of prey acquired in a dive with limited oxygen supplies, balaenids must either filter feed only occasionally when prey density is particularly high......, or they must swim at slow speeds while filtering to reduce drag and oxygen consumption. Using digital tags with three-axis accelerometers, we studied bowhead whales feeding off West Greenland and present here, to our knowledge, the first detailed data on the kinematics and swimming behaviour of a balaenid...... whale filter feeding at depth. Bowhead whales employ a continuous fluking gait throughout the bottom phase of foraging dives, moving at very slow speeds (less than 1 m s-1), allowing them to filter feed continuously at depth. Despite the slow speeds, the large mouth aperture provides a water filtration...

  4. IMMEDIATE EFFECTS OF DEEP TRUNK MUSCLE TRAINING ON SWIMMING START PERFORMANCE.

    Science.gov (United States)

    Iizuka, Satoshi; Imai, Atsushi; Koizumi, Keisuke; Okuno, Keisuke; Kaneoka, Koji

    2016-12-01

    In recent years, deep trunk muscle training has been adopted in various sports, including swimming. This is performed both in everyday training and as part of the warm-up routine before competitive races. It is suggested that trunk stabilization exercises are effective in preventing injury, and aid in improving performance. However, conclusive evidence of the same is yet to be obtained. The time of start phase of swimming is a factor that can significantly influence competition performance in a swimming race. If trunk stabilization exercises can provide instantaneous trunk stability, it is expected that they will lead to performance improvements in the start phase of swimming. The purpose of this study was to investigate the immediate effect of trunk stabilization exercises on the start phase in swimming. Intervention study. Nine elite male swimmers (mean age 20.2 ± 1.0 years; height 174.4 ± 3.5 cm; weight 68.9 ± 4.1 kg) performed the swimming start movement. The measurement variables studied included flying distance, and the time and velocity of subjects at hands' entry and on reaching five meters. Measurements were taken in trials immediately before and after the trunk stabilization exercises. A comparison between pre- and post-exercise measurements was assessed. The time to reach five meters (T 5m ) decreased significantly after trunk stabilization exercises, by 0.019 s (p = 0.02). Velocity at entry (V entry ) did not demonstrate significant change, while velocity at five meters (V 5m ) increased significantly after the exercises (p = 0.023). In addition, the speed reduction rate calculated from V entry and V 5m significantly decreased by 5.17% after the intervention (p = 0.036). Trunk stabilization exercises may help reduce the time from start to five meters in the start phase in swimming. The results support the hypothesis that these exercises may improve swimming performance. Level 3b.

  5. B-type natriuretic peptide secretion following scuba diving

    DEFF Research Database (Denmark)

    Passino, Claudio; Franzino, Enrico; Giannoni, Alberto

    2011-01-01

    To examine the neurohormonal effects of a scuba dive, focusing on the acute changes in the plasma concentrations of the different peptide fragments from the B-type natriuretic peptide (BNP) precursor....

  6. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas; implications for dive physiology and health

    Directory of Open Access Journals (Sweden)

    Laura A Thompson

    2016-09-01

    Full Text Available Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression and Concanavalin A induced lymphocyte proliferation (BrdU incorporation in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE and capture/release conditions. Beluga blood samples (n=4 were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska (n=9. Human blood samples (n=4 (Biological Specialty Corporation were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α=0.05. Cortisol was significantly higher in wild belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and wild belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals

  7. 36 CFR 3.18 - May I snorkel or underwater dive in park waters?

    Science.gov (United States)

    2010-07-01

    ... dive in park waters? 3.18 Section 3.18 Parks, Forests, and Public Property NATIONAL PARK SERVICE... waters? (a) Snorkeling and underwater diving is allowed in park waters, subject to closures or restrictions designated by the superintendent in accordance with §§ 1.5 and 1.7 of this chapter. (b) In waters...

  8. 2012 Swimming Season Fact Sheets

    Science.gov (United States)

    To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.

  9. [Decompression problems in diving in mountain lakes].

    Science.gov (United States)

    Bühlmann, A A

    1989-08-01

    The relationship between tolerated high-pressure tissue nitrogen and ambient pressure is practically linear. The tolerated nitrogen high pressure decreases at altitude, as the ambient pressure is lower. Additionally, tissues with short nitrogen half-times have a higher tolerance than tissues which retain nitrogen for longer duration. For the purpose of determining safe decompression routines, the human body can be regarded as consisting of 16 compartments with half-times from 4 to 635 minutes for nitrogen. The coefficients for calculation of the tolerated nitrogen-high pressure in the tissues can be deduced directly from the half-times for nitrogen. We show as application the results of 573 simulated air dives in the pressure-chamber and 544 real dives in mountain lakes in Switzerland (1400-2600 m above sea level) and in Lake Titicaca (3800 m above sea level). They are in accordance with the computed limits of tolerance.

  10. Suicidal nitrogen inhalation by use of scuba full-face diving mask.

    Science.gov (United States)

    Straka, Lubomir; Novomesky, Frantisek; Gavel, Anton; Mlynar, Juraj; Hejna, Petr

    2013-09-01

    A 29-year-old man was found dead lying on the bed in a hotel room in a famous Slovak mountain resort. He had a full-face diving mask on his face, connected through a diving breath regulator to a valve of an industrial (nondiving) high-pressure tank containing pure 100% nitrogen. The breath regulator (open-circuit type) used allowed inhalation of nitrogen without addition of open air, and the full-face diving mask assured aspiration of the gas even during the time of unconsciousness. At autopsy, we found the typical signs of suffocation. Toxicological analysis revealed 94.7% content of nitrogen in alveolar air. Following the completion of the police investigation, the manner of death was classified as a suicide. Within the medico-legal literature, there has been only one similar case of suicidal nitrogen inhalation described. © 2013 American Academy of Forensic Sciences.

  11. Kinematics of swimming and thrust production during powerstroking bouts of the swim frenzy in green turtle hatchlings

    Directory of Open Access Journals (Sweden)

    David T. Booth

    2014-09-01

    Full Text Available Hatchling sea turtles emerge from nests, crawl down the beach and enter the sea where they typically enter a stereotypical hyperactive swimming frenzy. During this swim the front flippers are moved up and down in a flapping motion and are the primary source of thrust production. I used high-speed video linked with simultaneous measurement of thrust production in tethered hatchlings, along with high-speed video of free swimming hatchlings swimming at different water speeds in a swim flume to investigate the links between kinematics of front flipper movement, thrust production and swimming speed. In particular I tested the hypotheses that (1 increased swimming speed is achieved through an increased stroke rate; (2 force produced per stroke is proportional to stroke amplitude, (3 that forward thrust is produced during both the down and up phases of stroking; and (4 that peak thrust is produced towards the end of the downstroke cycle. Front flipper stroke rate was independent of water speed refuting the hypothesis that swimming speed is increased by increasing stroke rate. Instead differences in swimming speed were caused by a combination of varying flipper amplitude and the proportion of time spent powerstroking. Peak thrust produced per stroke varied within and between bouts of powerstroking, and these peaks in thrust were correlated with both flipper amplitude and flipper angular momentum during the downstroke supporting the hypothesis that stroke force is a function of stroke amplitude. Two distinct thrust production patterns were identified, monophasic in which a single peak in thrust was recorded during the later stages of the downstroke, and biphasic in which a small peak in thrust was recorded at the very end of the upstroke and this followed by a large peak in thrust during the later stages of the downstroke. The biphasic cycle occurs in ∼20% of hatchlings when they first started swimming, but disappeared after one to two hours of

  12. Prey capture by freely swimming flagellates

    Science.gov (United States)

    Andersen, Anders; Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas

    2017-11-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. Here, we explore the dependence of swimming kinematics and prey clearance rate on flagellar arrangement and determine optimal flagellar arrangements and essential trade-offs. To describe near-cell flows around freely swimming flagellates we consider a model in which the cell is represented by a no-slip sphere and each flagellum by a point force. For uniflagellates pulled by a single flagellum the model suggests that a long flagellum favors fast swimming, whereas high clearance rate is favored by a very short flagellum. For biflagellates with both a longitudinal and a transversal flagellum we explore the helical swimming kinematics and the prey capture sites. We compare our predictions with observations of swimming kinematics, prey capture, and flows around common marine flagellates. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  13. Unsteady propulsion by an intermittent swimming gait

    Science.gov (United States)

    Akoz, Emre; Moored, Keith W.

    2018-01-01

    Inviscid computational results are presented on a self-propelled swimmer modeled as a virtual body combined with a two-dimensional hydrofoil pitching intermittently about its leading edge. Lighthill (1971) originally proposed that this burst-and-coast behavior can save fish energy during swimming by taking advantage of the viscous Bone-Lighthill boundary layer thinning mechanism. Here, an additional inviscid Garrick mechanism is discovered that allows swimmers to control the ratio of their added mass thrust-producing forces to their circulatory drag-inducing forces by decreasing their duty cycle, DC, of locomotion. This mechanism can save intermittent swimmers as much as 60% of the energy it takes to swim continuously at the same speed. The inviscid energy savings are shown to increase with increasing amplitude of motion, increase with decreasing Lighthill number, Li, and switch to an energetic cost above continuous swimming for sufficiently low DC. Intermittent swimmers are observed to shed four vortices per cycle that form into groups that are self-similar with the DC. In addition, previous thrust and power scaling laws of continuous self-propelled swimming are further generalized to include intermittent swimming. The key is that by averaging the thrust and power coefficients over only the bursting period then the intermittent problem can be transformed into a continuous one. Furthermore, the intermittent thrust and power scaling relations are extended to predict the mean speed and cost of transport of swimmers. By tuning a few coefficients with a handful of simulations these self-propelled relations can become predictive. In the current study, the mean speed and cost of transport are predicted to within 3% and 18% of their full-scale values by using these relations.

  14. Underwater and Dive Station Work-Site Noise Surveys

    National Research Council Canada - National Science Library

    Wolgemuth, Keith S; Cudahy, Edward A; Schwaller, Derek W

    2008-01-01

    ...) data This study extends this previous work by obtaining in-water and in-air noise measurements and a total noise dose for Navy divers during actual diving operations using a portable sound level...

  15. Geneva 24 hours swim

    CERN Document Server

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  16. Geneva 24 Hours Swim

    CERN Document Server

    2003-01-01

    The 18th edition of the Geneva 24 hours swim competition will take place at the Vernets Swimming Pool on the 4th and 5th of October. More information and the results of previous years are given at: http://www.carouge-natation.com/24_heures/home_24_heures.htm Last year, CERN obtained first position in the inter-company category with a total of 152.3 kms swam by 45 participants. We are counting on your support to repeat this excellent performance this year. For those who would like to train, the Livron swimming pool in Meyrin is open as from Monday the 8th September. For further information please do not hesitate to contact us. Gino de Bilio and Catherine Delamare

  17. Optimal swimming strategies in mate searching pelagic copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2008-01-01

    Male copepods must swim to find females, but swimming increases the risk of meeting predators and is expensive in terms of energy expenditure. Here I address the trade-offs between gains and risks and the question of how much and how fast to swim using simple models that optimise the number...... of lifetime mate encounters. Radically different swimming strategies are predicted for different feeding behaviours, and these predictions are tested experimentally using representative species. In general, male swimming speeds and the difference in swimming speeds between the genders are predicted...... and observed to increase with increasing conflict between mate searching and feeding. It is high in ambush feeders, where searching (swimming) and feeding are mutually exclusive and low in species, where the matured males do not feed at all. Ambush feeding males alternate between stationary ambush feeding...

  18. Swimming efficiency in a shear-thinning fluid

    Science.gov (United States)

    Nganguia, Herve; Pietrzyk, Kyle; Pak, On Shun

    2017-12-01

    Micro-organisms expend energy moving through complex media. While propulsion speed is an important property of locomotion, efficiency is another factor that may determine the swimming gait adopted by a micro-organism in order to locomote in an energetically favorable manner. The efficiency of swimming in a Newtonian fluid is well characterized for different biological and artificial swimmers. However, these swimmers often encounter biological fluids displaying shear-thinning viscosities. Little is known about how this nonlinear rheology influences the efficiency of locomotion. Does the shear-thinning rheology render swimming more efficient or less? How does the swimming efficiency depend on the propulsion mechanism of a swimmer and rheological properties of the surrounding shear-thinning fluid? In this work, we address these fundamental questions on the efficiency of locomotion in a shear-thinning fluid by considering the squirmer model as a general locomotion model to represent different types of swimmers. Our analysis reveals how the choice of surface velocity distribution on a squirmer may reduce or enhance the swimming efficiency. We determine optimal shear rates at which the swimming efficiency can be substantially enhanced compared with the Newtonian case. The nontrivial variations of swimming efficiency prompt questions on how micro-organisms may tune their swimming gaits to exploit the shear-thinning rheology. The findings also provide insights into how artificial swimmers should be designed to move through complex media efficiently.

  19. Solid Waste Information Management System (SWIMS) data summary, fiscal year 1982

    International Nuclear Information System (INIS)

    Watanabe, T.

    1983-06-01

    The Solid Waste Information Management System (SWIMS) is a Department of Energy (DOE) information system for radioactive solid waste. This document is a summary of the FY 1982 data and the forecast data for FY 1983 reported by DOE sites. Detailed data are included in the appendices. The SWIMS data base contains data on the solid transuranic and solid low-level waste generated, buried, or stored at DOE sites. The burial and storage data include the period from site initiation through FY 1982

  20. Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) - A New U.S. DOE Data Archive

    Science.gov (United States)

    Agarwal, D.; Varadharajan, C.; Cholia, S.; Snavely, C.; Hendrix, V.; Gunter, D.; Riley, W. J.; Jones, M.; Budden, A. E.; Vieglais, D.

    2017-12-01

    The ESS-DIVE archive is a new U.S. Department of Energy (DOE) data archive designed to provide long-term stewardship and use of data from observational, experimental, and modeling activities in the earth and environmental sciences. The ESS-DIVE infrastructure is constructed with the long-term vision of enabling broad access to and usage of the DOE sponsored data stored in the archive. It is designed as a scalable framework that incentivizes data providers to contribute well-structured, high-quality data to the archive and that enables the user community to easily build data processing, synthesis, and analysis capabilities using those data. The key innovations in our design include: (1) application of user-experience research methods to understand the needs of users and data contributors; (2) support for early data archiving during project data QA/QC and before public release; (3) focus on implementation of data standards in collaboration with the community; (4) support for community built tools for data search, interpretation, analysis, and visualization tools; (5) data fusion database to support search of the data extracted from packages submitted and data available in partner data systems such as the Earth System Grid Federation (ESGF) and DataONE; and (6) support for archiving of data packages that are not to be released to the public. ESS-DIVE data contributors will be able to archive and version their data and metadata, obtain data DOIs, search for and access ESS data and metadata via web and programmatic portals, and provide data and metadata in standardized forms. The ESS-DIVE archive and catalog will be federated with other existing catalogs, allowing cross-catalog metadata search and data exchange with existing systems, including DataONE's Metacat search. ESS-DIVE is operated by a multidisciplinary team from Berkeley Lab, the National Center for Ecological Analysis and Synthesis (NCEAS), and DataONE. The primarily data copies are hosted at DOE's NERSC

  1. Neuroergonomics Deep Dive Literature Review, Volume 1: Neuroergonomics and Cognitive State

    Science.gov (United States)

    2010-11-01

    the summaries are referenced parenthetically; those not summarized are footnoted. 1 Dorsey, E.R., Vitticore, P., De Roulet, J., et al. (2006...reviewed, inclusion criteria were established by the deep dive team. These include the following: 1. The research must be applicable to Air Force...activity. LTP was found to be significantly impaired (by 50%) by acute stress for up to 48 hours after the stress. 6. Sorrells, S,F., Caso , J,R

  2. Free Swimming in Ground Effect

    Science.gov (United States)

    Cochran-Carney, Jackson; Wagenhoffer, Nathan; Zeyghami, Samane; Moored, Keith

    2017-11-01

    A free-swimming potential flow analysis of unsteady ground effect is conducted for two-dimensional airfoils via a method of images. The foils undergo a pure pitching motion about their leading edge, and the positions of the body in the streamwise and cross-stream directions are determined by the equations of motion of the body. It is shown that the unconstrained swimmer is attracted to a time-averaged position that is mediated by the flow interaction with the ground. The robustness of this fluid-mediated equilibrium position is probed by varying the non-dimensional mass, initial conditions and kinematic parameters of motion. Comparisons to the foil's fixed-motion counterpart are also made to pinpoint the effect that free swimming near the ground has on wake structures and the fluid-mediated forces over time. Optimal swimming regimes for near-boundary swimming are determined by examining asymmetric motions.

  3. Undulatory fish swimming : from muscles to flow

    NARCIS (Netherlands)

    Müller, U.K.; Leeuwen, van J.L.

    2006-01-01

    Undulatory swimming is employed by many fish for routine swimming and extended sprints. In this biomechanical review, we address two questions: (i) how the fish's axial muscles power swimming; and (ii) how the fish's body and fins generate thrust. Fish have adapted the morphology of their axial

  4. Quality versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches.

    Science.gov (United States)

    Nugent, Frank J; Comyns, Thomas M; Warrington, Giles D

    2017-06-01

    The debate over low-volume, high-intensity training versus high-volume, low-intensity training, commonly known as Quality versus Quantity, respectively, is a frequent topic of discussion among swimming coaches and academics. The aim of this study was to explore expert coaches' perceptions of quality and quantity coaching philosophies in competitive swimming and to investigate their current training practices. A purposeful sample of 11 expert swimming coaches was recruited for this study. The study was a mixed methods design and involved each coach participating in 1 semi-structured interview and completing 1 closed-ended questionnaire. The main findings of this study were that coaches felt quality training programmes would lead to short term results for youth swimmers, but were in many cases more appropriate for senior swimmers. The coaches suggested that quantity training programmes built an aerobic base for youth swimmers, promoted technical development through a focus on slower swimming and helped to enhance recovery from training or competition. However, the coaches continuously suggested that quantity training programmes must be performed with good technique and they felt this was a misunderstood element. This study was a critical step towards gaining a richer and broader understanding on the debate over Quality versus Quantity training from an expert swimming coaches' perspective which was not currently available in the research literature.

  5. Quality Versus Quantity Debate in Swimming: Perceptions and Training Practices of Expert Swimming Coaches

    Directory of Open Access Journals (Sweden)

    Nugent Frank J.

    2017-06-01

    Full Text Available The debate over low-volume, high-intensity training versus high-volume, low-intensity training, commonly known as Quality versus Quantity, respectively, is a frequent topic of discussion among swimming coaches and academics. The aim of this study was to explore expert coaches’ perceptions of quality and quantity coaching philosophies in competitive swimming and to investigate their current training practices. A purposeful sample of 11 expert swimming coaches was recruited for this study. The study was a mixed methods design and involved each coach participating in 1 semi-structured interview and completing 1 closed-ended questionnaire. The main findings of this study were that coaches felt quality training programmes would lead to short term results for youth swimmers, but were in many cases more appropriate for senior swimmers. The coaches suggested that quantity training programmes built an aerobic base for youth swimmers, promoted technical development through a focus on slower swimming and helped to enhance recovery from training or competition. However, the coaches continuously suggested that quantity training programmes must be performed with good technique and they felt this was a misunderstood element. This study was a critical step towards gaining a richer and broader understanding on the debate over Quality versus Quantity training from an expert swimming coaches’ perspective which was not currently available in the research literature.

  6. Increase in serum noradrenaline concentration by short dives with bradycardia in Indo-Pacific bottlenose dolphin Tursiops aduncus.

    Science.gov (United States)

    Suzuki, Miwa; Tomoshige, Mika; Ito, Miki; Koga, Sotaro; Yanagisawa, Makio; Bungo, Takashi; Makiguchi, Yuya

    2017-07-01

    In cetaceans, diving behavior immediately induces a change in blood circulation to favor flow to the brain and heart; this is achieved by intense vasoconstriction of the blood vessels that serve other organs. This blood circulation response is allied to a decrease in heart rate in order to optimize oxygen usage during diving. Vasoconstrictors are present in all mammals and stimulate the contraction of the smooth muscle in the walls of blood vessels. The most important of these vasoconstrictors are the hormones adrenaline (A), noradrenaline (NA), and angiotensin II (ANG II). At present, the contribution of these hormones to vasoconstriction during diving in cetaceans is unclear. To elucidate their possible roles, changes in serum levels of A, NA and ANG II were monitored together with heart rate in the Indo-Pacific bottlenose dolphin Tursiops aduncus during 90 and 180s dives. Both brief diving periods induced an increase in serum NA concentration and a decrease in heart rate; however, no changes were detected in serum levels of A or ANG II. These data indicate that NA may play a role in diving-induced vasoconstriction. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The Impact of Immediate Verbal Feedback on the Improvement of Swimming Technique

    Science.gov (United States)

    Zatoń, Krystyna; Szczepan, Stefan

    2014-01-01

    The present research attempts to ascertain the impact of immediate verbal feedback (IVF) on modifications of stroke length (SL). In all swimming styles, stroke length is considered an essential kinematic parameter of the swimming cycle. It is important for swimming mechanics and energetics. If SL shortens while the stroke rate (SR) remains unchanged or decreases, the temporal-spatial structure of swimming is considered erroneous. It results in a lower swimming velocity. Our research included 64 subjects, who were divided into two groups: the experimental – E (n=32) and the control – C (n=32) groups. A pretest and a post-test were conducted. The subjects swam the front crawl over the test distance of 25m at Vmax. Only the E group subjects were provided with IVF aiming to increase their SL. All tests were filmed by two cameras (50 samples•s-1). The kinematic parameters of the swimming cycle were analyzed using the SIMI Reality Motion Systems 2D software (SIMI Reality Motion Systems 2D GmbH, Germany). The movement analysis allowed to determine the average horizontal swimming velocity over 15 meters. The repeated measures analysis of variance ANOVA with a post-hoc Tukey range test demonstrated statistically significant (pswimming velocity. IVF brought about a 6.93% (Simi method) and a 5.09% (Hay method) increase in SL, as well as a 2.92% increase in swimming velocity. PMID:25114741

  8. Decompression sickness in breath-hold diving, and its probable connection to the growth and dissolution of small arterial gas emboli.

    Science.gov (United States)

    Goldman, Saul; Solano-Altamirano, J M

    2015-04-01

    We solved the Laplace equation for the radius of an arterial gas embolism (AGE), during and after breath-hold diving. We used a simple three-region diffusion model for the AGE, and applied our results to two types of breath-hold dives: single, very deep competitive-level dives and repetitive shallower breath-hold dives similar to those carried out by indigenous commercial pearl divers in the South Pacific. Because of the effect of surface tension, AGEs tend to dissolve in arterial blood when arteries remote from supersaturated tissue. However if, before fully dissolving, they reach the capillary beds that perfuse the brain and the inner ear, they may become inflated with inert gas that is transferred into them from these contiguous temporarily supersaturated tissues. By using simple kinetic models of cerebral and inner ear tissue, the nitrogen tissue partial pressures during and after the dive(s) were determined. These were used to theoretically calculate AGE growth and dissolution curves for AGEs lodged in capillaries of the brain and inner ear. From these curves it was found that both cerebral and inner ear decompression sickness are expected to occur occasionally in single competitive-level dives. It was also determined from these curves that for the commercial repetitive dives considered, the duration of the surface interval (the time interval separating individual repetitive dives from one another) was a key determinant, as to whether inner ear and/or cerebral decompression sickness arose. Our predictions both for single competitive-level and repetitive commercial breath-hold diving were consistent with what is known about the incidence of cerebral and inner ear decompression sickness in these forms of diving. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Swimming attendance during childhood and development of asthma: Meta-analysis.

    Science.gov (United States)

    Valeriani, Federica; Protano, Carmela; Vitali, Matteo; Romano Spica, Vincenzo

    2017-05-01

    The association between asthma and swimming pool attendance has not been demonstrated and currently there are conflicting results. In order to clarify the association between asthma diagnosis in children and swimming pool attendance, and to assess the consistency of the available epidemiological studies, we completed a literature analysis on the relationship between the exposure to disinfection by-products in indoor swimming pools during childhood and asthma diagnosis. Following the Meta-analysis of Observational Studies in Epidemiology (MOOSE) and Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) criteria, a systematic review and meta-analysis was performed by searching MEDLINE via PubMed, TOXNET, and Scopus databases (from inception to 20 April 2015) using the key word "Asthma" together with "swimming pool", "disinfection by-products", "indoor air pollution" and "children". Inclusion criteria were: English language, a complete analytic study design involving a cohort of children (0-16 years), a well-defined definition of exposure, and the presence of data on effect and variance. Studies on in vivo, in vitro or professional and accidental exposure were excluded. After a screening process, seven reports (n = 5851 subjects) were included out of a total of 2928 references. The reported OR of the association between swimming pool attendance and asthma prevalence ranged from 0.58 to 2.30. The present meta-analysis failed to identify a significant difference in asthma development between children attending swimming pools and controls (OR, 1.084; 95% CI: 0.89-1.31). Swimming in childhood does not increase the likelihood of doctor-diagnosed asthma. Based on this meta-analysis review, the association of the disease with indoor pool attendance is still unclear. © 2016 Japan Pediatric Society.

  10. Effect of scuba diving on the oxidant/antioxidant status, SIRT1 and SIRT3 expression in recreational divers after a winter nondive period.

    Science.gov (United States)

    Perović, Antonija; Sobočanec, Sandra; Dabelić, Sanja; Balog, Tihomir; Dumić, Jerka

    2018-02-01

    The aim of this study was to examine the effects of scuba diving on oxidative damage markers in erythrocytes and plasma, antioxidant system in peripheral blood mononuclear cells (PBMCs), as well as sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3) gene expressions in recreational divers after a winter nondive period (at least 5 months). For that purpose, 17 male recreational divers performed an immersion at a depth of 30 m for 30 min. Blood samples were collected immediately before and after diving, 3 and 6 h after diving. Erythrocyte lipid peroxidation measured by thiobarbituric-reactive substances (TBARS) method was significantly increased immediately after diving, but returned to the baseline 6 h after diving, while no significant change was found for plasma TBARS and protein carbonyl derivates in both plasma and erythrocytes. Diving-induced catalase (CAT), superoxide dismutase 2 (SOD2), and consequently total superoxide dismutase (SOD) activities in the PBMC samples (significantly increased immediately after diving, reached the maximum activities 3 h after diving, while 6 h after diving only CAT activity remained significantly increased). No significant change was observed for SOD1 activity and gene expression, as well as SOD2 expression, while CAT and SIRT1 expressions were slightly decreased immediately after diving and 3 h after diving. Interestingly, SIRT3 expression was significantly increased 6 h after diving. In conclusion, after the first dive to 30 m after a nondive season, activation of antioxidant defence was not sufficient to prevent oxidative damage, while SIRT3 upregulation could be a step towards an adaptive response to the diving.

  11. Solid Waste Information Management System (SWIMS). Data summary, Fiscal Year 1979

    International Nuclear Information System (INIS)

    Batchelder, H.M.

    1980-07-01

    The Solid Waste Information Management System (SWIMS) maintains computerized records on a master data base. It provides a comprehensive system for cataloging and assembling data into output reports. The system summarizes the solid radioactive waste generation, disposal, and storage information throughout the Department of Energy (DOE). The SWIMS data base contains the information on the transuranic (TRU) and Low-Level Waste (LLW) generated, buried, or stored by DOE facilities. The generation data covers the period from the FY 1976 transition quarter through FY 1979. The burial and storage data includes the period from site initiation through FY 1979. This document includes the DOE Summary Reports from the SWIMS, presenting the FY 1979 data and the FY 1980 forecasts. Each report is detailed by nuclide category. The categorization allows the user to separate TRU data from LLW data, etc

  12. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata)

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Banet, Amanda I.; Christensen, Rune Haubo Bojesen

    2013-01-01

    by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, MO2std or Ucrit. In contrast, data revealed strong...... swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming...

  13. Simulation of swimming strings immersed in a viscous fluid flow

    Science.gov (United States)

    Huang, Wei-Xi; Sung, Hyung Jin

    2006-11-01

    In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.

  14. Bubble formation after a 20-m dive: deep-stop vs. shallow-stop decompression profiles

    NARCIS (Netherlands)

    Schellart, Nico A. M.; Corstius, Jan-Jaap Brandt; Germonpré, Peter; Sterk, Wouter

    2008-01-01

    OBJECTIVES: It is claimed that performing a "deep stop," a stop at about half of maximal diving depth (MDD), can reduce the amount of detectable precordial bubbles after the dive and may thus diminish the risk of decompression sickness. In order to ascertain whether this reduction is caused by the

  15. Krill (Meganyctiphanes norvegica) swim faster at night

    KAUST Repository

    Klevjer, Thor A.

    2011-05-01

    Krill are key members in marine food webs, and measurement of swimming speed is vital to assess their bioenergetic budgets, feeding, and encounters with predators. We document a consistent and marked diel signal in swimming speed of krill in their natural habitat that is not related to diel vertical migration. The results were obtained using a bottom-mounted, upward-looking echo sounder at 150-m depth in the Oslofjord, Norway, spanning 5 months from late autumn to spring at a temporal resolution of ~1–2 records s−1. Swimming speed was assessed using acoustic target tracking of individual krill. At the start of the registration period, both daytime and nocturnal average swimming speeds of Meganyctiphanes norvegica were ~ 3.5 cm s−1 (~ 1 body lengths ([bl] s−1) in waters with oxygen concentrations of ~ 15–20% O2 saturation. Following intrusion of more oxygenated water, nocturnal average swimming speeds increased to ~ 10 cm s−1 (~ 3 bl s−1), i.e., more than double that of daytime swimming speeds in the same period. We hypothesize that krill activity during the first period was limited by oxygen, and the enhanced swimming at night subsequent to the water renewal is due to increased feeding activity under lessened danger of predation in darkness.

  16. Krill (Meganyctiphanes norvegica) swim faster at night

    KAUST Repository

    Klevjer, Thor A.; Kaartvedt, Stein

    2011-01-01

    Krill are key members in marine food webs, and measurement of swimming speed is vital to assess their bioenergetic budgets, feeding, and encounters with predators. We document a consistent and marked diel signal in swimming speed of krill in their natural habitat that is not related to diel vertical migration. The results were obtained using a bottom-mounted, upward-looking echo sounder at 150-m depth in the Oslofjord, Norway, spanning 5 months from late autumn to spring at a temporal resolution of ~1–2 records s−1. Swimming speed was assessed using acoustic target tracking of individual krill. At the start of the registration period, both daytime and nocturnal average swimming speeds of Meganyctiphanes norvegica were ~ 3.5 cm s−1 (~ 1 body lengths ([bl] s−1) in waters with oxygen concentrations of ~ 15–20% O2 saturation. Following intrusion of more oxygenated water, nocturnal average swimming speeds increased to ~ 10 cm s−1 (~ 3 bl s−1), i.e., more than double that of daytime swimming speeds in the same period. We hypothesize that krill activity during the first period was limited by oxygen, and the enhanced swimming at night subsequent to the water renewal is due to increased feeding activity under lessened danger of predation in darkness.

  17. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  18. Swimming in an Unsteady World

    Science.gov (United States)

    Koehl, M. A. R.

    2016-02-01

    When animals swim in marine habitats, the water through which they move is usually flowing. Therefore, an important part of understanding the physics of how animals swim in nature is determining how they interact with the fluctuating turbulent water currents in their environment. The research systems we have been using to address this question are microscopic marine animals swimming in turbulent, wavy water flow over spatially-complex communities of organisms growing on surfaces. Field measurements of water motion were used to design realistic turbulent flow in a laboratory wave-flume over different substrata, particle-image velocimetry was used to measure fine-scale, rapidly-varying water velocity vector fields, and planar laser-induced fluorescence was used to measure concentrations of chemical cues from the substratum. We used individual-based models of small animals swimming in this unsteady flow to determine how their trajectories and contacts with substrata were affected by their locomotion through the water, rotation by local shear, response to odors, and transport by ambient flow. We found that the shears, accelerations, and odor concentrations encountered by small swimmers fluctuate rapidly, with peaks much higher than mean values lasting fractions of a second. We identified ways in which the behavior of small, weak swimmers can bias how they are transported by ambient flow (e.g. sinking during brief encounters with shear or odor enhances settlement onto substrata below, whereas constant swimming enhances contact with surfaces above or beside larvae). Although microscopic organisms swim slowly relative to ambient water flow, their locomotory behavior in response to the rapidly-fluctuating shears and odors they encounter can affect where they are transported by ambient water movement.

  19. Report from Workshop on VOCs in diving chambers

    International Nuclear Information System (INIS)

    Crosbie, A.; Simpson, M.

    2000-05-01

    This report of the 'Setting the Standards' workshop on the problems of volatile organic compounds (VOCs) in diving in offshore operations, sponsored jointly by the UK Health and Safety Executive Offshore Safety Division and the Stolt Rockwater Joint Venture, gives details of the papers presented covering the chemical contamination of diver's atmosphere, sampling protocols and methods, analytical procedures used for VOCs in hyperbaric chambers, and contamination in buildings. The setting of exposure limits in the UK, the derivation of threshold limiting values (TVLs), the selection of Tenax tubes for atmospheric sampling, organic contaminant monitoring, and NASA's approach to contamination in the space environment are examined, and dealing with contamination problems in a submarine atmosphere, and the simulation of a condensate spillage in a diving bell are discussed. Guidelines for the measurement of VOCs in hyperbaric chambers are given in the appendices

  20. Swimming and other activities: applied aspects of fish swimming performance

    Science.gov (United States)

    Castro-Santos, Theodore R.; Farrell, A.P.

    2011-01-01

    Human activities such as hydropower development, water withdrawals, and commercial fisheries often put fish species at risk. Engineered solutions designed to protect species or their life stages are frequently based on assumptions about swimming performance and behaviors. In many cases, however, the appropriate data to support these designs are either unavailable or misapplied. This article provides an overview of the state of knowledge of fish swimming performance – where the data come from and how they are applied – identifying both gaps in knowledge and common errors in application, with guidance on how to avoid repeating mistakes, as well as suggestions for further study.

  1. Do the kinematics of a baulked take-off in springboard diving differ from those of a completed dive.

    Science.gov (United States)

    Barris, Sian; Farrow, Damian; Davids, Keith

    2013-01-01

    Consistency and invariance in movements are traditionally viewed as essential features of skill acquisition and elite sports performance. This emphasis on the stabilization of action has resulted in important processes of adaptation in movement coordination during performance being overlooked in investigations of elite sport performance. Here we investigate whether differences exist between the movement kinematics displayed by five, elite springboard divers (age 17 ± 2.4 years) in the preparation phases of baulked and completed take-offs. The two-dimensional kinematic characteristics of the reverse somersault take-off phases (approach and hurdle) were recorded during normal training sessions and used for intra-individual analysis. All participants displayed observable differences in movement patterns at key events during the approach phase; however, the presence of similar global topological characteristics suggested that, overall, participants did not perform distinctly different movement patterns during completed and baulked dives. These findings provide a powerful rationale for coaches to consider assessing functional variability or adaptability of motor behaviour as a key criterion of successful performance in sports such as diving.

  2. Analysis of Sport Nutrition and Diet for Swimming Athletes

    OpenAIRE

    Jun An

    2014-01-01

    This current study analyzed nutrition and dietary structure of swimming athletes to clarify issues in nutrition and dietary structure of swimming athletes, based on which we designed achievable nutrition and diet strategies to equip the swimming athletes with the tools to achieve an adequate sport nutrition which helps them improve results. Firstly, we collected literatures about nutrition and diet of swimming athletes. Secondly, 40 swimming athletes were assigned to the test group and the co...

  3. Thermal status of saturation divers during operational dives in the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Mekjavic, I.B.; Golden, F.St.C.; Eglin, C.M.; Tipton, M.J.

    1999-08-01

    This report summarises the findings of a study investigating the body temperature responses of divers at different depths, seasons, and locations in order to evaluated the effectiveness of current equipment and diving procedures and especially that of the thermal protection to maintain the safety of the diver. Details of the thermal monitoring system and the field study examining diving suit microclimate temperature, skin temperature, core temperature, thermal comfort, and fluid balance are outlined, and recommendations are given.

  4. An Ecofeminist Approach to Adrienne Rich's Poem "Diving into the Wreck" Adrienne

    OpenAIRE

    ERKAN, Ayça Ülker

    2012-01-01

    This study examines Adrienne Rich\\'s poem “Diving into the Wreck” (1973) through ecofeminist criticism. Rich\\'s ecopoetry questions assumptions about feminine subjectivity and female consciousness, patriarchal abuse, and indifference regarding women. With the androgynous persona in the poem “I”, Rich moves beyond the limits of gender and sexes to give room to form female subjectivity. Persona in the poem starts to explore and express her feminine identity and sexuality by figuratively “diving...

  5. Swimming performance of a biomimetic compliant fish-like robot

    Science.gov (United States)

    Epps, Brenden P.; Valdivia Y Alvarado, Pablo; Youcef-Toumi, Kamal; Techet, Alexandra H.

    2009-12-01

    Digital particle image velocimetry and fluorescent dye visualization are used to characterize the performance of fish-like swimming robots. During nominal swimming, these robots produce a ‘V’-shaped double wake, with two reverse-Kármán streets in the far wake. The Reynolds number based on swimming speed and body length is approximately 7500, and the Strouhal number based on flapping frequency, flapping amplitude, and swimming speed is 0.86. It is found that swimming speed scales with the strength and geometry of a composite wake, which is constructed by freezing each vortex at the location of its centroid at the time of shedding. Specifically, we find that swimming speed scales linearly with vortex circulation. Also, swimming speed scales linearly with flapping frequency and the width of the composite wake. The thrust produced by the swimming robot is estimated using a simple vortex dynamics model, and we find satisfactory agreement between this estimate and measurements made during static load tests.

  6. Assessing the Social Carrying Capacity of Diving Sites in Mabul Island, Malaysia

    Science.gov (United States)

    Zhang, Liye; Chung, ShanShan

    2015-12-01

    This study has explored social carrying capacity of an underwater environment based on divers' perceived crowding. Two dimensions were assessed, the number of divers seen and the proximity of diver. Data were obtained from a survey of 132 divers dived in Mabul Island, Malaysia during 2013-2014. Photographs depicting four levels of diver number and four levels of diver proximity in different combinations were shown to the respondents for assessing their acceptability. Between the two variables, the "number of divers" was the most influential factor for divers' perceived crowding. Divers would start to feel unacceptably crowded if 8-9 divers were visible to them at one time. Based on this, it is likely that the use level of diving sites in Mabul Island has already exceeded its social carrying capacity. Implications for future research and diving tourism management for Mabul Island are also discussed in the paper.

  7. Assessing the Social Carrying Capacity of Diving Sites in Mabul Island, Malaysia.

    Science.gov (United States)

    Zhang, Liye; Chung, ShanShan

    2015-12-01

    This study has explored social carrying capacity of an underwater environment based on divers' perceived crowding. Two dimensions were assessed, the number of divers seen and the proximity of diver. Data were obtained from a survey of 132 divers dived in Mabul Island, Malaysia during 2013-2014. Photographs depicting four levels of diver number and four levels of diver proximity in different combinations were shown to the respondents for assessing their acceptability. Between the two variables, the "number of divers" was the most influential factor for divers' perceived crowding. Divers would start to feel unacceptably crowded if 8-9 divers were visible to them at one time. Based on this, it is likely that the use level of diving sites in Mabul Island has already exceeded its social carrying capacity. Implications for future research and diving tourism management for Mabul Island are also discussed in the paper.

  8. THE IMPACT OF TECHNICAL ABILITY TO SWIMMING PERFORMANCE OF THE MIXED SWIMMING AT 100m IN COLLEGE FASTO

    Directory of Open Access Journals (Sweden)

    Elvira Beganović

    2011-08-01

    Full Text Available The aim of this study was to determine the impact of technical ability to swim (the starting point, the techniques and turns, within each of these techniques of swimming (freestyle, backstroke, breaststroke and butterfly marked as input or predictor variables, the performance of mixed swimming in the 100m, marked as output or criterion variable. The study was conducted on a sample of 31 students, females, aged from 20-24 years, with the help of the testing (assessment, technical skills of swimming (start, the techniques and turns: OCJKSTR, OCJKTEH, OCJKOKR, OCJLSTR, OCJLTEH, OCJLOKR, OCJPSTR, OCJPTEH, OCJPOKR, OCJDSTR, OCJDTEH, OCJDOKR and mixed swimming in the 100m (OCJPM100, the following order: butterfly, back, breaststroke, freestyle. Analyzing the presented results of regression analysis can be stated that after testing (assessment of all predictor system statistically the most significant impact on the criterion variable had the following variables: assessment techniques freestyle (OCJKTEH, evaluation of starting breast stroke (OCJPSTR and assessment of breast stroke turns (OCJPOKR.

  9. (Important hygienic aspects for swimming pools (author's transl))

    Energy Technology Data Exchange (ETDEWEB)

    Somosi, G

    1981-01-01

    The major epidemics which occurred in Hungary and originated from water in swimming pools are reported. The difficulties encountered in producing epidemiological evidence and in monitoring infections originating from water in swimming pools are mentioned. The possibilities of controlling the water quality in swimming pools and of preventing infections are discussed. Reference is made to the existing bacteriological limit values in Hungary to be observed in the recirculation of water in swimming pools.

  10. Petrochemical Results for Volcanic Rocks recovered from SHINKAI 6500 diving on the Bonin Ridge (27°15'N-28°25'N): submarine extension of Ogasawara forearc volcanism

    Science.gov (United States)

    Bloomer, S. H.; Kimura, J.; Stern, R. J.; Ohara, Y.; Ishii, T.; Ishizuka, O.; Haraguchi, S.; Machida, S.; Reagan, M.; Kelley, K.; Hargrove, U.; Wortel, M.; Li, Y. B.

    2004-12-01

    Four SHINKAI 6500 submersible dives (dive #823 to #826) were performed along the Bonin Ridge escarpment west of Ogasawara (Bonin) Islands in the West Pacific during May 2004, in the hopes of finding exposures of lower crust of the IBM forearc. The Ogasawara Islands are located on the Bonin ridge, exposing 48-40 Ma boninites on Chichi-jima and depleted arc tholeiite lavas of the same age on Haha-jima. These extremely depleted lavas are believed to have been generated when subduction began beneath the Izu-Bonin-Mariana oceanic arc system. Subsequent rifting (35-30 Ma) formed the Bonin Trough and a 350 km long N-S trending eastern escarpment (Bonin Ridge), where we concentrated our dives. We observed lavas and volcaniclastic sequences by the four SHINKAI dives along the escarpment, and 16 fresh basaltic to andesitic lava samples have been recovered. The first three dives appear to have sampled volcanic constructs, of presumed Oligocene age, along the escarpment, whereas the last dive sampled exposures similar to Eocene rocks of the Bonin islands, including nummulitic limestone. The lava samples were analyzed by ICP-MS at Shimane University for 30 incompatible trace elements. All samples show arc-like chemical signatures, including elevated concentrations of LIL elements, depletions in Ta and Nb, and spikes in Pb, Sr, and Li. All samples show modest enrichments in LREE. A lava sample from the northernmost dive #824 is identical with the depleted tholeiite from Haha-jima Islands at the southernmost end of the Bonin Ridge in terms of trace element characteristics. Other lava samples from northern three dives (#823, #824, #825) have tholeiitic affinities with more elevated highly incompatible elements. This suggests derivation of the series of lavas by different degree of partial melting of a similar source mantle. Samples from southernmost dive site #826, immediately northwest of Chichi-jima Islands, are boninites with U-shaped REE patterns and relatively enriched Zr and

  11. Movements and diving behavior of internesting green turtles along Pacific Costa Rica.

    Science.gov (United States)

    Blanco, Gabriela S; Morreale, Stephen J; Seminoff, Jeffrey A; Paladino, Frank V; Piedra, Rotney; Spotila, James R

    2013-09-01

    Using satellite transmitters, we determined the internesting movements, spatial ecology and diving behavior of East Pacific green turtles (Chelonia mydas) nesting on Nombre de Jesús and Zapotillal beaches along the Pacific coast of northwestern Costa Rica. Kernel density analysis indicated that turtles spent most of their time in a particularly small area in the vicinity of the nesting beaches (50% utilization distribution was an area of 3 km(2) ). Minimum daily distance traveled during a 12 day internesting period was 4.6 ± 3.5 km. Dives were short and primarily occupied the upper 10 m of the water column. Turtles spent most of their time resting at the surface and conducting U-dives (ranging from 60 to 81% of the total tracking time involved in those activities). Turtles showed a strong diel pattern, U-dives mainly took place during the day and turtles spent a large amount of time resting at the surface at night. The lack of long-distance movements demonstrated that this area was heavily utilized by turtles during the nesting season and, therefore, was a crucial location for conservation of this highly endangered green turtle population. The unique behavior of these turtles in resting at the surface at night might make them particularly vulnerable to fishing activities near the nesting beaches. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  12. Impulsive sounds change European seabass swimming patterns: Influence of pulse repetition interval

    International Nuclear Information System (INIS)

    Neo, Y.Y.; Ufkes, E.; Kastelein, R.A.; Winter, H.V.; Cate, C. ten; Slabbekoorn, H.

    2015-01-01

    Highlights: • We exposed impulsive sounds of different repetition intervals to European seabass. • Immediate behavioural changes mirrored previous indoor & outdoor studies. • Repetition intervals influenced the impacts differentially but not the recovery. • Sound temporal patterns may be more important than some standard metrics. - Abstract: Seismic shootings and offshore pile-driving are regularly performed, emitting significant amounts of noise that may negatively affect fish behaviour. The pulse repetition interval (PRI) of these impulsive sounds may vary considerably and influence the behavioural impact and recovery. Here, we tested the effect of four PRIs (0.5–4.0 s) on European seabass swimming patterns in an outdoor basin. At the onset of the sound exposures, the fish swam faster and dived deeper in tighter shoals. PRI affected the immediate and delayed behavioural changes but not the recovery time. Our study highlights that (1) the behavioural changes of captive European seabass were consistent with previous indoor and outdoor studies; (2) PRI could influence behavioural impact differentially, which may have management implications; (3) some acoustic metrics, e.g. SEL cum , may have limited predictive power to assess the strength of behavioural impacts of noise. Noise impact assessments need to consider the contribution of sound temporal structure

  13. EFFECTIVENESS OF DOUBLE WASH SWIM-UP VERSUS DOUBLE DENSITY GRADIENT SWIM-UP TECHNIQUE OF SPERM PREPARATION IN IN VITRO FERTILISATION

    Directory of Open Access Journals (Sweden)

    Srinivas Sangisapu

    2017-10-01

    Full Text Available BACKGROUND Recovery of optimum number of good quality of spermatozoa is an important component of In Vitro Fertilisation (IVF. This is achieved by sperm preparation methods involving separation and recovery of capacitated sperms. Double Wash Swim-up (DWSU and Double Density Gradient Swim-up (DDGSU are two most accepted methods. Cochrane systematic review (2007 finds no clear benefit of one method over the other in Intrauterine Insemination (IUI. Systematic review on effectiveness of these preparations in IVF is lacking. Effectiveness is generally assessed in terms recovery rates of the sperms. Capability of successful fertilisation of good quality oocytes should ideally be the functional endpoint for evaluating effectiveness of sperm preparation methods. The aim of the study is to1. Compare the successful fertilisation rates of oocytes inseminated by semen preparation of Double Wash Swim-up (DWSU vis-a-vis by Double Density Gradient Swim-up (DDGSU method. 2. Evaluate the effectiveness of fertilisation of oocytes by Double Wash Swim-up method (DWSU vis-a-vis Double Density Gradient Swim-up (DDGSU method. MATERIALS AND METHODS A retrospective cohort study was conducted on infertile couples undergoing IVF from June 2014 to June 2017 at an ART Centre of a tertiary care hospital. The male partners were normozoospermic and female partners were normoresponsive to controlled ovarian stimulation and oocyte retrieval. RESULTS 70 male partners were subjected to double wash swim-up and 64 underwent double density gradient swim-up preparation. 1296 good quality oocytes were retrieved in their respective female partners. 452 (61% out of 742 oocytes were successfully fertilised after insemination by semen prepared by DWSU method. 378 (68% oocytes out of 554 were fertilised by insemination with semen prepared by DDGSU method. There seems to be strong association (RR=1.12 of fertilisation success with oocytes exposed to semen prepared by Double Density Gradient

  14. Critical evaluation of oxygen-uptake assessment in swimming.

    Science.gov (United States)

    Sousa, Ana; Figueiredo, Pedro; Pendergast, David; Kjendlie, Per-Ludvik; Vilas-Boas, João P; Fernandes, Ricardo J

    2014-03-01

    Swimming has become an important area of sport science research since the 1970s, with the bioenergetic factors assuming a fundamental performance-influencing role. The purpose of this study was to conduct a critical evaluation of the literature concerning oxygen-uptake (VO2) assessment in swimming, by describing the equipment and methods used and emphasizing the recent works conducted in ecological conditions. Particularly in swimming, due to the inherent technical constraints imposed by swimming in a water environment, assessment of VO2max was not accomplished until the 1960s. Later, the development of automated portable measurement devices allowed VO2max to be assessed more easily, even in ecological swimming conditions, but few studies have been conducted in swimming-pool conditions with portable breath-by-breath telemetric systems. An inverse relationship exists between the velocity corresponding to VO2max and the time a swimmer can sustain it at this velocity. The energy cost of swimming varies according to its association with velocity variability. As, in the end, the supply of oxygen (whose limitation may be due to central-O2 delivery and transportation to the working muscles-or peripheral factors-O2 diffusion and utilization in the muscles) is one of the critical factors that determine swimming performance, VO2 kinetics and its maximal values are critical in understanding swimmers' behavior in competition and to develop efficient training programs.

  15. Swimming and feeding of mixotrophic biflagellates

    DEFF Research Database (Denmark)

    Dölger, Julia; Nielsen, Lasse Tor; Kiørboe, Thomas

    2017-01-01

    Many unicellular flagellates are mixotrophic and access resources through both photosynthesis and prey capture. Their fitness depends on those processes as well as on swimming and predator avoidance. How does the flagellar arrangement and beat pattern of the flagellate affect swimming speed...... with variable position next to a no-slip sphere. Utilizing the observations and the model we find that puller force arrangements favour feeding, whereas equatorial force arrangements favour fast and quiet swimming. We determine the capture rates of both passive and motile prey, and we show that the flow...

  16. Kick, Stroke and Swim: Complement Your Swimming Program by Engaging the Whole Body on Dry Land and in the Pool

    Science.gov (United States)

    Flynn, Susan; Duell, Kelly; Dehaven, Carole; Heidorn, Brent

    2017-01-01

    The Kick, Stroke and Swim (KSS) program can be used to engage students in swimming-skill acquisition and fitness training using a variety of modalities, strategies and techniques on dry land. Practicing swim strokes and techniques on land gives all levels of swimmers--from beginner to competitive--a kinesthetic awareness of the individual…

  17. Phylogeny of diving beetles reveals a coevolutionary arms race between the sexes.

    Directory of Open Access Journals (Sweden)

    Johannes Bergsten

    Full Text Available BACKGROUND: Darwin illustrated his sexual selection theory with male and female morphology of diving beetles, but maintained a cooperative view of their interaction. Present theory suggests that instead sexual conflict should be a widespread evolutionary force driving both intersexual coevolutionary arms races and speciation. METHODOLOGY/PRINCIPAL FINDINGS: We combined Bayesian phylogenetics, complete taxon sampling and a multi-gene approach to test the arms race scenario on a robust diving beetle phylogeny. As predicted, suction cups in males and modified dorsal surfaces in females showed a pronounced coevolutionary pattern. The female dorsal modifications impair the attachment ability of male suction cups, but each antagonistic novelty in females corresponds to counter-differentiation of suction cups in males. CONCLUSIONS: A recently diverged sibling species pair in Japan is possibly one consequence of this arms race and we suggest that future studies on hypoxia might reveal the key to the extraordinary selection for female counter-adaptations in diving beetles.

  18. Transitions between three swimming gaits in Paramecium escape.

    Science.gov (United States)

    Hamel, Amandine; Fisch, Cathy; Combettes, Laurent; Dupuis-Williams, Pascale; Baroud, Charles N

    2011-05-03

    Paramecium and other protists are able to swim at velocities reaching several times their body size per second by beating their cilia in an organized fashion. The cilia beat in an asymmetric stroke, which breaks the time reversal symmetry of small scale flows. Here we show that Paramecium uses three different swimming gaits to escape from an aggression, applied in the form of a focused laser heating. For a weak aggression, normal swimming is sufficient and produces a steady swimming velocity. As the heating amplitude is increased, a higher acceleration and faster swimming are achieved through synchronized beating of the cilia, which begin by producing oscillating swimming velocities and later give way to the usual gait. Finally, escape from a life-threatening aggression is achieved by a "jumping" gait, which does not rely on the cilia but is achieved through the explosive release of a group of trichocysts in the direction of the hot spot. Measurements through high-speed video explain the role of trichocysts in defending against aggressions while showing unexpected transitions in the swimming of microorganisms. These measurements also demonstrate that Paramecium optimizes its escape pattern by taking advantage of its inertia.

  19. Role of passive body dynamics in micro-organism swimming in complex fluids

    Science.gov (United States)

    Thomases, Becca; Guy, Robert

    2016-11-01

    We investigate the role of passive body dynamics in the kinematics of swimming micro-organisms in complex fluids. Asymptotic analysis and linear theory are used to predict shape changes that result as body elasticity and fluid elasticity are varied. The analysis is compared with a computational model of a finite length swimmer in a Stokes-Oldroyd-B fluid. Simulations and theory agree quantitatively for small amplitude motions with low fluid elasticity (Deborah number). This may not be surprising as the theory is expected hold in these two regimes. What is more remarkable is that the predicted shape changes match the computational shape changes quantitatively for large amplitudes, even for large Deborah numbers. Shape changes only tell part of the story. Swimming speed depends on other effects as well. We see that shape changes can predict swimming speed well when either the amplitude is small (including large Deborah number) or when the Deborah number is small (including large amplitudes). It is only in the large De AND large amplitude regime where the theory breaks down and swimming speed can no longer be inferred from shape changes alone.

  20. SWIMMING CLASSES IN JUNIOR HIGH SCHOOL STUDENTS’ OPINION

    Directory of Open Access Journals (Sweden)

    Grzegorz Bielec

    2013-02-01

    Full Text Available The role of modern physical education is not only to develop motor abilities of the students, but most of all prevent them from epidemic youth diseases such as obesity or postural defects. Positive attitudes to swimming as a long-life physical activity, instilled in adolescence should be beneficial in adult life. The group of 130 boys and 116 girls of 7th grade junior high school (mean age 14.6 was asked in the survey to present their opinion of obligatory swimming lessons at school. Students of both sexes claimed that they liked swimming classes because they could improve their swimming skills (59% of answers and because of health-related character of water exercises (38%. 33% of students regarded swimming lessons as boring and monotonous, and 25% of them complained about poor pool conditions like chlorine smell, crowded lanes, too low temperature. Majority of the surveyed students saw practical role of swimming in saving others life.

  1. Provisional Crown Dislodgement during Scuba Diving: A Case of Barotrauma

    Directory of Open Access Journals (Sweden)

    Meenal Nitin Gulve

    2013-01-01

    Full Text Available Changes in ambient pressure, for example, during flying, diving, or hyperbaric oxygen therapy, can lead to barotrauma. Although it may seem that this issue was neglected in dental education and research in recent decades, familiarity with and understanding of these facts may be of importance for dental practitioners. We report the case of a patient who experienced barotrauma involving dislodgement of a provisional crown during scuba diving. Patients who are exposed to pressure changes as a part of their jobs or hobbies and their dentists should know the causes of barotrauma. In addition, the clinician must be aware of the possible influence of pressure changes on the retention of dental components.

  2. Applying physiological principles and assessment techniques to swimming the English Channel. A case study.

    Science.gov (United States)

    Acevedo, E O; Meyers, M C; Hayman, M; Haskin, J

    1997-03-01

    This study presents the use of physiological principles and assessment techniques in addressing four objectives that can enhance a swimmer's likelihood of successfully swimming the English Channel. The four objective were: (1) to prescribe training intensities and determine ideal swimming pace; (2) to determine the amount of insulation needed, relative to heat produced, to diminish the likelihood of the swimmer suffering from hypothermia; (3) to calculate the caloric expenditure for the swim and the necessary glucose replacement required to prevent glycogen depletion; and (4) to determine the rate of acclimatization to cold water (15.56 C/60 F). The subject participated in several pool swimming data collection sessions including a tethered swim incremental protocol to determine peak oxygen consumption and onset of lactate accumulation and several steady state swims to determine ideal swimming pace at 4.0 mM/L of lactate. Additionally, these swims provided information on oxygen consumption, which in combination with ultrasound assessment of subcutaneous fat was used to assess heat production and insulation capabilities. Finally, the subject participated in 18 cold water immersions to document acclimatization rate. The data demonstrated the high fitness level of this subject and indicated that at a stroke rate of 63 stokes/min, HR was 130 heats/min and lactate was 4 mM/L. At this swimming pace the swimmer would need to consume 470 kcal of glucose/hr. In addition, the energy produced at this swim pace was 13.25 kcal/min while the energy lost at the present subcutaneous fat quantity was 13.40 kcal/min, requiring a fat weight gain of 6,363.03 g (13.88 lbs) to resist heat loss. Finally, the data from the cold water immersions suggested that acclimatization occurred following two weeks of immersions. There results were provided to the swimmer and utilized in making decisions in preparation for the swim.

  3. Effect of chronic forced swimming stress on whole brain radiation induced cognitive dysfunction and related mechanism

    International Nuclear Information System (INIS)

    Zhang Yuan; Sun Rui; Zhu Yaqun; Zhang Liyuan; Ji Jianfeng; Li Kun; Tian Ye

    2014-01-01

    Objective: To explore whether chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction and possible mechanism. Methods: Thirty-nine one month old male Sprague-Dawley rats were randomized into sham control group(C), swimming group(C-S), radiation group(R), and radiation plus swimming group(R-S). Radiation groups were given a single dose of 20 Gy on whole-brain. Rats in the swimming groups were trained with swimming of 15 min/d, 5 d/w. Rat behavior was performed 3 months after radiation in an order of free activity in an open field and the Morris water maze test including the place navigation and spatial probe tests. Then, the protein expressions of BDNF, P-ERK, T-ERK, P-CREB and T-CREB in the rat hippocampus tissue were assayed by Western blot. Results: On the day 2, in the place navigation test of Morris water maze, the latency of swimming group was significantly shorter than that of sham group, the latency of sham group was significantly shorter than that of radiation group, and the latency of radiation swimming group was significantly shorter than that of radiation group(P 0.05). Western blot assay showed that the expressions of BDNF and its downstream signals including P-ERK and P-CREB were markedly reduced by radiation (P < 0.05), but this reduction was attenuated by the chronic forced swimming stress. Conclusion: The chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction by up-regulating the expressions of BDNF and its downstream signal molecules of P-ERK and P-CREB in hippocampus. (authors)

  4. Effects of air and water temperatures on resting metabolism of auklets and other diving birds.

    Science.gov (United States)

    Richman, Samantha E; Lovvorn, James R

    2011-01-01

    For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg⁻¹) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use.

  5. Water Evaporation in Swimming Baths

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are repres......This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which...... are represented in instructions for carrying out and running swimming baths. If you follow the instructions you can achieve less investments, less heat consumption and a better comfort to the bathers....

  6. Muscle dynamics in fish during steady swimming

    DEFF Research Database (Denmark)

    Shadwick, RE; Steffensen, JF; Katz, SL

    1998-01-01

    SYNOPSIS. Recent research in fish locomotion has been dominated by an interest in the dynamic mechanical properties of the swimming musculature. Prior observations have indicated that waves of muscle activation travel along the body of an undulating fish faster than the resulting waves of muscular...... position in swimming fish. Quantification of muscle contractile properties in cyclic contractions relies on in vitro experiments using strain and activation data collected in vivo. In this paper we discuss the relation between these parameters and body kinematics. Using videoradiographic data from swimming...... constant cross-section of red muscle along much of the body suggests that positive power for swimming is generated fairly uniformly along the length of the fish....

  7. CREATINE SUPPLEMENTATION AND SWIM PERFORMANCE: A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Melissa J. Hopwood

    2006-03-01

    Full Text Available Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle

  8. Swimming dynamics of bidirectional artificial flagella

    NARCIS (Netherlands)

    Namdeo, S.; Khaderi, S. N.; Onck, P. R.

    2013-01-01

    We study magnetic artificial flagella whose swimming speed and direction can be controlled using light and magnetic field as external triggers. The dependence of the swimming velocity on the system parameters (e. g., length, stiffness, fluid viscosity, and magnetic field) is explored using a

  9. Swimming and muscle structure in fish

    NARCIS (Netherlands)

    Spierts, I.L.Y.

    1999-01-01

    In this series of studies the relations between swimming behaviour of fish in general and extreme swimming responses in particular (called fast starts or escape responses) and the structure and ontogeny of the muscle system was investigated. Special attention was paid to relate functional

  10. Hydrodynamic attraction of swimming microorganisms by surfaces

    OpenAIRE

    Berke, Allison P.; Turner, Linda; Berg, Howard C.; Lauga, Eric

    2008-01-01

    Cells swimming in confined environments are attracted by surfaces. We measure the steady-state distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to their re-orientation in the direction parallel to the surfaces, as well as their attraction by the c...

  11. Quiet swimming at low Reynolds number

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Wadhwa, Navish; Kiørboe, Thomas

    2015-01-01

    The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode that elim......The stresslet provides a simple model of the flow created by a small, freely swimming and neutrally buoyant aquatic organism and shows that the far field fluid disturbance created by such an organism in general decays as one over distance squared. Here we discuss a quieter swimming mode...... that eliminates the stresslet component of the flow and leads to a faster spatial decay of the fluid disturbance described by a force quadrupole that decays as one over distance cubed. Motivated by recent experimental results on fluid disturbances due to small aquatic organisms, we demonstrate that a three......-Stokeslet model of a swimming organism which uses breast stroke type kinematics is an example of such a quiet swimmer. We show that the fluid disturbance in both the near field and the far field is significantly reduced by appropriately arranging the propulsion apparatus, and we find that the far field power laws...

  12. An arboreal spider protects its offspring by diving into the water of tank bromeliads.

    Science.gov (United States)

    Hénaut, Yann; Corbara, Bruno; Azémar, Frédéric; Céréghino, Régis; Dézerald, Olivier; Dejean, Alain

    2018-03-01

    Cupiennius salei (Ctenidae) individuals frequently live in association with tank bromeliads, including Aechmea bracteata, in Quintana Roo (Mexico). Whereas C. salei females without egg sacs hunt over their entire host plant, females carrying egg sacs settle above the A. bracteata reservoirs they have partially sealed with silk. There they avoid predators that use sight to detect their prey, as is known for many bird species. Furthermore, if a danger is more acute, these females dive with their egg sacs into the bromeliad reservoir. An experiment showed that this is not the case for males or females without egg sacs. In addition to the likely abundance of prey found therein, the potential of diving into the tank to protect offspring may explain the close association of this spider with bromeliads. These results show that, although arboreal, C. salei evolved a protective behavior using the water of tank bromeliads to protect offspring. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  13. Mobility, expansion and management of a multi-species scuba diving fishery in East Africa.

    Directory of Open Access Journals (Sweden)

    Hampus Eriksson

    Full Text Available BACKGROUND: Scuba diving fishing, predominantly targeting sea cucumbers, has been documented to occur in an uncontrolled manner in the Western Indian Ocean and in other tropical regions. Although this type of fishing generally indicates a destructive activity, little attention has been directed towards this category of fishery, a major knowledge gap and barrier to management. METHODOLOGY AND PRINCIPAL FINDINGS: With the aim to capture geographic scales, fishing processes and social aspects the scuba diving fishery that operate out of Zanzibar was studied using interviews, discussions, participant observations and catch monitoring. The diving fishery was resilient to resource declines and had expanded to new species, new depths and new fishing grounds, sometimes operating approximately 250 km away from Zanzibar at depths down to 50 meters, as a result of depleted easy-access stock. The diving operations were embedded in a regional and global trade network, and its actors operated in a roving manner on multiple spatial levels, taking advantage of unfair patron-client relationships and of the insufficient management in Zanzibar. CONCLUSIONS AND SIGNIFICANCE: This study illustrates that roving dynamics in fisheries, which have been predominantly addressed on a global scale, also take place at a considerably smaller spatial scale. Importantly, while proposed management of the sea cucumber fishery is often generic to a simplified fishery situation, this study illustrates a multifaceted fishery with diverse management requirements. The documented spatial scales and processes in the scuba diving fishery emphasize the need for increased regional governance partnerships to implement management that fit the spatial scales and processes of the operation.

  14. Effects of Swimming and Cycling Exercise Intervention on Vascular Function in Patients With Osteoarthritis.

    Science.gov (United States)

    Alkatan, Mohammed; Machin, Daniel R; Baker, Jeffrey R; Akkari, Amanda S; Park, Wonil; Tanaka, Hirofumi

    2016-01-01

    Swimming exercise is an ideal and excellent form of exercise for patients with osteoarthritis (OA). However, there is no scientific evidence that regular swimming reduces vascular dysfunction and inflammation and elicits similar benefits compared with land-based exercises such as cycling in terms of reducing vascular dysfunction and inflammation in patients with OA. Forty-eight middle-aged and older patients with OA were randomly assigned to swimming or cycling training groups. Cycling training was included as a non-weight-bearing land-based comparison group. After 12 weeks of supervised exercise training, central arterial stiffness, as determined by carotid-femoral pulse wave velocity, and carotid artery stiffness, through simultaneous ultrasound and applanation tonometry, decreased significantly after both swimming and cycling training. Vascular endothelial function, as determined by brachial flow-mediated dilation, increased significantly after swimming but not after cycling training. Both swimming and cycling interventions reduced interleukin-6 levels, whereas no changes were observed in other inflammatory markers. In conclusion, these results indicate that regular swimming exercise can exert similar or even superior effects on vascular function and inflammatory markers compared with land-based cycling exercise in patients with OA who often has an increased risk of developing cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Rapid maturation of the muscle biochemistry that supports diving in Pacific walruses (Odobenus rosmarus divergens)

    Science.gov (United States)

    Norem, Shawn R.; Jay, Chadwick V.; Burns, Jennifer M.; Fischbach, Anthony S.

    2015-01-01

    Physiological constraints dictate animals’ ability to exploit habitats. For marine mammals, it is important to quantify physiological limits that influence diving and their ability to alter foraging behaviors. We characterized age-specific dive limits of walruses by measuring anaerobic (acid-buffering capacity) and aerobic (myoglobin content) capacities of the muscles that power hind (longissimus dorsi) and fore (supraspinatus) flipper propulsion. Mean buffering capacities were similar across muscles and age classes (a fetus, five neonatal calves, a 3 month old and 20 adults), ranging from 41.31 to 54.14 slykes and 42.00 to 46.93 slykes in the longissimus and supraspinatus, respectively. Mean myoglobin in the fetus and neonatal calves fell within a narrow range (longissimus: 0.92–1.68 g 100 g−1 wet muscle mass; supraspinatus: 0.88–1.64 g 100 g−1 wet muscle mass). By 3 months post-partum, myoglobin in the longissimus increased by 79%, but levels in the supraspinatus remained unaltered. From 3 months post-partum to adulthood, myoglobin increased by an additional 26% in the longissimus and increased by 126% in the supraspinatus; myoglobin remained greater in the longissimus compared with the supraspinatus. Walruses are unique among marine mammals because they are born with a mature muscle acid-buffering capacity and attain mature myoglobin content early in life. Despite rapid physiological development, small body size limits the diving capacity of immature walruses and extreme sexual dimorphism reduces the diving capacity of adult females compared with adult males. Thus, free-ranging immature walruses likely exhibit the shortest foraging dives while adult males are capable of the longest foraging dives.

  16. Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus.

    Science.gov (United States)

    Hooker, Sascha K; Baird, Robin W; Fahlman, Andreas

    2009-07-31

    A mathematical model, based on current knowledge of gas exchange and physiology of marine mammals, was used to predict blood and tissue tension N2 (P(N2)) using field data from three beaked whale species: northern bottlenose whales, Cuvier's beaked whales, and Blainville's beaked whales. The objective was to determine if physiology (body mass, diving lung volume, dive response) or dive behaviour (dive depth and duration, changes in ascent rate, diel behaviour) would lead to differences in P(N2) levels and thereby decompression sickness (DCS) risk between species. Diving lung volume and extent of the dive response had a large effect on end-dive P(N2). The dive profile had a larger influence on end-dive P(N2) than body mass differences between species. Despite diel changes in dive behaviour, P(N2) levels showed no consistent trend. Model output suggested that all three species live with tissue P(N2) levels that would cause a significant proportion of DCS cases in terrestrial mammals. Cuvier's beaked whale diving behaviour appears to put them at higher risk than the other species, which may explain their prevalence in strandings after the use of mid-frequency sonar.

  17. Decreasing prolactin levels leads to a lower diving effort but does not affect breeding success in Adélie penguins.

    Science.gov (United States)

    Cottin, Manuelle; Chastel, Olivier; Kato, Akiko; Debin, Marion; Takahashi, Akinori; Ropert-Coudert, Yan; Raclot, Thierry

    2014-02-01

    Current research on seabirds suggests a key role of hormones in the trade-off between self-maintenance and parental investment through their influence on foraging decisions during the breeding period. Although prolactin is known to have major effects on parental care, its role in foraging behavior has rarely been investigated in seabirds to date. The aim of this study was to assess the influence of an experimental decrease in prolactin levels on foraging decisions and its consequences on breeding success in free-living seabirds. To achieve this, we implanted bromocriptine (an inhibitor of prolactin secretion) in male Adélie penguins (Pygoscelis adeliae), monitored their foraging behavior using time-depth recorders over several trips, and recorded their reproductive output. On average 8±0.5days after implantation, we showed that bromocriptine administration led to an efficient decrease in prolactin levels. However, no differences were seen in foraging trip durations between bromocriptine-implanted birds and controls. Moreover, the time spent diving and the number of dives performed per trip were similar in both groups. By contrast, all diving parameters (including diving efficiency) were negatively affected by the treatment during the first at-sea trip following the treatment. Finally, the treatment did not affect adult body condition or chick growth and survival. Our study highlights the short-term negative effect of low prolactin levels on diving effort, but indicates that a short-term and/or low-magnitude decrease in prolactin levels alone is not sufficient to modify consistently the body maintenance or the parental investment of Adélie penguins. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. The backstroke swimming start: state of the art.

    Science.gov (United States)

    de Jesus, Karla; de Jesus, Kelly; Fernandes, Ricardo J; Vilas-Boas, João Paulo; Sanders, Ross

    2014-09-29

    As sprint swimming events can be decided by margins as small as .01 s, thus, an effective start is essential. This study reviews and discusses the 'state of the art' literature regarding backstroke start biomechanics from 23 documents. These included two swimming specific publications, eight peer-reviewed journal articles, three from the Biomechanics and Medicine in Swimming Congress series, eight from the International Society of Biomechanics in Sports Conference Proceedings, one from a Biomechanics Congress and one academic (PhD) thesis. The studies had diverse aims, including swimmers' proficiency levels and data collection settings. There was no single consensus for defining phase descriptions; and kinematics, kinetics and EMG approaches were implemented in laboratory settings. However, researchers face great challenges in improving methods of quantifying valid, reliable and accurate data between laboratory and competition conditions. For example, starting time was defined from the starting signal to distances as disparate as ∼5 m to 22.86 m in several studies. Due to recent rule changes, some of the research outcomes now refer to obsolete backstroke start techniques, and only a few studies considered the actual international rules. This literature review indicated that further research is required, in both laboratory and competition settings focusing on the combined influences of the current rules and block configuration on backstroke starting performances.

  19. Surveying, Modeling and 3d Representation of a wreck for Diving Purposes: Cargo Ship "vera"

    Science.gov (United States)

    Ktistis, A.; Tokmakidis, P.; Papadimitriou, K.

    2017-02-01

    This paper presents the results from an underwater recording of the stern part of a contemporary cargo-ship wreck. The aim of this survey was to create 3D representations of this wreck mainly for recreational diving purposes. The key points of this paper are: a) the implementation of the underwater recording at a diving site; b) the reconstruction of a 3d model from data that have been captured by recreational divers; and c) the development of a set of products to be used by the general public for the ex situ presentation or for the in situ navigation. The idea behind this project is to define a simple and low cost procedure for the surveying, modeling and 3D representation of a diving site. The perspective of our team is to repeat the proposed methodology for the documentation and the promotion of other diving sites with cultural features, as well as to train recreational divers in underwater surveying procedures towards public awareness and community engagement in the maritime heritage.

  20. The fluid dynamics of swimming by jumping in copepods

    DEFF Research Database (Denmark)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-01-01

    Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic...... limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming...... kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods...

  1. Swimming of Paramecium in confined channels

    Science.gov (United States)

    Jung, Sunghwan

    2012-02-01

    Many living organisms in nature have developed a few different swimming modes, presumably derived from hydrodynamic advantage. Paramecium is a ciliated protozoan covered by thousands of cilia with a few nanometers in diameter and tens of micro-meters in length and is able to exhibit both ballistic and meandering motions. First, we characterize ballistic swimming behaviors of ciliated microorganisms in glass capillaries of different diameters and explain the trajectories they trace out. We develop a theoretical model of an undulating sheet with a pressure gradient and discuss how it affects the swimming speed. Secondly, investigation into meandering swimmings within rectangular PDMS channels of dimension smaller than Paramecium length. We find that Paramecium executes a body-bend (an elastic buckling) using the cilia while it meanders. By considering an elastic beam model, we estimate and show the universal profile of forces it exerts on the walls. Finally, we discuss a few other locomotion of Paramecium in other extreme environments like gel.

  2. The Fluid Dynamics of Competitive Swimming

    Science.gov (United States)

    Wei, Timothy; Mark, Russell; Hutchison, Sean

    2014-01-01

    Nowhere in sport is performance so dependent on the interaction of the athlete with the surrounding medium than in competitive swimming. As a result, understanding (at least implicitly) and controlling (explicitly) the fluid dynamics of swimming are essential to earning a spot on the medal stand. This is an extremely complex, highly multidisciplinary problem with a broad spectrum of research approaches. This review attempts to provide a historical framework for the fluid dynamics-related aspects of human swimming research, principally conducted roughly over the past five decades, with an emphasis on the past 25 years. The literature is organized below to show a continuous integration of computational and experimental technologies into the sport. Illustrations from the authors' collaborations over a 10-year period, coupling the knowledge and experience of an elite-level coach, a lead biomechanician at USA Swimming, and an experimental fluid dynamicist, are intended to bring relevance and immediacy to the review.

  3. The role of students’ self-confidence in relation with swimming routines, frequency, and tutor in swimming class

    Science.gov (United States)

    Hartoto, S.; Khory, F. D.; Prakoso, B. B.

    2018-01-01

    It is compulsory for prospective physical education teachers to have the ability to perform swimming. The average of students’ passing in swimming class has reached 72%. Most students who failed to pass the class are those who have had aquaphobia, the condition in which one failed to perceive a situation in a positive and objective, some of which are hard to detect. This perception may come from past experience and it could diminish students’ confidence. Furthermore, the lack of confidence in students may cause unsatisfactory learning results. Therefore it is critical for the teachers to have a comprehensive knowledge of their students’ past experience in formulating a lesson. This research used descriptive qualitative approach. The aim of this article is to investigate the correlation between students’ confidence level and swimming routines, frequency, and tutors in order to succeed swimming class. This article will attempt to describe the results of a research conducted to 139 students of Department of Sport Education Universitas Negeri Surabaya as prospective physical education teachers in Indonesia who took swimming class. Past experience and confidence level are measured by a questionnaire. The results of the research show that students who have a higher level of confidence are those who follow practice routines with adequate frequency and helped by a compatible tutor.

  4. Description of the skeleton of the fossil beaked whale Messapicetus gregarius: searching potential proxies for deep-diving abilities

    Directory of Open Access Journals (Sweden)

    B. Ramassamy

    2018-01-01

    Full Text Available Ziphiidae (beaked whales are a successful family of medium- to large-sized toothed whales. Their extant members perform regular deep dives beyond the photic zone to forage for cephalopods and fish. Conversely, extinct long-snouted stem ziphiids are interpreted as epipelagic predators. However, some aspects of this hypothesis remain unclear due to the lack of clear morphological proxies for recognizing regular deep divers. We compared the forelimb, neck, and pterygoid sinus system of the fossil ziphiid Messapicetus gregarius with those of other odontocetes to evaluate the potential of these body regions as proxies to assess deep-diving specialization. The reconstructed musculature of the neck and forelimb of M. gregarius was also compared with that of other odontocetes. We also quantified variation in the proportions of the forelimb and the hamular fossa of the pterygoid sinus (HF using 16 linear measurements. The degree of association between diving behaviour in extant odontocetes and these measurements was evaluated with and without phylogenetic correction. Reconstruction of the neck musculature suggests that M. gregarius possessed a neck more flexible than most extant ziphiids due to the lower degree of fusion of the cervical vertebrae and the large insertions for the M. longus colli and Mm. intertransversarii ventrales cervicis. While neck rigidity might be related to deep diving, differences in neck flexibility among extant ziphiids indicate a more complex functional interpretation. The relationship between forelimb morphology and diving behaviour was not significant, both with and without phylogenetic correction, suggesting that it cannot be used to assess deep-diving abilities with the parameters considered here. Measurements of the HF revealed successful to evaluate deep-diving abilities in odontocetes, with an enlargement of this structure in deep divers. Considering other evidence that suggests an epipelagic behaviour, we propose

  5. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.

    Directory of Open Access Journals (Sweden)

    Ningyu Li

    Full Text Available Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex street. We also carry out a systematic parametric study of various aspects of the fluid dynamics behind the freely swimming behavior, including the swimming speed, hydrodynamic forces, power requirement and wake vortices. The present results show that the fin thrust as well as swimming velocity is an increasing function of both tail undulating amplitude Ap and oscillating amplitude of the caudal fin θm. Whereas change on the propulsive performance with Ap is associated with the strength of wake vortices and the area of suction region on the fin, the swimming performance improves with θm due to the favorable tilting of the fin that make the pressure difference force more oriented toward the thrust direction. Moreover, the energy loss in the transverse direction and the power requirement increase with Ap but decrease with θm, and this indicates that for achieving a desired swimming speed increasing θm seems more efficiently than increasing Ap. Furthermore, we have compared the current simulations with the published experimental studies on undulatory swimming. Comparisons show that our work tackles the flow regime of natural thunniform swimmers and follows the principal scaling law of undulatory locomotion reported. Finally, this study enables a detailed quantitative analysis, which is difficult to obtain by experiments, of the force production of the thunniform mode as well as its connection to the self-propelled swimming kinematics and vortex wake structure. The current findings help provide insights into the swimming performance and mechanisms of self

  6. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.

    Science.gov (United States)

    Li, Ningyu; Liu, Huanxing; Su, Yumin

    2017-01-01

    Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex street. We also carry out a systematic parametric study of various aspects of the fluid dynamics behind the freely swimming behavior, including the swimming speed, hydrodynamic forces, power requirement and wake vortices. The present results show that the fin thrust as well as swimming velocity is an increasing function of both tail undulating amplitude Ap and oscillating amplitude of the caudal fin θm. Whereas change on the propulsive performance with Ap is associated with the strength of wake vortices and the area of suction region on the fin, the swimming performance improves with θm due to the favorable tilting of the fin that make the pressure difference force more oriented toward the thrust direction. Moreover, the energy loss in the transverse direction and the power requirement increase with Ap but decrease with θm, and this indicates that for achieving a desired swimming speed increasing θm seems more efficiently than increasing Ap. Furthermore, we have compared the current simulations with the published experimental studies on undulatory swimming. Comparisons show that our work tackles the flow regime of natural thunniform swimmers and follows the principal scaling law of undulatory locomotion reported. Finally, this study enables a detailed quantitative analysis, which is difficult to obtain by experiments, of the force production of the thunniform mode as well as its connection to the self-propelled swimming kinematics and vortex wake structure. The current findings help provide insights into the swimming performance and mechanisms of self

  7. Comparison of physical fitness tests in swimming

    OpenAIRE

    Dostálová, Sabina

    2015-01-01

    Title: Comparison of physical fitness tests in swimming. Objective: The aim of this thesis is to evaluate specific tests, used while testing selected physical abilities in swimming. By specific tests we mean tests realized in the water. Selected tests are intended for swim coaches, who train junior to senior age groups. Methods: The chosen method was a comparison of studies, that pursue selected specific tests. We created partial conclusions for every test by summing up the results of differe...

  8. The Effect of Swimming Activity on Lung Function Parameters Among Smoking and Non-Smoking Youth – Research Extended

    Directory of Open Access Journals (Sweden)

    Michalak Katarzyna

    2015-12-01

    Full Text Available Purpose. The purpose of this study was to evaluate the effect of regular swimming activity on the respiratory system of smokers and non-smokers. Methods. The study included 196 students, aged 19 to 24 years, attending weekly swimming classes. All students underwent pulmonary function testing before and after participating in a swimming program for 10 months. Measurements included forced vital capacity (FVC, forced expiratory volume in one second (FEV1, and peak expiratory flow (PEF. Maximal inspiratory and expiratory pressure at the mouth (PImax, PEmax and the percentage carboxyhemoglobin level in blood (%CoHb were also measured. Results. After 10 months of regular swimming activity the values of FVC, PEF, MIP and MEP increased in the non-smoking as well as in the smoking group, while the FEV1 increased only among smokers. The percentage of CoHB level in the blood decreased in both groups. Conclusions. The study confirmed the positive effect of swimming on respiratory system function and the importance of promoting physical activity such as swimming among cigarette smokers as well as non-smokers.

  9. The effect of cold water endurance swimming on core temperature in aspiring English Channel swimmers.

    Science.gov (United States)

    Diversi, Tara; Franks-Kardum, Vanessa; Climstein, Mike

    2016-01-01

    The purpose of this study was to determine if cold water swimmers (CWS) developed hypothermia over a 6-h cold water endurance swim and whether body composition, stroke rate (SR) or personal characteristics correlated with core temperature (TC) change. Nine experienced male and female CWS who were aspiring English Channel (EC) swimmers volunteered to participate. Subjects aimed to complete their 6-h EC qualifying swim (water 15-15.8 °C/air 15-25 °C) while researchers intermittently monitored TC and SR. Data obtained included anthropometry (height, mass, segmental body composition), training volume and EC completion. Of the nine swimmers who volunteered, all successfully completed their EC qualifying swim. Six CWS had complete data included in analysis. One CWS demonstrated hypothermia (34.8 °C) at 6-h. TC rate of decline was slower in the first 3 h (-0.06 °C/hr) compared to the last 3 h (-0.36 °C/hr) of the swim. Older age was significantly correlated to TC change (r = -0.901, p swim was 57.8 spm (range 48-73 spm), and a significant (p pool and open water (OW); however, they swam significantly [t (7) = -2.433, p swim (CWES) of 6-h duration at 15-16 °C resulted in TC reduction in the majority of swimmers regardless of anthropometry. More research is required to determine why some CWS are able to maintain their TC throughout a CWES. Our results indicate that older swimmers are at greater risk of developing hypothermia, and that SR decline is an indicator of TC decline. Our results also suggest that OW swimming training combined with pool training is important for EC swim success.

  10. Laryngoscopy during swimming: A novel diagnostic technique to characterize swimming-induced laryngeal obstruction.

    Science.gov (United States)

    Walsted, Emil S; Swanton, Laura L; van van Someren, Ken; Morris, Tessa E; Furber, Matthew; Backer, Vibeke; Hull, James H

    2017-10-01

    Exercise-induced laryngeal obstruction (EILO) is a key differential diagnosis for respiratory symptoms in athletes and is particularly prevalent in aquatic athletes. A definitive diagnosis of EILO is dependent on laryngoscopy, performed continuously, while an athlete engages in the sport that precipitates their symptoms. This report provides the first description of the feasibility of performing continuous laryngoscopy during exercise in a swimming environment. The report describes the methodology and safety of the use of continuous laryngoscopy while swimming. Laryngoscope, 127:2298-2301, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  11. The Effect of Concurrent Visual Feedback on Controlling Swimming Speed

    Directory of Open Access Journals (Sweden)

    Szczepan Stefan

    2016-03-01

    Full Text Available Introduction. Developing the ability to control the speed of swimming is an important part of swimming training. Maintaining a defined constant speed makes it possible for the athlete to swim economically at a low physiological cost. The aim of this study was to determine the effect of concurrent visual feedback transmitted by the Leader device on the control of swimming speed in a single exercise test. Material and methods. The study involved a group of expert swimmers (n = 20. Prior to the experiment, the race time for the 100 m distance was determined for each of the participants. In the experiment, the participants swam the distance of 100 m without feedback and with visual feedback. In both variants, the task of the participants was to swim the test distance in a time as close as possible to the time designated prior to the experiment. In the first version of the experiment (without feedback, the participants swam the test distance without receiving real-time feedback on their swimming speed. In the second version (with visual feedback, the participants followed a beam of light moving across the bottom of the swimming pool, generated by the Leader device. Results. During swimming with visual feedback, the 100 m race time was significantly closer to the time designated. The difference between the pre-determined time and the time obtained was significantly statistically lower during swimming with visual feedback (p = 0.00002. Conclusions. Concurrently transmitting visual feedback to athletes improves their control of swimming speed. The Leader device has proven useful in controlling swimming speed.

  12. Science foundation Chapter 5 Appendix 5.1: Case study diving ducks

    Science.gov (United States)

    Takekawa, John Y.; De La Cruz, Susan; Ackerman, Joshua T.; Yarris, Gregory S.

    2015-01-01

    Diving ducks are the most abundant group of waterfowl that overwinter in the open bays and ponds of San Francisco Bay (SFB). Species within this group are primarily benthivores that dive to obtain their macroinvertebrate prey in bottom sediments, although at times they may eat plant matter or forage in the water column. These migratory species include bay ducks (lesser scaup Aythya affinis, greater scaup A. marila, canvasback A. valisineria), sea ducks (surf scoter Melanitta perspicillata and bufflehead Bucephala albeola), and a stiff-tailed duck (ruddy duck Oxyura jamaicensis). These species vary from largest to smallest body mass: canvasback, greater scaup, surf scoter, lesser scaup, ruddy duck, and bufflehead. Their breeding grounds range from Central Valley grasslands, intermountain wetlands, prairie potholes, boreal forest, and Arctic tundra. Their wintering populations in SFB are most abundant between October and April, and SFB comprises up to 50% of the number counted during midwinter surveys on the lower Pacific coast. Species are found in all SFB regions, but greater scaup and surf scoter are most often seen in subtidal to intertidal waters and are not commonly found in baylands. In contrast, ruddy duck and bufflehead populations are most abundant in baylands, particularly in managed ponds. Canvasbacks are commonly found at estuaries or creek mouths.

  13. Swimming in air-breathing fishes.

    Science.gov (United States)

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  14. Swimming-pool piles; Piles piscines

    Energy Technology Data Exchange (ETDEWEB)

    Trioulaire, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In France two swimming-pool piles, Melusine and Triton, have just been set in operation. The swimming-pool pile is the ideal research tool for neutron fluxes of the order of 10{sup 13}. This type of pile can be of immediate interest to many research centres, but its cost must be reduced and a break with tradition should be observed in its design. It would be an advantage: - to bury the swimming-pool; - to reject the experimental channel; - to concentrate the cooling circuit in the swimming-pool; - to carry out all manipulations in the water; - to double the core. (author) [French] En France, deux piles piscines, Melusine et Triton, viennent d'entrer en service. La pile piscine est l'outil de recherche ideal pour des flux de neutrons de l'ordre de 10{sup 13}. Ce type de pile peut interesser des maintenant de nombreux centres de recherches mais il faut reduire son prix de revient et rompre avec le conformisme de sa conception. Il y a avantage: - a enterrer la piscine; - a supprimer les canaux experimentaux; - a concentrer le circuit de refrigeration dans la piscine; - a effectuer toutes les manipulations dans l'eau; - a doubler le coeur. (auteur)

  15. 75 FR 81224 - Availability of Recreational Diving, Oil and Gas Operations and Commercial Fishing Seats for the...

    Science.gov (United States)

    2010-12-27

    ... Recreational Diving, Oil and Gas Operations and Commercial Fishing Seats for the Flower Garden Banks National... Service (NOS), National Oceanic and Atmospheric Administration (NOAA), Department of Commerce DOC). ACTION... seats on the Flower Garden Banks National Marine Sanctuary Advisory Council: Recreational Diving, Oil...

  16. 75 FR 36062 - Availability of Conservation Seat and Diving Operations Seat for the Flower Garden Banks National...

    Science.gov (United States)

    2010-06-24

    ... Conservation Seat and Diving Operations Seat for the Flower Garden Banks National Marine Sanctuary Advisory... Flower Garden Banks National Marine Sanctuary Advisory Council: Conservation and Diving Operations... Jennifer Morgan, NOAA--Flower Garden Banks National Marine Sanctuary, 4700 Avenue U, Bldg. 216, Galveston...

  17. Upward swimming of a sperm cell in shear flow.

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  18. Paramecium swimming in capillary tube

    Science.gov (United States)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2012-04-01

    Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.

  19. Optimal swimming of a sheet.

    Science.gov (United States)

    Montenegro-Johnson, Thomas D; Lauga, Eric

    2014-06-01

    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

  20. Calling under pressure: short-finned pilot whales make social calls during deep foraging dives.

    Science.gov (United States)

    Jensen, Frants H; Perez, Jacobo Marrero; Johnson, Mark; Soto, Natacha Aguilar; Madsen, Peter T

    2011-10-22

    Toothed whales rely on sound to echolocate prey and communicate with conspecifics, but little is known about how extreme pressure affects pneumatic sound production in deep-diving species with a limited air supply. The short-finned pilot whale (Globicephala macrorhynchus) is a highly social species among the deep-diving toothed whales, in which individuals socialize at the surface but leave their social group in pursuit of prey at depths of up to 1000 m. To investigate if these animals communicate acoustically at depth and test whether hydrostatic pressure affects communication signals, acoustic DTAGs logging sound, depth and orientation were attached to 12 pilot whales. Tagged whales produced tonal calls during deep foraging dives at depths of up to 800 m. Mean call output and duration decreased with depth despite the increased distance to conspecifics at the surface. This shows that the energy content of calls is lower at depths where lungs are collapsed and where the air volume available for sound generation is limited by ambient pressure. Frequency content was unaffected, providing a possible cue for group or species identification of diving whales. Social calls may be important to maintain social ties for foraging animals, but may be impacted adversely by vessel noise.

  1. A comparison of auditory brainstem responses across diving bird species

    Science.gov (United States)

    Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  2. Mental abilities and performance efficacy under a simulated 480 meters helium-oxygen saturation diving

    Directory of Open Access Journals (Sweden)

    gonglin ehou

    2015-07-01

    Full Text Available Stress in extreme environment severely disrupts human physiology and mental abilities. The present study investigated the cognition and performance efficacy of four divers during a simulated 480 meters helium-oxygen saturation diving. We analyzed the spatial memory, 2D/3D mental rotation functioning, grip strength, and hand-eye coordination ability in four divers during the 0 – 480 meters compression and decompression processes of the simulated diving. The results showed that except for its mild decrease on grip strength, the high atmosphere pressure condition significantly impaired the hand-eye coordination (especially at 300 meters, the reaction time and correct rate of mental rotation, as well as the spatial memory (especially as 410 meters, showing high individual variability. We conclude that the human cognition and performance efficacy are significantly affected during deep water saturation diving.

  3. Calling under pressure: Short-finned pilot whales make social calls during deep foraging dives

    DEFF Research Database (Denmark)

    Jensen, Frants Havmand; Marrero Perez, Jacobo; Johnson, Mark

    2011-01-01

    Toothed whales rely on sound to echolocate prey and communicate with conspecifics, but little is known about how extreme pressure affects pneumatic sound production in deep-diving species with a limited air supply. The short-finned pilot whale (Globicephala macrorhynchus) is a highly social species...... among the deep-diving toothed whales, in which individuals socialize at the surface but leave their social group in pursuit of prey at depths of up to 1000 m. To investigate if these animals communicate acoustically at depth and test whether hydrostatic pressure affects communication signals, acoustic...... DTAGs logging sound, depth and orientation were attached to 12 pilot whales. Tagged whales produced tonal calls during deep foraging dives at depths of up to 800 m. Mean call output and duration decreased with depth despite the increased distance to conspecifics at the surface. This shows...

  4. Unsteady bio-fluid dynamics in flying and swimming

    Science.gov (United States)

    Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen

    2017-08-01

    Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.

  5. Grundfoss: Chlorination of Swimming Pools

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Hogan, John; Andreassen, Viggo

    1998-01-01

    Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools.......Grundfos asked for a model, describing the problem of mixing chemicals, being dosed into water systems, to be developed. The application of the model should be dedicated to dosing aqueous solution of chlorine into swimming pools....

  6. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E; Patankar, Neelesh A

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming) or by forces imparted by the surrounding fluid ("passive" swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  7. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    Science.gov (United States)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Bailey, Sean W.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    In clear shallow waters, light that is transmitted downward through the water column can reflect off the sea floor and thereby influence the water-leaving radiance signal. This effect can confound contemporary ocean color algorithms designed for deep waters where the seafloor has little or no effect on the water-leaving radiance. Thus, inappropriate use of deep water ocean color algorithms in optically shallow regions can lead to inaccurate retrievals of inherent optical properties (IOPs) and therefore have a detrimental impact on IOP-based estimates of marine parameters, including chlorophyll-a and the diffuse attenuation coefficient. In order to improve IOP retrievals in optically shallow regions, a semi-analytical inversion algorithm, the Shallow Water Inversion Model (SWIM), has been developed. Unlike established ocean color algorithms, SWIM considers both the water column depth and the benthic albedo. A radiative transfer study was conducted that demonstrated how SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Properties algorithm (GIOP) and Quasi-Analytical Algorithm (QAA), performed in optically deep and shallow scenarios. The results showed that SWIM performed well, whilst both GIOP and QAA showed distinct positive bias in IOP retrievals in optically shallow waters. The SWIM algorithm was also applied to a test region: the Great Barrier Reef, Australia. Using a single test scene and time series data collected by NASA's MODIS-Aqua sensor (2002-2013), a comparison of IOPs retrieved by SWIM, GIOP and QAA was conducted.

  8. Scaling the Thrust Production and Energetics of Inviscid Intermittent Swimming

    Science.gov (United States)

    Akoz, Emre; Moored, Keith

    2015-11-01

    Many fish have adopted an intermittent swimming gait sometimes referred as a burst-and-coast behavior. By using this gait, fish have been estimated at reducing their energetic cost of swimming by about 50%. Lighthill proposed that the skin friction drag of an undulating body can be around 400% greater than a rigidly-held coasting body, which may explain the energetic savings of intermittent swimming. Recent studies have confirmed the increase in skin friction drag over an undulating body, however, the increase is on the order of 20-70%. This more modest gain in skin friction drag is not sufficient to lead to the observed energy savings. Motivated by these observations, we investigate the inviscid mechanisms behind intermittent swimming for parameters typical of biology. We see that there is an energy savings at a fixed swimming speed for intermittent swimming as compared to continuous swimming. Then we consider three questions: What is the nature of the inviscid mechanism that leads to the observed energy savings, how do the forces and energetics of intermittent swimming scale with the swimming parameters, and what are the limitations to the benefit? Supported by the Office of Naval Research under Program Director Dr. Bob Brizzola, MURI grant number N00014-14-1-0533.

  9. Flow disturbances generated by feeding and swimming zooplankton

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Jiang, Haisong; Goncalves, R. J.

    2014-01-01

    that zooplankton, in which feeding and swimming are separate processes, produce flow disturbances during swimming with a much faster spatial attenuation (velocity u varies with distance r as u ∝ r−3 to r−4) than that produced by zooplankton for which feeding and propulsion are the same process (u ∝ r−1 to r−2...... vortex rings, or by “breast-stroke swimming.” Both produce rapidly attenuating flows. The more “noisy” swimming of those that are constrained by a need to simultaneously feed is due to constantly beating flagella or appendages that are positioned either anteriorly or posteriorly on the (cell) body...

  10. Diving center contribution in preventing radioactive pollution

    International Nuclear Information System (INIS)

    Rus, Simona; Flesteriu, Catalin; Diaconu, Mihai

    2004-01-01

    Applying and developing constructive environment protection measures offers real and long lasting solutions that consolidate our future. In this context the Diving Center contribution in preventing radioactive pollution is enrolled. Our Center performed high quality services with authorised personal. Using their rich human, technological and scientific resources, the armed forces in general and our unity in this case, plays already an important role in supporting the development and natural environment, but results could be even greater and of high impact if the military and civilian requirements would be aligned, valorizing the qualified resources belonging to the military. The environment protection measures are an essential component of the sustainable development, which correctly and duly applied may provide a necessary and realistic option in the eternal confrontation between human activity and correct exploitation of environment. During pressure tests performed over years at the nuclear reactor from Cernavoda, the divers provided: - pressure test at Unit 1 reactor containment (test performed at a pressure of 128 kPa) in order to evaluate the loss rate; - solving previous problems of the sealing system of reactor containment and tracks of electrical cables, pipes, etc; - providing safety procedures for the Cernavoda NPP specialised personnel, after their entering the working area through the small transfer gate; - technical assistance and first aid in case of diving accidents, using the bi-place chamber (fitted with medication transfer sass) provided on site; - supervising the enforcement of legal procedures concerning training, organising and work protection in diving activities; - in case of a collective decompression accident, we had the responsibility to provide necessary treatment of personnel affected in the hyperbaric laboratory. All these activities, even though developed for specific military requirements, may satisfy the saving and protecting needs

  11. SURVEYING, MODELING AND 3D REPRESENTATION OF A WRECK FOR DIVING PURPOSES: CARGO SHIP “VERA”

    Directory of Open Access Journals (Sweden)

    A. Ktistis

    2017-02-01

    Full Text Available This paper presents the results from an underwater recording of the stern part of a contemporary cargo-ship wreck. The aim of this survey was to create 3D representations of this wreck mainly for recreational diving purposes. The key points of this paper are: a the implementation of the underwater recording at a diving site; b the reconstruction of a 3d model from data that have been captured by recreational divers; and c the development of a set of products to be used by the general public for the ex situ presentation or for the in situ navigation. The idea behind this project is to define a simple and low cost procedure for the surveying, modeling and 3D representation of a diving site. The perspective of our team is to repeat the proposed methodology for the documentation and the promotion of other diving sites with cultural features, as well as to train recreational divers in underwater surveying procedures towards public awareness and community engagement in the maritime heritage.

  12. Physiological and Genetic Adaptations to Diving in Sea Nomads

    DEFF Research Database (Denmark)

    Ilardo, Melissa A; Moltke, Ida; Korneliussen, Thorfinn S

    2018-01-01

    Understanding the physiology and genetics of human hypoxia tolerance has important medical implications, but this phenomenon has thus far only been investigated in high-altitude human populations. Another system, yet to be explored, is humans who engage in breath-hold diving. The indigenous Bajau...

  13. Influence of manatees' diving on their risk of collision with watercraft

    Science.gov (United States)

    Edwards, Holly H.; Martin, Julien; Deutsch, Charles J.; Muller, Robert G; Koslovsky, Stacie M.; Smith, Alexander J.; Barlas, Margie E.

    2016-01-01

    Watercraft pose a threat to endangered Florida manatees (Trichechus manatus latirostris). Mortality from watercraft collisions has adversely impacted the manatee population’s growth rate, therefore reducing this threat is an important management goal. To assess factors that contribute to the risk of watercraft strikes to manatees, we studied the diving behavior of nine manatees carrying GPS tags and time–depth recorders in Tampa Bay, Florida, during winters 2002–2006. We applied a Bayesian formulation of generalized linear mixed models to depth data to model the probability (Pt) that manatees would be no deeper than 1.25 m from the water’s surface as a function of behavioral and habitat covariates. Manatees above this threshold were considered to be within striking depth of a watercraft. Seventy-eight percent of depth records (individual range 62–86%) were within striking depth (mean = 1.09 m, max = 16.20 m), illustrating how vulnerable manatees are to strikes. In some circumstances manatees made consecutive dives to the bottom while traveling, even in areas >14 m, possibly to conserve energy. This is the first documentation of potential cost-efficient diving behavior in manatees. Manatees were at higher risk of being within striking depth in shallow water (effectiveness of manatee conservation measures by helping identify areas for protection.

  14. High-altitude diving in river otters: coping with combined hypoxic stresses.

    Science.gov (United States)

    Crait, Jamie R; Prange, Henry D; Marshall, Noah A; Harlow, Henry J; Cotton, Clark J; Ben-David, Merav

    2012-01-15

    River otters (Lontra canadensis) are highly active, semi-aquatic mammals indigenous to a range of elevations and represent an appropriate model for assessing the physiological responses to diving at altitude. In this study, we performed blood gas analyses and compared blood chemistry of river otters from a high-elevation (2357 m) population at Yellowstone Lake with a sea-level population along the Pacific coast. Comparisons of oxygen dissociation curves (ODC) revealed no significant difference in hemoglobin-oxygen (Hb-O(2)) binding affinity between the two populations - potentially because of demands for tissue oxygenation. Instead, high-elevation otters had greater Hb concentrations (18.7 g dl(-1)) than sea-level otters (15.6 g dl(-1)). Yellowstone otters displayed higher levels of the vasodilator nitric oxide (NO), and half the concentration of the serum protein albumin, possibly to compensate for increased blood viscosity. Despite compensation in several hematological and serological parameters, theoretical aerobic dive limits (ADL) were similar between high-elevation and sea-level otters because of the lower availability of O(2) at altitude. Our results suggest that recent disruptions to the Yellowstone Lake food web could be detrimental to otters because at this high elevation, constraints on diving may limit their ability to switch to prey in a deep-water environment.

  15. The effect of antibiotics on swimming and swarming motility of multidrug-resistant Salmonella enterica serovar Typhimurium

    Science.gov (United States)

    Motile bacteria can employ one or more different strategies to move, including swimming, swarming, twitching, gliding, sliding, and darting. Swimming is considered the movement of individual bacteria through a liquid or semi-solid medium, while swarming is the concerted movement of a group of bacte...

  16. On burst-and-coast swimming performance in fish-like locomotion

    International Nuclear Information System (INIS)

    Chung, M-H

    2009-01-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  17. On burst-and-coast swimming performance in fish-like locomotion.

    Science.gov (United States)

    Chung, M-H

    2009-09-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  18. A Forced Damped Oscillation Framework for Undulatory Swimming Provides New Insights into How Propulsion Arises in Active and Passive Swimming

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Patankar, Neelesh A.

    2013-01-01

    A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions (“active” swimming) or by forces imparted by the surrounding fluid (“passive” swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained. PMID:23785272

  19. A forced damped oscillation framework for undulatory swimming provides new insights into how propulsion arises in active and passive swimming.

    Directory of Open Access Journals (Sweden)

    Amneet Pal Singh Bhalla

    Full Text Available A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming or by forces imparted by the surrounding fluid ("passive" swimming, is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.

  20. Sodium bicarbonate improves swimming performance.

    Science.gov (United States)

    Lindh, A M; Peyrebrune, M C; Ingham, S A; Bailey, D M; Folland, J P

    2008-06-01

    Sodium bicarbonate ingestion has been shown to improve performance in single-bout, high intensity events, probably due to an increase in buffering capacity, but its influence on single-bout swimming performance has not been investigated. The effects of sodium bicarbonate supplementation on 200 m freestyle swimming performance were investigated in elite male competitors. Following a randomised, double blind counterbalanced design, 9 swimmers completed maximal effort swims on 3 separate occasions: a control trial (C); after ingestion of sodium bicarbonate (SB: NaHCO3 300 mg . kg (-1) body mass); and after ingestion of a placebo (P: CaCO3 200 mg . kg (-1) body mass). The SB and P agents were packed in gelatine capsules and ingested 90 - 60 min prior to each 200 m swim. Mean 200 m performance times were significantly faster for SB than C or P (1 : 52.2 +/- 4.7; 1 : 53.7 +/- 3.8; 1 : 54.0 +/- 3.6 min : ss; p bicarbonate were all elevated pre-exercise in the SB compared to C and P trials (p < 0.05). Post-200 m blood lactate concentrations were significantly higher following the SB trial compared with P and C (p < 0.05). It was concluded that SB supplementation can improve 200 m freestyle performance time in elite male competitors, most likely by increasing buffering capacity.

  1. Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds

    DEFF Research Database (Denmark)

    Herskin, J; Steffensen, JF

    1998-01-01

    Tail beat frequency of sea bass, Dicentrarchus labrax (L.) (23.5 ± 0·5 cm, LT), swimming at the front of a school was significantly higher than when swimming at the rear, for all water velocities tested from 14·8 to 32 cm s-1. The logarithm of oxygen consumption rate, and the tail beat frequency...... of solitary swimming sea bass (28·8 ± 0·4 cm, LT), were each correlated linearly with swimming speed, and also with one another. The tail beat frequency of individual fish was 9-14% lower when at the rear of a school than when at the front, corresponding to a 9-23% reduction in oxygen consumption rate....

  2. A meta-analysis of steady undulatory swimming

    NARCIS (Netherlands)

    van Weerden, J. Fransje; Reid, Daniel A. P.; Hemelrijk, Charlotte K.

    The mechanics underlying undulatory swimming are of great general interest, both to biologists and to engineers. Over the years, more data of the kinematics of undulatory swimming have been reported. At present, an integrative analysis is needed to determine which general relations hold between

  3. Intra-abdominal pressure during swimming.

    Science.gov (United States)

    Moriyama, S; Ogita, F; Huang, Z; Kurobe, K; Nagira, A; Tanaka, T; Takahashi, H; Hirano, Y

    2014-02-01

    The present study aimed to determine the intra-abdominal pressure during front crawl swimming at different velocities in competitive swimmers and to clarify the relationships between stroke indices and changes in intra-abdominal pressure. The subjects were 7 highly trained competitive collegiate male swimmers. Intra-abdominal pressure was measured during front crawl swimming at 1.0, 1.2 and 1.4 m · s(-1) and during the Valsalva maneuver. Intra-abdominal pressure was taken as the difference between minimum and maximum values, and the mean of 6 stable front crawl stroke cycles was used. Stroke rate and stroke length were also measured as stroke indices. There were significant differences in stroke rate among all velocities (P pressure and stroke rate or stroke length (P pressure and stroke indices when controlling for swimming velocity. These findings do not appear to support the effectiveness of trunk training performed by competitive swimmers aimed at increasing intra-abdominal pressure. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Analytical approximations of diving-wave imaging in constant-gradient medium

    KAUST Repository

    Stovas, Alexey; Alkhalifah, Tariq Ali

    2014-01-01

    behavior and traveltime in a constant-gradient medium to develop insights into the traveltime moveout of diving waves and the image (model) point dispersal (residual) when the wrong velocity is used. The explicit formulations that describe these phenomena

  5. Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression.

    Science.gov (United States)

    Pontier, J-M; Lambrechts, K

    2014-06-01

    We highlighted a relationship between decompression-induced bubble formation and platelet micro-particle (PMP) release after a scuba air-dive. It is known that decompression protocol using oxygen-stop accelerates the washout of nitrogen loaded in tissues. The aim was to study the effect of oxygen deco-stop on bubble formation and cell-derived MP release. Healthy experienced divers performed two scuba-air dives to 30 msw for 30 min, one with an air deco-stop and a second with 100% oxygen deco-stop at 3 msw for 9 min. Bubble grades were monitored with ultrasound and converted to the Kisman integrated severity score (KISS). Blood samples for cell-derived micro-particle analysis (AnnexinV for PMP and CD31 for endothelial MP) were taken 1 h before and after each dive. Mean KISS bubble score was significantly lower after the dive with oxygen-decompression stop, compared to the dive with air-decompression stop (4.3 ± 7.3 vs. 32.7 ± 19.9, p air-breathing decompression stop, we observed an increase of the post-dive mean values of PMP (753 ± 245 vs. 381 ± 191 ng/μl, p = 0.003) but no significant change in the oxygen-stop decompression dive (329 ± 215 vs. 381 +/191 ng/μl, p = 0.2). For the post-dive mean values of endothelial MP, there was no significant difference between both the dives. The Oxygen breathing during decompression has a beneficial effect on bubble formation accelerating the washout of nitrogen loaded in tissues. Secondary oxygen-decompression stop could reduce bubble-induced platelet activation and the pro-coagulant activity of PMP release preventing the thrombotic event in the pathogenesis of decompression sickness.

  6. Dive Activities for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Information about dive activities were recorded by personnel during the "Bioluminescence 2009" expedition, July 20 through 31, 2009. Additional information was...

  7. Changes over swim lessons in parents' perceptions of children's supervision needs in drowning risk situations: "His swimming has improved so now he can keep himself safe".

    Science.gov (United States)

    Morrongiello, Barbara A; Sandomierski, Megan; Spence, Jeffrey R

    2014-07-01

    The aim of this longitudinal study was to determine how children's participation in swim lessons impacts parents' appraisals of children's drowning risk and need for supervision. Parents with 2-5-year old children enrolled in community swim lessons completed the same survey measures up to 4 times over an 8-month period. Multilevel regression analyses examining temporal relationships between parents' perceptions of their child's swim ability, supervision needs around water, and children's ability to keep themselves safe in drowning risk situations revealed that as children progressed through swim lessons, parents' perceptions of their child's swim ability and their belief that children are capable of keeping themselves safe around water increased. Further, the relation between parents' perceptions of swim ability and judgments of children's supervision needs was mediated through parents' judgment about their child's ability to secure their own safety near water. As parents perceive their child to be accumulating swim skills, they increasingly believe that children are capable of keeping themselves from drowning, and as a result, that less active parent supervision of their child is necessary. Implications of these findings for intervention efforts to counter this unwelcome way of thinking that may arise through continued participation in swim lessons are discussed. Incorporating a parent-focused component into children's learn-to-swim programs to promote more realistic appraisals of children's supervision needs and drowning risks may further enhance the positive benefits that swim lessons have for children's safety.

  8. Swimming Pool Safety

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Safety & Prevention Immunizations All Around At Home At Play ... Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to ...

  9. Recreational scuba diving in patients with congenital heart disease: Time for new guidelines.

    Science.gov (United States)

    Schleich, Jean-Marc; Schnell, Frédéric; Brouant, Benoît; Phan, Gerald; Lafay, Vincent; Bonnemains, Laurent; Bédossa, Marc

    2016-01-01

    The number of recreational scuba divers is steadily increasing. In its latest recommendations, the French Federation of Undersea Studies and Sports listed congenital heart disease as a formal and final contraindication to scuba diving. On the other hand, with the progress made in their management, the prognosis and quality of life of patients with congenital heart diseases have improved considerably, enabling them to engage in physical and sports endeavours, which are known to confer general health and psychological benefits. As a consequence, the ability of these patients to dive has become a regular and recurrent issue. We review the various types of scuba diving, the physical performance required for its practice, its effects on cardiovascular function and the elements that need to be considered before recommending whether it can be practiced safely at various levels of difficulty. Because of the diversity and broad heterogeneity of congenital heart diseases, a detailed evaluation of each patient's performance based on clinical criteria common to all congenital heart diseases is recommended. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. TECHNIQUE AND METHODOLOGY OF TRAINING IN SWIMMING CRAWL

    Directory of Open Access Journals (Sweden)

    Selim Alili

    2013-07-01

    Full Text Available The paper shows the technique and methodology training crawl swimming. Developed: the position of the head and body, footwork, hand movements, exercises for training footwork training drills and exercises for improving coordination technique on dry land and in water. Stated that accomplishes this swimmer swimming technique allows fast and is the fastest discipline. Therefore we can say that it is a favorite way of swimming and a pleasure to watch on the big stage.

  11. Relevance of postmortem radiology to the diagnosis of fatal cerebral gas embolism from compressed air diving.

    Science.gov (United States)

    Cole, A J; Griffiths, D; Lavender, S; Summers, P; Rich, K

    2006-05-01

    To test the hypothesis that artefact caused by postmortem off-gassing is at least partly responsible for the presence of gas within the vascular system and tissues of the cadaver following death associated with compressed air diving. Controlled experiment sacrificing sheep after a period of simulated diving in a hyperbaric chamber and carrying out sequential postmortem computed tomography (CT) on the cadavers. All the subject sheep developed significant quantities of gas in the vascular system within 24 hours, as demonstrated by CT and necropsy, while the control animals did not. The presence of gas in the vascular system of human cadavers following diving associated fatalities is to be expected, and is not necessarily connected with gas embolism following pulmonary barotrauma, as has previously been claimed.

  12. Risk of Decompression Sickness in Shallow No-Stop Air Diving An Analysis of Naval Safety Center Data 1990-1994

    National Research Council Canada - National Science Library

    Flynn, E

    1998-01-01

    ...) in shallow no-stop air diving using current U.S. Navy no-decompression limits (USN57). Navy and Marine Corp divers performed 163,400 no-decompression dives between 21 and 55 feet of sea water (fsw...

  13. Evaluation of swimming capability and potential velocity barrier problems for fish. Part B: New telemetric approaches to the assessment of fish swimming performance

    International Nuclear Information System (INIS)

    Scruton, D. A.; Goosney, R. G.; McKinley, R. S.; Booth, R. K.; Colavecchia, M.

    1998-08-01

    This report represents the second part of a study undertaken to develop information related to swimming capability of several important fish species. The study will provide biological design criteria to mitigate potential velocity barrier problems associated with hydroelectric power plants. This part of the report focuses on the development and evaluation of approaches to assessing locomotory activity, swimming performance and energy load costs to fish under naturally occurring conditions and in relation to potential barriers. The study involved implantation of a bio-sensitive radio transmitter (electromyogram (EMG)) tag in the swimming muscle of fish, calibration of locomotory ability and energetic scope, and subsequent use of EMG signals to assess swimming performance and metabolic costs in situ. Digital signal processing (DSP) with antennae switching was also used to study high speed swimming performance, behaviour, and migratory strategy in relation to ascent of an experimental flume. The techniques and technologies developed indicate the complexity of factors that regulate fish swimming energy expenditure that need to be considered in the design and operation of fish passage facilities. 84 refs., 6 tabs., figs., 2 appendices

  14. SWIM (Soil and Water Integrated Model)

    Energy Technology Data Exchange (ETDEWEB)

    Krysanova, V; Wechsung, F; Arnold, J; Srinivasan, R; Williams, J

    2000-12-01

    The model SWIM (Soil and Water Integrated Model) was developed in order to provide a comprehensive GIS-based tool for hydrological and water quality modelling in mesoscale and large river basins (from 100 to 10,000 km{sup 2}), which can be parameterised using regionally available information. The model was developed for the use mainly in Europe and temperate zone, though its application in other regions is possible as well. SWIM is based on two previously developed tools - SWAT and MATSALU (see more explanations in section 1.1). The model integrates hydrology, vegetation, erosion, and nutrient dynamics at the watershed scale. SWIM has a three-level disaggregation scheme 'basin - sub-basins - hydrotopes' and is coupled to the Geographic Information System GRASS (GRASS, 1993). A robust approach is suggested for the nitrogen and phosphorus modelling in mesoscale watersheds. SWIM runs under the UNIX environment. Model test and validation were performed sequentially for hydrology, crop growth, nitrogen and erosion in a number of mesoscale watersheds in the German part of the Elbe drainage basin. A comprehensive scheme of spatial disaggregation into sub-basins and hydrotopes combined with reasonable restriction on a sub-basin area allows performing the assessment of water resources and water quality with SWIM in mesoscale river basins. The modest data requirements represent an important advantage of the model. Direct connection to land use and climate data provides a possibility to use the model for analysis of climate change and land use change impacts on hydrology, agricultural production, and water quality. (orig.)

  15. Mechanical Study of Standard Six Beat Front Crawl Swimming by Using Swimming Human Simulation Model

    Science.gov (United States)

    Nakashima, Motomu

    There are many dynamical problems in front crawl swimming which have not been fully investigated by analytical approaches. Therefore, in this paper, standard six beat front crawl swimming is analyzed by the swimming human simulation model SWUM, which has been developed by the authors. First, the outline of the simulation model, the joint motion for one stroke cycle, and the specifications of calculation are described respectively. Next, contribution of each fluid force component and of each body part to the thrust, effect of the flutter kick, estimation of the active drag, roll motion, and the propulsive efficiency are discussed respectively. The following results were theoretically obtained: The thrust is produced at the upper limb by the normal drag force component. The flutter kick plays a role in raising the lower half of the body. The active drag coefficient in the simulation becomes 0.082. Buoyancy determines the primal wave of the roll motion fluctuation. The propulsive efficiency in the simulation becomes 0.2.

  16. Swimming as physical activity and recreation for women

    Directory of Open Access Journals (Sweden)

    Yfanti Maria

    2014-01-01

    Full Text Available The present study reviews all data that establish swimming as an everyday lifestyle and recreational activity for women, since it promotes wellness, well-being and longevity. Swimming as a natural, physical activity is one of the most effective ways of exercise, since it affects and work outs the whole body. It is the most suitable sport for all age groups, because it combines beneficial results, for both body and soul and is also a low-risk-injury physical exercise. Aim of this study is to record the effect of recreational swimming in physical condition indexes and in quality of life in women. In particular to record the benefits, since studies have shown that swimming can help in prevention and treatment of chronic diseases and improves quality of life, of well-being and longevity. Results of all studies showed that swimming, as a great natural recreational activity has multiple beneficial effects on the female body that are not limited to the physical characteristics but are extended to the mental ones. Challenges for the application and development fields of this particular method of exercise, are the quality of service provided and the staffing of departments and programs in multiple carriers, private or public. Researchers and writers agree that there are great prospects for growth for women through partnerships, with programs and systematic research in the field of recreational swimming.

  17. Breath-hold duration in man and the diving response induced by face immersion.

    Science.gov (United States)

    Sterba, J A; Lundgren, C E

    1988-09-01

    The objective of this study in 5 selected volunteer subjects was to see whether the circulatory diving response which is elicited by breath holding and by cold water on the face would affect the duration of maximal-effort breath holds. Compared to control measurements (breath holding during resting, breathing with 35 degrees C water on the face) breath holding with the face cooled by 20 degrees C water caused a 12% reduction of heart rate, 6% reduction of cardiac output, 33% reduction in [corrected] forearm blood flow, and 9% rise in mean arterial blood pressure, but there was no difference in breath-hold duration (control and experimental both 94 s). There were also no differences in time of appearance of the first involuntary respiratory efforts during breath holding, in alveolar gas exchange, or in breaking-point alveolar O2 and CO2 tensions. When the diving response was magnified by a brief bout of exercise so that there was a 19% [corrected] reduction in heart rate, 23% reduction in cardiac output, and 48% reduction in forearm blood flow, breath-hold duration was still unaffected by face cooling. Compared to intermittent immersions, continuous exposure of the face to cold water abolished the diving response, probably by a cold adaptation of facial thermal receptors. These results with cooling of the face only are consistent with our earlier finding that there was a negative correlation between the duration of a maximal-effort breath hold and the diving response during whole-body submersion in cold water.

  18. 2D speckle tracking echocardiography of the right ventricle free wall in SCUBA divers after single open sea dive.

    Science.gov (United States)

    Susilovic-Grabovac, Zora; Obad, Ante; Duplančić, Darko; Banić, Ivana; Brusoni, Denise; Agostoni, Piergiuseppe; Vuković, Ivica; Dujic, Zeljko; Bakovic, Darija

    2018-03-01

    The presence of circulating gas bubbles and their influence on pulmonary and right heart hemodynamics was reported after uncomplicated self-contained underwater breathing apparatus (SCUBA) dive(s). Improvements in cardiac imaging have recently focused great attention on the right ventricle (RV). The aim of our study was to evaluate possible effects of a single air SCUBA dive on RV function using 2D speckle tracking echocardiography in healthy divers after single open sea dive to 18 meters of seawater, followed by bottom stay of 47 minutes with a direct ascent to the surface. Twelve experienced male divers (age 39.5 ± 10.5 years) participated in the study. Echocardiographic assessment of the right ventricular function (free wall 2 D strain, tricuspid annular planes systolic excursion [TAPSE], lateral tricuspid annular peak systolic velocity [RV s`] and fractional area change [FAC]) was performed directly prior to and 30, 60, 90 and 120 minutes after surfacing. Two-dimensional strain of all three segments of free right ventricular wall showed a significant increase in longitudinal shortening in post-dive period for maximally 26% (basal), 15.4% (mid) and 16.3% (apical) as well as TAPSE (11.6%), RV FAC (19.2%), RV S` (12.7%) suggesting a rise in systolic function of right heart. Mean pulmonary arterial pressure (mean PAP) increased post-dive from 13.3 mmHg to maximally 23.5 mmHg (P = .002), indicating increased RV afterload. Our results demonstrated that single dive with significant bubble load lead to increase in systolic function and longitudinal strain of the right heart in parallel with increase in mean PAP. © 2017 John Wiley & Sons Australia, Ltd.

  19. A Measurement of "g" Using Alexander's Diving Bell

    Science.gov (United States)

    Quiroga, M.; Martinez, S.; Otranto, S.

    2010-01-01

    This paper describes a very simple exercise using an inverted test tube pushed straight down into a column of water to determine the free-fall acceleration "g". The exercise employs the ideal gas law and only involves the measurement of the displacement of the bottom of the "diving bell" and the water level inside the tube with respect to the…

  20. Swimming training induces liver mitochondrial adaptations to oxidative stress in rats submitted to repeated exhaustive swimming bouts.

    Directory of Open Access Journals (Sweden)

    Frederico D Lima

    Full Text Available BACKGROUND AND AIMS: Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. METHODS: Wistar rats were divided into training (n = 14 and control (n = 14 groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7 and control (n = 7 rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. RESULTS: Trained group showed increased reduced glutathione (GSH content and reduced/oxidized (GSH/GSSG ratio, higher superoxide dismutase (MnSOD activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. CONCLUSIONS: Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance.

  1. Shape Optimization of Swimming Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, J.; Hosoi, A.E.

    2005-03-01

    The swimming behavior of a flexible sheet which moves by propagating deformation waves along its body was first studied by G. I. Taylor in 1951. In addition to being of theoretical interest, this problem serves as a useful model of the locomotion of gastropods and various micro-organisms. Although the mechanics of swimming via wave propagation has been studied extensively, relatively little work has been done to define or describe optimal swimming by this mechanism.We carry out this objective for a sheet that is separated from a rigid substrate by a thin film of viscous Newtonian fluid. Using a lubrication approximation to model the dynamics, we derive the relevant Euler-Lagrange equations to optimize swimming speed and efficiency. The optimization equations are solved numerically using two different schemes: a limited memory BFGS method that uses cubic splines to represent the wave profile, and a multi-shooting Runge-Kutta approach that uses the Levenberg-Marquardt method to vary the parameters of the equations until the constraints are satisfied. The former approach is less efficient but generalizes nicely to the non-lubrication setting. For each optimization problem we obtain a one parameter family of solutions that becomes singular in a self-similar fashion as the parameter approaches a critical value. We explore the validity of the lubrication approximation near this singular limit by monitoring higher order corrections to the zeroth order theory and by comparing the results with finite element solutions of the full Stokes equations.

  2. The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper Paracinema tricolor.

    Science.gov (United States)

    Gudowska, Agnieszka; Boardman, Leigh; Terblanche, John S

    2016-08-15

    The discontinuous gas exchange (DGE) pattern of respiration shown by many arthropods includes periods of spiracle closure (C-phase) and is largely thought to serve as a physiological adaptation to restrict water loss in terrestrial environments. One major challenge to this hypothesis is to explain the presence of DGE in insects in moist environments. Here, we show a novel ecological correlate of the C-phase, namely, diving behaviour in mesic Paracinema tricolor grasshoppers. Notably, maximal dive duration is positively correlated with C-phase length, even after accounting for mass scaling and absolute metabolic rate. Here, we propose that an additional advantage of DGE may be conferred by allowing the tracheal system to act as a sealed underwater oxygen reservoir. Spiracle closure may facilitate underwater submersion, which, in turn, may contribute to predator avoidance, the survival of accidental immersion or periodic flooding and the exploitation of underwater resources. © 2016. Published by The Company of Biologists Ltd.

  3. Guide for decontaminating swimming pool at schools

    International Nuclear Information System (INIS)

    Matsuhashi, Shimpei; Kurikami, Hiroshi; Yasuda, Ryo; Takano, Takao; Seko, Noriaki; Naganawa, Hirochika; Kuroki, Ryota; Saegusa, Jun

    2012-07-01

    Because of TEPCO Fukushima Dai-ichi Nuclear Power Plant accident due to the Great East Japan Earthquake, a huge amount of radioactive materials was widely dispersed and precipitated into the environment. Swimming pools in Fukushima prefectures were contaminated with the radioactives. We JAEA carried out several demonstration tests to decontaminate the radioactives and discharge the pool water safely. We concluded the results obtained from the tests as 'Guide for decontaminating Swimming Pool at School' and released it quickly. Following this, we also released the guide in English. This manuscript, as an experimental report of the swimming pool water decontamination, is consisted from the guide in Japanese and English prepared. (author)

  4. Guide for decontaminating swimming pool at schools

    Energy Technology Data Exchange (ETDEWEB)

    Matsuhashi, Shimpei; Kurikami, Hiroshi; Yasuda, Ryo; Takano, Takao; Seko, Noriaki; Naganawa, Hirochika; Kuroki, Ryota; Saegusa, Jun

    2012-07-15

    Because of TEPCO Fukushima Dai-ichi Nuclear Power Plant accident due to the Great East Japan Earthquake, a huge amount of radioactive materials was widely dispersed and precipitated into the environment. Swimming pools in Fukushima prefectures were contaminated with the radioactives. We JAEA carried out several demonstration tests to decontaminate the radioactives and discharge the pool water safely. We concluded the results obtained from the tests as 'Guide for decontaminating Swimming Pool at School' and released it quickly. Following this, we also released the guide in English. This manuscript, as an experimental report of the swimming pool water decontamination, is consisted from the guide in Japanese and English prepared. (author)

  5. Effect of swimming suit design on the energy demands of swimming.

    Science.gov (United States)

    Starling, R D; Costill, D L; Trappe, T A; Jozsi, A C; Trappe, S W; Goodpaster, B H

    1995-07-01

    Eight competitive male swimmers completed a standardized 365.8 m (400 yd) freestyle swimming trial at a fixed pace (approximately 90% of maximal effort) while wearing a torso swim suit (TOR) or a standard racing suit (STD). Oxygen uptake (VO2), blood lactate, heart rate (HR), and distance per stroke (DPS) measurements were obtained. In addition, a video-computer system was used to collect velocity data during a prone underwater glide following a maximal leg push-off from the side of the pool while wearing the TOR and STD suits. These data were used to calculate the total distance covered during the glides. VO2 (3.76 +/- 0.16 vs 3.92 +/- 0.18 l.min-1) and lactate (8.08 +/- 0.53 vs, 9.66 +/- 0.66 mM) were significantly (P 0.05) between the TOR (170.1 +/- 5.1 b.min-1) and STD (173.5 +/- 5.7 b.min-1) trials. DPS was significantly greater during the TOR (2.70 +/- 0.066 m.stroke-1) versus STD (2.58 +/- 0.054 m.stroke-1) trial. A significantly greater total distance was covered during the prone glide while wearing the TOR (2.05 +/- 0.067 m) compared to the STD (2.00 +/- 0.080 m) suit. These findings demonstrate that a specially designed torso suit reduces the energy demand of swimming compared to a standard racing suit which may be due to a reduction in body drag.

  6. 76 FR 60732 - Drawbridge Operation Regulations; Navesink (Swimming) River, NJ

    Science.gov (United States)

    2011-09-30

    ... Operation Regulations; Navesink (Swimming) River, NJ AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... (Swimming) River between Oceanic and Locust Point, New Jersey. The deviation is necessary to facilitate...: The Oceanic Bridge, across the Navesink (Swimming) River, mile 4.5, between Oceanic and Locust Point...

  7. 77 FR 60637 - Western Pacific Pelagic Fisheries; Revised Limits on Sea Turtle Interactions in the Hawaii...

    Science.gov (United States)

    2012-10-04

    ..., effect on the loggerhead sea turtle population. This meets the regulatory definition of an action that is...: Hawaii's sea turtles and monk seals are important for tourism, because people enjoy diving and swimming...

  8. PNW cetacean muscle biochemistry - Muscle Myoglobin Content and Acid Buffering Capacity of Cetaceans from the Pacific Northwest to Assess Dive Capacity and the Development of Diving Capabilities

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project assesses the development of two important skeletal muscle adaptations for diving (enhanced myoglobin content and acid buffering capacities) in a range...

  9. EFFECTS OF THREE FEEDBACK CONDITIONS ON AEROBIC SWIM SPEEDS

    Directory of Open Access Journals (Sweden)

    Pedro Pérez Soriano

    2009-03-01

    Full Text Available The purpose of this study was twofold: (a to develop an underwater chronometer capable to provide feedback while the athlete is swimming, as well as being a control tool for the coach, and (b to analyse its feedback effect on swim pace control compared with feedback provided by the coach and with no feedback, in 25 m and 50 m swimming pools. 30 male swimmers of national level volunteer to participate. Each swimmer swam 3 x 200 m at aerobic speed (AS and 3 x 200 m just under the anaerobic threshold speed (AnS, each swam repetition with a different feedback condition: chronometer, coach and without feedback. Results (a validate the chronometer system developed and (b show that swimmers pace control is affected by the type of feedback provided, the swim speed elected and the size of the swimming pool

  10. Analysis of the swimming velocity of cadmium-stressed Daphnia magna

    International Nuclear Information System (INIS)

    Baillieul, M.; Blust, R.

    1999-01-01

    The swimming velocity of the waterflea Daphnia magna is dependent on its body size. Therefore, environmental factors like toxic stress that influence growth also influence swimming velocity. An experiment was set up to test whether exposure to cadmium would reduce only growth, with a concomitant decrease in velocity, or whether it would reduce velocity below the swimming velocity of similarly-sized control animals. Daphnids were exposed for 10 days to free cadmium ion concentrations ranging from 1x10 -8 to 1x10 -7 M Cd 2+ , and body size and swimming velocity were measured every 2 days. The results showed that cadmium decreased both growth and velocity, i.e. exposed daphnids swam slower than similarly-sized control daphnids. Swimming velocity provided no indication of successful acclimation in any cadmium treatment. Food consumption and assimilation were reduced by exposure to cadmium. This reduced food intake may have, at least partially, caused the decreased growth rates. However, since reduced food intake does not affect swimming velocity, the reduced swimming velocity must be attributed to toxic effects of cadmium, other than those on food intake. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. THE EFFECTS OF DIFFERENT MODELS OF SWIMMING TRAINING (DEFINED IN RELATION TO ANAEROBIC THRESHOLD ON THE INCREASE OF SWIM SPEED

    Directory of Open Access Journals (Sweden)

    Dragan Krivokapić

    2007-05-01

    Full Text Available On the sample of 32 fourth grade students of some Belgrade highs schools, who had the physical education classes carried out at the city’s swimming pools, an attempt was made to evaluate the effects of the two different programmes of swimming training in different intensity zones, defi ned relative to the anaerobic threshold. The examinees were divided into two groups out of 15 i.e. 17 participants who were not (according to statistics signifi cantly different in terms of average time and heart frequency during the 400 m swimming test and heart frequency and time measured after 50 m in the moment of reaching the anaerobic threshold. The fi rst training model consisted of swimming at the intensity level within the zone below anaerobic threshold, while the second model involved occasional swimming at a higher intensity sometimes surpassing the anaerobic threshold. The experimentalprogramme with both sub-groups lasted 8 weeks with 3 training sessions per week, 2 ‘of which we’re identical for both experimental groups, with the third one differing regarding the swimming intensity, this in the fi rst group being still in the zone below, and in the second group occasionally in the zone above the anaerobic threshold. The amount of training and the duration were the same in both programmes. The aim of the research , was to evaluate and to compare the effects of the two training models, using as the basic criteria possible changes of average time and heart frequency during the 400 m swimming test and heart frequency and time measured after 50 m in the moment of reaching the anaerobic thereshold. On the basis of the statistical analysis of the obtained data, it is possible to conclude that in both experimental groups there were statistically signifi cant changes of average values concerning all the physiological variables. Although the difference in effi ciency of applied experimental programmes is not defi ned, we can claim that both of experimental

  12. Co-discoverer of evidence for quarks killed in diving accident

    CERN Multimedia

    Nadis, S

    1999-01-01

    Henry Kendall died last week while scuba diving in a Florida lake. He was awarded the Nobel prize in 1990 along with Friedman and Taylor, for their work in the late 1960s that provided the first direct evidence for quarks (1 page).

  13. Dynamic Modelling of a CPG-Controlled Amphibious Biomimetic Swimming Robot

    Directory of Open Access Journals (Sweden)

    Rui Ding

    2013-04-01

    Full Text Available This paper focuses on the modelling and control problems of a self-propelled, multimodal amphibious robot. Inspired by the undulatory body motions of fish and dolphins, the amphibious robot propels itself underwater by oscillations of several modular fish-like propelling units coupled with a pair of pectoral fins capable of non-continuous 360 degree rotation. In order to mimic fish-like undulating propulsion, a control architecture based on Central Pattern Generator (CPG is applied to the amphibious robot for robust swimming gaits, including forward and backward swimming and turning, etc. With the simplification of the robot as a multi-link serial mechanism, a Lagrangian function is employed to establish the hydrodynamic model for steady swimming. The CPG motion control law is then imported into the Lagrangian-based dynamic model, where an associated system of kinematics and dynamics is formed to solve real-time movements and, further, to guide the exploration of the CPG parameters and steady locomotion gaits. Finally, comparative results between the simulations and experiments are provided to show the effectiveness of the built control models.

  14. Turtle mimetic soft robot with two swimming gaits.

    Science.gov (United States)

    Song, Sung-Hyuk; Kim, Min-Soo; Rodrigue, Hugo; Lee, Jang-Yeob; Shim, Jae-Eul; Kim, Min-Cheol; Chu, Won-Shik; Ahn, Sung-Hoon

    2016-05-04

    This paper presents a biomimetic turtle flipper actuator consisting of a shape memory alloy composite structure for implementation in a turtle-inspired autonomous underwater vehicle. Based on the analysis of the Chelonia mydas, the flipper actuator was divided into three segments containing a scaffold structure fabricated using a 3D printer. According to the filament stacking sequence of the scaffold structure in the actuator, different actuating motions can be realized and three different types of scaffold structures were proposed to replicate the motion of the different segments of the flipper of the Chelonia mydas. This flipper actuator can mimic the continuous deformation of the forelimb of Chelonia mydas which could not be realized in previous motor based robot. This actuator can also produce two distinct motions that correspond to the two different swimming gaits of the Chelonia mydas, which are the routine and vigorous swimming gaits, by changing the applied current sequence of the SMA wires embedded in the flipper actuator. The generated thrust and the swimming efficiency in each swimming gait of the flipper actuator were measured and the results show that the vigorous gait has a higher thrust but a relatively lower swimming efficiency than the routine gait. The flipper actuator was implemented in a biomimetic turtle robot, and its average swimming speed in the routine and vigorous gaits were measured with the vigorous gait being capable of reaching a maximum speed of 11.5 mm s(-1).

  15. A comparison of blood nitric oxide metabolites and hemoglobin functional properties among diving mammals

    DEFF Research Database (Denmark)

    Fago, Angela; Parraga, Daniel Garcia; Petersen, Elin E

    2017-01-01

    examined oxygen affinity, sensitivity to 2,3-diphosphoglycerate (DPG) and nitrite reductase activity of the hemoglobin (Hb) to search for possible adaptive variations in these functional properties. We found levels of plasma and red blood cells nitrite similar to those reported for terrestrial mammals...... in blood oxygen affinity among diving mammals likely derive from phenotypic variations in red blood cell DPG levels. The nitrite reductase activities of the Hbs were overall slightly higher than that of human Hb, with the Hb of beluga whale, capable of longest dives, having the highest activity. Taken...

  16. Warm-up and performance in competitive swimming.

    Science.gov (United States)

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  17. Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test.

    Science.gov (United States)

    Page, M E; Detke, M J; Dalvi, A; Kirby, L G; Lucki, I

    1999-11-01

    The forced swimming test (FST) is a behavioral test in rodents that predicts the clinical efficacy of many types of antidepressant treatments. Recently, a behavior sampling technique was developed that scores individual response categories, including swimming, climbing and immobility. Although all antidepressant drugs reduce immobility in the FST, at least two distinct active behavioral patterns are produced by pharmacologically selective antidepressant drugs. Serotonin-selective reuptake inhibitors increase swimming behavior, while drugs acting primarily to increase extracellular levels of norepinephrine or dopamine increase climbing behavior. Distinct patterns of active behaviors in the FST may be mediated by distinct neurotransmitters, but this has not been shown directly. The present study examined the role of serotonin in mediating active behaviors in the forced swimming test after treatment with two antidepressant drugs, the selective serotonin reuptake inhibitor, fluoxetine and the selective norepinephrine reuptake inhibitor, desipramine. Endogenous serotonin was depleted by administering para-cholorophenylalanine (PCPA, 150 mg/kg, IP.) to rats 72 h and 48 h prior to the swim test. Fluoxetine (10 mg/kg, SC) or desipramine (10 mg/kg, SC) was given three times over a 24-h period prior to the FST. Behavioral responses, including immobility, swimming and climbing, were counted during the 5-min test. Pretreatment with PCPA blocked fluoxetine-induced reduction in immobility and increase in swimming behavior during the FST. In contrast, PCPA pretreatment did not interfere with the ability of desipramine to reduce immobility and increase climbing behavior. Depletion of serotonin prevented the behavioral effects of the selective serotonin reuptake inhibitor fluoxetine in the rat FST. Furthermore, depletion of serotonin had no impact on the behavioral effects induced by the selective norepinephrine reuptake inhibitor, desipramine. The effects of antidepressant drugs

  18. Simulated front crawl swimming performance related to critical speed and critical power.

    Science.gov (United States)

    Toussaint, H M; Wakayoshi, K; Hollander, A P; Ogita, F

    1998-01-01

    Competitive pool swimming events range in distance from 50 to 1500 m. Given the difference in performance times (+/- 23-1000 s), the contribution of the aerobic and anaerobic energy systems changes considerably with race distance. In training practice the regression line between swimming distance and time (Distance = critical velocity x time + anaerobic swimming capacity) is used to determine the individual capacity of the aerobic and anaerobic metabolic pathways. Although there is confidence that critical velocity and anaerobic swimming capacity are fitness measures that separate aerobic and anaerobic components, a firm theoretical basis for the interpretation of these results does not exist. The purpose of this study was to evaluate the critical power concept and anaerobic swimming capacity as measures of the aerobic and anaerobic capacity using a modeling approach. A systems model was developed that relates the mechanics and energetics involved in front crawl swimming performance. From actual swimming flume measurements, the time dependent aerobic and anaerobic energy release was modeled. Data derived from the literature were used to relate the energy cost of front crawl swimming to swimming velocity. A balance should exist between the energy cost to swim a distance in a certain time and the concomitant aerobic and anaerobic energy release. The ensuing model was used to predict performance times over a range of distances (50-1500 m) and to calculate the regression line between swimming distance and time. Using a sensitivity analysis, it was demonstrated that the critical velocity is indicative for the capacity of the aerobic energy system. Estimates of the anaerobic swimming capacity, however, were influenced by variations in both anaerobic and aerobic energy release. Therefore, it was concluded that the anaerobic swimming capacity does not provide a reliable estimate of the anaerobic capacity.

  19. Biochemical and hematological changes following the 120-km open-water marathon swim.

    Science.gov (United States)

    Drygas, Wojciech; Rębowska, Ewa; Stępień, Ewa; Golański, Jacek; Kwaśniewska, Magdalena

    2014-09-01

    Data on physiological effects and potential risks of a ultraendurance swimming are scarce. This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim on the Warta River, Poland. Pre-swimming examinations revealed favorable conditions (blood pressure, 110/70 mmHg; rest heart rate, 54 beats/minute, ejection fraction, 60%, 20.2 metabolic equivalents in a maximal exercise test). The swimming time and distance covered were 27 h 33 min and 120 km, respectively. Blood samples for hematological and biochemical parameters were collected 30 min, 4 hrs, 10 hrs and 8 days after the swim. The body temperature of the swimmer was 36.7°C before and 35.1°C after the swim. The hematological parameters remained within the reference range in the postexercise period except for leucocytes (17.5 and 10.6 x G/l noted 30 minutes and 4 hours after the swim, respectively). Serum urea, aspartate aminotransferase and C-reactive protein increased above the reference range reaching 11.3 mmol/l, 1054 nmol/l/s and 25.9 mg/l, respectively. Symptomatic hyponatremia was not observed. Although the results demonstrate that an experienced athlete is able to complete an ultra-marathon swim without negative health consequences, further studies addressing the potential risks of marathon swimming are required. Key pointsData on biochemical changes due to long-distance swimming are scarce.This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim.An experienced athlete is able to complete an ultra-marathon swim without serious health consequences.Regarding the growing popularity of marathon swimming further studies addressing the potential risks of such exhaustive exercise are required.

  20. Decompression sickness among diving fishermen in Mexico: observational retrospective analysis of DCS in three sea cucumber fishing seasons.

    Science.gov (United States)

    Huchim-Lara, Oswaldo; Chin, Walter; Salas, Silvia; Rivera-Canul, Normando; Cordero-Romero, Salvador; Tec, Juan; Joo, Ellie; Mendez-Dominguez, Nina

    2017-01-01

    The probabilities of decompression sickness (DCS) among diving fishermen are higher than in any other group of divers. Diving behavior of artisanal fishermen has been directed mainly to target high-value species. The aim of this study was to learn about the occurrence of DCS derived from sea cucumber harvesting in the Yucatán Peninsula, Mexico. We conducted a retrospective chart review of diving fishermen treated at a multiplace hyperbaric chamber in Tizimín, Mexico. In total, 233 recompression therapies were rendered to 166 diving fishermen from 2014 to 2016. The average age was 36.7 ± 9.2 years (range: 20-59 years); 84.3% had experienced at least one DCS event previously. There was a correlation between age and DCS incidents (F: 8.3; R2: 0.07) and differences in the fishing depth between seasons (H: 9.99; p⟨0.05). Musculoskeletal pain was the most frequently reported symptom. Three divers, respectively, suffered permanent hearing loss, spinal cord injury and fatal outcome. Diving fishermen experience DCS at an alarmingly high rate, probably due to the type of species targeted, given the requirements in each case. Understanding divers' behaviors and their incentives while in pursuit of high-value species such as sea cucumber could help to find ways to mitigate health risks and help enforce regulation. Copyright© Undersea and Hyperbaric Medical Society.

  1. Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers.

    Science.gov (United States)

    Lätt, Evelin; Jürimäe, Jaak; Mäestu, Jarek; Purge, Priit; Rämson, Raul; Haljaste, Kaja; Keskinen, Kari L; Rodriguez, Ferran A; Jürimäe, Toivo

    2010-01-01

    The purpose of this study was to analyze the relationships between 100-m front crawl swimming performance and relevant biomechanical, anthropometrical and physiological parameters in male adolescent swimmers. Twenty five male swimmers (mean ± SD: age 15. 2 ± 1.9 years; height 1.76 ± 0.09 m; body mass 63.3 ± 10.9 kg) performed an all-out 100-m front crawl swimming test in a 25-m pool. A respiratory snorkel and valve system with low hydrodynamic resistance was used to collect expired air. Oxygen uptake was measured breath-by-breath by a portable metabolic cart. Swimming velocity, stroke rate (SR), stroke length and stroke index (SI) were assessed during the test by time video analysis. Blood samples for lactate measurement were taken from the fingertip pre exercise and at the third and fifth minute of recovery to estimate net blood lactate accumulation (ΔLa). The energy cost of swimming was estimated from oxygen uptake and blood lactate energy equivalent values. Basic anthropometry included body height, body mass and arm span. Body composition parameters were measured using dual-energy X-ray absorptiometry (DXA). Results indicate that biomechanical factors (90.3%) explained most of 100-m front crawl swimming performance variability in these adolescent male swimmers, followed by anthropometrical (45.8%) and physiological (45.2%) parameters. SI was the best single predictor of performance, while arm span and ∆La were the best anthropometrical and physiological indicators, respectively. SI and SR alone explained 92.6% of the variance in competitive performance. These results confirm the importance of considering specific stroke technical parameters when predicting success in young swimmers. Key pointsThis study investigated the influence of different anthropometrical, physiological and biomechanical parameters on 100-m swimming performance in adolescent boys.Biomechanical factors contributed most to sprint swimming performance in these young male swimmers (90

  2. Carbon Dioxide Changes in Hyperventilation and Breath-hold Diving

    African Journals Online (AJOL)

    1974-01-05

    Jan 5, 1974 ... South Africa. S. Afr. Med. l., 48, 18 (1974). Under conditions of normal atmospheric pressure, breath- holding results in important changes in the mechanism whereby the CO, is transported ... haemoglobin in the face of falling CO, output to the ... Hong,' in a field study of Korean diving women, noted that they ...

  3. Swimming of a Sea Butterfly with an Elongated Shell

    Science.gov (United States)

    Karakas, Ferhat; Maas, Amy E.; Murphy, David W.

    2017-11-01

    Sea butterflies (pteropods) are small, zooplanktonic marine snails which swim by flapping highly flexible parapodia. Previous studies show that the swimming hydrodynamics of Limacina helicina, a polar pteropod with a spiraled shell, is similar to tiny insect flight aerodynamics and that forward-backward pitching is key for lift generation. However, swimming by diverse pteropod species with different shell shapes has not been examined. We present measurements of the swimming of Cuvierina columnella, a warm water species with an elongated non-spiraled shell collected off the coast of Bermuda. With a body length of 9 mm, wing beat frequency of 4-6 Hz and swimming speed of 35 mm/s, these organisms swim at a Reynolds number of approximately 300, larger than that of L. helicina. High speed 3D kinematics acquired via two orthogonal cameras reveals that the elongated shell correlates with reduced body pitching and that the wings bend approximately 180 degrees in each direction, overlapping at the end of each half-stroke. Time resolved 2D flow measurements collected with a micro-PIV system reveal leading edge vortices present in both power and recovery strokes. Interactions between the overlapping wings and the shell also likely play a role in lift generation.

  4. The differentiation of common species in a coral-reef fish assemblage for recreational scuba diving

    OpenAIRE

    Chen, Tsen-Chien; Ho, Cheng-Tze; Jan, Rong-Quen

    2016-01-01

    Background Recreational scuba diving is a popular activity of the coral reef tourism industry. In practice, local diving centers recommend interesting sites to help visiting divers make their plans. Fish are among the major attractions, but they need to be listed with care because the temporal occurrence of a fish species is difficult to predict. To address this issue, we propose methods to categorize each fish species based on its long-term occurrence and likelihood of being seen. Methods We...

  5. The perceived value of scuba diving tourists at a marina destination / Kiéra Seymour.

    OpenAIRE

    Seymour, Kiéra Danielle

    2012-01-01

    Tourism activities set in coastal and marine environments have evolved far beyond the traditional passive leisure experiences of the classic resort holiday. While the traditional beach holiday remains a contemporary mass tourism phenomenon. Marine tourism now extends far beyond beach activities to a wide spread spectrum of activities including scuba diving with over 20 million certified divers worldwide. The tourism product carries both the characteristics of the service product and the chara...

  6. CFD based investigation on the impact acceleration when a gannet impacts with water during plunge diving

    International Nuclear Information System (INIS)

    Wang, T M; Yang, X B; Liang, J H; Yao, G C; Zhao, W D

    2013-01-01

    Plunge diving is the most commonly used feeding method of a gannet, which can make the gannet transit from air to water rapidly and successfully. A large impact acceleration can be generated due to the air-to-water transition. However, the impact acceleration experienced by the gannet during plunge diving has not been studied. In this paper, this issue is investigated by using the CFD method. The effect of the dropping height and the water-entry inclination angle on the impact acceleration is considered. The results reveal that the impact acceleration along the longitudinal body axis increases with either of the two parameters. The peak time decreases with the dropping height. A quadratic relation is found between the peak impact acceleration and the initial water-entry velocity. According to the computation, when the dropping height is 30 m (most of gannets plunge from about this height), the peak impact acceleration can reach about 23 times the gravitational acceleration, which will exert a considerable force on the gannet body. Furthermore, the pressure distribution of different water-entry inclination angles indicates that the large pressure asymmetry caused by a small oblique angle may lead to a large impact acceleration in the direction perpendicular to the longitudinal body axis and cause damage to the neck of the gannet, which partly explains the reason why a gannet performing a high plunge diving in nature enters water with a large oblique angle from the perspective of impact mechanics. The investigation on the plunge-diving behavior in this paper will inspire and promote the development of a biomimetic amphibious robot that transits from air to water with the plunge-diving mode. (paper)

  7. Stirring by swimming bodies

    International Nuclear Information System (INIS)

    Thiffeault, Jean-Luc; Childress, Stephen

    2010-01-01

    We consider the stirring of an inviscid fluid caused by the locomotion of bodies through it. The swimmers are approximated by non-interacting cylinders or spheres moving steadily along straight lines. We find the displacement of fluid particles caused by the nearby passage of a swimmer as a function of an impact parameter. We use this to compute the effective diffusion coefficient from the random walk of a fluid particle under the influence of a distribution of swimming bodies. We compare with the results of simulations. For typical sizes, densities and swimming velocities of schools of krill, the effective diffusivity in this model is five times the thermal diffusivity. However, we estimate that viscosity increases this value by two orders of magnitude.

  8. EFFECT OF FLEXIBILITY ON THE RESULTS OF DOLPHIN SWIMMING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Slađana Tošić

    2011-09-01

    Full Text Available In order to determine the impact of flexibility on the results in swimming, we conducted a study on a sample of 50 female patients aged 11-14 years of age who are in the training process in the swimming clubs „Nis 2005“ and „Sveti Nikola“ in Nis. The study is applied to 14 measuring instruments that were divided into three groups: Measuring instruments for the assessment of flexibility (11; Measuring instruments for assessing the results of swimming (1; Measuring instruments for evaluation of morphological characteristics (2. The regression analysis determined the impact of flexibility on the results in swimming. The regression analysis didn't confirmed the assumption that there is a statistically significant effect of flexibility variables on results in swimming for female swimmers

  9. 36 CFR 3.17 - What regulations apply to swimming areas and beaches?

    Science.gov (United States)

    2010-07-01

    ... swimming areas and beaches? 3.17 Section 3.17 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.17 What regulations apply to swimming areas and beaches? (a) The superintendent may designate areas as swimming areas or swimming beaches in...

  10. On the development of inexpensive speed and position tracking system for swimming

    DEFF Research Database (Denmark)

    Trangbæk, Søren; Rasmussen, Cuno; Andersen, Thomas Bull

    2016-01-01

    A semi-automated tracking system was developed for the analysis of swimming, using cameras, an LED diode marker, and a red swim cap. Four experienced young swimmers were equipped with a marker and a swim cap and their position and speed was tracked throughout above-water and under-water swimming...

  11. Intra- and Intersexual swim bladder dimorphisms in the plainfin midshipman fish (Porichthys notatus): Implications of swim bladder proximity to the inner ear for sound pressure detection.

    Science.gov (United States)

    Mohr, Robert A; Whitchurch, Elizabeth A; Anderson, Ryan D; Forlano, Paul M; Fay, Richard R; Ketten, Darlene R; Cox, Timothy C; Sisneros, Joseph A

    2017-11-01

    The plainfin midshipman fish, Porichthys notatus, is a nocturnal marine teleost that uses social acoustic signals for communication during the breeding season. Nesting type I males produce multiharmonic advertisement calls by contracting their swim bladder sonic muscles to attract females for courtship and spawning while subsequently attracting cuckholding type II males. Here, we report intra- and intersexual dimorphisms of the swim bladder in a vocal teleost fish and detail the swim bladder dimorphisms in the three sexual phenotypes (females, type I and II males) of plainfin midshipman fish. Micro-computerized tomography revealed that females and type II males have prominent, horn-like rostral swim bladder extensions that project toward the inner ear end organs (saccule, lagena, and utricle). The rostral swim bladder extensions were longer, and the distance between these swim bladder extensions and each inner-ear end organ type was significantly shorter in both females and type II males compared to that in type I males. Our results revealed that the normalized swim bladder length of females and type II males was longer than that in type I males while there was no difference in normalized swim bladder width among the three sexual phenotypes. We predict that these intrasexual and intersexual differences in swim bladder morphology among midshipman sexual phenotypes will afford greater sound pressure sensitivity and higher frequency detection in females and type II males and facilitate the detection and localization of conspecifics in shallow water environments, like those in which midshipman breed and nest. © 2017 Wiley Periodicals, Inc.

  12. Swimming of Microorganisms Viewed from String and Membrane Theories

    OpenAIRE

    Kawamura, Masako; Sugamoto, Akio; Nojiri, Shin'ichi

    1993-01-01

    Swimming of microorganisms is studied from a viewpoint of extended objects (strings and membranes) swimming in the incompressible f luid of low Reynolds number. The flagellated motion is analyzed in two dimensional fluid, by using the method developed in the ciliated motion with the Joukowski transformation. Discussion is given on the conserved charges and the algebra which are associated with the area (volume)- preserving diffeomorphisms giving the swimming motion of microorganisms. It is al...

  13. Efficient collective swimming by harnessing vortices through deep reinforcement learning.

    Science.gov (United States)

    Verma, Siddhartha; Novati, Guido; Koumoutsakos, Petros

    2018-06-05

    Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.

  14. Swimming near the substrate: a simple robotic model of stingray locomotion

    International Nuclear Information System (INIS)

    Blevins, Erin; Lauder, George V

    2013-01-01

    Studies of aquatic locomotion typically assume that organisms move through unbounded fluid. However, benthic fishes swim close to the substrate and will experience significant ground effects, which will be greatest for fishes with wide spans such as benthic batoids and flatfishes. Ground effects on fixed-wing flight are well understood, but these models are insufficient to describe the dynamic interactions between substrates and undulating, oscillating fish. Live fish alter their swimming behavior in ground effect, complicating comparisons of near-ground and freestream swimming performance. In this study, a simple, stingray-inspired physical model offers insights into ground effects on undulatory swimmers, contrasting the self-propelled swimming speed, power requirements, and hydrodynamics of fins swimming with fixed kinematics near and far from a solid boundary. Contrary to findings for gliding birds and other fixed-wing fliers, ground effect does not necessarily enhance the performance of undulating fins. Under most kinematic conditions, fins do not swim faster in ground effect, power requirements increase, and the cost of transport can increase by up to 10%. The influence of ground effect varies with kinematics, suggesting that benthic fish might modulate their swimming behavior to minimize locomotor penalties and incur benefits from swimming near a substrate. (paper)

  15. Ovarian and uterine alterations following forced swimming: An immunohistochemical study.

    Science.gov (United States)

    Seyed Saadat, Seyedeh Nazanin; Mohammadghasemi, Fahimeh; Ebrahimi, Hannan; Rafati Sajedi, Hanieh; Chatrnour, Gelayol

    2016-10-01

    Physical exercise is known to be a stressor stimulus that leads to reproductive disruption. The aim of this study was to evaluate the effect of forced swimming on the uterus and ovaries in mice. Adult mice (N=24) were divided into the following three groups: A, control; B, swimming in water (10 o C); and C, swimming in water (23 o C). Swimmers swam for 5 min daily for 5 consecutive days/ wk during 2 wks. An enzyme linked immunosorbent assay was used to determine serum estradiol, follicle stimulating hormone (FSH) and testosterone levels. Immunohistochemistry was performed to study apoptotic cells or estrogen receptor (ER) expression in uterine epithelial cells and ovaries. ANOVA was used for statistical analysis. Swimming in both groups reduced the serum FSH and estradiol levels (pForced swimming of 2 wks duration reduces the serum levels of FSH and estradiol without having effects on apoptosis in the ovaries or uteri of mice. Over a long period of time, forced swimming may have an adverse effect on fertility.

  16. The swimming polarity of multicellular magnetotactic prokaryotes can change during an isolation process employing magnets: evidence of a relation between swimming polarity and magnetic moment intensity.

    Science.gov (United States)

    de Melo, Roger Duarte; Acosta-Avalos, Daniel

    2017-09-01

    Magnetotactic microorganisms are characterized by swimming in the direction of an applied magnetic field. In nature, two types of swimming polarity have been observed: north-seeking microorganisms that swim in the same direction as the magnetic field, and south-seeking microorganisms that swim in the opposite direction. The present work studies the reversal in the swimming polarity of the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis following an isolation process using high magnetic fields from magnets. The proportion of north- and south-seeking organisms was counted as a function of the magnetic field intensity used during the isolation of the organisms from sediment. It was observed that the proportion of north-seeking organisms increased when the magnetic field was increased. The magnetic moment for north- and south-seeking populations was estimated using the U-turn method. The average magnetic moment was higher for north- than south-seeking organisms. The results suggest that the reversal of swimming polarity must occur during the isolation process in the presence of high magnetic fields and magnetic field gradients. It is shown for the first time that the swimming polarity reversal depends on the magnetic moment intensity of multicellular magnetotactic prokaryotes, and new studies must be undertaken to understand the role of magnetic moment polarity and oxygen gradients in determination of swimming polarity.

  17. Feeding of swimming Paramecium with fore-aft asymmetry in viscous fluid

    Science.gov (United States)

    Zhang, Peng; Jana, Saikat; Giarra, Matthew; Vlachos, Pavlos; Jung, Sunghwan

    2013-11-01

    Swimming behaviours and feeding efficiencies of Paramecium Multimicronucleatum with fore-aft asymmetric body shapes are studied experimentally and numerically. Among various possible swimming ways, ciliates typically exhibit only one preferred swimming directions in favorable conditions. Ciliates, like Paramecia, with fore-aft asymmetric shapes preferably swim towards the slender anterior while feeding fluid to the oral groove located at the center of the body. Since both feeding and swimming efficiencies are influenced by fluid motions around the body, it is important to reveal the fluid mechanics around a moving object. Experimentally, μ-PIV methods are employed to characterize the source-dipole streamline patterns and fluid motions around Paramecium. Numerical simulations by boundary element methods are also used to evaluate surface stresses and velocities, which give insights into the efficiencies of swimming and feeding depending on body asymmetry. It is concluded that a slender anterior and fat posterior increases the combined efficiency of swimming and feeding, which matches well with actual shapes of Paramecium. Discrepancies between experiments and simulations are also discussed.

  18. Energetics of swimming of schooling fish

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    , i.e. nearest neighbour distance, water temperature, gill oxygen extraction, gill ventilation capacity, etc. Fish swimming in a school have been shown to have energetic advantages when trailing behind neighbours, resulting in up to 20% energy saving. The effect of this energy saving is that the fish......Soc for experimental Biol Annual Meeting - Salzburg 2012 John F. Steffensen (University of Copenhagen, Denmark) When a fish school swims through the water, every individual consumes a certain amount of oxygen, which means that less will be available for the trailing fish in the school. In 1967 Mc......Farland and Moss reported that the oxygen saturation decreased approximately 30% from the front to the rear of an approximately 150-m long school of mullets swimming in normoxic water. They also observed that the decline in oxygen saturation at the rear resulted in the school disintegrating into smaller separate...

  19. Oxygen Toxicity and Special Operations Forces Diving: Hidden and Dangerous

    NARCIS (Netherlands)

    Wingelaar, Thijs T.; van Ooij, Pieter-Jan A. M.; van Hulst, Rob A.

    2017-01-01

    In Special Operations Forces (SOF) closed-circuit rebreathers with 100% oxygen are commonly utilized for covert diving operations. Exposure to high partial pressures of oxygen (PO2) could cause damage to the central nervous system (CNS) and pulmonary system. Longer exposure time and higher PO2 leads

  20. Body contact and synchronous diving in long-finned pilot whales

    NARCIS (Netherlands)

    Aokia, K.; Sakai, M.; Miller, P.J.O.; Visser, F.; Sato, K.

    2013-01-01

    Synchronous behavior, as a form of social interaction, has been widely reported for odontocete cetaceans observed at the sea surface. However, few studies have quantified synchronous behavior underwater. Using data from an animal-borne data recorder and camera, we described how a pair of deep-diving

  1. Investigating the application of diving endoscopic technique in determining the extent of pituitary adenoma resection via the trans-nasal-sphenoidal approach.

    Science.gov (United States)

    Gao, Hai-Bin; Wang, Li-Qing; Zhou, Jian-Yun; Sun, Wei

    2018-04-01

    The aim of the present study was to investigate the advantages and disadvantages of the diving endoscopic technique in pituitary adenoma surgery, and the application value in determining the extent of tumor resection. A total of 37 patients with pituitary adenoma initially underwent tumor resection under an endoscope-assisted microscope via standard trans-nasal-sphenoidal approach, and tumor cavity structure was observed by applying the diving endoscopic technique. Surgery was subsequently performed again under a microscope or endoscope. The diving endoscopic technique allowed surgeons to directly observe the structure inside a tumor cavity in high-definition. In the present study, 24 patients had pituitary macroadenomas or microadenomas that did not invade the cavernous sinus, and were considered to have undergone successful total resection. Among these patients, no tumor residues were observed through the diving endoscopic technique. Some white lichenoid or fibrous cord-like tissues in the tumor cavity were considered to be remnants of tumors. However, pathology confirmed that these were not tumor tissues. For tumors that invaded the cavernous sinus in 13 patients, observation could only be conducted under the angulation endoscope of the diving endoscope; i.e., the operation could not be conducted under an endoscope. The present study suggests that the diving endoscopic technique may be used to directly observe the resection extent of tumors within the tumor cavity, especially the structure of the tumor cavity inside the sella turcica. The present study also directly validates the reliability of pituitary adenoma resection under endoscope-assisted microscope. In addition, the diving endoscopic technique also allows the surgeon to observe the underwater environment within the sella turcica.

  2. Biomechanical aspects of peak performance in human swimming

    NARCIS (Netherlands)

    Toussaint, H.M.; Truijens, M.J.

    2005-01-01

    Peak performances in sport require the full deployment of all the powers an athlete possesses. How factors such as mechanical power output, technique and drag, each individually, but also in concert, determine swimming performance is the subject of this enquiry. This overview of swimming

  3. A comparison of blood nitric oxide metabolites and hemoglobin functional properties among diving mammals.

    Science.gov (United States)

    Fago, Angela; Parraga, Daniel Garcia; Petersen, Elin E; Kristensen, Niels; Giouri, Lea; Jensen, Frank B

    2017-03-01

    The ability of marine mammals to hunt prey at depth is known to rely on enhanced oxygen stores and on selective distribution of blood flow, but the molecular mechanisms regulating blood flow and oxygen transport remain unresolved. To investigate the molecular mechanisms that may be important in regulating blood flow, we measured concentration of nitrite and S-nitrosothiols (SNO), two metabolites of the vasodilator nitric oxide (NO), in the blood of 5 species of marine mammals differing in their dive duration: bottlenose dolphin, South American sea lion, harbor seal, walrus and beluga whale. We also examined oxygen affinity, sensitivity to 2,3-diphosphoglycerate (DPG) and nitrite reductase activity of the hemoglobin (Hb) to search for possible adaptive variations in these functional properties. We found levels of plasma and red blood cells nitrite similar to those reported for terrestrial mammals, but unusually high concentrations of red blood cell SNO in bottlenose dolphin, walrus and beluga whale, suggesting enhanced SNO-dependent signaling in these species. Purified Hbs showed similar functional properties in terms of oxygen affinity and sensitivity to DPG, indicating that reported large variations in blood oxygen affinity among diving mammals likely derive from phenotypic variations in red blood cell DPG levels. The nitrite reductase activities of the Hbs were overall slightly higher than that of human Hb, with the Hb of beluga whale, capable of longest dives, having the highest activity. Taken together, these results underscore adaptive variations in circulatory NO metabolism in diving mammals but not in the oxygenation properties of the Hb. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Tracking Controller Design for Diving Behavior of an Unmanned Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Yi-Hsiang Tseng

    2013-01-01

    Full Text Available The study has investigated the almost disturbance decoupling problem of nonlinear uncertain control systems via the fuzzy feedback linearization approach. The significant dedication of this paper is to organize a control algorithm such that the closed-loop system is active for given initial condition and bounded tracking trajectory with the input-to-state stability and almost disturbance decoupling performance. This study presents a feedback linearization controller for diving control of an unmanned underwater vehicle. Unmanned underwater vehicle proposes difficult control subject due to its nonlinear dynamics, uncertain models, and the existence of disturbances that are difficult to measure. In general, while investigating the diving dynamics of an unmanned underwater vehicle, the pitch angle is always assumed to be small. This assumption is a strong restricting constraint in many interesting practical applications and will be relaxed in this study.

  5. Roll and Yaw of Paramecium swimming in a viscous fluid

    Science.gov (United States)

    Jung, Sunghwan; Jana, Saikat; Giarra, Matt; Vlachos, Pavlos

    2012-11-01

    Many free-swimming microorganisms like ciliates, flagellates, and invertebrates exhibit helical trajectories. In particular, the Paramecium spirally swims along its anterior direction by the beating of cilia. Due to the oblique beating stroke of cilia, the Paramecium rotates along its long axis as it swims forward. Simultaneously, this long axis turns toward the oral groove side. Combined roll and yaw motions of Paramecium result in swimming along a spiral course. Using Particle Image Velocimetry, we measure and quantify the flow field and fluid stress around Paramecium. We will discuss how the non-uniform stress distribution around the body induces this yaw motion.

  6. Microvascular characteristics of the acoustic fats: Novel data suggesting taxonomic differences between deep and shallow-diving odontocetes.

    Science.gov (United States)

    Gabler, Molly K; Gay, D Mark; Westgate, Andrew J; Koopman, Heather N

    2018-04-01

    Odontocetes have specialized mandibular fats, the extramandibular (EMFB) and intramandibular fat bodies (IMFB), which function as acoustic organs, receiving and channeling sound to the ear during hearing and echolocation. Recent strandings of beaked whales suggest that these fat bodies are susceptible to nitrogen (N 2 ) gas embolism and empirical evidence has shown that the N 2 solubility of these fat bodies is higher than that of blubber. Since N 2 gas will diffuse from blood into tissue at any blood/tissue interface and potentially form gas bubbles upon decompression, it is imperative to understand the extent of microvascularity in these specialized acoustic fats so that risk of embolism formation when diving can be estimated. Microvascular density was determined in the EMFB, IMFB, and blubber from 11 species representing three odontocete families. In all cases, the acoustic tissues had less (typically 1/3 to 1/2) microvasculature than did blubber, suggesting that capillary density in the acoustic tissues may be more constrained than in the blubber. However, even within these constraints there were clear phylogenetic differences. Ziphiid (Mesoplodon and Ziphius, 0.9 ± 0.4% and 0.7 ± 0.3% for EMFB and IMFB, respectively) and Kogiid families (1.2 ± 0.2% and 1.0 ± 0.01% for EMFB and IMFB, respectively) had significantly lower mean microvascular densities in the acoustic fats compared to the Delphinid species (Tursiops, Grampus, Stenella, and Globicephala, 1.3 ± 0.3% and 1.3 ± 0.3% for EMFB and IMFB, respectively). Overall, deep-diving beaked whales had less microvascularity in both mandibular fats and blubber compared to the shallow-diving Delphinids, which might suggest that there are differences in the N 2 dynamics associated with diving regime, phylogeny, and tissue type. These novel data should be incorporated into diving physiology models to further understand potential functional disruption of the acoustic tissues due to changes

  7. 77 FR 64029 - Special Conditions: Airbus Model A318, A319, A320, and A321 Series Airplanes; Design Dive Speed

    Science.gov (United States)

    2012-10-18

    ... after operation of high-speed warning system by application of a load of 1.5g (0.5 acceleration... Series Airplanes; Design Dive Speed AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... airplanes. These design features include a high-speed protection system. The applicable airworthiness...

  8. The economics of age-group swimming in Ontario.

    Science.gov (United States)

    Eynon, R B; Kitchen, P D; Semotiuk, D M

    1980-09-01

    This study investigated the socio-economic status of the parents of Ontario swimmers and parental expenditures, in terms of time and money, in support of competitive swimming. Questionnaires were mailed to a sample of 400 families of Ontario competitive swimmers. Spearman rho analyses were used to determine the relationships of membership fee, total cost and total time spent by the parents to the ability and age of the swimmer and the number of hours of practice and swim meets. Parents of Ontario competitive swimmers are upper middle class and devote a great deal of their time (X = 433 hours) and money (X = $744.00) annually to competitive swimming. Total expenditures and time spend by the parents were greater for those children were young and also for those whose children demonstrated greater ability (i.e., closer to Ontario record). Spearman rho analyses suggested that membership fees are not determined on the basis of age, number of practice hours or number of swim meets.

  9. Chronic adaptations of lung function in breath-hold diving fishermen

    Directory of Open Access Journals (Sweden)

    Cristiane Diniz

    2014-04-01

    Full Text Available Objectives: The aim of this study was to verify and analyze the existence of chronic adaptations of lung function in freediving fishermen whose occupation is artisanal fishing. Material and Methods: This was a cross-sectional study involving 11 breath-hold diving fishermen and 10 non-breath-hold diving fishermen (control from the village of Bitupitá in the municipality of Barroquinha (Ceará - Brazil. Anthropometric measurements, chest and abdominal circumferences as well as spirometric and respiratory muscle strength tests were conducted according to the specifications of the American Thoracic Society/European Respiratory Society (ATS/ERS. In order to compare the measured values versus the predicted values, Student t test was used in the case of parametric test and Wilcoxon test in the case of nonparametric test. To compare the inter-group means Student t test was used for parametric test and Mann-Whitney test for the nonparametric one. The level of significance was set at α = 5%. Results: The forced vital capacity (FVC (4.9±0.6 l vs. 4.3±0.4 l and forced expiratory volume in 1 s (FEV1 (4.0±0.5 l vs. 3.6±0.3 l were, respectively, higher in the group of divers compared to the control group (p ≤ 0.05. Furthermore, in the group of free divers, the measured FVC, FEV1 and FEV1/FVC ratios were significantly greater than the predicted ones. No differences were found between the measured respiratory pressures. Conclusions: These results indicate that breath-hold diving seems to produce chronic adaptations of the respiratory system, resulting in elevated lung volumes with no airway obstruction.

  10. Comparison of expert and nonexpert swimmers' opinions about the value, potency, and activity of four standard swimming strokes and underwater undulatory swimming.

    Science.gov (United States)

    Collard, L; Oboeuf, A

    2009-04-01

    Underwater undulatory swimming (UUS) is often perceived to be a nonessential aspect of aquatic propulsion. Given their solid theoretical and practical training in swimming, physical education students should be capable of judging the true value of the "fifth stroke," since it appears to be the most efficient technique in high level, competitive swimming. To compare opinions and connotations associated with the stroke and the four official strokes (butterfly, backstroke, breaststroke, and crawl), 198 students (32 of whom were expert swimmers; M age = 20.6 yr., SD = 1.2), were surveyed using the semantic differential of Osgood, Suci, and Tannenbaum. Although answers of expert and nonexpert swimmers differed significantly (p stroke was less attractive, less powerful, and less rapid than the four surface strokes (d = 2.88 for the expert swimmers). Putting one arm in front of the other and repeating the sequence still remains the most solidly held representation of "the right way" to swim. However, the high observed standard deviations for the underwater undulatory stimulus (SD > or = 1.1 with SD max = 3 for the expert swimmers) attests to the view being less strongly held by swimming specialists.

  11. Cetacean Swimming with Prosthetic Limbs

    Science.gov (United States)

    Bode-Oke, Ayodeji; Ren, Yan; Dong, Haibo; Fish, Frank

    2016-11-01

    During entanglement in fishing gear, dolphins can suffer abrasions and amputations of flukes and fins. As a result, if the dolphin survives the ordeal, swimming performance is altered. Current rehabilitation technques is the use of prosthesis to regain swimming ability. In this work, analyses are focused on two dolphins with locomotive impairment; Winter (currently living in Clearwater Marine Aquarium in Florida) and Fuji (lived in Okinawa Churaumi Aquarium in Japan). Fuji lost about 75% of its fluke surface to necrosis (death of cells) and Winter lost its tail due to amputation. Both dolphins are aided by prosthetic tails that mimic the shape of a real dolphin tail. Using 3D surface reconstruction techniques and a high fidelity Computational Fluid Dynamics (CFD) flow solver, we were able to elucidate the kinematics and hydrodynamics and fluke deformation of these swimmers to clarify the effectiveness of prostheses in helping the dolphins regain their swimming ability. Associated with the performance, we identified distinct features in the wake structures that can explain this gap in the performance compared to a healthy dolphin. This work was supported by ONR MURI Grant Number N00014-14-1-0533.

  12. Dumpster diving: Mezi etikou a zákonem

    Directory of Open Access Journals (Sweden)

    Jana Kliková

    2017-06-01

    Full Text Available The aim of this paper is to reflect on the ethical dilemma of researchers who encounter illegal activity during their research, or of researchers who are particularly interested in this kind of activity. The inspiration comes from research that we are currently conducting on dumpster diving as a source of creativity. We interview people in the Pilsen Region who pursue this activity, or who used to do so. Although dumpster diving is becoming more popular, it is not legal. Waste remains tangible property and therefore always belongs to someone. For this reason, its appropriation is not in agreement with the law. According to the codes of ethics of various anthropological associations, the researcher should always be mindful of respecting the privacy and safety of the people the researcher is scientifically interested in. This could be a significant problem in cases where the anthropologist witnesses an illegal activity. Since the law is formally superior to an ethical code, the researcher should notify the police, especially if the activity in question is subject to the duty to report a crime. The question is how to cope with this “ethically important moment in research” (Guillemin and Gillam 2004, 262.

  13. Partition of aerobic and anaerobic swimming costs related to gait transitions in a labriform swimmer

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tudorache, Christian; Jordan, Anders D.

    2010-01-01

    rate was measured at 1.4, 1.9 and 2.3 L s–1. The presence and magnitude of excess post-exercise oxygen consumption (EPOC) were evaluated after each swimming speed. The data demonstrated that 1.4 L s–1 was below the Up–c, whereas 1.9 and 2.3 L s–1 were above the Up–c. These last two swimming speeds...... included caudal fin propulsion in a mostly steady and unsteady (burst-assisted) mode, respectively. There was no evidence of EPOC after swimming at 1.4 and 1.9 L s–1, indicating that the pectoral–caudal gait transition was not a threshold for anaerobic metabolism. At 2.3 L s–1, E. lateralis switched...... to an unsteady burst and flap gait. This swimming speed resulted in EPOC, suggesting that anaerobic metabolism constituted 25% of the total costs. Burst activity correlated positively with the magnitude of the EPOC. Collectively, these data indicate that steady axial propulsion does not lead to EPOC whereas...

  14. Sex differences associated with intermittent swim stress.

    Science.gov (United States)

    Warner, Timothy A; Libman, Matthew K; Wooten, Katherine L; Drugan, Robert C

    2013-11-01

    Various animal models of depression have been used to seek a greater understanding of stress-related disorders. However, there is still a great need for novel research in this area, as many individuals suffering from depression are resistant to current treatment methods. Women have a higher rate of depression, highlighting the need to investigate mechanisms of sex differences. Therefore, we employed a new animal model to assess symptoms of depression, known as intermittent swim stress (ISS). In this model, the animal experiences 100 trials of cold water swim stress. ISS has already been shown to cause signs of behavioral depression in males, but has yet to be assessed in females. Following ISS exposure, we looked at sex differences in the Morris water maze and forced swim test. The results indicated a spatial learning effect only in the hidden platform task between male and female controls, and stressed and control males. A consistent spatial memory effect was only seen for males exposed to ISS. In the forced swim test, both sexes exposed to ISS exhibited greater immobility, and the same males and females also showed attenuated climbing and swimming, respectively. The sex differences could be due to different neural substrates for males and females. The goal of this study was to provide the first behavioral examination of sex differences following ISS exposure, so the stage of estrous cycle was not assessed for the females. This is a necessary future direction for subsequent experiments. The current article highlights the importance of sex differences in response to stress.

  15. SWIM: a computational tool to unveiling crucial nodes in complex biological networks.

    Science.gov (United States)

    Paci, Paola; Colombo, Teresa; Fiscon, Giulia; Gurtner, Aymone; Pavesi, Giulio; Farina, Lorenzo

    2017-03-20

    SWItchMiner (SWIM) is a wizard-like software implementation of a procedure, previously described, able to extract information contained in complex networks. Specifically, SWIM allows unearthing the existence of a new class of hubs, called "fight-club hubs", characterized by a marked negative correlation with their first nearest neighbors. Among them, a special subset of genes, called "switch genes", appears to be characterized by an unusual pattern of intra- and inter-module connections that confers them a crucial topological role, interestingly mirrored by the evidence of their clinic-biological relevance. Here, we applied SWIM to a large panel of cancer datasets from The Cancer Genome Atlas, in order to highlight switch genes that could be critically associated with the drastic changes in the physiological state of cells or tissues induced by the cancer development. We discovered that switch genes are found in all cancers we studied and they encompass protein coding genes and non-coding RNAs, recovering many known key cancer players but also many new potential biomarkers not yet characterized in cancer context. Furthermore, SWIM is amenable to detect switch genes in different organisms and cell conditions, with the potential to uncover important players in biologically relevant scenarios, including but not limited to human cancer.

  16. London 2012 Paralympic swimming: passive drag and the classification system.

    Science.gov (United States)

    Oh, Yim-Taek; Burkett, Brendan; Osborough, Conor; Formosa, Danielle; Payton, Carl

    2013-09-01

    The key difference between the Olympic and Paralympic Games is the use of classification systems within Paralympic sports to provide a fair competition for athletes with a range of physical disabilities. In 2009, the International Paralympic Committee mandated the development of new, evidence-based classification systems. This study aims to assess objectively the swimming classification system by determining the relationship between passive drag and level of swimming-specific impairment, as defined by the current swimming class. Data were collected on participants at the London 2012 Paralympic Games. The passive drag force of 113 swimmers (classes 3-14) was measured using an electro-mechanical towing device and load cell. Swimmers were towed on the surface of a swimming pool at 1.5 m/s while holding their most streamlined position. Passive drag ranged from 24.9 to 82.8 N; the normalised drag (drag/mass) ranged from 0.45 to 1.86 N/kg. Significant negative associations were found between drag and the swimming class (τ = -0.41, p < 0.01) and normalised drag and the swimming class (τ = -0.60, p < 0.01). The mean difference in drag between adjacent classes was inconsistent, ranging from 0 N (6 vs 7) to 11.9 N (5 vs 6). Reciprocal Ponderal Index (a measure of slenderness) correlated moderately with normalised drag (r(P) = -0.40, p < 0.01). Although swimmers with the lowest swimming class experienced the highest passive drag and vice versa, the inconsistent difference in mean passive drag between adjacent classes indicates that the current classification system does not always differentiate clearly between swimming groups.

  17. Measuring Ucrit and endurance: equipment choice influences estimates of fish swimming performance.

    Science.gov (United States)

    Kern, P; Cramp, R L; Gordos, M A; Watson, J R; Franklin, C E

    2018-01-01

    This study compared the critical swimming speed (U crit ) and endurance performance of three Australian freshwater fish species in different swim-test apparatus. Estimates of U crit measured in a large recirculating flume were greater for all species compared with estimates from a smaller model of the same recirculating flume. Large differences were also observed for estimates of endurance swimming performance between these recirculating flumes and a free-surface swim tunnel. Differences in estimates of performance may be attributable to variation in flow conditions within different types of swim chambers. Variation in estimates of swimming performance between different types of flumes complicates the application of laboratory-based measures to the design of fish passage infrastructure. © 2017 The Fisheries Society of the British Isles.

  18. Epidemiology of non-submersion injuries in aquatic sporting and recreational activities.

    Science.gov (United States)

    Chalmers, David; Morrison, Luke

    2003-01-01

    Although the issues of drowning and near-drowning in aquatic sporting and recreational activities receive considerable attention in the epidemiological literature, there is not a recognised literature on non-submersion injuries occurring in these activities. This review draws together the epidemiological literature on non-submersion injuries and describes the incidence, nature and causes of these injuries, common risk factors, and strategies for prevention. Activities covered by the review include swimming, diving, boating, surf sports, fishing, water polo and water sliding. For most activities there is a dearth of good quality descriptive studies, with most involving cases-series designs and few providing estimates of incidence. Inconsistencies in inclusion criteria and the reporting of incidence rates makes comparisons within and between activities difficult. Incidence rates were identified for most activities and in general the incidence of injury was low, especially for more serious injury. However, some activities were associated with severely disabling injury, such as spinal cord injury (diving) and amputation (from propeller strikes in water skiing and swimming). Only three studies reporting the significance of postulated risk factors were identified. Lack of knowledge about the water being entered and alcohol consumption are significant risk factors in recreational diving; increased blood alcohol concentrations were reported to increase the risk of death in boating; and obesity and tandem riding were reported to increase the risk of injury on public water slides. Few evaluations of preventive measures were identified. Two studies reported reductions in the incidence of water slide injuries following the introduction of design changes and supervision, but neither had a non-intervention comparison group. Improvements in swimming and diving skills were reported in three studies, but these were not designed to measure changes in the risk of injury.This review

  19. ROV Dive Products Dataset for EX1502L3: Caribbean Exploration (ROV) on NOAA Ship Okeanos Explorer between 20150409 and 20150430

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dataset of folders containing ROV dive products for each ROV dive performed during EX1502L3. The files within the folder are text, image, graph, comma-separated...

  20. Mechanics of undulatory swimming in a frictional fluid.

    Science.gov (United States)

    Ding, Yang; Sharpe, Sarah S; Masse, Andrew; Goldman, Daniel I

    2012-01-01

    The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.

  1. Doppler ultrasound surveillance in deep tunneling compressed-air work with Trimix breathing: bounce dive technique compared to saturation-excursion technique

    NARCIS (Netherlands)

    Vellinga, T. P. Van Rees; Sterk, W.; de Boer, A. G. E. M.; van der Beek, A. J.; Verhoeven, A. C.; van Dijk, F. J. H.

    2008-01-01

    The Western Scheldt Tunneling Project in The Netherlands provided a unique opportunity to evaluate two deep-diving techniques with Doppler ultrasound surveillance. Divers used the bounce diving techniques for repair and maintenance of the TBM. The tunnel boring machine jammed at its deepest depth.

  2. One foot out the door: limb function during swimming in terrestrial versus aquatic turtles.

    Science.gov (United States)

    Young, Vanessa K Hilliard; Vest, Kaitlyn G; Rivera, Angela R V; Espinoza, Nora R; Blob, Richard W

    2017-01-01

    Specialization for a new habitat often entails a cost to performance in the ancestral habitat. Although aquatic lifestyles are ancestral among extant cryptodiran turtles, multiple lineages, including tortoises (Testudinidae) and emydid box turtles (genus Terrapene), independently specialized for terrestrial habitats. To what extent is swimming function retained in such lineages despite terrestrial specialization? Because tortoises diverged from other turtles over 50 Ma, but box turtles did so only 5 Ma, we hypothesized that swimming kinematics for box turtles would more closely resemble those of aquatic relatives than those of tortoises. To test this prediction, we compared high-speed video of swimming Russian tortoises (Testudo horsfieldii), box turtles (Terrapene carolina) and two semi-aquatic emydid species: sliders (Trachemys scripta) and painted turtles (Chrysemys picta). We identified different kinematic patterns between limbs. In the forelimb, box turtle strokes most resemble those of tortoises; for the hindlimb, box turtles are more similar to semi-aquatic species. Such patterns indicate functional convergence of the forelimb of terrestrial species, whereas the box turtle hindlimb exhibits greater retention of ancestral swimming motions. © 2017 The Author(s).

  3. The role of risk management in decrease of lawsuits of swimming pools

    Directory of Open Access Journals (Sweden)

    Behzad Izadi

    2012-01-01

    Full Text Available The purpose of this research is to study of risk management practices in decrease of lawsuits in public and private swimming pools in Tehran. The statistical population of the research included 310 managers of public and private swimming pools which 119 were selected as statistical samples by means of random sampling. The research method was descriptive and survey, and in measurement form. 2 questionnaires were used, on relating to demographic data and general information and the other to risk management practices and their validity was determined by alpha Cronbach method. The required information was collected by personal interviews during the time acting of managers in pools gathered and the data was analyzed by using person correlation coefficient. The result of this study indicated that: Significant relationship existed between incidents of accidents/injuries and lawsuits in swimming pools in Tehran. Significant relationship existed between risk management practice and accidents/injuries and lawsuits. Significant relationship existed between risk management practice and lawsuits and lawsuits.

  4. Profilicollis botulus (Van Cleave, 1916) from diving ducks and shore crabs of British Columbia.

    Science.gov (United States)

    Ching, H L

    1989-02-01

    Adults of Profilicollis botulus were found in 6 species of diving ducks in British Columbia including 3 new hosts: common goldeneye, Bucephala clangula (L.); Barrow's goldeneye, B. islandica (Gmelin); and greater scaup, Aythya marila (L.). The identification of the species was verified by the examination of co-types and specimens from eider ducks, Somateria mollissima (L.), from Scotland and oldsquaw, Clangula hyemalis (L.), from New Brunswick. Cystacanths from the hairy shore crab, Hemigrapsus oregonensis (Dana), were similar in morphology to those from Carcinus maenas (L.) from Scotland.

  5. Declines in swimming performance with age: a longitudinal study of Masters swimming champions

    Directory of Open Access Journals (Sweden)

    Rubin RT

    2013-03-01

    Full Text Available Robert T Rubin,1,2 Sonia Lin,3 Amy Curtis,4 Daniel Auerbach,5 Charlene Win6 1Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; 2UCLA Bruin Masters Swim Club, Los Angeles, CA, USA; 3Saint Louis University School of Medicine, Saint Louis, MO, USA; 4Indiana University School of Medicine, Indianapolis, IN, USA; 5University of California, Berkeley, CA, USA; 6Loyola Marymount University, Los Angeles, CA, USA Introduction: Because of its many participants and thorough records, competitive Masters swimming offers a rich data source for determining the rate of physical decline associated with aging in physically fit individuals. The decline in performance among national champion swimmers, both men and women and in short and long swims, is linear, at about 0.6% per year up to age 70–75, after which it accelerates in quadratic fashion. These conclusions are based primarily on cross-sectional studies, and little is known about individual performance declines with aging. Herein we present performance profiles of 19 male and 26 female national and international champion Masters swimmers, ages 25 to 96 years, participating in competitions for an average of 23 years. Methods and results: Swimmers’ longitudinal data were compared with the fastest times of world record holders across ages 35–100 years by two regression methods. Neither method proved to accurately model this data set: compared with the rates of decline estimated from the world record data, which represent the best recorded times at given ages, there was bias toward shallower rates of performance decline in the longitudinal data, likely owing to a practice effect in some swimmers as they began their Masters programs. In swimmers’ later years, once maximum performance had been achieved, individual profiles followed the decline represented in the world records, and a few swimmers became the world record holders. In some instances

  6. Biochemical and Hematological Changes Following the 120-Km Open-Water Marathon Swim

    Directory of Open Access Journals (Sweden)

    Wojciech Drygas, Ewa Rębowska, Ewa Stępień, Jacek Golański, Magdalena Kwaśniewska

    2014-09-01

    Full Text Available Data on physiological effects and potential risks of a ultraendurance swimming are scarce. This report presents the unique case of a 61-year old athlete who completed a non-stop open-water 120-km ultramarathon swim on the Warta River, Poland. Pre-swimming examinations revealed favorable conditions (blood pressure, 110/70 mmHg; rest heart rate, 54 beats/minute, ejection fraction, 60%, 20.2 metabolic equivalents in a maximal exercise test. The swimming time and distance covered were 27 h 33 min and 120 km, respectively. Blood samples for hematological and biochemical parameters were collected 30 min, 4 hrs, 10 hrs and 8 days after the swim. The body temperature of the swimmer was 36.7°C before and 35.1°C after the swim. The hematological parameters remained within the reference range in the postexercise period except for leucocytes (17.5 and 10.6 x G/l noted 30 minutes and 4 hours after the swim, respectively. Serum urea, aspartate aminotransferase and C-reactive protein increased above the reference range reaching 11.3 mmol/l, 1054 nmol/l/s and 25.9 mg/l, respectively. Symptomatic hyponatremia was not observed. Although the results demonstrate that an experienced athlete is able to complete an ultra-marathon swim without negative health consequences, further studies addressing the potential risks of marathon swimming are required.

  7. 33 CFR 117.734 - Navesink River (Swimming River).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navesink River (Swimming River). 117.734 Section 117.734 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Swimming River). The Oceanic Bridge, mile 4.5, shall open on signal; except that, from December 1 through...

  8. Bermuda Deep Water Caves 2011: Dives of Discovery between 20110607 and 20110627

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the three week NOAA Ocean Exploration project, Bermuda Deep Water Caves 2011: Dives of Discovery, our four member deep team, aided by numerous assistants,...

  9. Circular swimming in mice after exposure to a high magnetic field.

    Science.gov (United States)

    Houpt, Thomas A; Houpt, Charles E

    2010-06-16

    There is increasing evidence that exposure to high magnetic fields of 4T and above perturbs the vestibular system of rodents and humans. Performance in a swim test is a sensitive test of vestibular function. In order to determine the effect of magnet field exposure on swimming in mice, mice were exposed for 30 min within a 14.1T superconducting magnet and then tested at different times after exposure in a 2-min swim test. As previously observed in open field tests, mice swam in tight counter-clockwise circles when tested immediately after magnet exposure. The counter-clockwise orientation persisted throughout the 2-min swim test. The tendency to circle was transient, because no significant circling was observed when mice were tested at 3 min or later after magnet exposure. However, mice did show a decrease in total distance swum when tested between 3 and 40 min after magnet exposure. The decrease in swimming distance was accompanied by a pronounced postural change involving a counter-clockwise twist of the pelvis and hindlimbs that was particularly severe in the first 15s of the swim test. Finally, no persistent difference from sham-exposed mice was seen in the swimming of magnet-exposed mice when tested 60 min, 24h, or 96 h after magnet exposure. This suggests that there is no long-lasting effect of magnet exposure on the ability of mice to orient or swim. The transient deficits in swimming and posture seen shortly after magnet exposure are consistent with an acute perturbation of the vestibular system by the high magnetic field. (c) 2010 Elsevier Inc. All rights reserved.

  10. The Physiology and Mechanics of Undulatory Swimming: A Student Laboratory Exercise Using Medicinal Leeches

    Science.gov (United States)

    Ellerby, David J.

    2009-01-01

    The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle…

  11. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    International Nuclear Information System (INIS)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-01-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of [ 3 H]Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in [14C]iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress [an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures], although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results

  12. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  13. Fine-Scale Movements and Behaviors of Whale Sharks, Rhincodon typus, in a Seasonal Aggregation near Al Lith, Saudi Arabia

    KAUST Repository

    Sun, Lu

    2016-01-01

    . In another dimension, depth use of whale sharks derived from biologgers showed distinct diel patterns. The sharks heavily utilized shallow waters with mixed depth usage consisting of surface swimming and varied types of dives, which explained the data

  14. On the swimming motion of spheroidal magnetotactic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui Zhen; Kong Dali; Zhang Keke [Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom); Pan Yongxin, E-mail: kzhang@ex.ac.uk [Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China)

    2012-10-15

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  15. On the swimming motion of spheroidal magnetotactic bacteria

    International Nuclear Information System (INIS)

    Cui Zhen; Kong Dali; Zhang Keke; Pan Yongxin

    2012-01-01

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  16. Water Penetration into Middle Ear Through Ventilation Tubes in Children While Swimming

    Directory of Open Access Journals (Sweden)

    Mao-Che Wang

    2009-02-01

    Conclusion: Water penetration into the middle ear through ventilation tubes and middle ear infection are not likely when surface swimming. Children with ventilation tubes can enjoy swimming without protection in clean chlorinated swimming pools.

  17. Nutrition considerations for open-water swimming.

    Science.gov (United States)

    Shaw, Gregory; Koivisto, Anu; Gerrard, David; Burke, Louise M

    2014-08-01

    Open-water swimming (OWS) is a rapidly developing discipline. Events of 5-25 km are featured at FINA World Championships, and the international circuit includes races of 5-88 km. The Olympic OWS event, introduced in 2008, is contested over 10 km. Differing venues present changing environmental conditions, including water and ambient temperatures, humidity, solar radiation, and unpredictable tides. Furthermore, the duration of most OWS events (1-6 hr) creates unique physiological challenges to thermoregulation, hydration status, and muscle fuel stores. Current nutrition recommendations for open-water training and competition are either an extension of recommendations from pool swimming or are extrapolated from other athletic populations with similar physiological requirements. Competition nutrition should focus on optimizing prerace hydration and glycogen stores. Although swimmers should rely on self-supplied fuel and fluid sources for shorter events, for races of 10 km or greater, fluid and fuel replacement can occur from feeding pontoons when tactically appropriate. Over the longer races, feeding pontoons should be used to achieve desirable targets of up to 90 g/ hr of carbohydrates from multitransportable sources. Exposure to variable water and ambient temperatures will play a significant role in determining race nutrition strategies. For example, in extreme environments, thermoregulation may be assisted by manipulating the temperature of the ingested fluids. Swimmers are encouraged to work with nutrition experts to develop effective and efficient strategies that enhance performance through appropriate in-competition nutrition.

  18. The effect of swim-up and gradient sperm preparation techniques on deoxyribonucleic acid (DNA) fragmentation in subfertile patients.

    Science.gov (United States)

    Oguz, Yuksel; Guler, Ismail; Erdem, Ahmet; Mutlu, Mehmet Firat; Gumuslu, Seyhan; Oktem, Mesut; Bozkurt, Nuray; Erdem, Mehmet

    2018-03-23

    To compare the effect of two different sperm preparation techniques, including swim-up and gradient methods on sperm deoxyribonucleic acid (DNA) fragmentation status of semen samples from unexplained and mild male factor subfertile patients undergoing intrauterine insemination (IUI). A prospective randomized study was conducted in 65 subfertile patients, including 34 unexplained and 31 male factor infertility to compare basal and post-procedure DNA fragmentation rates in swim-up and gradient techniques. Sperm DNA fragmentation rates were evaluated by a sperm chromatin dispersion (SCD) test in two portions of each sample of semen that was prepared with either swim-up or gradient techniques. Sperm motility and morphology were also assessed based on WHO 2010 criteria. Swim-up but not gradient method yielded a statistically significant reduction in the DNA fragmented sperm rate after preparation as compared to basal rates, in the semen samples of both unexplained (41.85 ± 22.04 vs. 28.58 ± 21.93, p gradient) and mild male factor (46.61 ± 19.38 vs. 30.32 ± 18.20, p gradient) subgroups. Swim-up method significantly reduces sperm DNA fragmentation rates and may have some prognostic value on intrauterine insemination in patients with decreased sperm DNA integrity.

  19. Effect of Eight Weeks Forced Swimming Training with Methadone Supplementation on Aspartate Aminotransferase, Alanine Aminotransferase, and Alkaline Phosphatase of Rats

    Directory of Open Access Journals (Sweden)

    Seyed Ali Hoseini

    2016-12-01

    Full Text Available Background & Objective: Narcotics abuse can induce liver disorders; nevertheless, exercises improve liver disorders. The present research aimed to review the effect of eight weeks forced swimming training with methadone supplementation on liver enzymes of rats. Material & Method: In this experimental research, 48 rats were selected, and after one week adaptation to lab environment, they were randomly divided into four groups of 12 rats including (1 forced swimming training, (2 methadone supplementation, (3 forced swimming training with methadone supplementation, and (4 control. Groups 2 and 3 used 2 mg/kg methadone daily for 8 weeks. Also, groups 1 and 3 swam for 8 weeks, three sessions per week and each session for 30 minutes. For statistical analysis of data, one way ANOVA and Tukey post hoc tests were used (α≤0.05. Results: Findings showed that forced swimming training, methadone supplementation, and forced swimming training with methadone supplementation had no significant effect on AST (P=0.90 and ALT (P=0.99 enzymes; forced swimming training had significant effect on increase of ALP (P=0.001; also, forced swimming training, compared with methadone supplementation and combination of forced swimming training with methadone supplementation, had significant effect on increase of ALP (P=0.001. Conclusion: Accordingly, 8 weeks of forced swimming training with methadone has possibly no significant effect on liver enzymes.

  20. Noncontact Cohesive Swimming of Bacteria in Two-Dimensional Liquid Films.

    Science.gov (United States)

    Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel B; Wu, Yilin

    2017-07-07

    Bacterial swimming in confined two-dimensional environments is ubiquitous in nature and in clinical settings. Characterizing individual interactions between swimming bacteria in 2D confinement will help to understand diverse microbial processes, such as bacterial swarming and biofilm formation. Here we report a novel motion pattern displayed by flagellated bacteria in 2D confinement: When two nearby cells align their moving directions, they tend to engage in cohesive swimming without direct cell body contact, as a result of hydrodynamic interaction but not flagellar intertwining. We further found that cells in cohesive swimming move with higher directional persistence, which can increase the effective diffusivity of cells by ∼3 times as predicted by computational modeling. As a conserved behavior for peritrichously flagellated bacteria, cohesive swimming in 2D confinement may be key to collective motion and self-organization in bacterial swarms; it may also promote bacterial dispersal in unsaturated soils and in interstitial space during infections.