WorldWideScience

Sample records for swift ion irradiated

  1. Microstructural modifications in swift ion irradiated PET

    Science.gov (United States)

    Singh, Ravinder; Singh Samra, Kawaljeet; Kumar, Ramneek; Singh, Lakhwant

    2008-05-01

    Polyethylene terephthalte (PET) was irradiated with carbon (70 MeV) and copper (120 MeV) ions to analyze the induced modifications with respect to optical, structural and thermal properties. In the present investigation, the fluence for carbon irradiation was varied from 1×10 11 to 1×10 14 ions cm -2, while that for copper beam was kept in the range of 1×10 11 to 1×10 13 ions cm -2. UV-vis, FTIR, XRD and DSC techniques were utilized to study the induced changes. The analysis of UV-vis absorption studies reveals that there is decrease of optical energy gap up to 10% on carbon ion irradiation (at 1×10 14 ions cm -2), whereas the copper beam (at 1×10 13 ions cm -2) leads to a decrease of 49%. FTIR analysis indicated the formation of alkyne end groups along with the overall degradation of polymer with copper ion irradiation. X-ray diffraction analysis revealed that the semi-crystalline PET losses its crystallinity on swift ion irradiation. It was found that the carbon beam (1×10 14 ions cm -2) decreased the crystallite size by 16% whereas this decrease is of 12% in case of the copper ion irradiated PET at 1×10 13 ions cm -2. The loss in crystallinity on irradiation has been supported by DSC thermograms.

  2. Structural and electrical properties of swift heavy ion beam irradiated ...

    Indian Academy of Sciences (India)

    Synthesis of swift heavy ion induced metal silicide is a new advancement in materials science research. We have investigated the mixing at Co/Si interface by swift heavy ion beam induced irradiation in the electronic stopping power regime. Irradiations were undertaken at room temperature using 120 MeV Au ions at the ...

  3. Folding two dimensional crystals by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Ochedowski, Oliver; Bukowska, Hanna; Freire Soler, Victor M.; Brökers, Lara; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika

    2014-01-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS 2 and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS 2 does not

  4. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  5. Development of Nanoporous Polymer Membranes by Swift Heavy Ion Irradiation

    Science.gov (United States)

    Dinesh, Divya; Predeep, P.

    2011-10-01

    This study reveals the preparation of conical pores in polyethylene terephthalate (PET) by track etching. The polymer membrane is etched from one side by keeping between the clamps of conductivity cell followed by irradiation with swift heavy ion of 197Au. Electrical stopping supports chemical stopping. During etching process current is measured as a function of time till a sharp increase -breakthrough-observed. After etching membranes are thoroughly washed with stopping solution and water. Resultant films are characterized using Optical microscope and field emission scanning electron microscopy. Polymer films with uniform pores can be a cheaper templating material in the fields of photonic crystals and micro- electronics.

  6. Degradation of polyimide under irradiation with swift heavy ions

    International Nuclear Information System (INIS)

    Severin, D.; Ensinger, W.; Neumann, R.; Trautmann, C.; Walter, G.; Alig, I.; Dudkin, S.

    2005-01-01

    Stacks of polyimide foils were irradiated with different swift heavy ions (Ti, Mo, Au) of 11.1 MeV/nucleon energy and fluences between 1 x 10 10 and 2 x 10 12 ions/cm 2 . Beam-induced degradation of the imide group was analyzed by Fourier-transform infrared spectroscopy studying the absorption band at 725 cm -1 as a function of dose. In the UV-Vis spectral range, the absorption edge is shifted to larger wavelengths indicating carbonization. Such modifications are linked to the deposition of a critical dose of 2.7 MGy (Ti) and 1 MGy (Mo, Au). In addition, irradiation-induced changes of the electrical conductivity were studied by means of dielectric spectroscopy

  7. Ions ejected from the surface: sputtering induced by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Alzaher, I.

    2011-01-01

    Ion irradiation of solids leads to a deposition of its energy along the ion path. The energy deposited creates damage in the target as well as leads to the sputtering of neutral and charged particles. In this work we studied the damage induced by slow and swift ions in matter. We studied also the sputtering of secondary ions induced by swift heavy ion irradiation. We have measured the damage cross section of the surface of the Titanium (Insulator surface) and of the graphite (Conductor surface) by slow highly charged ions. The potential energy stored in the projectile has an important role for creating damage at surfaces. We studied the damage creation at the surface of crystalline silicon by swift heavy ions. We revealed that the c-Si is not sensitive to the irradiation by Xe ion at E c = 0,9 MeV/u, where the electronic stopping power is 12 keV/nm. The maximum efficiency to create a track is 0,3 %. Under swift heavy ion irradiation, the emission of the CaF + compared to the Ca + is higher for solid crystals than for thin films of Calcium Fluoride CaF 2 on Si. (author)

  8. Structural response of titanate pyrochlores to swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Shamblin, Jacob; Tracy, Cameron L.; Ewing, Rodney C.; Zhang, Fuxiang; Li, Weixing; Trautmann, Christina; Lang, Maik

    2016-01-01

    The structure, size, and morphology of ion tracks resulting from irradiation of five different pyrochlore compositions (A 2 Ti 2 O 7 , A = Yb, Er, Y, Gd, Sm) with 2.2 GeV 197 Au ions were investigated by means of synchrotron X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Radiation-induced amorphization occurred in all five materials analyzed following an exponential rate as a function of ion fluence. XRD patterns showed a general trend of increasing susceptibility of amorphization with increasing ratio of A- to B-site cation ionic radii (r A /r B ) with the exception of Y 2 Ti 2 O 7 and Sm 2 Ti 2 O 7 . This indicates that the track size does not necessarily increase with r A /r B , in contrast with results from previous swift heavy ion studies on Gd 2 Zr 2-x Ti x O 7 pyrochlore materials. For Y 2 Ti 2 O 7 , this effect is attributed to the significantly lower electron density of this material relative to the lanthanide-bearing pyrochlores, thus lowering the electronic energy loss (dE/dx) of the high-energy ions in this composition. An energy loss normalization procedure was performed which reveals an initial increase of amorphous track size with r A /r B that saturates above a cation radius ratio larger than Gd 2 Ti 2 O 7 . This is in agreement with previous low-energy ion irradiation experiments and first principles calculations of the disordering energy of titanate pyrochlores indicating that the same trends in disordering energy apply to radiation damage induced in both the nuclear and electronic energy loss regimes. HRTEM images indicate that single ion tracks in Yb 2 Ti 2 O 7 and Er 2 Ti 2 O 7 , which have small A-site cations and low r A /r B , exhibit a core-shell structure with a small amorphous core surrounded by a larger disordered shell. In contrast, single tracks in Gd 2 Ti 2 O 7 and Sm 2 Ti 2 O 7 , have a larger amorphous core with minimal disordered shells.

  9. Irradiation effects of swift heavy ions in matter

    Energy Technology Data Exchange (ETDEWEB)

    Osmani, Orkhan

    2011-12-22

    In the this thesis irradiation effects of swift heavy ions in matter are studied. The focus lies on the projectiles charge exchange and energy loss processes. A commonly used computer code which employs rate equations is the so called ETACHA code. This computer code is capable to also calculate the required input cross-sections. Within this thesis a new model to compute the charge state of swift heavy ions is explored. This model, the so called matrix method, takes the form of a simple algebraic expression, which also requires cross-sections as input. In the present implementation of the matrix method, cross-sections are taken from the ETACHA code, while excitation and deexcitation processes are neglected. Charge fractions for selected ion/target combinations, computed by the ETACHA code and the matrix method are compared. It is shown, that for sufficient large ion energies, both methods agree very well with each other. However, for lower energies pronounced differences are observed. These differences are believed to stem from the fact, that no excited states as well as the decay of theses excited states are included in the present implementation of the matrix method. Both methods are then compared with experimental measurements, where significant deviations are observed for both methods. While the predicted equilibrium charge state by both methods is in good agreement with the experiments, the matrix method predicts a much too large equilibrium thickness compared to both the ETACHA calculation as well as the experiment. Again, these deviations are believed to stem from the fact, that excitation and the decay of excited states are not included in the matrix method. A possible way to include decay processes into the matrix method is presented, while the accuracy of the applied capture cross-sections is tested by comparison with scaling rules. Swift heavy ions penetrating a dielectric are known to induced structural modifications both on the surface and in the bulk

  10. Opto-chemical response of Makrofol-KG to swift heavy ion irradiation

    Indian Academy of Sciences (India)

    In the present study, the effects of swift heavy ion beam irradiation on the structural, chemical and optical properties of Makrofol solid-state nuclear track detector (SSNTD) were investigated. Makrofol-KG films of 40 m thickness were irradiated with oxygen beam (8+) with fluences ranging between 1010 ion/cm2 and 1012 ...

  11. Surface amorphization in Al2O3 induced by swift heavy ion irradiation

    Science.gov (United States)

    Okubo, N.; Ishikawa, N.; Sataka, M.; Jitsukawa, S.

    2013-11-01

    Microstructure in single crystalline Al2O3 developed during irradiation by swift heavy ions has been investigated. The specimens were irradiated by Xe ions with energies from 70 to 160 MeV at ambient temperature. The fluences were in the range from 1.0 × 1013 to 1.0 × 1015 ions/cm2. After irradiations, X-ray diffractometry (XRD) measurements and cross sectional transmission electron microscope (TEM) observations were conducted. The XRD results indicate that in the initial stage of amorphization in single crystalline Al2O3, high-density Se causes the formation of new planes and disordering. The new distorted lattice planes formed in the early stage of irradiation around the fluence of 5.0 × 1013 ions/cm2 for single crystalline Al2O3 irradiated with 160 MeV-Xe ions. Energy dependence on structural modification was also examined in single crystalline Al2O3 irradiated by swift heavy ions. The XRD results indicate that the swift heavy ion irradiation causes the lattice expansion and the structural modification leading to amorphization progresses above the energy around 100 MeV in this XRD study. The TEM observations demonstrated that amorphization was induced in surface region in single crystalline Al2O3 irradiated by swift heavy ions above the fluence expected from the results of XRD. Obvious boundary was observed in the cross sectional TEM images. The crystal structure of surface region above the boundary was identified to be amorphous and deeper region to be single crystal. The threshold fluence of amorphization was found to be around 1.0 × 1014 ions/cm2 in the case over 80 MeV swift heavy ion irradiation and the fluence did not depend on the crystal structures.

  12. Oxide glass structure evolution under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Mendoza, C.; Peuget, S.; Charpentier, T.; Moskura, M.; Caraballo, R.; Bouty, O.; Mir, A.H.; Monnet, I.; Grygiel, C.; Jegou, C.

    2014-01-01

    Highlights: • Structure of SHI irradiated glass is similar to the one of a hyper quenched glass. • D2 Raman band associated to 3 members ring is only observed in irradiated glass. • Irradiated state seems slightly different to an equilibrated liquid quenched rapidly. - Abstract: The effects of ion tracks on the structure of oxide glasses were examined by irradiating a silica glass and two borosilicate glass specimens containing 3 and 6 oxides with krypton ions (74 MeV) and xenon ions (92 MeV). Structural changes in the glass were observed by Raman and nuclear magnetic resonance spectroscopy using a multinuclear approach ( 11 B, 23 Na, 27 Al and 29 Si). The structure of irradiated silica glass resembles a structure quenched at very high temperature. Both borosilicate glass specimens exhibited depolymerization of the borosilicate network, a lower boron coordination number, and a change in the role of a fraction of the sodium atoms after irradiation, suggesting that the final borosilicate glass structures were quenched from a high temperature state. In addition, a sharp increase in the concentration of three membered silica rings and the presence of large amounts of penta- and hexacoordinate aluminum in the irradiated 6-oxide glass suggest that the irradiated glass is different from a liquid quenched at equilibrium, but it is rather obtained from a nonequilibrium liquid that is partially relaxed by very rapid quenching within the ion tracks

  13. Amorphous iron phase formation in swift heavy ion irradiated electrodeposited iron thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, E. [Research Group for Nuclear Methods in Structural Chemistry, Department of Nulear Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary)]. E-mail: kuzmann@ludens.elte.hu; Stichleutner, S. [Research Group for Nuclear Methods in Structural Chemistry, Department of Nulear Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary); Havancsak, K. [Department of Solid State Physics, Eoetvoes University, Budapest (Hungary); El-Sharif, M.R. [Glasgow Caledonian University, Glasgow Scotland (United Kingdom); Chisholm, C.U. [Glasgow Caledonian University, Glasgow Scotland (United Kingdom); Doyle, O. [Glasgow Caledonian University, Glasgow Scotland (United Kingdom); Skuratov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kellner, K. [Johannes Kepler University Linz (Austria); Dora, Gy. [Research Group for Nuclear Methods in Structural Chemistry, Department of Nulear Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary); Homonnay, Z. [Research Group for Nuclear Methods in Structural Chemistry, Department of Nulear Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary); Vertes, A. [Research Group for Nuclear Methods in Structural Chemistry, Department of Nulear Chemistry, Hungarian Academy of Sciences, Eoetvoes University, Budapest (Hungary)

    2006-07-15

    {sup 57}Fe conversion electron Moessbauer spectroscopy, SEM, EDAX, XRD and AFM measurements were used to study the radiation effect of 246 MeV Kr ions on electrochemically deposited {sup 57}Fe thin films. Amorphous iron phase formation has been shown to occur for the first time in electrodeposited iron thin films due to the irradiation with swift heavy ions.

  14. Swift heavy ions induced irradiation effects in monolayer graphene and highly oriented pyrolytic graphite

    International Nuclear Information System (INIS)

    Zeng, J.; Yao, H.J.; Zhang, S.X.; Zhai, P.F.; Duan, J.L.; Sun, Y.M.; Li, G.P.; Liu, J.

    2014-01-01

    Monolayer graphene and highly oriented pyrolytic graphite (HOPG) were irradiated by swift heavy ions ( 209 Bi and 112 Sn) with the fluence between 10 11 and 10 14 ions/cm 2 . Both pristine and irradiated samples were investigated by Raman spectroscopy. It was found that D and D′ peaks appear after irradiation, which indicated the ion irradiation introduced damage both in the graphene and graphite lattice. Due to the special single atomic layer structure of graphene, the irradiation fluence threshold Φ th of the D band of graphene is significantly lower ( 11 ions/cm 2 ) than that (2.5 × 10 12 ions/cm 2 ) of HOPG. The larger defect density in graphene than in HOPG indicates that the monolayer graphene is much easier to be damaged than bulk graphite by swift heavy ions. Moreover, different defect types in graphene and HOPG were detected by the different values of I D /I D′ . For the irradiation with the same electronic energy loss, the velocity effect was found in HOPG. However, in this experiment, the velocity effect was not observed in graphene samples irradiated by swift heavy ions

  15. Structural and electrical properties of swift heavy ion beam irradiated ...

    Indian Academy of Sciences (India)

    Unknown

    at the Co/Si interface for investigation of ion beam mixing at various doses: 8 × 1012, 5 × 1013 and 1 × 1014 cm–2. Formation of different phases of cobalt silicide is identified by the grazing incidence X-ray diffraction. (GIXRD) technique, which shows enhancement of intermixing and silicide formation as a result of irradiation ...

  16. Enhancement of Ammonia Sensitivity in Swift Heavy Ion Irradiated Nanocrystalline SnO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Sanju Rani

    2008-01-01

    Full Text Available Swift heavy ion irradiation is an effective technique to induce changes in the microstructure and electronic energy levels of materials leading to significant modification of properties. Here we report enhancement of ammonia (NH3 sensitivity of SnO2 thin films subjected to high-energy Ni+ ion irradiation. Sol-gel-derived SnO2 thin films (100 nm thickness were exposed to 75 MeV Ni+ ion irradiation, and the gas response characteristics of irradiated films were studied as a function of ion fluence. The irradiated films showed p-type conductivity with a much higher response to NH3 compared to other gases such as ethanol. The observed enhancement of NH3 sensitivity is discussed in context of ion beam generated electronic states in the SnO2 thin films.

  17. Tuning the conductivity of vanadium dioxide films on silicon by swift heavy ion irradiation

    Directory of Open Access Journals (Sweden)

    H. Hofsäss

    2011-09-01

    Full Text Available We demonstrate the generation of a persistent conductivity increase in vanadium dioxide thin films grown on single crystal silicon by irradiation with 1 GeV 238U swift heavy ions at room temperature. VO2 undergoes a temperature driven metal-insulator-transition (MIT at 67 °C. After room temperature ion irradiation with high electronic energy loss of 50 keV/nm the conductivity of the films below the transition temperature is strongly increased proportional to the ion fluence of 5·109 U/cm2 and 1·1010 U/cm2. At high temperatures the conductivity decreases slightly. The ion irradiation slightly reduces the MIT temperature. This observed conductivity change is persistent and remains after heating the samples above the transition temperature and subsequent cooling. Low temperature measurements down to 15 K show no further MIT below room temperature. Although the conductivity increase after irradiation at such low fluences is due to single ion track effects, atomic force microscopy (AFM measurements do not show surface hillocks, which are characteristic for ion tracks in other materials. Conductive AFM gives no evidence for conducting ion tracks but rather suggests the existence of conducting regions around poorly conducting ion tracks, possible due to stress generation. Another explanation of the persistent conductivity change could be the ion-induced modification of a high resistivity interface layer formed during film growth between the vanadium dioxide film and the n-Silicon substrate. The swift heavy ions may generate conducting filaments through this layer, thus increasing the effective contact area. Swift heavy ion irradiation can thus be used to tune the conductivity of VO2 films on silicon substrates.

  18. Mixing induced by swift heavy ion irradiation at Fe/Si interface

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The present work deals with the mixing of metal and silicon by swift heavy ions in high-energy range. Threshold value for the defect creation in metal Fe calculated was found to be ~ 40 keV/nm. A thin film of Fe (10 nm) was deposited on Si (100) at a pressure of 4 × 10–8 Torr and was irradiated with 95 MeV Au ions ...

  19. Irradiation effects of swift heavy ions on gallium arsenide, silicon and silicon diodes

    International Nuclear Information System (INIS)

    Bhoraskar, V.N.

    2001-01-01

    The irradiation effects of high energy lithium, boron, oxygen and silicon ions on crystalline silicon, gallium arsenide, porous silicon and silicon diodes were investigated. The ion energy and fluence were varied over the ranges 30 to 100 MeV and 10 11 to 10 14 ions/cm 2 respectively. Semiconductor samples were characterized with the x-ray fluorescence, photoluminescence, thermally stimulated exo-electron emission and optical reflectivity techniques. The life-time of minority carriers in crystalline silicon was measured with a pulsed electron beam and the lithium depth distribution in GaAs was measured with the neutron depth profiling technique. The diodes were characterized through electrical measurements. The results of optical reflectivity, life-time of minority carriers and photoluminescence show that swift heavy ions induce defects in the surface region of crystalline silicon. In the ion-irradiated GaAs, migration of silicon, oxygen and lithium atoms from the buried region towards the surface was observed, with orders of magnitude enhancement in the diffusion coefficients. Enhancement in the photoluminescence intensity was observed in the GaAs and porous silicon samples that, were irradiated with silicon ions. The trade-off between the turn-off time and the voltage, drop in diodes irradiated with different swift heavy ions was also studied. (author)

  20. Structural Modifications of PMMA and PMMA/CNT Matrix by Swift Heavy Ions Irradiation

    Science.gov (United States)

    Lata Bharti, Madhu; Dutt, Sanjay; Raturi, Rakesh; Joshi, Veena

    2017-08-01

    The effects of multi walled carbon nanotube (MWCNT) as well as swift heavy ion (SHI) irradiation on the optical and electrical properties of polymethyl methacrylate (PMMA) have been investigated. The self-sustaining films of non-conducting PMMA and PMMA/MWCNT nanocomposites were irradiated under vacuum with 50 MeV Lithium (Li3+) and 80 MeV Carbon (C5+) at 1×1013 ion fluence. One peak photoluminescence (PL) band was found in Raman spectra. All these results were explained on the basis of charge transfer complex (CTC).

  1. Engineering of electronic properties of single layer graphene by swift heavy ion irradiation

    Science.gov (United States)

    Kumar, Sunil; Kumar, Ashish; Tripathi, Ambuj; Tyagi, Chetna; Avasthi, D. K.

    2018-04-01

    In this work, swift heavy ion irradiation induced effects on the electrical properties of single layer graphene are reported. The modulation in minimum conductivity point in graphene with in-situ electrical measurement during ion irradiation was studied. It is found that the resistance of graphene layer decreases at lower fluences up to 3 × 1011 ions/cm2, which is accompanied by the five-fold increase in electron and hole mobilities. The ion irradiation induced increase in electron and hole mobilities at lower fluence up to 1 × 1011 ions/cm2 is verified by separate Hall measurements on another irradiated graphene sample at the selected fluence. In contrast to the adverse effects of irradiation on the electrical properties of materials, we have found improvement in electrical mobility after irradiation. The increment in mobility is explained by considering the defect annealing in graphene after irradiation at a lower fluence regime. The modification in carrier density after irradiation is also observed. Based on findings of the present work, we suggest ion beam irradiation as a useful tool for tuning of the electrical properties of graphene.

  2. Effect of swift heavy ion irradiation on surface resistance of DyBa 2 ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 5-6. Effect of swift heavy ion irradiation on surface resistance of DyBa2Cu3O7- thin films at microwave frequencies. Ujwala Ail Tamalika Banerjee A R Bhangale D Kanjilal R Pinto. Physics of Vortex State Volume 58 Issue 5-6 May-June 2002 pp 959-963 ...

  3. Effect of swift heavy ion irradiation on surface resistance of DyBa 2

    Indian Academy of Sciences (India)

    We report the observation of a pronounced peak in surface resistance at microwave frequencies of 4.88 GHz and 9.55 GHz and its disappearance after irradiation with swift ions in laser ablated DyBa2Cu3O7- (DBCO) thin films. The measurements were carried out in zero field as well as in the presence of magnetic fields ...

  4. Tuneable transport properties of swift heavy ion-irradiated PEDOT-DBSA/SnO2 nanocomposites

    Science.gov (United States)

    Sarmah, Smritimala; Kumar, A.

    2013-06-01

    Dodecylbenzenesulfonic acid doped poly (3, 4-etylenedioxythiophene)/SnO 2 nanocomposites were synthesized by the self-assembly method and irradiated with 90 MeV O7+ ions at the fluences of 5×1010, 1×1011, 5×1011 and 1×1012 ions/cm2 using the 15UD Pelletron accelerator under high vacuum. DC conductivity of unirradiated nanocomposites exhibits Mott's 1D variable range hopping (VRH) mechanism. However, there is cross-over to 3D VRH mechanism at higher irradiation fluence of 5×1011 and 1×1012 ions/cm2. There is an enhancement in the electrical conductivity of the nanocomposites upon swift heavy ion irradiation. Current-voltage (I-V) characteristics indicate the formation of Schottky barriers at the interfaces in the nanocomposites.

  5. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Sharma, Savita [Department of Applied Physics, Delhi Technological University, Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110075 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2016-07-15

    Highlights: • Investigated the optical properties of BiFeO{sub 3} (BFO) thin films after irradiation using SPR. • Otto configuration has been used to excite the surface plasmons using gold metal thin film. • BFO thin films were prepared by sol–gel spin coating technique. • Examined the refractive index dispersion of pristine and irradiated BFO thin film. - Abstract: Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO{sub 3} (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol–gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au{sup 9+} ions at a fluence of 1 × 10{sup 12} ions cm{sup −2}. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  6. Structural and electrical properties of swift heavy ion beam irradiated ...

    Indian Academy of Sciences (India)

    TECS

    Formation of different phases of iron silicide has been investigated by X-ray diffraction (XRD) technique, which shows enhancement of intermixing and silicide formation as a result of irradiation. I–V measurements for both pristine and irradiated samples have been carried out at room temperature, series resistance and ...

  7. Gold nanoparticles resist deformation by swift heavy ion irradiation when embedded in a crystalline matrix

    International Nuclear Information System (INIS)

    Harkati Kerboua, C.; Chicoine, M.; Roorda, S.

    2011-01-01

    Highlights: → Gold nanoparticles embedded amorphous silica deform under swift heavy ion irradiation. → We show that such deformation does not occur in AlAs, a crystalline embedding medium. → Hammering deformation of the matrix is essential for gold nanoparticle elongation. - Abstract: We have attempted to deform, by swift heavy ion irradiation, gold nanoparticles embedded in crystalline AlAs which resists amorphization. AlAs was first implanted with 1.3 MeV Au ions at room temperature to a fluence of 2 x 10 16 cm -2 . Rapid thermal annealing (RTA) at 600 o C for 1 or 2 min was used to grow Au nanoparticles in the matrix. Deformation was attempted by 30 MeV Cu 5+ irradiation at liquid nitrogen temperature. Crystal damage of the matrix was studied using Rutherford backscattering spectrometry in channeling configuration and Raman spectrometry. The morphology of Au nanoparticles was investigated by Transmission Electron Microscopy. It was found that, in spite of some crystal damage, the AlAs remained crystalline throughout the experiment and spherical Au nanoparticles with size distribution between 2 and 12 nm were observed with no indication of elongation. Thus, high energy heavy ion irradiation does not deform spherical Au nanoparticles embedded in AlAs. This supports the suggestion that the deformation of the gold nanoparticles which has been observed for particles embedded in amorphous materials is a consequence of the hammering deformation of the matrix surrounding the nanoparticles.

  8. Characterization of biodegradable polymers irradiated with swift heavy ions

    International Nuclear Information System (INIS)

    Salguero, N.G.; Grosso, M.F. del; Durán, H.; Peruzzo, P.J.; Amalvy, J.I.

    2012-01-01

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly-L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  9. Characterization of biodegradable polymers irradiated with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Salguero, N.G. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); Grosso, M.F. del, E-mail: delgrosso@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Duran, H. [CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Gerencia de Desarrollo Tecnologico y Proyectos Especiales, CNEA, Av. Gral. Paz 1499 (B1650KNA) San Mart Latin-Small-Letter-Dotless-I Acute-Accent n, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, H. Yrigoyen 3100, CP 1650, San Martin, UNSAM (Argentina); Peruzzo, P.J. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Amalvy, J.I. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Facultad de Ingenieria, Universidad Nacional de La Plata, Calle 116 y 48 (B1900TAG), La Plata (Argentina); Departamento de Ingenieria Quimica, Facultad Regional La Plata, Universidad Tecnologica Nacional, 60 y 124 (1900), La Plata (Argentina); and others

    2012-02-15

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly-L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  10. Characterization of biodegradable polymers irradiated with swift heavy ions

    Science.gov (United States)

    Salguero, N. G.; del Grosso, M. F.; Durán, H.; Peruzzo, P. J.; Amalvy, J. I.; Arbeitman, C. R.; García Bermúdez, G.

    2012-02-01

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly- L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  11. Photoluminescence and Raman studies in swift heavy ion irradiated ...

    Indian Academy of Sciences (India)

    Administrator

    Inter University Accelerator Centre, P.O. Box No. 10502, New Delhi 110 067, India. MS received 26 September 2008; revised 4 April 2009. Abstract. Polycrystalline aluminum oxide is synthesized by combustion technique and XRD studies of the sample revealed the α-phase. The synthesized sample is irradiated with 120 ...

  12. Swift heavy ion irradiation induced modification of structure

    Indian Academy of Sciences (India)

    AFM analysis indicated that the pristine film consists of agglomerated grains with diffuse grain boundary. Irradiation led to reduced agglomeration of the grains with the formation of sharper grain boundaries. The rms roughness (rms) estimated from AFM analysis increased from 6.2 in pristine film to 12.7 nm when the film ...

  13. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Kulriya, P.K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A.K.; Avasthi, D.K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd 2 Ti 2 O 7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd 2 Ti 2 O 7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd 2 Ti 2 O 7 is readily amorphized at an ion fluence 6 × 10 12 ions/cm 2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 10 13 ions/cm 2 . The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures

  14. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    Science.gov (United States)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-07-01

    Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol-gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au9+ ions at a fluence of 1 × 1012 ions cm-2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  15. Effect of swift heavy ion irradiation on optical absorption properties of SWCNTs

    Energy Technology Data Exchange (ETDEWEB)

    Vishalli,, E-mail: vishalli-2008@yahoo.com; Dharamvir, Keya, E-mail: keya@pu.ac.in [Department of Physics, Panjab University, Chandigarh (India); Raina, K. K. [Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala (India); Avasthi, D. K. [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, NewDelhi (India); Srivastava, Alok [Department of Chemistry, Panjab University, Chandigarh (India)

    2016-05-06

    In the present work, experimental investigations on the optical absorption properties of swift heavy ion irradiated single walled carbon nanotubes (SWCNTs) have been carried out. The uniform thin films of SWCNTs have been deposited on quartz substrate by Langmuir Blodgett (LB) method in a layer by layer manner. The irradiation of thin films is carried out by nickel ion beam of energy 60 MeV at different fluences. The variation in the S{sub 11}, S{sub 22}, and M{sub 11} band in optical spectra of SWCNTs has been studied before and after irradiation. The decrease in intensity/area of the bands corresponding to both semiconducting and metallic SWCNTs has been observed with increasing fluence.

  16. Quartz modification by Zn ion implantation and swift Xe ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Privezentsev, Vladimir [Institute of Physics and Technology, Russian Academy of Sciences, Moscow (Russian Federation); Kulikauskas, Vaclav [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University (Russian Federation); Didyk, Alexander; Skuratov, Vladimir [Joint Institute of Nuclear Research, Dubna (Russian Federation); Steinman, Edward; Tereshchenko, Alexey; Kolesnikov, Nikolay [Institute of Solid-State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation); Trifonov, Alexey; Sakharov, Oleg [National Research University ' ' MIET' ' , Zelenograd, Moscow (Russian Federation); Ksenich, Sergey [National University of Science and Technology ' ' MISiS' ' , Moscow (Russian Federation)

    2017-07-15

    The quartz slides were implanted by {sup 64}Zn{sup +} ions with dose of 5 x 10{sup 16}/cm{sup 2} and energy of 100 keV. After implantation, the amorphous metallic Zn nanoparticles with an average radius of 3.5 nm were created. The sample surface becomes nonuniform, its roughness is increased and its values rise up to 6 nm compared to virgin state, and the roughness maximum is at a value of about 0.8 nm. The surface is made up of valleys and hillocks which have a round shape with an average diameter about 200 nm. At the center of these hillocks are pores with a depth up to 6 nm and a diameter of about 20 nm. After implantation in UV-vis diapason, the optical transmission decreases while PL peak (apparently due to oxygen deficient centers) at wavelength of 400 nm increases. Then the samples were subjected to swift Xe ion irradiation with the fluences of 1 x 10{sup 12}-7.5 x 10{sup 14}/cm{sup 2} and energy of 167 MeV. After Xe irradiation, the sample surface roughness shat down to values of 0.5 nm and the roughness maximum is at a value of about 0.1 nm. Optical transmission in UV-vis diapason increases. The PL peak at wavelength of 400 nm is decreased while a PL peak at wavelength of 660 nm is raised. This peak is presumably due to non-bridging oxygen hole centers or/and NPs with structure Si(core)/SiO{sub 2}(shell). HRTEM image of Zn-implanted quartz subsurface layer. One can see the Zn amorphous nanoparticles, which confirms the electron diffraction pattern (insert). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Nanopatterning by Swift Heavy Ions

    OpenAIRE

    Skupinski, Marek

    2006-01-01

    Today, the dominating way of patterning nanosystems is by irradiation-based lithography (e-beam, DUV, EUV, and ions). Compared to the other irradiations, ion tracks created by swift heavy ions in matter give the highest contrast, and its inelastic scattering facilitate minute widening and high aspect ratios (up to several thousands). Combining this with high resolution masks it may have potential as lithography technology for nanotechnology. Even if this ‘ion track lithography’ would not give...

  18. Continuous wave waveguide lasers of swift argon ion irradiated Nd:YVO4 waveguides.

    Science.gov (United States)

    Yao, Yicun; Dong, Ningning; Chen, Feng; Pang, Lilong; Wang, Zhiguang; Lu, Qingming

    2011-11-21

    We report on the fabrication of planar waveguide in Nd:YVO(4) crystal by using swift Ar(8+) ion irradiation. At room temperature continuous wave (cw) laser oscillation at wavelength of ~1067 nm has been realized through the optical pump at 808 nm with a low threshold of 9.3 mW. The slope efficiency of the waveguide laser system is of 8.5%. The optical-to-optical conversion efficiency is 6.6%. © 2011 Optical Society of America

  19. Study on interaction of swift cluster ion beam with matter and irradiation effect (Joint research)

    International Nuclear Information System (INIS)

    Saito, Yuichi; Shibata, Hiromi

    2010-07-01

    This review covers results of the 'Study of interaction on swift cluster ion beam with matter and irradiation effect' supported by the Interorganization Atomic Energy Research Program from 2006FY to 2008FY. It is composed of a research abstract for each sub-group with viewgraphs which were presented at the group meeting held on March 2009 or 'Meeting of High LET radiation -From fundamental study among physics, chemistry and biology to medical applications-' sponsored by Japan Society of Radiation Chemistry, cosponsored by this research group. (author)

  20. Effect of swift heavy ion irradiation on single- and multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Olejniczak, Andrzej, E-mail: aolejnic@chem.uni.torun.pl [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Faculty of Chemistry, Nicolaus Copernicus University, ul. Gagarina 7, 87-100 Toruń (Poland); Skuratov, Vladimir A. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)

    2014-05-01

    The effect of irradiation with swift heavy ions on the structure and properties of carbon nanotubes was investigated by Raman spectroscopy. It was found that disordering of the system occurred mainly at the surface. No ordering phenomena have been observed over a whole range of both fluences and electronic stopping powers studied. The disorder parameter (i.e., the ratio of the D and G band intensities (I{sub D}/I{sub G})) increases non-linearly with the irradiation dose, showing a tendency to saturate at high fluences. The increase in the disorder parameter upon irradiation was proportional to the square root of the ion fluence. The radiation stability of the few-walled nanotubes was ca. 1.6 higher than that of the single-walled ones. The irradiation with both the Xe and Kr ions leads to essentially the same increase in the I{sub D}/I{sub G} ratio with respect to the deposited electronic energy density. In the case of the Ar ion irradiation, the observed increase in the I{sub D}/I{sub G} ratio is much lower, suggesting that the electronic stopping power threshold for defects creation in carbon nanotubes is lower than that for graphite.

  1. Swift heavy ion irradiation of Cu-Zn-Al and Cu-Al-Ni alloys.

    Science.gov (United States)

    Zelaya, E; Tolley, A; Condo, A M; Schumacher, G

    2009-05-06

    The effects produced by swift heavy ions in the martensitic (18R) and austenitic phase (β) of Cu based shape memory alloys were characterized. Single crystal samples with a surface normal close to [210](18R) and [001](β) were irradiated with 200 MeV of Kr(15+), 230 MeV of Xe(15+), 350 and 600 MeV of Au(26+) and Au(29+). Changes in the microstructure were studied with transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). It was found that swift heavy ion irradiation induced nanometer sized defects in the 18R martensitic phase. In contrast, a hexagonal close-packed phase formed on the irradiated surface of β phase samples. HRTEM images of the nanometer sized defects observed in the 18R martensitic phase were compared with computer simulated images in order to interpret the origin of the observed contrast. The best agreement was obtained when the defects were assumed to consist of local composition modulations.

  2. Swift heavy ion irradiation-induced modifications of tris-(8-hydroxyquinoline)aluminum thin films

    Science.gov (United States)

    Thangaraju, K.; Kumaran, R.; Mohanty, T.; Asokan, K.; Ramamurthy, P.; Kanjilal, D.; Kumar, J.

    Tris-(8-hydroxyquinoline)aluminum (Alq3), one of the most widely used light emitting and electron transport materials in organic luminescent devices, has been synthesized. Alq3 thin films have been deposited by a thermal evaporation process on glass substrates. The effect of swift heavy ion (SHI) irradiation using 40 MeV Li3+ on the Alq3 thin films has been studied by UV-visible, infrared, photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectroscopy. From TRPL studies, it is found that the PL of Alq3 thin films arises 6rom two species corresponding to its two geometrical isomers, namely facial and meridional having two different life times. It is also confirmed that the PL and lifetimes of excitons decrease with the increase of ion fluences of SHI of 40 MeV Li3+, indicating a transfer of exciton energy to unstable cationic Alq3 species generated by SHI irradiation.

  3. Damages in ceramics for nuclear waste transmutation by irradiation with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, Michel [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, C.E. de Cadarache, 13108 St. Paul lez Durance, Cedex (France)]. E-mail: michel.beauvy@cea.fr; Dalmasso, Chrystelle [Laboratoire de Physique Electronique des Solides, Universite de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, Cedex 2 (France); Thiriet-Dodane, Catherine [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, C.E. de Cadarache, 13108 St. Paul lez Durance, Cedex (France); Simeone, David [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, C.E. de Saclay, 91191 Gif-sur-Yvette, Cedex (France); Gosset, Dominique [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, C.E. de Saclay, 91191 Gif-sur-Yvette, Cedex (France)

    2006-01-15

    Inert matrices are proposed for advanced nuclear fuels or for the transmutation of the actinides that is an effective solution for the nuclear waste management. The behaviour of inert matrix ceramics like MgO, MgAl{sub 2}O{sub 4} and cubic ZrO{sub 2} oxides under irradiation is presented in this study. The alumina Al{sub 2}O{sub 3} has been also studied as a reference for the ceramic materials. These oxides have been irradiated with swift heavy ions at CIRIL/GANIL to simulate the fragment fission effects. The irradiations with the different heavy ions (from S to Pb) with energy between 91 and 820 MeV, have been realised at room temperature or 500 deg. C. The fluencies were between 5 x 10{sup 1} and 5 x 10{sup 15} ions/cm{sup 2}. The polished faces of sintered polycrystalline disks or single crystal slices have been characterized before and after irradiation by X-ray diffraction and optical spectroscopy. The apparent swelling evaluated from surface profile measurements after irradiation is very important for spinel and zirconia, comparatively with those of magnesia or alumina. The amorphisation seems to be at the origin of this swelling, and the electronic stopping power of the ions is the most influent parameter for the irradiation damages. The point defects characterized by optical spectroscopy show a significant amount of damage on the oxygen sub-lattice in the irradiated oxides. F{sup +} centres are present in all irradiated oxides. However, new absorption bands are observed and cation clusters cannot be excluded in magnesia and spinel after irradiation.

  4. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials.

    Science.gov (United States)

    Kulriya, P K; Singh, F; Tripathi, A; Ahuja, R; Kothari, A; Dutt, R N; Mishra, Y K; Kumar, Amit; Avasthi, D K

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90 MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T=255 K.

  5. Resonant Raman spectroscopy study of swift heavy ion irradiated MoS2

    Science.gov (United States)

    Guo, Hang; Sun, Youmei; Zhai, Pengfei; Zeng, Jian; Zhang, Shengxia; Hu, Peipei; Yao, Huijun; Duan, Jinglai; Hou, Mingdong; Liu, Jie

    2016-08-01

    Molybdenum disulphide (MoS2) crystal samples were irradiated by swift heavy ions (209Bi and 56Fe). Hillock-like latent tracks were observed on the surface of irradiated MoS2 by atomic force microscopy. The modifications of properties of irradiated MoS2 were investigated by resonant Raman spectroscopy and ultraviolet-visible spectroscopy (UV-Vis). A new peak (E1u2, ∼385.7 cm-1) occurs near the in-plane E2g1 peak (∼383.7 cm-1) after irradiation. The two peaks shift towards lower frequency and broaden due to structural defects and stress with increasing fluence. When irradiated with high fluence, two other new peaks appear at ∼ 190 and ∼ 230 cm-1. The peak at ∼230 cm-1 is disorder-induced LA(M) mode. The presence of this mode indicates defects induced by irradiation. The feature at ∼460 cm-1 is composed of 2LA(M) (∼458 cm-1) and A2u (∼466 cm-1) mode. With increasing fluence, the integrated intensity ratio between 2LA(M) and A2u increases. The relative enhancement of 2LA(M) mode is in agreement with the appearance of LA(M) mode, which both demonstrate structural disorder in irradiated MoS2. The ∼423-cm-1 peak shifts toward lower frequency due to the decrease in exciton energy of MoS2, and this was demonstrated by the results of UV-Vis spectra. The decrease in exciton energy could be due to introduction of defect levels into band gap.

  6. Study of the point defect creation and of the excitonic luminescence in alkali halides irradiated by swift heavy ions

    International Nuclear Information System (INIS)

    Protin, L.

    1994-01-01

    The aim of this experimental thesis is to study the excitonic mechanisms and of the defect creation, in NaCl and KBr, under dense electronic excitations induced by swift heavy ion irradiations. In the first part, we present the main features of the interaction of swift heavy ions with solid targets, and after we review the well known radiolytic processes of the defect creation during X-ray irradiation. In the second chapter, we describe our experimental set-up. In the chapter III, we present our results of the in-situ optical absorption measurements. This results show that defect creation is less sensitive to the temperature than during a classical irradiation. Besides, we observe new mechanisms concerning the defect aggregation. In the chapter IV, we present the results of excitonic luminescence induced by swift by swift heavy ions. We observe that the luminescence yields only change with the highest electronic stopping power. In the chapter V, we perform thermal spike and luminescence yields calculations and we compare the numerical results to the experiments presented in the chapter IV. (author). 121 refs., 65 figs., 30 tabs

  7. Physico-chemical modification of polyolefins irradiated by swift heavy ions

    Science.gov (United States)

    Apel, P. Yu.; Didyk, A. Yu.; Salina, A. G.

    1996-02-01

    The physico-chemical modifications of polypropylene (PP) and polyethylene (PE) induced by 1 MeV/u Xe ions were studied. The irradiated samples were investigated ex situ by means of ultraviolet (UV) spectroscopy, solubility measurements and gel permeation chromatography (GPC). The formation of double bonds, dienes and trienes was observed both in PE and PP. The efficiency of the generation of unsaturated chemical bonds was found to depend on small amounts of aromatic additives in PP. Similarly, the track etch rate in PP increases with increasing concentration of antioxidant molecules. Rough estimates of radiolytic yields of different structures were carried out on the basis of the UV and GPC measurements. It is apparent that there are two basically different processes induced by swift heavy ions passing through the polyolefin: (a) local intratrack reactions; (b) reactions induced by active species leaving the tracks and diffusing into surrounding matrix. The former process leads to the formation of etchable damage. The latter one may cause a mutual influence of tracks even at fairly low ion fluences.

  8. Modification of phase transitions in swift heavy ion irradiated and MMA-grafted ferroelectric fluoro-polymers

    International Nuclear Information System (INIS)

    Petersohn, E.; Betz, N.; Le Moel, A.

    1994-01-01

    Ferroelectric polyvinylidene fluoride (β) and copolymers of vinylidene fluoride trifluoroethylene (P(VDF/TrFE)) films were irradiated with swift heavy ions and post irradiation grafted with methyl methacrylate (MMA). We have studied the influence of irradiation parameters such as the ion fluence, the type of ion and the electronic stopping power, on the melting and crystallization temperatures and the ferroelectric-paraelectric phase transitions, by differential scanning calorimetry (DSC) and dielectric measurements. The relation between the shift in the transition temperatures and the ion fluence is described by a single term equation. Ion track grafting with MMA affects the ferroelectric-paraelectric phase transitions in P(VDF/TrFE) and leads to a strong amorphization of the polymer films. The grafting in β PVDF occurs mainly on the surface of the samples and no change in the transition temperatures is observed. (authors). 12 refs., 6 figs., 2 tabs

  9. Enhanced AC conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni12+ swift heavy ions

    International Nuclear Information System (INIS)

    Hazarika, J.; Kumar, A.

    2014-01-01

    In this paper, we report the 160 MeV Ni 12+ swift heavy ions (SHIs) irradiation effects on AC conductivity and dielectric relaxation properties of polypyrrole (PPy) nanoparticles in the frequency range of 42 Hz–5 MHz. Four ion fluences of 5 × 10 10 , 1 × 10 11 , 5 × 10 11 and 1 × 10 12 ions/cm 2 have been used for the irradiation purpose. Transport properties in the pristine and irradiated PPy nanoparticles have been investigated with permittivity and modulus formalisms to study the polarization effects and conductivity relaxation. With increasing ion fluence, the relaxation peak in imaginary modulus (M ″ ) plots shifts toward high frequency suggesting long range motion of the charge carriers. The AC conductivity studies suggest correlated barrier hopping as the dominant transport mechanism. The hopping distance (R ω ) of the charge carriers decreases with increasing the ion fluence. Binding energy (W m ) calculations depict that polarons are the dominant charge carriers

  10. The gaseous emission of polymers under swift heavy ion irradiation: effect of the electronic stopping power

    International Nuclear Information System (INIS)

    Picq, V.

    2000-07-01

    This thesis contributes to a better understanding of the damaging processes, which occur in polymers under swift heavy ion irradiation. The present study is exclusively devoted to the influence of the electronic stopping power, (dE/dx)e, on the molecular emission under irradiation. The irradiated polymers are polyethylene, polypropylene and poly-butene. The (dE/dx)e of the projectiles used varies from 3.5*10 -3 MeV.mg -1 .cm 2 (electron) to 39 MeV.mg -1 .cm 2 ( 58 Ni). We used two different experimental approaches in order to identify the nature of the emitted gases: mass spectrometry and infrared spectroscopy. The first technique is non selective, therefore, we could detect the emission of H 2 and heavy molecules; it also gives information on the diffusion kinetics of the molecules formed. The use of infrared spectroscopy for this kind of analysis is new and the technique was developed at the laboratory. It enables us to identify, without any ambiguity, molecules with up to three carbon atoms. The experimental spectra are analysed by using reference spectra of pure gases, measured in our laboratory. We have quantified precisely each identified gas, and we have followed the evolution of the radiochemical yields with increasing (dE/dx)e. The results, obtained at different (dE/dx)e, inform us on the different mechanisms of gas molecules formation, for example the side group departure and, at high (dE/dx)e, the fragmentation of the main chain which is due to multiple ionisation of the macromolecule. (author)

  11. Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation.

    Science.gov (United States)

    Jia, Yuechen; Dong, Ningning; Chen, Feng; Vázquez de Aldana, Javier R; Akhmadaliev, Sh; Zhou, Shengqiang

    2012-04-23

    We report on the fabrication of ridge waveguide in Nd:GGG crystal by using swift C(5+) ion irradiation and femtosecond laser ablation. At room temperature continuous wave laser oscillation at wavelength of ~1063 nm has been realized through the optical pump at 808 nm with a slope efficiency of 41.8% and the pump threshold is 71.6 mW. © 2012 Optical Society of America

  12. ion irradiation

    Indian Academy of Sciences (India)

    Swift heavy ions interact predominantly through inelastic scattering while traversing any polymer medium and produce excited/ionized atoms. Here samples of the polycarbonate Makrofol of approximate thickness 20 m, spin coated on GaAs substrate were irradiated with 50 MeV Li ion (+3 charge state). Build-in ...

  13. Stability of Y-Ti-O nanoparticles in ODS alloys during heat treatment and high temperature swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Skuratov, V.A. [FLNR, JINR, Dubna (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Dubna State University, Dubna (Russian Federation); Sohatsky, A.S.; Kornieieva, K. [FLNR, JINR, Dubna (Russian Federation); O' Connell, J.H.; Neethling, J.H. [CHRTEM, NMMU, Port Elizabeth (South Africa); Nikitina, A.A.; Ageev, V.S. [JSC VNIINM, Moscow (Russian Federation); Zdorovets, M. [Institute of Nuclear Physics, Astana (Kazakhstan); Ural Federal University, Yekaterinburg (Russian Federation); Volkov, A.D. [Nazarbayev University, Astana (Kazakhstan)

    2016-12-15

    Aim of this report is to compare the morphology of swift (167 and 220 MeV) Xe ion induced latent tracks in Y{sub 2}Ti{sub 2}O{sub 7} nanoparticles during post-irradiation heat treatment and after irradiation at different temperatures in pre-thinned TEM foils and TEM targets prepared from hundreds microns thick irradiated oxide dispersion strengthened (ODS) steel. No difference in track parameters was found in room temperature irradiated nanoparticles in pre-thinned and conventional samples. Microstructural data gathered from pre-thinned foils irradiated in the temperature range 350-650 C or annealed at similar temperatures demonstrate that amorphous latent tracks interact with the surrounding matrix, changing the track and nanoparticle morphology, while such effect is not observed in conventional ODS material treated at the same conditions. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Singh, Hemant Kr.; Avasthi, D.K.; Aggarwal, Shruti

    2015-01-01

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO 2 :F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In 2 O 3 :Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag +9 ions at fluences ranging from 3.0 × 10 11 ions/cm 2 to 3.0 × 10 13 ions/cm 2 . The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications

  15. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hemant Kr. [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India); Avasthi, D.K. [Inter University Accelerator Center, Post Box 10502, New Delhi (India); Aggarwal, Shruti, E-mail: shruti.al@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India)

    2015-06-15

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO{sub 2}:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In{sub 2}O{sub 3}:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag{sup +9} ions at fluences ranging from 3.0 × 10{sup 11} ions/cm{sup 2} to 3.0 × 10{sup 13} ions/cm{sup 2}. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  16. Elongation of gold nanoparticles by swift heavy ion irradiation: Surface plasmon resonance shift dependence on the electronic stopping power

    International Nuclear Information System (INIS)

    Kerboua, C. Harkati; Lamarre, J.-M.; Chicoine, M.; Martinu, L.; Roorda, S.

    2013-01-01

    Gold nanoparticles embedded in a silica matrix were irradiated with 2 to 40 MeV Cu or Si ions at fluences ranging from 1 × 10 13 to 4 × 10 15 ions/cm 2 , and their deformation from spheres to prolate ellipsoids with major axis parallel to the ion beam was studied using P and S polarized light. For fixed ion energy, the longitudinal surface plasmon resonance (SPR) at 520 nm is red-shifted with an increase of the ion fluence up to a certain value where it reaches a plateau indicating that a maximum aspect ratio is obtained. This saturation in the wavelength shift was found to depend on the ion energy and reaches a maximum of 40 nm. The SPR shift was also used to measure the electronic stopping power dependent deformation rate and to deduce the electronic stopping power threshold of (1.9 ± 1.3) keV/nm required for shape transformation of the embedded gold nanoparticles. Ion track diameters of 0.18 to 1.4 nm were inferred from the fluence dependence of the SPR shift. Analysis by transmission electron microscopy shows that large (d > 10 nm) particles are more elongated than smaller ones. Our data are consistent with a mechanism of gold nanoparticle elongation requiring both the silica matrix and the nanoparticles to melt following the passage of the swift heavy ion and with elongation being due to the relief of stress in the gold nanoparticle which had built up as a consequence of the deformation of the surrounding silica matrix. - Highlights: ► We irradiated gold nanoparticles embedded in silica with swift heavy ions. ► Such treatment changes the shape of the particles, from spherical to nano-rods. ► Irradiation of the silica matrix leads to anisotropic growth, so-called hammering. ► Stress applied by the deformed silica onto the gold nanoparticles deforms them

  17. Opto-chemical response of Makrofol-KG to swift heavy ion irradiation

    Indian Academy of Sciences (India)

    plots of FTIR measurements indicate the degradation of Makrofol at higher fluences. Roughness of the surface increases at higher fluence. Keywords. Makrofol-KG; ion irradiation; UV–visible spectroscopy; X-ray diffraction; Fourier ... The UV–visible spectra recorded for O8+ ion beam irradiated polymers are shown in.

  18. On-line and post irradiation analysis of swift heavy ion induced modification of PMMA (polymethyl-methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, U.H., E-mail: u.h.hossain@gsi.de [Technische Universität Darmstadt, Department of Materials Sciences, Materials Analysis, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany); GSI Helmholtz Centre for Heavy Ion Research, Materials Research, Planckstr.1, 64291 Darmstadt (Germany); Lima, V. [Technische Universität Darmstadt, Department of Materials Sciences, Materials Analysis, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany); GSI Helmholtz Centre for Heavy Ion Research, Materials Research, Planckstr.1, 64291 Darmstadt (Germany); Baake, O. [Technische Universität Darmstadt, Department of Materials Sciences, Materials Analysis, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany); Severin, D.; Bender, M. [GSI Helmholtz Centre for Heavy Ion Research, Materials Research, Planckstr.1, 64291 Darmstadt (Germany); Ensinger, W. [Technische Universität Darmstadt, Department of Materials Sciences, Materials Analysis, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany)

    2014-05-01

    The present work is part of a research program studying the swift heavy ion induced modification of aliphatic polymers with some comparable side groups, here polymethyl-methacrylate (PMMA). This paper presents a study on Fourier-transform-infrared spectroscopy (FTIR), residual gas analysis (RGA), and Ultraviolet–Visible (UV–Vis) spectroscopy of the transformations of a PMMA film under gold (Au) and uranium (U) ion irradiation in the MeV/u range in vacuum to fluences up to 3 × 10{sup 11} ions per cm{sup 2}. The results show a general ion induced degradation of the polymer, with release of volatile fragments, scission of side chains and polymeric backbone, formation of conjugated double bonds, and the resulting increased absorption of the UV part in the UV–Vis spectral region. A molecular scission mechanism which explains the main degradation products is proposed.

  19. Effect of swift heavy ion (SHI) irradiation on dielectric properties of acetoacetanilide crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Sharada G.; Mohan Rao, P. E-mail: padakannayamrao@yahoo.com; Avasthi, D.K.; Guptha, Shiuli

    2001-03-01

    Dielectric properties of non-linear organic crystals of acetoacetanilide are studied before and after irradiation. Crystals are irradiated by 120 MeV Ag{sup 13+} ions. The variation of dielectric constant, dielectric loss, ac conductivity and the loss factor of both unirradiated and irradiated samples are measured, at different fluences. The defects produced due to irradiation, cause an increase in dielectric constant. At higher fluence, i.e. 10{sup 12} ions/cm{sup 2}, the defects are found to anneal out.

  20. Recrystallization effects of swift heavy {sup 209}Bi ions irradiation on electrical degradation in 4H-SiC Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhimei; Ma, Yao; Gong, Min [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Li, Yun [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Huang, Mingmin [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Gao, Bo [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhao, Xin, E-mail: zhaoxin1234@scu.edu.cn [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-06-15

    In this paper, the phenomenon that the recrystallization effects of swift heavy {sup 209}Bi ions irradiation can partially recovery damage with more than 1 × 10{sup 10} ions/cm{sup 2} is investigated by the degradation of the electrical characteristics of 4H-SiC Schottky barrier diode (SBD) with swift heavy ion irradiation. Deep level transient spectroscopy (DLTS) and Current-Voltage (I-V) measurements clearly indicated that E{sub 0.62} defect induced by swift heavy ion irradiation, which was a recombination center, could result in the increase of reverse leakage current (I{sub R}) at fluence less than 1 × 10{sup 9} ions/cm{sup 2} and the recovery of I{sub R} at fluence more than 1 × 10{sup 10} ions/cm{sup 2} in 4H-SiC SBD. The variation tendency of I{sub R} is consisted with the change of E{sub 0.62} defect. Furthermore, it is reasonable explanation that the damage or defect formed at low fluence in SiC may be recovered by further swift heavy ion irradiation with high fluence, which is due to the melting with the ion tracks of the amorphous zones through a thermal spike and subsequent epitaxial recrystallization initiated from the neighboring crystalline regions.

  1. Enhanced AC conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni{sup 12+} swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, J.; Kumar, A., E-mail: ask@tezu.ernet.in

    2014-08-15

    In this paper, we report the 160 MeV Ni{sup 12+} swift heavy ions (SHIs) irradiation effects on AC conductivity and dielectric relaxation properties of polypyrrole (PPy) nanoparticles in the frequency range of 42 Hz–5 MHz. Four ion fluences of 5 × 10{sup 10}, 1 × 10{sup 11}, 5 × 10{sup 11} and 1 × 10{sup 12} ions/cm{sup 2} have been used for the irradiation purpose. Transport properties in the pristine and irradiated PPy nanoparticles have been investigated with permittivity and modulus formalisms to study the polarization effects and conductivity relaxation. With increasing ion fluence, the relaxation peak in imaginary modulus (M{sup ″}) plots shifts toward high frequency suggesting long range motion of the charge carriers. The AC conductivity studies suggest correlated barrier hopping as the dominant transport mechanism. The hopping distance (R{sub ω}) of the charge carriers decreases with increasing the ion fluence. Binding energy (W{sub m}) calculations depict that polarons are the dominant charge carriers.

  2. Effects of O{sup 7+} swift heavy ion irradiation on indium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gokulakrishnan, V. [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620024 (India); Parthiban, S. [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620024 (India); CENIMAT-I3N and CEMOP-UNINOVA, Materials Science Department, FCT-UNL, Caparica Campus, 2829-516 Caparica (Portugal); Elangovan, E. [CENIMAT-I3N and CEMOP-UNINOVA, Materials Science Department, FCT-UNL, Caparica Campus, 2829-516 Caparica (Portugal); Ramamurthi, K., E-mail: krmurthin@yahoo.co.in [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620024 (India); Jeganathan, K. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli 620024 (India); Kanjilal, D.; Asokan, K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Martins, R.; Fortunato, E. [CENIMAT-I3N and CEMOP-UNINOVA, Materials Science Department, FCT-UNL, Caparica Campus, 2829-516 Caparica (Portugal)

    2011-08-15

    Highlights: {yields} The structural, morphology and electrical properties of indium oxide thin films. {yields} From the XRD, the ion irradiation has changed the preferred orientation from (2 2 2) to (4 0 0). {yields} RMS roughness is significantly reduced to 10 nm for an ion fluency of 1 x 10{sup 13} ions/cm{sup 2}. {yields} The mobility of ion irradiated films (1 x 10{sup 13} ions/cm{sup 2}) is decreased from 76.6 to 43 cm{sup 2}/V s. {yields} The average transmittance (400-2500 nm) of the as-deposited IO film is decreased from 81% to 72% after SHI irradiation. - Abstract: Indium oxide thin films deposited by spray pyrolysis were irradiated by 100 MeV O{sup 7+} ions with different fluences of 5 x 10{sup 11}, 1 x 10{sup 12} and 1 x 10{sup 13} ions/cm{sup 2}. X-ray diffraction analysis confirmed the structure of indium oxide with cubic bixbyite. The strongest (2 2 2) orientation observed from the as-deposited films was shifted to (4 0 0) after irradiation. Furthermore, the intensity of the (4 0 0) orientation was decreased with increasing fluence together with an increase in (2 2 2) intensity. Films irradiated with maximum fluence exhibited an amorphous component. The mobility of the as-deposited indium oxide films was decreased from {approx}78.9 to 43.0 cm{sup 2}/V s, following irradiation. Films irradiated with a fluence of 5 x 10{sup 11} ions/cm{sup 2} showed a better combination of electrical properties, with a resistivity of 4.57 x 10{sup -3} {Omega} cm, carrier concentration of 2.2 x 10{sup 19} cm{sup -3} and mobility of 61.0 cm{sup 2}/V s. The average transmittance obtained from the as-deposited films decreased from {approx}81% to 72%, when irradiated with a fluence of 5 x 10{sup 11} ions/cm{sup 2}. The surface microstructures confirmed that the irregularly shaped grains seen on the surface of the as-deposited films is modified as 'radish-like' morphology when irradiated with a fluence of 5 x 10{sup 11} ions/cm{sup 2}.

  3. Preparation of Al–Sb semiconductor by swift heavy ion irradiation

    Indian Academy of Sciences (India)

    A low energy ion beam irradiation causes a balli- stic mixing due to elastic collision cascades. Therefore, nuclear energy loss is considered to be responsible for ion beam mixing as Avasthi et al (1999) and Mayer et al. (1981) have shown that the number of atoms in the mixed region is proportional to the nuclear energy loss ...

  4. Evaluation of cell behavior on modified polypropylene with swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Arbeitman, Claudia R.; Ibañez, Irene L.; García Bermúdez, Gerardo; Durán, Hebe; Grosso, Mariela F. del; Salguero, Noelia; Mazzei, Rubén

    2012-01-01

    Ion beam irradiation is a well known means to change the physico-chemical properties of polymers, and induced bio and citocompatibility in controlled conditions and in selected areas of surface. However, the enhancement of cell adhesion on a modified substrate does not mean that the surface is adequate for functional cells. The purpose of the present work is to study proliferation, changes in cytoskeleton and cell morphology on substrates as a function of irradiation parameters. We irradiated polypropylene with sulfur (S) ion-beam at energies of 110 MeV with fluences between 1 × 10 6 and 2 × 10 10 ions cm −2 . NIH 3T3 cells were cultured on each sample. Cell morphology was observed using phase contrast microscopy and cytoskeleton proteins with fluorescence microscopy. The analysis show different cellular responses as a functions of irradiation parameter, strongly suggests that different underlying substratum can result in distinct types of cytoskeleton reorganization.

  5. Microstructure and phase transformations in the ODS alloys irradiated by swift heavy ions

    International Nuclear Information System (INIS)

    Zlotski, S.V.; Anishchik, V.M; Skuratov, V.A.; O’Connell, J.; Neethling, J.H.

    2015-01-01

    Microstructure of KP4 ODS alloy irradiated with 700 MeV bismuth ions at 300 K has been studied using high resolution transmission electron microscopy. No latent tracks have been observed in Y 4 Al 2 O 9 particles in KP4 irradiated with Bi ions. Small oxides (~ 5 nm) in KP4 alloy remain crystalline at Bi ion fluence 1.5*10 13 cm -2 , while subsurface regions in large (~ 20 nm) particles faced to the beam entrance became amorphous. (authors)

  6. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Science.gov (United States)

    Singh, Hemant Kr.; Avasthi, D. K.; Aggarwal, Shruti

    2015-06-01

    Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO2:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In2O3:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag+9 ions at fluences ranging from 3.0 × 1011 ions/cm2 to 3.0 × 1013 ions/cm2. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  7. The sputtering of the deformed gold under irradiation with krypton swift heavy ions

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Semina, V.K.; Hofman, A.

    2002-01-01

    The results about sputtering yield of gold irradiated by 86 Kr ions with high inelastic energy losses up to a fluence of 10 14 ion/cm 2 are presented. It was shown that the sputtering (evaporation) yield strongly depends on the initial defect concentration in gold. The sputtering yield begins to grow very strongly with the increasing of damage created by heavy ion elastic and inelastic energy losses. The temperature on the surface in the area around krypton ion trajectory is much higher than the melting and evaporation temperatures for gold as follows from calculations with the various expressions and models

  8. The Sputtering of the Deformed Gold under Irradiation with Krypton Swift Heavy Ions

    CERN Document Server

    Didyk, A Yu; Semina, V K

    2002-01-01

    The results about sputtering yield of gold irradiated by ^{86}Kr ions with high inelastic energy losses up to a fluence of 10^{14} ion/cm^2 are presented. It was shown that the sputtering (evaporation) yield strongly depends on the initial defect concentration in gold. The sputtering yield begins to grow very strongly with the increasing of damage created by heavy ion elastic and inelastic energy losses. The temperature on the surface in the area around krypton ion trajectory is much higher than the melting and evaporation temperatures for gold as follows from calculations with the various expressions and models.

  9. Kinetics of Electrons from Plasma Discharge in a Latent Track Region Induced by Swift Heavy ION Irradiation

    Directory of Open Access Journals (Sweden)

    Minárik Stanislav

    2015-08-01

    Full Text Available While passing swift heavy ion through a material structure, it produces a region of radiation affected material which is known as a "latent track". Scattering motions of electrons interacting with a swift heavy ion are dominant in the latent track region. These phenomena include the electron impurity and phonon scattering processes modified by the interaction with the ion projectile as well as the Coulomb scattering between two electrons.

  10. Shaping of Au nanoparticles embedded in various layered structures by swift heavy ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dawi, E.A., E-mail: elmuez.dawi@gmail.com [Ajman University of Science and Technology, Basic Science and Education, Physics Department, P.O. Box 346 (United Arab Emirates); Debye Institute for Nanomaterials, Nanophotonics Section, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands); ArnoldBik, W.M. [Eindhoven University of Technology, Irradiation Technology, 5600 GM Eindhoven (Netherlands); Ackermann, R.; Habraken, F.H.P.M. [Debye Institute for Nanomaterials, Nanophotonics Section, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands)

    2016-10-01

    We present a novel method to extend the ion-beam induced shaping of metallic nanoparticles in various layered structures. Monodisperse Au nanoparticles having mean diameter of 30 nm and their ion-shaping process is investigated for a limited number of experimental conditions. Au nanoparticles were embedded within a single plane in various layered structures of silicon nitride films (Si{sub 3}N{sub 4}), combinations of oxide-nitride films (SiO{sub 2}-Si{sub 3}N{sub 4}) and amorphous silicon films (a-Si) and have been sequentially irradiated at 300 K at normal incidence with 50 and 25 MeV Ag ions, respectively. Under irradiation with heavy Ag ions and with sequential increase of the irradiation fluence, the evolution of the Au peak derived from the Rutherford Backscattering Spectrometry show broadening in Au peak, which indicates that the Au becomes distributed over a larger depth region, indicative of the elongation of the nanoparticles. The latter is observed almost for every layer structure investigated except for Au nanoparticles embedded in pure a-Si matrix. The largest elongation rate at all fluences is found for the Au nanoparticles encapsulated in pure Si{sub 3}N{sub 4} films. For all irradiation energy applied, we again demonstrate the existence of both threshold and saturation fluences for the elongation effects mentioned.

  11. Microstructural response of InGaN to swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.M., E-mail: zhanglm@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Jiang, W. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Fadanelli, R.C. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre 91500 (Brazil); Ai, W.S.; Peng, J.X.; Wang, T.S. [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Zhang, C.H. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-12-01

    A monocrystalline In{sub 0.18}Ga{sub 0.82}N film of ∼275 nm in thickness grown on a GaN/Al{sub 2}O{sub 3} substrate was irradiated with 290 MeV {sup 238}U{sup 32+} ions to a fluence of 1.2 × 10{sup 12} cm{sup −2} at room temperature. The irradiated sample was characterized using helium ion microscopy (HIM), Rutherford backscattering spectrometry under ion-channeling conditions (RBS/C), and high-resolution X-ray diffraction (HRXRD). The irradiation leads to formation of ion tracks throughout the thin In{sub 0.18}Ga{sub 0.82}N film and the 3.0 μm thick GaN buffer layer. The mean diameter of the tracks in In{sub 0.18}Ga{sub 0.82}N is ∼9 nm, as determined by HIM examination. Combination of the HIM and RBS/C data suggests that the In{sub 0.18}Ga{sub 0.82}N material in the track is likely to be highly disordered or fully amorphized. The irradiation induced lattice relaxation in In{sub 0.18}Ga{sub 0.82}N and a distribution of d-spacing of the (0 0 0 2) planes in GaN with lattice expansion are observed by HRXRD.

  12. Radiation tolerance of nanostructured ZrN coatings against swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Janse van Vuuren, A.; Skuratov, V.A.; Uglov, V.V.; Neethling, J.H.; Zlotski, S.V.

    2013-01-01

    Nano-structured zirconium nitride layers – on Si substrates – of various thicknesses (0.1, 3, 10 and 20 μm) were irradiated with 167 MeV Xe, 250 MeV Kr and 695 MeV Bi ions to fluences in the range from 3 × 10 12 to 2.6 × 10 15 cm −2 for Xe, 1 × 10 13 to 7.06 × 10 13 cm −2 for Kr and 10 12 to 10 13 cm −2 for Bi. The purpose of these irradiation experiments is to simulate the effects of fission fragment bombardment on nanocrystalline ZrN. The irradiated layers where subsequently analysed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and nano-indentation hardness testing (NIH) techniques. XRD, TEM and NIH results indicate that ZrN has a very high tolerance to the effects of high energy irradiation

  13. Effect of swift heavy ion irradiation on surface resistance of DyBa2Cu3O7−δ thin films at microwave frequencies

    NARCIS (Netherlands)

    Ail, Ujwala; Banerjee, Tamalika; Bhangale, A.R.; Kanjilal, D.

    2002-01-01

    We report the observation of a pronounced peak in surface resistance at microwave frequencies of 4.88 GHz and 9.55 GHz and its disappearance after irradiation with swift ions in laser ablated DyBa2Cu3O7−δ (DBCO) thin films. The measurements were carried out in zero field as well as in the presence

  14. Evaluation of cell behavior on modified polypropylene with swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Arbeitman, Claudia R., E-mail: arbeitman@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499, 1650 San Martin, Bs. As. (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ, CABA (Argentina); Ibanez, Irene L. [CONICET, Av. Rivadavia 1917, C1033AAJ, CABA (Argentina); Garcia Bermudez, Gerardo [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499, 1650 San Martin, Bs. As. (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ, CABA (Argentina); Duran, Hebe [CONICET, Av. Rivadavia 1917, C1033AAJ, CABA (Argentina); Gerencia de Desarrollo Tecnologico y Proyectos Especiales, TANDAR-CNEA (Argentina); Grosso, Mariela F. del [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499, 1650 San Martin, Bs. As. (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ, CABA (Argentina); Salguero, Noelia [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499, 1650 San Martin, Bs. As. (Argentina); Mazzei, Ruben [U.A. Tecnologicas y Agropecuarias, CNEA (Argentina)

    2012-02-15

    Ion beam irradiation is a well known means to change the physico-chemical properties of polymers, and induced bio and citocompatibility in controlled conditions and in selected areas of surface. However, the enhancement of cell adhesion on a modified substrate does not mean that the surface is adequate for functional cells. The purpose of the present work is to study proliferation, changes in cytoskeleton and cell morphology on substrates as a function of irradiation parameters. We irradiated polypropylene with sulfur (S) ion-beam at energies of 110 MeV with fluences between 1 Multiplication-Sign 10{sup 6} and 2 Multiplication-Sign 10{sup 10} ions cm{sup -2}. NIH 3T3 cells were cultured on each sample. Cell morphology was observed using phase contrast microscopy and cytoskeleton proteins with fluorescence microscopy. The analysis show different cellular responses as a functions of irradiation parameter, strongly suggests that different underlying substratum can result in distinct types of cytoskeleton reorganization.

  15. Swift heavy ion irradiation effects in {alpha} poly(vinylidene fluoride); Etude des effets induits par les ions lourds energetiques dans le poly(fluorure de vinylidene)

    Energy Technology Data Exchange (ETDEWEB)

    Le Bouedec, A

    1999-11-29

    The goal of this study is to characteristic and to localised defects created in {alpha} Poly (vinylidene fluoride) after swift heavy ion irradiations. PVDF films are irradiated with several Swift Heavy Ions (SHI), in the electronic stopping power (dE/dx){sub e}, in order to study the influence of irradiation parameters (absorbed dose, ion). These irradiated films are studied by different analysis techniques such as FTIR, ESR (X and Q band) spectroscopies and DSC. The crystalline level of PVDF is about 50% and we follow it destruction and amorphization as the absorbed dose increase by DSC and FTIR studies. The variation of the various FTIR bands allow us to observe the unsaturations induced by SHI radiations. Two sets of defects are observed: those which yield is sensitive to an increase of (dE/dx){sub e} and those that are not. A spatial distribution of the various defects within the talent track is provided and defects that are difficult to create are the closest of the ion path. The different kind of radicals created after irradiations are studied by ESR spectroscopy. Alkyl, peroxy and polyenyl radicals are detected after SHI radiations like after electron or {gamma} irradiations. Their yield of creation is independent of (dE/dx){sub e} and their localised in the crystalline zone or/and at the interfacial zone between crystalline and amorphous one. An other kind of radicals is created only after SHI radiations that are specific of the SHI-polymer interaction. We observe that these radicals are localised on a carbon cluster, in the core of the latent track for low doses and highly sensitive at the (dE/dx){sub e} of the ion. (author)

  16. Study on structural recovery of graphite irradiated with swift heavy ions at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pellemoine, F., E-mail: pellemoi@frib.msu.edu [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Avilov, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Bender, M. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Ewing, R.C. [Dept. of Geological Sciences, Stanford University, Stanford, CA 94305-2115 (United States); Fernandes, S. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Lang, M. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996-2300 (United States); Li, W.X. [Dept. of Geological Sciences, Stanford University, Stanford, CA 94305-2115 (United States); Mittig, W. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Schein, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Severin, D. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Tomut, M. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Laboratory of Magnetism and Superconductivity, National Institute for Materials Physics NIMP, Bucharest (Romania); Trautmann, C. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Dept. of Materials Science, Technische Universität Darmstadt, Darmstadt (Germany); and others

    2015-12-15

    Thin graphite foils bombarded with an intense high-energy (8.6 MeV/u) gold beam reaching fluences up to 1 × 10{sup 15} ions/cm{sup 2} lead to swelling and electrical resistivity changes. As shown earlier, these effects are diminished with increasing irradiation temperature. The work reported here extends the investigation of beam induced changes of these samples by structural analysis using synchrotron X-ray diffraction and transmission electron microscope. A nearly complete recovery from swelling at irradiation temperatures above about 1500 °C is identified.

  17. Thermal defect annealing of swift heavy ion irradiated ThO2

    Science.gov (United States)

    Palomares, Raul I.; Tracy, Cameron L.; Neuefeind, Joerg; Ewing, Rodney C.; Trautmann, Christina; Lang, Maik

    2017-08-01

    Isochronal annealing, neutron total scattering, and Raman spectroscopy were used to characterize the structural recovery of polycrystalline ThO2 irradiated with 2-GeV Au ions to a fluence of 1 × 1013 ions/cm2. Neutron diffraction patterns show that the Bragg signal-to-noise ratio increases and the unit cell parameter decreases as a function of isochronal annealing temperature, with the latter reaching its pre-irradiation value by 750 °C. Diffuse neutron scattering and Raman spectroscopy measurements indicate that an isochronal annealing event occurs between 275-425 °C. This feature is attributed to the annihilation of oxygen point defects and small oxygen defect clusters.

  18. Structural response of Nd-stabilized zirconia and its composite under extreme conditions of swift heavy ion irradiation

    Science.gov (United States)

    Nandi, Chiranjit; Grover, V.; Kulriya, P. K.; Poswal, A. K.; Prakash, Amrit; Khan, K. B.; Avasthi, D. K.; Tyagi, A. K.

    2018-02-01

    Inert matrix fuel concept for minor actinide transmutation proposes stabilized zirconia as the major component for inert matrix. The present study explores Nd-stabilized zirconia (Zr0.8Nd0.2O1.9; Nd as surrogate for Am) and its composites for radiation tolerance against fission fragments. The introduction of MgO in the composite with stabilised zirconia is performed from the point of view to enhance the thermal conductivity. The radiation damage is also compared with Nd-stabilized zirconia co-doped with Y3+ (Zr0.8Nd0.1Y0.1O1.9) in order to mimic doping of minor actinides in Y3+ containing stabilized zirconia (Nd as surrogate for Am). The compositions were synthesized by gel combustion followed by high temperature sintering and characterised by XRD, SEM and EDS. Irradiation was carried out by 120 MeV Au ions at various fluences and irradiation induced structural changes were probed by in-situ X-ray diffraction (XRD). XRD demonstrated the retention of crystallinity for all the three samples but the extent of the damage was found to be highly dependent on the nominal composition. It was observed that introduction of Y3+ along with Nd3+ to stabilize cubic zirconia imparted poorer radiation stability. On the other hand, formation of a CERCER composite of MgO with Nd-stabilised zirconia enhanced its behaviour against swift heavy ion irradiation. Investigating these compositions by XANES spectroscopy post irradiation did not show any change in local electronic structure of constituent ions.

  19. Setup for in situ deep level transient spectroscopy of semiconductors during swift heavy ion irradiation.

    Science.gov (United States)

    Kumar, Sandeep; Kumar, Sugam; Katharria, Y S; Safvan, C P; Kanjilal, D

    2008-05-01

    A computerized system for in situ deep level characterization during irradiation in semiconductors has been set up and tested in the beam line for materials science studies of the 15 MV Pelletron accelerator at the Inter-University Accelerator Centre, New Delhi. This is a new facility for in situ irradiation-induced deep level studies, available in the beam line of an accelerator laboratory. It is based on the well-known deep level transient spectroscopy (DLTS) technique. High versatility for data manipulation is achieved through multifunction data acquisition card and LABVIEW. In situ DLTS studies of deep levels produced by impact of 100 MeV Si ions on Aun-Si(100) Schottky barrier diode are presented to illustrate performance of the automated DLTS facility in the beam line.

  20. Cumulative approaches to track formation under swift heavy ion (SHI) irradiation: Phenomenological correlation with formation energies of Frenkel pairs

    International Nuclear Information System (INIS)

    Crespillo, M.L.; Agulló-López, F.; Zucchiatti, A.

    2017-01-01

    Highlights: • Extensive survey formation energies Frenkel pairs and electronic stopping thresholds. • Correlation: track formation thresholds and the energies for Frenkel pair formation. • Formation energies Frenkel pairs discussed in relation to the cumulative mechanisms. • Amorphous track formation mechanisms: defect accumulation models versus melting. • Advantages cumulative models to deal with new hot topics: nuclear-electronic synergy. - Abstract: An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO 3 crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.

  1. Cumulative approaches to track formation under swift heavy ion (SHI) irradiation: Phenomenological correlation with formation energies of Frenkel pairs

    Energy Technology Data Exchange (ETDEWEB)

    Crespillo, M.L., E-mail: mcrespil@utk.edu [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain); Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Agulló-López, F., E-mail: fal@uam.es [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain); Zucchiatti, A. [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain)

    2017-03-01

    Highlights: • Extensive survey formation energies Frenkel pairs and electronic stopping thresholds. • Correlation: track formation thresholds and the energies for Frenkel pair formation. • Formation energies Frenkel pairs discussed in relation to the cumulative mechanisms. • Amorphous track formation mechanisms: defect accumulation models versus melting. • Advantages cumulative models to deal with new hot topics: nuclear-electronic synergy. - Abstract: An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO{sub 3} crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.

  2. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Science.gov (United States)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  3. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda.makoto@jaea.go.jp [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Asozu, T.; Sataka, M. [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Iwase, A. [Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, {sup 132}Xe{sup 11+} and {sup 12}C{sup +}). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  4. Swift Heavy Ions in Matter

    International Nuclear Information System (INIS)

    1989-01-01

    The 1989 Symposium on Swift Heavy Ions in Matter is reported. The aim of the symposium is to evidence another aspect of heavy ions research at the interplay between atomic and solid state physics. The scope of the Symposium includes the fundamental aspects of heavy ion excitation, ionization, charge exchange, energy loss, energy dissipation and relaxation in solids, channeling and coherent effects in crystals and ion induced modifications of materials

  5. Opto-chemical response of Makrofol-KG to swift heavy ion irradiation

    Indian Academy of Sciences (India)

    Structural, chemical and optical properties were investigated using X-ray diffraction, FTIR spectroscopy and UV–visible spectroscopy methods. It is observed that the direct and indirect band gaps of Makrofol-KG decrease after the irradiation. The XRD study shows that the crystalline size in the films decreases at higher ...

  6. Mixing induced by swift heavy ion irradiation at Fe/Si interface

    Indian Academy of Sciences (India)

    Unknown

    Materials Science Laboratory, Centre for Non Conventional Energy Resources, University of Rajasthan,. Jaipur 302 004, India. MS received 29 January 2004. Abstract. The present work deals with ... The electronic energy loss was found to be 29⋅23 keV/nm for 95 MeV Au ions in Fe using TRIM calculation. Compositional ...

  7. Swift heavy ions for materials engineering and nanostructuring

    CERN Document Server

    Avasthi, Devesh Kumar

    2011-01-01

    Ion beams have been used for decades for characterizing and analyzing materials. Now energetic ion beams are providing ways to modify the materials in unprecedented ways. This book highlights the emergence of high-energy swift heavy ions as a tool for tailoring the properties of materials with nanoscale structures. Swift heavy ions interact with materials by exciting/ionizing electrons without directly moving the atoms. This opens a new horizon towards the 'so-called' soft engineering. The book discusses the ion beam technology emerging from the non-equilibrium conditions and emphasizes the power of controlled irradiation to tailor the properties of various types of materials for specific needs.

  8. Modification of photosensing property of CdS–Bi{sub 2}S{sub 3} bi-layer by thermal annealing and swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Shaheed U.; Siddiqui, Farha Y. [Thin Film and Nanotechnology Laboratory, Department of Physics (India); Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India); Singh, Fouran; Kulriya, Pawan K. [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Phase, D.M. [UGC DAE Consortium for Scientific Research, Khandwa Road, Indore 452017 (India); Sharma, Ramphal, E-mail: ramphalsharma@yahoo.com [Thin Film and Nanotechnology Laboratory, Department of Physics (India); Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India)

    2016-02-01

    The CdS–Bi{sub 2}S{sub 3} bi-layer thin films have been deposited on Indium Tin Oxide (ITO) glass substrates at room temperature by Chemical Bath Deposition Technique (CBD) and bi-layer thin films were annealed in air atmosphere for 1 h at 250 {sup °}C. The air annealed sample was irradiated using Au{sup 9+} ions at the fluence 5 × 10{sup 11} ion/cm{sup 2} with 120 MeV energy. Effects of Swift Heavy Ion (SHI) irradiation on CdS–Bi{sub 2}S{sub 3} bi-layer thin films were studied. The results are explained on the basis annealing and high electronic excitation, using X-ray diffraction (XRD), Selective Electron Area Diffraction (SEAD), Atomic Force Microscopy (AFM), Raman Spectroscopy, UV spectroscopy and I–V characteristics. The photosensing property after illumination of visible light over the samples is studied. These as-deposited, annealed and irradiated bi-layer thin films are used to sense visible light at room temperature. - Graphical abstract: Schematic illustration of CdS–Bi{sub 2}S{sub 3} bi-layer thin film (a) As-deposited (b) Annealed (c) irradiated sample respectively (d) Model of bi-layer photosensor device (e) Graph of illumination intensity verses photosensitivity. - Highlights: • CdS–Bi{sub 2}S{sub 3} bi-layer thin film prepared at room temperature. • Irradiated using Au{sup 9+} ions at the fluence of 5 × 10{sup 11} ion/cm{sup 2} with 120 MeV energy. • Study of modification induced by irradiations. • Study of Photosensitivity after annealing and irradiation.

  9. Swift Heavy Ion Irradiation as a Tool for Homogeneous Dispersion of Nanographite Platelets within the Polymer Matrices: Toward Tailoring the Properties of PEDOT:PSS/Nanographite Nanocomposites.

    Science.gov (United States)

    Singhal, Prachi; Rattan, Sunita

    2016-04-07

    Performance of the polymer nanocomposites is dependent to a great extent on efficient and homogeneous dispersion of nanoparticles in polymeric matrices. The dispersion of nanographite platelets (NGPs) in polymer matrix is a great challenge because of the inherent inert nature of the NGPs, poor wettability toward polymer matrices, and easy agglomeration due to van der Waals interactions. In the present study, attempts have been made to use a new approach involving the irradiation of polymer nanocomposites through swift heavy ion (SHI) to homogeneously disperse the NGPs within the polymer matrices. Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) ( PSS)/nanographite nanocomposite (NC) films prepared by the solution blending method were irradiated with SHI (Ni ion beam, 80 MeV) at a fluence range of 1 × 10(10) to 1 × 10(12) ions/cm(2). XRD studies revealed that ion irradiation results in delamination and better dispersion of NGPs in the irradiated nanocomposite films compared to unirradiated films, which is also depicted through SEM, AFM, TEM, and Raman studies. In the irradiated polymer nanocomposite films, the conformation of PEDOT chains changes from coiled to extended coiled structure, which, along with homogeneously dispersed NGPs in irradiated NCs, shows an excellent synergistic effect facilitating charge transport. The remarkable improvement in conductivity from 1.9 × 10(-2) in unirradiated NCs to 0.45 S/cm in irradiated NCs is observed with marked improvement in sensing the response toward nitroaromatic vapors at room temperature. The temperature induced conductivity studies have been carried out for PSS/nanographite NCs to comprehend the charge transport mechanism in NC films using the 3D Mott variable range hopping model also. The study reveals SHI as a novel method, addressing the challenge associated with the dispersion of NGPs within the polymer matrix for their enhanced performance toward various applications.

  10. Micro-Raman studies of swift heavy ion irradiation induced structural and conformational changes in polyaniline nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Somik [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India); Kumar, A., E-mail: ask@tezu.ernet.i [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India)

    2010-09-15

    Polyaniline (PAni) nanofibers doped with camphor sulfonic acid have been irradiated with 90 MeV O{sup 7+} ions at different fluences (3 x 10{sup 10}-1 x 10{sup 12} ions/cm{sup 2}) using a 15UD Pelletron accelerator under ultra-high vacuum. XRD studies reveal a decrease in the domain length and an increase in the strain upon SHI irradiation. The increase in d-spacing corresponding to the (1 0 0) reflection of PAni nanofibers with increasing irradiation fluence has been attributed to the increase in the tilt angle of the chains with respect to the (a, b) basal plane of PAni. Decrease in the integral intensity upon SHI irradiation indicates amorphization of the material. Micro-Raman ({mu}R) studies confirm amorphization of the PAni nanofibers and also show that the PAni nanofibers get de-doped upon SHI irradiation. {mu}R spectroscopy also reveals a benzenoid to quinoid transition in the PAni chain upon SHI irradiation. TEM results show that the size of PAni nanofibers decreases with the increase in irradiation fluence, which has been attributed to the fragmentation of PAni nanofibers in the core of amorphized tracks caused by SHI irradiation.

  11. Ultrafast laser and swift heavy ion irradiation: Response of Gd 2 O 3 and ZrO 2 to intense electronic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Tracy, Cameron L.; Cusick, Alex B.; Abere, Michael J.; Torralva, Ben; Ewing, Rodney C.; Yalisove, Steven M.

    2015-04-27

    In order to investigate the response of materials to extreme conditions, there are several approaches to depositing extremely high concentrations of energy into very small volumes of material, including ultrafast laser and swift heavy ion (SHI) irradiation. In this study, crystalline-to-crystalline phase transformations in cubic Gd2O3 and monoclinic ZrO2 have been investigated using ultrafast laser irradiation. The phases produced by the extreme conditions of irradiation were characterized by grazing incidence x-ray diffraction (GIXRD) and Raman spectroscopy. Gd2O3 exhibited a cubic-to-monoclinic phase transformation, as evidenced by the appearance of the monoclinic (40$\\bar{2}$), (003), (310), and (112$\\bar{2}$) peaks in the GIXRD pattern and of four Ag and three Bg Raman modes. ZrO2 underwent a monoclinic-to-tetragonal phase transformation, as evidenced by the emergence of the tetragonal (101) peak in the GIXRD pattern and of Eg and A1g Raman modes. The new phases formed by ultrafast laser irradiation are high temperature polymorphs of the two materials. No evidence of amorphization was seen in the GIXRD data, though Raman spectroscopy indicated point defect accumulation. These results are identical to those produced by irradiation with SHIs, which also deposit energy in materials primarily through electronic excitation. The similarity in damage process and material response between ultrafast laser and SHI irradiation suggests a fundamental relationship between these two techniques.

  12. Tailoring of refractive index profiles in LiNbO3 optical waveguides by low-fluence swift-ion irradiation

    International Nuclear Information System (INIS)

    Ruiz, T; Mendez, A; Carrascosa, M; Carnicero, J; GarcIa-Cabanes, A; Olivares, J; Agullo-Lopez, F; GarcIa-Navarro, A; GarcIa, G

    2007-01-01

    Proton-exchange LiNbO 3 planar optical waveguides have been irradiated with swift ions (Cl 30 MeV) at very low fluences in the range 5 x 10 10 -5 x 10 12 cm -2 . Large modifications in the refractive index profiles, and therefore in the optical performance, have been obtained due to the generation of amorphous nano-tracks by the individual ion impacts. Moreover, a fine tuning of the refractive index can be achieved by a suitable control of the fluence (δn/δφ ∼ 10 -14 cm 2 or δn ∼ 10 -5 for δφ = 10 9 cm -2 ). An effective medium approach has been used to account for those changes and determine the amorphous fraction of material. The results have been compared with information extracted from complementary RBS channelling experiments. From the calculated amorphous fractions a radius of ∼2 nm for the amorphous tracks have been estimated

  13. Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO-CuO nanocomposites prepared by carbothermal evaporation method.

    Science.gov (United States)

    Kuriakose, Sini; Avasthi, D K; Mohapatra, Satyabrata

    2015-01-01

    ZnO-CuO nanocomposite thin films were prepared by carbothermal evaporation of ZnO and Cu, combined with annealing. The effects of 90 MeV Ni(7+) ion irradiation on the structural and optical properties of ZnO-CuO nanocomposites were studied by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-visible absorption spectroscopy and Raman spectroscopy. XRD studies showed the presence of ZnO and CuO nanostructures in the nanocomposites. FESEM images revealed the presence of nanosheets and nanorods in the nanocomposites. The photocatalytic activity of ZnO-CuO nanocomposites was evaluated on the basis of degradation of methylene blue (MB) and methyl orange (MO) dyes under sun light irradiation and it was observed that swift heavy ion irradiation results in significant enhancement in the photocatalytic efficiency of ZnO-CuO nanocomposites towards degradation of MB and MO dyes. The possible mechanism for the enhanced photocatalytic activity of ZnO-CuO nanocomposites is proposed. We attribute the observed enhanced photocatalytic activity of ZnO-CuO nanocomposites to the combined effects of improved sun light utilization and suppression of the recombination of photogenerated charge carriers in ZnO-CuO nanocomposites.

  14. Monte Carlo simulation of damage and amorphization induced by swift-ion irradiation in LiNbO3

    International Nuclear Information System (INIS)

    Garcia, G.; Agullo-Lopez, F.; Olivares-Villegas, J.; Garcia-Navarro, A.

    2006-01-01

    This paper presents a Monte Carlo (MC) simulation tool which is applied to describe the ion beam induced damage generated by electronic excitation in LiNbO 3 . Based on a previously published thermal spike based analytical model, the MC technique allows for a more flexible and accurate treatment of the problem. A main advantage of this approach with respect to the analytical one is the possibility of studying the role of statistical fluctuations, relevant at low fluences. The paper recalls the main features of the physical model, describes the MC algorithm, and compares simulation results to experimental data (irradiations of LiNbO 3 using silicon ions at 5 and 7.5 MeV and oxygen ions at 5 MeV)

  15. Ultrafast laser and swift heavy ion irradiation: Response of Gd{sub 2}O{sub 3} and ZrO{sub 2} to intense electronic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Geological Sciences, Stanford University, Stanford, California 94305 (United States); Tracy, Cameron L.; Cusick, Alex B.; Abere, Michael J.; Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Ewing, Rodney C. [Department of Geological Sciences, Stanford University, Stanford, California 94305 (United States)

    2015-04-27

    In order to investigate the response of materials to extreme conditions, there are several approaches to depositing extremely high concentrations of energy into very small volumes of material, including ultrafast laser and swift heavy ion (SHI) irradiation. In this study, crystalline-to-crystalline phase transformations in cubic Gd{sub 2}O{sub 3} and monoclinic ZrO{sub 2} have been investigated using ultrafast laser irradiation. The phases produced by the extreme conditions of irradiation were characterized by grazing incidence x-ray diffraction (GIXRD) and Raman spectroscopy. Gd{sub 2}O{sub 3} exhibited a cubic-to-monoclinic phase transformation, as evidenced by the appearance of the monoclinic (402{sup ¯}), (003), (310), and (112{sup ¯}) peaks in the GIXRD pattern and of four A{sub g} and three B{sub g} Raman modes. ZrO{sub 2} underwent a monoclinic-to-tetragonal phase transformation, as evidenced by the emergence of the tetragonal (101) peak in the GIXRD pattern and of E{sub g} and A{sub 1g} Raman modes. The new phases formed by ultrafast laser irradiation are high temperature polymorphs of the two materials. No evidence of amorphization was seen in the GIXRD data, though Raman spectroscopy indicated point defect accumulation. These results are identical to those produced by irradiation with SHIs, which also deposit energy in materials primarily through electronic excitation. The similarity in damage process and material response between ultrafast laser and SHI irradiation suggests a fundamental relationship between these two techniques.

  16. Study of the modifications induced in AlxGa1-xN semiconductors under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Moisy, Florent

    2016-01-01

    Nitride semiconductors are attractive materials for optoelectronic applications. They can be subjected to heavy ions in a wide range of energy during their elaboration (improvement of their properties by ionic implantation) or during their potential use in extreme environments (outer space). This thesis focuses on the study of AlxGa1-xN alloys under heavy ion irradiation from GANIL. In GaN, the formation of Ga vacancies has been highlighted, these latter coming from elastic collisions between atoms in the material and the projectiles. On the other hand, it is possible to observe the formation of disordered ion tracks for projectiles with high electronic stopping power (Se). These tracks induce strong surface modifications, a closing of the optical bandgap, but also an extension strain along the direction parallel to the ion direction and biaxial stresses of some GPa. Concerning AlxGa1-xN alloys with x from 0.3 to 1, the points defects are more complex, and a synergy between electronic excitations and nuclear collisions is responsible of their formation. Nevertheless, the increase of the Al molar fraction (x), tends to improve the resistance to ion tracks formation in these materials. (author) [fr

  17. Fluence and ion dependence of amorphous iron-phase-formation due to swift heavy ion irradiation in electrodeposited iron thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stichleutner, S. [Institute of Chemistry, Eoetvoes University, Budapest (Hungary); Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary); Kuzmann, E., E-mail: kuzmann@ludens.elte.h [Institute of Chemistry, Eoetvoes University, Budapest (Hungary); Laboratory of Nuclear Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary); Havancsak, K.; Huhn, A. [Department of Materials Physics, Eoetvoes University, Budapest (Hungary); El-Sharif, M.R.; Chisholm, C.U.; Doyle, O. [Glasgow Caledonian University, Glasgow, Scotland (United Kingdom); Skuratov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Homonnay, Z. [Institute of Chemistry, Eoetvoes University, Budapest (Hungary); Vertes, A. [Institute of Chemistry, Eoetvoes University, Budapest (Hungary); Laboratory of Nuclear Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary)

    2011-03-15

    {sup 57}Fe conversion electron Moessbauer spectroscopy, XRD and AFM measurements were used to study the radiation effect of 246 MeV Kr, 470 MeV Xe and 710 MeV Bi ions on electrochemically deposited iron thin films. It was found that, in the irradiated electrochemically deposited crystalline ferromagnetic {alpha}-Fe coatings, partial amorphisation of Fe took place. The relative amount of the ferromagnetic amorphous phase increased with both ion energy and ion mass as well as with the fluence of irradiation.

  18. Response of Gd 2 Ti 2 O 7 and La 2 Ti 2 O 7 to swift-heavy ion irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sulgiye; Lang, Maik; Tracy, Cameron L.; Zhang, Jiaming; Zhang, Fuxiang; Trautmann, Christina; Rodriguez, Matias D.; Kluth, Patrick; Ewing, Rodney C.

    2015-07-01

    Swift heavy ion (2 GeV 181Ta) irradiation-induced amorphization and temperature-induced recrystallization of cubic pyrochlore Gd2Ti2O7 (Fd3¯m) are compared with the response of a compositionally-similar material with a monoclinic-layered perovskite-type structure, La2Ti2O7 (P21). The averaged electronic energy loss, dE/dx, was 37 keV/nm and 35 keV/nm in Gd2Ti2O7 and La2Ti2O7, respectively. Systematic analysis of the structural modifications was completed using transmission electron microscopy, synchrotron X-ray diffraction, Raman spectroscopy, and small-angle X-ray scattering. Increasing ion-induced amorphization with increasing ion fluence was evident in the X-ray diffraction patterns of both compositions by a reduction in the intensity of the diffraction maxima concurrent with the growth in intensity of a broad diffuse scattering halo. Transmission electron microscopy analysis showed complete amorphization within ion tracks (diameter: ~10 nm) for the perovskite-type material; whereas a concentric, core–shell morphology was evident in the ion tracks of the pyrochlore, with an outer shell of disordered yet still crystalline material with the fluorite structure surrounding an amorphous track core (diameter: ~9 nm). The radiation response of both titanate oxides with the same stoichiometry can be understood in terms of differences in their structures and compositions. While the radiation damage susceptibility of pyrochlore A2B2O7 materials decreases as a function of the cation radius ratio rA/rB, the current study correlates this behavior with the stability field of monoclinic structures, where rLa/rTi > rGd/rTi. Isochronal annealing experiments of the irradiated materials showed complete recrystallization of La2Ti2O7 at 775 °C and of Gd2Ti2O7 at 850 °C. The annealing behavior is discussed in terms of enhanced damage recovery in La2Ti2O7, compared to the pyrochlore compounds Gd2Ti2O7. The difference in the recrystallization behavior may be related to structural

  19. Study of the point defect creation and of the excitonic luminescence in alkali halides irradiated by swift heavy ions; Etude de la creation de defauts ponctuels et de la luminescence excitonique d`halogenures d`alcalins irradies par les ions lourds de grande vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Protin, L.

    1994-10-05

    The aim of this experimental thesis is to study the excitonic mechanisms and of the defect creation, in NaCl and KBr, under dense electronic excitations induced by swift heavy ion irradiations. In the first part, we present the main features of the interaction of swift heavy ions with solid targets, and after we review the well known radiolytic processes of the defect creation during X-ray irradiation. In the second chapter, we describe our experimental set-up. In the chapter III, we present our results of the in-situ optical absorption measurements. This results show that defect creation is less sensitive to the temperature than during a classical irradiation. Besides, we observe new mechanisms concerning the defect aggregation. In the chapter IV, we present the results of excitonic luminescence induced by swift by swift heavy ions. We observe that the luminescence yields only change with the highest electronic stopping power. In the chapter V, we perform thermal spike and luminescence yields calculations and we compare the numerical results to the experiments presented in the chapter IV. (author). 121 refs., 65 figs., 30 tabs.

  20. Defect production and subsequent effects induced by electronic energy loss of swift heavy ion

    International Nuclear Information System (INIS)

    Hou Mingdong; Liu Jie; Sun Youmei; Yin Jingmin; Yao Huijun; Duan Jinglai; Mo Dan; Zhang Ling; Chen Yanfeng; Chinese Academy of Sciences, Beijing

    2008-01-01

    Swift heavy ion in matter is one of forfront fields of nuclear physics in the world. A series of new phenomena were discovered in recent years. The history and sta- tus on the development of this field were reviewed. Electronic energy loss effects induced by swift heavy ion irradiation, such as defect production and evolution, ion latent track formation, phase transformation and anisotropy plastic deformation were introduced emphatically. A trend of future investigation was explored. (authors)

  1. Effects of swift heavy ion irradiation on La0.5Pr0.2Sr0.3MnO3 epitaxial thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Markna, J.H.; Parmar, R.N.; Rana, D.S.; Ravi Kumar; Misra, P.; Kukreja, L.M.; Kuberkar, D.G.; Malik, S.K.

    2007-01-01

    We report the observation of room temperature insulator to metal transition and magnetoresistance characteristics of Swift Heavy Ions (SHIs) irradiated La 0.5 Pr 0.2 Sr 0.3 MnO 3 (LPSMO) epitaxial thin films grown on single crystal (1 0 0) SrTiO 3 substrates using Pulsed Laser Deposition. The epitaxial nature and crystallanity of the films was confirmed from the structural and magnetoresistance characteristics. Irradiation with the 200 MeV Ag 15+ ions at a fluence of about 5 x 10 11 ions/cm 2 showed suppression in the resistivity by ∼68% and 31% for the films with 50 nm and 100 nm thickness respectively. The possible reasons for this suppression could be either release of strain in the films in the dead layer at the interface of film-substrate or Swift Heavy Ions induced annealing which in turn affects the Mn-O-Mn bond angle thereby favoring the Zener double exchange. Field Coefficient of Resistance (FCR) values for both films, determined from R-H data and magnetoresistance data, showed a marginal enhancement after irradiation

  2. Structure and mechanical properties of swift heavy ion irradiated tungsten-bearing delta-phase oxides Y6W1O12 and Yb6W1O12

    Science.gov (United States)

    Tang, M.; Wynn, T. A.; Patel, M. K.; Won, J.; Monnet, I.; Pivin, J. C.; Mara, N. A.; Sickafus, K. E.

    2012-06-01

    We report on the relationship between structure and mechanical properties of complex oxides whose structures are derivatives of fluorite, following irradiation with swift heavy ion (92 MeV Xe) which approximately simulates fission product irradiation, where the electronic energy loss dominates. The two compounds of interest in this paper are Y6W1O12 and Yb6W1O12. These compounds possess an ordered, fluorite derivative crystal structure known as the delta (δ) phase, a rhombohedral structure belonging to space group R3¯. Structural changes induced by irradiation were examined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD investigations indicated an irradiation-induced amorphization in these compounds. This result is consistent with our previous study on Y6W1O12 under displacive radiation environment in which the nuclear energy loss is dominant. High resolution TEM also revealed that individual ion tracks was amorphized. The mechanical properties of both irradiated compounds, were determined by cross-sectional nano-indentation measurements as a function of ion penetration depth. The decreases in Young's modulus, E, and hardness, H (both by about 40% at the irradiated surface) suggest amorphization beyond simple defect accumulation occurs under this irradiation condition.

  3. Low frequency alternating current conduction and dielectric relaxation in polypyrrole irradiated with 100 MeV swift heavy ions of silver (Ag{sup 8+})

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Amarjeet, E-mail: amarkaur@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Dhillon, Anju [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Avasthi, D.K. [Inter University Accelerator Center (IUAC), Aruna Asaf Ali Road, New Delhi 110067 (India)

    2013-07-15

    Polypyrrole (PPY) films were prepared by electrochemical polymerization technique. The fully undoped samples were irradiated with different radiation fluences ranging from 10{sup 10} to 10{sup 12} ions cm{sup −2} of 100 MeV silver (Ag{sup 8+}) ions. The temperature dependence of ac conductivity [σ{sub m}(ω)], dielectric constant (ε′) and dielectric loss (ε′′) of both irradiated as well as unirradiated samples have been investigated in 77–300 K. There exists typical Debye type dispersion. Giant increase in dielectric constant has been observed for irradiated samples which is attributed to polaronic defects produced during irradiation. - Graphical abstract: Display Omitted - Highlights: • Polypyrrole samples were prepared by electrochemical technique. • The fully undoped samples were irradiated with 100 MeV silver (Ag{sup 8+}) ions. • Giant increase in dielectric constant in irradiated samples is observed. • Dielectric behaviour is attributed to polaronic defects produced during irradiation.

  4. Low frequency alternating current conduction and dielectric relaxation in polypyrrole irradiated with 100 MeV swift heavy ions of silver (Ag8+)

    International Nuclear Information System (INIS)

    Kaur, Amarjeet; Dhillon, Anju; Avasthi, D.K.

    2013-01-01

    Polypyrrole (PPY) films were prepared by electrochemical polymerization technique. The fully undoped samples were irradiated with different radiation fluences ranging from 10 10 to 10 12 ions cm −2 of 100 MeV silver (Ag 8+ ) ions. The temperature dependence of ac conductivity [σ m (ω)], dielectric constant (ε′) and dielectric loss (ε′′) of both irradiated as well as unirradiated samples have been investigated in 77–300 K. There exists typical Debye type dispersion. Giant increase in dielectric constant has been observed for irradiated samples which is attributed to polaronic defects produced during irradiation. - Graphical abstract: Display Omitted - Highlights: • Polypyrrole samples were prepared by electrochemical technique. • The fully undoped samples were irradiated with 100 MeV silver (Ag 8+ ) ions. • Giant increase in dielectric constant in irradiated samples is observed. • Dielectric behaviour is attributed to polaronic defects produced during irradiation

  5. Effect of swift heavy ion Ag9+ irradiation on the surface morphology, structure and optical properties of AgGaS2 single crystals

    Science.gov (United States)

    Prabukanthan, P.; Asokan, K.; Kanjilal, D.; Dhanasekaran, R.

    2008-12-01

    AgGaS2 (AGS) single crystals grown by chemical vapor transport (CVT) method were irradiated with Ag9+ ions (120 MeV) with various ion fluences. The irradiation was carried out at room temperature (RT) and at liquid nitrogen temperature (LNT). A glancing angle x-ray diffraction (GAXRD) analysis reveals a huge lattice disorder at RT irradiation. This is observed from an increase in the full width at half maximum (FWHM) and a decrease in the intensity of the AGS (1 1 2) peak. However, there is no change in the FWHM of the (1 1 2) peak but the intensity slightly decreases at LNT irradiation. Also, AGS (3 0 3) peak is not observed for the samples irradiated with the fluences of 5 × 1013 and 1 × 1013 ions cm-2 at RT conditions. The GAXRD results show the decrease in degree of crystallinity upon ion irradiation at RT while there is not much degradation in crystallinity upon ion irradiation at LNT. But the LNT irradiation on AGS has its own effects. Atomic force microscope (AFM) studies show that the roughness of AGS increases on increasing the ion fluences at LNT and at RT. Also, it is found that there is an increase in the surface defects with fluences of Ag9+ ion irradiation when compared to pristine AGS. UV-visible transmission spectra show that the percentage of transmission and bandgap energy decrease with increasing ion fluences and also that the peaks are broadened at LNT and at RT. The photoluminescence (PL) spectra were analyzed as a function of irradiation ion fluences in the AGS crystals at RT. It has been found that the emission intensities of band-to-band transition decrease with increase of ion fluences at LNT and at RT.

  6. In-situ transport and microstructural evolution in GaN Schottky diodes and epilayers exposed to swift heavy ion irradiation

    Science.gov (United States)

    Kumar, Ashish; Singh, R.; Kumar, Parmod; Singh, Udai B.; Asokan, K.; Karaseov, Platon A.; Titov, Andrei I.; Kanjilal, D.

    2018-04-01

    A systematic investigation of radiation hardness of Schottky barrier diodes and GaN epitaxial layers is carried out by employing in-situ electrical resistivity and cross sectional transmission electron microscopy (XTEM) microstructure measurements. The change in the current transport mechanism of Au/n-GaN Schottky barrier diodes due to irradiation is reported. The role of irradiation temperature and ion type was also investigated. Creation of damage is studied in low and medium electron energy loss regimes by selecting different ions, Ag (200 MeV) and O (100 MeV) at various fluences at two irradiation temperatures (80 K and 300 K). GaN resistivity increases up to 6 orders of magnitude under heavy Ag ions. Light O ion irradiation has a much lower influence on sheet resistance. The presence of isolated defect clusters in irradiated GaN epilayers is evident in XTEM investigation which is explained on the basis of the thermal spike model.

  7. In situ defect annealing of swift heavy ion irradiated CeO2 and ThO2 using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, Raul I.; Tracy, Cameron L.; Zhang, Fuxiang; Park, Changyong; Popov, Dmitry; Trautmann, Christina; Ewing, Rodney C.; Lang, Maik

    2015-04-16

    Hydrothermal diamond anvil cells (HDACs) provide facile means for coupling synchrotron X-ray techniques with pressure up to 10 GPa and temperature up to 1300 K. This manuscript reports on an application of the HDAC as an ambient-pressure sample environment for performingin situdefect annealing and thermal expansion studies of swift heavy ion irradiated CeO2and ThO2using synchrotron X-ray diffraction. The advantages of thein situHDAC technique over conventional annealing methods include rapid temperature ramping and quench times, high-resolution measurement capability, simultaneous annealing of multiple samples, and prolonged temperature and apparatus stability at high temperatures. Isochronal annealing between 300 and 1100 K revealed two-stage and one-stage defect recovery processes for irradiated CeO2and ThO2, respectively, indicating that the morphology of the defects produced by swift heavy ion irradiation of these two materials differs significantly. These results suggest that electronic configuration plays a major role in both the radiation-induced defect production and high-temperature defect recovery mechanisms of CeO2and ThO2.

  8. The damage process induced by swift heavy ion in polycarbonate

    Science.gov (United States)

    Sun, Youmei; Zhu, Zhiyong; Wang, Zhiguang; Liu, Jie; Jin, Yunfan; Hou, Mingdong; Wang, Ying; Duan, Jinglai

    2003-12-01

    To describe the damage process of polymer in the energetic heavy ion tracks by thermal spike model, polycarbonate (PC, Makrofol KG) foil stacks were irradiated with various swift heavy ions (1.158 GeV Fe 56, 1.755 GeV Xe 136 and 2.636 GeV U 238) in a very wide electronic stopping power range (from 1.9 to 17.1 keV/nm) and fluence range from 1 × 10 10 to 3 × 10 12 ions/cm 2. The amorphous processes and chemical degradation in the irradiated PC were studied by X-ray diffraction and Fourier transform infrared spectroscopy measurements. By applying the saturated track model, the mean damage radii of tracks of the amorphous and alkyne formation process were obtained for Fe, Xe and U ion irradiation, respectively. The results were validated by the thermal spike model. The analysis of the irradiated PC films shows that the predictions of the thermal spike model of Szenes are basically in quantitative agreement with the experimental results.

  9. Elaboration by ion implantation of cobalt nano-particles in silica layers and modifications of their properties by electron and swift heavy ion irradiations; Elaboration par implantation ionique de nanoparticules de cobalt dans la silice et modifications de leurs proprietes sous irradiation d'electrons et d'ions de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    D' Orleans, C

    2003-07-15

    This work aims to investigate the capability of ion irradiations to elaborate magnetic nano-particles in silica layers, and to modify their properties. Co{sup +} ions have been implanted at 160 keV at fluences of 2.10{sup 16}, 5.10{sup 16} and 10{sup 17} at/cm{sup 2}, and at temperatures of 77, 295 and 873 K. The dependence of the particle size on the implantation fluence, and more significantly on the implantation temperature has been shown. TEM (transmission electronic microscopy) observations have shown a mean diameter varying from 1 nm for implantations at 2.10{sup 16} Co{sup +}/cm{sup 2} at 77 K, to 9.7 nm at 10{sup 17} Co{sup +}/cm{sup 2} at 873 K. For high temperature implantations, two regions of particles appear. Simulations based on a kinetic 3-dimensional lattice Monte Carlo method reproduce quantitatively the features observed for implantations. Thermal treatments induce the ripening of the particles. Electron irradiations at 873 K induce an important increase in mean particle sizes. Swift heavy ion irradiations also induce the ripening of the particles for low fluences, and an elongation of the particles in the incident beam direction for high fluences, resulting in a magnetic anisotropy. Mechanisms invoked in thermal spike model could also explain this anisotropic growth. (author)

  10. Structural, surface potential and optical studies of AlGaN based double heterostructures irradiated by 120 MeV Si{sup 9+} swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Arivazhagan, P., E-mail: arivazhaganau2008@gmail.com [Crystal Growth Centre, Anna University, Chennai, 600 025 (India); Ramesh, R.; Balaji, M. [Crystal Growth Centre, Anna University, Chennai, 600 025 (India); Asokan, K. [Inter-University Accelerator Centre (IUAC), New Delhi (India); Baskar, K. [Crystal Growth Centre, Anna University, Chennai, 600 025 (India)

    2016-09-15

    The Al{sub 0.33}Ga{sub 0.77}N/Al{sub 0.14}Ga{sub 0.86}N based double heterostructure was irradiated using Si{sup 9+} ion at room temperature (RT) and liquid nitrogen temperature (LNT) with four dissimilar ion fluence. The effect of Si{sup 9+} ion irradiation in dislocation densities and in-plane strain of GaN layer were discussed. The in-plane strain values of Al{sub x}Ga{sub 1-x}N layers were calculated from asymmetric reciprocal space mapping (RSM). The surface modification and the variation in phase shift on Al{sub 0.33}Ga{sub 0.77}N surfaces due to the irradiation were measured by Electrostatic Force Microscopy (EFM). The capacitance of the tip-sample system was determined from EFM. The band edge emissions of heterostructures were measured by the room temperature phototluminescence (PL) and the shift in the Al{sub 0.14}Ga{sub 0.86}N active layer emission peaks towards the low energy side at low fluence ion irradiation has been noted. - Highlights: • Effects of Si{sup 9+} ion irradiation on AlGaN double heterostructures were investigated. • Dislocation densities of GaN reduced at liquid nitrogen temperature irradiation. • Variation in phase shift on Al{sub 0.33}Ga{sub 0.77}N surfaces was measured by EFM. • Capacitance per unit area values of AFM tip-sample surface system were calculated. • Si{sup 9+} irradiations play an important role to tune the energy gap in Al{sub 0.14}Ga{sub 0.86}N.

  11. In situ and postradiation analysis of mechanical stress in Al{sub 2}O{sub 3}:Cr induced by swift heavy-ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Skuratov, V.A., E-mail: skuratov@jinr.r [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Bujnarowski, G. [Institute of Physics, Opole University, 45-052 Opole (Poland); Kovalev, Yu.S. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); O' Connell, J. [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Havanscak, K. [Eoetvoes University, Pazmany P. setany 1/A, H-1117 Budapest (Hungary)

    2010-10-01

    Optical spectroscopy and TEM techniques have been applied to study the radiation damage and correlated mechanical stresses in Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}:Cr single crystals induced by (1-3) MeV/amu Kr, Xe and Bi ion irradiation. Mechanical stresses were evaluated in situ using a piezospectroscopic effect through the shift of the respective lines in ionoluminescence spectra. It was found that dose dependence of the stress level for Xe and Bi ions, when ionization energy loss exceeds the threshold of damage formation via electronic excitations, exhibits several alternate stages showing the build-up and relaxation of stresses. The beginning of relaxation stages is observed at fluences associated with beginning of individual ion track regions overlapping. The residual stress profiles through the ion irradiated layers were deduced from depth-resolved photostimulated spectra using laser confocal scanning microscopy set-up. It was determined that stresses are compressive in basal plane and tensile in perpendicular direction in all samples irradiated with high energy ions.

  12. In situ and postradiation analysis of mechanical stress in Al2O3:Cr induced by swift heavy-ion irradiation

    International Nuclear Information System (INIS)

    Skuratov, V.A.; Bujnarowski, G.; Kovalev, Yu.S.; O'Connell, J.; Havanscak, K.

    2010-01-01

    Optical spectroscopy and TEM techniques have been applied to study the radiation damage and correlated mechanical stresses in Al 2 O 3 and Al 2 O 3 :Cr single crystals induced by (1-3) MeV/amu Kr, Xe and Bi ion irradiation. Mechanical stresses were evaluated in situ using a piezospectroscopic effect through the shift of the respective lines in ionoluminescence spectra. It was found that dose dependence of the stress level for Xe and Bi ions, when ionization energy loss exceeds the threshold of damage formation via electronic excitations, exhibits several alternate stages showing the build-up and relaxation of stresses. The beginning of relaxation stages is observed at fluences associated with beginning of individual ion track regions overlapping. The residual stress profiles through the ion irradiated layers were deduced from depth-resolved photostimulated spectra using laser confocal scanning microscopy set-up. It was determined that stresses are compressive in basal plane and tensile in perpendicular direction in all samples irradiated with high energy ions.

  13. Defects induced by swift heavy ions in the 18R martensite of Cu-Zn-Al alloy

    International Nuclear Information System (INIS)

    Zelaya, Eugenia; Tolley, Alfredo; Condo, Adriana; Lovey, Francisco; Schumacher, G

    2003-01-01

    The swift heavy ion incidence over the surface of a given material produces a strong energy deposition in a nanometric scale.Swift heavy ions, of the order of one thousand of MeV, deposit their energy as electronic excitations.This highly localized deposition can induce metastable transformations within the material. For example, in martensitic NiTi alloys irradiated with swift heavy ions, it has been observed changes on the martensitic transformation temperature and amorphous areas induced by the irradiation.In this work, the effects produced by swift heavy ions on the martensitic 18R structure of Cu-Zn-Al alloy (Cu - 12.17 Zn - 17.92 Al, in %at) were analyzed.Crystalline samples were irradiated in a direction close to the [2 1 0] of 18R with Xe + 230 MeV, Au + of 350 MeV and Kr + of 200 MeV ion beams.Defects of the order of nanometers induced by the irradiation were observed by transmission electron microscopy (TEM) and high resolution electron microscopy (HREM).It was also observed, that the average size of the irradiation defects induced by Au + ion is larger than those induced by Xe + and Kr + ions.In this case, no relationship between the observed defects and the energy deposition was found in the 23 keV/nn to 48 keV/nn range

  14. Modification and Characterisation of Materials by Swift Heavy Ions

    OpenAIRE

    D. K. Avasthi

    2009-01-01

    Swift heavy ions (SHI) available with 15 million Volt Pelletron accelerator at Inter University Accelerator Centre (IUAC) Delhi, formerly known as Nuclear Science Centre, (NSC), provide a unique opportunity to researchers for accelerator based materials science research. The major research areas can be broadly categorised as electronic sputtering, interface modifications, synthesis and modification of nanostructures, phase transitions and ion beam-induced epitaxial crystallisation. In, genera...

  15. Swift heavy ion induced modifications of single walled carbon nanotube thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vishalli, E-mail: vishalli_2008@yahoo.com [Department of Physics, Panjab University, Chandigarh 160014 (India); Raina, K.K. [Materials Research Laboratory, School of Physics and Materials Science, Thapar University, P.O. Box 32, Patiala 147004, Punjab (India); Avasthi, D.K. [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India); Srivastava, Alok [Department of Chemistry, Panjab University, Chandigarh 160014 (India); Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh 160014 (India)

    2016-04-15

    Thin films of single walled carbon nanotubes (SWCNTs) were prepared by Langmuir–Blodgett method and irradiated with swift heavy ions, carbon and nickel each of energy 60 MeV. The ion beams have different electronic energy loss (S{sub e}) values and the samples were exposed to various irradiation doses. The irradiated films were characterized using Raman and optical absorption spectroscopy. Raman spectroscopy results indicate the competing processes of defect creation and healing (annealing) of SWCNTs at lower fluences, while at higher fluences defect creation or damage dominates. In UV–Vis–NIR spectroscopy we find that there is decrease in the intensity of characteristic peaks with every increasing fluence, indicating decrease in the optically active states with irradiation.

  16. Swift heavy ions induced surface modifications in Ag-polypyrrole composite films synthesized by an electrochemical route

    International Nuclear Information System (INIS)

    Kumar, Vijay; Ali, Yasir; Sharma, Kashma; Kumar, Vinod; Sonkawade, R.G.; Dhaliwal, A.S.; Swart, H.C.

    2014-01-01

    Highlights: • Two steps electrochemical synthesis for the fabrication of Ag-polypyrrole composite films. • Surface modifications by swift heavy ion beam. • SEM image shows the formation of craters and humps after irradiation. • Detailed structural analysis by Raman spectroscopy. - Abstract: The general aim of this work was to study the effects of swift heavy ions on the properties of electrochemically synthesized Ag-polypyrrole composite thin films. Initially, polypyrrole (PPy) films were electrochemically synthesized on indium tin oxide coated glass surfaces using a chronopotentiometery technique, at optimized process conditions. The prepared PPy films have functioned as working electrodes for the decoration of submicron Ag particles on the surface of the PPy films through a cyclicvoltammetry technique. Towards probing the effect of swift heavy ion irradiation on the structural and morphological properties, the composite films were subjected to a 40 MeV Li 3+ ion beam irradiation for various fluences (1 × 10 11 , 1 × 10 12 and 1 × 10 13 ions/cm 2 ). Comparative microstructural investigations were carried out after the different ion fluences using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy and micro-Raman spectroscopy techniques. Raman and SEM studies revealed that the structure of the films became disordered after irradiation. The SEM studies of irradiated composite films show significant changes in their surface morphologies. The surface was smoother at lower fluence but craters were observed at higher fluence

  17. Swift heavy ions induced surface modifications in Ag-polypyrrole composite films synthesized by an electrochemical route

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijays_phy@rediffmail.com [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Ali, Yasir [Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal, District Sangrur 148106, Punjab (India); Sharma, Kashma [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Department of Chemistry, Shoolini University of Biotechnology and Management Sciences, Solan 173212 (India); Kumar, Vinod [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Sonkawade, R.G. [Inter University Accelerator Center, Aruna Asif Ali Marg, New Delhi 110067 (India); Dhaliwal, A.S. [Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal, District Sangrur 148106, Punjab (India); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa)

    2014-03-15

    Highlights: • Two steps electrochemical synthesis for the fabrication of Ag-polypyrrole composite films. • Surface modifications by swift heavy ion beam. • SEM image shows the formation of craters and humps after irradiation. • Detailed structural analysis by Raman spectroscopy. - Abstract: The general aim of this work was to study the effects of swift heavy ions on the properties of electrochemically synthesized Ag-polypyrrole composite thin films. Initially, polypyrrole (PPy) films were electrochemically synthesized on indium tin oxide coated glass surfaces using a chronopotentiometery technique, at optimized process conditions. The prepared PPy films have functioned as working electrodes for the decoration of submicron Ag particles on the surface of the PPy films through a cyclicvoltammetry technique. Towards probing the effect of swift heavy ion irradiation on the structural and morphological properties, the composite films were subjected to a 40 MeV Li{sup 3+} ion beam irradiation for various fluences (1 × 10{sup 11}, 1 × 10{sup 12} and 1 × 10{sup 13} ions/cm{sup 2}). Comparative microstructural investigations were carried out after the different ion fluences using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy and micro-Raman spectroscopy techniques. Raman and SEM studies revealed that the structure of the films became disordered after irradiation. The SEM studies of irradiated composite films show significant changes in their surface morphologies. The surface was smoother at lower fluence but craters were observed at higher fluence.

  18. In-situ investigations of surface modifications by swift heavy ions

    International Nuclear Information System (INIS)

    Bolse, W.; Sankarakumar, A.; Ferhati, R.; Garmatter, D.; Haag, M.; Dautel, K.; Asdi, M.; Srivastava, N.; Widmann, B.; Bauer, M.

    2014-01-01

    We are running a High Resolution Scanning Electron Microscope in the beam line of the UNILAC ion accelerator at the GSI Helmholtz Centre for Heavy Ion Research in Danustadt, Germany, which has recently been extended also with an EDX-system and two micro-manipulators. This instrument allows us to in-situ investigate the structural and compositional development of individual objects and structures in the μm- and nm-range under swift heavy ion bombardment, from the very first ion impact up to high fluences of the order of several 10 15 /cm 2 . The sample under investigation is irradiated in small fluence steps and in between SEM-images (and EDX-scans) of one and the same surface area are taken. The irradiation can be carried out at any incidence angle between 0° and 90° and also under stepwise or continuous azimuthal rotation of the sample. The micro-manipulator system allows us to perform additional analysis like electrical and mechanical characterization as well as substrate-free EDX at sub-μm objects. We are now also able to irradiate almost free standing sub-μm structures (pasted on a nanoscale tip or held in micro-tweezers). In this report an overview over this unique instrument and its capabilities and advantages will be given, illustrated by the results of our recent in-situ studies on ion induced modification of thin films (dewetting and self-organisation) and on shaping of sub-μm objects with swift heavy ions (by taking advantage of ion sputtering, ion hammering and ion induced visco-elastic flow). (author)

  19. Conducting swift heavy ion track networks

    Czech Academy of Sciences Publication Activity Database

    Fink, Dietmar; Kiv, A.; Fuks, D.; Vacík, Jiří; Hnatowicz, Vladimír; Chandra, A.; Saad, A.

    2010-01-01

    Roč. 165, č. 3 (2010), s. 227-244 ISSN 1042-0150 R&D Projects: GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : ion tracks * negative differential resistance * neural networks Subject RIV: JJ - Other Materials Impact factor: 0.660, year: 2010

  20. Enhanced formation of Ge nanocrystals in Ge : SiO2 layers by swift heavy ions

    International Nuclear Information System (INIS)

    Antonova, I V; Volodin, V A; Marin, D M; Skuratov, V A; Smagulova, S A; Janse van Vuuren, A; Neethling, J; Jedrzejewski, J; Balberg, I

    2012-01-01

    In this paper we report the ability of swift heavy Xe ions with an energy of 480 MeV and a fluence of 10 12 cm -2 to enhance the formation of Ge nanocrystals within SiO 2 layers with variable Ge contents. These Ge-SiO 2 films were fabricated by the co-sputtering of Ge and quartz sources which followed various annealing procedures. In particular, we found that the irradiation of the Ge : SiO 2 films with subsequent annealing at 500 °C leads to the formation of a high concentration of nanocrystals (NCs) with a size of 2-5 nm, whereas without irradiation only amorphous inclusions were observed. This effect, as evidenced by Raman spectra, is enhanced by pre-irradiation at 550 °C and post-irradiation annealing at 600 °C, which also leads to the observation of room temperature visible photoluminescence. (paper)

  1. Effect of swift heavy ion irradiation on structural and magnetic properties of GdFe{sub 1−x}Ni{sub x}O{sub 3} (x≤0.2) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Pawanpreet [Department of Physics, National Institute of Technology, Hamirpur, H.P. 177005 (India); Sharma, K.K., E-mail: kknitham@gmail.com [Department of Physics, National Institute of Technology, Hamirpur, H.P. 177005 (India); Pandit, Rabia [Department of Physics, National Institute of Technology, Hamirpur, H.P. 177005 (India); Choudhary, R.J. [UGC-DAE Consortium for Scientific Research at Indore, M.P. 452 001 (India); Kumar, Ravi [Centre for Material Science and Engineering, National Institute of Technology, Hamirpur, H.P 177005 (India)

    2016-01-15

    The present work reports the effect of Ni doping and 200 MeV Ag{sup 15+} ion irradiation on the structural and magnetic properties of GdFe{sub 1−x}Ni{sub x}O{sub 3} (x≤0.2) thin films grown on SrTiO{sub 3} (001) substrate by pulse laser deposition (PLD). From the XRD patterns ‘c-axis’ oriented growth in the pristine films is noticed, whereas after irradiation amorphization in the films is noticed. The atomic force microscopic (AFM) images reveal the increase in surface roughness with doping and irradiation as well. The irreversibility in the zero field cooled and field cooled magnetic curves indicates to the possibility of magnetic disorder in all the pristine as well as irradiated samples. Magnetization has been found to decrease with increasing Ni{sup 3+} ion substitution at room temperature whereas an enhancement in magnetization is noticed after ion irradiation for all the films. The disparity in the magnetic properties of pristine GdFe{sub 1−x}Ni{sub x}O{sub 3} (0.0≤x≤0.2) orthoferrites thin films can be correlated to the difference in hybridization in transition metal ion and O{sup 2−} ion orbitals. However, presence of strains caused by the columnar defects is responsible for the change in structural, morphological and magnetic properties in the irradiated samples. - Highlights: • ‘c-axis’ oriented GdFe{sub 1−x}Ni{sub x}O{sub 3} (x≤0.2) thin films grown on SrTiO{sub 3} substrate. • Thin films have been irradiated by 200 MeV Ag{sup 15+} ions. • Presence of columnar defects have been estimated using SRIM. • Magnetic disorder in all the film samples have been seen at lower temperatures. • Structural and magnetic characteristics altered with doping and ion irradiation.

  2. Swift heavy ion induced modifications in optical and electrical properties of cadmium selenide thin films

    Science.gov (United States)

    Choudhary, Ritika; Chauhan, Rishi Pal

    2017-07-01

    The modification in various properties of thin films using high energetic ion beam is an exciting area of basic and applied research in semiconductors. In the present investigations, cadmium selenide (CdSe) thin films were deposited on ITO substrate using electrodeposition technique. To study the swift heavy ion (SHI) induced effects, the deposited thin films were irradiated with 120 MeV heavy Ag9+ ions using pelletron accelerator facility at IUAC, New Delhi, India. Structural phase transformation in CdSe thin film from metastable cubic phase to stable hexagonal phase was observed after irradiation leading to decrease in the band gap from 2.47 eV to 2.12 eV. The phase transformation was analyzed through X-ray diffraction patterns. During SHI irradiation, Generation of high temperature and pressure by thermal spike along the trajectory of incident ions in the thin films might be responsible for modification in the properties of thin films.[Figure not available: see fulltext.

  3. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  4. Tailoring optical properties of TiO2-Cr co-sputtered films using swift heavy ions

    Science.gov (United States)

    Gupta, Ratnesh; Sen, Sagar; Phase, D. M.; Avasthi, D. K.; Gupta, Ajay

    2018-05-01

    Effect of 100 MeV Au7+ ion irradiation on structure and optical properties of Cr-doped TiO2 films has been studied using X-ray photoelectron spectroscopy, soft X-ray absorption spectroscopy, UV-Visible spectroscopy, X-ray reflectivity, and atomic force microscopy. X-ray reflectivity measurement implied that film thickness reduces as a function of ion fluence while surface roughness increases. The variation in surface roughness is well correlated with AFM results. Ion irradiation decreases the band gap energy of the film. Swift heavy ion irradiation enhances the oxygen vacancies in the film, and the extra electrons in the vacancies act as donor-like states. In valence band spectrum, there is a shift in the Ti3d peak towards lower energies and the shift is equivalent to the band gap energy obtained from UV spectrum. Evidence for band bending is also provided by the corresponding Ti XPS peak which exhibits a shift towards lower energy due to the downward band bending. X-ray absorption studies on O Kand Cr L3,2 edges clearly indicate that swift heavy ion irradiation induces formation of Cr-clusters in TiO2 matrix.

  5. Structural analysis of simulated swift heavy ion tracks in quartz

    International Nuclear Information System (INIS)

    Leino, Aleksi A.; Daraszewicz, Szymon L.; Pakarinen, Olli H.; Djurabekova, Flyura; Nordlund, Kai; Afra, Boshra; Kluth, Patrick

    2014-01-01

    Swift heavy ions (SHI), of specific kinetic energies in the excess of 1 MeV/u, can create cylindrical regions of structural transformation in SiO 2 targets, also known as SHI tracks. Recent measurements of the track cross-sections in α-quartz show significant and consistent discrepancies across different experimental techniques used. In particular, the track radii obtained from channelling experiments based on the Rutherford Backscattering Spectrometry (RBS-c) method increase monotonically with the electronic stopping power, whereas the track radii obtained from the Small Angle X-ray scattering (SAXS) saturate past a certain stopping power threshold. We perform a systematic study of the structure of the α-quartz tracks obtained from the molecular dynamics (MD) simulations incorporating a time-dependent energy deposition based on the inelastic thermal spike model, which allows us to discuss the possible origins of these experimental discrepancies

  6. Positive ion irradiation facility

    International Nuclear Information System (INIS)

    Braby, L.A.

    1985-01-01

    Many questions about the mechanisms of the response of cells to ionizing radiation can best be investigated using monoenergetic heavy charged particle beams. Questions of the role of different types of damage in the LET effect, for example, are being answered by comparing repair kinetics for damage induced by electrons with that produced by helium ions. However, as the models become more sophicated, the differences between models can be detected only with more precise measurements, or by combining high- and low-LET irradiations in split-dose experiments. The design of the authors present cell irradiation beam line has limited the authors to irradiating cells in a partial vacuum. A new way to mount the dishes and bring the beam to the cells was required. Several means of irradiating cells in mylar-bottom dishes have been used at other laboratories. For example at the RARAF Facility, the dual ion experiments are done with the dish bottom serving as the beam exit window but the cells are in a partial vacuum to prevent breaking the window. These researchers have chosen instead to use the dish bottom as the beam window and to irradiate the entire dish in a single exposure. A special, very fast pumping system will be installed at the end of the beam line. This system will make it possible to irradiate cells within two minutes of installing them in the irradiation chamber. In this way, the interaction of electron and ion-induced damage in Chlamydomonas can be studied with time between doses as short as 5 minutes

  7. Advanced characterization of materials using swift ion beams

    International Nuclear Information System (INIS)

    Tabacniks, Manfredo H.

    2011-01-01

    Swift ion beams are powerful non destructive tools for material analysis especially thin films. In spite of their high energy, usually several MeV/u, little energy is deposited by the ion on the sample. Energetic ions also use to stop far away (or outside) the inspected volume, hence producing negligible damage to the sample. Ion beam methods provide quantitative trace element analysis of any atomic element (and some isotopes) in a sample and are able to yield elemental depth profiles with spatial resolution of the order of 10mm. Relying on nuclear properties of the atoms, these methods are insensitive to the chemical environment of the element, consequently not limited by matrix effects. Ion beam methods are multielemental, can handle insulating materials, are quick (an analysis usually takes less than 15 minutes), and need little (if any) sample preparation. Ion beams are also sensitive to surface roughness and sample porosity and can be used to quickly inspect these properties in a sample. The Laboratory for Ion Beam Analysis of the University of Sao Paulo, LAMFI, is a multi-user facility dedicated to provide Ion Beam Methods like PIXE, RBS, FRS and NRA techniques for the analysis of materials and thin films. Operating since 1994, LAMFI is being used mostly by many researchers from within and outside USP, most of them non specialists in ion beam methods, but in need of ion beam analysis to carry out their research. At LAMFI, during the last 9 years, more than 50% of the accelerator time was dedicated to analysis, usually PIXE or RBS. 21% was down time and about 14% of the time was used for the development of ion beam methods which includes the use of RBS for roughness characterization exploring the shading of the beam by structures on the surface and by modeling the RBS spectrum as the product of a normalized RBS spectrum and a height density distribution function of the surface. Single element thick target PIXE analysis is being developed to obtain the thin

  8. The effect of He and swift heavy ions on nanocrystalline zirconium nitride

    International Nuclear Information System (INIS)

    Janse van Vuuren, A.; Neethling, J.H.; Skuratov, V.A.; Uglov, V.V.; Petrovich, S.

    2014-01-01

    Recent studies have shown that swift heavy ion irradiation may significantly modulate hydrogen and helium behaviour in some materials. This phenomenon is of considerable practical interest for ceramics in general and also for candidate materials for use as inert matrix fuel hosts. These materials will accumulate helium via (n, α) reactions and will also be subjected to irradiation by fission fragments. Cross-sectional transmission electron microscopy and scanning electron microscopy was used to study nanocrystalline ZrN irradiated with 30 keV He to fluences between 10 16 and 5 × 10 16 cm −2 , 167 MeV Xe to fluences between 5 × 10 13 and 10 14 cm −2 and also 695 MeV Bi to a fluence of 1.5 × 10 13 cm −2 . He/Bi and He/Xe irradiated samples were annealed at temperatures between 600 and 1000 °C and were analysed using SEM, XTEM and selected area diffraction. The results indicated that post irradiation heat treatment induces exfoliation at a depth that corresponds to the end-of-range of 30 keV He ions. SEM and XTEM analysis of He/Xe irradiated samples revealed that electronic excitation effects, due to Xe ions, suppress helium blister formation and consequently the exfoliation processes. He/Bi samples however do not show the same effects. This suggests that nanocrystalline ZrN is prone to the formation of He blisters which may ultimately lead material failure. These effects may however be mitigated by electronic excitation effects from certain SHIs

  9. The effect of He and swift heavy ions on nanocrystalline zirconium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Janse van Vuuren, A., E-mail: arnojvv@gmail.com [Centre for HRTEM, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Centre for HRTEM, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Skuratov, V.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Uglov, V.V. [Belarusian State University, Minsk (Belarus); Petrovich, S. [VINCA Institute of Nuclear Sciences, Belgrade University, Belgrade (Serbia)

    2014-05-01

    Recent studies have shown that swift heavy ion irradiation may significantly modulate hydrogen and helium behaviour in some materials. This phenomenon is of considerable practical interest for ceramics in general and also for candidate materials for use as inert matrix fuel hosts. These materials will accumulate helium via (n, α) reactions and will also be subjected to irradiation by fission fragments. Cross-sectional transmission electron microscopy and scanning electron microscopy was used to study nanocrystalline ZrN irradiated with 30 keV He to fluences between 10{sup 16} and 5 × 10{sup 16} cm{sup −2}, 167 MeV Xe to fluences between 5 × 10{sup 13} and 10{sup 14} cm{sup −2} and also 695 MeV Bi to a fluence of 1.5 × 10{sup 13} cm{sup −2}. He/Bi and He/Xe irradiated samples were annealed at temperatures between 600 and 1000 °C and were analysed using SEM, XTEM and selected area diffraction. The results indicated that post irradiation heat treatment induces exfoliation at a depth that corresponds to the end-of-range of 30 keV He ions. SEM and XTEM analysis of He/Xe irradiated samples revealed that electronic excitation effects, due to Xe ions, suppress helium blister formation and consequently the exfoliation processes. He/Bi samples however do not show the same effects. This suggests that nanocrystalline ZrN is prone to the formation of He blisters which may ultimately lead material failure. These effects may however be mitigated by electronic excitation effects from certain SHIs.

  10. Swift heavy ion induced modification of aliphatic polymers

    International Nuclear Information System (INIS)

    Hossain, Umme Habiba

    2015-01-01

    In this thesis, the high energy heavy ion induced modification of aliphatic polymers is studied. Two polymer groups, namely polyvinyl polymers (PVF, PVAc, PVA and PMMA) and fluoropolymers (PVDF, ETFE, PFA and FEP) were used in this work. Polyvinyl polymers were investigated since they will be used as insulating materials in the superconducting magnets of the new ion accelerators of the planned International Facility for Antiproton and Ion Research (FAIR) at the GSI Helmholtz-Centre of Heavy Ion Research (GSI) in Darmstadt. In order to study ion-beam induced degradation, all polymer foils were irradiated at the GSI linear accelerator UNILAC using several projectiles (U, Au, Sm, Xe) and experimentation sites (beam lines X0 and M3) over a large fluence regime (1 x 10 10 - 5 x 10 12 ions/cm 2 ). Five independent techniques, namely infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy, residual gas analysis (RGA), thermal gravimetric analysis (TGA), and mass loss analysis (ML), were used to analyze the irradiated samples. FT-IR spectroscopy revealed that ion irradiation led to the decrease of characteristic band intensities showing the general degradation of the polymers, with scission of side groups and the main backbone. As a consequence of the structural modification, new bands appeared. UV-Vis transmission analysis showed an absorption edge shift from the ultraviolet region towards the visible region indicating double bond and conjugated double bond formation. On-line massspectrometric residual gas analysis showed the release of small gaseous fragment molecules. TGA analysis gave evidence of a changed thermal stability. With ML analysis, the considerable mass loss was quantified. The results of the five complementary analytical methods show how heavy ion irradiation changes the molecular structure of the polymers. Molecular degradation mechanisms are postulated. The amount of radiation damage is found to be sensitive to the used type of ionic species. While

  11. Self-organised nano-structuring of thin oxide-films under swift heavy ion bombardment

    International Nuclear Information System (INIS)

    Bolse, Wolfgang

    2006-01-01

    Surface instabilities and the resulting self-organisation processes play an important role in nano-technology since they allow for large-array nano-structuring. We have recently found that the occurrence of such instabilities in thin film systems can be triggered by energetic ion bombardment and the subsequent self-assembly of the surface can be nicely controlled by fine-tuning of the irradiation conditions. The role of the ion in such processes is of double nature: If the instability is latently present already in the virgin sample, but self-assembly cannot take place because of kinetic barriers, the ion impact may just supply the necessary atomic mobility. On the other hand, the surface may become instable due to the ion beam induced material modifications and further irradiation then results in its reorganisation. In the present paper, we will review recently observed nano-scale self-organisation processes in thin oxide-films induced by the irradiation with swift heavy ions (SHI) at some MeV/amu energies. The first example is about SHI induced dewetting, which is driven by capillary forces already present in the as-deposited samples. The achieved dewetting pattern show an amazing similarity to those observed for liquid polymer films on Si, although in the present case the samples were kept at 80 K and hence have never reached their melting point. The second example is about self-organised lamellae formation driven by planar stresses, which are induced by SHI bombardment under grazing incidence and result in a surface instability and anisotropic plastic deformation (hammering effect). Taking advantage of these effects and modifying the irradiation procedure, we were able to generate more complex structures like NiO-'nano-towers' of 2 μm height and 200 nm in diameter

  12. Effect of swift heavy ion irradiation on structural and opto-electrical properties of bi-layer CdS-Bi2S3 thin films prepared by solution growth technique at room temperature

    Science.gov (United States)

    Shaikh, Shaheed U.; Siddiqui, Farha Y.; Desale, Deepali J.; Ghule, Anil V.; Singh, Fouran; Kulriya, Pawan K.; Sharma, Ramphal

    2015-01-01

    CdS-Bi2S3 bi-layer thin films have been deposited by chemical bath deposition method on Indium Tin Oxide glass substrate at room temperature. The as-deposited thin films were annealed at 250 °C in an air atmosphere for 1 h. An air annealed thin film was irradiated using Au9+ ions with the energy of 120 MeV at fluence 5×1012 ions/cm2 using tandem pelletron accelerator. The irradiation induced modifications were studied using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Raman spectroscopy, UV spectroscopy and I-V characteristics. XRD study reveals that the as-deposited thin films were nanocrystalline in nature. The decrease in crystallite size, increase in energy band gap and resistivity were observed after irradiation. Results are explained on the basis of energy deposited by the electronic loss after irradiation. The comparative results of as-deposited, air annealed and irradiated CdS-Bi2S3 bi-layer thin films are presented.

  13. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.

    1981-01-01

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...... unequivocally associated with electronic processes generated by the bombarding particle. In the present energy region, it is found that Y scales approximately as the electronic stopping power squared, depends on the charge state of the incoming helium ions, and perhaps more important, is independent...

  14. Surface characteristics changes in polymeric material by swift ion beam

    Science.gov (United States)

    Abdul-Kader, A. M.; El-Gendy, Y. A.

    2018-03-01

    In this work, polyethylene (PE) samples were subjected to 9 MeV Cl+2 ions with fluences ranging from 1 × 1013 to 5 × 1014 ion/cm2. Rutherford back scattering spectrometry (RBS), X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy and Vicker's micro-hardness (Hv) techniques were used to investigate the compositional transformation, changes in the structure, optical and surface hardness of bombarded samples. The adhesion parameters were analyzed using the contact angle measurements. The obtained results showed that the ion irradiation caused a decrease in the crystallinity of polyethylene and increase in absorption of oxygen on the polymer surface as well. The absorption edge shifted towards the red shift as Cl-ion fluence increases. It was found that the hardness and adhesion parameters increase with increasing the ion beam fluence.

  15. Characterization of radiation damage induced by swift heavy ions in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Christian

    2016-05-15

    Graphite is a classical material in neutron radiation environments, being widely used in nuclear reactors and power plants as a moderator. For high energy particle accelerators, graphite provides ideal material properties because of the low Z of carbon and its corresponding low stopping power, thus when ion projectiles interact with graphite is the energy deposition rather low. This work aims to improve the understanding of how the irradiation with swift heavy ions (SHI) of kinetic energies in the range of MeV to GeV affects the structure of graphite and other carbon-based materials. Special focus of this project is given to beam induced changes of thermo-mechanical properties. For this purpose the Highly oriented pyrolytic graphite (HOPG) and glassy carbon (GC) (both serving as model materials), isotropic high density polycrystalline graphite (PG) and other carbon based materials like carbon fiber carbon composites (CFC), chemically expanded graphite (FG) and molybdenum carbide enhanced graphite composites (MoC) were exposed to different ions ranging from {sup 131}Xe to {sup 238}U provided by the UNILAC accelerator at GSI in Darmstadt, Germany. To investigate structural changes, various in-situ and off-line measurements were performed including Raman spectroscopy, x-ray diffraction and x-ray photo-electron spectroscopy. Thermo-mechanical properties were investigated using the laser-flash-analysis method, differential scanning calorimetry, micro/nano-indentation and 4-point electrical resistivity measurements. Beam induced stresses were investigated using profilometry. Obtained results provided clear evidence that ion beam-induced radiation damage leads to structural changes and degradation of thermal, mechanical and electrical properties of graphite. PG transforms towards a disordered sp2 structure, comparable to GC at high fluences. Irradiation-induced embrittlement is strongly reducing the lifetime of most high-dose exposed accelerator components. For

  16. Swift heavy ion effects on DLC-nanotube-diamond thin films

    Science.gov (United States)

    Ren, Wei; Djurabekova, Flyura; Nordlund, Kai

    2017-09-01

    The composites based on a mixture of carbon nanotubes (CNTs) and diamond-like-carbon (DLC)-CNT are of great interest due to the potential to achieve unique electronic and optical properties with enhanced mechanical wear resistance. Swift heavy ion (SHI) irradiation of such carbon nanostucture composites suggest a way to tune the material’s properties via localized structural modifications. We use classical molecular dynamics simulations combined with an inelastic thermal spike model to study the mechanisms of track formation by SHI in DLC-CNT-diamond thin films. We observe a clear increase of content of atoms with sp2 hybridization compared to the initial structure. When the system reached an equilibrium state after the energy deposition, the track was structurally expanded outwards from the most underdense core. In addition, we found that the track radii are different in different composites, with smaller track radii in pure diamond and larger radii in DLC. Sputtering occurred predominantly from the track center.

  17. Damage threshold and structure of swift heavy ion tracks in Al2O3

    Science.gov (United States)

    Rymzhanov, R. A.; Medvedev, N.; Volkov, A. E.

    2017-11-01

    Structure changes and their formation threshold in swift heavy ion (SHI) tracks in Al2O3 are studied using a combined start-to-end numerical model. The hybrid approach consists of the Monte-Carlo code TREKIS, describing kinetics of the electronic subsystem, and classical Molecular Dynamics for lattice atoms. The developed approach is free from a posteriori fitting parameters. Simulations of Xe 167 MeV ion impacts show that relaxation of an excess lattice energy results in formation of a cylindrical discontinuous disordered region of about 2 nm in diameter. Recent transmission electron microscopy observations agree with these results. The threshold of an SHI track formation is estimated to be ~6.1 keV nm‑1. Calculated x-ray diffraction patterns of irradiated material demonstrate more pronounced damage of the Al atoms sublattice near SHI trajectories. Modeling of Xe ion tracks overlapping demonstrates that the damaged area can be restored to a near virgin state. Estimations give 6.5 nm as the minimal distance between the Xe ion trajectories resulting in recovery of the transformed structure produced by the previous ion.

  18. Defect creation by swift heavy ions: materials modifications in the electronic stopping power regime

    International Nuclear Information System (INIS)

    Toulemonde, M.

    1994-01-01

    The material modifications by swift heavy ions in the electronic stopping power regime are puzzling question: How the energy deposited on the electrons can induced material modifications? In order to answer to this question, the modifications induced in non-radiolytic materials are described and compared to the predictions. In first part the main experimental observations is presented taking into account the irradiation parameters. Then it is shown that the initial phases of the material are very important. Amorphous materials, whatever it is a metal, a semiconductor or an insulator, are till now all sensitive to the high electronic excitation induced by the slowing down of a swift heavy ion. All oxide materials, insulators or conductors, are also sensitive even the MgO, one of most famous exceptions. Crystalline metals or semiconductors are intermediate cases: some are insensitive like Cu and Si respectively while Fe and GeS are sensitive. The main feature is the different values of the electronic stopping power threshold of material modifications. The evolution of the damage creation is described showing that the damage morphology seems to be the same whatever the material is amorphous or crystalline. In second part a try of interpretation of the experimental results will be done on the behalf of the two following models: The Coulomb spike and the thermal spike models. It will be shown that there is some agreement with limited predictions made in the framework of the Coulomb spike model. But it appears that the thermal spike model can account for most of the experimental data using only one free parameter: The electron-phonon strength which is a physical characteristic of the irradiated material. (author). 4 figs., 1 tab., 64 refs

  19. Determination of Hydrogen Density by Swift Heavy Ions.

    Science.gov (United States)

    Xu, Ge; Barriga-Carrasco, M D; Blazevic, A; Borovkov, B; Casas, D; Cistakov, K; Gavrilin, R; Iberler, M; Jacoby, J; Loisch, G; Morales, R; Mäder, R; Qin, S-X; Rienecker, T; Rosmej, O; Savin, S; Schönlein, A; Weyrich, K; Wiechula, J; Wieser, J; Xiao, G Q; Zhao, Y T

    2017-11-17

    A novel method to determine the total hydrogen density and, accordingly, a precise plasma temperature in a lowly ionized hydrogen plasma is described. The key to the method is to analyze the energy loss of swift heavy ions interacting with the respective bound and free electrons of the plasma. A slowly developing and lowly ionized hydrogen theta-pinch plasma is prepared. A Boltzmann plot of the hydrogen Balmer series and the Stark broadening of the H_{β} line preliminarily defines the plasma with a free electron density of (1.9±0.1)×10^{16}  cm^{-3} and a free electron temperature of 0.8-1.3 eV. The temperature uncertainty results in a wide hydrogen density, ranging from 2.3×10^{16} to 7.8×10^{18}  cm^{-3}. A 108 MHz pulsed beam of ^{48}Ca^{10+} with a velocity of 3.652  MeV/u is used as a probe to measure the total energy loss of the beam ions. Subtracting the calculated energy loss due to free electrons, the energy loss due to bound electrons is obtained, which linearly depends on the bound electron density. The total hydrogen density is thus determined as (1.9±0.7)×10^{17}  cm^{-3}, and the free electron temperature can be precisely derived as 1.01±0.04  eV. This method should prove useful in many studies, e.g., inertial confinement fusion or warm dense matter.

  20. Effect of 100 MeV swift heavy ions [silver (Ag8+)] on morphological and electrical properties of polypyrrole

    Science.gov (United States)

    Kaur, Amarjeet; Dhillon, Anju; Avasthi, D. K.

    2009-10-01

    Polypyrrole (PPY) films were prepared by the electrochemical polymerization technique. The fully undoped samples were irradiated with different fluences ranging from 1010 to 1012 ions/cm2 of 100 MeV silver (Ag8+) ions. In order to explain the effect of these radiations, a comparative study of samples before and after irradiation was performed by using various techniques such as surface electron microscopy, atomic force microscopy, and X-ray diffraction. With an increase in fluence, the surface structure of PPY films becomes smoother, and the conductivity increases by two orders, which has been explained in light of reordering of polymer chains. The temperature dependence of the dc conductivity of irradiated as well as unirradiated samples has been investigated at 77-300 K. The charge transport properties before and after irradiation are retained although conductivity increases. It has been proposed that swift heavy ion irradiation affects the interchain conductivity. The conductivity of irradiated samples is stable under atmospheric conditions for more than 9 months. The present investigations open up the scope for the applicability of irradiated conducting polymers as microstructures with defined conductivity for sensor applications.

  1. Effect of 100 MeV swift heavy ions [silver (Ag8+)] on morphological and electrical properties of polypyrrole

    International Nuclear Information System (INIS)

    Kaur, Amarjeet; Dhillon, Anju; Avasthi, D. K.

    2009-01-01

    Polypyrrole (PPY) films were prepared by the electrochemical polymerization technique. The fully undoped samples were irradiated with different fluences ranging from 10 10 to 10 12 ions/cm 2 of 100 MeV silver (Ag 8+ ) ions. In order to explain the effect of these radiations, a comparative study of samples before and after irradiation was performed by using various techniques such as surface electron microscopy, atomic force microscopy, and X-ray diffraction. With an increase in fluence, the surface structure of PPY films becomes smoother, and the conductivity increases by two orders, which has been explained in light of reordering of polymer chains. The temperature dependence of the dc conductivity of irradiated as well as unirradiated samples has been investigated at 77-300 K. The charge transport properties before and after irradiation are retained although conductivity increases. It has been proposed that swift heavy ion irradiation affects the interchain conductivity. The conductivity of irradiated samples is stable under atmospheric conditions for more than 9 months. The present investigations open up the scope for the applicability of irradiated conducting polymers as microstructures with defined conductivity for sensor applications.

  2. Low energy ion implantation and high energy heavy ion irradiation in C60 films

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Dharmarasu, N.; Kojima, N.; Kanjilal, D.

    2001-01-01

    C 60 films have been bombarded with low energy boron ions and high energy swift heavy ions (SHI) of silver and oxygen at different doses. Raman scattering and Fourier transform infrared (FTIR) studies were carried out on the virgin and irradiated films and the results are in good agreement with each other. The films subject to low energy boron ion implantation showed destruction of the bukky balls whereas the films subject to high energy ion irradiation did not show appreciable effects on their structure. These results indicate that C 60 films are more prone to defects by elastic collision and subsequent implantation at lower energy. Irradiation at higher energy was less effective in creating appreciable defects through electronic excitation by inelastic collisions at similar energy density

  3. Effects of model approximations for electron, hole, and photon transport in swift heavy ion tracks

    Czech Academy of Sciences Publication Activity Database

    Rymzhanov, R.A.; Medvedev, Nikita; Volkov, A.E.

    2016-01-01

    Roč. 388, Dec (2016), s. 41-52 ISSN 0168-583X R&D Projects: GA MŠk LG15013 Institutional support: RVO:68378271 Keywords : swift heavy ion * electronic stopping * TREKIS * Monte Carlo * electronic kinetics * photon transport Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  4. Multi-scale simulation of structural heterogeneity of swift-heavy ion tracks in complex oxides

    Science.gov (United States)

    Wang, Jianwei; Lang, Maik; Ewing, Rodney C.; Becker, Udo

    2013-04-01

    Tracks formed by swift-heavy ion irradiation, 2.2 GeV Au, of isometric Gd2Ti2O7 pyrochlore and orthorhombic Gd2TiO5 were modeled using the thermal-spike model combined with a molecular-dynamics simulation. The thermal-spike model was used to calculate the energy dissipation over time and space. Using the time, space, and energy profile generated from the thermal-spike model, the molecular-dynamics simulations were performed to model the atomic-scale evolution of the tracks. The advantage of the combination of these two methods, which uses the output from the continuum model as an input for the atomistic model, is that it provides a means of simulating the coupling of the electronic and atomic subsystems and provides simultaneously atomic-scale detail of the track structure and morphology. The simulated internal structure of the track consists of an amorphous core and a shell of disordered, but still periodic, domains. For Gd2Ti2O7, the shell region has a disordered pyrochlore with a defect fluorite structure and is relatively thick and heterogeneous with different degrees of disordering. For Gd2TiO5, the disordered region is relatively small as compared with Gd2Ti2O7. In the simulation, ‘facets’, which are surfaces with definite crystallographic orientations, are apparent around the amorphous core and more evident in Gd2TiO5 along [010] than [001], suggesting an orientational dependence of the radiation response. These results show that track formation is controlled by the coupling of several complex processes, involving different degrees of amorphization, disordering, and dynamic annealing. Each of the processes depends on the mass and energy of the energetic ion, the properties of the material, and its crystallographic orientation with respect to the incident ion beam.

  5. Swift Heavy Ion Induced Modification of Aliphatic Polymers

    OpenAIRE

    Hossain, Umme Habiba

    2015-01-01

    In this thesis, the high energy heavy ion induced modification of aliphatic polymers is studied. Two polymer groups, namely polyvinyl polymers (PVF, PVAc, PVA and PMMA) and fluoropolymers (PVDF, ETFE, PFA and FEP) were used in this work. Polyvinyl polymers were investigated since they will be used as insulating materials in the superconducting magnets of the new ion accelerators of the planned International Facility for Antiproton and Ion Research (FAIR) at the GSI Helmholtz-Centre of Heavy I...

  6. Physical and biological properties of the ion beam irradiated PMMA-based composite films

    Energy Technology Data Exchange (ETDEWEB)

    Shanthini, G.M.; Martin, Catherine Ann; Sakthivel, N.; Veerla, Sarath Chandra; Elayaraja, K. [Crystal Growth Centre, Anna University, Chennai 600025 (India); Lakshmi, B.S. [Department of Biotechnology, Anna University, Chennai 600025 (India); Asokan, K.; Kanjilal, D. [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kalkura, S. Narayana, E-mail: kalkurasn@annauniv.edu [Crystal Growth Centre, Anna University, Chennai 600025 (India)

    2015-02-28

    Highlights: • First report of swift heavy ion irradiation on PMMA-HAp as bioceramic composite. • Augmented protein adsorption of about 400% was attained due to irradiation. • Tailored surface morphology, topography, roughness, wettability and crystallinity. • Irradiation transformed the hydrophobic surface into hydrophilic surface. • Better blood and cell–material interaction leading to improved biocompatibility. - Abstract: Polymethyl methacrylate (PMMA) and PMMA-hydroxyapatite (PMMA-HAp) composite films, prepared by the solvent evaporation method were irradiated with 100 MeV Si{sup 7+} ions. Crystallographic, morphological and the functional groups of the pristine and irradiated samples were studied using glancing incident X-ray diffraction (GIXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) respectively. SEM reveals the creation of pores, along with an increase in porosity and cluster size on irradiation. Decrease in crystalline nature and crystallite size with an increase in ion fluence was observed from GIXRD patterns. The surface roughness and the wettability of the material were also enhanced, which could favour the cell–material interaction. The irradiated samples adsorbed significantly greater amount of proteins than pristine. Also, irradiation does not produce any toxic byproducts or leachants, and maintains the viability of 3T3 cells. The response of the irradiated samples towards biomedical applications was demonstrated by the improved antimicrobial activity, haemocompatibility and cytocompatibility. Swift heavy ion irradiation (SHI) could be an effective tool to modify and engineer the surface properties of the polymers to enhance the biocompatibility.

  7. A FTIR characterization of a haemocompatible material obtained by swift heavy ion radiation grafting

    Energy Technology Data Exchange (ETDEWEB)

    Dapoz, S.; Betz, N.; Le Moel, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Recherche sur l`Etat Condense, les Atomes et les Molecules

    1996-01-01

    In order to prepare materials destined to be used as vascular prothesis, a radiation grafting of styrene, induced by swift heavy ions in polyvinylidene fluoride films, was performed. A substitution of the grafted polystyrene with sulfonate and aspartic acid sulfamide groups, which confers to the polymer anticoagulant properties, was achieved. The material was characterized by Fourier Transform Infrared spectroscopy at each step of the synthesis. (authors). 5 refs., 2 figs.

  8. Femto-clock for the electron kinetics in swift heavy ion tracks

    Czech Academy of Sciences Publication Activity Database

    Medvedev, Nikita; Volkov, A.E.

    2017-01-01

    Roč. 50, č. 44 (2017), s. 1-11, č. článku 445302. ISSN 0022-3727 R&D Projects: GA MŠk LG15013; GA MŠk(CZ) LM2015083 Institutional support: RVO:68378271 Keywords : swift heavy ions * electron kinetics * femto-clock * femtosecond resolution * spectroscopy * radiative decay Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.588, year: 2016

  9. Ion irradiation induced electrochemical stability enhancement of conducting polymer electrodes in super-capacitors

    International Nuclear Information System (INIS)

    Hussain, A.M.P.; Kumar, A.

    2006-01-01

    We have explored the effects of 120 MeV Si 9+ ion beam irradiation on the electrical, structural and capacitance properties of HClO 4 doped poly-aniline conducting polymer electrodes. The swift heavy ion (SHI) irradiated conducting polymer films exhibited up to 70% increase in crystallinity and dc conductivity with improved surface morphology. The super-capacitors fabricated with ion irradiated poly-aniline electrodes showed enhancement of electrochemical stability and slight decrease in internal resistance, which could be attributed to the removal or stabilization of the volatile surface groups and decrease in surface roughness upon ion irradiation. Fluence dependent small increase in coulombic efficiency is observed in the super-capacitors with SHI irradiated polymer electrodes because of the increase in dc conductivity of the polymer electrodes upon irradiation. (authors)

  10. Effect of 120 MeV Ag9+ ion irradiation of YCOB single crystals

    Science.gov (United States)

    Arun Kumar, R.; Dhanasekaran, R.

    2012-09-01

    Single crystals of yttrium calcium oxy borate (YCOB) grown from boron-tri-oxide flux were subjected to swift heavy ion irradiation using silver Ag9+ ions from the 15 UD Pelletron facility at Inter University Accelerator Center, New Delhi. The crystals were irradiated at 1 × 1013, 5 × 1013 and 1 × 1014 ions/cm2 fluences at room temperature and with 5 × 1013 ions/cm2 fluence at liquid nitrogen temperature. The pristine and the irradiated samples were characterized by glancing angle X-ray diffraction, UV-Vis-NIR and photoluminescence studies. From the characterization studies performed on the samples, it is inferred that the crystals irradiated at liquid nitrogen temperature had fewer defects compared to the crystals irradiated at room temperature and the defects increased when the ion fluence was increased at room temperature.

  11. Data consistencies of swift heavy ion induced damage creation in yttrium iron garnet analyzed by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Meftah, A., E-mail: ameftah@hotmail.fr [LRPCSI, Faculté des Sciences, Université 20 août 1955-Skikda, BP 26, Route d’El-Hadaïek, 21000 Skikda (Algeria); Benhacine, H. [LRPCSI, Faculté des Sciences, Université 20 août 1955-Skikda, BP 26, Route d’El-Hadaïek, 21000 Skikda (Algeria); Benyagoub, A. [CIMAP (CEA-CNRS-ENSICAEN-Université de Caen Basse Normandie), BP 5133, 14070 Caen Cedex 5 (France); Grob, J.J. [InESS, CNRS, Université de Strasbourg, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Izerrouken, M. [CRND, BP 43, Sebbala, Draria, Algiers (Algeria); Kadid, S. [LRPCSI, Faculté des Sciences, Université 20 août 1955-Skikda, BP 26, Route d’El-Hadaïek, 21000 Skikda (Algeria); Khalfaoui, N. [CIMAP (CEA-CNRS-ENSICAEN-Université de Caen Basse Normandie), BP 5133, 14070 Caen Cedex 5 (France); Stoquert, J.P. [InESS, CNRS, Université de Strasbourg, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Toulemonde, M. [CIMAP (CEA-CNRS-ENSICAEN-Université de Caen Basse Normandie), BP 5133, 14070 Caen Cedex 5 (France); Trautmann, C. [GSI, Helmholtz Zentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, Petersenstraße 23, 64287 Darmstadt (Germany)

    2016-01-01

    Pronounced swelling is observed when single crystals of yttrium iron garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) are irradiated in the electronic energy loss regime with various swift heavy ions. The out-of-plane swelling was measured by scanning across the border line between an irradiated and a virgin area of the sample surface with the tip of a profilometer. The step height varied between 20 and 600 nm depending on fluence, electronic energy loss and total range of the ions. The step height divided by the ion range as a function of the ion fluence exhibits a linear increase in the initial phase and saturates at high fluences leading to a density decrease of around 1.7%. With complementary channeling-Rutherford-backscattering experiments (c-RBS), the damage fraction and the corresponding damage cross section were extracted and compared to the cross section deduced from swelling measurements. Irradiation effects were also characterized by scanning force microscopy (SFM). A threshold for damage creation as deduced from all the present physical characterizations is 5.5 ± 1.0 keV/nm. The value is in full agreement with previous measurements confirming that swelling and SFM characterizations can provide information concerning the electronic energy loss threshold for track formation. In contrast, track radii deduced from swelling measurements are smaller and radii from SFM are larger than deduced from c-RBS analysis. The results of Y{sub 3}Fe{sub 5}O{sub 12} of this work are compared with data obtained for other crystalline oxides and for ionic crystals.

  12. Charge-state related effects in sputtering of LiF by swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W. [Ludwig-Maximilians-Universität München, 85748 Garching (Germany); Ban-d' Etat, B. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Bender, M. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Boduch, P. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Grande, P.L. [Univ. Fed. Rio Grande do Sul, BR-91501970 Porto Alegre, RS (Brazil); Lebius, H.; Lelièvre, D. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Marmitt, G.G. [Univ. Fed. Rio Grande do Sul, BR-91501970 Porto Alegre, RS (Brazil); Rothard, H. [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Seidl, T.; Severin, D.; Voss, K.-O. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Toulemonde, M., E-mail: toulemonde@ganil.fr [Centre de Recherche sur les Ions, les Matériaux et la photonique, CIMAP-GANIL, CEA–CNRS–ENSICAEN–Univ. Caen, 14070 Caen (France); Trautmann, C. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2017-02-01

    Sputtering experiments with swift heavy ions in the electronic energy loss regime were performed by using the catcher technique in combination with elastic recoil detection analysis. The angular distribution of particles sputtered from the surface of LiF single crystals is composed of a jet-like peak superimposed on a broad isotropic distribution. By using incident ions of fixed energy but different charges states, the influence of the electronic energy loss on both components is probed. We find indications that isotropic sputtering originates from near-surface layers, whereas the jet component may be affected by contributions from depth up to about 150 nm.

  13. Phase transformations in Ln2O3 materials irradiated with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Cameron L.; Lang, Maik; Zhang, Fuxiang; Trautmann, Christina; Ewing, Rodney C.

    2015-11-01

    Phase transformations induced in the cubic C-type lanthanide sesquioxides, Ln 2 O 3 (Ln = Sm, Gd, Ho, Tm, and Lu), by dense electronic excitation are investigated. The structural modifications resulting from exposure to beams of 185 MeV Xe and 2246 MeV Au ions are characterized using synchrotron x-ray diffraction and Raman spectroscopy. The formation of a B-type polymorph, an X-type nonequilibrium phase, and an amorphous phase are observed. The specific phase formed and the transformation rate show dependence on the material composition, as well as the ion beam mass and energy. Atomistic mechanisms for these transformations are determined, indicating that formation of the B-type phase results from the production of anti-Frenkel defects and the aggregation of anion vacancies into planar clusters, whereas formation of the X-type and amorphous phases requires extensive displacement of both anions and cations. The observed variations in phase behavior with changing lanthanide ionic radius and deposited electronic energy density are related to the energetics of these transformation mechanisms.

  14. Ionisation and dissociation of water induced by swift multicharged ions

    International Nuclear Information System (INIS)

    Legendre, S.

    2006-02-01

    Ionization and dissociation of water molecules and water clusters induced by 11.7 MeV/A Ni 25+ ions were carried out by imaging techniques. Branching ratios, ionisation cross sections and Kinetic Energy Released distributions have been measured together with fragmentation dynamics studies. Multiple ionization represents approximately 30% of the ionizing events. Double ionization produces in significant way atomic oxygen, considered as a possible precursor of the large production of HO 2 radical in liquid water radiolysis by ions of high Linear Energy Transfer. We evidence a strong selectivity of bond breakage in the case of ion-induced HOD fragmentation. Once the molecule doubly ionized, the breakage of the O-H bond is found 6.5 times more probable than that of the O-D bond. A semi-classical calculation simulating the fragmentation dynamics on the potential energy surface of the ground-state of di-cation H 2 O 2+ makes possible to as well reproduce the preferential nature of the breakage of the O-H bond as the position and the shift of the kinetic energy distributions. First results concerning interaction with water clusters are also reported. Measurements in coincidence are carried out giving access to correlation, with the distributions in energy and angle of the emitted fragments. Mass spectrum points fast intra-cluster proton transfer, leading to the emission of protonated clusters. (author)

  15. Damage induced by swift heavy ions in a pure metallic target: iron. Experimental results and numerical simulation

    International Nuclear Information System (INIS)

    Legrand, P.

    1993-01-01

    The damage induced when a high energy deposition occurs in the electronic system of a pure metal (Ag, Co, Fe, Ni, Pd, Pt, Ti, W, Zr) has been investigated using two methods: low temperature swift heavy ion (O, Ar, Kr, Xe, Pb, u) irradiations and computer simulations by molecular dynamics. Irradiations reveal that up to now, it is only in iron, titanium, cobalt and zirconium targets that high levels of energy deposition in electronic excitations lead to a new mechanism of defect creation in addition to the effects of elastic collisions. This mechanism might be the Coulomb explosion: the incident ion creates in its wake a cylinder of highly ionized matter; Coulomb repulsions of short duration in metallic targets could then set a great number of neighbouring atoms into motion and lead to permanent atomic displacements. Using molecular dynamics, we confirm that atomic displacements can indeed occur when neighbouring perturbated atoms receive even a very small amount of kinetic energy (≤ 1 eV). This happens only if the repulsive movements are collective and coherent. Defect creation and annealing of preexisting defects which occur in iron at different energy deposition levels are successfully simulated. An original empirical N-body potential, allowing a realistic description of the bulk properties of the body centered cubic iron, is used. (author). refs., figs., tabs

  16. Precise measurements of energy loss straggling for swift heavy ions in polymers

    Science.gov (United States)

    Rani, Bindu; Neetu; Sharma, Kalpana; Diwan, P. K.; Kumar, Shyam

    2016-11-01

    The energy loss straggling measurements for heavy ions with Z = 3-22 (∼0.2-2.5 MeV/u) in PEN (C7H5O2) and PET (C10H8O4) polymers have been carried out utilizing the swift heavy ion beam facility from 15UD Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi, India. The recorded spectra are analyzed in such a way that the Straggling associated with energy loss process could be measured in a systematic manner at any selected value of energy, in terms of per unit thickness of the absorber, at any desired energy intervals. The measured values have been compared with the calculated values obtained from the most commonly used Bethe-Livingston formulations applicable for collisional straggling. The results are tried to be understood in terms of the effective charge on the impinging ion within the absorber. Some interesting trends are observed.

  17. Effect of swift heavy ion irradiation on surface resistance of ...

    Indian Academy of Sciences (India)

    PE). [3,4]. This peak, associated with the order–disorder transition of the FLL, is rationalized within the Larkin–Ovchinnikov scenario [5] where the effective pinning force on the FLL is given by BJc(H)=(np〈 f 2〉/Vc)1/2 where np is the density of ...

  18. Peak effect at microwave frequencies in swift heavy ion irradiated ...

    Indian Academy of Sciences (India)

    few tens of Hz to a few MHz, probing the dynamics of the FLL revealed no frequency dependence of the peak position of the PE which is suggestive of a true thermodynamic phase transition. Studies of the vortex dynamics carried out at microwave and radio fre- quencies in low Tc and high Tc superconductors, do not report ...

  19. Swift heavy ion irradiation induced modification of structure and ...

    Indian Academy of Sciences (India)

    rovskite structure with space group R3c (Michel et al 1969). The unit cell parameters are a = 0·396 nm and α = 89◦. 28 (Blaauw and van der Woude 1973). Besides the robust multiferroic properties, BFO has been considered as a poten- tial candidate for enhancement of piezoelectric coefficients with doping (Fujino et al ...

  20. Peak effect at microwave frequencies in swift heavy ion irradiated ...

    Indian Academy of Sciences (India)

    few tens of Hz to a few MHz, probing the dynamics of the FLL revealed no frequency dependence of the peak position of the PE .... 19, 217 (1969). [5] A I Larkin and Y N Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979). [6] J I Gittleman and B Rosenblum, Phys. Rev. Lett. 16, 734 (1966). [7] A R Bhangale et al, Phys. Rev. B63 ...

  1. Structural and electrical properties of swift heavy ion beam irradiated ...

    Indian Academy of Sciences (India)

    Unknown

    Materials Science Laboratory, Centre for Non-Conventional Energy Resources, University of Rajasthan,. Jaipur 302 004, India. †Nuclear Science ... and a high temperature increase of the electronic sub-system. (thermal spike) causing a ... capable of producing electronic excitations leading to thermal spikes that produce ...

  2. Photoluminescence and Raman studies in swift heavy ion irradiated ...

    Indian Academy of Sciences (India)

    Administrator

    Polycrystalline aluminum oxide is synthesized by combustion technique and XRD studies of the ... combustion technique based on the procedure discussed .... Eg (internal) tural disorder usually exhibit a pronounced line broaden- ing in comparison with ordered structures (Brundle et al. 1992). However, in the present case ...

  3. Peak effect at microwave frequencies in swift heavy ion irradiated ...

    Indian Academy of Sciences (India)

    The vortex dynamics at microwave frequencies in YBa2Cu3O7- (YBCO) films have been studied. We observe a peak in the microwave (4.88 and 9.55 GHz) surface resistance in some films in magnetic fields up to 0.8 T. This is associated with the `peak-effect' phenomenon and reflects the order–disorder transformation of ...

  4. Swift heavy ion irradiation induced modification of structure and ...

    Indian Academy of Sciences (India)

    From a simple linear dimensional analysis. (Herring 1950), δ values of 1, 2, 3 and 4 have been shown to represent four modes of surface transport viz. viscous flow, evaporation–condensation, volume diffusion and surface di- ffusion, respectively. The estimated values of δ, obtained by fitting the experimental data using (2) ...

  5. Effect of swift heavy ion irradiation on surface resistance of ...

    Indian Academy of Sciences (India)

    ... Larkin–Ovchinnikov scenario [5] where the effective pinning force on the FLL is given by BJc(H)=(np〈 f 2〉/Vc)1/2 where np is the density of pinning centers, f the ele- mentary pinning force parameter and Vc the Larkin volume over which the FLL maintains its spatial order. We have shown in an earlier communication [6] ...

  6. {ital K}-shell vacancies carried by swift O and Si ions inside ferromagnetic hosts

    Energy Technology Data Exchange (ETDEWEB)

    Tribedi, L.C.; Prasad, K.G.; Tandon, P.N. [Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005 (India)

    1995-05-01

    The single and double {ital K}-shell vacancy fractions for swift O and Si ions inside Fe and Gd foils have been measured using the probe layer technique. The measurements are carried out at velocities varying from 7.5 to 13.5{ital v}{sub 0} for Si ions and at a velocity of 7.8{ital v}{sub 0} for oxygen ions ({ital v}{sub 0}={alpha}{ital c} where {alpha} is the fine-structure constant and {ital c} is the speed of light). It is shown that all such available data for light ions fall on a smooth curve when plotted against the reduced velocity of the ion. These values are used along with the existing transient magnetic field data to derive the electron spin polarization acquired by the ions traveling inside ferromagnetic hosts. The degree of polarization is shown to decrease with the atomic number of the ions. This observation is, however, in disagreement with recent theoretical calculations.

  7. Allotropic effects on the energy loss of swift H+ and He+ ion beams through thin foils

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago

    2006-01-01

    We have developed a theoretical treatment and a simulation code to study the energy loss of swift H + and He + ion beams interacting with thin foils of different carbon allotropes. The former is based on the dielectric formalism, and the latter combines Monte Carlo with the numerical solution of the motion equation for each projectile to describe its trajectory and interactions through the target. The capabilities of both methods are assessed by the reasonably good agreement between their predictions and the experimental results, for a wide range of projectile energies and target characteristics. Firstly, we apply the theoretical procedure to calculate the stopping cross sections for H + and He + beams in foils of different allotropic forms of carbon (such as diamond, graphite, amorphous carbon, glassy carbon and C 60 -fullerite), as a function of the projectile energy. We take into account the electronic structure of the projectile, as well as the different charge states it can acquire, the energy loss associated to the electronic capture and loss processes, the polarization of the projectile, and a realistic description of the target. On the other hand, the simulation code is used to evaluate the energy distributions of swift H + and He + ion beams when traversing several foils of the above mentioned allotropic forms of carbon, in order to analyze the influence of the chemical and physical state of the target in the projectile energy loss. These allotropic effects are found to become more important around the maximum of the stopping cross-section

  8. Accelerated ion irradiation induced retinal response

    International Nuclear Information System (INIS)

    Mizota, Atsushi; Miyahara, Nobuyuki; Nojima, Kumie

    2006-01-01

    The purpose of this study is to investigate the retinal response to accelerated carbon ion irradiation. Eight-week-old rats were used in this experiment. Under anesthesia, a positive electrode was attached on the cornea and a negative electrode was attached on the nasal bone. Carbon ion was irradiated though collimator with 2 mm φ and 5 mm φ. Carbon ion was irradiated without absorber. Positive responses were recorded with irradiation area of 5 mm φ, but with 2 mm φ, no remarkable responses were recorded. We think this corneal positive responses were originated from electrode itself and photo baric phenomenon may cause these responses. (author)

  9. Ion beam irradiation effects on aromatic polymers

    International Nuclear Information System (INIS)

    Shukushima, Satoshi; Ueno, Keiji

    1995-01-01

    We studied the optical and thermal properties of aromatic polymer films which had been irradiated with 1 MeV H + , H 2 + and He + ions. The examined aromatic polymers were polyetherether ketone(PEEK), polyetherimide(PEI), polyether sulfon(PES), polysulfon(PSF), and polyphenylene sulfide(PPS). The optical densities at 300nm of PES and PSF greatly increased after the irradiation. The optical densities at 400nm of all the examined polymer lineally increased with the irradiation dose. The PEEK film which had been irradiated with 1 MeV H + was not deformed above melting point. This demonstrates that cross-linking occurs in PEEK films by ion beam irradiation. As for the effects, depending on the mass of the irradiated ions, it was found that the ions with a high mass induced larger effects on the aromatic polymers for the same absorption energy. (author)

  10. Influence of high energy ion irradiation on fullerene derivative (PCBM) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Trupti, E-mail: tsphy91@gmail.com [Department of Physics, Malaviya National Institute of Technology, Jaipur 302017 (India); Singhal, Rahul; Vishnoi, Ritu [Department of Physics, Malaviya National Institute of Technology, Jaipur 302017 (India); Lakshmi, G.B.V.S. [Inter University Accelerator Centre, Post Box No. 10502, New Delhi 110067 (India); Biswas, S.K. [Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology, Jaipur 302017 (India)

    2017-04-01

    Highlights: • Spin casted PCBM thin films (∼100 nm) are irradiated with 55 MeV Si{sup 4+} ion beam. • The decrease in band gap is observed after irradiation. • The surface properties is also dependent on incident ion fluences. • Polymerization reactions induced by energetic ions leads to modifications. - Abstract: The modifications produced by 55 MeV Si{sup 4+} swift heavy ion irradiation on the phenyl C{sub 61} butyric acid methyl ester (PCBM) thin films (thickness ∼ 100 nm) has been enlightened. The PCBM thin films were irradiated at 1 × 10{sup 10}, 1 × 10{sup 11} and 1 × 10{sup 12} ions/cm{sup 2} fluences. After ion irradiation, the decreased optical band gap and FTIR band intensities were observed. The Raman spectroscopy reveals the damage produced by energetic ions. The morphological variation were investigated by atomic force microscopy and contact angle measurements and observed to be influenced by incident ion fluences. After 10{sup 11} ions/cm{sup 2} fluence, the overlapping of ion tracks starts and produced overlapping effects.

  11. Physical and chemical response of 70 MeV carbon ion irradiated polyether sulphone polymer

    Science.gov (United States)

    Kumar, Rajesh; De, Udayan; Prasad, Rajendra

    2006-08-01

    Polyether sulphone (PES) foils were irradiated under vacuum with 70 MeV C 5+ ions to the fluences of 9.3 × 10 11, 9.3 × 10 12 and 1.2 × 10 13 ions cm -2. Ion induced optical, chemical and structural modifications were studied by ultraviolet, visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy and X-ray diffractometer. PES suffers degradation under irradiation, UV-Vis data show the increase of optical absorbance and the shift of absorption edge from the UV towards visible with the increase of the fluences, attributing to the formation of conjugated system of bonds. The intensity of the infrared bands, characteristics of different chemical functional groups is found to decrease with swift heavy ion (SHI) irradiation. Significant loss of crystallinity was observed at higher fluences.

  12. Radiation stability of nanocrystalline ZrN coatings irradiated with high energy Xe and Bi ions

    International Nuclear Information System (INIS)

    Skuratov, V.A.; Sokhatsky, A.S.; Uglov, V.V.; Zlotski, S.V.; Van Vuuren, A.J.; Neethling, Jan; O'Connell, J.

    2011-01-01

    Swift Xe and Bi ion irradiation effects in nanocrystalline ZrN coatings as a function of ion fluence are reported. Zirconium nitride films of different thickness (0.1, 3, 10 and 20 micrometers) synthesized by vacuum arc-vapour deposition in nanocrystalline state (average size of crystallites is ∼4 nm) were irradiated with 167 MeV Xe and 695 MeV Bi ions to fluences in the range 3x10 12 ÷2.6x10 15 cm -2 (Xe) and 10 12 x10 13 cm -2 (Bi) and studied using XRD and TEM techniques. No evidence of amorphization due to high level ionizing energy losses has been found. The measurements of lattice parameter have revealed nonmonotonic dependence of the stress level in irradiated samples on ion fluence. (authors)

  13. Effect of ion irradiation on nanoscale TiS2 systems with suppressed Titania phase

    International Nuclear Information System (INIS)

    Hazarika, Saurabh J; Mohanta, Dambarudhar; Tripathi, A; Kanjilal, D.

    2016-01-01

    Titanium disulfide (TiS 2 ), being an important of the transition metal dichalcogenide, (TMDC) family, has drawn numerous interest owing to exhibition of tunable band gap as well as high carrier mobility. In this work, we highlight preparation of TiS 2 nanopowder with minimal TiO 2 content and also demonstrate modified properties upon swift heavy ion irradiation on TiS 2 nanoparticles dispersed PVA films. Different properties of the irradiated samples have been characterized through diffraction, microscopic and spectroscopic techniques. As a result of irradiation, due to agglomeration of particles, the grain size is found to increase. We could also observe a red shift after irradiation with increasing fluence, leading to easy flow of electron from valence to conduction band, which shows that conduction of electrons is more in case of irradiated films compared to the pristine one and thus there may be a possibility of using the irradiated samples in various optoelectronic devices. (paper)

  14. Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions

    International Nuclear Information System (INIS)

    Benyagoub, Abdenacer

    2005-01-01

    Recent results demonstrated that defect formation or amorphization are not the only structural changes induced by swift heavy ions in crystalline materials and that under certain circumstances crystalline-to-crystalline phase transitions can also occur. For instance, it was found that both zirconia and hafnia transform from the monoclinic to the tetragonal phase with a kinetics involving a double ion impact process. In order to understand the origin of this ion-beam induced phase transition, the behavior of these twin oxides was analyzed and compared. In fact, the likeness of these materials offered the unique opportunity to impose drastic constraints on the possible models proposed to explain the creation of atomic displacements in the wake of swift heavy ions. This comparison clearly suggests that the thermal spike is the most appropriate process which governs the transition from the monoclinic to the tetragonal phase in zirconia and hafnia

  15. Effect of swift heavy Kr ions on complex permittivity of silicon PIN diode

    International Nuclear Information System (INIS)

    Li, Yun; Su, Ping; Yang, Zhimei; Ma, Yao; Gong, Min

    2016-01-01

    Highlights: • The complex permittivity has been studied on Si PIN irradiated by heavy Kr ions. • DLTS was used to investigate damages formed in PIN diode during irradiation. • The recombination of carriers has important influence on the complex permittivity. - Abstract: The complex permittivity has been researched on silicon PIN diodes irradiated by 2150 MeV heavy Kr ions in this article. The difference of complex permittivity spectra from 1 to 10^7 Hz between irradiated and unirradiated were observed and discussed. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured at room temperature (300 K) to study the change of electrical properties in diode after irradiation. Deep level transient spectroscopy (DLTS) was used to investigate damages caused by 2150 MeV heavy Kr ions in diode. Two extra electron traps were observed, which were located at E C -0.31 eV and E C -0.17 eV. It indicated that new defects have been formed in PIN diode during irradiation. A comparison of the results illustrated that not only the carrier density but also the recombination of electron-hole pair have important influences on the properties of complex permittivity. These results offer a further indication of the mechanism about the complex permittivity property of semiconductor device, which could help to make the applications for the semiconductor device controlled by electric signals come true in the fields of optoelectronic integrated circuits, plasma antenna and so on.

  16. Damage nucleation in Si during ion irradiation

    International Nuclear Information System (INIS)

    Holland, O.W.; Fathy, D.; Narayan, J.

    1984-01-01

    Damage nucleation in single crystals of silicon during ion irradiation is investigated. Experimental results and mechanisms for damage nucleation during both room and liquid nitrogen temperature irradiation with different mass ions are discussed. It is shown that the accumulation of damage during room temperature irradiation depends on the rate of implantation. These dose rate effects are found to decrease in magnitude as the mass of the ions is increased. The significance of dose rate effects and their mass dependence on nucleation mechanisms is discussed

  17. Effect of valence holes kinetics on material excitation in tracks of swift heavy ions

    International Nuclear Information System (INIS)

    Rymzhanov, R.A.; Medvedev, N.A.; Volkov, A.E.

    2015-01-01

    A considerable part of the excess energy of the electronic subsystem of a solid penetrated by a swift heavy ion (SHI) is accumulated in valence holes. Spatial redistribution of these holes can affect subsequent relaxation, resulting in ionizations of new electrons by hole impacts as well as energy transfer to the target lattice. A new version of the Monte Carlo code TREKIS is applied to study this effect in Al 2 O 3 for SHI tracks. The complex dielectric function (CDF) formalism is used to calculate the cross sections of interaction of involved charged particles (an ion, electrons, holes) with the target giving us ability to take into account collective response of a target to excitations. We compare the radial distributions of the densities and energies of excited electrons and valence holes at different times to those obtained under the assumption of immobile holes used in earlier works. The comparison shows a significant difference between these distributions within the track core, where the majority of slow electrons and valence holes are located at femtosecond timescales after the ion impact. The study demonstrates that the energy deposited by valence holes into the lattice in nanometric tracks is comparable to the energy transferred by excited electrons. Radii of structure transformations in tracks produced by these energy exchange channels are in a good agreement with experiments.

  18. Transient current induced in thin film diamonds by swift heavy ions

    International Nuclear Information System (INIS)

    Sato, Shin-ichiro; Makino, Takahiro; Ohshima, Takeshi; Kamiya, Tomihiro; Kada, Wataru

    2017-01-01

    Single crystal diamond is a suitable material for the next generation particle detectors because of the superior electrical properties and the high radiation tolerance. In order to investigate charge transport properties of diamond particle detectors, transient currents generated in diamonds by single swift heavy ions (26 MeV O 5+ and 45 MeV Si 7+ ) are investigated. We also measured two dimensional maps of transient currents by single ion hits. In the case of 50 μm-thick diamond, both the signal height and the collected charge are reduced by the subsequent ion hits and the charge collection time is extended. Our results are thought to be attributable to the polarization effect in diamond and it appears only when the transient current is dominated by hole current. In the case of 6 μm-thick diamond membrane, an “island” structure is found in the 2D map of transient currents. Signals in the islands shows different applied bias dependence from signals in other regions, indicating different crystal and/or metal contact quality. Simulation study of transient currents based on the Shockley-Ramo theorem clarifies that accumulation of space charges changes distribution of electric field in diamond and causes the polarization effect.

  19. Precise measurements of energy loss straggling for swift heavy ions in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Bindu [Department of Physics, Kurukshetra University, Kurukshetra 136 119 (India); Neetu [Department of Physics, S.D College, Panipat 132103 (India); Sharma, Kalpana [Department of Physics, CMR Institute of Technology, Bangalore 560037 (India); Diwan, P.K. [Department of Applied Sciences, UIET, Kurukshetra University, Kurukshetra 136 119 (India); Kumar, Shyam, E-mail: profshyam@gmail.com [Department of Physics, Kurukshetra University, Kurukshetra 136 119 (India)

    2016-11-15

    The energy loss straggling measurements for heavy ions with Z = 3–22 (∼0.2–2.5 MeV/u) in PEN (C{sub 7}H{sub 5}O{sub 2}) and PET (C{sub 10}H{sub 8}O{sub 4}) polymers have been carried out utilizing the swift heavy ion beam facility from 15UD Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi, India. The recorded spectra are analyzed in such a way that the Straggling associated with energy loss process could be measured in a systematic manner at any selected value of energy, in terms of per unit thickness of the absorber, at any desired energy intervals. The measured values have been compared with the calculated values obtained from the most commonly used Bethe-Livingston formulations applicable for collisional straggling. The results are tried to be understood in terms of the effective charge on the impinging ion within the absorber. Some interesting trends are observed.

  20. High fluence swift heavy ion structure modification of the SiO{sub 2}/Si interface and gate insulator in 65 nm MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yao [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Gao, Bo, E-mail: gaobo@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Gong, Min [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Willis, Maureen [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Yang, Zhimei [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); Guan, Mingyue [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Li, Yun [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China)

    2017-04-01

    In this work, a study of the structure modification, induced by high fluence swift heavy ion radiation, of the SiO{sub 2}/Si structures and gate oxide interface in commercial 65 nm MOSFETs is performed. A key and novel point in this study is the specific use of the transmission electron microscopy (TEM) technique instead of the conventional atomic force microscope (AFM) or scanning electron microscope (SEM) techniques which are typically performed following the chemical etching of the sample to observe the changes in the structure. Using this method we show that after radiation, the appearance of a clearly visible thin layer between the SiO{sub 2} and Si is observed presenting as a variation in the TEM intensity at the interface of the two materials. Through measuring the EDX line scans we reveal that the Si:O ratio changed and that this change can be attributed to the migration of the Si towards interface after the Si-O bond is destroyed by the swift heavy ions. For the 65 nm MOSFET sample, the silicon substrate, the SiON insulator and the poly-silicon gate interfaces become blurred under the same irradiation conditions.

  1. Tailoring magnetism by light-ion irradiation

    International Nuclear Information System (INIS)

    Fassbender, J; Ravelosona, D; Samson, Y

    2004-01-01

    Owing to their reduced dimensions, the magnetic properties of ultrathin magnetic films and multilayers, e.g. magnetic anisotropies and exchange coupling, often depend strongly on the surface and interface structure. In addition, chemical composition, crystallinity, grain sizes and their distribution govern the magnetic behaviour. All these structural properties can be modified by light-ion irradiation in an energy range of 5-150 keV due to the energy loss of the ions in the solid along their trajectory. Consequently the magnetic properties can be tailored by ion irradiation. Similar effects can also be observed using Ga + ion irradiation, which is the common ion source in focused ion beam lithography. Examples of ion-induced modifications of magnetic anisotropies and exchange coupling are presented. This review is limited to radiation-induced structural changes giving rise to a modification of magnetic parameters. Ion implantation is discussed only in special cases. Due to the local nature of the interaction, magnetic patterning without affecting the surface topography becomes feasible, which may be of interest in applications. The main patterning technique is homogeneous ion irradiation through masks. Focused ion beam and ion projection lithography are usually only relevant for larger ion masses. The creation of magnetic feature sizes below 50 nm is shown. In contrast to topographic nanostructures the surrounding area of these nanostructures can be left ferromagnetic, leading to new phenomena at their mutual interface. Most of the material systems discussed here are important for technological applications. The main areas are magnetic data storage applications, such as hard magnetic media with a large perpendicular magnetic anisotropy or patterned media with an improved signal to noise ratio and magnetic sensor elements. It will be shown that light-ion irradiation has many advantages in the design of new material properties and in the fabrication technology of

  2. Submicroscopic pores grafted using the residual sites produced by swift heavy ions

    International Nuclear Information System (INIS)

    Mazzei, R.; Betz, N.; Bermudez, G. Garcia; Massa, G.; Smolko, E.

    2005-01-01

    To produce nuclear track membranes (NTM) with submicroscopic pores poly(vinylidene difluoride) (PVDF) foils were irradiated with Cl, Ag and Pb ions. Then they were chemically etched for different times and grafted with acrylic acid. The grafting yields were determined by weight measurements as a function of ion fluence, etching time and also analysed using Fourier transform infrared spectroscopy. Both measurements suggest that the acrylic acid was grafted on the pore wall of the NTM using the active sites left by the ion beam

  3. Effect of swift heavy Kr ions on complex permittivity of silicon PIN diode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yun [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Su, Ping, E-mail: pingsu@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Yang, Zhimei; Ma, Yao [Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Gong, Min, E-mail: mgong@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China)

    2016-12-01

    Highlights: • The complex permittivity has been studied on Si PIN irradiated by heavy Kr ions. • DLTS was used to investigate damages formed in PIN diode during irradiation. • The recombination of carriers has important influence on the complex permittivity. - Abstract: The complex permittivity has been researched on silicon PIN diodes irradiated by 2150 MeV heavy Kr ions in this article. The difference of complex permittivity spectra from 1 to 10^7 Hz between irradiated and unirradiated were observed and discussed. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured at room temperature (300 K) to study the change of electrical properties in diode after irradiation. Deep level transient spectroscopy (DLTS) was used to investigate damages caused by 2150 MeV heavy Kr ions in diode. Two extra electron traps were observed, which were located at E{sub C}-0.31 eV and E{sub C}-0.17 eV. It indicated that new defects have been formed in PIN diode during irradiation. A comparison of the results illustrated that not only the carrier density but also the recombination of electron-hole pair have important influences on the properties of complex permittivity. These results offer a further indication of the mechanism about the complex permittivity property of semiconductor device, which could help to make the applications for the semiconductor device controlled by electric signals come true in the fields of optoelectronic integrated circuits, plasma antenna and so on.

  4. Effect of Xe ion (167 MeV) irradiation on polycrystalline SiC implanted with Kr and Xe at room temperature

    International Nuclear Information System (INIS)

    Hlatshwayo, T T; Kuhudzai, R J; Njoroge, E G; Malherbe, J B; O’Connell, J H; Skuratov, V A; Msimanga, M

    2015-01-01

    The effect of swift heavy ion (Xe 167 MeV) irradiation on polycrystalline SiC individually implanted with 360 keV Kr and Xe ions at room temperature to fluences of 2  ×  10 16 cm −2 and 1  ×  10 16 cm −2 respectively, was investigated using transmission electron microscopy (TEM), Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Implanted specimens were each irradiated with 167 MeV Xe +26 ions to a fluence of 8.3  ×  10 14 cm −2 at room temperature. It was observed that implantation of 360 keV Kr and Xe ions individually at room temperature amorphized the SiC from the surface up to a depth of 186 and 219 nm respectively. Swift heavy ion (SHI) irradiation reduced the amorphous layer by about 27 nm and 30 nm for the Kr and Xe samples respectively. Interestingly, the reduction in the amorphous layer was accompanied by the appearance of randomly oriented nanocrystals in the former amorphous layers after SHI irradiation in both samples. Previously, no similar nanocrystals were observed after SHI irradiations at electron stopping powers of 33 keV nm −1 and 20 keV nm −1 to fluences below 10 14 cm −2 . Therefore, our results suggest a fluence threshold for the formation of nanocrystals in the initial amorphous SiC after SHI irradiation. Raman results also indicated some annealing of radiation damage after swift heavy ion irradiation and the subsequent formation of small SiC crystals in the amorphous layers. No diffusion of implanted Kr and Xe was observed after swift heavy ion irradiation. (paper)

  5. Coupled chemical reactions in dynamic nanometric confinement: VII. Biosensors based on swift heavy ion tracks with membranes

    Czech Academy of Sciences Publication Activity Database

    Fink, Dietmar; Munoz, G. H.; García Arellano, H.; Alfonta, L.; Vacík, Jiří; Kiv, A.; Hnatowicz, Vladimír

    2017-01-01

    Roč. 172, 1-2 (2017), s. 159-173 ISSN 1042-0150 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : biotechnology * tracks * swift heavy ions * polymers * etching Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nano-materials (production and properties) Impact factor: 0.443, year: 2016

  6. Mass spectrometric comparison of swift heavy ion-induced and anaerobic thermal degradation of polymers

    Science.gov (United States)

    Lima, V.; Hossain, U. H.; Walbert, T.; Seidl, T.; Ensinger, W.

    2018-03-01

    The study of polymers irradiated by highly energetic ions and the resulting radiation-induced degradation is of major importance for space and particle accelerator applications. The mechanism of ion-induced molecular fragmentation of polyethylene, polyethyleneimine and polyamide was investigated by means of mass spectrometry and infrared spectroscopy. The results show that the introduction of nitrogen and oxygen into the polymer influences the stability rendering aliphatic polymers with heteroatoms less stable. A comparison to thermal decomposition data from literature reveals that ion-induced degradation is different in its bond fracture mechanism. While thermal degradation starts at the weakest bond, which is usually the carbon-heteroatom bond, energetic ion irradiation leads in the first step to scission of all types of bonds creating smaller molecular fragments. This is due to the localized extreme energy input under non-equilibrium conditions when the ions transfer kinetic energy onto electrons. These findings are of relevance for the choice of polymers for long-term application in both space and accelerator facilities.

  7. Swift heavy ion induced modification in polycarbonate membrane for gas separation

    International Nuclear Information System (INIS)

    Rajesh Kumar; Prasad, Rajendra; Vijay, Y.K.; Das, D.

    2003-01-01

    Polymeric membranes are extensively used for commercial gas separation applications. Makrofol-KG (polycarbonate) is a glassy polymer. 40 μm thick sheet of Makrofol-KG was irradiated with 40 Ar (14.9 MeV/n) of fluence 10 3 ions/cm 2 and 20 μm thick sheet with 5.3 MeV α-particles of fluence 10 7 ions/cm 2 . The permeability of these polycarbonate membranes for H 2 and CO 2 was measured and also after etching in 6 N NaOH at 60 degC for different periods. Permeability is found to be increased with etching time. At a definite time, critical etching time, the permeability rapidly increases in PC. Positron annihilation lifetimes for unirradiated and irradiated membranes were measured with fast fast coincidence system to study the correlation of free volume hole concentration with gas separation properties. (author)

  8. Photoluminescence character of Xe ion irradiated sapphire

    International Nuclear Information System (INIS)

    Song Yin; Xie Erqing; Li Yuhong; Zhang Chonghong; Zhou Lihong; Yang Yitao; Yao Cunfeng; Li Bingsheng; Ma Yizhun; Hou Jie

    2008-01-01

    The photoluminescence (PL) character of sapphire irradiated with 460 keV, 3 MeV and 308 MeV Xe ions were studied. The PL measurements show that the absorption peaks located at 380, 413, and 450 nm are increased, and new peaks are appeared at 390 and 564 nm in irradiated samples with 460 keV Xe ions. The PL measurements also show that the absorption peaks located at 516 and 564 nm appear in irradiated samples with 3 MeV Xe ions, and w hen the Xe ions fluency is increased to 1 × 10 16 cm -2 , the peak at 564 nm is disappeared. The PL measurements show that the absorption peaks are appeared at 357 and 516 nm for the irradiated samples with 308 MeV Xe ions, and the peak become more and more strong with increase of Xe ions fluencies. Infrared spectra show a broadening of the absorption band between 460 cm -1 and 630 cm -1 indicating strongly damaged regions formed in the Al 2 O 3 samples and position shift of the absorption band in 1000-1300 cm -1 towards to low wavenumber. (authors)

  9. Effects of ion beam irradiation on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nashiyama, Isamu; Hirao, Toshio; Itoh, Hisayoshi; Ohshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Energetic heavy-ion irradiation apparatus has been developed for single-event effects (SEE) testing. We have applied three irradiation methods such as a scattered-ion irradiation method, a recoiled-atom irradiation method, and a direct-beam irradiation method to perform SEE testing efficiently. (author)

  10. Photoluminescence character of Xe ion irradiated sapphire

    International Nuclear Information System (INIS)

    Yin Song; Xie Erqing; Zhang Chonghong; Wang Zhiguang; Zhou Lihong; Ma YiZhong; Yao Cunfeng; Zang Hang; Liu Chunbao; Sheng Yanbin; Gou Jie

    2008-01-01

    In the present work the photoluminescence (PL) character of sapphire implanted with 180 keV Xe and irradiated with 308 MeV Xe ions was studied. The virgin, implanted and irradiated samples were investigated by PL and Fourier transform infrared (FTIR) spectra measurements. The obtained PL spectra showed the maximum emission bands at 2.75, 3.0 and 3.26 eV for the implanted fluence of 1.0 x 10 15 ions/cm 2 and at 2.4 and 3.47 eV for the irradiated fluence of 1.0 x 10 13 ions/cm 2 . The FTIR spectra showed a broaden absorption band between 460 and 630 cm -1 , indicating that strong damaged region formed in Al 2 O 3

  11. Photoluminescence character of Xe ion irradiated sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Yin Song [Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)], E-mail: songyin@impcas.ac.cn; Xie Erqing [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Zhang Chonghong; Wang Zhiguang; Zhou Lihong; Ma YiZhong; Yao Cunfeng; Zang Hang; Liu Chunbao; Sheng Yanbin; Gou Jie [Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000 (China)

    2008-06-15

    In the present work the photoluminescence (PL) character of sapphire implanted with 180 keV Xe and irradiated with 308 MeV Xe ions was studied. The virgin, implanted and irradiated samples were investigated by PL and Fourier transform infrared (FTIR) spectra measurements. The obtained PL spectra showed the maximum emission bands at 2.75, 3.0 and 3.26 eV for the implanted fluence of 1.0 x 10{sup 15} ions/cm{sup 2} and at 2.4 and 3.47 eV for the irradiated fluence of 1.0 x 10{sup 13} ions/cm{sup 2}. The FTIR spectra showed a broaden absorption band between 460 and 630 cm{sup -1}, indicating that strong damaged region formed in Al{sub 2}O{sub 3}.

  12. Physical and biological properties of the ion beam irradiated PMMA-based composite films

    Science.gov (United States)

    Shanthini, G. M.; Martin, Catherine Ann; Sakthivel, N.; Veerla, Sarath Chandra; Elayaraja, K.; Lakshmi, B. S.; Asokan, K.; Kanjilal, D.; Kalkura, S. Narayana

    2015-02-01

    Polymethyl methacrylate (PMMA) and PMMA-hydroxyapatite (PMMA-HAp) composite films, prepared by the solvent evaporation method were irradiated with 100 MeV Si7+ ions. Crystallographic, morphological and the functional groups of the pristine and irradiated samples were studied using glancing incident X-ray diffraction (GIXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) respectively. SEM reveals the creation of pores, along with an increase in porosity and cluster size on irradiation. Decrease in crystalline nature and crystallite size with an increase in ion fluence was observed from GIXRD patterns. The surface roughness and the wettability of the material were also enhanced, which could favour the cell-material interaction. The irradiated samples adsorbed significantly greater amount of proteins than pristine. Also, irradiation does not produce any toxic byproducts or leachants, and maintains the viability of 3T3 cells. The response of the irradiated samples towards biomedical applications was demonstrated by the improved antimicrobial activity, haemocompatibility and cytocompatibility. Swift heavy ion irradiation (SHI) could be an effective tool to modify and engineer the surface properties of the polymers to enhance the biocompatibility.

  13. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet.

    Science.gov (United States)

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel

    2015-12-16

    Pure and (Ca and Si)-substituted yttrium iron garnet (Y3Fe5O12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd3Ga5O12, or GGG) single crystal substrates were irradiated by 50 MeV (32)Si and 50 MeV (or 60 MeV) (63)Cu ions for electronic stopping powers larger than the threshold value (~4 MeV μm(-1)) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (10(11)-10(16) cm(-2)) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ~10(14) cm(-2). Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾10(14) cm(-2)), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ~660 cm(-1) is assigned to vibration modes of randomized bonds in tetrahedral (FeO4) units.

  14. Thermo-luminescence and photoluminescence studies of Al2O3 irradiated with heavy ions

    International Nuclear Information System (INIS)

    Jheeta, K.S.

    2008-06-01

    Thermo-luminescence (TL) spectra of single crystals of Al 2 O 3 (sapphire) irradiated with 200 MeV swift Ag ions at different fluence in the range 1x10 11 to 1x10 13 ions/cm 2 has been recorded at room temperature by keeping the warming rate 2K/min. The TL glow curve of the irradiated samples has a simple structure with a prominent peak at ∼ 500 K with one small peak at 650 K. The intensity of main peak increases with the ion fluence. This has been attributed to the creation of new traps on irradiation. Also, a shift of 8 K in the peak position towards low temperature side has been observed at higher fluence 1x10 13 ions/cm 2 . In addition, photoluminescence (PL) spectra of irradiated samples have been recorded at room temperature upon 2.8 eV excitation. A broad band consisting of mainly two emission bands, respectively at 2.5 and 2.3 eV corresponding to F 2 and F 2 2+ defect centers is observed. The intensity of these bands shows an increasing trend up to fluence 5x10 12 ions/cm 2 and then decreases at higher fluence 1x10 13 ions/cm 2 . The results are interpreted in terms of creation of newly defect centers, clustering/aggregation and radiation-induced annihilation of defects. (author)

  15. Diffusion kinetics of the glucose/glucose oxidase system in swift heavy ion track-based biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Dietmar, E-mail: fink@xanum.uam.mx [Nuclear Physics Institute, 25068 Řež (Czech Republic); Departamento de Fisica, Universidad Autónoma Metropolitana-Iztapalapa, PO Box 55-534, 09340 México, DF (Mexico); Vacik, Jiri; Hnatowicz, V. [Nuclear Physics Institute, 25068 Řež (Czech Republic); Muñoz Hernandez, G. [Departamento de Fisica, Universidad Autónoma Metropolitana-Iztapalapa, PO Box 55-534, 09340 México, DF (Mexico); Garcia Arrelano, H. [Departamento de Ciencias Ambientales, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Lerma, Av. de las Garzas No. 10, Col. El Panteón, Lerma de Villada, Municipio de Lerma, Estado de México CP 52005 (Mexico); Alfonta, Lital [Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105 (Israel); Kiv, Arik [Department of Materials Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105 (Israel)

    2017-05-01

    Highlights: • Application of swift heavy ion tracks in biosensing. • Obtaining yet unknown diffusion coefficients of organic matter across etched ion tracks. • Obtaining diffusion coefficients of organics in etched ion tracks of biosensors. • Comparison with Renkin’s equation to predict the effective etched track diameter in the given experiments. - Abstract: For understanding of the diffusion kinetics and their optimization in swift heavy ion track-based biosensors, recently a diffusion simulation was performed. This simulation aimed at yielding the degree of enrichment of the enzymatic reaction products in the highly confined space of the etched ion tracks. A bunch of curves was obtained for the description of such sensors that depend only on the ratio of the diffusion coefficient of the products to that of the analyte within the tracks. As hitherto none of these two diffusion coefficients is accurately known, the present work was undertaken. The results of this paper allow one to quantify the previous simulation and hence yield realistic predictions of glucose-based biosensors. At this occasion, also the influence of the etched track radius on the diffusion coefficients was measured and compared with earlier prediction.

  16. Compositional, structural and optical changes of polyimide irradiated by heavy ions

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Macková, Anna; Cutroneo, Mariapompea; Slepička, P.; Matoušek, J.

    2016-01-01

    Roč. 48, č. 7 (2016), s. 566-569 ISSN 0142-2421. [16th European Conference on Applications of Surface and Interface Analysis (ECASIA). Granada, 28.09.2015-01.10.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : polyimide * polymer degradation * swift heavy-ion irradiation * surface morphology Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.132, year: 2016

  17. Spectroscopic investigations on ion beam irradiated polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, O.; Chipara, M. E-mail: mchipara@unlserve.unl.edu; Enge, W.; Compagnini, G.; Reyes-Romero, J. E-mail: vetr@caracas.c-com.net; Bacmeister, U.; Chipara, M.D

    2000-05-02

    Luminescence investigations on polycarbonate irradiated with accelerated uranium ions are reported. The dependence of luminescence spectra on the penetration length, deposited energy and dose and track radius is investigated. The luminescence spectrum has been assigned to phenyls. It is suggested that most phenyls are located within the latent track. The experimental results are in good agreement with data obtained by electron spin resonance spectroscopy.

  18. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    Science.gov (United States)

    Kaushik, Priya Darshni; Ivanov, Ivan G.; Lin, Pin-Cheng; Kaur, Gurpreet; Eriksson, Jens; Lakshmi, G. B. V. S.; Avasthi, D. K.; Gupta, Vinay; Aziz, Anver; Siddiqui, Azher M.; Syväjärvi, Mikael; Yazdi, G. Reza

    2017-05-01

    In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 1013 ions/cm2). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and spintronic applications.

  19. GXRD study of 100 MeV Fe9+ ion irradiated indium phosphide

    International Nuclear Information System (INIS)

    Dubey, R.L.; Dubey, S.K.; Kachhap, N.K.; Kanjilal, D.

    2014-01-01

    Swift heavy ions with MeV to GeV kinetic energy offer unique possibilities of modifying material properties. Each projectile passing through the target material causes loss of its energy by ion-electrons and ion-atoms interaction with the target material. The consequence of formal one is to change in surface properties and latter to produces damage deep in the target material near the projected range of projectile. In the present work, indium phosphide samples were irradiated at 100 MeV 56 Fe 9+ ions with different fluences varying from 1x10 12 to 1x10 14 ions cm -2 using the 15UD Pelletron facilities at Inter University Accelerator Centre (IUAC), New Delhi. Grazing angle X-ray diffraction technique was used to investigate the structural properties of irradiated indium phosphide at different depths. The GXRD spectra of non-irradiated and irradiated samples were recorded at different grazing angle i.e 1°, 2°, 3°, 4° and 5° to get the structural information over the projected range. The detailed result will be presented and discussed in the conference. (author)

  20. Heavy ions amorphous semiconductors irradiation study

    International Nuclear Information System (INIS)

    Benmalek, M.

    1978-01-01

    The behavior of amorphous semiconductors (germanium and germanium and arsenic tellurides) under ion bombardment at energies up to 2 MeV was studied. The irradiation induced modifications were followed using electrical parameter changes (resistivity and activation energy) and by means of the transmission electron microscopy observations. The electrical conductivity enhancement of the irradiated samples was interpreted using the late conduction theories in amorphous compounds. In amorphous germanium, Electron Microscopy showed the formations of 'globules', these defects are similar to voids observed in irradiated metals. The displacement cascade theory was used for the interpretation of the irradiation induced defects formation and a coalescence mechanism of growth was pointed out for the vacancy agglomeration [fr

  1. Effect of triple ion beam irradiation on mechanical properties of high chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Futakawa, Masatoshi; Nanjyo, Yoshiyasu; Kiuchi, Kiyoshi; Anegawa, Takefumi

    2003-01-01

    A high-chromium austenitic stainless steel has been developed for an advanced fuel cladding tube considering waterside corrosion and irradiation embrittlement. The candidate material was irradiated in triple ion (Ni, He, H) beam modes at 573 K up to 50 dpa to simulate irradiation damage by neutron and transmutation product. The change in hardness of the very shallow surface layer of the irradiated specimen was estimated from the slope of load/depth-depth curve which is in direct proportion to the apparent hardness of the specimen. Besides, the Swift's power low constitutive equation (σ=A(ε 0 + ε) n , A: strength coefficient, ε 0 : equivalent strain by cold rolling, n: strain hardening exponent) of the damaged parts was derived from the indentation test combined with an inverse analysis using a finite element method (FEM). For comparison, Type304 stainless steel was investigated as well. Though both Type304SS and candidate material were also hardened by ion irradiation, the increase in apparent hardness of the candidate material was smaller than that of Type304SS. The yield stress and uniform elongation were estimated from the calculated constitutive equation by FEM inverse analysis. The irradiation hardening of the candidate material by irradiation can be expected to be lower than that of Type304SS. (author)

  2. Genetic effects of heavy ion irradiation in maize and soybean

    International Nuclear Information System (INIS)

    Yatou, Osamu; Amano, Etsuo; Takahashi, Tan.

    1992-01-01

    Somatic mutation on leaves of maize and soybean were observed to investigate genetic effects of heavy ion irradiation. Maize seeds were irradiated with N, Fe and U ions and soybean seeds were irradiated with N ions. This is a preliminary report of the experiment, 1) to examine the mutagenic effects of the heavy ion irradiation, and 2) to evaluate the genetic effects of cosmic ray exposure in a space ship outside the earth. (author)

  3. Physico-chemical transformations in swift heavy ion modified poly(ethyleneterephthalate)

    Science.gov (United States)

    Aggarwal, Prerna; Singh, Virendra; Singh, Arjun; Scherer, U. W.; Singh, Tejvir; Singla, Madan L.; Srivastava, Alok

    2012-03-01

    Thin films of poly(ethyleneterephthalate) (PET) were exposed to different radiation dose brought about by 80 MeV carbon and 98 MeV silicon ion beam. The UV-vis absorption studies reveal that there is decrease in optical band gap energy to the extent of ˜29.3 and 42.1%. The X-ray diffraction analyses have shown that crystallite size decreased by ˜18.6 and 52.6%, indicating amorphization of PET. The colour of PET films change from colourless to light yellowish followed by light brown as radiation dose is increased. The colour formation has been ascribed to an increase in conjugation in the carbon chain. In the case of PET irradiated with carbon ion, the electrical conductivity increased with frequency beyond a threshold value of 1 kHz. The increase in conductivity of PET films on irradiation is due to formation of defects and carbon clusters as a result of polymer chain scission. The thermal study further confirmed the increase in amorphous nature with increase in radiation dose. The results indicate that radiation dose brings about significant physicochemical transformations in PET.

  4. Physico-chemical transformations in swift heavy ion modified poly(ethyleneterephthalate)

    International Nuclear Information System (INIS)

    Aggarwal, Prerna; Singh, Virendra; Singh, Arjun; Scherer, U.W.; Singh, Tejvir; Singla, Madan L.; Srivastava, Alok

    2012-01-01

    Thin films of poly(ethyleneterephthalate) (PET) were exposed to different radiation dose brought about by 80 MeV carbon and 98 MeV silicon ion beam. The UV–vis absorption studies reveal that there is decrease in optical band gap energy to the extent of ∼29.3 and 42.1%. The X-ray diffraction analyses have shown that crystallite size decreased by ∼18.6 and 52.6%, indicating amorphization of PET. The colour of PET films change from colourless to light yellowish followed by light brown as radiation dose is increased. The colour formation has been ascribed to an increase in conjugation in the carbon chain. In the case of PET irradiated with carbon ion, the electrical conductivity increased with frequency beyond a threshold value of 1 kHz. The increase in conductivity of PET films on irradiation is due to formation of defects and carbon clusters as a result of polymer chain scission. The thermal study further confirmed the increase in amorphous nature with increase in radiation dose. The results indicate that radiation dose brings about significant physicochemical transformations in PET. - Highlights: ► Thin films of poly(ethyleneterephthalate) exposed to 80 MeV carbon and 98 MeV Silicon ion. ► UV–vis absorption studies reveal decrease of optical energy gap up to ∼29.3 and 42.1%. ► XRD shows 18.6 and 52.6% decrease in crystallite size indicating amorphization of PET film. ► Conductivity measurement with frequency shows a parabolic increase beyond 1 kHz. ► Thermal study confirmed increased amorphous nature of material with radiation dose.

  5. Modifications of structural and physical properties induced by swift heavy ions in Gd{sub 2}Ti{sub 2}O{sub 7} and Y{sub 2}Ti{sub 2}O{sub 7} pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Sellami, N., E-mail: neila.sellami@u-psud.fr [Univ. Paris Sud, ICMMO-LEMHE, Bât. 410, F-91405 Orsay (France); Sattonnay, G. [Univ. Paris Sud, ICMMO-LEMHE, Bât. 410, F-91405 Orsay (France); Grygiel, C.; Monnet, I. [CIMAP, CEA, CNRS, Université de Caen, BP 5133, F-14070 Caen Cedex 5 (France); Debelle, A. [CSNSM, CNRS, IN2P3, Université Paris-Sud, Bât. 108, F- 91405 Orsay (France); Legros, C. [Univ. Paris Sud, ICMMO-LEMHE, Bât. 410, F-91405 Orsay (France); Menut, D. [CEA, DEN, Service de Recherches Métallurgiques Appliquées, 91191 Gif-Sur-Yvette (France); Miro, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Simon, P. [CNRS UPR 3079 CEMHTI, 1D avenue de la Recherche Scientifique, F-45071 Orléans Cedex 2 (France); Bechade, J.L [CEA, DEN, Service de Recherches Métallurgiques Appliquées, 91191 Gif-Sur-Yvette (France); Thomé, L. [CSNSM, CNRS, IN2P3, Université Paris-Sud, Bât. 108, F- 91405 Orsay (France)

    2015-12-15

    The structural transformations induced by ionization processes in Gd{sub 2}Ti{sub 2}O{sub 7} and Y{sub 2}Ti{sub 2}O{sub 7} pyrochlores irradiated with swift heavy ions have been studied using XRD and Raman experiments. Results show that irradiation induces amorphization and that the phase transformation build-up can be accounted for in the framework of a model involving a single-impact mechanism. The radiation induced amorphization build-up is faster in Gd{sub 2}Ti{sub 2}O{sub 7} than in Y{sub 2}Ti{sub 2}O{sub 7}. Moreover, a decrease of the thermal conductivity (measured by the laser flash method) is induced by irradiation both in Gd{sub 2}Ti{sub 2}O{sub 7} and Y{sub 2}Ti{sub 2}O{sub 7}.

  6. Novel optical waveguides by in-depth controlled electronic damage with swift ions

    International Nuclear Information System (INIS)

    Olivares, J.; Garcia-Navarro, A.; Mendez, A.; Agullo-Lopez, F.; Garcia, G.; Garcia-Cabanes, A.; Carrascosa, M.

    2007-01-01

    We review recent results on a novel method to modify crystalline dielectric materials and fabricate optical waveguides and integrated optics devices. It relies on irradiation with medium-mass high-energy ions (2-50 MeV) where the electronic stopping power is dominant over that one associated to nuclear collisions. By exploiting the processing capabilities of the method, novel optical structures can be achieved at moderate (10 14 cm -2 ) and even low and ultralow (10 12 cm -2 ) fluences. In particular, step-like waveguides with a high index jump Δn ∼ 0.1-0.2, guiding both ordinary and extraordinary modes, have been prepared with F and O ions (20 MeV) at moderate fluences. They present good non-linear and electrooptic perfomance and low losses. (1 dB/cm). Moreover, useful optical waveguiding has been also achieved at ultralow frequencies (isolated track regime), using Cl and Si ions (40-45 MeV). In this latter case, the individual amorphous nanotracks, whose radius increases with depth, create an effective optical medium causing optical trapping

  7. Mutation induced with ion beam irradiation in rose

    Science.gov (United States)

    Yamaguchi, H.; Nagatomi, S.; Morishita, T.; Degi, K.; Tanaka, A.; Shikazono, N.; Hase, Y.

    2003-05-01

    The effects of mutation induction by ion beam irradiation on axillary buds in rose were investigated. Axillary buds were irradiated with carbon and helium ion beams, and the solid mutants emerged after irradiation by repeated cutting back. In helium ion irradiation, mutations were observed in plants derived from 9 buds among 56 irradiated buds in 'Orange Rosamini' and in plants derived from 10 buds among 61 irradiated buds in 'Red Minimo'. In carbon ion, mutations were observed in plants derived from 12 buds among 88 irradiated buds in 'Orange Rosamini'. Mutations were induced not only in higher doses but also in lower doses, with which physiological effect by irradiation was hardly observed. Irradiation with both ion beams induced mutants in the number of petals, in flower size, in flower shape and in flower color in each cultivar.

  8. Nanoscale Morphology Evolution Under Ion Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Michael J. [President & Fellows of Harvard College, Cambridge, MA (United States)

    2014-11-10

    We showed that the half-century-old paradigm of morphological instability under irradiation due to the curvature-dependence of the sputter yield, can account neither for the phase diagram nor the amplification or decay rates that we measure in the simplest possible experimental system -- an elemental semiconductor with an amorphous surface under noble-gas ion irradiation; We showed that a model of pattern formation based on the impact-induced redistribution of atoms that do not get sputtered away explains our experimental observations; We developed a first-principles, parameter-free approach for predicting morphology evolution, starting with molecular dynamics simulations of single ion impacts, lasting picoseconds, and upscaling through a rigorous crater-function formalism to develop a partial differential equation that predicts morphology evolution on time scales more than twelve orders of magnitude longer than can be covered by the molecular dynamics; We performed the first quantitative comparison of the contributions to morphological instability from sputter removal and from impact-induced redistribution of atoms that are removed, and showed that the former is negligible compared to the latter; We established a new paradigm for impact-induced morphology evolution based on crater functions that incorporate both redistribution and sputter effects; and We developed a model of nanopore closure by irradiation-induced stress and irradiationenhanced fluidity, for the near-surface irradiation regime in which nuclear stopping predominates, and showed that it explains many aspects of pore closure kinetics that we measure experimentally.

  9. Physico-chemical characterization of polyethylene of ultra high molecular weight modified with gamma irradiation and heavy ions

    International Nuclear Information System (INIS)

    Lagarde, M; Del Grosso, M; Fasce, D; Dommarco, R; Laino, S; Fasce, L.A

    2012-01-01

    The ultra high molecular weight polyethylene (UHMWPE) is a biomaterial widely used in total joint replacement. In this work, the effect of two different irradiation techniques on UHMWPE is analyzed. One technique involves gamma irradiation (γ) followed by a thermal treatment, thus modifying the material bulk. The other implies swift heavy ion irradiation (SHI), which have an effect only on the near surface layers. The surface nanomechanical properties are evaluated from depth sensing indentation experiments, while changes in crystallinity and chemical structure are determined by DSC and Raman spectroscopy. The results show that even when both techniques are able to improve the UHMWPE wear behavior, the effect on other mechanical properties and molecular structure modification is different. The γ irradiated sample exhibits lower crystallinity, hardness and modulus than the pristine UHMWPE, while the SHI irradiated sample exhibits higher crystallinity and enhanced mechanical properties than the later

  10. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    International Nuclear Information System (INIS)

    Kaushik, Priya Darshni; Ivanov, Ivan G.; Lin, Pin-Cheng; Kaur, Gurpreet; Eriksson, Jens; Lakshmi, G.B.V.S.; Avasthi, D.K.; Gupta, Vinay; Aziz, Anver; Siddiqui, Azher M.; Syväjärvi, Mikael; Yazdi, G. Reza

    2017-01-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO 2 and NH 3 gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10 13 ions/cm 2 ). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and spintronic

  11. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Priya Darshni, E-mail: kaushik.priyadarshni@gmail.com [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Ivanov, Ivan G.; Lin, Pin-Cheng [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Kaur, Gurpreet [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Eriksson, Jens [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Lakshmi, G.B.V.S. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Amity Institute of Nanotechnology, Noida 201313 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Aziz, Anver; Siddiqui, Azher M. [Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Syväjärvi, Mikael [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Yazdi, G. Reza, E-mail: yazdi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden)

    2017-05-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO{sub 2} and NH{sub 3} gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10{sup 13} ions/cm{sup 2}). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and

  12. Ion irradiated graphite exposed to fusion-relevant deuterium plasma

    International Nuclear Information System (INIS)

    Deslandes, Alec; Guenette, Mathew C.; Corr, Cormac S.; Karatchevtseva, Inna; Thomsen, Lars; Ionescu, Mihail; Lumpkin, Gregory R.; Riley, Daniel P.

    2014-01-01

    Graphite samples were irradiated with 5 MeV carbon ions to simulate the damage caused by collision cascades from neutron irradiation in a fusion environment. The ion irradiated graphite samples were then exposed to a deuterium plasma in the linear plasma device, MAGPIE, for a total ion fluence of ∼1 × 10 24 ions m −2 . Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopy were used to characterize modifications to the graphitic structure. Ion irradiation was observed to decrease the graphitic content and induce disorder in the graphite. Subsequent plasma exposure decreased the graphitic content further. Structural and surface chemistry changes were observed to be greatest for the sample irradiated with the greatest fluence of MeV ions. D retention was measured using elastic recoil detection analysis and showed that ion irradiation increased the amount of retained deuterium in graphite by a factor of four

  13. Swift cookbook

    CERN Document Server

    Costa, Cecil

    2015-01-01

    If you are an experienced Objective-C programmer and are looking for quick solutions to many different coding tasks in Swift, then this book is for you. You are expected to have development experience, though not necessarily with Swift.

  14. Effect of crystallographic orientation on structural and mechanical behaviors of Ni-Ti thin films irradiated by Ag7+ ions

    Science.gov (United States)

    Kumar, Veeresh; Singhal, Rahul

    2018-04-01

    In the present study, thin films of Ni-Ti shape memory alloy have been grown on Si substrate by dc magnetron co-sputtering technique using separate sputter targets Ni and Ti. The prepared thin films have been irradiated by 100 MeV Ag7+ ions at three different fluences, which are 1 × 1012, 5 × 1012, and 1 × 1013 ions/cm2. The elemental composition and depth profile of pristine film have been investigated by Rutherford backscattering spectrometry. The changes in crystal orientation, surface morphology, and mechanical properties of Ni-Ti thin films before and after irradiation have been studied by X-ray diffraction, atomic force microscopy, field-emission scanning electron microscopy, and nanoindentation techniques, respectively. X-ray diffraction measurement has revealed the existence of both austenite and martensite phases in pristine film and the formation of precipitate on the surface of the film after irradiation at an optimized fluence of 1 × 1013 ions/cm2. Nanoindentation measurement has revealed improvement in mechanical properties of Ni-Ti thin films after ion irradiation via increasing hardness and Young modulus due to the formation of precipitate and ductile phase. The improvement in mechanical behavior could be explained in terms of precipitation hardening and structural change of Ni-Ti thin film after irradiation by Swift heavy ion irradiation.

  15. Materials Modification Under Ion Irradiation: JANNUS Project

    International Nuclear Information System (INIS)

    Serruys, Y.; Trocellier, P.; Ruault, M.-O.; Henry, S.; Kaietasov, O.; Trouslard, Ph.

    2004-01-01

    JANNUS (Joint Accelerators for Nano-Science and Nuclear Simulation) is a project designed to study the modification of materials using multiple ion beams and in-situ TEM observation. It will be a unique facility in Europe for the study of irradiation effects, the simulation of material damage due to irradiation and in particular of combined effects. The project is also intended to bring together experimental and modelling teams for a mutual fertilisation of their activities. It will also contribute to the teaching of particle-matter interactions and their applications. JANNUS will be composed of three accelerators with a common experimental chamber and of two accelerators coupled to a 200 kV TEM

  16. Dense and nanometric electronic excitations induced by swift heavy ions in an ionic CaF2 crystal: Evidence for two thresholds of damage creation

    Science.gov (United States)

    Toulemonde, M.; Benyagoub, A.; Trautmann, C.; Khalfaoui, N.; Boccanfuso, M.; Dufour, C.; Gourbilleau, F.; Grob, J. J.; Stoquert, J. P.; Costantini, J. M.; Haas, F.; Jacquet, E.; Voss, K.-O.; Meftah, A.

    2012-02-01

    CaF2 crystals as representatives of the class of ionic nonamorphizable insulators were irradiated with many different swift heavy ions of energy above 0.5 MeV/u providing a broad range of electronic energy losses (Se). Beam-induced modifications were characterized by Channeling Rutherford Backscattering Spectrometry (C-RBS) and x-ray diffraction (XRD), complemented by transmission electron microscopy (TEM). Results from C-RBS give evidence of significant damage appearing above a Se threshold of 5 ± 2 keV/nm. A second critical Se appears around 18 ± 3 keV/nm; below this value the damage as function of ion fluence saturates at 20%, while above this the damage saturation level increases with Se, reaching ˜60% for ions of Se = 30 keV/nm. XRD measurements also show effects indicating two threshold values. Above 5 keV/nm, the widths of the XRD reflection peaks increase due to the formation of nanograins, as seen by TEM, while a significant decrease of the peak areas only occurs above 18 keV/nm. The track radii deduced from C-RBS measurements are in agreement with those extracted from the fluence evolution of the widths of the XRD peaks. Moreover, track radii deduced from the peak area analysis are slightly smaller but in agreement with previous track observations by high resolution electron microscopy. Calculations based on the inelastic thermal spike model suggest that the lower threshold at 5 keV/nm is linked to the quenching of the molten phase, whereas the threshold at 18 keV/nm can be interpreted as quenching of the boiling phase. The results of CaF2 are compared with other nonamorphizable materials such as LiF and UO2.

  17. Studies of defects on ion irradiated diamond

    Energy Technology Data Exchange (ETDEWEB)

    Lai, P.F.; Prawer, S.; Spargo, A.E.C.; Bursill, L.A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    It is known that diamond is amorphized or graphitized when irradiated above a critical dose. Above this critical dose, D{sub c}, the resistance R is found to drop very rapidly due to the formation of graphite regions which overlap at D{sub c} to form a semi-continuous electrically conducting pathway through the sample. One particularly interesting method of studying this transformation is electron energy-loss spectroscopy (EELS). Using EELS, the different phases of carbon can be identified and distinguished from each other using the extended energy-loss fine structure (EXELFS) of the core-loss part of the spectrum. EELS is a sensitive method for determining the electronic structure of small areas of a sample. In this paper, transmission electron microscopy (TEM) and EELS measurements of the ion irradiated diamond were combined in an attempt to correlate the microstructural nature of the ion-beam induced damage to the changes in the electrical and other properties. 7 refs., 1 tab., 2 figs.

  18. Heavy-ion irradiation tracks in zircon

    International Nuclear Information System (INIS)

    Bursill, L.A.; Braunshausen, G.

    1989-01-01

    Heavy-ion irradiation (14 MeV/u Pb ions) of zircon crystals gives rise to linear latent tracks of 80x10 -10 m diameter and length 140 μm. Direct observation of the track core, by high-voltage high-resolution electron microscopy at atomic resolution, reveals a core having roughly circular cross-section, with some facetting of the core/matrix interface on [101] planes of zircon. The core diameter appears quite uniform. Conventional transmission electron microscopy (bright- and dark-field imaging) reveals an elastic strain field extending for a short distance into the zircon matrix. This appears to drop off more rapidly with distance, say 1/R 2 , than do dislocation strain fields (∼ 1/R). Analysis of the various contrast mechanisms yields the result that the core is essentially amorphous. The observations confirm directly earlier conclusions based on track etching and electrical conductivity measurements, that the irradiation damage is confirmed to a 50-100 Aangstroem core region of atomically-disordered material, with virtually no damage outside this region. Mechanisms for track production are discussed briefly, but it is concluded that the problem, which is now defined by this structural analysis, has not been fully-appreciated by condensed matter physicists. In particular a damage confinement mechanism is required, which is not intuitively obvious. Some tentative suggestions along this direction are proposed. 33 refs., 9 figs

  19. Selective binding of oligonucleotide on TiO{sub 2} surfaces modified by swift heavy ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Vicente Pérez-Girón, J. [Nanoate, S.L. C/Poeta Rafael Morales 2, San Sebastian de los Reyes, 28702 Madrid (Spain); Emerging Viruses Department Heinrich Pette Institute, Hamburg 20251 (Germany); Hirtz, M. [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); McAtamney, C.; Bell, A.P. [Advanced Microscopy Laboratory, CRANN, Trinity College Dublin, Dublin 2 (Ireland); Antonio Mas, J. [Laboratorio de Genómica del Centro de Apoyo Tecnológico, Universidad Rey Juan Carlos, Campus de Alcorcón 28922, Madrid (Spain); Jaafar, M. [Nanoate, S.L. C/Poeta Rafael Morales 2, San Sebastian de los Reyes, 28702 Madrid (Spain); Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Luis, O. de [Nanoate, S.L. C/Poeta Rafael Morales 2, San Sebastian de los Reyes, 28702 Madrid (Spain); Departamento de Bioquímica, Fisiología y Genética Molecular, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Campus de Alcorcón, 28922 Madrid (Spain); Fuchs, H. [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Physical Institute and Center for Nanotechnology (CeNTech), Wilhelm-Klemm-Straße 10, University of Münster (Germany); and others

    2014-11-15

    We have used swift heavy-ion beam based lithography to create patterned bio-functional surfaces on rutile TiO{sub 2} single crystals. The applied lithography method generates a permanent and well defined periodic structure of micrometre sized square holes having nanostructured TiO{sub 2} surfaces, presenting different physical and chemical properties compared to the surrounding rutile single crystal surface. On the patterned substrates selective binding of oligonucleotides molecules is possible at the surfaces of the holes. This immobilisation process is only being controlled by UV light exposure. The patterned transparent substrates are compatible with fluorescence detection techniques, are mechanically robust, have a high tolerance to extreme chemical and temperature environments, and apparently do not degrade after ten cycles of use. These qualities make the patterned TiO{sub 2} substrates useful for potential biosensor applications.

  20. RBE of cells irradiated by carbon ions

    International Nuclear Information System (INIS)

    Li Wenjian; Zhou Guangming; Wei Zengquan; Wang Jufang; Dang Bingrong; Li Qiang; Xie Hongmei

    2002-01-01

    The mouse melanoma cells (B16), human cervical squamous carcinoma cells (HeLa), Chinese hamster pulmonary cells V79, and human hepatoma cells (SMMC-7721) were collected for studying. The cells of 5 x 10 5 /ml were seeded in 35 mm diameter petri dish and allowed to grow one day, and then the medium in petri dishes was removed away, the cells were washed once with phosphate-buffered saline (PBS), petri dishes was covered with 4μm thickness Mylar film. The cells were irradiated by 12 C ion beam with LETs of 125.5, 200, 700 keV/μm in water generated from HIRFL (Heavy Ion Research Facility in Lanzhou). For 60 Co γ-ray experiment, the cells of 5 x 10 4 /ml were grown in 20 ml culture flasks including 1.5 ml cell suspension and directly used for irradiation. Following irradiation, the cells were trypsinized, counted, plated at appropriate densities in growth medium and then seeded in 60 mm diameter culture dishes. Each dish was filled 4 ml standard medium, and incubated for 8-12 days at 37 degree C incubator containing 5% CO 2 . The cultures were then rinsed with PBS buffer at pH 6.8, fixed with Carnoy's fluid, stained for 8 min with Giemsa (1:20, pH 6.8), and colonies containing more than 50 cells were scored. Their relative biological effectivenesses (RBE) were investigated. The results show that RBE depends on cellular types and increases with increasing of cellular survival level when LET is at 125.5 keV/μm, and decreases with increasing LET when LET ≥ 125.5 keV/μm

  1. Enhancement of wettability and antibiotic loading/release of hydroxyapatite thin film modified by 100 MeV Ag7+ ion irradiation

    International Nuclear Information System (INIS)

    Elayaraja, K.; Rajesh, P.; Ahymah Joshy, M.I.; Sarath Chandra, V.; Suganthi, R.V.; Kennedy, J.; Kulriya, P.K.; Sulania, I.; Asokan, K.; Kanjilal, D.; Avasthi, D.K.; Varma, H.K.; Narayana Kalkura, S.

    2012-01-01

    Highlights: ► Reduction in particle size on irradiation leading to nanosized HAp. ► Enhancement of surface roughness and bioactivity on irradiation. ► Irradiation at lower fluence transforms the surface hydrophobic. ► The surface turned hydrophilic at higher fluence. ► Improved drug (amoxicillin) loading on irradiated samples. - Abstract: The effect of swift heavy 100 MeV Ag 7+ ions irradiation was studied on hydroxyapatite (HAp) thin film prepared by pulsed laser deposition technique (PLD). The GIXRD analysis confirmed the absence of any phase in the HAp phase due to irradiation. In addition, there was a considerable decrease in crystallinity and crystallite size on irradiation. There was no significant variation in the stoichiometry of the irradiated films. Irradiation seemed to decrease the optical band gap energy of HAp thin films. The surface roughness, wettability and bioactivity were improved on irradiation of the samples. Amount of amoxicillin loading/release increased (10%) in ion beam irradiated (1 × 10 12 ions cm −2 ) sample. Irradiated sample showed fast rate of amoxicillin (AMX) release than the pristine. Bactericidal effect was found to increase on irradiation. Surface modified and antibiotics incorporated HAp coated titanium implants may be used to prevent post-surgical infections and to promote bone-bonding of orthopedic devices.

  2. Enhancement of wettability and antibiotic loading/release of hydroxyapatite thin film modified by 100 MeV Ag{sup 7+} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Elayaraja, K. [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Rajesh, P. [Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695 012 (India); Ahymah Joshy, M.I.; Sarath Chandra, V.; Suganthi, R.V. [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Kennedy, J. [National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); Kulriya, P.K.; Sulania, I.; Asokan, K.; Kanjilal, D.; Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Varma, H.K. [Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695 012 (India); Narayana Kalkura, S., E-mail: kalkurasn@annauniv.edu [Crystal Growth Centre, Anna University, Chennai 600 025 (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Reduction in particle size on irradiation leading to nanosized HAp. Black-Right-Pointing-Pointer Enhancement of surface roughness and bioactivity on irradiation. Black-Right-Pointing-Pointer Irradiation at lower fluence transforms the surface hydrophobic. Black-Right-Pointing-Pointer The surface turned hydrophilic at higher fluence. Black-Right-Pointing-Pointer Improved drug (amoxicillin) loading on irradiated samples. - Abstract: The effect of swift heavy 100 MeV Ag{sup 7+} ions irradiation was studied on hydroxyapatite (HAp) thin film prepared by pulsed laser deposition technique (PLD). The GIXRD analysis confirmed the absence of any phase in the HAp phase due to irradiation. In addition, there was a considerable decrease in crystallinity and crystallite size on irradiation. There was no significant variation in the stoichiometry of the irradiated films. Irradiation seemed to decrease the optical band gap energy of HAp thin films. The surface roughness, wettability and bioactivity were improved on irradiation of the samples. Amount of amoxicillin loading/release increased (10%) in ion beam irradiated (1 Multiplication-Sign 10{sup 12} ions cm{sup -2}) sample. Irradiated sample showed fast rate of amoxicillin (AMX) release than the pristine. Bactericidal effect was found to increase on irradiation. Surface modified and antibiotics incorporated HAp coated titanium implants may be used to prevent post-surgical infections and to promote bone-bonding of orthopedic devices.

  3. Free volume evolution in 50 MeV Li3+ ion-irradiated polymers studied by positron annihilation lifetime spectroscopy

    Science.gov (United States)

    Singh, Paramjit; Kumar, Rajesh; Prasad, Rajendra

    2013-02-01

    This article is aimed at studying the effect of ion irradiation on free volume of polyethersulphone (PES) and polyamide nylon-6 (PN-6) polymers by positron annihilation lifetime spectroscopy (PALS). Free volume properties of polymeric materials change with swift heavy ion irradiation. Free volume is found to have a strong correlation with the macroscopic properties of the polymer. PALS has recently emerged as a unique non-destructive and non-interfering nano-probe, capable of measuring the free volume hole size in polymers with high detection efficiency. PES and PN-6 polymer films of thickness of 250 μm were irradiated with Li3+ ions of energy 50 MeV from the 15 UD Pelletron accelerator at the Inter University Accelerator Centre, New Delhi, India. PES films were irradiated to the fluences of 1011, 1012, 1013 and 1014 ions/cm2, whereas PN-6 films were irradiated to the fluences of 1011, 1012 and 1013 ions/cm2. The average free volume and fractional free volume obtained from the long-lived component, attributed to ortho-positronium lifetime, are found to vary with the variation of fluence in both the cases.

  4. 160 MeV Ni12+ ion irradiation effects on the structural, optical and electrical properties of spherical polypyrrole nanoparticles

    International Nuclear Information System (INIS)

    Hazarika, J.; Kumar, A.

    2014-01-01

    Highlights: • Upon SHI irradiation the average diameters of PPy nanoparticles increases. • Crystallinity of PPy nanoparticles increases with increasing ion fluence. • IR active vibrational bands have different cross sections for SHI irradiation. • Upon SHI irradiation optical band gap energy of PPy nanoparticles decreases. • Upon SHI irradiation thermal stability of PPy nanoparticles increases. -- Abstract: In this study we report 160 MeV Ni 12+ swift heavy ion irradiation induced enhancement in the structural, optical and electrical properties of spherical polypyrrole (PPy) nanoparticles. High resolution transmission electron microscope results show that the pristine PPy nanoparticles have an average diameter of 11 nm while upon irradiation the average diameter increases to 18 nm at the highest ion fluence of 1 × 10 12 ions/cm 2 . X-ray diffraction studies show an enhancement of crystallinity and average crystallite size of PPy nanoparticles with increasing fluence. Studies of Fourier transform infrared spectra suggest the structural modifications of different functional groups upon irradiation. It also reveals that different functional groups have different sensitivity to irradiation. The infrared active N–H vibrational band at 3695 cm −1 is more sensitive to irradiation with a formation cross-section of 5.77 × 10 −13 cm 2 and effective radius of 4.28 nm. The UV–visible absorption spectra of PPy nanoparticles show that the absorption band undergoes a red shift with increasing fluence. Moreover upon irradiation the optical band gap energy decreases and Urbach’s energy increases with fluence. Thermo-gravimetric analysis studies suggest that upon irradiation the thermal stability of PPy nanoparticles increases which may be attributed to their enhanced crystallinity. Current–voltage characteristics of PPy nanoparticles exhibit non-Ohmic, symmetric behavior which increases with fluence

  5. Structural modifications induced by ion irradiation and temperature in boron carbide B{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Victor, G., E-mail: g.victor@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pipon, Y.; Bérerd, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); CEA-DEN, Saclay, 91191 Gif-sur-Yvette (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Djourelov, N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd, BG-1784 Sofia (Bulgaria); ELI-NP, IFIN-HH, 30 Reactorului Str, MG-6 Bucharest-Magurele (Romania); Miro, S. [CEA-DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Baillet, J. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pradeilles, N.; Rapaud, O.; Maître, A. [SPCTS, UMR CNRS 7315, Centre Européen de la céramique, University of Limoges (France); Gosset, D. [CEA, Saclay, DMN-SRMA-LA2M, 91191 Gif-sur-Yvette (France)

    2015-12-15

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B{sub 4}C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B{sub 4}C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (S{sub e} ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B{sub 4}C structure under irradiation.

  6. Effect of ion beam irradiation on metal particle doped polymer ...

    Indian Academy of Sciences (India)

    that the surface roughness increases after ion beam irradiation. Keywords. Composite materials; ion beam irradiation; dielectric properties; X-ray diffraction. 1. Introduction. Various metal fillers were incorporated in polymers to pro- duce novel functionalized composites, which have found extensive applications, such as ...

  7. Rows of Dislocation Loops in Aluminium Irradiated by Aluminium Ions

    DEFF Research Database (Denmark)

    Henriksen, L.; Johansen, A.; Koch, J.

    1967-01-01

    Single-crystal aluminium specimens, irradiated with 50-keV aluminium ions, contain dislocation loops that are arranged in regular rows along <110 > directions. ©1967 The American Institute of Physics......Single-crystal aluminium specimens, irradiated with 50-keV aluminium ions, contain dislocation loops that are arranged in regular rows along directions. ©1967 The American Institute of Physics...

  8. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  9. Damage production in silicon carbide by dual ion beams irradiation

    Science.gov (United States)

    Wang, Xu; Zhang, Yanwen; Han, Dong; Zhao, Yunbiao; Zhao, Ziqiang; Zhang, Ming

    2018-02-01

    Lattice damage and evolution in single crystalline 6H-SiC under Si + He successively dual ion beams irradiation is studied by using Raman spectroscopy, high resolution X-ray diffraction (HRXRD) and nano-indentation tests. Single Si and He ion irradiations are also performed for the comparison. The results of Raman spectra reveal that the damage level increases with the fluence. A normal strain profile along the ion path is generated due to ion irradiation induced dilation of lattices, contributing mainly by interstitial related defects. Moreover, Si and He ion implantation produced different types of defects. The damage and chemical bonding states are significantly changed after He atoms implanted in Si pre-irradiated samples. Si + He dual ion irradiations increase the damage level further, resulting in changes of the damage states because of complex defects interactions. The nano-hardness of irradiated SiC is combined results of hardening effects of some kinds of defects and the breakdown of covalent-bonds. The mechanical properties present significant differences between single Si, He and Si + He successively dual ion beam irradiations, due to defects evolution during the irradiation process.

  10. Positron annihilation lifetime and Doppler broadening study in 50 MeV Li{sup 3+} ion irradiated polystyrene films

    Energy Technology Data Exchange (ETDEWEB)

    Asad Ali, S., E-mail: asadapd@yahoo.co [Department of Applied Physics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002 (India); Kumar, Rajesh [Department of Physics, University School of Basic and Applied Sciences, G.G.S.I.P University, New Delhi 110403 (India); Nambissan, P.M.G. [Saha Institute of Nuclear Physics, 1/AF, Bidhan Nagar, Kolkata 700064 (India); Singh, F. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Prasad, Rajendra [Department of Applied Physics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002 (India); Vivekananda College of Technology and Management, Aligarh 202002 (India)

    2010-06-15

    Swift heavy ion (SHI) irradiation of polymeric materials results in the change of their free volume properties which have strong correlation with their macroscopic properties. The modification depends on the polymer and ion beam parameters, namely ion energy, fluence and ion species. Polystyrene films were irradiated with Li{sup 3+} ions of energy 50 MeV from 15 UD Pelletron accelerators at Inter University Accelerator Centre (IUAC), New Delhi, India to the fluences of 10{sup 11}, 10{sup 12} and 10{sup 13} ions/cm{sup 2}. Nanosized free volume parameters in the polymer have been studied by positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS). From o-Ps lifetime {tau}{sub 3,} free volume hole radius, mean free volume of microvoids and fractional free volume are computed and modification in free volume with the fluence is studied. Free volume parameters change slowly with ion fluence with a decrease at the highest fluence of 10{sup 13} ions/cm{sup 2}. The decrease in {tau}{sub 3} and I{sub 3} (reflecting the number of free volume holes) may be interpreted on the process of cross-linking. S parameter obtained from DBS measurements showed a minor decrease with increasing fluence.

  11. An attempt to apply the inelastic thermal spike model to surface modifications of CaF2 induced by highly charged ions: comparison to swift heavy ions effects and extension to some others material.

    Science.gov (United States)

    Dufour, C; Khomrenkov, V; Wang, Y Y; Wang, Z G; Aumayr, F; Toulemonde, M

    2017-03-08

    Surface damage appears on materials irradiated by highly charged ions (HCI). Since a direct link has been found between surface damage created by HCI with the one created by swift heavy ions (SHI), the inelastic thermal spike model (i-TS model) developed to explain track creation resulting from the electron excitation induced by SHI can also be applied to describe the response of materials under HCI which transfers its potential energy to electrons of the target. An experimental description of the appearance of the hillock-like nanoscale protrusions induced by SHI at the surface of CaF 2 is presented in comparison with track formation in bulk which shows that the only parameter on which we can be confident is the electronic energy loss threshold. Track size and electronic energy loss threshold resulting from SHI irradiation of CaF 2 is described by the i-TS model in a 2D geometry. Based on this description the i-TS model is extended to three dimensions to describe the potential threshold of appearance of protrusions by HCI in CaF 2 and to other crystalline materials (LiF, crystalline SiO 2 , mica, LiNbO 3 , SrTiO 3 , ZnO, TiO 2 , HOPG). The strength of the electron-phonon coupling and the depth in which the potential energy is deposited near the surface combined with the energy necessary to melt the material defines the classification of the material sensitivity. As done for SHI, the band gap of the material may play an important role in the determination of the depth in which the potential energy is deposited. Moreover larger is the initial potential energy and larger is the depth in which it is deposited.

  12. 125 MeV Si 9+ ion irradiation of calcium phosphate thin film coated by rf-magnetron sputtering technique

    Science.gov (United States)

    Elayaraja, K.; Joshy, M. I. Ahymah; Suganthi, R. V.; Kalkura, S. Narayana; Palanichamy, M.; Ashok, M.; Sivakumar, V. V.; Kulriya, P. K.; Sulania, I.; Kanjilal, D.; Asokan, K.

    2011-01-01

    Titanium substrate was coated with hydroxyapatite by radiofrequency magnetron sputtering (rf-magnetron sputtering) technique and subjected to swift heavy ion (SHI) irradiation of 125 MeV with Si 9+ at fluences of 1 × 10 10, 1 × 10 11 and 1 × 10 12 ions/cm 2. The glancing incidence X-ray diffraction (GIXRD) analysis confirmed the HAp phase of the irradiated film. There was a considerable decrease in crystallinity and particle size after irradiation. In addition, DRS-UV reflectance spectra revealed a decrease in optical band gap ( Eg) from 5.2 to 4.6 eV. Wettability of biocompatible materials plays an important role in biological cells proliferation for tissue engineering, drug delivery, gene transfer and bone growth. HAp thin films irradiated with 1 × 10 11 ions/cm 2 fluence showed significant increase in wettability. While the SHI irradiated samples exhibited enhanced bioactivity, there was no significant variation in cell viability. Surface roughness, pores and average particle size were analyzed by atomic force microscopy (AFM).

  13. Anti-biofilm activity of Fe heavy ion irradiated polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, R.P. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Hareesh, K., E-mail: appi.2907@gmail.com [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Bankar, A. [Department of Microbiology, Waghire College, Pune 412301 (India); Sanjeev, Ganesh [Microtron Centre, Department of Studies in Physics, Mangalore University, Mangalore 574166 (India); Asokan, K.; Kanjilal, D. [Inter University Accelerator Centre, Arun Asaf Ali Marg, New Delhi 110067 (India); Dahiwale, S.S.; Bhoraskar, V.N. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-10-01

    Highlights: • PC films were irradiated by 60 and 120 MeV Fe ions. • Irradiated PC films showed changes in its physical and chemical properties. • Irradiated PC also showed more anti-biofilm activity compared to pristine PC. - Abstract: Polycarbonate (PC) polymers were investigated before and after high energy heavy ion irradiation for anti-bacterial properties. These PC films were irradiated by Fe heavy ions with two energies, viz, 60 and 120 MeV, at different fluences in the range from 1 × 10{sup 11} ions/cm{sup 2} to 1 × 10{sup 13} ions/cm{sup 2}. UV-Visible spectroscopic results showed optical band gap decreased with increase in ion fluences due to chain scission mainly at carbonyl group of PC which is also corroborated by Fourier transform infrared spectroscopic results. X-ray diffractogram results showed decrease in crystallinity of PC after irradiation which leads to decrease in molecular weight. This is confirmed by rheological studies and also by differential scanning calorimetric results. The irradiated PC samples showed modification in their surfaces prevents biofilm formation of human pathogen, Salmonella typhi.

  14. Study of elementary transfer mechanisms during a collision between a swift multi-charged heavy ion and a neutral atom

    International Nuclear Information System (INIS)

    Jardin, P.

    1995-01-01

    This work is dedicated to the study of the energy transfer mechanisms which occur during a collision between a swift multicharged heavy ion and a neutral atom. The elementary energy energy transfer mechanisms (scattering, excitation, ionization, capture) and their consequences on the target velocity after the collision (recoil velocity) are recalled in the first chapter. In the case of small projectile diffusion angles, we show that the recoil velocity component, transverse to the incident projectile direction, results principally from the diffusion mechanism, while the longitudinal component is due essentially to the mass transfer and the inelastic energy transfer mechanisms. Since the target recoil velocities are very small, we have built an experimental set-up which reduces the impreciseness on their measurement due to the target thermal spread using, as targets, cooled atoms of a supersonic jet (temperature 44+ (6.7 MeV/A) + Ar => Xe 44 + Ar q+ +qe - (q ranging from 1 to 7); Xe 44+ (6.7 MeV/A) + He => Xe 44+ He 1+,2+ +1e - ,2e - . We show that it is possible to interpret the recoil velocity in terms of kinetic energy transferred to the target and to the electrons ejected from the target. (author)

  15. Transition metal swift heavy ion implantation on 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. Ashraf; Kumar, J. [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Ramakrishnan, V. [Indian Institute of Science Education and Research, Thiruvanthapuram (India); Asokan, K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2016-03-01

    This work reports on the realization of Quantum Ring (QR) and Quantum Dot (QD) like structures on 4H-SiC through SHI implantation and on their Raman studies. 4H-SiC is SHI implanted with Transition Metal (TM) Ni ion at different fluences. It is observed that a vibrational mode emerges as the result of Ni ion implantation. The E{sub 2} (TO) and the A{sub 1} (LO) are suppressed as the fluence increases. In this paper Raman and AFM studies have been performed at room temperature and the queer anomalies are addressed so new devices can be fabricated.

  16. Transition metal swift heavy ion implantation on 4H-SiC

    Science.gov (United States)

    Ali, A. Ashraf; Kumar, J.; Ramakrishnan, V.; Asokan, K.

    2016-03-01

    This work reports on the realization of Quantum Ring (QR) and Quantum Dot (QD) like structures on 4H-SiC through SHI implantation and on their Raman studies. 4H-SiC is SHI implanted with Transition Metal (TM) Ni ion at different fluences. It is observed that a vibrational mode emerges as the result of Ni ion implantation. The E2 (TO) and the A1 (LO) are suppressed as the fluence increases. In this paper Raman and AFM studies have been performed at room temperature and the queer anomalies are addressed so new devices can be fabricated.

  17. Excitation of swift heavy ions in foil targets: X-radiation from Br

    International Nuclear Information System (INIS)

    Hay, J.H.; Pender, L.F.; Treacy, P.B.

    1985-11-01

    An experimental arrangement is described to detect delayed X-rays emitted following foil excitation of 130 MeV Br ions at distances to 190 mm downstream of a self-supporting carbon target. The intensities of L X-rays at a number of distances were measured. The observations are discussed in terms of the decay of high-n Rydberg ions. It is shown that, in addition to the expected yrast cascades, there are other little-understood casades with high intensities

  18. Resolution of the carbon contamination problem in ion irradiation experiments

    Science.gov (United States)

    Was, G. S.; Taller, S.; Jiao, Z.; Monterrosa, A. M.; Woodley, D.; Jennings, D.; Kubley, T.; Naab, F.; Toader, O.; Uberseder, E.

    2017-12-01

    The widely experienced problem of carbon uptake in samples during ion irradiation was systematically investigated to identify the source of carbon and to develop mitigation techniques. Possible sources of carbon included carbon ions or neutrals incorporated into the ion beam, hydrocarbons in the vacuum system, and carbon species on the sample and fixture surfaces. Secondary ion mass spectrometry, atom probe tomography, elastic backscattering spectrometry, and principally, nuclear reaction analysis, were used to profile carbon in a variety of substrates prior to and following irradiation with Fe2+ ions at high temperature. Ion irradiation of high purity Si and Ni, and also of alloy 800H coated with a thin film of alumina eliminated the ion beam as the source of carbon. Hydrocarbons in the vacuum and/or on the sample and fixtures was the source of the carbon that became incorporated into the samples during irradiation. Plasma cleaning of the sample and sample stage, and incorporation of a liquid nitrogen cold trap both individually and especially in combination, completely eliminated the uptake of carbon during heavy ion irradiation. While less convenient, coating the sample with a thin film of alumina was also effective in eliminating carbon incorporation.

  19. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  20. Stability of uranium silicides during high energy ion irradiation

    International Nuclear Information System (INIS)

    Birtcher, R.C; Wang, L.M.

    1991-11-01

    Changes induced by 1.5 MeV Kr ion irradiation of both U 3 Si and U 3 Si 2 have been followed by in situ transmission electron microscopy. When irradiated at sufficiently low temperatures, both alloys transform from the crystalline to the amorphous state. When irradiated at temperatures above the temperature limit for ion beam amorphization, both compounds disorder with the Martensite twin structure in U 3 Si disappearing from view in TEM. Prolonged irradiation of the disordered crystalline phases results in nucleation of small crystallites within the initially large crystal grains. The new crystallites increase in number during continued irradiation until a fine grain structure is formed. Electron diffraction yields a powder-like diffraction pattern that indicates a random alignment of the small crystallites. During a second irradiation at lower temperatures, the small crystallizes retard amorphization. After 2 dpa at high temperatures, the amorphization dose is increased by over twenty times compared to that of initially unirradiated material

  1. Radiation hardening of metals irradiated by heavy ions

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Skuratov, V.A.; Mikhajlova, N.Yu.; Regel', V.R.

    1988-01-01

    The damage dose dependence in the 10 -4 -10 -2 dpa region of radiation hardening of Al, V, Ni, Cu irradiated by xenon ions with 124 MeV energy is investigated using the microhardness technique and transmission electron microscope. It is shown that the pure metals radiation hardening is stimulated for defects clusters with the typical size less than 5 nm, as in the case of neutron and the light charge ion irradiation

  2. Heavy-ion irradiation induced diamond formation in carbonaceous materials

    International Nuclear Information System (INIS)

    Daulton, T. L.

    1999-01-01

    The basic mechanisms of metastable phase formation produced under highly non-equilibrium thermodynamic conditions within high-energy particle tracks are investigated. In particular, the possible formation of diamond by heavy-ion irradiation of graphite at ambient temperature is examined. This work was motivated, in part, by earlier studies which discovered nanometer-grain polycrystalline diamond aggregates of submicron-size in uranium-rich carbonaceous mineral assemblages of Precambrian age. It was proposed that the radioactive decay of uranium formed diamond in the fission particle tracks produced in the carbonaceous minerals. To test the hypothesis that nanodiamonds can form by ion irradiation, fine-grain polycrystalline graphite sheets were irradiated with 400 MeV Kr ions. The ion irradiated graphite (and unirradiated graphite control) were then subjected to acid dissolution treatments to remove the graphite and isolate any diamonds that were produced. The acid residues were then characterized by analytical and high-resolution transmission electron microscopy. The acid residues of the ion-irradiated graphite were found to contain ppm concentrations of nanodiamonds, suggesting that ion irradiation of bulk graphite at ambient temperature can produce diamond

  3. Magnetic patterning by means of ion irradiation and implantation

    International Nuclear Information System (INIS)

    Fassbender, J.; McCord, J.

    2008-01-01

    A pure magnetic patterning by means of ion irradiation which relies on a local modification of the magnetic anisotropy of a magnetic multilayer structure has been first demonstrated in 1998. Since then also other magnetic properties like the interlayer exchange coupling, the exchange bias effect, the magnetic damping behavior and the saturation magnetization to name a few have also been demonstrated to be affected by ion irradiation or ion implantation. Consequently, all these effects can be used if combined with a masking technique or employing direct focused ion beam writing for a magnetic patterning and thus an imprinting of an artificial magnetic domain structure, which subsequently modifies the integral magnetization reversal behavior or the magnetization dynamics of the film investigated. The present review will summarize how ion irradiation and implantation can affect the magnetic properties by means of structural modifications. The main part will cover the present status with respect to the pure magnetic patterning of micro- and nano structures

  4. Fragmentation of water on swift {sup 3}He{sup 2+} ion impact

    Energy Technology Data Exchange (ETDEWEB)

    Sabin, John R. [Quantum Theory Project, Departments of Chemistry and Physics, P.O. Box 118435, University of Florida, Gainesville, FL 32611-8435 (United States); Institut for Fysik og Kemi, Suddansk Universitet, 5230 Odense M (Denmark)], E-mail: sabin@qtp.ufl.edu; Cabrerra-Trujillo, Remigio [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, Cuernavaca, Morelos 62251 (Mexico); Stolterfoht, Nikolaus [Hahn-Meitner Institut, Glienickerstrasse 100, D-14109 Berlin (Germany); Deumens, Erik; Ohrn, Yngve [Quantum Theory Project, Departments of Chemistry and Physics, P.O. Box 118435, University of Florida, Gainesville, FL 32611-8435 (United States)

    2009-01-15

    Charge exchange and fragmentation are the usual results in ion-molecule collision systems, and the specifics of the fragmentation process determine the chemical destiny of the target system. In this paper, we report recent progress on calculations of the fragmentation patterns for the model system He{sup 2+} + H{sub 2}O for projectile energies of a few keV. The calculations are obtained using the electron-nuclear dynamics (END) method for solution of the time-dependent Schroedinger equation.

  5. Effect of ion beam irradiation on metal particle doped polymer ...

    Indian Academy of Sciences (India)

    Polymethyl methacrylate (PMMA) was prepared by solution polymerization method. Different concentrations (10, 20 and 40%) of Ni powder were dispersed in PMMA and the composite films were prepared by casting method. These films were irradiated with 120 MeV Ni 10 + ions at a fluence of 5 × 1012 ions/cm2. Electrical ...

  6. Neurite outgrowth on fluorinated polyimide film micropatterned by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Y.; Sato, M.; Nagaoka, S.; Kawakami, H. E-mail: kawakami-hiroyoshi@c.metro-u.ac.jp; Suzuki, Y.; Iwaki, M

    2003-05-01

    In this study, we investigated neurite outgrowth on a fluorinated polyimide film micropatterned by ion irradiation. We used the fluorinated polyimide because of its excellent thermal and mechanical properties and biocompatibility. Rattus norvegicus chromaphin (PC12) cells were used for in vitro studies. The polyimide films were irradiated with He{sup +}, Ne{sup +} or Kr{sup +} at 1 x 10{sup 14} ions/cm{sup 2} using an ion-beam mask. The lines in the mask were 120 and 160 {mu}m wide and 120-160 {mu}m apart. PC12 cells were selectively adhered on the polyimide film micropatterned by Kr{sup +}-irradiation. However, the neurite length on the film irradiated by Kr{sup +} was shorter than that determined in the film irradiated by He{sup +}. On the other hand, neurite outgrowth on the polyimide film micropatterned by He{sup +}-irradiation was at least 100 {mu}m in length. This initial study indicated the enhanced outgrowth of PC12 cells on the fluorinated polyimide film micropatterned by ion irradiation.

  7. Modification of ion implanted or irradiated single crystal sapphire

    International Nuclear Information System (INIS)

    Song Yin; Zhang Chonghong; Wang Zhiguang; Zhao Zhiming; Yao Cunfeng; Zhou Lihong; Jin Yunfan

    2006-01-01

    Single crystal sapphire (Al 2 O 3 ) samples were implanted at 600 K by He, Ne and Ar ions with energy of 110 keV to doses ranging from 5 x 10 16 to 2 x 10 17 ion/cm 2 or irradiated at 320 K by 208 Pb 27+ ion with energy of 1.1 MeV/u to the fluences ranging from 1 x 10 12 to 5 x 10 14 ion/cm 2 . The modification of structure and optical properties induced by ion implantation or irradiation were analyzed by using photoluminescence (PL) and Fourier transformation infrared spectrum (FTIR) spectra and transmission electron microscopy (TEM) measurements. The PL measurements showed that absorption peaks located at 375, 413 and 450 nm appeared in all the implanted or irradiated samples, the PL intensities reached up to the maximum for the 5 x 10 16 ion/cm 2 implanted samples. After Pb-ion irradiation, a new peak located at 390 nm formed. TEM analyses showed that small size voids (1-2 nm) with high density were formed in the region from the surface till to about 100 nm in depth and also large size Ne-bubble formed in the Ne-doped region. Form the obtained FTIR spectra, it was found that Pb-ion irradiation induced broadening of the absorption band in 460-510 cm -1 and position shift of the absorption band in 1000-1300 cm -1 towards to high wavenumber. The possible damage mechanism in single crystal sapphire induced by energetic ion implantation or irradiation was briefly discussed. (authors)

  8. Molecular characterization of microbial mutations induced by ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Hiroyuki [Graduate School of Science and Technology, Chiba University, Matsudo, Chiba 271-8510 (Japan); Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan)], E-mail: ichida@riken.jp; Matsuyama, Tomoki [Cellular Biochemistry Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Ryuto, Hiromichi [Accelerator Operation Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Hayashi, Yoriko [Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Fukunishi, Nobuhisa [Accelerator Operation Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Abe, Tomoko [Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Koba, Takato [Graduate School of Science and Technology, Chiba University, Matsudo, Chiba 271-8510 (Japan)

    2008-03-01

    A positive selection system for gene disruption using a sucrose-sensitive transgenic rhizobium was established and used for the molecular characterization of mutations induced by ion beam irradiations. Single nucleotide substitutions, insertions, and deletions were found to occur in the sucrose sensitivity gene, sacB, when the reporter line was irradiated with highly accelerated carbon and iron ion beams. In all of the insertion lines, fragments of essentially the same sequence and of approximately 1188 bp in size were identified in the sacB regions. In the deletion lines, iron ions showed a tendency to induce larger deletions than carbon ions, suggesting that higher LET beams cause larger deletions. We found also that ion beams, particularly 'heavier' ion beams, can produce single gene disruptions and may present an effective alternative to transgenic approaches.

  9. Corrosion characteristics of Hastelloy N alloy after He+ ion irradiation

    International Nuclear Information System (INIS)

    Lin Jianbo; Yu Xiaohan; Li Aiguo; He Shangming; Cao Xingzhong; Wang Baoyi; Li Zhuoxin

    2014-01-01

    With the goal of understanding the invalidation problem of irradiated Hastelloy N alloy under the condition of intense irradiation and severe corrosion, the corrosion behavior of the alloy after He + ion irradiation was investigated in molten fluoride salt at 700 °C for 500 h. The virgin samples were irradiated by 4.5 MeV He + ions at room temperature. First, the virgin and irradiated samples were studied using positron annihilation lifetime spectroscopy (PALS) to analyze the influence of irradiation dose on the vacancies. The PALS results showed that He + ion irradiation changed the size and concentration of the vacancies which seriously affected the corrosion resistance of the alloy. Second, the corroded samples were analyzed using synchrotron radiation micro-focused X-ray fluorescence, which indicated that the corrosion was mainly due to the dealloying of alloying element Cr in the matrix. Results from weight-loss measurement showed that the corrosion generally correlated with the irradiation dose of the alloy. (author)

  10. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions....... Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track-structure based alanine...

  11. L3 subshell alignment in bismuth induced by swift silicon ions

    Science.gov (United States)

    Kumar, Ajay; Agnihotri, A. N.; Misra, D.; Kasthurirangan, S.; Sarkadi, L.; Tribedi, L. C.

    2015-03-01

    Angular- and impact energy- dependence of L x-rays of bismuth in collisions with silicon ions has been measured. Unlike isotropic emission of the {{L}α }-group and the {{L}β }-group x-rays, the Ll x-ray yield was observed to have impact energy dependent anisotropy emission. The anisotropy parameter for the Ll x-ray line was obtained by using the intensity ratio of the Ll-to-other L x-rays in the same spectrum. The alignment parameter of the L3 subshell was deduced from the measured anisotropy parameter of the Ll x-ray and has been compared with those obtained from the collisional theoretical models based on the plane-wave Born approximation and its extension.

  12. Carbon nanowires generated by ion irradiation of hydrocarbon ices

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, O., E-mail: opuglisi@unict.it [Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, Catania 95125 (Italy); Compagnini, G.; D’Urso, L. [Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, Catania 95125 (Italy); Baratta, G.A.; Palumbo, M.E.; Strazzulla, G. [Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Catania, Via S. Sofia 78, Catania 95123 (Italy)

    2014-05-01

    In this paper we present the formation of carbon nanowires (polyynes and polycumulenes) in the solid state by ion irradiation of frozen hydrocarbons (C{sub 6}H{sub 6} and C{sub 2}H{sub 2}). Irradiations have been performed using H{sup +} ions in the 100’s keV energy regime using fluences up to 5 × 10{sup 14} ions/cm{sup 2}. Beyond the intrinsic significance of these results in the field of material science, this work has been motivated by the fact that ion beam irradiation of hydrocarbon ices is one of the most important process thought to happen in several extraterrestrial environments where many spectroscopic features of polyyne molecules have been identified.

  13. Swift essentials

    CERN Document Server

    Blewitt, Alex

    2014-01-01

    Whether you are a seasoned Objective-C developer or new to the Xcode platform, Swift Essentials will provide you with all you need to know to get started with the language. Prior experience with iOS development is not necessary, but will be helpful to get the most out of the book.

  14. Reduction and structural modification of zirconolite on He+ ion irradiation

    Science.gov (United States)

    Gupta, Merry; Kulriya, P. K.; Shukla, Rishabh; Dhaka, R. S.; Kumar, Raj; Ghumman, S. S.

    2016-07-01

    The immobilization of minor actinides and alkaline-earth metal is a major concern in nuclear industry due to their long-term radioactive contribution to the high level waste (HLW). Materials having zirconolite, pyrochlore, and perovskite structure are promising candidates for immobilization of HLW. The zirconolite which exhibits high radiation stability and corrosion resistance behavior is investigated for its radiation stability against alpha particles in the present study. CaZrTi2O7 pellets prepared using solid state reaction techniques, were irradiated with 30 keV He+ ions for the ion fluence varying from 1 × 1017 to 1 × 1021 ions/m2. Scanning electron microscopy (SEM) images of the un-irradiated sample exhibited well separated grains with average size of about 6.8 μm. On the ion irradiation, value of the average grains size was about 7.1 μm, and change in the microstructure was insignificant. The X-ray photoelectron spectroscopy (XPS) studies showed a shift in the core level peak position (of Ca 2p, Ti 2p and Zr 3d) towards lower binding energy with respect to pristine sample as well as loss of oxygen was also observed for sample irradiated with the ion fluence of 1 × 1020 ions/m2. These indicate a decrease in co-ordination number and the ionic character of Msbnd O bond. Moreover, core level XPS signal was not detected for sample irradiated with ion fluence of 1 × 1021 ions/m2, suggesting surface damage of the sample at this ion fluence. However, X-ray diffraction (XRD) studies showed that zirconolite was not amorphized even on irradiation up to a fluence order of 1 × 1021 ion/m2. But, significant decrease in peak intensity due to creation of defects and a marginal positive peak shift due to tensile strain induced by irradiation, were observed. Thus, XRD along with XPS investigation suggests that reduction, decrease in co-ordination number, and increase in covalency are responsible for the radiation damage in zirconolite.

  15. Gas porosity in metals and alloys irradiated by helium ions

    International Nuclear Information System (INIS)

    Kalin, B.A.; Korshunov, S.N.; Chernov, I.I.

    1987-01-01

    Experimental studies of the development of gas porosity in metals and alloys during irradiation with helium ions up to high doses and during post-irradiation annealings, are reviewed. The main theoretical problems of the mechanisms of bubble formation and growth, the regularities and peculiarities of bubble development in a thin near-the surface layer during the introduction of helium with the energy of tens of kiloelectron volt, are considered

  16. 160 MeV Ni{sup 12+} ion irradiation effects on the structural, optical and electrical properties of spherical polypyrrole nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, J.; Kumar, A., E-mail: ask@tezu.ernet.in

    2014-01-01

    Highlights: • Upon SHI irradiation the average diameters of PPy nanoparticles increases. • Crystallinity of PPy nanoparticles increases with increasing ion fluence. • IR active vibrational bands have different cross sections for SHI irradiation. • Upon SHI irradiation optical band gap energy of PPy nanoparticles decreases. • Upon SHI irradiation thermal stability of PPy nanoparticles increases. -- Abstract: In this study we report 160 MeV Ni{sup 12+} swift heavy ion irradiation induced enhancement in the structural, optical and electrical properties of spherical polypyrrole (PPy) nanoparticles. High resolution transmission electron microscope results show that the pristine PPy nanoparticles have an average diameter of 11 nm while upon irradiation the average diameter increases to 18 nm at the highest ion fluence of 1 × 10{sup 12} ions/cm{sup 2}. X-ray diffraction studies show an enhancement of crystallinity and average crystallite size of PPy nanoparticles with increasing fluence. Studies of Fourier transform infrared spectra suggest the structural modifications of different functional groups upon irradiation. It also reveals that different functional groups have different sensitivity to irradiation. The infrared active N–H vibrational band at 3695 cm{sup −1} is more sensitive to irradiation with a formation cross-section of 5.77 × 10{sup −13} cm{sup 2} and effective radius of 4.28 nm. The UV–visible absorption spectra of PPy nanoparticles show that the absorption band undergoes a red shift with increasing fluence. Moreover upon irradiation the optical band gap energy decreases and Urbach’s energy increases with fluence. Thermo-gravimetric analysis studies suggest that upon irradiation the thermal stability of PPy nanoparticles increases which may be attributed to their enhanced crystallinity. Current–voltage characteristics of PPy nanoparticles exhibit non-Ohmic, symmetric behavior which increases with fluence.

  17. Alternative approaches to electronic damage by ion-beam irradiation: Exciton models

    Energy Technology Data Exchange (ETDEWEB)

    Agullo-Lopez, F.; Munoz-Martin, A.; Zucchiatti, A. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, 28049, Madrid (Spain); Climent-Font, A. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, 28049, Madrid (Spain); Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, 28049, Madrid (Spain)

    2016-11-15

    The paper briefly describes the main features of the damage produced by swift heavy ion (SHI) irradiation. After a short revision of the widely used thermal spike concept, it focuses on cumulative mechanisms of track formation which are alternative to those based on lattice melting (thermal spike models). These cumulative mechanisms rely on the production of point defects around the ion trajectory, and their accumulation up to a final lattice collapse or amorphization. As to the formation of point defects, the paper considers those mechanisms relying on direct local conversion of the excitation energy into atomic displacements (exciton models). A particular attention is given to processes based on the non-radiative recombination of excitons that have become self-trapped as a consequence of a strong electron-phonon interaction (STEs). These mechanisms, although operative under purely ionizing radiation in some dielectric materials, have been rarely invoked, so far, to discuss SHI damage. They are discussed in this paper together with relevant examples to materials such as Cu{sub 3}N, alkali halides, SiO{sub 2}, and LiNbO{sub 3}. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Ion irradiation-induced polycrystalline InSb foam

    Science.gov (United States)

    Giulian, R.; Salazar, J. B.; Just, W.; Manzo, D. J.; de Andrade, A. M. H.; Schoffen, J. R.; Bernardi, F.; Baptista, D. L.; Fichtner, P. F. P.

    2017-12-01

    InSb films with various thicknesses were deposited by magnetron sputtering on SiO2/Si substrates and subsequently irradiated with 17 MeV Au+7 ions. The structural and electronic changes induced by ion irradiation were investigated by synchrotron and laboratory based techniques. Ion irradiation of InSb transforms compact films (amorphous and polycrystalline) in open cell solid foams. The initial stages of porosity were investigated by transmission electron microscopy analysis and reveal the porous structure initiates as small spherical voids with approximately 3 nm in diameter. The evolution of porosity was investigated by scanning electron microscopy images, which show that film thickness increases up to 16 times with increasing irradiation fluence. Here we show that amorphous InSb films become polycrystalline foams upon irradiation with 17 MeV Au+7 ions at fluences above 1014 cm‑2. The films attain a zincblende phase, with crystallites randomly oriented, similarly to the polycrystalline structure attained by thermal annealing of unirradiated films.

  19. Structural evolution of zirconium carbide under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D. [CEA Saclay, DEN/DMN/SRMA, F-91191 Gif/Yvette cedex (France)], E-mail: dominique.gosset@cea.fr; Dolle, M. [CEMES-CNRS (UPR 8011), BP 94347, F-31055 Toulouse cedex 4 (France); Simeone, D. [CEA Saclay, DEN/DMN/SRMA, F-91191 Gif/Yvette cedex (France); Baldinozzi, G. [SPMS, Ecole Centrale Paris, F-92295 Chatenay-Malabry cedex (France); Thome, L. [CSNSM, bat. 108, F-91405 Orsay (France)

    2008-02-15

    Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10{sup 11} to 5 x 10{sup 15} cm{sup -2}) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (<10{sup 12} cm{sup -2}), low modifications are observed. At intermediate fluence, high micro-strains appear together with small faulted dislocation loops. At the highest fluence (>10{sup 14} cm{sup -2}), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10{sup 14} ions/cm{sup 2}, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.

  20. Comparison of deuterium retention for ion-irradiated and neutron-irradiated tungsten

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Kobayashi, Makoto; Okuno, Kenji; Shimada, Masashi; Calderoni, Pattrick; Oda, Takuji; Hara, Masanori; Hatano, Yuji; Watanabe, Hideo

    2014-01-01

    The behavior of D retentions for Fe 2+ irradiated tungsten with the damage of 0.025-3 dpa was compared with that for neutron irradiated tungsten with 0.025 dpa. The D 2 TDS spectra for Fe 2+ irradiated tungsten consisted of two desorption stages at 450 K and 550 K although that for neutron irradiated tungsten was composed of three stages and addition desorption stage was found around 750 K. The desorption rate of major desorption stage at 550 K increased as the number of dpa by Fe 2+ irradiation increased. In addition, the first desorption stage at 450 K was only found for the damaged samples, indicating that the second stage would be based on intrinsic defects or vacancy produced by Fe 2+ irradiation and the first stage should be the accumulation of D in mono vacancy leading to the lower activation energy, where the dislocation loop and vacancy was produced. The third one was only found for the neutron irradiation, showing the D trapping by void or vacancy cluster and the diffusion effect is also contributed due to high FWHM of TDS spectrum. It can be said that the D 2 TDS spectra for Fe 2+ -irradiated tungsten could not represent that for neutron-irradiated one, showing that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten has a difference from that for ion-irradiated one. (author)

  1. The effect of ion irradiation on inert gas bubble mobility

    International Nuclear Information System (INIS)

    Alexander, D.E.; Birtcher, R.C.

    1991-09-01

    The effect of Al ion irradiation on the mobility of Xe gas bubbles in Al thin films was investigated. Transmission electron microscopy was used to determine bubble diffusivities in films irradiated and/or annealed at 673K, 723K and 773K. Irradiation increased bubble diffusivity by a factor of 2--9 over that due to thermal annealing alone. The Arrhenius behavior and dose rate dependence of bubble diffusivity are consistent with a radiation enhanced diffusion phenomenon affecting a volume diffusion mechanism of bubble transport. 9 refs., 3 figs., 2 tabs

  2. Opto-chemical response of Makrofol-KG to swift heavy ion irradiation

    Indian Academy of Sciences (India)

    [9] T Seguchi, T Yagi, S Ishikawa and Y Sano, Radiat. Phys. Chem. 63, 35 (2002). [10] B Ranby and J Rabek, ESR spectroscopy in polymer research (Springer, Berlin, 1977) Vol. 9, p. 607. [11] E Ferrain and R Legras, Nucl. Instrum. Methods B825, 39 (1993). [12] A M P Hussain, A Kumar, F Singh and D K Avasthi, J. Phys.

  3. Swift heavy ion irradiation effect on Cu-doped CdS nanocrystals ...

    Indian Academy of Sciences (India)

    Administrator

    ); X-ray diffraction (XRD); photoluminescence (PL). 1. Introduction. Semiconductor CdS nanocrystals (NCs) have been widely synthesized and studied because they have unique proper- ties and are suitable for photo reactivity and photo cata-.

  4. Modification of polyacrylonitrile carbon fibers by highfluence ion irradiation

    Science.gov (United States)

    Andrianova, N. N.; Borisov, A. M.; Kazakov, V. A.; Mashkova, E. S.; Ovchinnikov, M. A.; Savushkina, S. V.; Chernenko, N. M.

    2017-12-01

    The Raman spectroscopy has been used to analyse ion-induced modifications of carbon PAN-fiber shell due to 10-30 keV Ar+ high fluence ion irradiation at normal and oblique incidence in the temperature range from RT to 400 °C. It has shown that formed in ion-induced processes of amorphization, recrystallization and crimping the modifications of PAN-fiber shell are characterized by the presence of the amorphous phase with the A peak in the Raman spectra and the increased intensity of the D peak relative to the G peak in comparison with non-irradiated fiber. Amorphous phase in the PAN-fiber shell is the highest in case of amorphization and the least at the crimping. The increased intensity of the D peak in the Raman spectra and the G peak shift towards higher frequencies during recrystallization and crimping indicates ion-induced nanostructuring of the PAN- fiber shell.

  5. Ion-irradiation-induced defects in bundles of carbon nanotubes

    International Nuclear Information System (INIS)

    Salonen, E.; Krasheninnikov, A.V.; Nordlund, K.

    2002-01-01

    We study the structure and formation yields of atomic-scale defects produced by low-dose Ar ion irradiation in bundles of single-wall carbon nanotubes. For this, we employ empirical potential molecular dynamics and simulate ion impact events over an energy range of 100-1000 eV. We show that the most common defects produced at all energies are vacancies on nanotube walls, which at low temperatures are metastable but long-lived defects. We further calculate the spatial distribution of the defects, which proved to be highly non-uniform. We also show that ion irradiation gives rise to the formations of inter-tube covalent bonds mediated by carbon recoils and nanotube lattice distortions due to dangling bond saturation. The number of inter-tube links, as well as the overall damage, linearly grows with the energy of incident ions

  6. Carbon ion irradiation induced surface modification of polypropylene

    International Nuclear Information System (INIS)

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2001-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies in the fluence range of 5x10 13 -5x10 14 ions/cm 2 using 3 MV tandem accelerator. Ion penetration was limited to a few microns and surface modifications were investigated by scanning electron microscopy. At the lowest ion fluence only blister formation of various sizes (1-6 μm) were observed, but at higher fluence (1x10 14 ions/cm 2 ) a three-dimensional network structure was found to form. A gradual degradation in the network structure was observed with further increase in the ion fluence. The dose dependence of the changes on surface morphology of polypropylene is discussed

  7. Carbon ion irradiation induced surface modification of polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A. E-mail: abhijit@alpha.iuc.res.in; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N

    2001-12-01

    Polypropylene was irradiated with {sup 12}C ions of 3.6 and 5.4 MeV energies in the fluence range of 5x10{sup 13}-5x10{sup 14} ions/cm{sup 2} using 3 MV tandem accelerator. Ion penetration was limited to a few microns and surface modifications were investigated by scanning electron microscopy. At the lowest ion fluence only blister formation of various sizes (1-6 {mu}m) were observed, but at higher fluence (1x10{sup 14} ions/cm{sup 2}) a three-dimensional network structure was found to form. A gradual degradation in the network structure was observed with further increase in the ion fluence. The dose dependence of the changes on surface morphology of polypropylene is discussed.

  8. Effects of ion beam irradiation on Oncidium lanceanum

    International Nuclear Information System (INIS)

    Zaiton Ahmad; Affrida Abu Hassan; Nurul Aliaa Idris; Mohd Nazir Basiran

    2006-01-01

    Protocorm-like bodies (PLBs) of an orchid (Oncidium lanceanum) were irradiated using 220 MeV 12 C 5+ ion, accelerated by AVF cyclotron at JAEA, Japan in 2005. Five different doses were applied to the PLBs; 0, 1.0, 2.0, 6.0 and 12.0 Gy. Following irradiation, these PLBs were maintained in cultures for germination and multiplication. Irradiation effects on growth and seedling regeneration patterns as well as morphological characteristics of the in vitro cultures were monitored and recorded. In general, average fresh weights of the irradiated PLBs increased progressively by irradiating the explants at 1.0, 2.0 and reached the maximum at 6.0 Gy. The figure however dropped when the explants were irradiated at 12 Gy. Surprisingly, although the highest average fresh weight was recorded on PLBs irradiated at 6.0 Gy, most of these PLBs were not able to regenerate into complete shoots. On average, only 21 seedlings were successfully regenerated from each gram of these PLBs. The highest shoot regeneration was recorded on cultures irradiated at 2.0 Gy in which 102 seedlings were obtained from one gram of the PLBs. Most of the regenerated seedlings have been transferred to glass house for morphological screening. Molecular analysis showed the presence of DNA polymorphisms among the seedlings from different doses

  9. Ion and neutral emission from pulsed laser irradiation of metals

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Andó, L.; Gammino, S.; Krása, Josef; Láska, Leoš

    2001-01-01

    Roč. 184, - (2001), s. 327-336 ISSN 0168-583X Institutional research plan: CEZ:AV0Z1010921 Keywords : pulse laser irradiation * ion neutral emission * plasma * time of flight Subject RIV: BH - Optics, Masers, Laser s Impact factor: 1.041, year: 2001

  10. Nitrogen ion irradiation of Au(110) : formation of gold nitride

    NARCIS (Netherlands)

    Šiller, L.; Hunt, M.R.C.; Brown, J.W.; Coquel, J-M.; Rudolf, P.

    Often metal nitrides posses unique properties for applications, such as great hardness, high melting points, chemical stability, novel electrical and magnetic properties. One route to the formation of metal nitride films is through ion irradiation of metal surfaces. In this report, the results of

  11. Effects of ion beam irradiation on Oncidium lanceanum orchids

    International Nuclear Information System (INIS)

    Zaiton Ahmad; Affrida Abu Hassan

    2006-01-01

    Protocorm-like bodies (PLBs) of an orchid (Oncidium lanceanum) were irradiated using 220 MeV 12 C 5+ ions, accelerated by AVF cyclotron at JAEA, Japan in 2005. Five different doses were applied to the PLBs; 0, 1.0, 2.0, 6.0 and 12.0 Gy. Following irradiation, these PLBs were maintained in cultures for germination and multiplication. Irradiation effects on growth and seedling regeneration patterns as well as molecular characteristics of the in vitro cultures were monitored and recorded. In general, average fresh weights of the irradiated PLBs increased progressively by irradiating the explants at 1.0, 2.0 and reached the maximum at 6.0 Gy. The figure however dropped when the explants were irradiated at 12 Gy. Surprisingly, although the highest average fresh weight was recorded on PLBs irradiated at 6.0 Gy, most of these PLBs were not able to regenerate into complete shoots. On average, after 4 months of irradiation, only 21 seedlings were successfully regenerated from each gram of these PLBs. The highest shoot regeneration was recorded on cultures irradiated at 2.0 Gy in which 102 seedlings were obtained from one gram of the PLBs. Some morphological changes were seen on in vitro plantlets derived from PLBs irradiated at doses of 1.0 and 2.0 Gy. Most of the regenerated seedlings have been transferred to glasshouse for further morphological selection. Molecular analysis showed the presence of DNA polymorphisms among the seedlings from different doses of irradiation. (Author)

  12. Gel behavior of keV ion irradiated polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Calcagno, L.; Foti, G.; Licciardello, A.; Puglisi, O.

    1988-10-17

    Among the chemical and physical modifications induced by ion bombardment of polymers, the solubility changes are very important because of technological application for lithography in microelectronic devices. Solubility changes due to the occurrence of crosslinkings have been followed on monodisperse and polydisperse polystyrene after ion irradiations (10/sup 11/--10/sup 14/ ions/cm/sup 2/, keV energy). By using the Inokuty gel theory (M. Inokuti J. Appl. Phys. 38, 2999 (1963)), the chemical yield (crosslinking/eV) has been determined for different molecular weights and molecular weight distributions.

  13. Evaluation of Ion Irradiation Behavior of ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Sung; Kim, Min Chul; Hong, Jun Hwa; Han, Chang Hee; Chang, Young Mun; Bae, Chang Soo; Bae, Yoon Young; Chang, Moon Hee

    2006-08-15

    FM steel (Grade 92) and ODS alloy(MA956) specimens were ion irradiated with 122 MeV Ne ions. Irradiation temperatures were about 450 and 550 .deg. C and the peak dose was 1, 5, and 10 dpa. Cross-sectional TEM samples were prepared by the electrolytic Ni-plating after pre-treatment of the irradiated specimens. Irradiation cavities in FM steel and ODS alloy specimens were not much different in size; about 20 nm in diameter in both specimens irradiated at around 450 .deg. C. However, the size distribution of cavities in FM steel specimens was broader than that in ODS alloy specimen, indicating that the cavity growth probably via coalescence). It was noticeable that the location and the preferential growth of the cavities in FM steel specimens: cavities on the PAGB (prior austenite grain boundary) was significantly larger than those within the grains. This could be an important issue for the mechanical properties, especially high temperature creep, fracture toughness, and so on. The dependency of the dose threshold and swelling on the ratio of the inert gas concentration/dpa was analysed for the various irradiation source, including He, Ne, Fe/He, and fast neutron, and the empirical correlation was established.

  14. In-situ TEM and ion irradiation of ferritic materials

    International Nuclear Information System (INIS)

    Kirk, M.A.; Baldo, P.M; Liu, A.C.Y.; Ryan, E.A.; Birtcher, R.C.; Yao, Z.; Xu, S.; Jenkins, M.L.; Hernandez-Mayoral, M.; Kaoumi, D.; Motta, A.T.

    2009-01-01

    The intermediate voltage electron microscope-tandem user facility in the Electron Microscopy Center at Argonne National Laboratory is described. The primary purpose of this facility is electron microscopy with in situ ion irradiation at controlled sample temperatures. To illustrate its capabilities and advantages a few results of two outside user projects are presented. The motion of dislocation loops formed during ion irradiation is illustrated in video data that reveals a striking reduction of motion in Fe-8%Cr over that in pure Fe. The development of extended defect structure is then shown to depend on this motion and the influence of nearby surfaces in the transmission electron microscopy thin samples. In a second project, the damage microstructure is followed to high dose (200 dpa) in an oxide dispersion strengthened ferritic alloy at 500 C, and found to be qualitatively similar to that observed in the same alloy neutron irradiated at 420 C.

  15. The order-disorder transition in ion-irradiated pyrochlore

    International Nuclear Information System (INIS)

    Lian, J.; Wang, L.; Chen, J.; Sun, K.; Ewing, R.C.; Matt Farmer, J.; Boatner, L.A.

    2003-01-01

    A radiation-induced order-disorder transformation occurs in many A 2 B 2 O 7 pyrochlore structure-types by disordering of the A- and B-site cations, as well as anion vacancies. The ionic conductivity increases up to two orders of magnitude due to this order-disorder transformation. This irradiation-induced order-disorder transition has been examined in detail using ion beam irradiations and in situ transmission electron microscopy. Under ion irradiation, the ordered pyrochlore superstructure transforms to an anion-disordered pyrochlore prior to a final transformation to a cation-disordered defect-fluorite structure-type. The anion-disordered pyrochlore structure displays a partial ordering of the A- and B-site cations and complete disordering on the anion array--as evidenced by the disappearance of characteristic diffraction maxima resulting from ordering of the oxygen sublattice. These results suggest that anion disorder precedes cation disordering in the pyrochlore structure

  16. Hydrogen formation under gamma and heavy ions irradiation of geopolymers

    International Nuclear Information System (INIS)

    Chupin, F.; Dannoux-Papin, A.; D'Espinose de Lacaillerie, J.B.; Ngono Ravache, Y.

    2015-01-01

    This study examines the behavior under irradiation of geo-polymer which is not yet well known and attempts to highlight the importance of water radiolysis. For their use as embedding matrices, stability under ionizing radiation as well as low hydrogen gas released must be demonstrated. Different formulations of geo-polymers have been irradiated either with γ-rays ( 60 Co sources) or 75 MeV 36 Ar ions beams and the production of hydrogen released has been quantified. This paper presents the results of gas analysis in order to identify important structural parameters that influence confined water radiolysis. Indeed, a correlation between pore size, water content on one side, and the hydrogen production radiolytic yield (G(H 2 )) on the other side, has been demonstrated. For the 75 MeV 36 Ar ions irradiation, the effect of porosity has not been well emphasized. For both, the results have revealed the water content influence. (authors)

  17. Energetic ion irradiation of American diamond in a plasma focus device and characterization of irradiated material

    International Nuclear Information System (INIS)

    Mohanty, S.R.; Neog, N.K.; Nayak, B.B.; Acharya, B.S.; Lee, P.; Tan, T.L.; Rawat, R.S.

    2006-01-01

    Energetic ion beams of the Centre of Plasma Physics plasma focus facility were utilized for the first time to irradiate American diamond (high purity zirconia). Specimens of various colors were exposed to nitrogen ion beams of single shot /multiple shots at optimum operating condition. The colors of exposed specimens were found to change after irradiation. The unexposed and exposed specimens were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), micro hardness test and UV-VIS spectroscopy and the results are reported

  18. LET effects of high energy ion beam irradiation on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shu; Kanzaki, Kenichi; Tagawa, Seiichi; Yoshida, Yoichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Kudoh, Hisaaki; Sugimoto, Masaki; Sasuga, Tsuneo; Seguchi, Tadao; Shibata, Hiromi

    1997-03-01

    Thin films of poly(di-n-hexylsilane) were irradiated with 2-20 MeV H{sup +} and He{sup +} ion beams. The beams caused heterogeneous reactions of crosslinking and main chain scission in the films. The relative efficiency of the crosslinking was drastically changed in comparison with that of main chain scission. The anomalous change in the molecular weight distribution was analyzed with increasing irradiation fluence, and the ion beam induced reaction radius; track radius was determined for the radiation sources by the function of molecular weight dispersion. Obtained values were 59{+-}15 A and 14{+-}6 A for 2 MeV He{sup +} and 20 MeV H{sup +} ion beams respectively. (author)

  19. Effect of 100 MeV Ag{sup +7} ion irradiation on the bulk and surface magnetic properties of Co–Fe–Si thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hysen, T., E-mail: hysenthomas@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Department of Physics, Christian College, Chengannur, Kerala 689 122 (India); Geetha, P. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Al-Harthi, Salim; Al-Omari, I.A. [Department of Physics, College of Science, Sultan Qaboos University, Al Khod 123 (Oman); Lisha, R. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639 798 (Singapore); Sakthikumar, D. [Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe (Japan); Avasthi, D.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Anantharaman, M.R., E-mail: mra@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India)

    2014-12-15

    Thin films of Co–Fe–Si were vacuum evaporated on pre-cleaned float glass substrates employing thermal evaporation. The films were subsequently irradiated with 100 MeV Ag{sup +7} ions at fluences of 1×10{sup 11}, 1×10{sup 12} and 1×10{sup 13} ions/cm{sup 2}. The pristine and irradiated samples were subjected to surface analysis using Atomic Force Microscopy (AFM), Vibrating Sample Magnetometry (VSM) and Magneto Optic Kerr Effect (MOKE) measurements. The as deposited film has a root mean square roughness (Rq) of 8.9 nm and an average roughness of (Ra) 5.6 nm. Irradiation of the as deposited films with 100 MeV Ag{sup 7+} ions modifies the surface morphology. Irradiating with ions at fluences of 1×10{sup 11} ions/cm{sup 2} smoothens the mesoscopic hill-like structures, and then, at 1×10{sup 12} ions/cm{sup 2} new surface structures are created. When the fluence is further increased to 1×10{sup 13} ions/cm{sup 2} an increase in the surface roughness is observed. The MOKE loop of as prepared film indicated a squareness ratio of 0.62. As the film is irradiated with fluences of 1×10{sup 11} ions/cm{sup 2}, 1×10{sup 12} ions/cm{sup 2} and 1×10{sup 13} ions/cm{sup 2} the squareness ratio changes to 0.76, 0.8 and 0.86 respectively. This enhancement in squareness ratio towards 1 is a typical feature when the exchange interaction starts to dominates the inherent anisotropies in the system. The variation in surface magnetisation is explained based on the variations in surface roughness with swift heavy ion (SHI) irradiation. - Highlights: • We have irradiated thermally evaporated Co–Fe–Si thin films on glass substrate with 100 MeV Ag{sup +7} ions using the 15 UD Pelletron Accelerator at IUAC, New Delhi, India. • Surface morphology and magnetic characteristics of the films can be altered with ion irradiation. • It was observed that the variation in surface magnetic properties correlates well with the changes in surface morphology, further reiterating the

  20. Nanostructure evolution in ODS steels under ion irradiation

    Directory of Open Access Journals (Sweden)

    S. Rogozhkin

    2016-12-01

    In this work, we carried out atom probe tomography (APT and transmission electron microscopy (TEM studies of three different ODS steels produced by mechanical alloying: ODS Eurofer, 13.5Cr ODS and 13.5Cr-0.3Ti ODS. These materials were investigated after irradiation with Fe (5.6MeV or Ti (4.8MeV ions up to 1015ion/cm2 and part of them up to 3×1015ion/cm2. In all cases, areas for TEM investigation were cut at a depth of ∼ 1.3µm from the irradiated surface corresponding to the peak of the radiation damage dose. It was shown that after irradiation at RT and at 300°С the number density of oxide particles in all the samples grew up. Meanwhile, the fraction of small particles in the size distribution has increased. APT revealed an essential increase in nanoclusters number and a change of their chemical composition at the same depth. The nanostructure was the most stable in 13.5Cr-0.3Ti ODS irradiated at 300°С: the increase of the fraction of small oxides was minimal and no change of nanocluster chemical composition was detected.

  1. Ion-irradiated polymer studied by a slow positron beam

    International Nuclear Information System (INIS)

    Kobayashi, Yoshinori; Kojima, Isao; Hishita, Shunichi; Suzuki, Takenori.

    1995-01-01

    Poly (aryl-ether-ether ketone) (PEEK) films were irradiated with 1MeV and 2MeV 0 + ions and the positron annihilation Doppler broadening was measured as a function of the positron energy. The annihilation lines recorded at relatively low positron energies were found to become broader with increasing the irradiation dose, suggesting that positronium (Ps) formation may be inhibited in the damaged regions. A correlation was observed between the Doppler broadening and spin densities determined by electron spin resonance (ESR). (author)

  2. Energetic Processing of N2:CH4 Ices Employing X-Rays and Swift Ions: Implications for Icy Bodies in the Outer Solar System

    Science.gov (United States)

    Vasconcelos, Fredson de A.; Pilling, Sergio; Rocha, Will R. M.; Rothard, Hermann; Boduch, Philippe

    2017-12-01

    We experimentally address in this paper the physicochemical effects induced by ionizing photons (energies from 6 to 2000 eV) and swift heavy ions (15.7 MeV 16O5+) in the icy mixture containing N2:CH4 (19:1) at 12 K and 19 K, respectively. The experiments simulate the effect of solar photons and X-rays, cosmic rays, and solar energetic particles (medium-mass ions) on the surface of icy bodies in the outer solar system, such as Triton, Titan, Pluto, and several other Kuiper Belt objects. The ice samples were analyzed by infrared spectroscopy (FTIR) at different fluences. From the energetic processing, the production of new molecules was observed. Among them, HCN, C2H4, C2H6, and N3 have the highest production yield. Molecular half-lives of the species of interest were calculated and extrapolated to the astrophysical environment. The effective destruction yield (in molecules/impact) of the parental species processed by the swift ions is up to six orders of magnitude higher than the value determined by employing X-rays. However, due to the differences between the fluxes of both ionizing radiation types in space, the half-lives of nitrogen and methane in the astrophysical scenarios addressed may have a huge variation. Photons dominate the chemical transformations at shorter distances from the Sun. Our results are a step toward a compilation of photochemical and radiolysis data that should allow the modeling of the abundance of astrophysical ices over long periods of time.

  3. Ion exchange in KTiOPO4 crystals irradiated by copper and hydrogen ions.

    Science.gov (United States)

    Zhang, Ruifeng; Lu, Fei; Lian, Jie; Liu, Hanping; Liu, Xiangzhi; Lu, Qingming; Ma, Hongji

    2008-05-12

    Cs(+)-K+ ion exchanges were produced on KTiOPO4 crystals which is prior irradiated by Cu+ can H+ ions. The energy and dose of implanted Cu+ ions are 1.5 MeV and 0.5 x 10(14) ions/cm2, and that of H+ are 300 keV and 1 x 10(16) ions/cm2, respectively. The temperature of ions exchange is 430 degrees C, and the time range from 15 minutes to 30 minutes. The prism coupling method is used to measure the dark mode spectra of the samples. Compared with results of ion exchange on the sample without irradiations, both the number of guided mode and its corresponding effective refractive index are decreased. The experimental results indicate that the ion exchange rate closely related with the lattice damage and the damage layers formed in the depth of maximum nuclear energy deposition act as a barrier to block the ions diffuse into the sample and the concentration of defects can modify the speed of ion exchange..

  4. Metastable hydronium ions in UV-irradiated ice

    International Nuclear Information System (INIS)

    Moon, Eui-Seong; Kang, Heon

    2012-01-01

    We show that the irradiation of UV light (10−11 eV) onto an ice film produces metastable hydronium (H 3 O + ) ions in the ice at low temperatures (53–140 K). Evidence of the presence of metastable hydronium ions was obtained by experiments involving adsorption of methylamine onto UV-irradiated ice films and hydrogen-deuterium (H/D) isotopic exchange reaction. The methylamine adsorption experiments showed that photogenerated H 3 O + species transferred a proton to the methylamine arriving at the ice surface, thus producing the methyl ammonium ion, which was detected by low energy sputtering method. The H 3 O + species induced the H/D exchange of water, which was monitored through the detection of water isotopomers on the surface by using the Cs + reactive ion scattering method. Thermal and temporal stabilities of H 3 O + and its proton migration activity were examined. The lifetime of the hydronium ions in the amorphized ice was greater than 1 h at ∼53 K and decreased to ∼5 min at 140 K. Interestingly, a small portion of hydronium ions survived for an extraordinarily long time in the ice, even at 140 K. The average migration distance of protons released from H 3 O + in the ice was estimated to be about two water molecules at ∼54 K and about six molecules at 100 K. These results indicate that UV-generated hydronium ions can be efficiently stabilized in low-temperature ice. Such metastable hydronium ions may play a significant role in the acid-base chemistry of ice particles in interstellar clouds.

  5. Mutagenic effects of heavy ion irradiation on rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xue [School of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036 (China); Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China); Liu Binmei; Zhang Lili [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China); Wu Yuejin, E-mail: yjwu@ipp.ac.cn [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China)

    2012-11-01

    Three varieties of rice seeds were subjected to irradiation using low-energy and medium-energy ions. The damage and mutations induced by the ions were examined. In addition, genetic analysis and gene mapping of spotted leaf (spl) mutants were performed. Low-energy ions had no significant influence on germination, survival or seedling height, except for the survival of Nipponbare. Medium-energy ions had a significant influence on germination and survival but had no significant effect on seedling height. In the low-energy group, among 60,000 M{sub 2} plants, 2823 putative morphological mutants were found, and the mutation frequency was approximately 4.71%. In the medium-energy group, 3132 putative morphological mutants were found, and the mutation frequency was approximately 5.22%. Five spl mutants (spl29-spl33) were obtained by ion irradiation, and the heredity of the spl mutants was stable. The characteristics of the spl mutants were found, by genetic analysis and preliminary mapping, to be controlled by a single recessive gene, and spl30 and spl33 were found to be new lesion-mimic mutants.

  6. Switching the uniaxial magnetic anisotropy by ion irradiation induced compensation

    Science.gov (United States)

    Yuan, Ye; Amarouche, Teyri; Xu, Chi; Rushforth, Andrew; Böttger, Roman; Edmonds, Kevin; Campion, Richard; Gallagher, Bryan; Helm, Manfred; Jürgen von Bardeleben, Hans; Zhou, Shengqiang

    2018-04-01

    In the present work, the uniaxial magnetic anisotropy of GaMnAsP is modified by helium ion irradiation. According to the micro-magnetic parameters, e.g. resonance fields and anisotropy constants deduced from ferromagnetic resonance measurements, a rotation of the magnetic easy axis from out-of-plane [0 0 1] to in-plane [1 0 0] direction is achieved. From the application point of view, our work presents a novel avenue in modifying the uniaxial magnetic anisotropy in GaMnAsP with the possibility of lateral patterning by using lithography or focused ion beam.

  7. High ion temperatures from buried layers irradiated with Vulcan Petawatt

    International Nuclear Information System (INIS)

    Karsch, S.; Schreiber, J.; Willingale, L.; Lancaster, K.; Habara, H.; Nilson, P.; Gopal, A.; Wei, M. S.; Stoeckl, C.; Evans, R.; Clarke, R.; Heathcote, R.; Najmudin, Z.; Krushelnick, K.; Neely, D.; Norreys, P. A.

    2005-01-01

    Deuteron acceleration from CH/CD/CH layer targets irradiated with PW laser pulses has been studied using. Thomson parabola spectrometers and neutron TOF spectroscopy. The measured ion and neutron spectra reveal significant MeV deuteron acceleration from the deeply buried CD layer, which scales with the thickness of the overlying CH layer. While the neutron spectra reveal the scaling of the thermal heating with target thickness, the ion spectra indicate the presence of an efficient nonthermal acceleration mechanism inside. the bulk. Possible explanations will be discussed. (Author)

  8. Ion beam irradiation of ceramics at fusion relevant conditions

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1991-01-01

    Ceramic materials are required at a variety of locations in proposed fusion reactors where significant ionizing and displacive fields may be present. Energetic ion beams are a useful tool for probing the effects of irradiation on the structure and electrical properties of ceramics over a wide range of experimental conditions. The advantages and disadvantages of using ion beams to provide information on anticipated ceramic radiation effects in a fusion reactor environment are discussed. In this paper particular emphasis is placed on microstructural changes and how the high helium generation rates associated with DT fusion neutrons affect cavity swelling

  9. Effective mutagenesis of Arabidopsis by heavy ion beam-irradiation

    International Nuclear Information System (INIS)

    Yamamoto, Y.Y.; Saito, H.; Ryuto, H.; Fukunishi, N.; Yoshida, S.; Abe, T.

    2005-01-01

    Full text: Arabidopsis researches frequently include the genetic approach, so efficient, convenient, and safe methods for mutagenesis are required. Currently, the most popular method for in house mutagenesis is application of EMS. Although this method is very effective, its base substitution-type mutations often gives leaky mutants with residual gene functions, leading some difficulty in understanding the corresponding gene functions. Heavy ion beam generated by accelerators gives highest energy transfer rates among known radiation-based mutagenesis methods including X ray, gamma ray, fast neutron, electron and proton irradiation. This feature is thought to give high frequency of the double strand break of genomic DNA and resultant short deletions, resulting frame shift-type mutations. At RIKEN Accelerator Research Facility (RARF, http://www.rarf.riken.go.jp/index-e.html), we have optimized conditions for effective mutagenesis of Arabidopsis regarding to ion species and irradiation dose, and achieved comparable mutation rates to the method with EMS. (author)

  10. Investigations of Atomic Transport Induced by Heavy Ion Irradiation

    Science.gov (United States)

    Banwell, Thomas Clyde

    The mechanisms of atomic transport induced by ion irradiation generally fall into the categories of anisotropic or isotropic processes. Typical examples of these are recoil implantation and cascade mixing, respectively. We have measured the interaction of these processes in the mixing of Ti/SiO(,2)/Si, Cr/SiO(,2)/Si and Ni/SiO(,2)/Si multi-layers irradiated with Xe at fluences of 0.01 - 10 x 10('15)cm('-2). The fluence dependence of net metal transport into the underlying layers was measured with different thicknesses of SiO(,2) and different sample temperatures during irradiation (-196 to 500C). There is a linear dependence at low fluences. At high fluences, a square-root behavior predominates. For thin SiO(,2) layers (primary recoils is quite pronounced since the gross mixing is small. A significant correlation exists between the mixing and the energy deposited through elastic collisions F(,D ). Several models are examined in an attempt to describe the transport process in Ni/SiO(,2). It is likely that injection of Ni by secondary recoil implantation is primarily responsible for getting Ni into the SiO(,2). Secondary recoil injection is thought to scale with F(,D). Trends in the mixing rates indicate that the dominant mechanism for Ti and Cr could be the same as for Ni. The processes of atomic transport and phase formation clearly fail to be separable at higher temperatures. A positive correlation with chemical reactivity emerges at higher irradiation temperatures. The temperature at which rapid mixing occurs is not much below that for spontaneous thermal reaction. Less Ni is retained in the SiO(,2) at high irradiation temperatures. Ni incorporated in the SiO(,2) by low temperature irradiation is not expelled during a consecutive high temperature irradiation. The Ni remains trapped within larger clusters during a sequential 500C irradiation. (Abstract shortened with permission of author.).

  11. Ion irradiation of AZO thin films for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Boscarino, Stefano; Torrisi, Giacomo; Crupi, Isodiana [IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Alberti, Alessandra [CNR-IMM, via Strada VIII 5, 95121 Catania (Italy); Mirabella, Salvatore; Ruffino, Francesco [IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Terrasi, Antonio, E-mail: antonio.terrasi@ct.infn.it [IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy)

    2017-02-01

    Highlights: • Evidence of electrical good quality AZO ultra thin films without thermal annealing. • Evidence of the main role of Oxygen vs. structural parameters in controlling the electrical performances of AZO. • Evidence of the role of the ion irradiation in improving the electrical properties of AZO ultra thin films. • Synthesis of AZO thin films on flexible/plastic substrates with good electrical properties without thermal processes. - Abstract: Aluminum doped Zinc oxide (AZO) is a promising transparent conductor for solar cells, displays and touch-screen technologies. The resistivity of AZO is typically improved by thermal annealing at temperatures not suitable for plastic substrates. Here we present a non-thermal route to improve the electrical and structural properties of AZO by irradiating the TCO films with O{sup +} or Ar{sup +} ion beams (30–350 keV, 3 × 10{sup 15}–3 × 10{sup 16} ions/cm{sup 2}) after the deposition on glass and flexible polyethylene naphthalate (PEN). X-ray diffraction, optical absorption, electrical measurements, Rutherford Backscattering Spectrometry and Atomic Force Microscopy evidenced an increase of the crystalline grain size and a complete relief of the lattice strain upon ion beam irradiation. Indeed, the resistivity of thin AZO films irradiated at room temperature decreased of two orders of magnitude, similarly to a thermal annealing at 400 °C. We also show that the improvement of the electrical properties does not simply depend on the strain or polycrystalline domain size, as often stated in the literature.

  12. Using ion irradiation to make high-Tc Josephson junctions

    International Nuclear Information System (INIS)

    Bergeal, N.; Lesueur, J.; Sirena, M.; Faini, G.; Aprili, M.; Contour, J. P.; Leridon, B.

    2007-01-01

    In this article we describe the effect of ion irradiation on high-T c superconductor thin film and its interest for the fabrication of Josephson junctions. In particular, we show that these alternative techniques allow to go beyond most of the limitations encountered in standard junction fabrication methods, both in the case of fundamental and technological purposes. Two different geometries are presented: a planar one using a single high-T c film and a mesa one defined in a trilayer structure

  13. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  14. Positron Annihilation Study of Ion-irradiated Si

    International Nuclear Information System (INIS)

    Shin, Jung Ki; Kwon, Jun Hyun; Lee, Jong Yong

    2009-01-01

    Structural parts like a spaceship, satellite and solar cell are composed of metal alloy or semiconductor materials. Especially, Si is used as a primary candidate alloy. But, manned and robotic missions to the Earth's moon and Mars are exposed to a continuous flux of Galactic Cosmic Rays (GCR) and occasional, but intense, fluxes of Solar Energetic Particles. These natural radiations impose hazards to manned exploration. Irradiation of cosmic particle induces various changes in the mechanical and physical properties of device steels. It is, therefore, important to investigate radiation damage to the component materials in semiconductor. The evolution of radiation-induced defects leads to degradation of the mechanical properties. One of them includes irradiation embrittlement, which can cause a loss of ductility and further increase the probability of a brittle fracture. It can be more dangerous in the space. Positron annihilation lifetime spectroscopy(PALS) have been applied to investigate the production of vacancy-type defects for Ion-irradiated Si wafer penetrated by H, He, O and Fe ions. Then, we carried out a comparison with an un-irradiated Si wafer

  15. Elastic wave from fast heavy ion irradiation on solids

    CERN Document Server

    Kambara, T; Kanai, Y; Kojima, T M; Nanai, Y; Yoneda, A; Yamazaki, Y

    2002-01-01

    To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al sub 2 O sub 3), fused silica (SiO sub 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the...

  16. TL response of Eu activated LiF nanocubes irradiated by 85 MeV carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Numan, E-mail: nsalah@kau.edu.sa [Center of Nanotechnology, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Alharbi, Najlaa D. [Sciences Faculty for Girls, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Habib, Sami S. [Center of Nanotechnology, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Lochab, S.P. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2015-09-01

    Carbon ions were found to be effective for cancer treatment. These heavy ions have a high relative biological effectiveness compared to those of photons. They have higher linear energy transfer and sharper Bragg peak with a very excellent local tumor control. However, the dose of these swift heavy ions needs to be measured with great accuracy. Lithium fluoride (LiF) is a highly sensitive phosphor widely used for radiation dosimetry. In this work Eu activated LiF nanocubes were exposed to 85 MeV C{sup 6+} ion beam and evaluated for their thermoluminescence (TL) response. Pellet forms of this nanomaterial were exposed to these ions in the fluence range 10{sup 9}–10{sup 13} ions/cm{sup 2}. The obtained result shows a prominent TL glow peak at around 320 °C, which is different than that induced by gamma rays. This glow peak exhibits a linear response in the range 10{sup 9}–10{sup 12} ions/cm{sup 2}, corresponding to the equivalent absorbed doses 0.273–273 kGy. The absorbed doses, penetration depths and main energy loss were calculated using TRIM code based on the Monte Carlo simulation. The supralinearity function and stopping power in this nanomaterial were also studied. The modification induced in the glow curve structure as a result of changing irradiation type might be utilized to use LiF:Eu nanocubes as a dosimeter for mixed filed radiations. Moreover, the wide linear response of LiF:Eu nanocubes along with the low fading are another imperative results suggesting that this nanomaterial might be a good candidate for carbon ions dosimetry.

  17. TL response of Eu activated LiF nanocubes irradiated by 85 MeV carbon ions

    International Nuclear Information System (INIS)

    Salah, Numan; Alharbi, Najlaa D.; Habib, Sami S.; Lochab, S.P.

    2015-01-01

    Carbon ions were found to be effective for cancer treatment. These heavy ions have a high relative biological effectiveness compared to those of photons. They have higher linear energy transfer and sharper Bragg peak with a very excellent local tumor control. However, the dose of these swift heavy ions needs to be measured with great accuracy. Lithium fluoride (LiF) is a highly sensitive phosphor widely used for radiation dosimetry. In this work Eu activated LiF nanocubes were exposed to 85 MeV C 6+ ion beam and evaluated for their thermoluminescence (TL) response. Pellet forms of this nanomaterial were exposed to these ions in the fluence range 10 9 –10 13 ions/cm 2 . The obtained result shows a prominent TL glow peak at around 320 °C, which is different than that induced by gamma rays. This glow peak exhibits a linear response in the range 10 9 –10 12 ions/cm 2 , corresponding to the equivalent absorbed doses 0.273–273 kGy. The absorbed doses, penetration depths and main energy loss were calculated using TRIM code based on the Monte Carlo simulation. The supralinearity function and stopping power in this nanomaterial were also studied. The modification induced in the glow curve structure as a result of changing irradiation type might be utilized to use LiF:Eu nanocubes as a dosimeter for mixed filed radiations. Moreover, the wide linear response of LiF:Eu nanocubes along with the low fading are another imperative results suggesting that this nanomaterial might be a good candidate for carbon ions dosimetry

  18. Surface modification and adhesion improvement of PTFE film by ion beam irradiation

    International Nuclear Information System (INIS)

    Lee, S.W.; Hong, J.W.; Wye, M.Y.; Kim, J.H.; Kang, H.J.; Lee, Y.S.

    2004-01-01

    The polytetrafluoroethylene (PTFE) surfaces, modified by 1 kV Ar + or O 2 + ion beam irradiation, was investigated with in-situ X-ray photoelectron spectroscopy (XPS), scanning electron micrographs (SEM), atomic force microscopy (AFM) measurements. The surface of PTFE films modified by Ar + ion irradiation was carbonized and the surface roughness increased with increasing ion doses. The surface of PTFE films modified by both Ar + ion in O 2 atmosphere and O 2 + ion irradiation formed the oxygen function group on PTFE surface, and the surface roughness change was relatively small. The adhesion improvement in Ar + ion irradiated PTFE surface is attributed to mechanical interlocking due to the surface roughness and -CF-radical, but that in Ar + ion irradiation in an O 2 atmosphere was contributed by the C-O complex and -CF-radical with mechanical interlocking. The C-O complex and -CF-radical in O 2 + ion irradiated surface contributed to the adhesion

  19. Light ion irradiation for unfavorable soft tissue sarcoma

    International Nuclear Information System (INIS)

    Linstadt, D.; Castro, J.R.; Phillips, T.L.; Petti, P.L.; Collier, J.M.; Daftari, I.; Schoethaler, R.; Rayner, A.

    1990-09-01

    Between 1978 and 1989, 32 patients with unfavorable soft tissue sarcoma underwent light ion (helium, neon) irradiation with curative intent at Lawrence Berkeley Laboratory. The tumors were located in the trunk in 22 patients and head and neck in 10. Macroscopic tumor was present in 22 at the time of irradiation. Two patients had tumors apparently induced by previous therapeutic irradiation. Follow-up times for surviving patients ranged from 4 to 121 months (median 27 months). The overall 3-year actuarial local control rate was 62%; the corresponding survival rate was 50%. The 3-year actuarial control rate for patients irradiated with macroscopic tumors was 48%, while none of the patients with microscopic disease developed local recurrence (100%). The corresponding 3-year actuarial survival rates were 40% (macroscopic) and 78% (microscopic). Patients with retroperitoneal sarcoma did notably well; the local control rate and survival rate were 64% and 62%, respectively. Complications were acceptable; there were no radiation related deaths, while two patients (6%) required operations to correct significant radiation-related injuries. These results appear promising compared to those achieved by low -LET irradiation, and suggest that this technique merits further investigation

  20. Si-nanoparticle synthesis using ion implantation and MeV ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chulapakorn, T.; Wolff, M.; Primetzhofer, D.; Possnert, G. [Uppsala University, Department of Physics and Astronomy, P.O. Box 516, 751 20 Uppsala (Sweden); Sychugov, I.; Suvanam, S.S.; Linnros, J. [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box Electrum 229, 164 40 Kista (Sweden); Hallen, A. [Uppsala University, Department of Physics and Astronomy, P.O. Box 516, 751 20 Uppsala (Sweden); Royal Institute of Technology, School of Information and Communication Technology, P.O. Box Electrum 229, 164 40 Kista (Sweden)

    2015-12-15

    A dielectric matrix with embedded Si-nanoparticles may show strong luminescence depending on nanoparticles size, surface properties, Si-excess concentration and matrix type. Ion implantation of Si ions with energies of a few tens to hundreds of keV in a SiO{sub 2} matrix followed by thermal annealing was identified as a powerful method to form such nanoparticles. The aim of the present work is to optimize the synthesis of Si-nanoparticles produced by ion implantation in SiO{sub 2} by employing MeV ion irradiation as an additional annealing process. The luminescence properties are measured by spectrally resolved photoluminescence including PL lifetime measurement, while X-ray reflectometry, atomic force microscopy and ion beam analysis are used to characterize the nanoparticle formation process. The results show that the samples implanted at 20%-Si excess atomic concentration display the highest luminescence and that irradiation of 36 MeV {sup 127}I ions affects the luminosity in terms of wavelength and intensity. It is also demonstrated that the nanoparticle luminescence lifetime decreases as a function of irradiation fluence. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Characterization of polymeric films subjected to lithium ion beam irradiation

    Science.gov (United States)

    Groenewold, Gary S.; Cannon, W. Roger; Lessing, Paul A.; Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark; Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D.

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium-plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C-O and C-C bonds, which furnish radical intermediates that react by radical recombination with Hrad and OHrad . Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O-methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were wholly dominated by

  2. Reflection properties of hydrogen ions at helium irradiated tungsten surfaces

    International Nuclear Information System (INIS)

    Doi, K; Tawada, Y; Kato, S; Sasao, M; Kenmotsu, T; Wada, M; Lee, H T; Ueda, Y; Tanaka, N; Kisaki, M; Nishiura, M; Matsumoto, Y; Yamaoka, H

    2016-01-01

    Nanostructured W surfaces prepared by He bombardment exhibit characteristic angular distributions of hydrogen ion reflection upon injection of 1 keV H + beam. A magnetic momentum analyzer that can move in the vacuum chamber has measured the angular dependence of the intensity and the energy of reflected ions. Broader angular distributions were observed for He-irradiated tungsten samples compared with that of the intrinsic polycrystalline W. Both intensity and energy of reflected ions decreased in the following order: the polycrystalline W, the He-bubble containing W, and the fuzz W. Classical trajectory Monte Carlo simulations based on Atomic Collision in Amorphous Target code suggests that lower atom density near the surface can make the reflection coefficients lower due to increasing number of collisions. (paper)

  3. Characterization of polymeric films subjected to lithium ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Groenewold, Gary S., E-mail: gary.groenewold@inl.gov [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States); Cannon, W. Roger; Lessing, Paul A. [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States); Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark [Image and Chemical Analysis Laboratory, Montana State University, Bozeman, MT 59717 (United States); Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D. [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States)

    2013-02-01

    Highlights: ► Polyethylene glycol (PEG) and paraffinic polymers were subjected to Li ion irradiation. ► Small oligomers detected in irradiated PEG by electrospray ionization (ESI) mass spectrometry. ► Radiolytic scission observed in X-ray photoelectron and electrospray ionization mass spectra. ► Radiation modified paraffinics characterized by changes in non-ionic surfactant additives. ► Results suggest that extent of radiolysis, and radiolytic pathways can be inferred. -- Abstract: Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H{sub 2}O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with H{sup ·} and OH{sup ·}. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp{sup 2} carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H{sub 2}O or a H{sub 2}O–methanol solution, and

  4. Measurement of K-shell population of swift sulphur ions penetrating Fe and Ni foils using the probe layer technique

    Energy Technology Data Exchange (ETDEWEB)

    Tribedi, L.C.; Prasad, K.G.; Tandon, P.N. (Tata Inst. of Fundamental Research, Bombay (India))

    1993-06-01

    Single and double K-vacancy fractions at sulphur ions in Fe and Ni are measured for ion velocities between 7v[sub 0] and 14v[sub 0] (v[sub 0]=c/137) using the probe layer technique. The derived values for the degree of polarization of these ions from the available transient magnetic field data at a velocity of 8v[sub 0] in Fe and Ni agrees with the general trends seen for light ions. (orig.).

  5. Ion irradiation effect of alumina and its luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; My, N.T.

    1997-03-01

    The luminescence spectra of single crystalline alpha-alumina and ruby which has 0.02% of Cr{sub 2}O{sub 3} as a impurity, induced by 200 keV He{sup +} and Ar{sup +} irradiation were measured at room temperature as a function of irradiation dose. The analysis of the measured spectra showed the existence of three main luminescence features in the wavelength region of 250 to 350 nm, namely anionic color centers, F-center at 411 nm and F{sup +}-center at 330 nm and a band observed around 315 nm. As alpha-alumina was irradiated with He{sup +}, F-center and F{sup +}-center luminescence grew and decayed, but the behaviors of those were different from each other. It seems that a concentration quenching occurred on the F-center luminescence in the dose range above 1x10{sup 14} He/cm{sup 2}. Furthermore, F-center luminescence was strongly suppressed in ruby, compared with that in alumina. On the other hand, the luminescence band around 315 nm appeared only in the early stage of irradiation and did not show its growth part. The dose dependent behavior was similar to that of Cr{sup 3+} emission at 695 nm (R-line) in ruby in both cases of He{sup +} and Ar{sup +} irradiation. Based on the experimental results mentioned above, the processes of defect formation and excitation in alumina in the early stage of ion irradiation will be discussed. (author)

  6. Investigation of structural and optical properties of 100 MeV F7+ ion irradiated Ga10Se90-xAlx thin films

    Science.gov (United States)

    Ahmad, Shabir; Asokan, K.; Zulfequar, M.

    2015-04-01

    Present work focuses on the effect of swift heavy ion (SHI) irradiation of 100 MeV F7+ ions by varying the fluencies in the range of 1 × 1012 to 1 × 1013 ions/cm2 on the morphological, structural and optical properties of polycrystalline thin films of Ga10Se90-xAlx (x = 0, 5). Thin films of ~300 nm thickness were deposited on cleaned Al2O3 substrates by thermal evaporation technique. X-ray diffraction pattern of investigated thin films shows the crystallite growth occurs in hexagonal phase structure for Ga10Se90 and tetragonal phase structure for Ga10Se85Al5. The further structural analysis carried out by Raman spectroscopy and scanning electron microscopy verifies the defects or disorder of the investigated material increases after SHI irradiation. The optical parameters absorption coefficient (α), extinction coefficient (K), optical band gap (Eg) and Urbach's energy (EU) are determined from optical absorption spectra data measured from spectrophotometry in the wavelength range 200-1100 nm. It was found that the values of absorption coefficient and extinction coefficient increase while the value of optical band gap decreases with the increase in ion fluence. This post irradiation change in the optical parameters was interpreted in terms of bond distribution model.

  7. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    International Nuclear Information System (INIS)

    Pipon, Y.; Bererd, N.; Moncoffre, N.; Peaucelle, C.; Toulhoat, N.; Jaffrezic, H.; Raimbault, L.; Sainsot, P.; Carlot, G.

    2007-01-01

    The radiation enhanced diffusion of chlorine in UO 2 during heavy ion irradiation is studied. In order to simulate the behaviour of 36 Cl, present as an impurity in UO 2 , 37 Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV 127 I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 x 10 -14 cm 2 s -1 , reflect the high mobility of chlorine in UO 2 during irradiation with fission products

  8. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    Science.gov (United States)

    Pipon, Y.; Bérerd, N.; Moncoffre, N.; Peaucelle, C.; Toulhoat, N.; Jaffrézic, H.; Raimbault, L.; Sainsot, P.; Carlot, G.

    2007-04-01

    The radiation enhanced diffusion of chlorine in UO2 during heavy ion irradiation is studied. In order to simulate the behaviour of 36Cl, present as an impurity in UO2, 37Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV 127I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 × 10-14 cm2 s-1, reflect the high mobility of chlorine in UO2 during irradiation with fission products.

  9. Ag{sup 15+} and O{sup 7+} ion irradiation induced improvement in dielectric properties of the Ba(Co{sub 1/3}Nb{sub 2/3})O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, Bhagwati [Department of Physics, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat (India); Mehta, P.K., E-mail: pkmehta_phy@yahoo.co.in [Department of Physics, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat (India); Panchal, C.J., E-mail: cjpanchal_msu@yahoo.com [Applied Physics Department, Faculty of Technology and Engineering, The M.S. University of Baroda, Vadodara 390001, Gujarat (India); Desai, M.S. [Applied Physics Department, Faculty of Technology and Engineering, The M.S. University of Baroda, Vadodara 390001, Gujarat (India); Kumar, Ravi [Material Science Division, National Institute of Technology, Hamirpur 177005, Himachal Pradesh (India); Ganesan, V. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452017, Madhya Pradesh India (India)

    2011-04-15

    Research highlights: {yields} Swift heavy ion irradiation helps in engineering the dielectric properties of conductive samples to be used as microwave device material. {yields} Irradiating the Ba(Co{sub 1/3}Nb{sub 2/3})O{sub 3} (BCN) films with O{sup 7+} or Ag{sup 15+} beams induces better alignment of grain boundaries leading to significant reduction in dielectric loss. {yields} Compared to O{sup 7+} irradiation induced point/cluster defects Ag{sup 15+} induced columnar defects are more effective in reducing/pinning trapped charges within grains their by improving overall performance of electrical devices. - Abstract: We present the preliminary results of temperature and frequency dependent dielectric measurements on Ba(Co{sub 1/3}Nb{sub 2/3})O{sub 3} (BCN) thin films. These films were prepared on indium tin oxide (ITO) coated glass substrates by the pulse laser deposition (PLD) technique. It exhibits single-phase hexagonal symmetry. These films were irradiated with Ag{sup 15+} (200 MeV) and O{sup 7+} (100 MeV) beams at the fluence 1 x 10{sup 11}, 1 x 10{sup 12}, and 1 x 10{sup 13} ions/cm{sup 2}. On irradiating these films, its dielectric constant ({epsilon}') and dielectric loss (tan {delta}) parameters improve compared to un-irradiated film. Compared to O{sup 7+} irradiation induced point/cluster defects Ag{sup 15+} induced columnar defects are more effective in reducing/pinning trapped charges within grains. The present paper highlights the role of swift heavy ion irradiation in engineering the dielectric properties of conductive samples to enable them to be useful for microwave device applications.

  10. Comparison of hardness variation of ion irradiated borosilicate glasses with different projected ranges

    Science.gov (United States)

    Sun, M. L.; Peng, H. B.; Duan, B. H.; Liu, F. F.; Du, X.; Yuan, W.; Zhang, B. T.; Zhang, X. Y.; Wang, T. S.

    2018-03-01

    Borosilicate glass has potential application for vitrification of high-level radioactive waste, which attracts extensive interest in studying its radiation durability. In this study, sodium borosilicate glass samples were irradiated with 4 MeV Kr17+ ion, 5 MeV Xe26+ ion and 0.3 MeV P+ ion, respectively. The hardness of irradiated borosilicate glass samples was measured with nanoindentation in continuous stiffness mode and quasi continuous stiffness mode, separately. Extrapolation method, mean value method, squared extrapolation method and selected point method are used to obtain hardness of irradiated glass and a comparison among these four methods is conducted. The extrapolation method is suggested to analyze the hardness of ion irradiated glass. With increasing irradiation dose, the values of hardness for samples irradiated with Kr, Xe and P ions dropped and then saturated at 0.02 dpa. Besides, both the maximum variations and decay constants for three kinds of ions with different energies are similar indicates the similarity behind the hardness variation in glasses after irradiation. Furthermore, the hardness variation of low energy P ion irradiated samples whose range is much smaller than those of high energy Kr and Xe ions, has the same trend as that of Kr and Xe ions. It suggested that electronic energy loss did not play a significant role in hardness decrease for irradiation of low energy ions.

  11. Ion formation in laser-irradiated cesium vapor

    Science.gov (United States)

    Mahmoud, M. A.; Gamal, Y. E. E.; Abd El-Rahman, H. A.

    2006-11-01

    We study theoretically the formation of Cs and Cs2+ during cw laser radiation resonant with 6s-7p transition of Cs atomic vapor. This is done by numerically solving rate equations for the evolution of atomic state and electron populations. The results of calculations for the atomic and molecular ions density at different values of laser power clarified that the associative ionization and Penning ionization process play an important role for producing the Cs2+ and Cs, respectively, during the plasma formation. Also, the results showed that laser power of the order of 150 mW and 40 50 ns irradiation time are optimal in producing a fully ionized plasma.

  12. Towards swift ion bunch acceleration by high-power laser pulses at the Centre for Advanced Laser Applications (CALA)

    Science.gov (United States)

    Lindner, F. H.; Haffa, D.; Bin, J. H.; Englbrecht, F.; Gao, Y.; Gebhard, J.; Hartmann, J.; Hilz, P.; Kreuzer, C.; Lehrack, S.; Ostermayr, T. M.; Rösch, T. F.; Speicher, M.; Würl, M.; Parodi, K.; Schreiber, J.; Thirolf, P. G.

    2017-07-01

    Laser-driven acceleration of ions has inspired novel applications, that can benefit from ion bunch properties different from conventionally (non-laser based) accelerated particle beams. Those differences range from extremely short bunch durations, broad energy spectra, large divergence angles and small source sizes to ultra-high ion bunch densities. So far, the main focus of research has been concentrating on the physics of the interaction of intense laser pulses with plasmas and the related mechanisms of ion acceleration. Now, the new Centre for Advanced Laser Applications (CALA) near Munich aims at pushing these ion bunches towards applications, including radiation therapy of tumors and the development of heavy ion bunches with solid-state-like density. These are needed for novel reaction mechanisms ('fission-fusion') to study the origin of heavy elements in the universe and to prepare for related studies at the upcoming EU-funded high-power laser facility ELI - Nuclear Physics in Bucharest.

  13. Neovascular glaucoma after helium ion irradiation for uveal melanoma

    International Nuclear Information System (INIS)

    Kim, M.K.; Char, D.H.; Castro, J.L.; Saunders, W.M.; Chen, G.T.; Stone, R.D.

    1986-01-01

    Neovascular glaucoma developed in 22 of 169 uveal melanoma patients treated with helium ion irradiation. Most patients had large melanomas; no eyes containing small melanomas developed anterior segment neovascularization. The mean onset of glaucoma was 14.1 months (range, 7-31 months). The incidence of anterior segment neovascularization increased with radiation dosage; there was an approximately three-fold increase at 80 GyE versus 60 GyE of helium ion radiation (23% vs. 8.5%) (P less than 0.05). Neovascular glaucoma occurred more commonly in larger tumors; the incidence was not affected by tumor location, presence of subretinal fluid, nor rate of tumor regression. Fifty-three percent of patients had some response with intraocular pressures of 21 mmHg or less to a combination of antiglaucoma treatments

  14. Microstructural and plasmonic modifications in Ag–TiO2 and Au–TiO2 nanocomposites through ion beam irradiation

    Directory of Open Access Journals (Sweden)

    Venkata Sai Kiran Chakravadhanula

    2014-09-01

    Full Text Available The development of new fabrication techniques of plasmonic nanocomposites with specific properties is an ongoing issue in the plasmonic and nanophotonics community. In this paper we report detailed investigations on the modifications of the microstructural and plasmonic properties of metal–titania nanocomposite films induced by swift heavy ions. Au–TiO2 and Ag–TiO2 nanocomposite thin films with varying metal volume fractions were deposited by co-sputtering and were subsequently irradiated by 100 MeV Ag8+ ions at various ion fluences. The morphology of these nanocomposite thin films before and after ion beam irradiation has been investigated in detail by transmission electron microscopy studies, which showed interesting changes in the titania matrix. Additionally, interesting modifications in the plasmonic absorption behavior for both Au–TiO2 and Ag–TiO2 nanocomposites were observed, which have been discussed in terms of ion beam induced growth of nanoparticles and structural modifications in the titania matrix.

  15. Lithium ion irradiation of standard and oxygenated silicon diodes

    CERN Document Server

    Candelori, A; Bisello, D; Giubilato, P; Kaminski, A; Litovchenko, A P; Lozano, A; Petrie, J R; Rando, R; Ullán, M; Wyss, J

    2004-01-01

    The next generation silicon detectors for future very high luminosity colliders or a possible LHC upgrade scenario will require radiation- hard detectors for fluences up to 10/sup 16/ 1-MeV equivalent neutrons/cm/sup 2/. These high fluences present strong constraints because long irradiation times are required at the currently available proton irradiation facilities. Energetic (58 MeV) lithium ions present a non-ionizing energy loss approximately=27.3 times higher than 27 MeV protons, and could consequently be a new promising radiation source for investigating the radiation hardness of silicon detectors up to very high particle fluences. Starting from this premise, we have investigated the degradation, as measured by the leakage current density increase and depletion voltage variations in the short and long-term characteristics, induced by 58 MeV Li ions in state-of-the-art silicon diodes processed by two different manufacturers on standard and oxygenated silicon substrates. Finally, the correlation between t...

  16. Amorphisation of boron carbide under slow heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D., E-mail: Dominique.gosset@cea.fr [CEA Saclay, DEN, DANS, DMN, SRMA, LA2M, Université Paris-Saclay, 91191, Gif/Yvette (France); Miro, S. [CEA Saclay, DEN, DANS, DMN, SRMP, Laboratoire JANNUS, Université Paris-Saclay, 91191, Gif/Yvette (France); Doriot, S. [CEA Saclay, DEN, DANS, DMN, SRMA, LA2M, Université Paris-Saclay, 91191, Gif/Yvette (France); Moncoffre, N. [CNRS/IN2P3/IPNL, 69622, Villeurbanne (France)

    2016-08-01

    Boron carbide B{sub 4}C is widely used as a neutron absorber in nuclear plants. Most of the post-irradiation examinations have shown that the structure of the material remains crystalline, in spite of very high atomic displacement rates. Here, we have irradiated B{sub 4}C samples with 4 MeV Au ions with different fluences at room temperature. Transmission electron microscopy (TEM) and Raman spectroscopy have been performed. The Raman analyses show a high structural disorder at low fluence, around 10{sup −2} displacements per atoms (dpa). However, the TEM observations show that the material remains crystalline up to a few dpa. At high fluence, small amorphous areas a few nanometers large appear in the damaged zone but the long range order is preserved. Moreover, the size and density of the amorphous zones do not significantly grow when the damage increases. On the other hand, full amorphisation is observed in the implanted zone at a Au concentration of about 0.0005. It can be inferred from those results that short range and long range damages arise at highly different fluences, that heavy ions implantation has drastic effects on the structure stability and that in this material self-healing mechanisms are active in the damaged zone.

  17. Data acquisition system for light-ion irradiation creep experiment

    International Nuclear Information System (INIS)

    Hendrick, P.L.; Whitaker, T.J.

    1979-07-01

    Software was developed for a PDP11V/03-based data acquisition system to support the Light-Ion Irradiation Creep Experiment installed at the University of Washington Tandem Van de Graaff Accelerator. The software consists of a real-time data acquisition and storage program, DAC04, written in assembly language. This program provides for the acquisition of up to 30 chennels at 100 Hz, data averaging before storage on disk, alarming, data table display, and automatic disk switching. All analog data are acquired via an analog-to-digital converter subsystem having a resolution of 14 bits, a maximum throughput of 20 kHz, and an overall system accuracy of +-0.01%. These specifications are considered essential for the long-term measurement of irradiation creep strains and temperatures during the light-ion bombardment of irradiation creep specimens. The software package developed also contains a collection of FORTRAN programs designed to monitor a test while in progress. These programs use the foreground/background feature of the RT-11 operating system. The background programs provide a variety of services. The program, GRAFTR, allows transient data (i.e., prior to averaging) to be graphed at the graphics terminal. The program, GRAFAV, allows averaged data to be read from disk and displayed graphically at the terminal. The program, TYPAV, reads averaged data from disk and displays it at the terminal in tabular form. Other programs allow text messages to be written to disk, read from disk, and allow access to DAC04 initialization data. 5 figures, 18 tables

  18. Evidence for an ultrafast breakdown of the BeO band structure due to swift argon and xenon ions.

    Science.gov (United States)

    Schiwietz, G; Czerski, K; Roth, M; Grande, P L; Koteski, V; Staufenbiel, F

    2010-10-29

    Auger-electron spectra associated with Be atoms in the pure metal lattice and in the stoichiometric oxide have been investigated for different incident charged particles. For fast incident electrons, for Ar7+ and Ar15+ ions as well as Xe15+ and Xe31+ ions at velocities of 6% to 10% the speed of light, there are strong differences in the corresponding spectral distributions of Be-K Auger lines. These differences are related to changes in the local electronic band structure of BeO on a femtosecond time scale after the passage of highly charged heavy ions.

  19. In vitro degradation properties of ion-beam irradiated poly(lactide-co-glycolic acid) mesh

    Science.gov (United States)

    Tanaka, Toshiyuki; Tsuchiya, Koji; Yajima, Hirofumi; Suzuki, Yoshiaki; Fukutome, Akira

    2011-10-01

    Scaffolds for tissue regeneration must be biocompatible and biodegradable. Ion-beam irradiation is useful for making polymers biocompatible, but the process by which the irradiated polymers biodegradable is not yet well understood. We investigated this phenomenon by Kr +-irradiated poly(lactide-co-glycolic acid) (PLGA) mesh substrate at an acceleration energy of 50 keV with fluences of 1 × 10 13 and 1 × 10 14 ions/cm 2. We then measured the electronic states of the constituent elements on the irradiated surface by X-ray photoelectron microscopy (XPS) and evaluated the hydrolytic degradation properties (weight loss, media pH, and tensile strength) of the mesh in phosphate buffer solution. New functional groups and carbonization were induced on the irradiated surface. Degradation rate and tensile strength remain unchanged by ion-beam irradiation. Ion-beam irradiation should, thus, be a promising modification technique for tissue engineering scaffolds.

  20. Effect of phase instabilities on the correlation of nickel ion and neutron irradiation swelling in solution annealed 316 stainless steel

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Lee, E.H.; Sklad, P.S.

    1979-01-01

    Annealed 316 stainless steel specimens were neutron irradiated to establish steady-state microstructures and then subjected to further high temperature irradiations with 4 MeV Ni ions. It is shown that void growth under neutron irradiation is simulated in ion irradiations carried out at approx. 180 0 C above reactor temperature. However, the precipitate microstructure developed during neutron irradiation is unstable during subsequent ion irradiation. As a result, the relative swelling rates at various reactor temperatures are not simulated correctly

  1. Electron-Ion Dynamics in Semiconductors with Defects under Ion Irradiation

    Science.gov (United States)

    Lee, Cheng-Wei; Schleife, André

    Long-term stability is challenging for semiconductor devices under ion radiation such as solar panels in outer space. Exposure to ion radiation induces formation of defects that ultimately reduce solar cell efficiency. It is well-known in the literature that high-energy ion radiation transfers energy to the materials mostly via electronic excitation which is traditionally hard to model. Previously, we demonstrated that Ehrenfest molecular dynamics based on time-dependent density functional theory correctly describes electronic stopping of semiconductors. To better understand the effect of excited electrons on evolution of defects during ion irradiation, we further investigate the time-evolution of occupation number and found that it is correlated to long-term ion dynamics after passage of proton. Furthermore, we found that the presence of excited electrons significantly reduces the atomic diffusion barrier, indicating this effect is essential for the analysis of defect formation and ion dynamics under ion radiation conditions. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

  2. Positron lifetime studies of the dose dependence of nanohole free volumes in ion-irradiated conducting poly-(ethylene-oxide)-salt polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh [Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202 002 (India); De, Udayan [Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata 700 064 (India); Nambissan, P.M.G. [Saha Institute of Nuclear Physics, 1/AF, Bidhan Nagar, Kolkata 700 064 (India); Maitra, M. [CMPR Centre, Department of Physics, Jadavpur University, Kolkata 700 032 (India); Ali, S. Asad [Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202 002 (India); Middya, T.R.; Tarafdar, S. [CMPR Centre, Department of Physics, Jadavpur University, Kolkata 700 032 (India); Singh, F.; Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Prasad, Rajendra [Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202 002 (India)], E-mail: rajendraprasad1@rediffmail.com

    2008-04-15

    Polymer based ion conducting materials have potential applications as an electrolyte and separator in the field of lithium batteries. Solid polymer electrolytes for lithium batteries are one of the best applications. The irradiation of polymeric materials with swift heavy ions results into the change of their free volume properties which have strong correlation with their macroscopic properties. Poly-ethylene-oxide (PEO)-salt polymers were prepared using solution-cast method. Irradiation of the films with 95 MeV oxygen (O{sup 6+}) ions from the pelletron accelerator at IUAC, New Delhi, India, to different fluences up to 10{sup 13} ions/cm{sup 2} was carried out under high vacuum of the order of 4 x 10{sup -6} Torr. Nanosized free volume parameters in PEO-salt polymer complex have been studied by positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS). From orthopositronium (o-Ps) lifetime, free volume hole radius, free volume of micro voids and fractional free volume are computed. Free volume changes with the fluence are studied. The variation of o-Ps lifetime, mean free volume and fractional free volume with the ion fluence is studied. o-Ps lifetime, free volume radius, mean free volume and fractional free volume decrease for the fluence 10{sup 10} and 10{sup 11} ions/cm{sup 2} and then increase with fluences of 10{sup 12} and 10{sup 13} ions/cm{sup 2}. The S parameter showed a continuous decrease with increasing fluence of irradiation. The intermediate lifetime {tau}{sub 2} also showed a similar decrease. These results indicate the occurrence of scission in the polymer chains and the fragmentation of larger free volumes into smaller ones.

  3. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    Science.gov (United States)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  4. Synchrotron Topographic and Diffractometer Studies of Buried Layered Structures Obtained by Implantation with Swift Heavy Ions in Silicon Single Crystals

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Wieteska, K.; Zymierska, D.; Graeff, W.; Czosnyka, T.; Choinski, J.

    2006-01-01

    A distribution of crystallographic defects and deformation in silicon crystals subjected to deep implantation (20-50 μm) with ions of the energy of a few MeV/amu is studied. Three different buried layered structures (single layer, binary buried structure and triple buried structure) were obtained by implantation of silicon single crystals with 184 MeV argon ions, 29.7 MeV boron ions, and 140 MeV argon ions, each implantation at a fluency of 1x10 14 ions cm -2 . The implanted samples were examined by means of white beam X-ray section and projection topography, monochromatic beam topography and by recording local rocking curves with the beam restricted to 50 x 50 μm 2 . The experiment pointed to a very low level of implantation-induced strain (below 10 -5 ). The white beam Bragg case section experiment revealed a layer producing district black contrast located at a depth of the expected mean ion range. The presence of these buried layered structures in studied silicon crystals strongly affected the fringe pattern caused by curvature of the samples. In case of white beam projection and monochromatic beam topographs the implanted areas were revealed as darker regions with a very tiny grain like structure. One may interpret these results as the effect of considerable heating causing annihilation of point defects and formation of dislocation loops connected with point defect clusters. (author)

  5. Similarity between the effects of carbon-ion irradiation and X-irradiation on the development of rat brain

    International Nuclear Information System (INIS)

    Inouye, Minoru; Hayasaka, Shizu; Murata, Yoshiharu; Takahashi, Sentaro; Kubota, Yoshihisa

    2000-01-01

    The effects of carbon-ion irradiation and X-irradiation on the development of rat brain were compared. Twenty pregnant rats were injected with bromodeoxyuridine (BrdU) at 9 pm on day 18 pregnancy and divided into five groups. Three hours after injection (day 19.0) one group was exposed to 290 MeV/u carbon-ion radiation by a single dose of 1.5 Gy. Other groups were exposed to X-radiation by 1.5, 2.0 or 2.5 Gy, or sham-treated, respectively. Fetuses were removed from one dam in each group 8 h after exposure and examined histologically. Extensive cell death was observed in the brain mantle from the irradiated groups. The cell death after 1.5 Gy carbon-ion irradiation was remarkably more extensive than that after 1.5 Gy X-irradiation, but comparable to that after 2.0 Gy or 2.5 Gy X-irradiation. The remaining rats were allowed to give birth and the offspring were sacrificed at 6 weeks of age. All of the irradiated offspring manifested microcephaly. The size of the brain mantle exposed to 1.5 Gy carbon-ion radiation was significantly smaller than that exposed to 1.5 Gy X-radiation and larger than that exposed to 2.5 Gy X-radiation. A histological examination of the cerebral cortex revealed that cortical layers II-IV were malformed. The defect by 1.5 Gy carbon-ion irradiation was more severe than that by the same dose of X-irradiation. Although the BrdU-incorporated neurons were greatly reduced in number in all irradiated groups, these cells reached the superficial area of the cortex. These findings indicated that the effects of both carbon-ion irradiation and X-irradiation on the development of rat brain are similar in character, and the effect of 1.5 Gy carbon-ion irradiation compares to that of 2.0-2.5 Gy X-irradiation. (author)

  6. Study of optical band gap, carbonaceous clusters and structuring in CR-39 and PET polymers irradiated by 100 MeV O 7+ ions

    Science.gov (United States)

    Ramola, R. C.; Chandra, Subhash; Negi, Ambika; Rana, J. M. S.; Annapoorni, S.; Sonkawade, R. G.; Kulriya, P. K.; Srivastava, A.

    2009-01-01

    Commercially purchased CR-39 and PET polymers were irradiated by 100 MeV O 7+ ions of varying fluences, ranging from 1×10 11 to 1×10 13 ions/cm 2. The effects of swift heavy ions (SHI) on the structural, optical and chemical properties of CR-39 and PET polymers were studied using X-ray diffraction (XRD), UV-visible spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The XRD patterns of CR-39 show that the intensity of the peak decreases with increasing ion fluence, which indicates that the semicrystalline structure of polymer changes to amorphous with increasing fluences. The XRD patterns of PET show a slight increase in the intensity of the peaks, indicating an increase in the crystallinity. The UV-visible spectra show the shift in the absorbance edge towards the higher wavelength, indicating the change in band gap. Band gap in PET and CR-39 found to be decrease from 3.87 to 2.91 and 5.3-3.5 eV, respectively. The cluster size also shows a variation in the carbon atoms per cluster that varies from 42 to 96 in CR-39 and from 78 to 139 in PET. The FTIR spectra show an overall reduction in intensity of the typical bands, indicating the degradation of polymers after irradiation.

  7. Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF{sub 2} thin film surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, R. P.; Mittal, A. K. [Department of Physics, University of Allahabad, Allahabad 211002 (India); Kumar, Manvendra, E-mail: kmanav@gmail.com; Pandey, A. C. [Nanotechnology Application Centre, University of Allahabad, Allahabad 211002 (India)

    2015-08-15

    Fractal and multifractal characteristics of self-affine surfaces of BaF{sub 2} thin films, deposited on crystalline Si 〈1 1 1〉 substrate at room temperature, were studied. Self-affine surfaces were prepared by irradiation of 120 MeV Ag{sup 9+} ions which modified the surface morphology at nanometer scale. The surface morphology of virgin thin film and those irradiated with different ion fluences are characterized by atomic force microscopy technique. The surface roughness (interface width) shows monotonic decrease with ion fluences, while the other parameters, such as lateral correlation length, roughness exponent, and fractal dimension, did not show either monotonic decrease or increase in nature. The self-affine nature of the films is further confirmed by autocorrelation function. The power spectral density of thin films surfaces exhibits inverse power law variation with spatial frequency, suggesting the existence of fractal component in surface morphology. The multifractal detrended fluctuation analysis based on the partition function approach is also performed on virgin and irradiated thin films. It is found that the partition function exhibits the power law behavior with the segment size. Moreover, it is also seen that the scaling exponents vary nonlinearly with the moment, thereby exhibiting the multifractal nature.

  8. Monte-Carlo modeling of excitation of the electron subsystem of ZnO and MgO in tracks of swift heavy ions

    International Nuclear Information System (INIS)

    Voronkov, R.A.; Rymzhanov, R.A.; Medvedev, N.A.; Volkov, A.E.

    2015-01-01

    Monte Carlo code TREKIS is applied to trace kinetics of excitation of the electron subsystem of ZnO and MgO after an impact of a swift heavy ion (SHI). The event-by-event simulations describe excitation of the electron subsystems by a penetrating SHI, spatial spreading of generated electrons and secondary electron cascades. Application of the complex dielectric function (CDF) formalism for calculation of the cross sections of charged particle interaction with a solid target allows to consider collective response of the target to perturbation, which arises from the spatial and temporal correlations in the target electrons ensemble. The method of CDF reconstruction from the experimental optical data is applied. Electron inelastic mean free paths calculated within the CDF formalism are in very good agreement with NIST database. SHI energy losses agree well with those from SRIM and CasP codes. The radial distributions of valence holes, core holes and delocalized electrons as well as their energy densities in SHI tracks are calculated. The analysis of these distributions is presented.

  9. Swift for dummies

    CERN Document Server

    Feiler, Jesse

    2015-01-01

    Get up and running with Swift-swiftly Brimming with expert advice and easy-to-follow instructions,Swift For Dummies shows new and existing programmers how toquickly port existing Objective-C applications into Swift and getinto the swing of the new language like a pro. Designed from theground up to be a simpler programming language, it's never beeneasier to get started creating apps for the iPhone or iPad, orapplications for Mac OS X. Inside the book, you'll find out how to set up Xcode for a newSwift application, use operators, objects, and data types, andcontrol program flow with conditiona

  10. Ion-chain interaction in keV ion-beam-irradiated polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Calcagno, L.; Foti, G.; Licciardello, A.; Puglisi, O.

    1987-09-21

    Molecular weight distribution has been measured in monodisperse polystyrene film (MW = 9 000 amu) after ion bombardment, in the ion fluence range 10/sup 11/--10/sup 13/ ions/cm/sup 2/. The chosen beams are 100 keV He, 200 keV Ne, and 400 keV Ar. The experimental data have been interpreted in terms of a simple statistical model for cross-links. The chemical yield is found to be very high and equal to 0.30, about a factor of 10 higher than the values given in the literature for gamma irradiation (M. Dole, in The Radiation Chemistry of Macromolecules (Academic, New York, 1973), Vol. 2, Chap. 5, p. 57).

  11. Heavy ion irradiation effects of polymer film on absorption of light

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Noboru; Seguchi, Tadao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Arakawa, Tetsuhito

    1997-03-01

    Ion irradiation effects on the absorption of light for three types of polymer films; polyethylene-terephthalate (PET), polyethylene-naphthalate (PEN), and polyether-ether-ketone (PEEK) were investigated by irradiation of heavy ions with Ni{sup 4+}(15MeV), O{sup 6+}(160MeV), and Ar{sup 8+}(175MeV), and compared with electron beams(EB) irradiation. The change of absorption at 400nm by a photometer was almost proportional to total dose for ions and EB. The absorption per absorbed dose was much high in Ni{sup 4+}, but rather small in O{sup 6+} and Ar{sup 8+} irradiation, and the absorption by EB irradiation was accelerated by the temperature of polymer film during irradiation. The beam heating of materials during ion irradiation was assumed, especially for Ni ion irradiation. The heavy ion irradiation effect of polymers was thought to be much affected by the ion beam heating than the linear energy transfer(LET) of radiation source. (author)

  12. Effect of irradiation-damaged layer location on reverse currents of diodes irradiated with high-energy ions

    International Nuclear Information System (INIS)

    Poklonskij, N.A.; Gorbachuk, N.I.; Ermakova, A.V.; Shpakovskij, S.V.; Filipenya, V.A; Solov'ev, Ya.A.; Skuratov, V.A.

    2011-01-01

    Silicon diodes with p + n-junction irradiated with high-energy (100-250 MeV) ions of krypton and xenon are examined. It is shown that at the identical fluences of irradiation and energies of ions the reverse currents of diodes are smaller in the case of the larger distance δ between the maximum of primary vacancies distribution and the border of p + n-junction. The location of irradiation damaged layer in the vicinity of the space charge region does not lead to suffice decrease in reverse currents. (authors)

  13. Ion-irradiation studies of cascade damage in metals

    International Nuclear Information System (INIS)

    Averback, R.S.

    1982-03-01

    Ion-irradiation studies of the fundamental aspects of cascade damage in metals are reviewed. The emphasis of these studies has been the determination of the primary state of damage (i.e. the arrangement of atoms in the cascade region prior to thermal migration of defects). Progress has been made towards understanding the damage function (i.e. the number of Frenkel pairs produced as a function of primary recoil atom energy), the spatial configuration of vacancies and interstitials in the cascade and the cascade-induced mixing of atoms. It is concluded for these studies that the agitation of the lattice in the vicinity of energetic displacement cascades stimulates the defect motion and that such thermal spike motion induces recombination and clustering of Frenkel defects. 9 figures

  14. Ion formation in laser-irradiated cesium vapor

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, M.A. [National Institute of Laser Enhanced Science, Cairo University, Cairo (Egypt)]. E-mail: Hameid56@hotmail.com; Gamal, Y.E.E. [Physics Department, Faculty of Science, South Valley University, Sohag (Egypt); Abd El-Rahman, H.A. [National Institute of Laser Enhanced Science, Cairo University, Cairo (Egypt)

    2006-11-15

    We study theoretically the formation of Cs{sup +} and Cs{sub 2}{sup +} during cw laser radiation resonant with 6s-7p transition of Cs atomic vapor. This is done by numerically solving rate equations for the evolution of atomic state and electron populations. The results of calculations for the atomic and molecular ions density at different values of laser power clarified that the associative ionization and Penning ionization process play an important role for producing the Cs{sub 2}{sup +} and Cs{sup +}, respectively, during the plasma formation. Also, the results showed that laser power of the order of 150mW and 40-50ns irradiation time are optimal in producing a fully ionized plasma.

  15. Accumulation and recovery of defects in ion-irradiated nanocrystalline gold

    Energy Technology Data Exchange (ETDEWEB)

    Chimi, Y. E-mail: chimi@popsvr.tokai.jaeri.go.jp; Iwase, A.; Ishikawa, N.; Kobiyama, M.; Inami, T.; Okuda, S

    2001-09-01

    Effects of 60 MeV {sup 12}C ion irradiation on nanocrystalline gold (nano-Au) are studied. The experimental results show that the irradiation-produced defects in nano-Au are thermally unstable because of the existence of a large volume fraction of grain boundaries. This suggests a possibility of the use of nanocrystalline materials as irradiation-resistant materials.

  16. Recombination and photosensitivity centres in boron nitride irradiated with ions

    International Nuclear Information System (INIS)

    Kabyshev, A.; Konusov, F.; Lopatin, V.

    2001-01-01

    The physical-chemical processes, taking place during the irradiation of dielectrics with ions distort the electron structure of the compounds and generate additional localise state in the forbidden zone (FZ). Consequently, the semiconductor layer with the specific surface density of σ ≥ 10 -10 S/ forms on the surface of the dielectric. In addition to his, the high concentration of the radiation-induced defects changes the optical and photoelectric properties of the materials and also the energy characteristics. Analysis of the photoelectric properties indicates that the recombination processes take part in electric transport. These processes restricted the increase of the photosensitivity and changing the kinetics of relaxation of photo conductivity (σ hv ). The practical application of the boron nitride (BN) the in the thermonuclear systems (for example, Ref. 7), stimulates research into the reasons for the deceleration of its properties under the effect of radiation of various types. The conductivity of non-irradiated boron nitride is of the electron-hole nature with a large fraction of the activation component in exchange of the charge carriers between the levels of the defects and the forbidden zones. On the basis of the correlation of the energy and kinetic parameters of luminescence and , the authors of Ref. 8 constructed a model of electron transfers accompanying the electric transport of the boron nitride. In addition to ion-thermal modification, the conductivity of boron nitride is also of the electron-hole nature and is accompanied by luminescence. Examination of the characteristics of luminescence may be useful for obtaining more information on the transport mechanism. In this work, in order to clarify the main parameters of the forbidden band, detailed investigations were carried out into the spectrum of the electronic states of radiation defects which determine the photoelectric and luminescence properties of the modified boron nitride. The

  17. Comparison of swelling for structural materials on neutron and ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, B.A.

    1986-03-01

    The swelling of V-base alloys, Type 316 stainless steel, Fe-25Ni-15Cr alloys, ferritic steels, Cu, Ni, Nb-1% Zr, and Mo on neutron irradiation is compared with the swelling for these materials on ion irradiation. The results of this comparison show that utilization of the ion-irradiation technique provides for a discriminative assessment of the potential for swelling of candidate materials for fusion reactors.

  18. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    Science.gov (United States)

    Prakrajang, K.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K.; Kirkby, N.; Thopan, P.; Yu, L. D.

    2013-07-01

    As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  19. The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation

    Science.gov (United States)

    Chen, Huaican; Hai, Yang; Liu, Renduo; Jiang, Li; Ye, Xiang-xi; Li, Jianjian; Xue, Wandong; Wang, Wanxia; Tang, Ming; Yan, Long; Yin, Wen; Zhou, Xingtai

    2018-04-01

    The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy was investigated. 7 MeV Xe26+ ion irradiation was performed at room temperature and 650 °C with peak damage dose from 0.05 to 10 dpa. With the increase of damage dose, the hardness of Ni-Mo-Cr and Ni-W-Cr alloy increases, and reaches saturation at damage dose ≥1 dpa. Moreover, the damage dose dependence of hardness in both alloys can be described by the Makin and Minter's equation, where the effective critical volume of obstacles can be used to represent irradiation hardening resistance of the alloys. Our results also show that Ni-W-Cr alloy has better irradiation hardening resistance than Ni-Mo-Cr alloy. This is ascribed to the fact that the W, instead of Mo in the alloy, can suppress the formation of defects under ion irradiation.

  20. Diffusion kinetics of the glucose/glucose oxidase system in swift heavy ion track-based biosensors

    Czech Academy of Sciences Publication Activity Database

    Fink, Dietmar; Vacík, Jiří; Hnatowicz, Vladimír; Hernandez, G. M.; Arrelano, H. G.; Alfonta, L.; Kiv, A.

    2017-01-01

    Roč. 398, MAY (2017), s. 21-26 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : etched ion tracks * track radius * polymer * enzyme * diffusion * biosensors Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Bioremediation, diagnostic biotechnologies (DNA chips and biosensing devices) in environmental management Impact factor: 1.109, year: 2016

  1. Early Stage of Deformation under Nanoindenter Tip of Ion-irradiated Single Crystals

    International Nuclear Information System (INIS)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun

    2010-01-01

    Ion irradiation has been used for almost 40 years to emulate the effect of neutrons. Ion irradiation has a number of advantages in terms of time and expenses compared to neutron irradiation. Ion irradiation is expected to greatly contribute to the development of Fusion and Gen IV materials. Ions have short penetration depth, and they induce continuously varying dose rate over the penetration depth. Although it depends on the energy and species of incident ions, the depth of ion-irradiated region is in general on the order of a few micron meters. Depth controlled probing technique is required to measure the mechanical properties of ion-irradiated layer, and nanoindentation is widely used. During nanoindentation, a hard tip with known properties is pressed into a material which has unknown properties. The depth of penetration and load on the indenter are recorded during loading and unloading. The initial Loading depth curve follows the Hertzian elastic solution, and at a certain load, a sudden displacement excursion occurs in indenter depth and then hardening follows. This is called 'Pop-in' event, and since residual impression can be found only after pop-ins, the pop-in is regarded as the onset of plasticity. The objectives of this research are to investigate the effects of ion irradiation on popins, and to examine dislocation nucleation and propagation at the onset of plasticity by using MD simulations

  2. Early Stage of Deformation under Nanoindenter Tip of Ion-irradiated Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Ion irradiation has been used for almost 40 years to emulate the effect of neutrons. Ion irradiation has a number of advantages in terms of time and expenses compared to neutron irradiation. Ion irradiation is expected to greatly contribute to the development of Fusion and Gen IV materials. Ions have short penetration depth, and they induce continuously varying dose rate over the penetration depth. Although it depends on the energy and species of incident ions, the depth of ion-irradiated region is in general on the order of a few micron meters. Depth controlled probing technique is required to measure the mechanical properties of ion-irradiated layer, and nanoindentation is widely used. During nanoindentation, a hard tip with known properties is pressed into a material which has unknown properties. The depth of penetration and load on the indenter are recorded during loading and unloading. The initial Loading depth curve follows the Hertzian elastic solution, and at a certain load, a sudden displacement excursion occurs in indenter depth and then hardening follows. This is called 'Pop-in' event, and since residual impression can be found only after pop-ins, the pop-in is regarded as the onset of plasticity. The objectives of this research are to investigate the effects of ion irradiation on popins, and to examine dislocation nucleation and propagation at the onset of plasticity by using MD simulations

  3. Tailoring magnetism in CoNi films with perpendicular anisotropy by ion irradiation

    International Nuclear Information System (INIS)

    Stanescu, D.; Ravelosona, D.; Mathet, V.; Chappert, C.; Samson, Y.; Beigne, C.; Vernier, N.; Ferre, J.; Gierak, J.; Bouhris, E.; Fullerton, E. E.

    2008-01-01

    This paper reports on the influence of ion irradiation on the magnetic properties of Co/Ni multilayers with perpendicular magnetic anisotropy (PMA). This material is a very promising candidate for ultrahigh density spintronic applications since it exhibits high polarization and low damping parameters. We show that PMA can be tailored in a controlled way by using uniform He + ion irradiation or focused Ga + ion beam

  4. Development of heavy-ion irradiation technique for single-event in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Norio; Akutsu, Takao; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Naitoh, Ichiro; Itoh, Hisayoshi; Agematsu, Takashi; Kamiya, Tomihiro; Nashiyama, Isamu

    1997-03-01

    Heavy-ion irradiation technique has been developed for the evaluation of single-event effects on semiconductor devices. For the uniform irradiation of high energy heavy ions to device samples, we have designed and installed a magnetic beam-scanning system in a JAERI cyclotron beam course. It was found that scanned area was approximately 4 x 2 centimeters and that the deviation of ion fluence from the average value was less than 7%. (author)

  5. Intergranular stress corrosion cracking of ion irradiated 304L stainless steel in PWR environment

    OpenAIRE

    Gupta, Jyoti

    2016-01-01

    IASCC is irradiation – assisted enhancement of intergranular stress corrosion cracking susceptibility of austenitic stainless steel. It is a complex degrading phenomenon which can have a significant influence on maintenance time and cost of PWRs’ core internals and hence, is an issue of concern. Recent studies have proposed using ion irradiation (to be specific, proton irradiation) as an alternative of neutron irradiation to improve the current understanding of the mechanism. The objective of...

  6. Quantitative analysis of genes regulating sensitivity to heavy ion irradiation in cultured cell lines of malignant choroid melanoma

    International Nuclear Information System (INIS)

    Kumagai, Ken; Adachi, Nanao; Nimura, Yoshinori

    2004-01-01

    As a treatment strategy for malignant melanoma, heavy ion irradiation has been planned in National Institute of Radiological Sciences (NIRS). However, the molecular biology of the malignant melanoma cell after irradiation of heavy ion is still unknown. In this study, we used resistant and sensitive cell lines of malignant melanoma to study the effects of heavy ion irradiation. Furthermore, gene expression profiling of early response genes for heavy ion irradiation was carried out on these cell lines using microarray technology. (author)

  7. Quantitative analysis of genes regulating sensitivity to heavy ion irradiation in cultured cell lines of malignant choroid melanoma

    International Nuclear Information System (INIS)

    Kumagai, Ken; Nimura, Yoshinori; Kato, Masaki; Seki, Naohiko; Miyahara, Nobuyuki; Aoki, Mizuho; Shino, Yayoi; Furusawa, Yoshiya; Mizota, Atsushi

    2005-01-01

    As a treatment strategy for malignant melanoma, heavy ion irradiation has been planned in National Institute of Radiological Sciences (NIRS). However, the molecular biology of the malignant melanoma cell after irradiation of heavy ion is still unknown. In this study, we used resistant and sensitive cell lines of malignant melanoma to study the effects of heavy ion irradiation. Furthermore, gene expression profiling of early response genes for heavy ion irradiation was carried out on these cell lines using microarray technology. (author)

  8. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2017-01-01

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10 24 –1.6 × 10 25 ions m −2 ), and flux (2.0 × 10 20 –5.5 × 10 20 ion m −2 s −1 ). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  9. Radiolysis of N2-rich astrophysical ice by swift oxygen ions: implication for space weathering of outer solar system bodies.

    Science.gov (United States)

    Vasconcelos, F A; Pilling, S; Rocha, W R M; Rothard, H; Boduch, P

    2017-09-13

    In order to investigate the role of medium mass cosmic rays and energetic solar particles in the processing of N 2 -rich ice on frozen moons and cold objects in the outer solar system, the bombardment of an N 2  : H 2 O : NH 3  : CO 2 (98.2 : 1.5 : 0.2 : 0.1) ice mixture at 16 K employing 15.7 MeV 16 O 5+ was performed. The changes in the ice chemistry were monitored and quantified by Fourier transformed infrared spectroscopy (FTIR). The results indicate the formation of azide radicals (N 3 ), and nitrogen oxides, such as NO, NO 2 , and N 2 O, as well as the production of CO, HNCO, and OCN - . The effective formation and destruction cross-sections are roughly on the order of 10 -12 cm 2 and 10 -13 cm 2 , respectively. From laboratory molecular analyses, we estimated the destruction yields for the parent species and the formation yields for the daughter species. For N 2 , this value was 9.8 × 10 5 molecules per impact of ions, and for the most abundant new species (N 3 ), it was 1.1 × 10 5 molecules per impact of ions. From these yields, an estimation of how many species are destroyed or formed in a given timescale (10 8 years) in icy bodies in the outer solar system was calculated. This work reinforces the idea that such physicochemical processes triggered by cosmic rays, solar wind, and magnetospheric particles (medium-mass ions) in nitrogen-rich ices may play an important role in the formation of molecules (including pre-biotic species precursors such as amino acids and other "CHON" molecules) in very cold astrophysical environments, such as those in the outer region of the solar system (e.g. Titan, Triton, Pluto, and other KBOs).

  10. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Jeynes, J.C.G.; Merchant, M.J.; Kirkby, K.; Kirkby, N. [Surrey Ion Beam Center, Faculty of Engineering and Physical Science, University of Surrey, Guildford Surrey, GU2 7XH (United Kingdom); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: •Recently completed nanobeam at the Surrey Ion Beam Centre was used. •3.8-MeV single and broad proton beams irradiated Chinese hamster cells. •Cell survival curves were measured and compared with 300-kV X-ray irradiation. •Single ion irradiation had a lower survival part at ultra-low dose. •It implies hypersensitivity, bystander effect and cell cycle phase of cell death. -- Abstract: As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  11. Microstructural evolution of nanochannel CrN films under ion irradiation at elevated temperature and post-irradiation annealing

    Science.gov (United States)

    Tang, Jun; Hong, Mengqing; Wang, Yongqiang; Qin, Wenjing; Ren, Feng; Dong, Lan; Wang, Hui; Hu, Lulu; Cai, Guangxu; Jiang, Changzhong

    2018-03-01

    High-performance radiation tolerance materials are crucial for the success of future advanced nuclear reactors. In this paper, we present a further investigation that the "vein-like" nanochannel films can enhance radiation tolerance under ion irradiation at high temperature and post-irradiation annealing. The chromium nitride (CrN) nanochannel films with different nanochannel densities and the compact CrN film are chosen as a model system for these studies. Microstructural evolution of these films were investigated using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Elastic Recoil Detection (ERD) and Grazing Incidence X-ray Diffraction (GIXRD). Under the high fluence He+ ion irradiation at 500 °C, small He bubbles with low bubble densities are observed in the irradiated nanochannel CrN films, while the aligned large He bubbles, blistering and texture reconstruction are found in the irradiated compact CrN film. For the heavy Ar2+ ion irradiation at 500 °C, the microstructure of the nanochannel CrN RT film is more stable than that of the compact CrN film due to the effective releasing of defects via the nanochannel structure. Under the He+ ion irradiation and subsequent annealing, compared with the compact film, the nanochannel films have excellent performance for the suppression of He bubble growth and possess the strong microstructural stability. Basing on the analysis on the sizes and number densities of bubbles as well as the concentrations of He retained in the nanochannel CrN films and the compact CrN film under different experimental conditions, potential mechanism for the enhanced radiation tolerance are discussed. Nanochannels play a crucial role on the release of He/defects under ion irradiation. We conclude that the tailored "vein-like" nanochannel structure may be used as advanced radiation tolerance materials for future nuclear reactors.

  12. In situ transmission electron microscope studies of ion irradiation-induced and irradiation-enhanced phase changes

    International Nuclear Information System (INIS)

    Allen, C.W.

    1992-01-01

    Motivated at least initially by materials needs for nuclear reactor development, extensive irradiation effects studies employing transmission electron microscopes (TEM) have been performed for several decades, involving irradiation-induced and irradiation-enhanced microstructural changes, including phase transformations such as precipitation, dissolution, crystallization, amorphization, and order-disorder phenomena. From the introduction of commercial high voltage electron microscopes (HVEM) in the mid-1960s, studies of electron irradiation effects have constituted a major aspect of HVEM application in materials science. For irradiation effects studies two additional developments have had particularly significant impact; the development of TEM specimen holder sin which specimen temperature can be controlled in the range 10-2200 K and the interfacing of ion accelerators which allows in situ TEM studies of irradiation effects and the ion beam modification of materials within this broad temperature range. This paper treats several aspects of in situ studies of electron and ion beam-induced and enhanced phase changes and presents two case studies involving in situ experiments performed in an HVEM to illustrate the strategies of such an approach of the materials research of irradiation effects

  13. The early effects in the brain after irradiation with carbon ions using mice

    International Nuclear Information System (INIS)

    Takai, Nobuhiko; Nakamura, Saori; Ohba, Yoshihito; Uzawa, Akiko; Furusawa, Yoshiya; Koike, Sachiko; Matsumoto, Yoshitaka; Hirayama, Ryoichi

    2010-01-01

    This study investigated both early and late effects in the brain after irradiation with carbon ions using mice. The irradiation dose was set at level known to produce vascular change followed by necrosis, which appeared the late period after irradiation with 30 Gy. The whole of brain was irradiated, excluding eyes and brain stem. The mice irradiated with single dose of 30 Gy showed deficit in short-term working memory assessed at 36 hr after irradiation, whereas mice receiving carbon irradiation showed no deficit in long-term reference memory. At 16 weeks after irradiation, the irradiated mice showed marked learning impairment compared with age-matched controls and the irradiated mice showed substantial impairment of working memory. Histopathological observation revealed no abnormal finding in the irradiated brain at 36 hr after irradiation, although irradiated mice showed marked neuronal degeneration at the hippocampus within CA1 to CA3 layers at 16 weeks after irradiation. In the irradiated group, neuronal cells in the hippocampal CA1-3 areas were reduced by 30-49%. These results suggest that although irradiation-induced hippocampal degeneration is associated with learning disability, cognitive deficits may also be detected on the early stage, not associated with hippocampal degeneration. (author)

  14. Morphology variation, composition alteration and microstructure changes in ion-irradiated 1060 aluminum alloy

    Science.gov (United States)

    Wan, Hao; Si, Naichao; Wang, Quan; Zhao, Zhenjiang

    2018-02-01

    Morphology variation, composition alteration and microstructure changes in 1060 aluminum irradiated with 50 keV helium ions were characterized by field emission scanning electron microscopy (FESEM) equipped with x-ray elemental scanning, 3D measuring laser microscope and transmission electron microscope (TEM). The results show that, helium ions irradiation induced surface damage and Si-rich aggregates in the surfaces of irradiated samples. Increasing the dose of irradiation, more damages and Si-rich aggregates would be produced. Besides, defects such as dislocations, dislocation loops and dislocation walls were the primary defects in the ion implanted layer. The forming of surface damages were related with preferentially sputtering of Al component. While irradiation-enhanced diffusion and irradiation-induced segregation resulted in the aggregation of impurity atoms. And the aggregation ability of impurity atoms were discussed based on the atomic radius, displacement energy, lattice binding energy and surface binding energy.

  15. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    Directory of Open Access Journals (Sweden)

    Caitlin Anne Taylor

    2017-09-01

    Full Text Available Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM. This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs: zirconium alloys and LiAlO2.

  16. Predicting neutron damage using TEM with in situ ion irradiation and computer modeling

    Science.gov (United States)

    Kirk, Marquis A.; Li, Meimei; Xu, Donghua; Wirth, Brian D.

    2018-01-01

    We have constructed a computer model of irradiation defect production closely coordinated with TEM and in situ ion irradiation of Molybdenum at 80 °C over a range of dose, dose rate and foil thickness. We have reexamined our previous ion irradiation data to assign appropriate error and uncertainty based on more recent work. The spatially dependent cascade cluster dynamics model is updated with recent Molecular Dynamics results for cascades in Mo. After a careful assignment of both ion and neutron irradiation dose values in dpa, TEM data are compared for both ion and neutron irradiated Mo from the same source material. Using the computer model of defect formation and evolution based on the in situ ion irradiation of thin foils, the defect microstructure, consisting of densities and sizes of dislocation loops, is predicted for neutron irradiation of bulk material at 80 °C and compared with experiment. Reasonable agreement between model prediction and experimental data demonstrates a promising direction in understanding and predicting neutron damage using a closely coordinated program of in situ ion irradiation experiment and computer simulation.

  17. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel; Hattar, Khalid

    2017-09-29

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.

  18. Correlation between intrinsic hardness and defect structures of ion irradiated Fe alloys

    International Nuclear Information System (INIS)

    Shin, C.; Jin, H. H.; Kwon, J.

    2008-01-01

    Evolution of micro structures and mechanical properties during an in-service irradiation is one of the key issues to be addressed in nuclear materials. Ion irradiation is an effective method to study these irradiation effects thanks to an ease in handling post-irradiated specimens. But the characteristics of an ion irradiation pose a certain difficulty in evaluating irradiation effects. For example, ion irradiated region extends only a few hundred nano-meters from the surface of a sample and the depth profile of an irradiation damage level is quite heterogeneous. Thus it requires special care to quantify the changes in properties after an ion irradiation. We measured changes in a hardness by using a nano-indentation combined with a continuous stiffness measurement (CSM technique. Although the SM technique allows for a continuous measurement of hardness along penetration depth of an indenter; it is difficult to obtain an intrinsic hardness of an irradiation hardened region because one is measuring hardness of a hard layer located on a soft matrix. Thus we modeled the nano-indentation test by using a finite element method. We can extract the intrinsic hardness and the yield stress of an irradiation hardened region by using a so-called inverse method. We investigated the irradiation effects on Fe-Cr binary alloy by using the methods mentioned above. TEM analysis revealed that an irradiation forms dislocation loops with Burgers vector of and 1/2 . These loops varied in size and density with the Cr content and dose level. We discuss in detail a correlation between the measured irradiation-induced changes in the surface hardness and an irradiation induced defect. (authors)

  19. Self-ion emulation of high dose neutron irradiated microstructure in stainless steels

    Science.gov (United States)

    Jiao, Z.; Michalicka, J.; Was, G. S.

    2018-04-01

    Solution-annealed 304L stainless steel (SS) was irradiated to 130 dpa at 380 °C, and to 15 dpa at 500 °C and 600 °C, and cold-worked 316 SS (CW 316 SS) was irradiated to 130 dpa at 380 °C using 5 MeV Fe++/Ni++ to produce microstructures and radiation-induced segregation (RIS) for comparison with that from neutron irradiation at 320 °C to 46 dpa in the BOR60 reactor. For the 304L SS alloy, self-ion irradiation at 380 °C produced a dislocation loop microstructure that was comparable to that by neutron irradiation. No voids were observed in either the 380 °C self-ion irradiation or the neutron irradiation conditions. Irradiation at 600 °C produced the best match to radiation-induced segregation of Cr and Ni with the neutron irradiation, consistent with the prediction of a large temperature shift by Mansur's invariant relations for RIS. For the CW 316 SS alloy irradiated to 130 dpa at 380 °C, both the irradiated microstructure (dislocation loops, precipitates and voids) and RIS reasonably matched the neutron-irradiated sample. The smaller temperature shift for RIS in CW 316 SS was likely due to the high sink (dislocation) density induced by the cold work. A single self-ion irradiation condition at a dose rate ∼1000× that in reactor does not match both dislocation loops and RIS in solution-annealed 304L SS. However, a single irradiation temperature produced a reasonable match with both the dislocation/precipitate microstructure and RIS in CW 316 SS, indicating that sink density is a critical factor in determining the temperature shift for self-ion irradiations.

  20. Physical and chemical response of 70 MeV carbon ion irradiated ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Physical and chemical responses of 70 MeV carbon ion irradiated Kapton-H polymer were studied by using UV-visible, FTIR and XRD techniques. The ion fluences ranging from 9⋅3 × 1011–9 × 1013 ions cm–2 were used. Recorded UV-visible spectra clearly showed a decrease in absorption initially with fluence, ...

  1. Effect of low energy electron irradiation on DNA damage by Cu{sup 2+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Ah; Cho, Hyuck [Dept. of Physics, Chungnam National University, Daejeon (Korea, Republic of); Park, Yeun Soo [Plasma Technology Research Center, National Fusion Research Institute, Gunsan (Korea, Republic of)

    2017-03-15

    The combined effect of the low energy electron (LEE) irradiation and Cu{sup 2+} ion on DNA damage was investigated. Lyophilized pBR322 plasmid DNA films with various concentrations (1–15 mM) of Cu{sup 2+} ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

  2. Fe2+ ion irradiated JRQ steel investigated by nanoindentation and slow-positron Doppler broadening spectroscopy

    Science.gov (United States)

    Pecko, Stanislav; Heintze, Cornelia; Bergner, Frank; Anwand, Wolfgang; Slugeň, Vladimír

    2018-01-01

    A model reactor pressure vessel (RPV) steel, known as JRQ, was manufactured in Japan for IAEA neutron embrittlement research studies in late 80 s. This model alloy belongs to the commercially used steel of A533B-1 type and shows relatively large changes in mechanical properties after a neutron irradiation due to considerable copper content (0.15 wt%). In order to simulate neutron irradiation and investigate the hardening effect, studied specimens of JRQ steel were exposed to Fe2+ ion irradiation in five different exposures calculated using the SRIM code. The ion energy of 5 MeV, temperature at 300 °C and the flux of 1.0 × 1011 cm-2 s-1 were the same during the irradiations. The hardening was investigated and observed by means of nanoindentation technique and a defect profile of irradiated steels was measured by Slow-positron Doppler broadening spectroscopy (DBS). The observed increasing trend of nanohardness as a function of fluence is in good agreement with the trend observed on the basis of Vickers hardness measured for neutron-irradiated JRQ. This confirms that Cu precipitation is most likely responsible for the observed irradiation hardening and that neutron-irradiation-induced damage can be simulated using ion irradiation in the present case. We have also excluded open volume (vacancy type) defects in the crystal lattice of JRQ steel from a responsibility for the damage arising by the Fe2+ ion irradiation.

  3. Effects of energetic ion irradiation on the magnetism of Fe–Ni Invar alloy

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, M., E-mail: matsushita@eng.ehime-u.ac.jp [Graduate School of Science and Engineering, Ehime University, 3-Bunkyocho, Matsuyama (Japan); Akamatsu, S. [Graduate School of Science and Engineering, Ehime University, 3-Bunkyocho, Matsuyama (Japan); Matsushima, Y. [Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka Kitaku, Okayama (Japan); Iwase, A. [Department of Materials Science, Osaka Prefecture University, Gakuencho, Sakai (Japan)

    2013-11-01

    Highlights: •16-MeV Au{sup 3+} ions were irradiated to Fe{sub 66}Ni{sub 34} alloy. •Magnetic properties of Fe{sub 66}Ni{sub 34} were changed by the irradiation. •T{sub c} of a part of sample increases due to the irradiation. •FCC structure is stable before and after irradiation. -- Abstract: The magnetic properties of Fe–Ni Invar alloys are significantly affected by ion irradiation. Au{sup 3+} with the energy of 16 MeV irradiation effects on the magnetism of Fe{sub 66}Ni{sub 34} have been reported in this paper. Considering from the temperature variations of AC susceptibility of irradiated Fe{sub 66}Ni{sub 34}, Curie temperature of a part of sample increase with increasing incident ion fluence, and the magnetization of irradiated Fe{sub 66}Ni{sub 34} is also increase. The FCC structure of Fe{sub 66}Ni{sub 34} is not changed by ion irradiation; however peaks become broader with increasing ion fluence. It means that lattice fluctuations are generated owing to ion irradiation. However it cannot be considered that lattice fluctuations observed X-ray diffraction measurements are enough to increase the Curie temperature observed in AC susceptibility measurements. Then, we suggest as the considerable origin of increasing T{sub C}, atomic mixing effects owing to the ion irradiation. It might change the chemical ordering reported in the diffused scattering, such as Fe–Fe coupling.

  4. Damage growth in Si during self-ion irradiation: A study of ion effects over an extended energy range

    International Nuclear Information System (INIS)

    Holland, O.W.; El-Ghor, M.K.; White, C.W.

    1989-01-01

    Damage nucleation/growth in single-crystal Si during ion irradiation is discussed. For MeV ions, the rate of growth as well as the damage morphology are shown to vary widely along the track of the ion. This is attributed to a change in the dominant, defect-related reactions as the ion penetrates the crystal. The nature of these reactions were elucidated by studying the interaction of MeV ions with different types of defects. The defects were introduced into the Si crystal prior to high-energy irradiation by self-ion implantation at a medium energy (100 keV). Varied damage morphologies were produced by implanting different ion fluences. Electron microscopy and ion-channeling measurements, in conjunction with annealing studies, were used to characterize the damage. Subtle changes in the predamage morphology are shown to result in markedly different responses to the high-energy irradiation, ranging from complete annealing of the damage to rapid growth. These divergent responses occur over a narrow range of dose (2--3 times 10 14 cm -2 ) of the medium-energy ions; this range also marks a transition in the growth behavior of the damage during the predamage implantation. A model is proposed which accounts for these observations and provides insight into ion-induced growth of amorphous layers in Si and the role of the amorphous/crystalline interface in this process. 15 refs, 9 figs

  5. Influence of ion irradiation induced defects on mechanical properties of copper nanowires

    International Nuclear Information System (INIS)

    Li, Weina; Sun, Lixin; Xue, Jianming; Wang, Jianxiang; Duan, Huiling

    2013-01-01

    The mechanical properties of copper nanowires irradiated with energetic ions have been investigated by using molecular dynamics simulations. The Cu ions with energies ranging from 0.2 to 8.0 keV are used in our simulation, and both the elastic properties and yields under tension and compression are analyzed. The results show that two kinds of defects, namely point defects and stacking faults, appear in the irradiated nanowires depending on the incident ion energy. The Young modulus is significantly reduced by the ion irradiation, and the reduction magnitude depends on the vacancy number, which is determined by the ion energy. Moreover, the irradiated nanowires yield at a smaller strain, compared with the unirradiated nanowire. The mechanism for these changes are also discussed

  6. First multicharged ion irradiation results from the CUEBIT facility at Clemson University

    Energy Technology Data Exchange (ETDEWEB)

    Shyam, R.; Kulkarni, D. D.; Field, D. A.; Srinadhu, E. S.; Harriss, J. E. [Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634 (United States); Cutshall, D. B.; Harrell, W. R. [Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina, 29634 (United States); Sosolik, C. E. [Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634 USA and Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina, 29634 (United States)

    2015-01-09

    A new electron beam ion trap (EBIT) based ion source and beamline were recently commissioned at Clemson University to produce decelerated beams of multi- to highly-charged ions for surface and materials physics research. This user facility is the first installation of a DREEBIT-designed superconducting trap and ion source (EBIS-SC) in the U.S. and includes custom-designed target preparation and irradiation setups. An overview of the source, beamline, and other facilities as well as results from first measurements on irradiated targets are discussed here. Results include extracted charge state distributions and first data on a series of irradiated metal-oxide-semiconductor (MOS) device targets. For the MOS devices, we show that voltage-dependent capacitance can serve as a record of the electronic component of ion stopping power for an irradiated, encapsulated oxide target.

  7. The JANNUS Saclay facility: A new platform for materials irradiation, implantation and ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrino, S., E-mail: stephanie.pellegrino@cea.fr [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Trocellier, P.; Miro, S.; Serruys, Y.; Bordas, E.; Martin, H. [CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Chaabane, N.; Vaubaillon, S. [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Gallien, J.P.; Beck, L. [CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2012-02-15

    The third accelerator of the multi-ion irradiation platform JANNUS (Joint Accelerators for Nanosciences and NUclear Simulation), a 6SDH-2 Pelletron from National Electrostatic Corporation, Middleton was installed at Saclay in October 2009. The first triple beam irradiation combining Fe, He and H ion beams has been performed in March 2010. In the first part of this paper, we give a technical description of the triple beam facility, its performances and experimental capabilities. Typically, damage dose up to 100 dpa can be reached in 10 h irradiation with heavy ion beams, with or without simultaneous bombardment by protons, helium-4 ions or any other heavy ion beam. In the second part of this paper, we illustrate some IBA results obtained after irradiation and implantation experiments.

  8. The JANNUS Saclay facility: A new platform for materials irradiation, implantation and ion beam analysis

    Science.gov (United States)

    Pellegrino, S.; Trocellier, P.; Miro, S.; Serruys, Y.; Bordas, É.; Martin, H.; Chaâbane, N.; Vaubaillon, S.; Gallien, J. P.; Beck, L.

    2012-02-01

    The third accelerator of the multi-ion irradiation platform JANNUS (Joint Accelerators for Nanosciences and NUclear Simulation), a 6SDH-2 Pelletron from National Electrostatic Corporation, Middleton was installed at Saclay in October 2009. The first triple beam irradiation combining Fe, He and H ion beams has been performed in March 2010. In the first part of this paper, we give a technical description of the triple beam facility, its performances and experimental capabilities. Typically, damage dose up to 100 dpa can be reached in 10 h irradiation with heavy ion beams, with or without simultaneous bombardment by protons, helium-4 ions or any other heavy ion beam. In the second part of this paper, we illustrate some IBA results obtained after irradiation and implantation experiments.

  9. Electronic excitation induced modifications in elongated iron nanoparticle encapsulated multiwalled carbon nanotubes under ion irradiation

    Science.gov (United States)

    Saikiran, V.; Bazylewski, P.; Sameera, I.; Bhatia, Ravi; Pathak, A. P.; Prasad, V.; Chang, G. S.

    2018-05-01

    Multi-wall carbon nanotubes (MWCNT) filled with Fe nanorods were shown to have contracted and deformed under heavy ion irradiation. In this study, 120 MeV Ag and 80 MeV Ni ion irradiation was performed to study the deformation and defects induced in iron filled MWCNT under heavy ion irradiation. The structural modifications induced due to electronic excitation by ion irradiation were investigated employing high-resolution transmission electron microscopy, micro-Raman scattering experiments, and synchrotron-based X-ray absorption and emission spectroscopy. We understand that the ion irradiation causes modifications in the Fe nanorods which result in compressions and expansions of the nanotubes, and in turn leads to the buckling of MWCNT. The G band of the Raman spectra shifts slightly towards higher wavenumber and the shoulder G‧ band enhances with the increase of ion irradiation fluence, where the buckling wavelength depends on the radius 'r' of the nanotubes as exp[(r)0.5]. The intensity ratio of the D to G Raman modes initially decreases at the lowest fluence, and then it increases with the increase in ion fluence. The electron diffraction pattern and the high resolution images clearly show the presence of ion induced defects on the walls of the tube and encapsulated iron nanorods.

  10. Ion-channeling analysis of As relocation in heavily doped Si:As irradiated with high-energy ions

    International Nuclear Information System (INIS)

    Lulli, G.; Albertazzi, E.; Bianconi, M.; Ferri, M.

    2003-01-01

    Silicon on insulator layers doped with 8x10 20 As cm -3 and thermally equilibrated at 1100 deg. C, have been irradiated with 2 MeV Si + ions. Rutherford backscattering-channeling analysis shows an increase in As disorder upon irradiation significantly larger than the increase in Si disorder, while electrical measurements show a large decrease in electrical activation. Monte Carlo simulation of channeling angular scans suggests that the enhanced As disorder effect is due to the preferential relocation of dopant atoms slightly displaced from lattice sites, which appear the main reason responsible for the electrical deactivation in the unirradiated sample and are believed to be in the form of As-vacancy clusters. Upon 600 deg. C 15 s annealing, the As atoms randomly relocated by ion irradiation almost completely recover their original configuration, probably capturing vacancies and forming, again, the complexes dissociated by ion irradiation

  11. Effect of ion irradiation on the surface energy of deposited coatings

    Science.gov (United States)

    Eremin, E. N.; Guchenko, S. A.; Kasymov, S. S.; Yurov, V. M.; Vedyashkin, M. V.

    2017-01-01

    We investigated multi-element coatings exposed to argon ion bombardment. The coatings were irradiated using a multi-ampere hollow-cathode ion source. The arc current was 1 A, and the potential of the substrate was maintained equal to 300 V. The surface tension (surface energy) of the coatings was measured before and after irradiation through the size-dependence of the microhardness and electrical resistivity of coatings on their thickness. Ion irradiation was found to affect the surface energy of the coatings in different ways. This is due to both the structure of the coating and its elemental composition.

  12. Dual ion beam irradiation system for in situ observation with electron microscope

    International Nuclear Information System (INIS)

    Tsukamoto, Tetuo; Hojou, Kiiti; Furuno, Sigemi; Otsu, Hitosi; Izui, Kazuhiko.

    1993-01-01

    We have developed a new in situ observation system for dynamic processes under dual ion beam irradiation. The system consists of a modified 400 keV analytical electron microscope (JEOL, JEM-4000FX) and two 40 kV ion beam accelerators. This system allows evaluation of microscopic changes of structure and chemical bonding state of materials in the dynamic processes under two kinds of ion beam irradiations, that is required for the simulation test of the first wall of nuclear fusion reactors onto which He + , H + , and H 2 + ions are irradiated simultaneously. These two ion accelerators were equipped symmetrically both sides of the electron microscope and individually controlled. Each ion beam extracted from a duo-plasmatron ion gun is bent downward by an angle of 30deg with a mass-separating magnet, and introduced into specimen chamber of the electron microscope. Inside the specimen chamber the beam is deflected again by an angle of 30deg with an electrostatic prism so as to be incident on the specimen surface. Finally, two ion beams from both side are incident on the specimen surface at an angle of 60deg. The maximum ion current density of helium is more than 250μA/cm 2 at the specimen at an ion energy of 17 keV. Images of the electron microscope during dual ion beam irradiation are observed through a TV camera and recorded with a VTR. (author)

  13. 200 MeV Ag+15 ion irradiation-induced modifications in structural, magnetic and dielectric properties of nanoparticles of Cu0.2Zn0.8Fe2O4 ferrite

    Science.gov (United States)

    Dolia, S. N.; Sharma, P. K.; Samariya, Arvind; Pareek, S. P.; Prasad, Arun S.; Dhawan, M. S.; Kumar, Sudhish; Asokan, K.

    2013-08-01

    The present investigation aims at studying the effect of swift heavy ion irradiation on the structural, magnetic and dielectric properties of the nanocrystalline Cu0.2Zn0.8Fe2O4 spinel ferrite. The sample was synthesised using the sol-gel technique and then irradiated with the 200 MeV Ag+15 ion beam. The Rietveld profile refinement of the X-ray diffraction patterns confirmed the cubic spinel structure of samples. The spherical morphology revealed through transmission electron microscopy images was consistent with the crystalline diameter. The overall magnetic behaviour pointed towards superparamagnetic relaxation at room temperature along with the significant increase in saturation magnetisation, coercivity and blocking temperature after irradiation. This could be attributed to the slight increase in the particle size and ion-induced modifications on the surface states of the nanoparticles. The enhancement in dielectric constant and loss tangent after irradiation could be attributed to the available Fe+2 ↔ Fe+3 and/or Zn+2 ↔ Zn+3 ion polarisation at the octahedral site, especially on grain boundaries of the sample.

  14. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Science.gov (United States)

    Ahmad, Shahbaz; Bashir, Shazia; Ali, Nisar; Umm-i-Kalsoom; Yousaf, Daniel; Faizan-ul-Haq; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 1012 to 26 × 1013 ions/cm2. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation, augmentation, recombination and annihilation of the ion-induced defects.

  15. Effects of energetic ion irradiation on the magnetism of Fe-Ni Invar alloy

    Science.gov (United States)

    Matsushita, M.; Akamatsu, S.; Matsushima, Y.; Iwase, A.

    2013-11-01

    The magnetic properties of Fe-Ni Invar alloys are significantly affected by ion irradiation. Au3+ with the energy of 16 MeV irradiation effects on the magnetism of Fe66Ni34 have been reported in this paper. Considering from the temperature variations of AC susceptibility of irradiated Fe66Ni34, Curie temperature of a part of sample increase with increasing incident ion fluence, and the magnetization of irradiated Fe66Ni34 is also increase. The FCC structure of Fe66Ni34 is not changed by ion irradiation; however peaks become broader with increasing ion fluence. It means that lattice fluctuations are generated owing to ion irradiation. However it cannot be considered that lattice fluctuations observed X-ray diffraction measurements are enough to increase the Curie temperature observed in AC susceptibility measurements. Then, we suggest as the considerable origin of increasing TC, atomic mixing effects owing to the ion irradiation. It might change the chemical ordering reported in the diffused scattering, such as Fe-Fe coupling.

  16. Effects of ion irradiation on the mechanical properties of several polymers

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Kawanishi, Shunichi; Nishi, Masanobu; Seguchi, Tadao

    1991-01-01

    The effects of high-energy ion irradiation on the tensile properties of polymers were studied under conditions in which ions should pass completely through the specimen and the results were compared with 2 MeV electron irradiation effects. Experiments were carried out on polymers having various constituents and molecular structures, i.e. eight aliphatic polymers and four aromatic polymers. In the aliphatic polymers studied there was scarcely any difference in the dose dependence of the tensile strength and ultimate elongation between proton and electron irradiation. In the aromatic polymers, however, the decrements in the tensile strength and ultimate elongation vs proton dose were less than those for electron irradiation. In heavy-ion irradiation, the radiation damage of PE (an aliphatic polymer) decreased with increase of LET, but no obvious LET effects were observed in PES (an aromatic polymer). (author)

  17. Formation of tungsten oxide nanowires by ion irradiation and vacuum annealing

    Science.gov (United States)

    Zheng, Xu-Dong; Ren, Feng; Wu, Heng-Yi; Qin, Wen-Jing; Jiang, Chang-Zhong

    2018-04-01

    Here we reported the fabrication of tungsten oxide (WO3-x ) nanowires by Ar+ ion irradiation of WO3 thin films followed by annealing in vacuum. The nanowire length increases with increasing irradiation fluence and with decreasing ion energy. We propose that the stress-driven diffusion of the irradiation-induced W interstitial atoms is responsible for the formation of the nanowires. Comparing to the pristine film, the fabricated nanowire film shows a 106-fold enhancement in electrical conductivity, resulting from the high-density irradiation-induced vacancies on the oxygen sublattice. The nanostructure exhibits largely enhanced surface-enhanced Raman scattering effect due to the oxygen vacancy. Thus, ion irradiation provides a powerful approach for fabricating and tailoring the surface nanostructures of semiconductors.

  18. Observation of transient lattice vacancies produced during high-energy ion irradiation of Ni foils

    International Nuclear Information System (INIS)

    Tsuchida, Hidetsugu; Iwai, Takeo; Awano, Misa; Kishida, Mutsumi; Katayama, Ichiro; Jeong, Sun-Chang; Ogawa, Hidemi; Sakamoto, Naoki; Komatsu, Masao; Itoh, Akio

    2007-01-01

    Real-time positron annihilation spectroscopy has been applied for the first time for the investigation of lattice vacancies produced during ion irradiation. Measurements were performed for thin nickel foils irradiated with 2.5 MeV C ions. Doppler broadenings of positron annihilation γ-rays were measured alternately during beam-on and beam-off conditions. It was found that the Doppler broadening line-shape parameter measured during irradiation is larger than those obtained before and after irradiation. This evidently implies that transient or non-survivable vacancy defects are produced during ion irradiation. On the other hand, no such significant change in the line-shape parameter was observed for other face-centred-cubic metal forms of aluminium

  19. Effects of C3+ ion irradiation on structural, electrical and magnetic properties of Ni nanotubes

    Science.gov (United States)

    Shlimas, D. I.; Kozlovskiy, A. L.; Zdorovets, M. V.; Kadyrzhanov, K. K.; Uglov, V. V.; Kenzhina, I. E.; Shumskaya, E. E.; Kaniukov, E. Y.

    2018-03-01

    Ion irradiation is an attractive method for obtaining nanostructures that can be used under extreme conditions. Also, it is possible to control the technological process that allows obtaining nanomaterials with new properties at ion irradiation. In this paper, we study the effect of irradiation with 28 MeV C3+ ions and fluences up to 5 × 1011 cm-2 on the structure and properties of template-synthesized nickel nanotubes with a length of 12 μm, with diameters of 400 nm, and a wall thickness of 100 nm. It is demonstrated that the main factor influencing the degradation of nanostructures under irradiation in PET template is the processes of mixing the material of nanostructures with the surrounding polymer. The influence of irradiation with various fluences on the crystal structure, electrical and magnetic properties of nickel nanotubes is studied.

  20. Effect of 100MeV oxygen ion irradiation on silicon NPN power transistor

    Science.gov (United States)

    Kumar, M. Vinay; Krishnakumar, K. S.; Dinesh, C. M.; Krishnaveni, S.; Ramani

    2012-06-01

    The radiation response of npn Bipolar junction transistor (BJT) has been examined for 100 MeV O7+ ion. Key electrical properties like Gummel characteristics, dc current gain and capacitance-voltage of 100MeV O7+ ion irradiated transistor were studied before and after irradiation. The device was decapped and the electrical characterizations were performed at room temperature. Base current is observed to be more sensitive than collector current and gain appears to be degraded with ion fluence, also considerable degradation in C-V characteristics is observed and doping concentration is found to be increased along with the increase in ion fluence.

  1. Effect of 100MeV oxygen ion irradiation on silicon NPN power transistor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. Vinay; Krishnakumar, K. S.; Dinesh, C. M.; Krishnaveni, S.; Ramani [Department of studies in Physics, University of Mysore, Mysore (India); Department of Physics, APS College, Bengaluru (India); Department of Physics, DCE, Govt. First Grade College, Mangalore (India); Department of studies in Physics, University of Mysore, Mysore (India); Department of Physics, Bangalore University, Bengaluru (India)

    2012-06-05

    The radiation response of npn Bipolar junction transistor (BJT) has been examined for 100 MeV O{sup 7+} ion. Key electrical properties like Gummel characteristics, dc current gain and capacitance-voltage of 100MeV O{sup 7+} ion irradiated transistor were studied before and after irradiation. The device was decapped and the electrical characterizations were performed at room temperature. Base current is observed to be more sensitive than collector current and gain appears to be degraded with ion fluence, also considerable degradation in C-V characteristics is observed and doping concentration is found to be increased along with the increase in ion fluence.

  2. Distribution of products in polymer materials induced by ion-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masaki; Kudoh, Hisaaki; Sasuga, Tsuneo; Seguchi, Tadao [Japan Atomic Energy Research Inst., Tokyo (Japan); Hama, Yoshimasa; Hamanaka, Ken-ichi; Matsumoto, Hideya

    1997-03-01

    The depth profile of double bond formed in low density polyethylene (LDPE) sheet by ion beams irradiation was observed by a micro FT-IR spectrometer in order to investigate the linear energy transfer (LET) dependency on radiation effects to polymer materials. The distribution of double bond formation in LDPE by irradiation of light ions as H+ was found to be same with the dose distribution calculated from TRIM code, and the yield was also same with that by gamma-rays irradiation, which means that the LET dependency is very small. However, the distribution of double bond to depth was much different from the calculated depth-dose in heavy ions irradiation as Ar and Kr. Then, the dose evaluation was difficult from the TRIM code calculation for heavy ions. (author)

  3. Investigation of Current Spike Phenomena During Heavy Ion Irradiation of NAND Flash Memories

    Science.gov (United States)

    Oldham, Timothy R.; Berg, Melanie; Friendlich, Mark; Wilcox, Ted; Seidleck, Christina; LaBel, Kenneth A.; Irom, Farokh; Buchner, Steven P.; McMorrow, Dale; Mavis, David G.; hide

    2011-01-01

    A series of heavy ion and laser irradiations were performed to investigate previously reported current spikes in flash memories. High current events were observed, however, none matches the previously reported spikes. Plausible mechanisms are discussed.

  4. SU-C-204-04: Irradiation of Human Cell Lines Using Various Ions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y; McMahon, S; Kaminuma, T; Held, K [Harvard Medical School, Boston MA (United States); Tessa, C; Rusek, A [Brookhaven National Laboratory, Upton, NY (United States)

    2016-06-15

    Purpose: The purpose of this study is to investigate and quantify the biological effects of ion radiation using several human cell lines. We aim to answer the question of whether carbon ion the most ideal ion species for heavy ion radiotherapy. Methods: The cells were irradiated at different positions along the pristine Bragg peak of several ions with different atomic number. The biological effectiveness was evaluated using the clonogenic cell survival assay. Irradiation of three human lung cancer cell lines and a fibroblast cell line were undertaken using the charged particle beam at the NASA Space Radiation Laboratory at Brookhaven National Lab. Four mono-energetic ion beams (carbon, oxygen, helium and lithium) were used to irradiate the cells. Water or media-filled T25 flasks were lined up along the beam line so that the cell-containing surfaces of the flasks were placed at a specific depth along the pristine Bragg curve. Four depths along the curve, representing entrance point, rising peak, peak and distal fall off, were selected to determine biological effectiveness. Gaf-chromic films were placed between the flasks to monitor the irradiation as soon as it was finished. Results: For all ion radiations, the maximum cell killing effect occurs at either peak or distal fall off, depending on the cell lines. For instance, for the fibroblast cell line AGO1522, RBEs of 1.4, 1.2, 1.4 and 1.9 were observed at the Bragg peak for Helium, Lithium, Carbon and Oxygen ions. Comparing positions, RBEs of 0.9, 1.2, 1.4 and 1.8 were observed for carbon irradiation of AGO-1522 cells positions corresponding to entrance, rising peak, peak and distal fall off. Conclusion: RBE values differ with position in the Bragg peak, ion species and cell line. Ions other than carbon may prove more effective in certain irradiation conditions and may contribute to optimized heavy ion therapy.

  5. Spatial ordering of nano-dislocation loops in ion-irradiated materials

    Energy Technology Data Exchange (ETDEWEB)

    Dudarev, S.L., E-mail: sergei.dudarev@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Centre for Fusion Energy, Oxfordshire OX14 3DB (United Kingdom); Arakawa, K. [Department of Materials Science, Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504 (Japan); Yi, X. [EURATOM/CCFE Fusion Association, Culham Centre for Fusion Energy, Oxfordshire OX14 3DB (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Yao, Z. [Department of Mechanical and Materials Engineering, Queen’s University, Nicol Hall, 60 Union Street, Kingston K7L 3N6, Ontario (Canada); Jenkins, M.L. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Gilbert, M.R. [EURATOM/CCFE Fusion Association, Culham Centre for Fusion Energy, Oxfordshire OX14 3DB (United Kingdom); Derlet, P.M. [Condensed Matter Theory Group, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2014-12-15

    Defect microstructures formed in ion-irradiated metals, for example iron or tungsten, often exhibit patterns of spatially ordered nano-scale dislocation loops. We show that such ordered dislocation loop structures may form spontaneously as a result of Brownian motion of loops, biased by the angular-dependent elastic interaction between the loops. Patterns of spatially ordered loops form once the local density of loops produced by ion irradiation exceeds a critical threshold value.

  6. Application of ion beam irradiated ePTFE to repair small vessel injuries

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N. [Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan) and Beam Application Team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)]. E-mail: norikichi@ionbeams.riken.jp; Suzuki, Y. [Beam Application Team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ujiie, H. [Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666 (Japan); Hori, T. [Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666 (Japan); Iwaki, M. [Beam Application Team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamada, T. [Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan)

    2007-04-15

    In surgery, bleeding from small injured vessels often requires prompt hemostasis without occlusion. This study evaluated the usefulness of 0.06 mm thick ion beam irradiated ePTFE sheets to repair small holes in vessels. Both surfaces of ePTFE sheets were irradiated with a 150 keV-Ar{sup +} beam with fluences of 5 x 10{sup 14} ions/cm{sup 2}. A small hole up to 2 mm in diameter was created in the common carotid artery of a rabbit. The defect was wrapped with an ion beam irradiated or non-irradiated ePTFE sheet. Fibrin glue was used to fix the ePTFE sheets to the common carotid artery. Hemostasis was instantly obtained with ion beam irradiated ePTFE but was rather difficult when using a non-irradiated ePTFE sheet. Three weeks after implantation, no occlusion was observed. Histological examination showed that the ePTFE sheets functioned as a scaffold for vessel wall regeneration. Thin ion beam irradiated ePTFE would be useful in vascular surgery.

  7. Anisotropic deformation of colloidal particles under MeV ion irradiation

    NARCIS (Netherlands)

    Dillen, T. van; Snoeks, E.; Fukarek, W.; Kats, C.M. van; Velikov, K.P.; Blaaderen, A. van; Polman, A.

    2001-01-01

    Spherical silica colloids with a diameter of 1.0 um made by wet chemical synthesis, were irradiated with 2-16 MeV Au ions at fluences ranging from 2*10^(14) to 11*10^(14) cm^(-2). The irradiation induces an anisotropic plastic deformation turning the sperical colloids into ellipsional oblates. After

  8. Electrical properties of irradiated PVA film by using ion/electron beam

    Science.gov (United States)

    Abdelrahman, M. M.; Osman, M.; Hashhash, A.

    2016-02-01

    Ion/electron beam bombardment has shown great potential for improving the surface properties of polymers. Low-energy charged (ion/electron) beam irradiation of polymers is a good technique to modify properties such as electrical conductivity, structural behavior, and their mechanical properties. This paper reports on the effect of nitrogen and electron beam irradiation on the electrical properties of polyvinyl alcohol (PVA) films. PVA films of 4 mm were exposed to a charged (ion/electron) beam for different treatment times (15, 30, and 60 minutes); the beam was produced from a dual beam source using nitrogen gas with the other ion/electron source parameters optimized. The dielectric loss tangent tan δ , electrical conductivity σ , and dielectric constant ɛ ^' } in the frequency range 100 Hz-100 kHz were measured at room temperature. The variation of dielectric constant and loss tangent as a function of frequency was also studied at room temperature. The dielectric constant was found to be strongly dependent on frequency for both ion and electron beam irradiation doses. The real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the dielectric constant decreased with frequency for all irradiated and non-irradiated samples. The AC conductivity showed an increase with frequency for all samples under the influence of both ion and electron irradiation for different times. Photoluminescence (PL) spectral changes were also studied. The formation of clusters and defects (which serve as non-radiative centers on the polymer surface) is confirmed by the decrease in the PL intensity.

  9. Magnetoimpedance studies on ion irradiated Co33Fe33Ni7Si7B20 ribbons

    Science.gov (United States)

    Kotagiri, Ganesh; Markandeyulu, G.; Thulasiram, K. V.; Fernandes, W. A.; Misra, D.; Tribedi, L. C.

    2016-04-01

    Magnetoimpedance (MI) effect was studied on amorphous Co33Fe33Ni7Si7B20 ribbons that were irradiated with N+1, Ar+2 and Xe+5 ions, at energy of 75 keV. The (MI)m [maximum MI in each case] values are 9.4% and 11%, 9.9% and 6.5%, the largest, for the as-quenched and N+1, Ar+2 and Xe+5 ion irradiated ribbons respectively, at 2 MHz. The (MI)m value of the N+1 ion irradiated ribbon was observed to be the highest, due to an induced in-plane transverse magnetic anisotropy. The saturation magnetizations of the ion-irradiated ribbons are not seen to change with respect to that of the as-quenched ribbon; a small increase in the Ms was observed only upon irradiation with Xe5+ ions. The interaction between the large number of domains, with large uniaxial anisotropy led to large (MI)m values, at frequencies above 8 MHz in the Ar+2 ion irradiated ribbon.

  10. A study of defect cluster formation in vanadium by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sekimura, Naoto; Shirao, Yasuyuki; Morishita, Kazunori [Tokyo Univ. (Japan)

    1996-10-01

    Formation of defect clusters in thin foils of vanadium was investigated by heavy ion irradiation. In the very thin region of the specimens less than 20 nm, vacancy clusters were formed under gold ion irradiation, while very few clusters were detected in the specimens irradiated with 200 and 400 keV self-ions up to 1 x 10{sup 16} ions/m{sup 2}. The density of vacancy clusters were found to be strongly dependent on ion energy. Only above the critical value of kinetic energy transfer density in vanadium, vacancy clusters are considered to be formed in the cascade damage from which interstitials can escape to the specimen surface in the very thin region. (author)

  11. Modulation of structure, morphology and wettability of polytetrafluoroethylene surface by low energy ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Atta, Ali; Fawzy, Yasser H.A. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) (Egypt); Bek, Alpan, E-mail: bek@metu.edu.tr [Physics Department, Middle East Technical University (METU), Ankara (Turkey); Abdel-Hamid, Hassan M. [Diagnostic Radiology Department, Applied Medical Sciences Faculty, Jazan University (Saudi Arabia); El-Oker, Mohamed M. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt)

    2013-04-01

    Polytetrafluoroethylene (PTFE) films were irradiated under vacuum with 3 keV Argon ions (Ar{sup +}) and fluences ranging from 0.5 × 10{sup 18} to 2 × 10{sup 18} ions/cm{sup 2}. Ion induced PTFE surface modifications of structural, morphological and wettability nature were studied by means of Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy, atomic force microscopy and force spectroscopy, and contact angle measurements. FTIR analysis indicated defluorination of PTFE due to the rupture of C–C and C–F bonds. The values of droplet contact angle of the irradiated samples decreased gradually with the increasing ion flux, and were found to be very sensitive to the environmental humidity under which the measurements were made. The experimental results show that the surface chemical bond, morphology, and wettability of irradiated PTFE samples depend closely on the argon ion flux.

  12. High-energy xenon ion irradiation effects on the electrical properties of yttrium iron garnet

    International Nuclear Information System (INIS)

    Costantini, J.M.; Flament, J.L.; Sinopoli, L.; Trochon, J.; Uzureau, J.L.; Groult, D.; Studer, F.; Toulemonde, M.

    1989-01-01

    Thin monocristalline samples of yttrium iron garnet Y 3 Fe 5 O 12 (YIG) were irradiated at room temperature with 27 MeV/A 132 Xe ions at varying fluences up to 3.5 x 10 12 ions cm -2 . Sample thickness (100 μm) was smaller than the mean projected range of ions (170 μm) so that we were able to study the effects of irradiation damage solely. At such a high ion energy the nuclear energy loss is negligible and damage is mainly due to electronic excitation energy loss. YIG d.c conductivity is found to rise by a factor 40 for the highest dose while the permittivity increases only slightly after irradiation (40% max.). The dielectric losses are also enhanced as the ion fluence increases especially at lower frequencies (by a factor 6 at 10 KHz). No dielectric relaxation peak is observed in the frequency range explored here (10 KHz - 10 MHz)

  13. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    International Nuclear Information System (INIS)

    S, Honey; S, Naseem; A, Ishaq; M, Maaza; M T, Bhatti; D, Wan

    2016-01-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H + ) ion beam irradiation. Ag-NWs are irradiated under H +  ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H + ion beam-induced welding of Ag-NWs at intersecting positions. H +  ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H +  ion beam, and networks are optically transparent. Morphology also remains stable under H +  ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H +  ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. (paper)

  14. Mouse skin damages caused by fractionated irradiation with carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K.; Chen, Y.J.; Ohira, C.; Nojima, K.; Ando, S.; Kobayashi, N.; Ohbuchi, T.; Shimizu, W. [Space and Particle Radiation Science Research Group, Chiba (Japan); Koike, S.; Kanai, T. [National Inst. of Radiological Sciences, Chiba (Japan). Div. of Accelerator Physics

    1997-09-01

    We have investigated carbon-dose responses of early and late skin damages after daily fractionations to the mouse leg. Depilated legs were irradiated with 7 different positions within 290 MeV/u carbon beams. Fractionation schedules were 1, 2, 4 and 8 daily fractions. Skin reaction was scored every other day for 32 days. Five highest scores in individual mice were averaged, and used as averaged peak reaction. The isoeffect doses to produce an averaged peak skin reaction of 3.0 (moist desquamation) on dose-response curves were calculated with 95% confidence limit. The isoeffect dose for control gamma rays constantly increased with an increase in the number of fraction. The isoeffect doses in low LET carbon ions of 14- and 20 keV/{mu}m also increased up to 4 fractions, but did not increase when 4 fractions increased to 8 fractions. The saturation of isoeffect dose was more prominently observed for 40 keV/{mu}m in such that the isoeffect doses did not change among 2, 4 and 8 fractions. The isoeffect doses for LET higher than 50 keV/{mu}m were smaller than those for lower LET. However, the isoeffect doses for 50-, 60-, 80- and 100 keV/{mu} steadily increased with an increase in the number of fraction and did not show any saturation up to 8 fractions. Relation between LET and RBE was linear for all fractionation schedules. The slope of regression line in 4 fractions was steepest, and significantly (P<0.05) different from that in 1 fraction. (orig.)

  15. Mouse skin damages caused by fractionated irradiation with carbon ions

    International Nuclear Information System (INIS)

    Ando, K.; Chen, Y.J.; Ohira, C.; Nojima, K.; Ando, S.; Kobayashi, N.; Ohbuchi, T.; Shimizu, W.; Koike, S.; Kanai, T.

    1997-01-01

    We have investigated carbon-dose responses of early and late skin damages after daily fractionations to the mouse leg. Depilated legs were irradiated with 7 different positions within 290 MeV/u carbon beams. Fractionation schedules were 1, 2, 4 and 8 daily fractions. Skin reaction was scored every other day for 32 days. Five highest scores in individual mice were averaged, and used as averaged peak reaction. The isoeffect doses to produce an averaged peak skin reaction of 3.0 (moist desquamation) on dose-response curves were calculated with 95% confidence limit. The isoeffect dose for control gamma rays constantly increased with an increase in the number of fraction. The isoeffect doses in low LET carbon ions of 14- and 20 keV/μm also increased up to 4 fractions, but did not increase when 4 fractions increased to 8 fractions. The saturation of isoeffect dose was more prominently observed for 40 keV/μm in such that the isoeffect doses did not change among 2, 4 and 8 fractions. The isoeffect doses for LET higher than 50 keV/μm were smaller than those for lower LET. However, the isoeffect doses for 50-, 60-, 80- and 100 keV/μ steadily increased with an increase in the number of fraction and did not show any saturation up to 8 fractions. Relation between LET and RBE was linear for all fractionation schedules. The slope of regression line in 4 fractions was steepest, and significantly (P<0.05) different from that in 1 fraction. (orig.)

  16. Heavy ion irradiation effects in Zr excel alloy pressure tube material

    International Nuclear Information System (INIS)

    Idrees, Y.; Yao, Z.; Sattari, M.; Daymond, M.R.

    2012-01-01

    Zirconium Excel alloy (Zr-3.5wt.%Sn-0.8%Nb-0.8%Mo) is the candidate material for pressure tubes in the Generation-IV CANDU® Super Critical Water-cooled Reactor (SCWR) design. Changes in microstructure induced by neutron irradiation are known to have important consequences on the in-reactor deformation behavior. The in-situ ion irradiation technique has been employed to elucidate the irradiation damage in dual phase Zr-excel alloy (~60% hcp alpha and ~40% bcc beta). 1 MeV Kr ion irradiation experiments were conducted at different temperatures ranging from 100 o C-400 o C. Damage microstructures have been characterized by Transmission Electron Microscopy in both the alpha and beta phases at different temperatures after a maximum dose of 10 dpa. Several new observations including irradiation induced omega (ω) phase precipitation have been reported. The ω/β orientation relationship was determined by the detailed analysis of selected area diffraction patterns. In-situ irradiation provided an opportunity to observe the nucleation and growth of basal plane c-component loops. It has been shown that under Kr ion irradiation the c-loops start to nucleate and grow above a threshold dose, as has been observed for neutron irradiation. Furthermore, the role of temperature, material composition and pre-irradiation microstructure has been discussed in detail. (author)

  17. Solute segregation and void formation in ion-irradiated vanadium-base alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1985-01-01

    The radiation-induced segregation of solute atoms in the V-15Cr-5Ti alloys was determined after either single- dual-, or helium implantation followed by single-ion irradiation at 725 0 C to radiation damage levels ranging from 103 to 169 dpa. Also, the effect of irradiation temperature (600-750 0 C) on the microstructure in the V-15Cr-5Ti alloy was determined after single-ion irradiation to 200 and 300 dpa. The solute segregation results for the single- and dual-ion irradiated alloy showed that the simultaneous production of irradiation damage and deposition of helium resulted in enhanced depletion of Cr solute and enrichment of Ti, C and S solute in the near-surface layers of irradiated specimens. The observations of the irradiation-damaged microstructures in V-15Cr-5Ti specimens showed an absence of voids for irradiations of the alloy at 600-750 0 C to 200 dpa and at 725 0 C to 300 dpa. The principle effect on the microstructure of these irradiations was to induce the formation of a high density of disc-like precipitates in the vicinity of grain boundaries and intrinsic precipitates and on the dislocation structure. 8 references, 4 figures

  18. X-ray diffraction study of the Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore disordering sequence under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Soulié, Aurélien, E-mail: aurelien.soulie@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif sur Yvette (France); CEA, DEN, Service de Recherches de Métallurgie Appliqué, Université Paris-Saclay, F-91191 Gif sur Yvette (France); Menut, Denis [CEA, DEN, Service de Recherches de Métallurgie Appliqué, Université Paris-Saclay, F-91191 Gif sur Yvette (France); Crocombette, Jean-Paul [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif sur Yvette (France); Chartier, Alain [CEA, DEN, Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, Laboratoire de Modélisation, de Thermodynamique et de Thermochimie, Université Paris-Saclay, F-91191 Gif sur Yvette (France); Sellami, Neila [Univ. Paris Sud, ICMMO-SP2M, Bât. 410, F-91405 Orsay (France); Sattonnay, Gaël [Univ. Paris-Sud, CSNSM, CNRS, IN2P3, Bât. 108, F-91405 Orsay (France); Monnet, Isabelle [CIMAP, CEA, CNRS, Université de Caen, BP 5133, F-14070 Caen Cedex 5 (France); and others

    2016-11-15

    The disordering sequence of Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore, a nano-oxide phase that strengthens ODS steels under irradiation is studied in the experimental and modeling framework. XRD analysis has been performed considering both swift heavy ion and low energy/low mass ion irradiations. The simulation within molecular dynamics of Frenkel pair accumulation proves able to reproduce the variation of the amorphization fluence with temperature. XRD patterns calculated from the simulations reproduce well the patterns observed experimentally in the literature. Both experiments and calculations point to a first transition from pyrochlore to fluorite before an eventual amorphization. For swift heavy ion irradiations with 93 MeV Xe ions, tracks of direct impact amorphization are visible by HRTEM. Advanced refinement shows that one third of the pyrochlore impacted by an ion transforms into fluorite, while two third are directly amorphized. - Highlights: • A comparison between swift heavy ion and low energy/low mass ion irradiation of Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore is performed. • Simulations of the irradiation with Molecular dynamics reproduce the amorphization dose at low energy/mass ion irradiation. • Advanced refinement of X-ray diffraction patterns gives the evolution of phase fractions in pyrochlore under irradiation. • The disordering sequence a transition from pyrochlore to defect fluorite before an eventual amorphization.

  19. RETRACTED: Functional polymers synthesized by grafting of glycidyl methacrylate onto swift heavy ions irradiated BOPP films using chemical initiator

    Science.gov (United States)

    Chawla, Shashi; Ghosh, Anup K.; Avasthi, Devesh K.; Kulriya, Pawan K.; Ahmad, Sharif

    2009-07-01

    This article has been retracted at the request of the Editors-in-Chief. Please see Elsevier Policy on Article Withdrawal ( http://www.elsevier.com/locate/withdrawalpolicy). Reason: The authors have plagiarized parts of a paper that had already appeared in Polym. Eng. Sci., 49 (2009) 881-888 doi: 10.1002/pen.21390. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and we apologize to readers of the journal that this was not detected during the submission process.

  20. Contribution of NIEL for Gain Degradation (β in Si8+ Ion Irradiated Silicon Power Transistor

    Directory of Open Access Journals (Sweden)

    C. M. Dinesh

    2008-12-01

    Full Text Available The concept of non-ionizing energy loss (NIEL has been found useful for characterizing displacement damage defects in materials and devices. When NPN power transistors (2N6688 manufactured by BEL, India are exposed for 110 MeV Si8+ ion irradiation in the fluence range 5 x 109 to 1 x 1013 ions cm-2 at room temperature (300 K and at liquid nitrogen temperature (77 K cause functional failure due to surface and bulk defects. The output collector characteristics are studied as a function of total ionizing dose (TID and total displacement damage dose (Dd obtained using TRIM Monte Carlo code. It is observed that the shift in the output saturation voltage is considerably less for heavy ion irradiation compared to lighter ions like lithium ion irradiation. The gain of the transistor degrades with ion irradiation. Base reverse biased leakage current (BRBLC increases with increase in ion fluence. The observed results are almost independent of the irradiation temperature. These studies help to improve the device fabrication technology to make Radiation Hard Devices for advanced applications.

  1. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature

    International Nuclear Information System (INIS)

    Daulton, T.L.; Kirk, M.A.; Lewis, R.S.; Rehn, L.E.

    2001-01-01

    It has previously been shown that graphite can be transformed into diamond by MeV electron and ion irradiation at temperatures above approximately 600 deg. C. However, there exists geological evidence suggesting that carbonaceous materials can be transformed to diamond by irradiation at substantially lower temperatures. For example, submicron-size diamond aggregates have been found in uranium-rich, Precambrian carbonaceous deposits that never experienced high temperature or pressure. To test if diamonds can be formed at lower irradiation temperatures, sheets of fine-grain polycrystalline graphite were bombarded at 20 deg. C with 350±50 MeV Kr ions to fluences of 6x10 12 cm -2 using the Argonne tandem linear accelerator system (ATLAS). Ion-irradiated (and unirradiated control) graphite specimens were then subjected to acid dissolution treatments to remove untransformed graphite and isolate diamonds that were produced; these acid residues were subsequently characterized by high-resolution and analytical electron microscopy. The acid residue of the ion-irradiated graphite was found to contain nanodiamonds, demonstrating that ion irradiation of graphite at ambient temperature can produce diamond. The diamond yield under our irradiation conditions is low, ∼0.01 diamonds/ion. An important observation that emerges from comparing the present result with previous observations of diamond formation during irradiation is that nanodiamonds form under a surprisingly wide range of irradiation conditions. This propensity may be related to the very small difference in the graphite and diamond free-energies coupled with surface-energy considerations that may alter the relative stability of diamond and graphite at nanometer sizes

  2. Effect of ion species on apatite-forming ability of silicone elastomer substrates irradiated by cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kawashita, Masakazu [Graduate School of Biomedical Engineering, Tohoku University, 6-6-11-1306-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan)], E-mail: m-kawa@ecei.tohoku.ac.jp; Araki, Rei; Takaoka, Gikan H. [Photonics and Electronics Science and Engineering Center, Kyoto University (Japan)

    2009-04-15

    Indwelling catheters made of silicone elastomers sometimes cause serious infections owing to their poor biocompatibility. It is believed that these infections can be prevented by coating the silicone surface with apatite, which has excellent biocompatibility. If the surface of the silicone elastomer is in advance modified to have an apatite-forming ability, apatite can be coated on the modified silicone surface by soaking it in an aqueous solution such as a simulated body fluid (SBF) supersaturated with respect to apatite. In this study, silicone substrates were irradiated by four types of ion beams (Ar cluster, Ar cluster and monomer (Ar CM), O{sub 2} cluster, and O{sub 2} cluster and monomer (O{sub 2} CM) ion beams) at an acceleration voltage of 7 kV and a dose of 1 x 10{sup 15} ions/cm{sup 2}, and subsequently soaked in CaCl{sub 2} solution. The apatite-forming abilities of the substrates were examined using a metastable calcium phosphate solution whose ion concentration was 1.5 times that of SBF (1.5 SBF). Silicon oxide (SiO{sub x}) clusters were formed on the silicone surface and the hydrophilicity of the substrates was improved by the irradiation, irrespective of the ion species used. The irradiation with O{sub 2} CM ion beams resulted in the highest apatite-forming ability among the analyzed ion beams.

  3. Kr-86 Ion-Beam Irradiation of Hydrated DNA: Free Radical and Unaltered Base Yields

    Science.gov (United States)

    Becker, David; Adhikary, Amitava; Tetteh, Smedley T.; Bull, Arthur W.; Sevilla, Michael D.

    2012-01-01

    This work reports an ESR and product analysis investigation of Kr-86 ion-beam irradiation of hydrated DNA at 77 K. The irradiation results in the formation and trapping of both base radicals and sugar phosphate radicals (DNA backbone radicals). The absolute yields (G, μmol/J) of the base radicals are smaller than the yields found in similarly prepared γ-irradiated DNA samples, and the relative yields of backbone radicals relative to base radicals are much higher than that found in γ-irradiated samples. From these results, we have elaborated our radiation chemical model of the track structure for ion-beam irradiated DNA as it applies to krypton ion-beams. The base radicals, which are trapped as ion radicals or reversibly protonated or deprotonated ion radicals, are formed almost entirely in the track penumbra, a region in which radiation chemical effects are similar to those found in γ-irradiated samples. By comparing the yields of base radicals in ion-beam samples to the yields of the same radicals in γ-irradiated samples, the partition of energy between the low-LET region (penumbra) and the core is experimentally determined. The neutral sugar and other backbone radicals, which are not as susceptible to recombination as are ion radicals, are formed largely in the track core. The backbone radicals show a linear dose response up to very high doses. Unaltered base release yields in Kr-86 irradiated hydrated DNA are equal to sugar radical yields within experimental error limits, consistent with radiation-chemical processes in which all base release originates with sugar radicals. Two phosphorus-centered radicals from fragmentation of the DNA backbone are found in low yields. PMID:23106211

  4. Beginning Swift programming

    CERN Document Server

    Lee, Wei-Meng

    2014-01-01

    Enter the Swift future of iOS and OS X programming Beginning Swift Programming is your ideal starting point for creating Mac, iPhone, and iPad apps using Apple's new Swift programming language. Written by an experienced Apple developer and trainer, this comprehensive guide explains everything you need to know to jumpstart the creation of your app idea. Coverage includes data types, strings and characters, operators and functions, arrays and dictionaries, control flow, and looping, with expert guidance on classes, objects, class inheritance, closures, protocols, and generics. This succinct - ye

  5. Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation

    Science.gov (United States)

    Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.

    2017-08-01

    In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.

  6. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Shahbaz; Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk; Ali, Nisar; Umm-i-Kalsoom,; Yousaf, Daniel; Faizan-ul-Haq,; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Highlights: • Brass targets were exposed to carbon ions of energy 2 MeV. • The effect of ion dose has been investigated. • The surface morphology is investigated by SEM analysis. • XRD analysis is performed to reveal structural modification. • Mechanical properties were investigated by tensile testing and microhardness testing. - Abstract: Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 10{sup 12} to 26 × 10{sup 13} ions/cm{sup 2}. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation

  7. Physical and chemical response of 70 MeV carbon ion irradiated ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 5. Physical and ... Physical and chemical responses of 70 MeV carbon ion irradiated Kapton-H polymer were studied by using UV-visible, FTIR and XRD techniques. The ion ... Department of Physics, Guru Nanak Dev University, Amritsar 143 005, India ...

  8. A model system to give an insight into the behaviour of gold nanoparticles under ion irradiation

    International Nuclear Information System (INIS)

    Ramjauny, Y.

    2010-01-01

    Nano-composites fabricated with ion-based techniques have a number of attractive characteristics. However, the main and most crucial difficulty in obtaining commercial NPs-based devices is the inability to produce a suitable narrow size and spatial NP distributions. The objective of this thesis is twofold: i) to go further in the description of the behavior of the ion-driven NPs and ii) to overcome the limitations related to the ion-beam techniques providing a guideline methodology to rationalize the synthesis of NPs when ion-beams are used. Thus, a model system is fabricated. It consists of chemically synthesized metallic nanoparticles sandwiched between two silica layers. We show how the ion irradiation and the temperature can be used to tune the size distribution of the embedded NPs. Moreover, we show that when an initially large NPs size distribution is considered, the study of the growth kinetic of the NPs under irradiation can be problematic. Our model system is than used to investigate in detail the behavior of the NPs under irradiation. We show that the evolution of the precipitate phase under irradiation is successfully described by an Ostwald ripening mechanism in an open system limited by the diffusion. Moreover, the concentration threshold for nucleation as well as the surface tension and the gold diffusivity in silica under irradiation is estimated. Finally, direct and inverse Ostwald ripening processes under irradiation are systematically investigated and the existing theoretical models experimentally checked. (author)

  9. Ion microbeam irradiation for radiobiology and radical chemistry: status and prospect

    Energy Technology Data Exchange (ETDEWEB)

    Khodja, H, E-mail: hicham.khodja@cea.fr [CEA, IRAMIS, SIS2M, LEEL, 91191 Gif-sur-Yvette (France); CNRS, UMR 3299, SIS2M, LEEL, 91191 Gif-sur-Yvette (France)

    2011-01-01

    Ion microbeams are commonly used to study local irradiation effects in living cells, as it has been established that ion beam irradiations can lead to deleterious changes in cells that are not struck directly by the microbeam. Such changes, which take place over distances long compared to the size of the irradiation spot and for times long compared to the time of irradiation, are collectively termed radiation-induced bystander effect or RIBE. Free-radical chemistry is frequently invoked to explain the RIBE but no unified model is available at present. Ion microbeams when coupled with advanced methods for observing free radicals are the tools of choice for investigating the chemistry and biological processes governing RIBE.

  10. Arcing erosion of materials pre-irradiated with helium and heavy ions

    International Nuclear Information System (INIS)

    Nunogaki, M.; Yoshida, A.; Miyazaki, K.; Miyake, M.

    1985-01-01

    The surface erosion due to the action of high current arcs in a hydrogen plasma was investigated for aluminium, 316 stainless steel, titanium, molybdenum, tungsten and graphite. The effects of pre-irradiation of atomic deuterium ions, helium ions and self-ions related to the test materials on the erosion rate were investigated. The erosion was estimated by measuring the mass loss of arcing trace with use of a surface roughness gauge. The results show that the erosion rate decreased approximately with the melting temperature of materials with and without pre-irradiation. The erosion rates with pre-irradiation were increased, comparing to each erosion rate without any irradiation. The erosion rates were enhanced in the range of about 35% (tungsten) - 222% (aluminium). Some results of the erosion rate on the case of molybdenum films coated on graphite are described for discussion

  11. Production of a thermal stress resistant mutant Euglena gracilis strain using Fe-ion beam irradiation.

    Science.gov (United States)

    Yamada, Koji; Kazama, Yusuke; Mitra, Sharbanee; Marukawa, Yuka; Arashida, Ryo; Abe, Tomoko; Ishikawa, Takahiro; Suzuki, Kengo

    2016-08-01

    Euglena gracilis is a common phytoplankton species, which also has motile flagellate characteristics. Recent research and development has enabled the industrial use of E. gracilis and selective breeding of this species is expected to further expand its application. However, the production of E. gracilis nuclear mutants is difficult because of the robustness of its genome. To establish an efficient mutation induction procedure for E. gracilis, we employed Fe-ion beam irradiation in the RIKEN RI beam factory. A decrease in the survival rate was observed with the increase in irradiation dose, and the upper limit used for E. gracilis selective breeding was around 50 Gy. For a practical trial of Fe-ion irradiation, we conducted a screening to isolate high-temperature-tolerant mutants. The screening yielded mutants that proliferated faster than the wild-type strain at 32 °C. Our results demonstrate the effectiveness of heavy-ion irradiation on E. gracilis selective breeding.

  12. Arcing erosion of materials pre-irradiated with helium and heavy ions

    International Nuclear Information System (INIS)

    Nunogaki, M.; Yoshida, A.; Miyazaki, K.; Miyake, M.

    1984-01-01

    The surface erosion due to the action of high current arcs in a hydrogen plasma was investigated for aluminium, 316 stainless steel, titanium, molybdenum, tungsten and graphite. The effects of pre-irradiation of atomic deuterium ions, helium ions and self-ions related to the test materials on the erosion rate were investigated. The erosion was estimated by measuring the mass loss of arcing trace with use of a surface roughness gauge. The results show that the erosion rate decreased approximately with the melting temperature of materials with and without pre-irradiation. The erosion rates with pre-irradiation were increased, comparing to each erosion rate without any irradiation. The erosion rates were enhanced in the range of about 35 %(tungsten) - 222 %(aluminium). Some results of the erosion rate on the case of molybdenum films coated on graphite are described for discussion. (author)

  13. Effect of pre-sowing gamma irradiation on the ion uptake of bean plants

    International Nuclear Information System (INIS)

    Koeroesi, F.

    1979-01-01

    The electrolyte levels, pH and K + activity values of a modified Knopp solution with different ion strengths were studied in order to analyse the probable stimulating effect of gamma irradiation (750, 1000, 1500 rad) on bean plants. The results of this experiment are as follows. The conductivity of the modified Knopp solution, at the 2-3 leaf age of the bean plant (Seaway), was reduced most by 1000 rad combinations; this phenomenon is caused by the vigorous ion uptake. In the previously mentioned development stage the stimulation of the ion absorption can be observed in every combination. At the 3-4 leaf age of the bean the stimulation effect of the radiation levels used was altered by ion ratios. One of the possible explanations is that, parallel with the progress of the ontogenesis, the claim in individual ions is changing, thus the ion of the favoured role may bring about a stimulating effect by different irradiation doses. (author)

  14. In-situ TEM studies of microstructure evolution under ion irradiation for nuclear engineering applications

    International Nuclear Information System (INIS)

    Kaoumi, D.

    2011-01-01

    One of the difficulties of studying processes occurring under irradiation (in a reactor environment) is the lack of kinetics information since usually samples are examined ex situ (i.e. after irradiation) so that only snapshots of the process are available. Given the dynamic nature of the phenomena, direct in situ observation is invaluable for better understanding the mechanisms, kinetics and driving forces of the processes involved. This can be done using in situ ion irradiation in a TEM at the IVEM facility at Argonne National Laboratory which, in the USA, is a unique facility. To predict the in reactor behavior of alloys, it is essential to understand the basic mechanisms of radiation damage formation (loop density, defect interactions) and accumulation (loop evolution, precipitation or dissolution of second phases etc.). In-situ Ion-irradiation in a TEM has proven a very good tool for that purpose as it allows for the direct determination of the formation and evolution of irradiation-induced damage and the spatial correlation of the defect structures with the pre-existing microstructure (including lath boundaries, network dislocations and carbides) as a function of dose, dose rate, temperature and ion type. Using this technique, different aspects of microstructure evolution under irradiation were studied, such as defect cluster formation and evolution as a function of dose in advanced Ferritic/Martensitic (F/M) steels, the irradiation stability of precipitates in Oxide Dispersion Strengthened (ODS) steels, and irradiation-induced grain-growth. Such studies will be reported in this presentation

  15. Effects of ion irradiation on microstructure and properties of zirconium alloys—A review

    Directory of Open Access Journals (Sweden)

    Chunguang Yan

    2015-04-01

    Full Text Available Zirconium alloys are widely used in nuclear reactors as structural materials. During the operation, they are exposed to fast neutrons. Ion irradiation is used to simulate the damage introduced by neutron irradiation. In this article, we briefly review the neutron irradiation damage of zirconium alloys, then summarize the effect of ion irradiation on microstructural evolution, mechanical and corrosion properties, and their relationships. The microstructure components consist of dislocation loops, second phase precipitates, and gas bubbles. The microstructure parameters are also included such as domain size and microstrain determined by X-ray diffraction and the S-parameter determined by positron annihilation. Understanding the relationships of microstructure and properties is necessary for developing new advanced materials with higher irradiation tolerance.

  16. Fast argon ion irradiation effect on the characteristics of silicon planar structures

    CERN Document Server

    Karatetskii, S S; Sokolov, V I

    2002-01-01

    The effect of irradiating by the argon ions with the energy of 40 MeV on the planar structures parameters is studied with the purpose of determining the possibilities of their controlled change. It is shown, that the planar structures irradiation by the argon ions with the energy of 40 MeV leads to decrease in the capacitance of the MOS-condensers and narrows the area of the photosensitivity of the p - n-transitions. The observed effects are explained by the specificity of violations, created by fast ions in the crystal

  17. Photoluminescence and reflectivity studies of high energy light ions irradiated polymethyl methacrylate films

    Science.gov (United States)

    Bharti, Madhu Lata; Singh, Fouran; Ramola, R. C.; Joshi, Veena

    2017-11-01

    The self-standing films of non-conducting polymethyl methacrylate (PMMA) were irradiated in vacuum using high energy light ions (HELIs) of 50 MeV Lithium (Li+3) and 80 MeV Carbon (C+5) at various ion dose to induce the optical changes in the films. Upon HELI irradiation, films exhibit a significant enhancement in optical reflectivity at the highest dose. Interestingly, the photoluminescence (PL) emission band with green light at (514.5 nm) shows a noticeable increase in the intensity with increasing ion dose for both ions. However, the rate of increase in PL intensity is different for both HELI and can be correlated with the linear energy transfer by these ions in the films. Origin of PL is attributed to the formation of carbon cluster and hydrogenated amorphous carbon in the polymer films. HAC clusters act as PL active centres with optical reflectivity. Most of the harmful radiation like UV are absorbed by the material and is becoming opaque after irradiation and this PL active material are useful in fabrication of optoelectronic devices, UV-filter, back-lit components in liquid crystal display systems, micro-components for integrate optical circuits, diffractive elements, advanced materials and are also applicable to the post irradiation laser treatment by means of ion irradiation.

  18. A comparative study of silicon detector degradation under irradiation by heavy ions and relativistic protons

    Science.gov (United States)

    Eremin, V.; Mitina, D.; Fomichev, A.; Kiselev, O.; Egorov, N.; Eremin, I.; Shepelev, A.; Verbitskaya, E.

    2018-01-01

    Silicon detectors irradiated by 40Ar ions with the energy of 1.62 GeV were studied with the goal to find the parameters of radiation damage induced by ions. The measurements of the I–V characteristics, temperature dependences of the detector bulk current, deep level spectra and current pulse response were carried out for detectors irradiated within the fluence range 5×1010–2.3×1013 ion/cm2 and the obtained results were compared with the corresponding data for detectors irradiated by 23 GeV protons. It is shown that the processes of defect introduction by ions and overall radiation damage are similar to those induced by 23 GeV protons, while the introduction rates of radiation defects and current generation centers are about ten times higher for irradiation by 40Ar ions. The fact that these processes have much in common gives grounds to use the physical models and characteristic parametrization such as those developed earlier for detectors irradiated by protons and neutrons to build the long-term scenario of Si detector operation in the Time-Of-Flight diagnostic system of Super FRagment Separator designed at GSI for the future Facility for Antiproton and Ion Research, FAIR.

  19. Game development with Swift

    CERN Document Server

    Haney, Stephen

    2015-01-01

    If you wish to create and publish fun iOS games using Swift, then this book is for you. You should be familiar with basic programming concepts. However, no prior game development or Apple ecosystem experience is required.

  20. Strain-dependent Damage in Mouse Lung After Carbon Ion Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moritake, Takashi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Proton Medical Research Center, University of Tsukuba, Tsukuba (Japan); Fujita, Hidetoshi; Yanagisawa, Mitsuru; Nakawatari, Miyako; Imadome, Kaori; Nakamura, Etsuko; Iwakawa, Mayumi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Imai, Takashi, E-mail: imait@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2012-09-01

    Purpose: To examine whether inherent factors produce differences in lung morbidity in response to carbon ion (C-ion) irradiation, and to identify the molecules that have a key role in strain-dependent adverse effects in the lung. Methods and Materials: Three strains of female mice (C3H/He Slc, C57BL/6J Jms Slc, and A/J Jms Slc) were locally irradiated in the thorax with either C-ion beams (290 MeV/n, in 6 cm spread-out Bragg peak) or with {sup 137}Cs {gamma}-rays as a reference beam. We performed survival assays and histologic examination of the lung with hematoxylin-eosin and Masson's trichrome staining. In addition, we performed immunohistochemical staining for hyaluronic acid (HA), CD44, and Mac3 and assayed for gene expression. Results: The survival data in mice showed a between-strain variance after C-ion irradiation with 10 Gy. The median survival time of C3H/He was significantly shortened after C-ion irradiation at the higher dose of 12.5 Gy. Histologic examination revealed early-phase hemorrhagic pneumonitis in C3H/He and late-phase focal fibrotic lesions in C57BL/6J after C-ion irradiation with 10 Gy. Pleural effusion was apparent in C57BL/6J and A/J mice, 168 days after C-ion irradiation with 10 Gy. Microarray analysis of irradiated lung tissue in the three mouse strains identified differential expression changes in growth differentiation factor 15 (Gdf15), which regulates macrophage function, and hyaluronan synthase 1 (Has1), which plays a role in HA metabolism. Immunohistochemistry showed that the number of CD44-positive cells, a surrogate marker for HA accumulation, and Mac3-positive cells, a marker for macrophage infiltration in irradiated lung, varied significantly among the three mouse strains during the early phase. Conclusions: This study demonstrated a strain-dependent differential response in mice to C-ion thoracic irradiation. Our findings identified candidate molecules that could be implicated in the between-strain variance to early

  1. Enhancement of SPHK1 in vitro by carbon ion irradiation in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Higo, Morihiro; Uzawa, Katsuhiro; Kawata, Tetsuya; Kato, Yoshikuni; Kouzu, Yukinao; Yamamoto, Nobuharu; Shibahara, Takahiko; Mizoe, Jun-etsu; Ito, Hisao; Tsujii, Hirohiko; Tanzawa, Hideki

    2006-01-01

    Purpose The purpose of this study was to assess the gene expression changes in oral squamous cell carcinoma (OSCC) cells after carbon ion irradiation. Methods and Materials Three OSCC cell lines (HSC2, Ca9-22, and HSC3) were irradiated with accelerated carbon ion beams or X-rays using three different doses. The cellular sensitivities were determined by clonogenic survival assay. To identify genes the expression of which is influenced by carbon ion irradiation in a dose-dependent manner, we performed Affymetrix GeneChip analysis with HG-U133 plus 2.0 arrays containing 54,675 probe sets. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time reverse transcriptase-polymerase chain reaction. Results We identified 98 genes with expression levels that were altered significantly at least twofold in each of the three carbon-irradiated OSCC cell lines at all dose points compared with nonirradiated control cells. Among these, SPHK1, the expression of which was significantly upregulated by carbon ion irradiation, was modulated little by X-rays. The function of SPHK1 related to cellular growth and proliferation had the highest p value (p = 9.25e-7 to 2.19e-2). Real-time reverse transcriptase-polymerase chain reaction analysis showed significantly elevated SPHK1 expression levels after carbon ion irradiation (p < 0.05), consistent with microarray data. Clonogenic survival assay indicated that carbon ion irradiation could induce cell death in Ca9-22 cells more effectively than X-rays. Conclusions Our findings suggest that SPHK1 helps to elucidate the molecular mechanisms and processes underlying the biologic response to carbon ion beams in OSCC

  2. Temperature dependence of ion irradiation induced amorphization of zirconolite

    International Nuclear Information System (INIS)

    Smith, K. L.; Blackford, M. G.; Lumpkin, G. R.; Zaluzec, N. J.

    1999-01-01

    Zirconolite is one of the major host phases for actinides in various wasteforms for immobilizing high level radioactive waste (HLW). Over time, zirconolite's crystalline matrix is damaged by α-particles and energetic recoil nuclei recoil resulting from α-decay events. The cumulative damage caused by these particles results in amorphization. Data from natural zirconolites suggest that radiation damage anneals over geologic time and is dependant on the thermal history of the material. Proposed HLW containment strategies rely on both a suitable wasteform and geologic isolation. Depending on the waste loading, depth of burial, and the repository-specific geothermal gradient, burial could result in a wasteform being exposed to temperatures of between 100--450 C. Consequently, it is important to assess the effect of temperature on radiation damage in synthetic zirconolite. Zirconolite containing wasteforms are likely to be hot pressed at or below 1,473 K (1,200 C) and/or sintered at or below 1,623 K (1,350 C). Zirconolite fabricated at temperatures below 1,523 K (1,250 C) contains many stacking faults. As there have been various attempts to link radiation resistance to structure, the authors decided it was also pertinent to assess the role of stacking faults in radiation resistance. In this study, they simulate α-decay damage in two zirconolite samples by irradiating them with 1.5 MeV Kr + ions using the High Voltage Electron Microscope-Tandem User Facility (HTUF) at Argonne National Laboratory (ANL) and measure the critical dose for amorphization (D c ) at several temperatures between 20 and 773 K. One of the samples has a high degree of crystallographic perfection, the other contains many stacking faults on the unit cell scale. Previous authors proposed a model for estimating the activation energy of self annealing in zirconolite and for predicting the critical dose for amorphization at any temperature. The authors discuss their results and earlier published data in

  3. Intergranular stress corrosion cracking of ion irradiated 304L stainless steel in PWR environment

    International Nuclear Information System (INIS)

    Gupta, Jyoti

    2016-01-01

    IASCC is irradiation - assisted enhancement of intergranular stress corrosion cracking susceptibility of austenitic stainless steel. It is a complex degrading phenomenon which can have a significant influence on maintenance time and cost of PWRs' core internals and hence, is an issue of concern. Recent studies have proposed using ion irradiation (to be specific, proton irradiation) as an alternative of neutron irradiation to improve the current understanding of the mechanism. The objective of this study was to investigate the cracking susceptibility of irradiated SA 304L and factors contributing to cracking, using two different ion irradiations; iron and proton irradiations. Both resulted in generation of point defects in the microstructure and thereby causing hardening of the SA 304L. Material (unirradiated and iron irradiated) showed no susceptibility to intergranular cracking on subjection to SSRT with a strain rate of 5 * 10 -8 s -1 up to 4 % plastic strain in inert environment. But, irradiation (iron and proton) was found to increase intergranular cracking severity of material on subjection to SSRT in simulated PWR primary water environment at 340 C. Correlation between the cracking susceptibility and degree of localization was studied. Impact of iron irradiation on bulk oxidation of SA 304L was studied as well by conducting an oxidation test for 360 h in simulated PWR environment at 340 C. The findings of this study indicate that the intergranular cracking of 304L stainless steel in PWR environment can be studied using Fe irradiation despite its small penetration depth in material. Furthermore, it has been shown that the cracking was similar in both iron and proton irradiated samples despite different degrees of localization. Lastly, on establishing iron irradiation as a successful tool, it was used to study the impact of surface finish and strain paths on intergranular cracking susceptibility of the material. (author) [fr

  4. Effect of radiation quality on radical formation in ion-irradiated solid alanine

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Hitoshi; Ichikawa, Tsuneki; Yoshida, Hiroshi [Hokkaido Univ., Sapporo (Japan); Namba, Hideki; Taguchi, Mitsumasa; Kojima, Takuji

    1997-03-01

    Radical formation in solid alanine irradiated with H{sup +} and He{sup +} ions of 0.5-3.0 MeV and with heavy ions of hundreds of MeV was examined by the ESR method. Radical yield is constant below a critical fluence, and the yield decreases above the fluence. The critical fluence for the H{sup +} and He{sup +} ions is about 10{sup 12} ions cm{sup -2}, while the critical fluence for the heavy ions is 10{sup 10}-10{sup 11} ions cm{sup -2}. G-value of the radical formation (radicals per 100 eV absorbed dose) is obtained from the constant yield at the low fluences. The G-value depends on the radiation quality. This dependence is ascribed to the difference of local dose in the ion tracks. The fluence-yield curves were simulated with a model assuming cylindrical shape of ion tracks and dose-yield relationship for {gamma}-irradiation. This model well explains the fluence-yield curves for the ion irradiations. (author)

  5. Creation of surface nanostructures in Al{sub 2}O{sub 3} by slow highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    El-Said, A.S., E-mail: a.s.el-said@hzdr.de [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Lab, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Wilhelm, R.A. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Heller, R.; Akhmadaliev, Sh.; Facsko, S. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany)

    2013-12-15

    Al{sub 2}O{sub 3} single crystals were irradiated with slow highly charged Xe ions of various charge states from an EBIT (Electron Beam Ion Trap) source at the Dresden two source facility. The irradiations were performed at room temperature and under normal incidence. Scanning force microscopy (SFM) was utilized to investigate the topography of the irradiated surfaces. The measurements showed that above a potential energy threshold, each ion creates a nanohillock protruding from the surface. These structures are compared to those created by swift heavy ions (SHI). The results are discussed in terms of potential energy deposition of highly charged ions (HCI) and electronic energy loss of SHI.

  6. Triplet formation in the ion recombination in irradiated liquids

    International Nuclear Information System (INIS)

    Bartczak, W.M.; Tachiya, M.; Hummel, A.

    1990-01-01

    The formation of singlet and triplet excited stages in the ion recombination in groups of oppositely charged ions (or positive ions and electrons) in nonpolar liquids, as occurs in the tracks of high energy electrons, is considered. Theoretical studies on triplet formation in groups of ion pairs have thus far concentrated on the case where recombination of the negative ions with any of the positive ions in the group is equally probable (random recombination). In this paper the probability for geminate recombination (electron and parent positive ion) vs cross-recombination (an electron with a positive ion other than its parent ion) in multiple ion pair groups is calculated by computer simulation and the effect of the initial spatial configuration of the charged species is investigated. It is also shown explicitly that the probability for singlet formation as a result of cross recombination is equal to 1/4, when spin relaxation by magnetic interaction with the medium and by exchange interaction can be neglected. The effect of the preferential recombination on the singlet formation probability is illustrated and recent experimental results on singlet to triplet ratios are discussed. (author)

  7. Study of secondary electron emission from thin carbon targets with swift charged particles: heavy ions, hydrogen ions; Etude experimentale de l`emission electronique secondaire de cibles minces de carbone sous l`impact de projectiles rapides: ions lourds, ions hydrogene (atomiques, moleculaires ou sous forme d`agregats)

    Energy Technology Data Exchange (ETDEWEB)

    Billebaud, A.

    1995-07-12

    The main subject of this work is the study of electron emission from the two surfaces of thin solid targets bombarded with swift charged particles. The slowing down of swift ions in matter is mainly due to inelastic interaction with target electrons (ionization, excitation): the energy transfer to target electrons is responsible for the secondary electron emission process. The phenomenological and theoretical descriptions of this phenomena are the subject of the first chapter. We focused on secondary electron emission induced by different kind of projectiles on thin carbon foils. In chapter two we describe hydrogen cluster induced electron emission measurement between 40 and 120 keV/proton. These projectiles, composed of several atoms, allowed us to study and highlight collective effects of the electron emission process. We extended our study of electron emission to molecular (H{sub 2}{sup +}, H{sub 3}{sup +}) and composite (H{sup -}, H{sup 0}) projectiles at higher energies (<= 2 MeV): we have designed an experimental set-up devoted to electron emission statistics measurements which allowed us to study, among others things, the role of projectile electrons in secondary electron emission. This experiment is described in the third chapter. Finally, the fourth chapter describes new measurements of electron emission induced by energetic (13 MeV/u) and highly charged argon ion provided by the medium energy beam line (SME) of GANIL (Caen), which have been analyzed in the framework of a semi-empirical model of secondary electron emission. This set of experiments brings new results on composite projectile interaction with matter, and on the consequences of high energy deposition in solids. (author).

  8. Effect of microstructure on radiation induced segregation and depletion in ion irradiated SS316 steel

    International Nuclear Information System (INIS)

    Jin, Hyung Ha; Kwon, Sang Chul; Kwon, Jun Hyun

    2011-01-01

    Irradiation assisted stress corrosion cracking (IASCC), void swelling and irradiation induced hardening are caused by change of characteristics of material by neutron irradiation, stress state of material and environmental situation. It has been known that chemical compositions varies at grain boundary (GB) significantly with fluence level and the depletion of Cr element at GB has been considered as one of important factors causing material degradation, especially, IASCC in austenitic stainless steel. However, experimental results of IASCC under PWR condition were directly not connected with Cr depletion phenomenon by neutron irradiation. Because the mechanism of IASCC under PWR has not yet been clearly understood in spite of many energetic researches, fundamental researches about radiation induced segregation and depletion in irradiated austenitic stainless steels have been attracted again. In this work, an effect of residual microstructure on radiation induced segregation and depletion of alloy elements at GB was investigated in ion irradiated SS316 steel using transmission electron microscope (TEM) with energy dispersive spectrometer (EDS)

  9. Anti-biofilm efficacy of 100 MeV gold ion irradiated polycarbonate against Salmonella typhi

    Science.gov (United States)

    Joshi, R. P.; Hareesh, K.; Bankar, A.; Sanjeev, G.; Asokan, K.; Kanjilal, D.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.

    2017-12-01

    Polycarbonate (PC) films were irradiated by 100 MeV gold (Au7+) ions and characterized to study changes in its optical, chemical, surface morphology and thermal properties. UV-Visible spectroscopic results revealed the decrease in the optical band gap of PC after ion irradiation due to chain scission mainly at the carbonyl group which is corroborated by Fourier Transform Infrared spectroscopic results. X-ray diffractogram study showed decrease in crystallinity of PC film after irradiation. Scanning electron microscopic results showed the micropores formation in PC which results in surface roughening. Differential scanning calorimetric results revealed decrease in glass transition temperature indicating the decrease in molecular weight of PC corroborated by rheometric studies. PC films irradiated by 100 MeV Au7+ ions showed increased anti-biofilm activity against the human pathogen, Salmonella typhi (S. typhi). Morphology of S. typhi was changed due to stress of Au7+ irradiated PC. Cells length was increased with increasing fluences. The average cell length, cell volume and surface area was increased significantly (P<0.05) with increasing ion fluences. Biofilm formation was inhibited ≈ 20% at lower fluence and 96% at higher fluence, which observed to be enhanced anti-biofilm activity in Au7+ irradiated PC.

  10. Ar ions irradiation effects in ZrN thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Craciun, D.; Socol, G.; Dorcioman, G. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Bucharest-Magurele (Romania); Simeone, D.; Gosset, D. [CEA/DEN/DANS/DM2S/SERMA/LEPP-LRC CARMEN CEN Saclay France & CNRS/SPMS UMR8785 LRC CARMEN, Ecole Centrale de Paris, F92292 Chatenay Malabry (France); Behdad, S.; Boesl, B. [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States); Craciun, V., E-mail: valentin.craciun@inflpr.ro [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Bucharest-Magurele (Romania)

    2015-05-01

    Highlights: • Polycrystalline and hard ZrN films were grown by pulsed laser deposition technique. • The effect of 800 keV Ar ion irradiation on properties of ZrN films was investigated. • ZrN films irradiated with 10{sup 14} Ar ions/cm{sup 2}did not show major structural changes. • Irradiation with 10{sup 15} Ar ions/cm{sup 2} induced large structural and mechanical changes. - Abstract: Thin ZrN films (<500 nm) were grown on (1 0 0)Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under CH{sub 4} or N{sub 2} atmosphere. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies indicated that the films were very dense and with a smooth surface. The films were used to study the effect of 800 keV Ar ion irradiation on their structure and properties. After irradiation with a dose of 10{sup 14} at/cm{sup 2} the lattice parameter and crystallites size did marginally change. However, after irradiation with a 10{sup 15} at/cm{sup 2} dose, a clear increase in the lattice parameter accompanied by a significant decrease in nanohardness and Young modulus were observed.

  11. Study of irradiation effect of Xe+22 and Kr+14 ions on structural properties of Zn nanotubes

    Science.gov (United States)

    Zdorovets, M. V.; Kadyrzhanov, D. B.; Kenzhina, I. E.; Ivanov, I. A.; Kozlovskiy, A. L.

    2018-03-01

    The paper presents the results of synthesis and directed modification of structural properties of Zn nanotubes by irradiating with heavy ions. The nanotubes were obtained by electrochemical deposition in pores of template polymer matrices. It was established using SEM, XRD and EDS methods where irradiation with Xe+22 and Kr+14 ions makes it possible to modify the crystal structure of nanotubes. As a result of irradiation with Xe+22 ions, partial destruction of nanotubes is observed, which indicates an increase in the number of defects in the structure and a decrease in strength properties. Change in the crystal structure parameters is observed when irradiation with Kr+14 ions with fluence below 5  ×  1011 ion cm‑2. That indicates the possibility of using Kr+14 ions for directional modification of nanostructures, while irradiation with Xe+22 ions leads to amorphization and destruction of nanotubes.

  12. Control of cell behavior on PTFE surface using ion beam irradiation

    International Nuclear Information System (INIS)

    Kitamura, Akane; Kobayashi, Tomohiro; Meguro, Takashi; Suzuki, Akihiro; Terai, Takayuki

    2009-01-01

    A polytetrafluoroethylene (PTFE) surface is smooth and biologically inert, so that cells cannot attach to it. Ion beam irradiation of the PTFE surface forms micropores and a melted layer, and the surface is finally covered with a large number of small protrusions. Recently, we found that cells could adhere to this irradiated PTFE surface and spread over the surface. Because of their peculiar attachment behavior, these surfaces can be used as biological tools. However, the factors regulating cell adhesion are still unclear, although some new functional groups formed by irradiation seem to contribute to this adhesion. To control cell behavior on PTFE surfaces, we must determine the effects of the outermost irradiated surface on cell adhesion. In this study, we removed the thin melted surface layer by postirradiation annealing and investigated cell behavior on the surface. On the surface irradiated with 3 x 10 16 ions/cm 2 , cells spread only on the remaining parts of the melted layer. From these results, it is clear that the melted layer had a capacity for cell attachment. When the surface covered with protrusions was irradiated with a fluence of 1 x 10 17 ions/cm 2 , the distribution of cells changed after the annealing process from 'sheet shaped' into multicellular aggregates with diameters of around 50 μm. These results indicate that we can control cell behavior on PTFE surfaces covered with protrusions using irradiation and subsequent annealing. Multicellular spheroids can be fabricated for tissue engineering using this surface.

  13. Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation*

    Science.gov (United States)

    Ling, Anna Pick Kiong; Ung, Ying Chian; Hussein, Sobri; Harun, Abdul Rahim; Tanaka, Atsushi; Yoshihiro, Hase

    2013-01-01

    Objective: Heavy ion beam, which has emerged as a new mutagen in the mutation breeding of crops and ornamental plants, is expected to result in the induction of novel mutations. This study investigates the morphological and biochemical responses of Oryza sativa toward different doses of carbon ion beam irradiation. Methods: In this study, the dry seeds of O. sativa were irradiated at 0, 20, 40, 60, 80, 100, and 120 Gy, followed by in-vitro germination under controlled conditions. Morphological and biochemical studies were conducted to investigate the morphological and physiological responses of O. sativa towards ion beam irradiation. Results: The study demonstrated that low doses (10 Gy) of ion beam have a stimulating effect on the height, root length, and fresh weight of the plantlets but not on the number of leaves. Meanwhile, doses higher than 10 Gy caused reductions in all the morphological parameters studied as compared to the control samples. The highest total soluble protein content [(2.11±0.47) mg/g FW] was observed in plantlets irradiated at 20 Gy. All irradiated plantlets were found to have 0.85% to 58.32% higher specific activity of peroxidase as compared to the control samples. The present study also revealed that low doses of ion beam (10 and 20 Gy) had negligible effect on the total chlorophyll content of O. sativa plantlets while 40 Gy had a stimulating effect on the chlorophyll content. Plantlets irradiated between 40 to 120 Gy were shown to be 0.38% to 9.98% higher in total soluble nitrogen content which, however, was not significantly different from the control samples. Conclusions: Carbon ion beam irradiation administered at low to moderate doses of 10 to 40 Gy may induce O. sativa mutants with superior characteristics. PMID:24302713

  14. Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation.

    Science.gov (United States)

    Ling, Anna Pick Kiong; Ung, Ying Chian; Hussein, Sobri; Harun, Abdul Rahim; Tanaka, Atsushi; Yoshihiro, Hase

    2013-12-01

    Heavy ion beam, which has emerged as a new mutagen in the mutation breeding of crops and ornamental plants, is expected to result in the induction of novel mutations. This study investigates the morphological and biochemical responses of Oryza sativa toward different doses of carbon ion beam irradiation. In this study, the dry seeds of O. sativa were irradiated at 0, 20, 40, 60, 80, 100, and 120 Gy, followed by in-vitro germination under controlled conditions. Morphological and biochemical studies were conducted to investigate the morphological and physiological responses of O. sativa towards ion beam irradiation. The study demonstrated that low doses (10 Gy) of ion beam have a stimulating effect on the height, root length, and fresh weight of the plantlets but not on the number of leaves. Meanwhile, doses higher than 10 Gy caused reductions in all the morphological parameters studied as compared to the control samples. The highest total soluble protein content [(2.11 ± 0.47) mg/g FW] was observed in plantlets irradiated at 20 Gy. All irradiated plantlets were found to have 0.85% to 58.32% higher specific activity of peroxidase as compared to the control samples. The present study also revealed that low doses of ion beam (10 and 20 Gy) had negligible effect on the total chlorophyll content of O. sativa plantlets while 40 Gy had a stimulating effect on the chlorophyll content. Plantlets irradiated between 40 to 120 Gy were shown to be 0.38% to 9.98% higher in total soluble nitrogen content which, however, was not significantly different from the control samples. Carbon ion beam irradiation administered at low to moderate doses of 10 to 40 Gy may induce O. sativa mutants with superior characteristics.

  15. Ion-beam irradiation of Co/Cu nanostructures: Effects on giant magnetoresistance and magnetic properties

    International Nuclear Information System (INIS)

    Cai, M.; Veres, T.; Schiettekatte, F.; Roorda, S.; Cochrane, R.W.

    2004-01-01

    We have studied the effects of ion irradiation at low doses ( 14 ions/cm 2 ) on the structural properties, giant magnetoresistance (GMR), and interlayer magnetic coupling in Co/Cu multilayers. X-ray analysis combined with magnetic and resistivity measurements reveal that intermixing is promoted by ion irradiation while the periodic structure and crystallographic properties of the multilayers are not significantly altered. The GMR ratio of a multilayer decreases monotonically with ion dose. However, thermal annealing on an irradiated multilayer results in sharp recovery of the reduced GMR, and can be associated with a backdiffusion process in metastably intermixed regions. Hence, using ion irradiation and subsequent annealing, the GMR of a single multilayer can be altered reversibly over a wide range. The variation of GMR upon irradiation (or annealing) is accompanied by significant suppression (or improvement) of the antiferromagnetic interlayer coupling. The correlation between GMR and AF coupling, as well as the role of enhanced electron scattering at interfaces during these processes are discussed

  16. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  17. Susceptible genes and molecular pathways related to heavy ion irradiation in oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Fushimi, Kazuaki; Uzawa, Katsuhiro; Ishigami, Takashi; Yamamoto, Nobuharu; Kawata, Tetsuya; Shibahara, Takahiko; Ito, Hisao; Mizoe, Jun-etsu; Tsujii, Hirohiko; Tanzawa, Hideki

    2008-01-01

    Background and purpose: Heavy ion beams are high linear energy transfer (LET) radiation characterized by a higher relative biologic effectiveness than low LET radiation. The aim of the current study was to determine the difference of gene expression between heavy ion beams and X-rays in oral squamous cell carcinoma (OSCC)-derived cells. Materials and methods: The OSCC cells were irradiated with accelerated carbon or neon ion irradiation or X-rays using three different doses. We sought to identify genes the expression of which is affected by carbon and neon ion irradiation using Affymetrix GeneChip analysis. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Results: The microarray analysis identified 84 genes that were modulated by carbon and neon ion irradiation at all doses in OSCC cells. Among the genes, three genes (TGFBR2, SMURF2, and BMP7) and two genes (CCND1 and E2F3), respectively, were found to be involved in the transforming growth factor β-signaling pathway and cell cycle:G1/S checkpoint regulation pathway. The qRT-PCR data from the five genes after heavy ion irradiation were consistent with the microarray data (P < 0.01). Conclusion: Our findings should serve as a basis for global characterization of radiation-regulated genes and pathways in heavy ion-irradiated OSCC

  18. Spectroscopic study of energetic helium-ion irradiation effects on nuclear graphite tiles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Wan; Lee, K.W. [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); Choi, D.M.; Noh, S.J.; Kim, H.S. [Department of Applied Physics, Dankook University, Yongin 448-701 (Korea, Republic of); Lee, Cheol Eui, E-mail: rscel@korea.ac.kr [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of)

    2016-02-01

    Highlights: • Energetic helium-ion irradiation on nuclear graphite tiles studied for plasma facing components. • XPS reveals recrystallization at low dose irradiation and DLC sites at higher doses. • Raman spectroscopy reveals increasing diamond-like defects and structural deformation. • Average inter-defect distance obtained as a function of irradiation dose from Raman intensities. - Abstract: Helium ion-irradiation effects on the nuclear graphite tiles were studied in order to understand the structural modifications and damages that can be produced by fusion reaction in tokamaks. The surface morphological changes due to increasing dose of the irradiation were examined by the field-effect scanning electron microscopy, and X-ray photoelectron spectroscopy elucidated the changes in the shallow surface bonding configurations caused by the energetic irradiation. Raman spectroscopy revealed the structural defects and diamond-like carbon sites that increased with increasing irradiation dose, and the average inter-defect distance was found from the Raman peak intensities as a function of the irradiation dose.

  19. Dose effects on damage of thymidylic acid and its components irradiated by A N+ ion beam

    International Nuclear Information System (INIS)

    Shao Chunlin; Yu Zengliang

    1996-08-01

    Research into damage of DNA components is an important field in mechanism study to the low energy ion beam irradiation. It was found that the UV difference spectra of irradiated thymine (T) had two positive peaks caused by the changes of π electron conjugation of the pyrimidine ring, and that the residual activity of T sample irradiated by a N + ion beam was not influenced by treatments of acid and alkali as well as heat. In addition, the residual activities of irradiated thymidine (dTR) and thymidine 5'-phosphate (5'-dTMP) with and without treating of strong acid and strong alkali were also measured. With UV absorption spectrophotometry, the yield of T released from the irradiated samples of dTR and 5'-dTMP and the residual concentration of these target molecules were deduced, and it was found that the yield of T increased when the solution of the irradiated dTR sample was treated by heat but decreased when this solution was treated by acid and alkali for these treatments splitting T-S or T-S-P. On the other hand, the yield of inorganic phosphate released from the irradiated 5'-dTMP was investigated and found that it was increased by the treatment of alkali and that the increase degree was depended on the time scale of the treatment. Moreover, G(Pi) of the irradiated 5'-dTMP non-linearly decreased with increasing dose. (10 figs.)

  20. Irradiation of graphite cloth at various temperatures with deutrons and helium ions

    International Nuclear Information System (INIS)

    Ekern, R.; Das, S.K.; Kaminsky, M.

    1975-01-01

    Graphite cloth samples were irradiated with 100 keV deuterons and 4 He + ions at room temperature and at elevated temperatures. Scanning electron microscopy was used to examine the surfaces of irradiated and unirradiated graphite fibers. Irradiation at room temperature with 4 He + to a total dose of 3.1 x 10 18 ions cm -2 produces considerable flaking of individual fibers, which is not observed on unirradiated fibers. Identical irradiations at 400 0 and 800 0 with 4 He + did not produce any detectable flaking or other surface damage. The elevated temperatures apparently prevent an accumulation of helium in localized areas which in turn could cause flaking in near surface regions. Results obtained for deuteron bombardment of graphite cloth at room temperature and at 600 0 C are also discussed

  1. Superhydrophobic to hydrophilic transition of multi-walled carbon nanotubes induced by Na+ ion irradiation

    Science.gov (United States)

    Das, Pritam; Dhal, Satyanarayan; Ghosh, Susanta; Chatterjee, Sriparna; Rout, Chandra S.; Ramgir, Niranjan; Chatterjee, Shyamal

    2017-12-01

    Multi-walled carbon nanotubes (MWCNT) having diameter in the range of 5-30 nm were coated on silicon wafer using spray coating technique. The coated film was irradiated with 5 keV Na+ at a fluence of 1 × 1016 ions·cm-2. A large-scale welding is observed in the post-irradiated nanotube assembly under scanning electron microscope. We have studied dynamic wetting properties of the nanotubes. While the pristine MWCNT shows superhydrophobic nature, the irradiated MWCNT turns into hydrophilic. Our simulation based on iradina and experimental evidences show defect formation in MWCNT due to ion irradiation. We have invoked mechanism based on defect mediated adsorption of water, which plays major role for transition from superhydrophobic to hydrophilic.

  2. Effect of helium on swelling and microstructural evolution in ion-irradiated V-15Cr-5Ti alloy

    International Nuclear Information System (INIS)

    Loomis, B.A.; Kestel, B.J.; Gerber, S.B.; Ayrault, G.

    1986-03-01

    An investigation was made on the effects of implanted helium on the swelling and microstructural evolution that results from energetic single- and dual-ion irradiation of the V-15Cr-5Ti alloy. Single-ion irradiations were utilized for a simulated production of the irradiation damage that might be expected from neutron irradiation of the alloy in a reactor with a fast neutron energy spectrum (E > 0.1 MeV). Dual-ion irradiations were utilized for a simulated production of the simultaneous creation of helium atoms and irradiation damage in the alloy in the MFR environment. Experimental results are also presented on the radiation-induced segregation of the constituent atoms in the single- and dual-ion irradiated alloy

  3. Valency stabilization of Polyvalent Iron Ions in Solution By some Organic additives during Gamma Irradiation

    International Nuclear Information System (INIS)

    Barakat, M.F.; Abdel Hamid, M.M.

    2012-01-01

    Valency stabilization of polyvalent ions in gamma irradiated aqueous solutions is sometimes necessary for the success of some chemical operations. In some previous publications valency stabilization of some polyvalent ions in solution upon gamma irradiation was achieved by using additives capable of interacting with the oxidizing or reducing species formed by water radiolysis in the medium. The results showed that the duration of valency stabilization depends on the concentration of the additives used.In the present work, a series of some organic additives has been used to investigate their capability in inducing valency stabilization of polyvalent iron ions when subjected to extended gamma irradiation periods. The results showed that the efficiency of valency stabilization depends on the amount and chemical structure of the organic additive used

  4. Changes in the surface electronic states of semiconductor fine particles induced by high energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Tetsuya; Asai, Keisuke; Ishigure, Kenkichi [Tokyo Univ. (Japan); Shibata, Hiromi

    1997-03-01

    The changes in the surface electronic states of Q-sized semiconductor particles in Langmuir-Blodgett (LB) films, induced by high energy ion irradiation, were examined by observation of ion induced emission and photoluminescence (PL). Various emission bands attributed to different defect sites in the band gap were observed at the initial irradiation stage. As the dose increased, the emissions via the trapping sites decreased in intensity while the band-edge emission developed. This suggests that the ion irradiation would remove almost all the trapping sites in the band gap. The low energy emissions, which show a multiexponential decay, were due to a donor-acceptor recombination between the deeply trapped carriers. It was found that the processes of formation, reaction, and stabilization of the trapping sites would predominantly occur under the photooxidizing conditions. (author)

  5. Study of the degradation process of polyimide induced by high energetic ion irradiation

    International Nuclear Information System (INIS)

    Severin, Daniel

    2008-01-01

    The dissertation focuses on the radiation hardness of Kapton under extreme radiation environment conditions. To study ion-beam induced modifications, Kapton foils were irradiated at the GSI linear accelerator UNILAC using several projectiles (e.g. Ti, Mo, Au, and U) within a large fluence regime (1 x 10 10 -5 x 10 12 ions/cm 2 ). The irradiated Kapton foils were analysed by means of infrared and UV/Vis spectroscopy, tensile strength measurement, mass loss analysis, and dielectric relaxation spectroscopy. For testing the radiation stability of Kapton at the cryogenic operation temperature (5-10 K) of the superconducting magnets, additional irradiation experiments were performed at the Grand Accelerateur National d' Ions Lourds (GANIL, France) focusing on the online analysis of the outgassing process of small volatile degradation fragments. The investigations of the electrical properties analysed by dielectric relaxation spectroscopy exhibit a different trend: high fluence irradiations with light ions (e.g. Ti) lead to a slight increase of the conductivity, whereas heavy ions (e.g. Sm, Au) cause a drastic change already in the fluence regime of nonoverlapping tracks (5 x 10 10 ions/cm 2 ). Online analysis of the outgassing process during irradiation at cryogenic temperatures shows the release of a variety of small gaseous molecules (e.g. CO, CO 2 , and short hydro carbons). Also a small amount of large polymer fragments is identified. The results allow the following conclusions which are of special interest for the application of Kapton as insulating material in a high-energetic particle radiation environment. a) The material degradation measured with the optical spectroscopy and tensile strength tests are scalable with the dose deposited by the ions. The high correlation of the results allows the prediction of the mechanical degradation with the simple and non-destructive infrared spectroscopy. The degradation curve points to a critical material degradation which

  6. New equipment the ion beam irradiation equipment installed at ISAS / JAXA

    Science.gov (United States)

    Nakauchi, Yusuke; Matsumoto, Toru; Asada, Yuma; Abe, Masanao; Tsuchiyama, Akira; Takigawa, Aki; Watanabe, Naoki; Yusuke Nakauchi

    2017-10-01

    Understanding of the space weathering effect by the solar wind implantation is thought to be important for the interpretation of the reflectance spectra on the airless body’s surface [e.g. 1]. It is important to elucidate the space weathering effect by hydrogen ions and helium ions which account for most of solar wind. In particular, it is suggested that the solar wind protons interact with the minerals in the surface layer of the airless bodies to form OH and H2O. To understanding the space weathering effect by solar wind protons will be an important clue to reveal the origin and the abundance of lunar water [e.g. 2].Solar wind consists of 95% protons, 4% helium and other ions [3]. The energy of protons is mainly 1.1 keV and the one of helium ions is mainly 4 keV. Then, we established the ion beam irradiation equipment in ISAS/JAXA. This device consists of a cold cathode ion gun, an ion irradiation chamber, a load lock chamber for specimen preparation and reflection spectrum measurement, and FTIR. The ion sources capable of irradiation are hydrogen and helium which occupy the most of solar wind and it is possible to selectively irradiate each ion with a magnetic separator. The energy can be selected from 500 eV to 5 keV. The ultimate degree of vacuum is about 10-6 Pa. The samples can move between the irradiation chamber and the load lock chamber without being exposed to the air. Moreover, since the nitrogen purge is possible for the optical path of FTIR, the influence of the adsorbed water can be ignored when measuring the reflection spectra.In this presentation, we will report the first results of the performance of ion beam irradiation equipment (e.g. beam current, beam-shape) and the proton irradiation to Sun Carlos olivine.[1] T. Noguchi et al., MPS, 49(2):188-214, 2014. [2] C.M. Pieters et al., Science, 326(5952):568-572, 2009. [3] J.T. Gosling, Encyclopedia of the Solar System (Second Edition), pages 99 -116, 2007. Acknowledgements Part of this work has

  7. Study of the degradation process of polyimide induced by high energetic ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Severin, Daniel

    2008-09-19

    The dissertation focuses on the radiation hardness of Kapton under extreme radiation environment conditions. To study ion-beam induced modifications, Kapton foils were irradiated at the GSI linear accelerator UNILAC using several projectiles (e.g. Ti, Mo, Au, and U) within a large fluence regime (1 x 10{sup 10}-5 x 10{sup 12} ions/cm{sup 2}). The irradiated Kapton foils were analysed by means of infrared and UV/Vis spectroscopy, tensile strength measurement, mass loss analysis, and dielectric relaxation spectroscopy. For testing the radiation stability of Kapton at the cryogenic operation temperature (5-10 K) of the superconducting magnets, additional irradiation experiments were performed at the Grand Accelerateur National d' Ions Lourds (GANIL, France) focusing on the online analysis of the outgassing process of small volatile degradation fragments. The investigations of the electrical properties analysed by dielectric relaxation spectroscopy exhibit a different trend: high fluence irradiations with light ions (e.g. Ti) lead to a slight increase of the conductivity, whereas heavy ions (e.g. Sm, Au) cause a drastic change already in the fluence regime of nonoverlapping tracks (5 x 10{sup 10} ions/cm{sup 2}). Online analysis of the outgassing process during irradiation at cryogenic temperatures shows the release of a variety of small gaseous molecules (e.g. CO, CO{sub 2}, and short hydro carbons). Also a small amount of large polymer fragments is identified. The results allow the following conclusions which are of special interest for the application of Kapton as insulating material in a high-energetic particle radiation environment. a) The material degradation measured with the optical spectroscopy and tensile strength tests are scalable with the dose deposited by the ions. The high correlation of the results allows the prediction of the mechanical degradation with the simple and non-destructive infrared spectroscopy. The degradation curve points to a

  8. Development and performance evaluation of a three-dimensional clinostat synchronized heavy-ion irradiation system

    Science.gov (United States)

    Ikeda, Hiroko; Souda, Hikaru; Puspitasari, Anggraeini; Held, Kathryn D.; Hidema, Jun; Nikawa, Takeshi; Yoshida, Yukari; Kanai, Tatsuaki; Takahashi, Akihisa

    2017-02-01

    Outer space is an environment characterized by microgravity and space radiation, including high-energy charged particles. Astronauts are constantly exposed to both microgravity and radiation during long-term stays in space. However, many aspects of the biological effects of combined microgravity and space radiation remain unclear. We developed a new three-dimensional (3D) clinostat synchronized heavy-ion irradiation system for use in ground-based studies of the combined exposures. Our new system uses a particle accelerator and a respiratory gating system from heavy-ion radiotherapy to irradiate samples being rotated in the 3D clinostat with carbon-ion beams only when the samples are in the horizontal position. A Peltier module and special sample holder were loaded on a static stage (standing condition) and the 3D clinostat (rotation condition) to maintain a suitable temperature under atmospheric conditions. The performance of the new device was investigated with normal human fibroblasts 1BR-hTERT in a disposable closed cell culture chamber. Live imaging revealed that cellular adhesion and growth were almost the same for the standing control sample and rotation sample over 48 h. Dose flatness and symmetry were judged according to the relative density of Gafchromic films along the X-axis and Y-axis of the positions of the irradiated sample to confirm irradiation accuracy. Doses calculated using the carbon-ion calibration curve were almost the same for standing and rotation conditions, with the difference being less than 5% at 1 Gy carbon-ion irradiation. Our new device can accurately synchronize carbon-ion irradiation and simulated microgravity while maintaining the temperature under atmospheric conditions at ground level.

  9. Monte Carlo study of molecular weight distribution changes induced by degradation of ion beam irradiated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chappa, V.C., E-mail: chappa@tandar.cnea.gov.a [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499, B1650KNA San Martin, Buenos Aires (Argentina); CONICET (Argentina); Pastorino, C.; Grosso, M.F. dwel; Arbeitman, C.R. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499, B1650KNA San Martin, Buenos Aires (Argentina); CONICET (Argentina); Mueller, M. [Institut fuer Theoretische Physik, Georg-August-Universitaet, Goettingen (Germany); Garci' a Bermudez, G. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499, B1650KNA San Martin, Buenos Aires (Argentina); CONICET (Argentina); Escuela de Ciencia y Tecnologi' a, UNSAM (Argentina)

    2010-10-01

    In this work we study a polymeric material that degrades upon irradiation due to the energy inhomogeneously deposited by heavy ion beams. Ion beam irradiation of polymers generates rather different effects than those induced by 'classical' low ionizing particles such as electrons or gamma rays. This is due to the high electronic stopping power and the inhomogeneous distribution of deposited energy. This energy is transferred to the material within a small volume along the ion path forming the so called 'nuclear track' or 'latent track'. The track size primarily depends on the ion velocity, and it is determined by the secondary electrons (delta rays) generated along the ion trajectory. By means of Monte Carlo simulations we first obtained equilibrated polymer configurations using a coarse-grained model, and then investigated the spatially inhomogeneous chain scission process due to the passage of the ions. The number average molecular weight, weight average molecular weight and the polydispersity were calculated as a function of track radius, scission probability within the ion track and irradiation fluence. Finally we compared our results with a numerical implementation of a model for random homogeneous degradation.

  10. Visualization of air and metal inhomogeneities in phantoms irradiated by carbon ion beams using prompt secondary ions.

    Science.gov (United States)

    Gaa, T; Reinhart, M; Hartmann, B; Jakubek, J; Soukup, P; Jäkel, O; Martišíková, M

    2017-06-01

    Non-invasive methods for monitoring of the therapeutic ion beam extension in the patient are desired in order to handle deteriorations of the dose distribution related to changes of the patient geometry. In carbon ion radiotherapy, secondary light ions represent one of potential sources of information about the dose distribution in the irradiated target. The capability to detect range-changing inhomogeneities inside of an otherwise homogeneous phantom, based on single track measurements, is addressed in this paper. Air and stainless steel inhomogeneities, with PMMA equivalent thickness of 10mm and 4.8mm respectively, were inserted into a PMMA-phantom at different positions in depth. Irradiations of the phantom with therapeutic carbon ion pencil beams were performed at the Heidelberg Ion Beam Therapy Center. Tracks of single secondary ions escaping the phantom under irradiation were detected with a pixelized semiconductor detector Timepix. The statistical relevance of the found differences between the track distributions with and without inhomogeneities was evaluated. Measured shifts of the distal edge and changes in the fragmentation probability make the presence of inhomogeneities inserted into the traversed medium detectable for both, 10mm air cavities and 1mm thick stainless steel. Moreover, the method was shown to be sensitive also on their position in the observed body, even when localized behind the Bragg-peak. The presented results demonstrate experimentally, that the method using distributions of single secondary ion tracks is sensitive to the changes of homogeneity of the traversed material for the studied geometries of the target. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Radioprotective effects of melatonin on carbon-ion and X ray irradiation in mice

    International Nuclear Information System (INIS)

    Saito, Masayoshi; Kawata, Tetsuya; Liu, C.; Sakurai, Akiko; Ito, Hisao; Ando, Koichi

    2004-01-01

    The radioprotective ability of melatonin was investigated in C3H mice irradiated to a whole-body X-ray (150 Kv, 20 mA) and carbon-ion (290 MeV/u). Mice exposed to X-ray, 13 KeV/μm and 50 KeV/μm carbon-ion dose of 7.0-7.5 Gy, 6.5-7.25 Gy and 6.0-6.5 Gy, respectively. One hour before the irradiation, mice were given an intraperitoneal injection of 0.2 ml of either solvent (soybean oil) or melatonin (250 mg/kg, uniform suspension in soybean oil). Mice were observed for mortality over a period of 30 days following irradiation. Results obtained the first year are as follows. The toxicity of melatonin (at a dose 250 mg/kg) intraperitoneal administered to mice could not be observed. A pretreatment of melatonin is effective in protecting mice from lethal damage of low-linear energy transfer (LET) irradiation (X-ray and 13 KeV/μm carbon-ion). In the high-LET irradiated mice with 50 KeV/μm carbon-ion, melatonin exhibited a slight increase in their survival. (author)

  12. ESR investigation of L-α-alanine and sucrose radicals produced by heavy-ion irradiation

    International Nuclear Information System (INIS)

    Nakagawa, K.; Sato, Y.

    2005-01-01

    We investigated sucrose and L-α-alanine radicals produced by heavy (particle) ion irradiation with various LETs (linear energy transfer). The impact of the heavy ions on the samples produced stable free radicals, which were analyzed by ESR (electron spin resonance). Identical spectra were measured after one year. The obtained spectral patterns were the same as those for helium (He), carbon (C), and neon (Ne) ions irradiation. The absorbed dose dependences for the irradiated sucrose and alanine samples were examined. The ESR response has a linear relation with the absorbed dose. The ESR response at 60 Gy was slightly lower than a linear line for sucrose; however, the response showed good linearity for the alanine. In addition, the total spin concentration obtained by heavy-ion irradiation correlated logarithmically with the LET. Qualitative ESR analyse showed that the production of sucrose and alanine radicals depended on both different particle irradiation and the LET under the same dose. Thus, the present ESR results imply that sucrose together with L-α-alanine can be used to monitor LET as well as the number of ionizing particle for the production of stable free radicals. (author)

  13. Mutation effects of C2+ ion irradiation on the greasy Nitzschia sp

    International Nuclear Information System (INIS)

    Yang, Y.N.; Liu, C.L.; Wang, Y.K.; Xue, J.M.

    2013-01-01

    Highlights: • The optimal conditions of C 2+ ion irradiation on Nitzschia sp. were discussed. • Get the “saddle type” survival curve. • One mutant whose lipid content improved significantly was selected. • The C 2+ ion irradiation didn’t change the algae's morphology and growth rate. - Abstract: Screening and nurturing algae with high productivity, high lipid content and strong stress resistance are very important in algae industry. In order to increase the lipid content, the Nitzschia sp. was irradiated with a 3 MeV C 2+ beam. The sample pretreatment method was optimized to obtain the best mutagenic condition and the survival ratio curve. The positive mutants with a significant improvement in lipid content were screened and their C 2+ mutagenic effects were analyzed by comparing the greasiness and growth characteristics with the wild type algae. Results showed that when the Nitzschia sp. was cultivated in nutritious medium containing 10% glycerol solution, and dried on the filter for 5 min after centrifugation, the realization of the microalgae heavy ion mutagenesis could be done. The survival ratio curve caused by C 2+ irradiation was proved to be “saddle-shaped”. A positive mutant was screened among 20 survivals after irradiation, the average lipid content of the mutation increased by 9.8% than the wild type after 4 generations. But the growth rate of the screened mutation didn’t change after the heavy ion implantation compared to the wild type algae

  14. Effect of annealing high-dose heavy-ion irradiated high-temperature superconductor wires

    Science.gov (United States)

    Strickland, N. M.; Wimbush, S. C.; Kluth, P.; Mota-Santiago, P.; Ridgway, M. C.; Kennedy, J. V.; Long, N. J.

    2017-10-01

    Heavy-ion irradiation of high-temperature superconducting thin films has long been known to generate damage tracks of amorphized material that are of close-to-ideal dimension to effectively contribute to pinning of magnetic flux lines and thereby enhance the in-field critical current. At the same time, though, the presence of these tracks reduces the superconducting volume fraction available to transport current while the irradiation process itself generates oxygen depletion and disorder in the remaining superconducting material. We have irradiated commercially available superconducting coated conductors consisting of a thick film of (Y,Dy)Ba2Cu3O7 deposited on a buffered metal tape substrate in a continuous reel-to-reel process. Irradiation was by 185 MeV 197Au ions. A high fluence of 3 × 1011 ions/cm2 was chosen to emphasize the detrimental effects. The critical current was reduced following this irradiation, but annealing at relatively low temperatures of 200 °C and 400 °C substantially restore the critical current of the irradiated material. At high fields and high temperatures there is a net benefit of critical current compared to the untreated material.

  15. Silicon Carbide Power Device Performance Under Heavy-Ion Irradiation

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Topper, Alyson; Wilcox, Edward; Phan, Anthony; Ikpe, Stanley; LaBel, Ken

    2015-01-01

    Heavy-ion induced degradation and catastrophic failure data for SiC power MOSFETs and Schottky diodes are examined to provide insight into the challenge of single-event effect hardening of SiC power devices.

  16. Sample Management System for Heavy Ion Irradiation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A robotic sample management device and system for the exposure of biological and material specimens to heavy ion beams of the NASA Space Radiation Laboratory (NSRL)...

  17. Sample Management System for Heavy Ion Irradiation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A robotic sample management device and system for the exposure of biological and material specimens to heavy ion beams of the NASA Space Radiation Laboratory (NSRL)...

  18. In situ studies of the kinetics of surface topography development during ion irradiation

    International Nuclear Information System (INIS)

    Levinskas, R.; Pranevicius, L.

    1996-01-01

    Studies of the mechanical properties of the materials affected by 25-200 keV H + , He + , Ne + and Ar + ion irradiation in the range of fluences up to 2 · 10 17 cm -2 based on the analysis of acoustic emission signals, kinetics of the surface deformations measured by laser interferometric technique and the variations of the surface acoustic waves propagation velocity are conducted. The acoustic emissions source mechanisms under various ion irradiation conditions are discussed and relative contribution various possible mechanism are indicated. The correlation of experimental results obtained by different methods of analysis is done. (author). 11 refs, 5 figs

  19. Comparison of ion irradiation damage in three grades of unalloyed molybdenum

    International Nuclear Information System (INIS)

    Bradley, E.R.

    1976-01-01

    Transmission electron microscopy has been employed to characterize the ion irradiation damage in three grades of unalloyed molybdenum. The materials were irradiated with 5 MeV Ni 2+ ions at temperatures of 900 and 1000 0 C. Major differences exist in both the void and dislocation components of the damage and are attributed to differences in the carbon content of the three materials. A model, whereby carbon atoms segregate to small loops and decrease the bias for self interstitials, is used to qualitatively explain the observed variations in microstructure

  20. Induction of the Tn10 Precise Excision in E. coli Cells after Accelerated Heavy Ions Irradiation

    CERN Document Server

    Zhuravel, D V

    2003-01-01

    The influence of the irradiation of different kinds on the indication of the structural mutations in the bacteria Escherichia coli is considered. The regularities of the Tn10 precise excision after accelerated ^{4}He and ^{12}C ions irradiations with different linear energy transfer (LET) were investigated. Dose dependences of the survival and relative frequency of the Tn10 precise excision were obtained. It was shown, that the relative frequency of the Tn10 precise excision is the exponential function from the irradiation dose. Relative biological efficiency (RBE), and relative genetic efficiency (RGE) were calculated, and were treated as the function of the LET.

  1. Effects of main traits of sweet sorghum irradiated by carbon ions

    International Nuclear Information System (INIS)

    Li Wenjian; He Jingyu; Liu Qingfang; Yu Lixia; Dong Xicun

    2009-01-01

    To investigate the influence of carbon ion irradiation on important agronomic characters of sweet sorghum, dry seeds of Sweet Sorghum BJ0601 and BJ0602 were irradiated by 100 MeV/u 12 C +6 ion beam to different doses at Heavy Ion Accelerator National Laboratory in Lanzhou (HIANLL). When matured, the main traits of sweet sorghum were measured. The correlation coefficient of five main agronomic characters, i.e. number of node, plant height, stalk diameter, sugar content and stem weight per plant, were analyzed using the SPSS 13.0 software. The results indicated that the obvious influence of sweet sorghum irradiated by carbon ion beam was observed. In addition, the correlation of main traits was studied. This study may provide rudimental data to select novel variety of sweet sorghum suited for fuel ethanol production. In addition, the average of sugar content of early mutant BJ0601-1 is higher than BJ0601 in M2, and the sugar content of sweet sorghum may be improved by carbon ion beam irradiation. (authors)

  2. Investigating change of properties in gallium ion irradiation patterned single-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China); Dong, Jinyao; Bai, Bing [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Xie, Guoxin [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2016-10-14

    Besides its excellent physical properties, graphene promises to play a significant role in electronics with superior properties, which requires patterning of graphene for device integration. Here, we presented the changes in properties of single-layer graphene before and after patterning using gallium ion beam. Combined with Raman spectra of graphene, the scanning capacitance microscopy (SCM) image confirmed that a metal–insulator transition occurred after large doses of gallium ion irradiation. The changes in work function and Raman spectra of graphene indicated that the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. The patterning width of graphene presented an increasing trend due to the scattering influence of the impurities and the substrate. - Highlights: • The scanning capacitance microscopy image confirmed a metal–insulator transition occurred after large doses of gallium ion irradiation. • The changes indicated the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. • The patterning width of graphene presented a increasing trend due to the scattering influence of the impurities and the substrate.

  3. Investigating change of properties in gallium ion irradiation patterned single-layer graphene

    International Nuclear Information System (INIS)

    Wang, Quan; Dong, Jinyao; Bai, Bing; Xie, Guoxin

    2016-01-01

    Besides its excellent physical properties, graphene promises to play a significant role in electronics with superior properties, which requires patterning of graphene for device integration. Here, we presented the changes in properties of single-layer graphene before and after patterning using gallium ion beam. Combined with Raman spectra of graphene, the scanning capacitance microscopy (SCM) image confirmed that a metal–insulator transition occurred after large doses of gallium ion irradiation. The changes in work function and Raman spectra of graphene indicated that the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. The patterning width of graphene presented an increasing trend due to the scattering influence of the impurities and the substrate. - Highlights: • The scanning capacitance microscopy image confirmed a metal–insulator transition occurred after large doses of gallium ion irradiation. • The changes indicated the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. • The patterning width of graphene presented a increasing trend due to the scattering influence of the impurities and the substrate.

  4. Effect of heavy ion irradiation on thermodynamically equilibrium Zr-Excel alloy

    Science.gov (United States)

    Yu, Hongbing; Liang, Jianlie; Yao, Zhongwen; Kirk, Mark A.; Daymond, Mark R.

    2017-05-01

    The thermodynamically equilibrium state was achieved in a Zr-Sn-Nb-Mo alloy by long-term annealing at an intermediate temperature. The fcc intermetallic Zr(Mo, Nb)2 enriched with Fe was observed at the equilibrium state. In-situ 1 MeV Kr2+ heavy ion irradiation was performed in a TEM to study the stability of the intermetallic particles under irradiation and the effects of the intermetallic particle on the evolution of type dislocation loops at different temperatures from 80 to 550 °C. Chemi-STEM elemental maps were made at the same particles before and after irradiation up to 10 dpa. It was found that no elemental redistribution occurs at 200 °C and below. Selective depletion of Fe was observed from some precipitates under irradiation at higher temperatures. No change in the morphology of particles and no evidence showing a crystalline to amorphous transformation were observed at all irradiation temperatures. The formation of type dislocation loops was observed under irradiation at 80 and 200 °C, but not at 450 and 550 °C. The loops were non-uniformly distributed; a localized high density of type dislocation loops were observed near the second phase particles; we suggest that loop nucleation is favored as a result of the stress induced by the particles, rather than by elemental redistribution. The stability of the second phase particles and the formation of the type loops under heavy ion irradiation are discussed.

  5. Insatured polymeric thin film formation by energetic ions irradiations of fluoropolymers

    International Nuclear Information System (INIS)

    Le Moel, A.; Duraud, J.P.; Darnez, C.

    1987-03-01

    This work deals with the study of both structural and electronic modifications of polyvinyldene fluoride (PVDF) by monochromatised X-ray photoemission spectroscopy (XPS). Monochromatised XPS has been used to follow the surface modifications of PVDF samples subjected to various levels of irradiations (oxygen ions: 800 MeV, krypton ions: 3600 MeV). Desorption of hydrogen fluoride molecules and the creation of cumulene compounds are observed. 46 refs

  6. Damage evolution in Xe-ion irradiated rutile (TiO2) single crystals

    International Nuclear Information System (INIS)

    Li, F.; Sickafus, K.E.; Evans, C.R.; Nastasi, M.

    1999-01-01

    Rutile (TiO 2 ) single crystals with (110) orientation were irradiated with 360 keV Xe 2+ ions at 300 K to fluences ranging from 2 x 10 19 to 1 x 10 20 Xe/m 2 . Irradiated samples were analyzed using: (1) Rutherford backscattering spectroscopy combined with ion channeling analysis (RBS/C); and (2) cross-sectional transmission electron microscopy (XTEM). Upon irradiation to a fluence of 2 x 10 19 Xe/m 2 , the sample thickness penetrated by the implanted ions was observed to consist of three distinct layers: (1) a defect-free layer at the surface (thickness about 12 nm) exhibiting good crystallinity; (2) a second layer with a low density of relatively large-sized defects; and (3) a third layer consisting of a high concentration of small defects. After the fluence was increased to 7 x 10 19 Xe/m 2 , a buried amorphous layer was visible by XTEM. The thickness of the amorphous layer was found to increase with increasing Xe ion fluence. The location of this buried amorphous layer was found to coincide with the measured peak in the Xe concentration (measured by RBS/C), rather than with the theoretical maximum in the displacement damage profile. This observation suggests the implanted Xe ions may serve as nucleation sites for the amorphization transformation. The total thickness of the damaged microstructure due to ion irradiation was always found to be much greater than the projected range of the Xe ions. This is likely due to point defect migration under the high stresses induced by ion implantation

  7. Simulation of neutron-induced damage in tungsten by irradiation with energetic self-ions

    Science.gov (United States)

    Ogorodnikova, O. V.; Gann, V.

    2015-05-01

    A direct comparison of the deuterium (D) decoration of radiation-induced damage in polycrystalline tungsten irradiated with self-ions [present work] and neutrons in the high-flux isotope reactor (HFIR) (Hatano et al., 2013) shows a reasonably good agreement at least up to 0.3 displacement per atom indicating that MeV heavy ions can be a good proxy to simulate neutron-produced damage at room temperature and low dpa. The coefficient of similarity between two kinds of irradiation was obtained experimentally to be Kexp ∼ 0.65 ± 0.1 in the case of the deuterium decoration of both kinds of radiation-induced defects with low and high de-trapping energies for deuterium. We introduced the theoretical estimation for coefficient of similarity between neutron- and self-ion-irradiations, which is a fraction of common area under the curves of two overlapping damage energy spectra of primary knock-on atom (PKA) produced in tungsten by these two types of irradiation. In other words, Ksim is a part of displaced atoms produced in the similar conditions under two different types of irradiation. The theoretical values of Ksim = 0.34 and Ksim = 0.29 were obtained for tungsten target irradiated with 20 MeV self-ions in comparison to irradiation with neutrons in HFIR reactor (>0.1 MeV) and 14 MeV neutrons, respectively. The theoretical value of Ksim = 0.34 is about two times less than the experimental value of Kexp = 0.65. It means that high energy PKAs can play more important role in the production of similar damage structure by irradiation with self-ions and neutrons which is responsible for deuterium retention. The model assuming that all cascades with an energy higher than Tc = 150 keV split into identical sub-cascades gives the value of Ksim = 0.64 ± 0.01 for the coefficient of similarity between HFIR-neutron and 20 MeV self-ion irradiations that is in an agreement with experimental value of Kexp = 0.65 ± 0.1. Consequently, splitting of high-energy part of cascades might take

  8. Mechanical properties and plasticity size effect of Fe-6%Cr irradiated by Fe ions and by neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Hardie, C.D., E-mail: chris.hardie@ukaea.uk [EURATOM/CCFE Association, Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Department of Materials, University of Oxford, Oxford, OX1 3PH (United Kingdom); Odette, G.R.; Wu, Y. [UCSB Department of Mechanical Engineering, 2343 Engineering II Building, Santa Barbara, CA 93106-5070 (United States); Akhmadaliev, S. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, D-01328 Dresden (Germany); Roberts, S.G. [EURATOM/CCFE Association, Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Department of Materials, University of Oxford, Oxford, OX1 3PH (United Kingdom)

    2016-12-15

    The mechanical behaviour of Fe6%Cr in the un-irradiated, self-ion irradiated and neutron irradiated conditions was measured and compared. Irradiations were performed to the same dose and at the same temperature but to very different damage rates for both methods. The materials were tested using nanoindentation and micromechanical testing, and compared with microstructural observations from Transmission Electron Microscopy (TEM) and Atom Probe Tomography (APT) reported elsewhere. Irradiated and un-irradiated micro-cantilevers with a wide range of dimensions were used to study the interrelationships between irradiation hardening and size effects in small-scale plasticity. TEM and APT results identified that the dislocation loop densities were ∼2.9 × 10{sup 22}m{sup −3} for the neutron irradiated material and only 1.4 × 10{sup 22}m{sup −3} for the ion irradiated material. Cr segregation to loops was only found for the neutron-irradiated material. The nanoindentation hardness increase due to neutron irradiation was 3 GPa and that due to ion irradiation 1 GPa. The differences between the effects of the two irradiation types are discussed, taking into account inconsistencies in damage calculations, and the differences in PKA spectra, dose rate and transmutation products for the two irradiation types.

  9. High energy ion irradiation effects in H2O ice and astrophysical applications

    International Nuclear Information System (INIS)

    Benit, J.

    1987-06-01

    This thesis presents the study of radiation effects induced in H 2 O ice by MeV/u ions: desorption of ionized species, ''erosion'' of the irradiated film and molecular synthesis within the ice. The desorption is analysed by time of flight mass spectroscopy. We describe the mass spectra of the desorbed ions, both positively and negatively charged, up to 400 uma. The absolute yields are given, as well as their dependence with the energy and energy loss of the primary ions. The ''erosion'' of the ice is analysed by infrared spectroscopy, on line during the irradiation. Absolute yields are derived, as a function of the ions beam flux, the mass and energy of the ions, and the thickness of the samples. A linear dependence of the yield with the thickness is interpreted as follows: the erosion comes primarely from the dissociation of the molecules all along the ion tracks. In conclusion some astrophysical implications of the results are discussed in the framework of irradiation of icy material in a variety of environments [fr

  10. Study of damaged depth profiles of ion-irradiated PEEK

    Czech Academy of Sciences Publication Activity Database

    Vacík, Jiří; Hnatowicz, Vladimír; Červená, Jarmila; Apel, P. Yu.; Posta, S.; Kobayashi, Y.

    2007-01-01

    Roč. 201, 19-20 (2007), s. 8370-8372 ISSN 0257-8972 R&D Projects: GA MPO(CZ) 1H-PK2/05; GA MŠk 1P04LA213 Institutional research plan: CEZ:AV0Z10480505 Keywords : Oxygen irradiation * Poly-aryl-ether-ether ketone * Thermal neutron depth profiling (TNDP) Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.678, year: 2007

  11. Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses

    Directory of Open Access Journals (Sweden)

    O. Klimo

    2008-03-01

    Full Text Available Acceleration of ions from ultrathin foils irradiated by intense circularly polarized laser pulses is investigated using one- and two-dimensional particle simulations. A circularly polarized laser wave heats the electrons much less efficiently than the wave of linear polarization and the ion acceleration process takes place on the front side of the foil. The ballistic evolution of the foil becomes important after all ions contained in the foil have been accelerated. In the ongoing acceleration process, the whole foil is accelerated as a dense compact bunch of quasineutral plasma implying that the energy spectrum of ions is quasimonoenergetic. Because of the ballistic evolution, the velocity spread of an accelerated ion beam is conserved while the average velocity of ions may be further increased. This offers the possibility to control the parameters of the accelerated ion beam. The ion acceleration process is described by the momentum transfer from the laser beam to the foil and it might be fairly efficient in terms of the energy transferred to the heavy ions even if the foil contains a comparable number of light ions or some surface contaminants. Two-dimensional simulations confirm the formation of the quasimonoenergetic spectrum of ions and relatively good collimation of the ion bunch, however the spatial distribution of the laser intensity poses constraints on the maximum velocity of the ion beam. The present ion acceleration mechanism might be suitable for obtaining a dense high energy beam of quasimonoenergetic heavy ions which can be subsequently applied in nuclear physics experiments. Our simulations are complemented by a simple theoretical model which provides the insights on how to control the energy, number, and energy spread of accelerated ions.

  12. Short Communication on "In-situ TEM ion irradiation investigations on U3Si2 at LWR temperatures"

    Science.gov (United States)

    Miao, Yinbin; Harp, Jason; Mo, Kun; Bhattacharya, Sumit; Baldo, Peter; Yacout, Abdellatif M.

    2017-02-01

    The radiation-induced amorphization of U3Si2 was investigated by in-situ transmission electron microscopy using 1 MeV Kr ion irradiation. Both arc-melted and sintered U3Si2 specimens were irradiated at room temperature to confirm the similarity in their responses to radiation. The sintered specimens were then irradiated at 350 °C and 550 °C up to 7.2 × 1015 ions/cm2 to examine their amorphization behavior under light water reactor (LWR) conditions. U3Si2 remains crystalline under irradiation at LWR temperatures. Oxidation of the material was observed at high irradiation doses.

  13. Neuropathology of delayed encephalopathy in cats induced by heavy-ion irradiation

    International Nuclear Information System (INIS)

    Okeda, Riki; Kuroiwa, Toshihiko; Okada, Shinobu; Kawano, Akihiro; Matsushita, Satoru

    2003-01-01

    The pathogenesis of delayed encephalopathy induced by heavy-ion irradiation was investigated experimentally in cats. The left cerebral hemispheres were irradiated with 15-40 Gy of heavy ions (carbon), and histologically and morphometrically examined 12 months later. In the irradiated cerebral white matter the following occurred as the dose increased: astrocytic swelling, then the dilatation of small blood vessels with a fibrous thickening of the wall, and then loosening of the white matter with cavity formation and diffuse albumin deposition. Pathological features of these cavities suggested that they are induced by longstanding edema. Although the dilated vessels were arteries, veins, and capillaries, arteriovenous shunt and damage of the smooth muscle cells of the arterial media were absent. Changes of the cerebral cortex were scarce. Morphometrically, the irradiated cerebral white matter was swollen, and the capillary density tended to be reduced in the deep cortex and subcortical white matter, but this effect was not dose dependent. Heavy-ion irradiation induces delayed encephalopathy in cats, preferentially involving the white matter. The cardinal pathogenesis was long-standing edema of the white matter due to vascular hyperpermeability, and the vascular dilatation seemed to be caused by a reduction in the vascular bed and/or hemoconcentration due to hyperpermeability. (author)

  14. Development of a single ion micro-irradiation facility for experimental radiobiology at cell level

    International Nuclear Information System (INIS)

    Barberet, Ph.

    2003-10-01

    A micro-irradiation device has been developed for radiobiology applications at the scale of the cell. This device is based on an upgrade of an existing micro-beam line that was already able to deliver a 1 to 3 MeV proton or alpha beam of low intensity and whose space resolution is lower than 1 micrometer in vacuum. The important part of this work has been the development of an irradiation stage designed to fit on the micro-probe and able to deliver ions in the air with an absolute accuracy of a few micrometers. A program has been set up to monitor the complete irradiation line in testing and in automatic irradiation operating phases. Simulation tools based on Monte-Carlo calculations have been validated through comparisons with experimental data particularly in the field of spatial resolution and of the number of ions delivered. The promising results show the possibility in a near future to use this tool to study the response of cells to very low irradiation doses down to the extreme limit of one ion per cell

  15. Modification of poly(ether ether ketone) by ion irradiation

    Czech Academy of Sciences Publication Activity Database

    Hnatowicz, Vladimír; Havránek, Vladimír; Bočan, Jiří; Macková, Anna; Vacík, Jiří; Švorčík, V.

    2008-01-01

    Roč. 266, č. 2 (2008), s. 283-287 ISSN 0168-583X R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : PEEK * ion beam modification * polymer degradation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.999, year: 2008

  16. Electrolyte penetration into high energy ion irradiated polymers

    Czech Academy of Sciences Publication Activity Database

    Fink, D.; Petrov, A.; Müller, M.; Asmus, T.; Hnatowicz, Vladimír; Vacík, Jiří; Červená, Jarmila

    158/159 (2002), s. 228-233 ISSN 0257-8972 R&D Projects: GA AV ČR KSK1010104; GA ČR GA102/01/1324 Keywords : polymers * ion bombardment * defects * diffusion * nanostructrure Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.267, year: 2002

  17. Temperature profiles of low-temperature alloy irradiated by pulsed ion beams

    International Nuclear Information System (INIS)

    Zhang, Guoliang; Wang, Boyu; Shi, Lei; Tan, Xiaohua; Xiang, Wei

    2013-01-01

    While alloy materials is irradiated by the high-intensity pulsed ion beams (HIPIB), the temperature distributions surrounding the primary heated regions used numerical analysis has been studied extensively over the past few years. Compared with the temperature distributions induced by HIPIB, few information is known about the temperature distributions on alloy materials used in practice as it is irradiated by the pulsed ion beams which possess characte