Sample records for swept-frequency acoustic interferometry

  1. Swept frequency acoustic interferometry technique for chemical weapons verification and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, D.N.; Anthony, B.W.; Lizon, D.C.


    Nondestructive evaluation (NDE) techniques are important for rapid on-site verification and monitoring of chemical munitions, such as artillery shells and bulk containers. Present NDE techniques provide only limited characterizations of such munitions. This paper describes the development of a novel noninvasive technique, swept-frequency acoustic interferometry (SFAI), that significantly enhances the capability of munitions characterizations. The SFAI technique allows very accurate and simultaneous determination of sound velocity and attenuation of chemical agents over a large frequency range inside artillery shells, in addition to determining agent density. The frequency-dependent sound velocity and attenuation can, in principle, provide molecular relaxation properties of the chemical agent. The same instrument also enables a direct fill-level measurement in bulk containers. Industrial and other applications of this general-purpose technique are also discussed.

  2. The digital holographic interferometry in resonant acoustic spectroscopy

    International Nuclear Information System (INIS)



    The opportunities of application of digital holographic interferometry method for studies of shapes of resonant modes in resonant acoustic spectroscopy are shown. The results of experimental measurements and analytical calculations are submitted. (authors)

  3. Non-invasive acoustic-based monitoring of uranium in solution and H/D ratio

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beedle, Christopher Craig [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinha, Dipen N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The primary objective of this project is to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of demonstrating the ability to quantify U or H/D ratios in solution. Furthermore, a successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended uranium mass measurements for International Atomic Energy Agency (IAEA).

  4. Conoscopic interferometry of surface-acoustic-wave substrate crystals. (United States)

    Ayräs, P H; Friberg, A T; Kaivola, M A; Salomaa, M M


    Conoscopic interferometry is applied for determining the crystal orientation of lithium niobate and other commonly employed substrate wafers for integrated-optic and surface-acoustic-wave devices. The method is particularly applicable for detecting the orientation of the optic axes of the strongly birefringent niobate but is less sensitive for lithium tantalate or quartz. Conoscopic interference is a low-cost and easy-to-use method that is especially suitable for laboratory usage.

  5. Acoustic noise interferometry in a time-dependent coastal ocean. (United States)

    Godin, Oleg A


    Interferometry of underwater noise provides a way to estimate physical parameters of the water column and the seafloor without employing any controlled sound sources. In applications of acoustic noise interferometry to coastal oceans, the propagation environment changes appreciably during the averaging times that are necessary for the Green's functions to emerge from noise cross-correlations. Here, a theory is developed to quantify the effects of nonstationarity of the propagation environment on two-point correlation functions of diffuse noise. It is shown that temporal variability of the ocean limits from above the frequency range, where noise cross-correlations approximate the Green's functions. The theoretical predictions are in quantitative agreement with results of the 2012 noise interferometry experiment in the Florida Straits. The loss of coherence at high frequencies constrains the passive acoustic remote sensing to exploiting a low-frequency part of measured noise cross-correlations, thus limiting the resolution of deterministic inversions. On the other hand, the passively measured coherence loss contains information about statistical characteristics of the ocean dynamics at unresolved spatial and temporal scales.

  6. Soil Moisture Sensing via Swept Frequency Based Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Greg A. Holt


    Full Text Available There is a need for low-cost, high-accuracy measurement of water content in various materials. This study assesses the performance of a new microwave swept frequency domain instrument (SFI that has promise to provide a low-cost, high-accuracy alternative to the traditional and more expensive time domain reflectometry (TDR. The technique obtains permittivity measurements of soils in the frequency domain utilizing a through transmission configuration, transmissometry, which provides a frequency domain transmissometry measurement (FDT. The measurement is comparable to time domain transmissometry (TDT with the added advantage of also being able to separately quantify the real and imaginary portions of the complex permittivity so that the measured bulk permittivity is more accurate that the measurement TDR provides where the apparent permittivity is impacted by the signal loss, which can be significant in heavier soils. The experimental SFI was compared with a high-end 12 GHz TDR/TDT system across a range of soils at varying soil water contents and densities. As propagation delay is the fundamental measurement of interest to the well-established TDR or TDT technique; the first set of tests utilized precision propagation delay lines to test the accuracy of the SFI instrument’s ability to resolve propagation delays across the expected range of delays that a soil probe would present when subjected to the expected range of soil types and soil moisture typical to an agronomic cropping system. The results of the precision-delay line testing suggests the instrument is capable of predicting propagation delays with a RMSE of +/−105 ps across the range of delays ranging from 0 to 12,000 ps with a coefficient of determination of r2 = 0.998. The second phase of tests noted the rich history of TDR for prediction of soil moisture and leveraged this history by utilizing TDT measured with a high-end Hewlett Packard TDR/TDT instrument to directly benchmark the

  7. Imaging acoustic vibrations in an ear model using spectrally encoded interferometry (United States)

    Grechin, Sveta; Yelin, Dvir


    Imaging vibrational patterns of the tympanic membrane would allow an accurate measurement of its mechanical properties and provide early diagnosis of various hearing disorders. Various optical technologies have been suggested to address this challenge and demonstrated in vitro using point scanning and full-field interferometry. Spectrally encoded imaging has been previously demonstrated capable of imaging tissue acoustic vibrations with high spatial resolution, including two-dimensional phase and amplitude mapping. In this work, we demonstrate a compact optical apparatus for imaging acoustic vibrations that could be incorporated into a commercially available digital otoscope. By transmitting harmonic sound waves through the otoscope insufflation port and analyzing the spectral interferograms using custom-built software, we demonstrate high-resolution vibration imaging of a circular rubber membrane within an ear model.

  8. Report on Non-invasive acoustic monitoring of D2O concentration Oct 31 2017

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinha, Dipen N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beedle, Christopher Craig [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Eric Sean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    There is an urgent need for real-time monitoring of the hydrogen /deuterium ratio (H/D) for heavy water production monitoring. Based upon published literature, sound speed is sensitive to the deuterium content of heavy water and can be measured using existing acoustic methods to determine the deuterium concentration in heavy water solutions. We plan to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of quantifying H/D ratios in solution. A successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended H/D ratio measurements with a resolution of less than 0.2% vol.

  9. Experimental Study of High-Range-Resolution Medical Acoustic Imaging for Multiple Target Detection by Frequency Domain Interferometry (United States)

    Kimura, Tomoki; Taki, Hirofumi; Sakamoto, Takuya; Sato, Toru


    We employed frequency domain interferometry (FDI) for use as a medical acoustic imager to detect multiple targets with high range resolution. The phase of each frequency component of an echo varies with the frequency, and target intervals can be estimated from the phase variance. This processing technique is generally used in radar imaging. When the interference within a range gate is coherent, the cross correlation between the desired signal and the coherent interference signal is nonzero. The Capon method works under the guiding principle that output power minimization cancels the desired signal with a coherent interference signal. Therefore, we utilize frequency averaging to suppress the correlation of the coherent interference. The results of computational simulations using a pseudoecho signal show that the Capon method with adaptive frequency averaging (AFA) provides a higher range resolution than a conventional method. These techniques were experimentally investigated and we confirmed the effectiveness of the proposed method of processing by FDI.

  10. Distributed Acoustic Sensing for Seismic Monitoring of The Near Surface: A Traffic-Noise Interferometry Case Study. (United States)

    Dou, Shan; Lindsey, Nate; Wagner, Anna M; Daley, Thomas M; Freifeld, Barry; Robertson, Michelle; Peterson, John; Ulrich, Craig; Martin, Eileen R; Ajo-Franklin, Jonathan B


    Ambient-noise-based seismic monitoring of the near surface often has limited spatiotemporal resolutions because dense seismic arrays are rarely sufficiently affordable for such applications. In recent years, however, distributed acoustic sensing (DAS) techniques have emerged to transform telecommunication fiber-optic cables into dense seismic arrays that are cost effective. With DAS enabling both high sensor counts ("large N") and long-term operations ("large T"), time-lapse imaging of shear-wave velocity (V S ) structures is now possible by combining ambient noise interferometry and multichannel analysis of surface waves (MASW). Here we report the first end-to-end study of time-lapse V S imaging that uses traffic noise continuously recorded on linear DAS arrays over a three-week period. Our results illustrate that for the top 20 meters the V S models that is well constrained by the data, we obtain time-lapse repeatability of about 2% in the model domain-a threshold that is low enough for observing subtle near-surface changes such as water content variations and permafrost alteration. This study demonstrates the efficacy of near-surface seismic monitoring using DAS-recorded ambient noise.

  11. Acoustics (United States)

    Goodman, Jerry R.; Grosveld, Ferdinand


    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  12. Speckle interferometry (United States)

    Sirohi, Rajpal S.


    Illumination of a rough surface by a coherent monochromatic wave creates a grainy structure in space termed a speckle pattern. It was considered a special kind of noise and was the bane of holographers. However, its information-carrying property was soon discovered and the phenomenon was used for metrological applications. The realization that a speckle pattern carried information led to a new measurement technique known as speckle interferometry (SI). Although the speckle phenomenon in itself is a consequence of interference among numerous randomly dephased waves, a reference wave is required in SI. Further, it employs an imaging geometry. Initially SI was performed mostly by using silver emulsions as the recording media. The double-exposure specklegram was filtered to extract the desired information. Since SI can be configured so as to be sensitive to the in-plane displacement component, the out-of-plane displacement component or their derivatives, the interferograms corresponding to these were extracted from the specklegram for further analysis. Since the speckle size can be controlled by the F number of the imaging lens, it was soon realized that SI could be performed with electronic detection, thereby increasing its accuracy and speed of measurement. Furthermore, a phase-shifting technique can also be incorporated. This technique came to be known as electronic speckle pattern interferometry (ESPI). It employed the same experimental configurations as SI. ESPI found many industrial applications as it supplements holographic interferometry. We present three examples covering diverse areas. In one application it has been used to measure residual stress in a blank recordable compact disk. In another application, microscopic ESPI has been used to study the influence of relative humidity on paint-coated figurines and also the effect of a conservation agent applied on top of this. The final application is to find the defects in pipes. These diverse applications

  13. Speckle Interferometry (United States)

    Chiang, F. P.; Jin, F.; Wang, Q.; Zhu, N.

    Before the milestone work of Leedertz in 1970 coherent speckles generated from a laser illuminated object are considered noise to be eliminated or minimized. Leedertz shows that coherent speckles are actually information carriers. Since then the speckle technique has found many applications to fields of mechanics, metrology, nondestructive evaluation and material sciences. Speckles need not be coherent. Artificially created socalled white light speckles can also be used as information carriers. In this paper we present two recent developments of speckle technique with applications to micromechanics problems using SIEM (Speckle Interferometry with Electron Microscopy), to nondestructive evaluation of crevice corrosion and composite disbond and vibration of large structures using TADS (Time-Average Digital Specklegraphy).

  14. Quantum Interferometry (United States)

    Dowling, Jonathan P.


    Recently, several researchers, including yours truly, have been able to demonstrate theoretically that quantum photon entanglement has the potential to also revolutionize the entire field of optical interferometry, by providing many orders of magnitude improvement in interferometer sensitivity. The quantum entangled photon interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like 1/Sqrt[N], where N is the number of particles (photons, electrons, atoms, neutrons) passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of Sqrt[N] (square root of N) to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical (laser) interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. Applications are to tests of General Relativity such as ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively.

  15. Principles of Stellar Interferometry

    CERN Document Server

    Glindemann, Andreas


    Over the last decade, stellar interferometry has developed from a specialist tool to a mainstream observing technique, attracting scientists whose research benefits from milliarcsecond angular resolution. Stellar interferometry has become part of the astronomer’s toolbox, complementing single-telescope observations by providing unique capabilities that will advance astronomical research. This carefully written book is intended to provide a solid understanding of the principles of stellar interferometry to students starting an astronomical research project in this field or to develop instruments and to astronomers using interferometry but who are not interferometrists per se. Illustrated by excellent drawings and calculated graphs the imaging process in stellar interferometers is explained starting from first principles on light propagation and diffraction wave propagation through turbulence is described in detail using Kolmogorov statistics the impact of turbulence on the imaging process is discussed both f...

  16. LISA Long-Arm Interferometry (United States)

    Thorpe, James I.


    An overview of LISA Long-Arm Interferometry is presented. The contents include: 1) LISA Interferometry; 2) Constellation Design; 3) Telescope Design; 4) Constellation Acquisition; 5) Mechanisms; 6) Optical Bench Design; 7) Phase Measurement Subsystem; 8) Phasemeter Demonstration; 9) Time Delay Interferometry; 10) TDI Limitations; 11) Active Frequency Stabilization; 12) Spacecraft Level Stabilization; 13) Arm-Locking; and 14) Embarassment of Riches.

  17. Simultaneous Immersion Mirau Interferometry (United States)

    Lyulko, Oleksandra

    The present work describes a novel imaging technique for label-free no-UV vibration-insensitive imaging of live cells in an epi-illumination geometry. This technique can be implemented in a variety of imaging applications. For example, it can be used for cell targeting as a part of a platform for targeted cell irradiations - single-cell microbeam. The goal of microbeam facilities is to provide biological researchers with tools to study the effects of ionizing radiation on live cells. A common way of cell labeling - fluorescent staining - may alter cellular metabolism and UV illumination presents potential damage for the genetic material. The new imaging technique will allow the researchers to separate radiation-induced effects from the effects caused by confounding factors like fluorescent staining or UV light. Geometry of irradiation endstations at some microbeam facilities precludes the use of transmitted light, e.g. in the Columbia University's Radiological Research Accelerator Facility microbeam endstation, where the ion beam exit window is located just below the sample. Imaging techniques used at such endstations must use epi-illumination. Mirau Interferometry is an epi-illumination, non-stain imaging modality suitable for implementation at a microbeam endstation. To facilitate interferometry and to maintain cell viability, it is desirable that cells stay in cell growth medium during the course of an experiment. To accommodate the use of medium, Immersion Mirau Interferometry has been developed. A custom attachment for a microscope objective has been designed and built for interferometric imaging with the possibility of immersion of the apparatus into cell medium. The implemented data collection algorithm is based on the principles of Phase-Shifting Interferometry. The largest limitation of Phase-Shifting Interferometry is its sensitivity to the vertical position of the sample. In environments where vibration isolation is difficult, this makes image

  18. Iterative supervirtual refraction interferometry

    KAUST Repository

    Al-Hagan, Ola


    In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.

  19. Parsimonious Surface Wave Interferometry

    KAUST Repository

    Li, Jing


    To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.

  20. Scope of neutron interferometry

    International Nuclear Information System (INIS)

    Rauch, H.


    This paper deals with the interferometry of well separated coherent beams, where the phase of the beams can be manipulated individually. The basic equation of the dynamical neutron diffraction theory are recalled. The various contributions to the interaction of as low neutron with its surroundings are discussed: the various terms denote the nuclear, magnetic, electromagnetic, intrinsic, gravitational, and weak interaction respectively. Applications to nuclear physics, fundamental physics and solid state physics are successively envisaged

  1. Coal fire interferometry

    International Nuclear Information System (INIS)

    Van Genderen, J.L.; Prakash, A.; Gens, R.; Van Veen, B.; Liding, Chen; Tao, Tang Xiao; Feng, Guan


    This BCRS project demonstrates the use of SAR interferometry for measuring and monitoring land subsidence caused by underground coal fires and underground mining in a remote area of north west China. China is the largest producer and consumer of coal in the world. Throughout the N.W., N. and N.E. of China, the coal-seams are very susceptible to spontaneous combustion, causing underground coal fires. As the thick coal seams are burned out, the overburden collapses, causing land subsidence, and producing new cracks and fissures, which allow more air to penetrate and continue the fire to spread. SAR interferometry, especially differential interferometry has been shown to be able to measure small differences in surface height caused by such land subsidence. This report describes the problems, the test area, the procedures and techniques used and the results obtained. It concludes with a description of some of the problems encountered during the project plus provides some general conclusions and recommendations. 127 refs

  2. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    CERN Multimedia

    Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Turbabin, A; Castelli, F; Testera, G; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Nesteruk, K P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  3. Basics of interferometry

    CERN Document Server

    Hariharan, P


    This book is for those who have some knowledge of optics, but little or no previous experience in interferometry. Accordingly, the carefully designed presentation helps readers easily find and assimilate the interferometric techniques they need for precision measurements. Mathematics is held to a minimum, and the topics covered are also summarized in capsule overviews at the beginning and end of each chapter. Each chapter also contains a set of worked problems that give a feel for numbers.The first five chapters present a clear tutorial review of fundamentals. Chapters six and seven discus

  4. Non-contact fluid characterization in containers using ultrasonic waves (United States)

    Sinha, Dipen N [Los Alamos, NM


    Apparatus and method for non-contact (stand-off) ultrasonic determination of certain characteristics of fluids in containers or pipes are described. A combination of swept frequency acoustic interferometry (SFAI), wide-bandwidth, air-coupled acoustic transducers, narrowband frequency data acquisition, and data conversion from the frequency domain to the time domain, if required, permits meaningful information to be extracted from such fluids.

  5. Time-Delay Interferometry

    Directory of Open Access Journals (Sweden)

    Massimo Tinto


    Full Text Available Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI. This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.

  6. Complex master slave interferometry. (United States)

    Rivet, Sylvain; Maria, Michael; Bradu, Adrian; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian


    A general theoretical model is developed to improve the novel Spectral Domain Interferometry method denoted as Master/Slave (MS) Interferometry. In this model, two functions, g and h are introduced to describe the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time and due to dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MS method. A first improvement consists in reducing the number of channeled spectra necessary to be collected at Master stage. In previous MSI implementation, the number of channeled spectra at the Master stage equated the number of depths where information was selected from at the Slave stage. The paper demonstrates that two experimental channeled spectra only acquired at Master stage suffice to produce A-scans from any number of resolved depths at the Slave stage. A second improvement is the utilization of complex signal processing. Previous MSI implementations discarded the phase. Complex processing of the electrical signal determined by the channeled spectrum allows phase processing that opens several novel avenues. A first consequence of such signal processing is reduction in the random component of the phase without affecting the axial resolution. In previous MSI implementations, phase instabilities were reduced by an average over the wavenumber that led to reduction in the axial resolution.

  7. Preliminary interferometry measurements of a flow field around fluttering NACA0015 profile

    Czech Academy of Sciences Publication Activity Database

    Vlček, Václav; Kozánek, Jan


    Roč. 56, č. 4 (2011), s. 379-387 ISSN 0001-7043 R&D Projects: GA ČR GA101/09/1522 Institutional research plan: CEZ:AV0Z20760514 Keywords : self-excited vibration * airfoil * aerodynamic tunnel * interferometry Subject RIV: BI - Acoustics

  8. Parsimonious refraction interferometry

    KAUST Repository

    Hanafy, Sherif


    We present parsimonious refraction interferometry where a densely populated refraction data set can be obtained from just two shot gathers. The assumptions are that the first arrivals are comprised of head waves and direct waves, and a pair of reciprocal shot gathers is recorded over the line of interest. The refraction traveltimes from these reciprocal shot gathers can be picked and decomposed into O(N2) refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. This enormous increase in the number of virtual traveltime picks and associated rays, compared to the 2N traveltimes from the two reciprocal shot gathers, allows for increased model resolution and better condition numbers in the normal equations. Also, a reciprocal survey is far less time consuming than a standard refraction survey with a dense distribution of sources.

  9. High Annular Resolution Stellar Interferometry. (United States)


    Double- Scar Interferometry and l:s Lessons Astrophys. and Space Sci. 11, 13-19 (1971) Finsen, W. S. Interferometer Observation of Binary Stars Astron. J...Interferometry Sky and Telescope 53, 346-350 (1977) McAlister, H. A. Speckle Interferometric Measurements of Binary Scars IV Astrophys. J. 230, 497-501...Ergebn. Exacten. Naturwiss. 10, 84-96 (1931) Pease, F.G. The Fifty-foot rnterferometer Telescope Armour Engineer, , 125-130 (1925) Perrier, C. An

  10. Phase referencing in optical interferometry


    Filho, Mercedes E; Garcia, Paulo; Duvert, Gilles; Duchene, Gaspard; Thiebaut, Eric; Young, John; Absil, Olivier; Berger, Jean-Phillipe; Beckert, Thomas; Hoenig, Sebastian; Schertl, Dieter; Weigelt, Gerd; Testi, Leonardo; Tatuli, Eric; Borkowski, Virginie


    One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce...

  11. Extreme ultraviolet interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics


    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for the measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources

  12. Shaken Lattice Interferometry (United States)

    Weidner, Carrie; Yu, Hoon; Anderson, Dana


    This work introduces a method to perform interferometry using atoms trapped in an optical lattice. Starting at t = 0 with atoms in the ground state of a lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , we show that it is possible to transform from one atomic wavefunction to another by a prescribed shaking of the lattice, i.e., by an appropriately tailored time-dependent phase shift ϕ(t) . In particular, the standard interferometer sequence of beam splitting, propagation, reflection, reverse propagation, and recombination can be achieved via a set of phase modulation operations {ϕj(t) } . Each ϕj(t) is determined using a learning algorithm, and the split-step method calculates the wavefunction dynamics. We have numerically demonstrated an interferometer in which the shaken wavefunctions match the target states to better than 1 % . We carried out learning using a genetic algorithm and optimal control techniques. The atoms remain trapped in the lattice throughout the full interferometer sequence. Thus, the approach may be suitable for use in an dynamic environment. In addition to the general principles, we discuss aspects of the experimental implementation. Supported by the Office of Naval Research (ONR) and Northrop Grumman.

  13. Preview of Blackbeard interferometry (United States)

    Carter, M. J.

    Blackbeard is a broadband VHF measurement satellite experiment designed and built by the Space Science and Technology Division of the Los Alamos National Laboratory. Blackbeard is a piggy-back experiment on the ALEXIS satellite to be launched into a 70 degree inclination orbit at an altitude of 750 km. The satellite experimental operation and data retrieval are controlled through a telemetry link from the Satellite Operations Center (SOC) located at Los Alamos, NM. The primary experimental objectives of Blackbeard are three-fold: (1) Study the dispersion of broad-band impulsive electromagnetic signals -- in particular, the higher-order amplitude and phase distortion due to propagation through the ionosphere. These depend on ionospheric conditions and irregularities. (2) Utilize RF interferometry and scintillation techniques in the low VHF-band to determine the size and extent of ionospheric irregularities and wave structure -- both natural and artificially induced. This narrow-band data will be used to categorize the ionospheric media as undisturbed, oscillatory, or turbulent. These parameters will then be input into transfer function simulations for broad-band propagation and compared with broad-band propagation data from Blackbeard. (3) Survey and characterize background noise in the VHF-band-consisting of (1) cataloging broadcast amplitudes and signatures and mapping their global pattern, and (2) cataloging the signatures of lightning events. Also, correlate emissions in the visible and VHF bands in an attempt to confirm broad-band RF emissions assumed to be associated with lightning.

  14. Landau-Zener-Stueckelberg interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, S.N., E-mail: sshevchenko@ilt.kharkov.u [B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov (Ukraine); RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Ashhab, S.; Nori, Franco [RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Department of Physics, The University of Michigan, Ann Arbor, MI (United States)


    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.

  15. Phase estimation in optical interferometry

    CERN Document Server

    Rastogi, Pramod


    Phase Estimation in Optical Interferometry covers the essentials of phase-stepping algorithms used in interferometry and pseudointerferometric techniques. It presents the basic concepts and mathematics needed for understanding the phase estimation methods in use today. The first four chapters focus on phase retrieval from image transforms using a single frame. The next several chapters examine the local environment of a fringe pattern, give a broad picture of the phase estimation approach based on local polynomial phase modeling, cover temporal high-resolution phase evaluation methods, and pre

  16. Speckle fields in holographic interferometry (United States)

    Lockshin, Gennady R.; Kozel, Stanislav M.; Bielonuchkin, V. E.


    The objects which are investigated which are investigated with the help of the holographic interferometry methods as a rule scatter light diffusely, therefore the two-expositional hologram reconstructs the result of interference of the speckle-fields f ('4 and f() scattered by th object at the initial (1) and final (2) states.

  17. Architectural acoustics

    National Research Council Canada - National Science Library

    Long, Marshall


    .... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...

  18. Diversity of biomedical applications of acoustic radiation force. (United States)

    Sarvazyan, Armen


    This manuscript is a summary of the paper presented at the ICU'2009 on biomedical applications of acoustic radiation force with emphasis on emerging applications in microfluidics, biotechnology, biosensors and assessment of the skeletal system. In this brief overview of current and projected applications of radiation force, no detailed description of the experiments illustrating particular applications are given as this would result in a far different and longer paper. Various mechanisms of acoustic radiation force generations and their biomedical applications are considered. These mechanisms include: (a) change in the density of energy of the propagating wave due to absorption and scattering; (b) spatial variations of energy density in standing acoustic waves; (c) reflection from inclusions, walls or other interfaces; and (d) spatial variations in propagation velocity. The widest area of biomedical applications of radiation force is related to medical diagnostics, to assessing viscoelastic properties of biological tissues and fluids, and specifically to elasticity imaging. Another actively explored area is related to manipulation of biological cells and particles in standing ultrasonic wave fields. There are several poorly explored areas of potential biomedical applications of ultrasound radiation force. A promising area of biomedical application of ultrasound radiation force is stirring and mixing of microvolumes of liquids in microfluidics and in various biotechnological application where diffusion rate is the main factor limiting the efficiency of the process of interest. A new technique, called "swept frequency method", based on the use of radiation force in the standing acoustic wave for microstirring of liquids is described. The potential applications of the ultrasound radiation force for assessment of skeletal system, where conventional bone ultrasonometry are inapplicable are considered.

  19. Precision Geodesy via Radio Interferometry. (United States)

    Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F


    Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.

  20. Angular-domain scattering interferometry. (United States)

    Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J


    We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.

  1. Radar interferometry persistent scatterer technique

    CERN Document Server

    Kampes, Bert M


    This volume is devoted to the Persistent Scatterer Technique, the latest development in radar interferometric data processing. It is the only book on Permanent Scatterer (PS) technique of radar interferometry, and it details a newly developed stochastic model and estimator algorithm to cope with possible problems for the application of the PS technique. The STUN (spatio-temporal unwrapping network) algorithm, developed to cope with these issues in a robust way, is presented and applied to two test sites.

  2. Holographic interferometry in construction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hartikainen, T.


    In this work techniques for visualizing phase and opaque objects by ruby laser interferometry are introduced. A leakage flow as a phase object is studied by holographic interferometry and the intensity distribution of the interferograms presenting the leakage flow are computer-simulated. A qualitative and quantitative analysis of the leakage flow is made. The analysis is based on the experimental and theoretical results presented in this work. The holographic setup and the double pass method for visualizing leakage flow are explained. A vibrating iron plate is the opaque object. Transient impact waves are generated by a pistol bullet on the iron plate and visualized by holographic interferometry. An apparatus with the capability of detecting and calculating the delays necessary for laser triggering is introduced. A time series of interferograms presenting elastic wave formation in an iron plate is shown. A computer-simulation of the intensity distributions of these interferograms is made. An analysis based on the computer-simulation and the experimental data of the transient elastic wave is carried out and the results are presented. (author)

  3. Holographic interferometry of high pressure

    International Nuclear Information System (INIS)

    McIlwain, M.E.


    Measurements in turbulent flows have been historically performed using various types of probes and optical diagnostic methods. In general, probes suffer from plasma perturbation effects and are single point determination methods. Optical methods appear to be better suited to determinations in turbulent flows, however interpretation of the resulting data can often be complex. Methods such as laser Doppler anemometry, which relies on entrained particles, suffers from the fact that particles small enough to be swept along by the plasma are usually melted or sublimed in the plasma. Light refraction or diffraction methods such as shadow photography, interferometry, and holography have also been used to observe plasma flows. These methods typically suffer from the difficulty of interpreting line of sight images and obtaining quantitative data. A new method based on multi-pass holographic interferometry will be discussed. This method has certain advantages which can significantly simplify the complexity of line of sight interferometry image deconvolution. When the method employs high speed cinematography, time resolved images of the plasma flow can be obtained. This method has been applied to both transferred and non-transferred arcs and various types of DC-plasma torch produced jets. These studies and conclusions as to the usefulness of the technique are presented

  4. Conoscopic interferometry of wafers for surface-acoustic wave devices


    Äyräs, Pekka; Friberg, Ari T.; Kaivola, Matti; Salomaa, Martti M.


    We show that in interpreting the conoscopic interference fringes, one should exercise care in employing approximate expressions which fail for certain crystal cuts. In this paper, we study 64°- and 128°-rotated Y-cut and Z-cut LiNbO3 wafers. We show that the error made in using the approximate formulae for the samples is more than 25% and that one has to use exact formulae in order to attain quantitative agreement with the experimental data. Peer reviewed

  5. Detection of Suspicious Mass on Structures by Acoustical Waves

    Czech Academy of Sciences Publication Activity Database

    Trnka, Jan; Stoklasová, Pavla; Norris, C.S.P.


    Roč. 36, č. 3 (2012), s. 14-21 ISSN 0732-8818 R&D Projects: GA ČR GA101/07/0588 Institutional support: RVO:61388998 Keywords : pulse holointerferometry * pulse electronic speckle patterns interferometry * laser vibrometry * lamb waves Subject RIV: BI - Acoustics Impact factor: 0.378, year: 2012

  6. CURIE: Cubesat Radio Interferometry Experiment (United States)

    Sundkvist, D. J.; Saint-Hilaire, P.; Bain, H. M.; Bale, S. D.; Bonnell, J. W.; Hurford, G. J.; Maruca, B.; Martinez Oliveros, J. C.; Pulupa, M.


    The CUbesat Radio Interferometry Experiment (CURIE) is a proposed two-element radio interferometer, based on proven and developed digital radio receivers and designed to fit within a Cubesat platform. CURIE will launch as a 6U Cubesat and then separate into two 3U Cubesats once in orbit. CURIE measures radio waves from 0.1-19MHz, which must be measured from space, as those frequencies fall below the cutoff imposed by Earth's ionosphere. The principal science objective for CURIE is to use radio interferometry to study radio burst emissions from solar eruptive events such as flares and coronal mass ejections (CMEs) in the inner heliosphere, providing observations important for our understanding of the heliospheric space weather environment. The influence of space weather can be felt at Earth and other planets, as radiation levels increase and lead to auroral activity and geomagnetic effects. CURIE will be able to determine the location and size of radio burst source regions and then to track their movement outward from the Sun. In addition to the primary objective CURIE will measure the gradients of the local ionospheric density and electron temperature on the spatial scale of a few kilometers, as well as create an improved map of the radio sky at these unexplored frequencies. A space based radio interferometry observatory has long been envisioned, in orbit around the Earth or the Moon, or on the far side of the Moon. Beyond its important science objectives, CURIE will prove that the concept of a dedicated space-based interferometer can be realized by using relatively cheap Cubesats. CURIE will therefore not only provide new important science results but also serve as a pathfinder in the development of new space-based radio observation techniques for helio- and astro-physics.

  7. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  8. Mechanical Strain Measurement from Coda Wave Interferometry (United States)

    Azzola, J.; Schmittbuhl, J.; Zigone, D.; Masson, F.; Magnenet, V.


    Coda Wave Interferometry (CWI) aims at tracking small changes in solid materials like rocks where elastic waves are diffusing. They are intensively sampling the medium, making the technique much more sensitive than those relying on direct wave arrivals. Application of CWI to ambient seismic noise has found a large range of applications over the past years like for multiscale imaging but also for monitoring complex structures such as regional faults or reservoirs (Lehujeur et al., 2015). Physically, observed changes are typically interpreted as small variations of seismic velocities. However, this interpretation remains questionable. Here, a specific focus is put on the influence of the elastic deformation of the medium on CWI measurements. The goal of the present work is to show from a direct numerical and experimental modeling that deformation signal also exists in CWI measurements which might provide new outcomes for the technique.For this purpose, we model seismic wave propagation within a diffusive medium using a spectral element approach (SPECFEM2D) during an elastic deformation of the medium. The mechanical behavior is obtained from a finite element approach (Code ASTER) keeping the mesh grid of the sample constant during the whole procedure to limit numerical artifacts. The CWI of the late wave arrivals in the synthetic seismograms is performed using both a stretching technique in the time domain and a frequency cross-correlation method. Both show that the elastic deformation of the scatters is fully correlated with time shifts of the CWI differently from an acoustoelastic effect. As an illustration, the modeled sample is chosen as an effective medium aiming to mechanically and acoustically reproduce a typical granitic reservoir rock.Our numerical approach is compared to experimental results where multi-scattering of an acoustic wave through a perforated loaded Au4G (Dural) plate is performed at laboratory scale. Experimental and numerical results of the

  9. Acoustic telemetry (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...

  10. Attosecond electron wave packet interferometry

    International Nuclear Information System (INIS)

    Remetter, T.; Ruchon, T.; Johnsson, P.; Varju, K.; Gustafsson, E.


    Complete test of publication follows. The well controlled generation and characterization of attosecond XUV light pulses provide an unprecedented tool to study electron wave packets (EWPs). Here a train of attosecond pulses is used to create and study the phase of an EWP in momentum space. There is a clear analogy between electronic wave functions and optical fields. In optics, methods like SPIDER or wave front shearing interferometry, allow to measure the spectral or spatial phase of a light wave. These two methods are based on the same principle: an interferogram is produced when recombining two sheared replica of a light pulse, spectrally (SPIDER) or spatially (wave front shearing interferometry). This enables the comparison of two neighbouring different spectral or spatial slices of the original wave packet. In the experiment, a train of attosecond pulses is focused in an Argon atomic gas jet. EWPs are produced from the single XUV photon ionization of Argon atoms. If an IR beam is synchronized to the EWPs, it is possible to introduce a shear in momentum space between two consecutive s wave packets. A Velocity Map Imaging Spectrometer (VMIS) enables us to detect the interference pattern. An analysis of the interferograms will be presented leading to a conclusion about the symmetry of the studied wave packet.

  11. Two particle interferometry at RHIC

    CERN Document Server

    Laue, F


    We present preliminary results from a pion interferometry analysis of Au+Au collisions at square root (S/sub NN/)=130 GeV, recorded with the STAR (Solenoidal Tracker At RHIC) detector at the Relativistic Heavy Ion Collider (RHIC). The evaluation of three-dimensional correlation functions indicates increasing source sizes with increasing event centrality. The dependence of the calculated HBT radii on transverse momentum is attributed to strong space-momentum correlations (transverse flow). In the study presented in this paper we have not observed anomalously large source sizes as have been predicted as a signal for quark-qluon plasma formation. However, the measured HBT radii seem to follow the trend established at lower energies (AGS/SPS). We find the ratio R/sub o//R/sub s/ approximately =1, suggesting a short duration of pion emission. The "universal" pion phase space density, observed at AGS/SPS, seems to hold also at RHIC. (26 refs).

  12. Synthetic aperture interferometry: error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Amiya; Coupland, Jeremy


    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  13. Synthetic aperture interferometry: error analysis

    International Nuclear Information System (INIS)

    Biswas, Amiya; Coupland, Jeremy


    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  14. New developments in NDT through electronic speckle pattern interferometry

    International Nuclear Information System (INIS)

    Mohan, S.; Murugesan, P; Mas, R.H.


    Full text: Optical holography and speckle interferometry are the emerging optical techniques that can be used for the measurements of microscopic parameters such as displacement, strain, stress and slope. These techniques are applied in various fields such as surface studies, non destructive testing, speckle metrology and steller interferometry. Even though many new NDT methods are available, the suitability for a specific application is based on the material property, nature of defects and sensitivity of detection. Difficulty in radiographic technique is that it fails in detecting tight cracks, planar defects and debonds. Microwave techniques has limited sensitivity for the defect detection and it is not suitable for the objects with metallic cases since the metals are perfect reflectors for the microwaves. Low modulus material attenuates the acoustic energy completely, making ultrasonic testing techniques not feasible. The recently evolved optoelectronic technique namely Electronic Speckle Pattern interferometry (ESPI) is a fast developing optical technique widely used for measuring displacement components, their derivatives, surface roughness, surface contours, shape and others. Due to non contact nature and high sensitivity, this technique has been used as a powerful on line inspection tool for non destructive pattern of materials in industrial environment. The salient feature of ESPI is its capability to display the correlation fringes in a real time on a monitor without the need of photographic processing or optical filtering. ESPI is an alternate non destructive technique suitable for propellant grains and other low modulus materials used in space vehicle systems. The optoelectronic technique can be used to detect cracks, voids and residual stresses etc.., in the components in the industrial environment. In the present investigation, speckle non destructive testing has been carried out on some selected low modulus materials used in space vehicles. The

  15. Acoustic cloaking and transformation acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)


    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  16. Some applications of holographic interferometry in biomechanics (United States)

    Ebbeni, Jean P. L.


    Holographic interferometry is well adapted for the determination of 2D strain fields in osseous structures. The knowledge of those strain fields is important for the understanding of structure behavior such as arthrosis.

  17. Space Interferometry Mission Instrument Mechanical Layout (United States)

    Aaron, K.; Stubbs, D.; Kroening, K.


    The Space Interferometry Mission, planned for launch in 2006, will measure the positions of celestial objects to an unprecedented accuracy of 4x10 to the power of negative six arc (about 1 billionth of a degree).

  18. High-contrast Nulling Interferometry Techniques Project (United States)

    National Aeronautics and Space Administration — "We are developing rotating-baseline nulling-interferometry techniques and algorithms on the single-aperture Hale and Keck telescopes at near-infrared wavelengths,...

  19. Fundamental physics research and neutron interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, A. [Hahn-Meitner-Institut Berlin GmbH (Germany)


    The possibility of the use of an extremely sensitive neutron interferometry technique for the study of electromagnetic structure of the neutron and the parity non-conservative effects in neutron spin rotation is discussed. (author)

  20. Novel Polarimetric SAR Interferometry Algorithms, Phase II (United States)

    National Aeronautics and Space Administration — Polarimetric SAR interferometry (PolInSAR) is a recently developed synthetic aperture radar (SAR) imaging mode that combines the capabilities of radar polarimetry...

  1. Novel Polarimetric SAR Interferometry Algorithms, Phase I (United States)

    National Aeronautics and Space Administration — Polarimetric radar interferometry (PolInSAR) is a new SAR imaging mode that is rapidly becoming an important technique for bare earth topographic mapping, tree...

  2. Speckle Shearing Interferometry And Its Application (United States)

    Jingtang, Ke; Hongqing, Zhang; Yeling, He; Yanfu, Chang


    The paper deals with experiments made to verify the theory of bending of plates and related problems by method of speckle shearing interferometry, which is proved to be highly sensitive. Tests carried out on rubber products: (such as tires)and thin-walled containers have demonstrated the prospects of using image-shearing camera in nondestructive in-situ testing of industrial products, suggesting a potentiality still wider than that of holographic interferometry.

  3. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging


    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  4. An imaging interferometry capability for the EISCAT Svalbard Radar

    Directory of Open Access Journals (Sweden)

    T. Grydeland


    Full Text Available Interferometric imaging (aperture synthesis imaging is a technique used by radio astronomers to achieve angular resolution that far surpasses what is possible with a single large aperture. A similar technique has been used for radar imaging studies of equatorial ionospheric phenomena at the Jicamarca Radio Observatory. We present plans for adding an interferometric imaging capability to the EISCAT Svalbard Radar (ESR, a capability which will contribute significantly to several areas of active research, including naturally and artificially enhanced ion-acoustic echoes and their detailed relation in space and time to optical phenomena, polar mesospheric summer echoes (PMSE, and meteor studies. Interferometry using the two antennas of the ESR has demonstrated the existence of extremely narrow, field-aligned scattering structures, but having only a single baseline is a severe limitation for such studies. Building additional IS-class antennas at the ESR is not a trivial task. However, the very high scattering levels in enhanced ion-acoustic echoes and PMSE means that a passive receiver antenna of more modest gain should still be capable of detecting these echoes. In this paper we present simulations of what an imaging interferometer will be capable of observing for different antenna configurations and brightness distributions, under ideal conditions, using two different image inversion algorithms. We also discuss different antenna and receiver technologies.

  5. An imaging interferometry capability for the EISCAT Svalbard Radar

    Directory of Open Access Journals (Sweden)

    T. Grydeland


    Full Text Available Interferometric imaging (aperture synthesis imaging is a technique used by radio astronomers to achieve angular resolution that far surpasses what is possible with a single large aperture. A similar technique has been used for radar imaging studies of equatorial ionospheric phenomena at the Jicamarca Radio Observatory. We present plans for adding an interferometric imaging capability to the EISCAT Svalbard Radar (ESR, a capability which will contribute significantly to several areas of active research, including naturally and artificially enhanced ion-acoustic echoes and their detailed relation in space and time to optical phenomena, polar mesospheric summer echoes (PMSE, and meteor studies.

    Interferometry using the two antennas of the ESR has demonstrated the existence of extremely narrow, field-aligned scattering structures, but having only a single baseline is a severe limitation for such studies. Building additional IS-class antennas at the ESR is not a trivial task. However, the very high scattering levels in enhanced ion-acoustic echoes and PMSE means that a passive receiver antenna of more modest gain should still be capable of detecting these echoes.

    In this paper we present simulations of what an imaging interferometer will be capable of observing for different antenna configurations and brightness distributions, under ideal conditions, using two different image inversion algorithms. We also discuss different antenna and receiver technologies.

  6. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore


    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  7. 2. Interferometry and polarimetry. 2.1. Principle of interferometry and polarimetry

    International Nuclear Information System (INIS)

    Kawahata, Kazuo; Okajima, Shigeki


    Laser interferometry and polarimetry are useful diagnostics for measuring electron density and the internal magnetic field distribution in the plasma. In this section, principles of interferometry and polarimetry and their applications to plasma diagnostics on LHD (section 2.2) and JT-60 (section 2.3) are descried. (author)

  8. Theory of supervirtual refraction interferometry

    KAUST Repository

    Bharadwaj, Pawan


    Inverting for the subsurface velocity distribution by refraction traveltime tomography is a well-accepted imaging method by both the exploration and earthquake seismology communities. A significant drawback, however, is that the recorded traces become noisier with increasing offset from the source position, and so accurate picking of traveltimes in far-offset traces is often prevented. To enhance the signal-to-noise ratio (SNR) of the far-offset traces, we present the theory of supervirtual refraction interferometry where the SNR of far-offset head-wave arrivals can be theoretically increased by a factor proportional to; here, N is the number of receiver or source positions associated with the recording and generation of the head-wave arrival. There are two steps to this methodology: correlation and summation of the data to generate traces with virtual head-wave arrivals, followed by the convolution of the data with the virtual traces to create traces with supervirtual head-wave arrivals. This method is valid for any medium that generates head-wave arrivals recorded by the geophones. Results with both synthetic traces and field data demonstrate the feasibility of this method. There are at least four significant benefits of supervirtual interferometry: (1) an enhanced SNR of far-offset traces so the first-arrival traveltimes of the noisy far-offset traces can be more reliably picked to extend the useful aperture of the data, (2) the SNR of head waves in a trace that arrive later than the first arrival can be enhanced for accurate traveltime picking and subsequent inversion by later-arrival traveltime tomography, (3) common receiver-pair gathers can be analysed to detect the presence of diving waves in the first arrivals, which can be used to assess the nature of the refracting boundary, and (4) the source statics term is eliminated in the correlation operations so that the timing of the virtual traces is independent of the source excitation time. This suggests the

  9. Parsimonious Refraction Interferometry and Tomography

    KAUST Repository

    Hanafy, Sherif


    We present parsimonious refraction interferometry and tomography where a densely populated refraction data set can be obtained from two reciprocal and several infill shot gathers. The assumptions are that the refraction arrivals are head waves, and a pair of reciprocal shot gathers and several infill shot gathers are recorded over the line of interest. Refraction traveltimes from these shot gathers are picked and spawned into O(N2) virtual refraction traveltimes generated by N virtual sources, where N is the number of geophones in the 2D survey. The virtual traveltimes can be inverted to give the velocity tomogram. This enormous increase in the number of traveltime picks and associated rays, compared to the many fewer traveltimes from the reciprocal and infill shot gathers, allows for increased model resolution and a better condition number with the system of normal equations. A significant benefit is that the parsimonious survey and the associated traveltime picking is far less time consuming than that for a standard refraction survey with a dense distribution of sources.

  10. Spectral Interferometry with Electron Microscopes. (United States)

    Talebi, Nahid


    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential.

  11. LED driver for stroboscopic interferometry (United States)

    Paulin, T.; Heikkinen, V.; Kassamakov, I.; Hæggström, E.


    Three different types of white light emitting diodes (LEDs) and three types of single color LEDs were tested as light sources for stroboscopic scanning white light interferometry (SSWLI) for dynamic (MEMS) characterization. Short, intense, light pulses and low duty cycle (DC-10 MHz), and can drive single LEDs at 5A peak current (0.7% duty cycle at 1 MHz). The shortest measured electrical pulses were 6.2 +/- 0.1 ns FDHM. The minimum measured Full Duration at Half Maximum (FDHM) of the optical pulse was 8.4 +/- 0.1 ns using nonphosphor white LED and 32.1 +/- 0.1 ns using white phosphor-converted LED (0.7 % duty cycle at 1 MHz in both cases). The minimum optical pulse FDHM for a single color blue/green LED was 6.4 +/- 0.1 ns. The maximum intensity of these pulses was 630 +/- 40 μW and 540 +/- 30 μW, respectively. All types of white LEDs could be used for stroboscopic SWLI measurements at frequencies up to 2 MHz. For higher frequencies, non-phosphor white LEDs must be used together with a cyan LED to avoid ringing in the SWLI interferogram.

  12. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M


    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  13. Non-contact angle measurement based on parallel multiplex laser feedback interferometry

    International Nuclear Information System (INIS)

    Zhang Song; Tan Yi-Dong; Zhang Shu-Lian


    We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non-cooperative targets. Experimental results show that PLFI has an accuracy of 8″ within a range of 1400″. The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Astronomical optical interferometry, I: Methods and instrumentation

    Directory of Open Access Journals (Sweden)

    Jankov S.


    Full Text Available Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas resolution and astrometry with micro-arcsecond (µas precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are discussed as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers. Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  15. Wide band interferometry for thickness measurement (United States)

    Costantino, Santiago; Martinez, Oscar E.; Torga, Jorge R.


    In this work we present the concept of wide band interferometry as opposed to white-light interferometry to introduce a thickness measurement method that gains precision when the bandwidth is reduced to an adequate compromise in order to avoid the distortions arising from the material dispersion. The use of the widest possible band is a well established dogma when the highest resolution is desired in distance measurements with white-light interferometry. We will show that the dogma falls when thickness measurements must be carried out due to material dispersion. In fact the precise knowledge of the frequency dependence of the refractive index is essential for adequate thickness retrieval from the optical experiments. The device we present is also useful to obtain the group refractive index that is necessary to calculate the absolute thickness value. As an example, we show the spreading of a silicone oil on a reference surface in real time.

  16. Demonstration of X-ray talbot interferometry

    CERN Document Server

    Momose, A; Kawamoto, S; Hamaishi, Y; Takai, K; Suzuki, Y


    First Talbot interferometry in the hard X-ray region was demonstrated using a pair of transmission gratings made by forming gold stripes on glass plates. By aligning the gratings on the optical axis of X-rays with a separation that caused the Talbot effect by the first grating, moire fringes were produced inclining one grating slightly against the other around the optical axis. A phase object placed in front of the first grating was detected by moire-fringe bending. Using the technique of phase-shifting interferometry, the differential phase corresponding to the phase object could also be measured. This result suggests that X-ray Talbot interferometry is a novel and simple method for phase-sensitive X-ray radiography. (author)

  17. Moire interferometry at high temperatures (United States)

    Wu, Jau-Je


    The objective of this study was to provide an optical technique allowing full-field in-plane deformation measurements at high temperature by using high-sensitivity moire interferometry. This was achieved by a new approach of performing deformation measurements at high temperatures in a vacuum oven using an achromatic interferometer. The moire system setup was designed with particular consideration for the stability, compactness, flexibility, and ease of control. A vacuum testing environment was provided to minimize the instability of the patterns by protecting the optical instruments from the thermal convection currents. Also, a preparation procedure for the high-temperature specimen grating was developed with the use of the plasma-etched technique. Gold was used as a metallic layer in this procedure. This method was demonstrated on a ceramic block, metal/matrix composite, and quartz. Thermal deformation of a quartz specimen was successfully measured in vacuum at 980 degrees Celsius, with the sensitivity of 417 nm per fringe. The stable and well-defined interference patterns confirmed the feasibility of the developments, including the high-temperature moire system and high-temperature specimen grating. The moire system was demonstrated to be vibration-insensitive. Also, the contrast of interference fringes at high temperature was enhanced by means of a spatial filter and a narrow band interference filter to minimize the background noise from the flow of the specimen and heater. The system was verified by a free thermal expansion test of an aluminum block. Good agreement demonstrated the validity of the optical design. The measurements of thermal deformation mismatch were performed on a graphite/epoxy composite, a metal/matrix composite equipped with an optical fiber, and a cutting tool bit. A high-resolution data-reduction technique was used to measure the strain distribution of the cutting tool bit.

  18. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju


    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  19. Acoustic Neuroma (United States)

    ... a team composed of neurosurgeons, radiation oncologists, medical physicists and a nursing staff. Specialists in neuroimaging join ... Even though most acoustic neuromas arise from the balance nerve (and not from the adjacent hearing nerve), ...

  20. Acoustic neuroma (United States)

    ... Medical Professional Call your provider if you have: Hearing loss that is sudden or getting worse Ringing in one ear Dizziness (vertigo) Alternative Names Vestibular schwannoma; Tumor - acoustic; ... Patient Instructions Brain surgery - discharge ...

  1. Acoustics Research (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  2. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki


    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  3. Room Acoustics (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  4. Cold neutron interferometry and its application. 2. Coherency and cold neutron spin interferometry

    International Nuclear Information System (INIS)

    Achiwa, Norio; Ebisawa, Toru


    The second workshop entitled 'Interference studies and cold neutron spin interferometry' was held on 10 and 11 March 1998 at KUR (Kyoto University Research Reactor Institute, Kumatori). Cold neutron spin interferometry is a new field. So it is very important for its development to learn the studies of X-ray and neutron optics which are rapidly developing with long history. In the workshop, the issues related to interference were reviewed such as experimental studies on cold neutron spin interferometry, theoretical and experimental approach on tunneling time, interference experiments by neutrons and its application, interference studies using synchrotron radiation, topics on silicon interferometry and quantum measurement problem and cold neutron interference experiment related to quantum measurement problem. The 8 of the presented papers are indexed individually. (J.P.N.)

  5. Precision measurements with atom interferometry (United States)

    Schubert, Christian; Abend, Sven; Schlippert, Dennis; Ertmer, Wolfgang; Rasel, Ernst M.


    Interferometry with matter waves enables precise measurements of rotations, accelerations, and differential accelerations [1-5]. This is exploited for determining fundamental constants [2], in fundamental science as e.g. testing the universality of free fall [3], and is applied for gravimetry [4], and gravity gradiometry [2,5]. At the Institut für Quantenoptik in Hannover, different approaches are pursued. A large scale device is designed and currently being set up to investigate the gain in precision for gravimetry, gradiometry, and fundamental tests on large baselines [6]. For field applications, a compact and transportable device is being developed. Its key feature is an atom chip source providing a collimated high flux of atoms which is expected to mitigate systematic uncertainties [7,8]. The atom chip technology and miniaturization benefits from microgravity experiments in the drop tower in Bremen and sounding rocket experiments [8,9] which act as pathfinders for space borne operation [10]. This contribution will report about our recent results. The presented work is supported by the CRC 1227 DQ-mat, the CRC 1128 geo-Q, the RTG 1729, the QUEST-LFS, and by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557. [1] P. Berg et al., Phys. Rev. Lett., 114, 063002, 2015; I. Dutta et al., Phys. Rev. Lett., 116, 183003, 2016. [2] J. B. Fixler et al., Science 315, 74 (2007); G. Rosi et al., Nature 510, 518, 2014. [3] D. Schlippert et al., Phys. Rev. Lett., 112, 203002, 2014. [4] A. Peters et al., Nature 400, 849, 1999; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016. [5] J. M. McGuirk et al., Phys. Rev. A 65, 033608, 2002; P. Asenbaum et al., arXiv:1610.03832. [6] J. Hartwig et al., New J. Phys. 17, 035011, 2015. [7] H. Ahlers et al., Phys. Rev. Lett. 116, 173601

  6. Astronomical Optical Interferometry. I. Methods and Instrumentation

    Directory of Open Access Journals (Sweden)

    Jankov, S.


    Full Text Available Previous decade has seen an achievement of large interferometricprojects including 8-10m telescopes and 100m class baselines. Modern computerand control technology has enabled the interferometric combination of lightfrom separate telescopes also in the visible and infrared regimes. Imagingwith milli-arcsecond (mas resolution and astrometry with micro-arcsecond($mu$as precision have thus become reality. Here, I review the methods andinstrumentation corresponding to the current state in the field ofastronomical optical interferometry. First, this review summarizes thedevelopment from the pioneering works of Fizeau and Michelson. Next, thefundamental observables are described, followed by the discussion of the basicdesign principles of modern interferometers. The basic interferometrictechniques such as speckle and aperture masking interferometry, aperture synthesisand nulling interferometry are disscused as well. Using the experience ofpast and existing facilities to illustrate important points, I considerparticularly the new generation of large interferometers that has beenrecently commissioned (most notably, the CHARA, Keck, VLT and LBTInterferometers. Finally, I discuss the longer-term future of opticalinterferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  7. Seismic interferometry-turning noise into signal

    NARCIS (Netherlands)

    Curtis, A.; Gerstoft, P.; Sato, H.; Snieder, R.; Wapenaar, C.P.A.


    Turning noise into useful data—every geophysicist's dream? And now it seems possible. The field of seismic interferometry has at its foundation a shift in the way we think about the parts of the signal that are currently filtered out of most analyses—complicated seismic codas (the multiply scattered

  8. Monitoring civil infrastructure using satellite radar interferometry

    NARCIS (Netherlands)

    Chang, L.


    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new,

  9. Photopolymer for Optical Holography and Holographic Interferometry

    Czech Academy of Sciences Publication Activity Database

    Květoň, M.; Lédl, Vít; Havránek, A.; Fiala, P.


    Roč. 295, č. 1 (2010), s. 107-113 ISSN 1022-1360 Institutional research plan: CEZ:AV0Z20430508 Keywords : holographic interferometry * holography * photopolymerization * recording material * refractive index Subject RIV: BH - Optics, Masers, Lasers

  10. Future Looks Bright for Interferometry (United States)


    First Light for the PRIMA instrument The PRIMA instrument [1] of the ESO Very Large Telescope Interferometer (VLTI) recently saw "first light" at its new home atop Cerro Paranal in Chile. When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and enable astrometric precision unmatched by any other existing astronomical facility. PRIMA will be a unique tool for the detection of exoplanets. First Light of the PRIMA Instrument ESO PR Photo 29a/08 Preparing for PRIMA "PRIMA is specifically designed to see if one star 'wobbles' to and fro because it is has unseen planetary companions", says instrument scientist Gerard van Belle. "This allows us to not only detect exoplanets, but to measure their mass." PRIMA's expected astrometric precision of tens of micro-arcseconds is unmatched by any other existing astronomical facility, whether on the ground or in orbit [2]. In addition to taking astrometric measurements PRIMA will be the key to the imaging of faint sources with the VLTI using the science instruments AMBER and MIDI. Interferometry combines the light received by two or more telescopes, concentrating on tiny differences between the signals to measure angles with exquisite precision. Using this technique PRIMA can pick out details as sharply as a single telescope with a diameter equivalent to the largest distance between the telescopes. For the VLTI, the distance between the two telescope elements is about 200 metres. The PRIMA instrument is unique amongst the VLTI instruments, in that it is effectively two interferometers in one. PRIMA will take data from two sources on the sky simultaneously: the brighter source can be used for tracking, allowing the interferometer to "stare" at the fainter source for longer than is now possible with conventional interferometers. Although there have been earlier pathfinder experiments to test this technique, PRIMA represents the first facility

  11. Acoustic emission

    International Nuclear Information System (INIS)

    Straus, A.; Lopez Pumarega, M.I.; Di Gaetano, J.O.; D'Atellis, C.E.; Ruzzante, J.E.


    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  12. Acoustic emission

    Indian Academy of Sciences (India)

    3Universidade do Minho, Department Engineering Mecânica, Azurém,. 4800058 Guimar˜aes, Portugal e-mail: Abstract. Acoustic Emission (AE) has been widely used for monitoring man- ufacturing processes particularly those involving metal cutting. Monitoring the condition of the cutting tool in the ...

  13. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  14. Joint Multi-baseline SAR Interferometry

    Directory of Open Access Journals (Sweden)

    S. Tebaldini


    Full Text Available We propose a technique to provide interferometry by combining multiple images of the same area. This technique differs from the multi-baseline approach in literature as (a it exploits all the images simultaneously, (b it performs a spectral shift preprocessing to remove most of the decorrelation, and (c it exploits distributed targets. The technique is mainly intended for DEM generation at centimetric accuracy, as well as for differential interferometry. The problem is framed in the contest of single-input multiple-output (SIMO channel estimation via the cross-relations (CR technique and the resulting algorithm provides significant improvements with respect to conventional approaches based either on independent analysis of single interferograms or multi-baselines phase analysis of single pixels of current literature, for those targets that are correlated in all the images, like for long-term coherent areas, or for acquisitions taken with a short revisit time (as those gathered with future satellite constellations.

  15. Kinetic Titration Series with Biolayer Interferometry (United States)

    Frenzel, Daniel; Willbold, Dieter


    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1–42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations. PMID:25229647

  16. Optical interferometry for biology and medicine

    CERN Document Server

    Nolte, David D


    This book presents the fundamental physics of optical interferometry as applied to biophysical, biological and medical research. Interference is at the core of many types of optical detection and is a powerful probe of cellular and tissue structure in interfererence microscopy and in optical coherence tomography. It is also the root cause of speckle and other imaging artefacts that limit range and resolution. For biosensor applications, the inherent sensitivity of interferometry enables ultrasensitive detection of molecules in biological samples for medical diagnostics. In this book, emphasis is placed on the physics of light scattering, beginning with the molecular origins of refraction as light propagates through matter, and then treating the stochastic nature of random fields that ultimately dominate optical imaging in cells and tissue. The physics of partial coherence plays a central role in the text, with a focus on coherence detection techniques that allow information to be selectively detected out of ...

  17. Fabry-Perot interferometry: astronomical applications

    International Nuclear Information System (INIS)

    Pismis, P.


    Some properties of the interference of light are presented with emphasis on interferometry by means of a Fabry-Perot etalon. The application of the etalon with a focal reducer to astronomical problems is discussed related in particular to the determination of radial velocities of extended emission objects, in galactic and extragalactic nebulae. Mention is also made of the work carried out in Mexico in this field as well as of developments under way. (author)

  18. Laser interferometry for the Big Bang Observer

    International Nuclear Information System (INIS)

    Harry, Gregory M; Fritschel, Peter; Shaddock, Daniel A; Folkner, William; Phinney, E Sterl


    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme

  19. Refining molecular potentials using atom interferometry

    International Nuclear Information System (INIS)

    Forrey, R.C.; Kharchenko, V.; Dalgarno, A.; You, L.


    We present a theoretical study of the index of refraction of argon for the propagation of sodium matter waves. The sensitivity of the index of refraction to the details of the molecular potential curve is analyzed. Our calculations reveal velocity-dependent oscillations in the index of refraction that may be detectable, particularly at low temperatures, in atom interferometry measurements. A procedure for refining molecular potential curves is outlined. copyright 1997 The American Physical Society

  20. Monitoring civil infrastructure using satellite radar interferometry


    Chang, L.


    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new, with potential for operational applications, but currently not exploited to full advantage. Here we investigate how to optimally assess and monitor the structural health of civil infrastructure usi...

  1. Laser interferometry for the Big Bang Observer


    Harry, Gregory M.; Fritschel, Peter; Shaddock, Daniel A.; Folkner, William; Phinney, E. Sterl


    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.

  2. Laser interferometry for the Big Bang Observer

    Energy Technology Data Exchange (ETDEWEB)

    Harry, Gregory M [LIGO Laboratory, Massachusetts Institute of Technology, NW17-161, Cambridge, MA 02139 (United States); Fritschel, Peter [LIGO Laboratory, Massachusetts Institute of Technology, NW17-161, Cambridge, MA 02139 (United States); Shaddock, Daniel A [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Folkner, William [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Phinney, E Sterl [California Institute of Technology, Pasadena, CA 91125 (United States)


    The Big Bang Observer is a proposed space-based gravitational-wave detector intended as a follow on mission to the Laser Interferometer Space Antenna (LISA). It is designed to detect the stochastic background of gravitational waves from the early universe. We discuss how the interferometry can be arranged between three spacecraft for this mission and what research and development on key technologies are necessary to realize this scheme.

  3. Interferometry and synthesis in radio astronomy

    CERN Document Server

    Thompson, A Richard; Swenson Jr , George W


    This book is open access under a CC BY-NC 4.0 license. The third edition of this indispensable book in radio interferometry provides extensive updates to the second edition, including results and technical advances from the past decade; discussion of arrays that now span the full range of the radio part of the electromagnetic spectrum observable from the ground, 10 MHz to 1 THz; an analysis of factors that affect array speed; and an expanded discussion of digital signal-processing techniques and of scintillation phenomena and the effects of atmospheric water vapor on image distortion, among many other topics. With its comprehensiveness and detailed exposition of all aspects of the theory and practice of radio interferometry and synthesis imaging, this book has established itself as a standard reference in the field. It begins with an overview of the basic principles of radio astronomy, a short history of the development of radio interferometry, and an elementary discussion of the operation of an interferomete...

  4. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement (United States)

    Baker, John; Thorpe, Ira


    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  5. Quantum Interferometry in Phase Space Theory and Applications

    CERN Document Server

    Suda, Martin


    Quantum Interferometry in Phase Space is primarily concerned with quantum-mechanical distribution functions and their applications in quantum optics and neutron interferometry. In the first part of the book, the author describes the phase-space representation of quantum optical phenomena such as coherent and squeezed states. Applications to interferometry, e.g. in beam splitters and fiber networks, are also presented. In the second part of the book, the theoretical formalism is applied to neutron interferometry, including the dynamical theory of diffraction, coherence properties of superposed beams, and dephasing effects.

  6. Acoustic detection

    International Nuclear Information System (INIS)

    Riccobene, Giorgio


    The proposal of acoustic neutrino detection is living a renaissance: the interest in ultra high energy neutrino detection, the fast improvements of deep sea technology and the availability of large deep sea research infrastructures are the three main ingredients to explain the new interest in this technique. The status of simulation work, medium studies, sensor developments and first results from test experimental setups are presented.

  7. Acoustic Territoriality

    DEFF Research Database (Denmark)

    Kreutzfeldt, Jacob


    Under the heading of "Gang i København" a number of initiatives was presented by the Lord Mayer and the Technical and Environmental Mayer of Copenhagen in May 2006. The aim of the initiative, which roughly translates to Lively Copenhagen, was both to make Copenhagen a livelier city in terms of ci...... this article outline a few approaches to a theory of acoustic territoriality....

  8. Acoustic lenses

    International Nuclear Information System (INIS)

    Kittmer, C.A.


    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  9. Residual Stress Analysis Based on Acoustic and Optical Methods

    Directory of Open Access Journals (Sweden)

    Sanichiro Yoshida


    Full Text Available Co-application of acoustoelasticity and optical interferometry to residual stress analysis is discussed. The underlying idea is to combine the advantages of both methods. Acoustoelasticity is capable of evaluating a residual stress absolutely but it is a single point measurement. Optical interferometry is able to measure deformation yielding two-dimensional, full-field data, but it is not suitable for absolute evaluation of residual stresses. By theoretically relating the deformation data to residual stresses, and calibrating it with absolute residual stress evaluated at a reference point, it is possible to measure residual stresses quantitatively, nondestructively and two-dimensionally. The feasibility of the idea has been tested with a butt-jointed dissimilar plate specimen. A steel plate 18.5 mm wide, 50 mm long and 3.37 mm thick is braze-jointed to a cemented carbide plate of the same dimension along the 18.5 mm-side. Acoustoelasticity evaluates the elastic modulus at reference points via acoustic velocity measurement. A tensile load is applied to the specimen at a constant pulling rate in a stress range substantially lower than the yield stress. Optical interferometry measures the resulting acceleration field. Based on the theory of harmonic oscillation, the acceleration field is correlated to compressive and tensile residual stresses qualitatively. The acoustic and optical results show reasonable agreement in the compressive and tensile residual stresses, indicating the feasibility of the idea.

  10. Scanning White light interferometry: calibration and application to roughness assesment

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report refers to an experimental investigation recently completed. The aim was to gain some knowledge of the application of white light interferometry to surface metrology. The following issues were addressed by the present work: • How a white light interferometry microscope works, what...

  11. Powertrain engineering using holographic/electronic speckle pattern interferometry (United States)

    Chen, Fang; Marchi, Mitchell M.; Allen, Thomas E.


    Novel applications of computer aided holographic interferometry and electronic speckle pattern interferometry in automotive powertrain engineering are presented. Four applications are described: engine manifold/cylinder head interface deformation measurement, engine camcover strain analysis, throttle bore deformation measurement, and alternator modal characterization.

  12. Method and device for carrying out speckle interferometry

    NARCIS (Netherlands)

    Somers, P.A.A.


    Device and method for obtaining a series of interference patterns from an interferometry device, comprising processing means (21) that are connected to detection means (2) of the interferometry device (1). The processing means (21) comprise computing means (22) and memory means (23) connected to the

  13. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space (United States)

    Kohel, James M.


    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  14. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords ... patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question ...

  15. Marine Acoustic Sensor Assembly

    National Research Council Canada - National Science Library

    Ruffa, Anthony A


    A marine acoustic sensor assembly includes an acoustic panel having a forward surface and an after surface, a laser scanner oriented so as to project a laser beam onto the acoustic panel after surface...

  16. Fabry-Perot interferometry for microplasma diagnostics

    International Nuclear Information System (INIS)

    Hojo, H.; Mase, A.


    A new method for determining the electron density of a thin plasma by means of Fabry-Perot interferometry is proposed. The interferometer consists of two plasma layers and dielectric material surrounded by two plasma layers. The transmittance of electromagnetic waves across the interferometer is calculated, and Fabry-Perot resonances are demonstrated. It is shown that the electron density can be determined from the measurement of the Fabry-Perot resonance frequencies. This method can also be applied to the measurement of conduction electron density in semiconductor films

  17. Ten Years of Speckle Interferometry at SOAR (United States)

    Tokovinin, Andrei


    Since 2007, close binary and multiple stars are observed by speckle interferometry at the 4.1 m Southern Astrophysical Research (SOAR) telescope. The HRCam instrument, observing strategy and planning, data processing and calibration methods, developed and improved during ten years, are presented here in a concise way. Thousands of binary stars were measured with diffraction-limited resolution (29 mas at 540 nm wavelength) and a high accuracy reaching 1 mas; 200 new pairs or subsystems were discovered. To date, HRCam has performed over 11,000 observations with a high efficiency (up to 300 stars per night). An overview of the main results delivered by this instrument is given.

  18. Measuring Interfacial Polymerization Kinetics Using Microfluidic Interferometry. (United States)

    Nowbahar, Arash; Mansard, Vincent; Mecca, Jodi M; Paul, Mou; Arrowood, Tina; Squires, Todd M


    A range of academic and industrial fields exploit interfacial polymerization in producing fibers, capsules, and films. Although widely used, measurements of reaction kinetics remain challenging and rarely reported, due to film thinness and reaction rapidity. Here, polyamide film formation is studied using microfluidic interferometry, measuring monomer concentration profiles near the interface during the reaction. Our results reveal that the reaction is initially controlled by a reaction-diffusion boundary layer within the organic phase, which allows the first measurements of the rate constant for this system.

  19. Probing dark energy with atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare; Copeland, Edmund J. [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Hinds, E.A., E-mail:, E-mail:, E-mail: [Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)


    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  20. Probing dark energy with atom interferometry

    International Nuclear Information System (INIS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E.A.


    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry

  1. Frequency scanning interferometry for CLIC component fiducialisation

    CERN Document Server

    Kamugasa, Solomon William; Mainaud Durand, Helene; CERN. Geneva. ATS Department


    We present a strategy for the fiducialisation of CLIC’s Main Beam Quadrupole (MBQ) magnets using Frequency Scanning Interferometry (FSI). We have developed complementary device for a commercial FSI system to enable coordinate determination via multilateration. Using spherical high index glass retroreflectors with a wide acceptance angle, we optimise the geometry of measurement stations with respect to fiducials -- thus improving the precision of coordinates. We demonstrate through simulations that the 10 μm uncertainty required in the vertical and lateral axes for the fiducialisation of the MBQ can be attained using FSI multilateration.

  2. Acoustic Green's function extraction in the ocean (United States)

    Zang, Xiaoqin

    The acoustic Green's function (GF) is the key to understanding the acoustic properties of ocean environments. With knowledge of the acoustic GF, the physics of sound propagation, such as dispersion, can be analyzed; underwater communication over thousands of miles can be understood; physical properties of the ocean, including ocean temperature, ocean current speed, as well as seafloor bathymetry, can be investigated. Experimental methods of acoustic GF extraction can be categorized as active methods and passive methods. Active methods are based on employment of man-made sound sources. These active methods require less computational complexity and time, but may cause harm to marine mammals. Passive methods cost much less and do not harm marine mammals, but require more theoretical and computational work. Both methods have advantages and disadvantages that should be carefully tailored to fit the need of each specific environment and application. In this dissertation, we study one passive method, the noise interferometry method, and one active method, the inverse filter processing method, to achieve acoustic GF extraction in the ocean. The passive method of noise interferometry makes use of ambient noise to extract an approximation to the acoustic GF. In an environment with a diffusive distribution of sound sources, sound waves that pass through two hydrophones at two locations carry the information of the acoustic GF between these two locations; by listening to the long-term ambient noise signals and cross-correlating the noise data recorded at two locations, the acoustic GF emerges from the noise cross-correlation function (NCF); a coherent stack of many realizations of NCFs yields a good approximation to the acoustic GF between these two locations, with all the deterministic structures clearly exhibited in the waveform. To test the performance of noise interferometry in different types of ocean environments, two field experiments were performed and ambient noise

  3. Diffusion in solids with holographic interferometry (United States)

    Liu, Dingyu


    It is of great importance for the formation of p-n junction in semiconductors by penetrating some impurities through the depth near the surface, so it has long been paid attention to control the concentration distribution of impurities during the diffusion process. In recent years, ionic carburizing, and ion bombardment penetration etc. for the treatment of metal surface have also attracted by material sciences. It requires that the diffusion depth and the diffusion time of the impurities should be under precise control. Different methods, such as the method of radioisotopic detection and the method of chemical analysis have been adopted, however, the reports of different workers are very different, especially in the real time measurement, so, finding new method is never ending. In 1984, H. Fenichel have performed experiments on the solutions of table salt and sugar with the method of holographic interferometry. As for metals which are opaque for the visible light, but they become transparent by making them into a very thin film so that, in principle, the diffusion of atoms within a film is capable of measure by holographic interferometry. Alternatively, the electromagnetic waves within 1 - 70 micrometers wavelengths may be utilized, some materials, such as high purified germanium and silicon are good materials for infrared transmission. Some fluorides of alkaline-earth metals have high transmittance in the range of 1 - 8 micrometers , the concentration of impurities in the semiconductor and metal surface treatment are of 1015 - 1020 atoms per cubic cm, which is capable of detection.

  4. Astronomical optical interferometry, II: Astrophysical results

    Directory of Open Access Journals (Sweden)

    Jankov S.


    Full Text Available Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milliarcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at microarcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  5. Observations of binary stars by speckle interferometry

    International Nuclear Information System (INIS)

    Morgan, B.L.; Beckmann, G.K.; Scaddan, R.J.


    This is the second paper in a series describing observations of binary stars using the technique of speckle interferometry. Observations were made using the 2.5-m Isaac Newton Telescope and the 1-m telescope of the Royal Greenwich Observatory and the 1.9-m telescope of the South African Astronomical Observatory. The classical Rayleigh diffraction limits are 0.050 arcsec for the 2.5-m telescope, 0.065 arcsec for the 1.9-m telescope and 0.125 arcsec for the 1-m telescope, at a wavelength of 500 nm. The results of 29 measurements of 26 objects are presented. The objects include long period spectroscopic binaries from the 6th Catalogue of Batten, close visual binary systems from the 3rd Catalogue of Finsen and Worley and variable stars. Nine of the objects have not been previously resolved by speckle interferometry. New members are detected in the systems β Cep, p Vel and iota UMa. (author)

  6. GLINT. Gravitational-wave laser INterferometry triangle (United States)

    Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine


    When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

  7. Bubble nucleation dynamics in 3He/4He mixture by holographic interferometry

    International Nuclear Information System (INIS)

    Morikawa, M; Abe, H; Nomura, R; Okuda, Y


    We were able to nucleate a gas bubble in the diluted phase of 3 He- 4 He mixture by a 1 ms width strong sound pulse. The nucleated bubble became large and detached from the bottom transducer and was pushed out to the bulk liquid by the acoustic wave pulse. The bubble then repeatedly expanded and contracted a few times and finally disappeared. The overall motion of the bubble was traced by a high speed camera with a time resolution of 1 ms. We are attempting to investigate the small density fluctuation around the bubble by incorporating holographic interferometry technology. The measurement was done at T=0.35 K for the phase separated mixture at saturated vapor pressure. An acoustic wave transducer was located at the bottom of the cell, so the bubble was nucleated in the dilute phase of the mixture. We resolved the density fluctuation as small as Δρ/ρ = 2 x 10 -6 in the dilute phase with the sample width of 25 mm, which could not be obtained by other methods. It was found that there appeared a less dense region of -Δρ/ρ ∼ 1.46 x 10 -3 just above the bubble. The bubble appeared just after the pulse was turned off, but this less dense region appeared prior to the emergence of the bulk bubble. It should be an important information about the bubble nucleation mechanism. This very high sensitivity of holographic interferometry with respect to the density fluctuation could be widely used in quantum liquid.

  8. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik


    and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...

  9. Evaluation of crack status in a meter-size concrete structure using the ultrasonic nonlinear coda wave interferometry. (United States)

    Legland, Jean-Baptiste; Zhang, Yuxiang; Abraham, Odile; Durand, Olivier; Tournat, Vincent


    The field of civil engineering is in need of new methods of non-destructive testing, especially in order to prevent and monitor the serious deterioration of concrete structures. In this work, experimental results are reported on fault detection and characterization in a meter-scale concrete structure using an ultrasonic nonlinear coda wave interferometry (NCWI) method. This method entails the nonlinear mixing of strong pump waves with multiple scattered probe (coda) waves, along with analysis of the net effect using coda wave interferometry. A controlled damage protocol is implemented on a post-tensioned, meter-scale concrete structure in order to generate cracking within a specific area being monitored by NCWI. The nonlinear acoustic response due to the high amplitude of acoustic modulation yields information on the elastic nonlinearities of concrete, as evaluated by two specific nonlinear observables. The increase in nonlinearity level corresponds to the creation of a crack with a network of microcracks localized at its base. In addition, once the crack closes as a result of post-tensioning, the residual nonlinearities confirm the presence of the closed crack. Last, the benefits and applicability of this NCWI method to the characterization and monitoring of large structures are discussed.

  10. Monitoring gas reservoirs by seismic interferometry (United States)

    Grigoli, Francesco; Cesca, Simone; Sens-Schoenfelder, Christoph; Priolo, Enrico


    Ambient seismic noise can be used to image spatial anomalies in the subsurface, without the need of recordings from seismic sources, such as earthquakes or explosions. Furthermore, the temporal variation of ambient seismic noise's can be used to infer temporal changes of the seismic velocities in the investigated medium. Such temporal variations can reflect changes of several physical properties/conditions in the medium. For example, they may be consequence of stress changes, variation of hydrogeological parameters, pore pressure and saturation changes due to fluid injection or extraction. Passive image interferometry allows to continuously monitor small temporal changes of seismic velocities in the subsurface, making it a suitable tool to monitor time-variant systems such as oil and gas reservoirs or volcanic environments. The technique does not require recordings from seismic sources in the classical sense, but is based on the processing of noise records. Moreover, it requires only data from one or two seismic stations, their locations constraining the sampled target area. Here we apply passive image interferometry to monitor a gas storage reservoir in northern Italy. The Collalto field (Northern Italy) is a depleted gas reservoir located at 1500 m depth, now used as a gas storage facility. The reservoir experience a significant temporal variation in the amount of stored gas: the injection phases mainly occur in the summer, while the extraction take place mostly in winter. In order to monitor induced seismicity related to gas storage operations, a seismic network (the Collalto Seismic Network) has been deployed in 2011. The Collalto Seismic Network is composed by 10 broadband stations, deployed within an area of about 20 km x 20 km, and provides high-quality continuous data since January 1st, 2012. In this work we present preliminary results from ambient noise interferometry using a two-months sample of continuous seismic data, i.e. from October 1st, 2012, to the

  11. Plasma diagnostics by resonant interferometry and holography

    Energy Technology Data Exchange (ETDEWEB)

    Dreiden, G.V.; Zaidel, A.N.; Ostrovskaya, G.V.; Ostrovskii, Yu.I.; Pobedonostseva, N.A.; Tanin, L.V.; Filippov, V.N.; Shedova, E.N.


    The methods of resonant interferometry and holography are discussed, and their ranges of applicability are estimated. Resonant methods enjoy a high sensitivity and a high selectivity in comparison with ordinary interferometric and holographic methods. Their primary field of application is with dense plasmas, although in individual cases it is possible to determine atomic densities down to N/sub a/ = 10/sup 9/ cm/sup -3/ and below. For a plasma with N/sub a/ = 10/sup 18/-10/sup 19/ cm/sup -3/ the minimum detectable atomic density is about N/sub a/ = 10/sup 14/ cm/sup -3/. The specific requirements on light sources and methods for studying them are described. The capabilities of these methods are demonstrated for the cases of potassium, sodium, lithium, and hydrogen plasmas; the atomic and electron densities are determined, and the plasma dynamics is studied.

  12. Atom interferometry using a shaken optical lattice (United States)

    Weidner, C. A.; Yu, Hoon; Kosloff, Ronnie; Anderson, Dana Z.


    We introduce shaken lattice interferometry with atoms trapped in a one-dimensional optical lattice. By phase modulating (shaking) the lattice, we control the momentum state of the atoms. Through a sequence of shaking functions, the atoms undergo an interferometer sequence of splitting, propagation, reflection, reverse propagation, and recombination. Each shaking function in the sequence is optimized with a genetic algorithm to achieve the desired momentum state transitions. As with conventional atom interferometers, the sensitivity of the shaken lattice interferometer increases with interrogation time. The shaken lattice interferometer may also be optimized to sense signals of interest while rejecting others, such as the measurement of an ac inertial signal in the presence of an unwanted dc signal.

  13. Compressed-sensing wavenumber-scanning interferometry (United States)

    Bai, Yulei; Zhou, Yanzhou; He, Zhaoshui; Ye, Shuangli; Dong, Bo; Xie, Shengli


    The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FT as a standard algorithm for DRWSI.

  14. Active SU(1,1) atom interferometry (United States)

    Linnemann, D.; Schulz, J.; Muessel, W.; Kunkel, P.; Prüfer, M.; Frölian, A.; Strobel, H.; Oberthaler, M. K.


    Active interferometers use amplifying elements for beam splitting and recombination. We experimentally implement such a device by using spin exchange in a Bose-Einstein condensate. The two interferometry modes are initially empty spin states that get spontaneously populated in the process of parametric amplification. This nonlinear mechanism scatters atoms into both modes in a pairwise fashion and generates a non-classical state. Finally, a matched second period of spin exchange is performed that nonlinearly amplifies the output signal and maps the phase onto readily detectable first moments. Depending on the accumulated phase this nonlinear readout can reverse the initial dynamics and deamplify the entangled state back to empty spin states. This sequence is described in the framework of SU(1,1) mode transformations and compared to the SU(2) angular momentum description of passive interferometers.

  15. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.


    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  16. Edge effects in composites by moire interferometry (United States)

    Czarnek, R.; Post, D.; Herakovich, C.


    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  17. Externally Dispersed Interferometry for Precision Radial Velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J; Muterspaugh, M W; Edelstein, J; Lloyd, J; Herter, T; Feuerstein, W M; Muirhead, P; Wishnow, E


    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic spectral comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. The moire pattern shifts in phase in response to a Doppler shift. Moire patterns are broader than the underlying spectral features and more easily survive spectrograph blurring and common distortions. Thus, the EDI technique allows lower resolution spectrographs having relaxed optical tolerances (and therefore higher throughput) to return high precision velocity measurements, which otherwise would be imprecise for the spectrograph alone.

  18. Forest biomass estimation from polarimetric SAR interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Mette, T.


    Polarimetric SAR interferometry (Pol-InSAR) is a radar remote sensing technique that allows extracting forest heights by means of model-based inversions. Forest biomass is closely related to forest height, and can be derived from it with allometric relations. This work investigates the combination of the two methods to estimate forest biomass from Pol-InSAR. It develops a concept for the use of height-biomass allometry, and outlines the Pol-InSAR height inversion. The methodology is validated against a set of forest inventory data and Pol-InSAR data at L-band of the test site Traunstein. The results allow drawing conclusions on the potential of Pol-InSAR forest biomass missions. (orig.)

  19. Multi-Axis Heterodyne Interferometry (MAHI) (United States)

    Thorpe, James

    The detection and measurement of gravitational waves represents humanity’s next, and final, opportunity to open an entirely new spectrum with which to view the universe. The first steps of this process will likely take place later this decade when the second-generation ground-based instruments such as Advanced LIGO approach design sensitivity. While these events will be historic, it will take a space-based detector to access the milliHertz gravitational wave frequency band, a band that is rich in both number and variety of sources. The Laser Interferometer Space Antenna (LISA) concept has been developed over the past two decades in the US and Europe to provide access to this band. The European Space Agency recently selected The Gravitational Universe as the science theme for the 3rd Large-class mission in the Cosmic Visions Programme, with the assumption that a LISA-like instrument would be implemented for launch in 2034. NASA has expressed interest in partnering on this effort and the US community has made its own judgment on the scientific potential of a space-based gravitational wave observatory through the selection of LISA as the 3rd flagship mission in the 2010 Decadal Survey. Much of the effort has been in retiring risk for the unique technologies that comprise a gravitational wave detector. A prime focus of this effort is LISA Pathfinder (LPF), a dedicated technology demonstrator mission led by ESA with contributions from NASA and several member states. LPF’s primary objective is to validate drag-free flight as an approach to realizing an inertial reference mass. Along the way, several important technologies will be demonstrated, including picometer-level heterodyne interferometry. However, there are several important differences between the interferometry design for LISA and that for LPF. These mostly result from the fact that LISA interferometry involves multiple lasers on separate spacecraft whereas LPF can use a single laser on a single spacecraft

  20. Speckle interferometry of asteroids. I - 433 Eros (United States)

    Drummond, J. D.; Cocke, W. J.; Hege, E. K.; Strittmatter, P. A.; Lambert, J. V.


    Analytical expressions are derived for the semimajor and semiminor axes and orientation angle of the ellipse projected by a triaxial asteroid, and the results are applied speckle-interferometry observations of the 433 Eros asteroid. The expressions were calculated as functions of the dimensions and pole of the body and of the asterocentric position of the earth and the sun. On the basis of the analytical expressions, the dimensions of 433 Eros are obtained. The light curve from December 18, 1981 is compared to the dimensions to obtain a geometric albedo of 0.156 (+ or - 0.010). A series of two-dimensional power spectra and autocorrelation functions for 433 Eros show that it is spinning in space.

  1. Investigation of surface deformations by double exposure holographic interferometry

    International Nuclear Information System (INIS)

    Ecevit, F.N.; Guven, H.; Aydin, R.


    Surface deformations of rigid bodies produced by thermal as well as mechanical strains have been investigated using double-exposure holographic interferometry. The recorded interference fringes have been discussed qualitatively. (author). 9 refs, 4 figs

  2. Range Surveillance Using Radio Interferometry and TDOA Techniques Project (United States)

    National Aeronautics and Space Administration — The proposed innovation will utilize a small network of remote sensors to perform Radio Interferometry (RI) and Time Difference of Arrival (TDOA) techniques to...

  3. Observational Model for Precision Astrometry with the Space Interferometry Mission

    National Research Council Canada - National Science Library

    Turyshev, Slava G; Milman, Mark H


    The Space Interferometry Mission (SIM) is a space-based 10-m baseline Michelson optical interferometer operating in the visible waveband that is designed to achieve astrometric accuracy in the single digits of the microarcsecond domain...

  4. Seismic interferometry : Reconstructing the earth's reflection response

    NARCIS (Netherlands)

    Draganov, D.S.; Wapenaar, C.P.A.; Thorbecke, J.W.


    In 1968, Jon Claerbout showed that the reflection response of a 1D acoustic medium can be reconstructed by autocorrelating the transmission response. Since then, several authors have derived relationships for reconstructing Green's functions at the surface, using crosscorrelations of (noise)

  5. Using Optical Interferometry for GEO Satellites Imaging: An Update (United States)


    Using Optical Interferometry for GEO satellites imaging: an update Sergio R. Restainoa,J. Thomas Armstronga, Ellyn K. Bainesa, Henrique R. Schmitta...of a geostationary satellite using the Navy Precision Optical Inter- ferometer (NPOI) during the glint season of March 2015. We succeeded in detecting...detection of a satellite . Keywords: geostationary satellites , optical interferometry, imaging, telescope arrays 1. INTRODUCTION Developing the ability to

  6. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton


    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  7. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D


    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  8. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad


    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  9. Pumped-Up SU(1,1) Interferometry. (United States)

    Szigeti, Stuart S; Lewis-Swan, Robert J; Haine, Simon A


    Although SU(1,1) interferometry achieves Heisenberg-limited sensitivities, it suffers from one major drawback: Only those particles outcoupled from the pump mode contribute to the phase measurement. Since the number of particles outcoupled to these "side modes" is typically small, this limits the interferometer's absolute sensitivity. We propose an alternative "pumped-up" approach where all the input particles participate in the phase measurement and show how this can be implemented in spinor Bose-Einstein condensates and hybrid atom-light systems-both of which have experimentally realized SU(1,1) interferometry. We demonstrate that pumped-up schemes are capable of surpassing the shot-noise limit with respect to the total number of input particles and are never worse than conventional SU(1,1) interferometry. Finally, we show that pumped-up schemes continue to excel-both absolutely and in comparison to conventional SU(1,1) interferometry-in the presence of particle losses, poor particle-resolution detection, and noise on the relative phase difference between the two side modes. Pumped-up SU(1,1) interferometry therefore pushes the advantages of conventional SU(1,1) interferometry into the regime of high absolute sensitivity, which is a necessary condition for useful quantum-enhanced devices.

  10. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton


    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  11. Acoustics an introduction

    CERN Document Server

    Kuttruff, Heinrich


    This definitive textbook provides students with a comprehensive introduction to acoustics. Beginning with the basic physical ideas, Acoustics balances the fundamentals with engineering aspects, applications and electroacoustics, also covering music, speech and the properties of human hearing. The concepts of acoustics are exposed and applied in:room acousticssound insulation in buildingsnoise controlunderwater sound and ultrasoundScientifically thorough, but with mathematics kept to a minimum, Acoustics is the perfect introduction to acoustics for students at any level of mechanical, electrical or civil engineering courses and an accessible resource for architects, musicians or sound engineers requiring a technical understanding of acoustics and their applications.

  12. Acoustic Holography (United States)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with sound visualization, acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-re verberation methods, both essential for visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, Can we see two birds singing or one bird with two beaks?

  13. Using Seismic Interferometry to Investigate Seismic Swarms (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.


    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  14. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords Questions to ask Choosing a healthcare provider ... Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation ...

  15. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... more... LOGIN CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic ... Stories Keywords Shop ANA Discussion Forum About Back Learn more about ANA About ANA Mission, Vision & Values ...

  16. Atlantic Herring Acoustic Surveys (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...

  17. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... more Click to learn more... LOGIN CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN ... a Sponsor Patient Events Acoustic Neuroma Association Latest News Join / Renew Login Contact Us Become a Sponsor ...

  18. Tutorial on architectural acoustics (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio


    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  19. 3D super-virtual refraction interferometry

    KAUST Repository

    Lu, Kai


    Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.

  20. Laser Wakefield diagnostic using holographic longitudinal interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Volfbeyn, P.; Esarey, E.; Leemans, W.P.


    We propose a diagnostic technique for wakefield measurement in plasma channels. A new technique for plasma channel creation, the Ignitor Heater scheme was proposed and experimentally tested in hydrogen and nitrogen previously. It makes use of two laser pulses. The Ignitor, an ultrashort (sub 100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used to heat the existing spark via in-verse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. Laser pulses injected into such plasma channels produce a plasma wake that has a phase velocity close to the speed of light. A discussion of plasma wake measurements, using a Longitudinal Interferometry Wakefield Diagnostic Based on Time Domain Rayleigh Refractometry with Holographic Inversion, will be presented.

  1. General Relativistic Effects in Atom Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC /Stanford U., Phys. Dept.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.


    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

  2. White light interferometry applications in nanometrology (United States)

    Damian, V. S.; Bojan, M.; Schiopu, P.; Iordache, I.; Ionita, B.; Apostol, D.


    Precise three-dimensional (3D) information is demanded by many new industries such as: semiconductor, photonics, MEMS, communications, microprocessing etc. [1, 2]. The problem is to select the proper measurement methods for material characteristics in the measurement field, from the point of view of the measurement accuracy and errors that can appear [1, 4, 3, 5]. There are several optical 3D measurements approaches, e.g.: triangulation, grating projection with phase shift, moiré with phase shift, confocal and (white light) interferometry (WLI) [2, 3]. They can measures: surface profile, roughness, step height, microstructure, and other surface parameters. The white light interferometers allows generally surface profiling with high accuracy with no phase ambiguity errors, making them more suitable for profiling stepped or discontinuous surfaces. WLI technique to determine the thickness of thin coating on reflective materials is very effective. One of the first techniques to utilize the short coherence of the white light source was the scanning interference microscope. There are on the market a variety of scanning white light interferometers. Measurement calibration is done using the short coherence feature of white light. Some of the presented applications in nanometrology are thin films thickness measurements of: carbons films on glass, metallic films on Silicon, ablated small holes diameter, and profiles of micro / nanostructure.

  3. Multifrequency perturbations in matter-wave interferometry (United States)

    Günther, A.; Rembold, A.; Schütz, G.; Stibor, A.


    High-contrast matter-wave interferometry is essential in various fundamental quantum mechanical experiments as well as for technical applications. Thereby, contrast and sensitivity are typically reduced by decoherence and dephasing effects. While decoherence accounts for a general loss of quantum information in a system due to entanglement with the environment, dephasing is due to collective time-dependent external phase shifts, which can be related to temperature drifts, mechanical vibrations, and electromagnetic oscillations. In contrast to decoherence, dephasing can, in principle, be reversed. Here, we demonstrate in experiment and theory a method for the analysis and reduction of the influence of dephasing noise and perturbations consisting of several external frequencies in an electron interferometer. This technique uses the high spatial and temporal resolution of a delay-line detector to reveal and remove dephasing perturbations by second-order correlation analysis. It allows matter-wave experiments under perturbing laboratory conditions and can be applied, in principle, to electron, atom, ion, neutron, and molecule interferometers.

  4. Bounding the Higgs boson width through interferometry. (United States)

    Dixon, Lance J; Li, Ye


    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.

  5. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.


    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  6. From master slave interferometry to complex master slave interferometry: theoretical work (United States)

    Rivet, Sylvain; Bradu, Adrian; Maria, Michael; Feuchter, Thomas; Leick, Lasse; Podoleanu, Adrian


    A general theoretical framework is described to obtain the advantages and the drawbacks of two novel Fourier Domain Optical Coherence Tomography (OCT) methods denoted as Master/Slave Interferometry (MSI) and its extension denoted as Complex Master/Slave Interferometry (CMSI). Instead of linearizing the digital data representing the channeled spectrum before a Fourier transform can be applied to it (as in OCT standard methods), channeled spectrum is decomposed on the basis of local oscillations. This replaces the need for linearization, generally time consuming, before any calculation of the depth profile in the range of interest. In this model two functions, g and h, are introduced. The function g describes the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process from wavenumber to time. The function h describes the dispersion in the interferometer. The utilization of these two functions brings two major improvements to previous implementations of the MSI method. The paper details the steps to obtain the functions g and h, and represents the CMSI in a matrix formulation that enables to implement easily this method in LabVIEW by using parallel programming with multi-cores.

  7. Digital Double-Pulse Holographic Interferometry for Vibration Analysis

    Directory of Open Access Journals (Sweden)

    H.J. Tiziani


    Full Text Available Different arrangements for double-pulsed holographic and speckle interferometry for vibration analysis will be described. Experimental results obtained with films (classical holographic interferometry and CCD cameras (digital holographic interferometry as storage materials are presented. In digital holography, two separate holograms of an object under test are recorded within a few microseconds using a CCD camera and are stored in a frame grabber. The phases of the two reconstructed wave fields are calculated from the complex amplitudes. The deformation is obtained from the phase difference. In the case of electronic speckle pattern interferometry (or image plane hologram, the phase can be calculated by using the sinusoid-fitting method. In the case of digital holographic interferometry, the phase is obtained by digital reconstruction of the complex amplitudes of the wave fronts. Using three directions of illumination and one direction of observation, all the information necessary for the reconstruction of the 3-dimensional deformation vector can be recorded at the same time. Applications of the method for measuring rotating objects are discussed where a derotator needs to be used.

  8. Validation and intercomparison of Persistent Scatterers Interferometry: PSIC4 project results

    NARCIS (Netherlands)

    Raucoules, D.; Bourgine, B.; Michele, M. de; Le Cozannet, G.; Closset, L.; Bremmer, C.; Veldkamp, H.; Tragheim, D.; Bateson, L.; Crosetto, M.; Agudo, M.; Engdahl, M.


    This article presents the main results of the Persistent Scatterer Interferometry Codes Cross Comparison and Certification for long term differential interferometry (PSIC4) project. The project was based on the validation of the PSI (Persistent Scatterer Interferometry) data with respect to

  9. Progress in electron- and ion-interferometry

    International Nuclear Information System (INIS)

    Hasselbach, Franz


    In the 1970s the prominent goal was to overcome the limitations of electron microscopy caused by aberrations of electron lenses by the development of electron holography. In the meantime this problem has been solved, not only in the roundabout way of holography, but directly by correcting the aberrations of the lenses. Nevertheless, many quantitative electron microscopical measurement methods-e.g. mapping and visualization of electric and magnetic fields-were developed within the context of holography and have become fields of their own. In this review we focus on less popular electron interferometric experiments which complement the field of electron holography. The paper is organized as follows. After a short sketch of the development of electron biprism interferometry after its invention in 1954, recent advances in technology are discussed that made electron biprism interferometry an indispensable tool for solving fundamental and applied questions in physics: the development and preparation of conventional and single-atom field electron and field ion sources with their extraordinary properties. Single- and few-atom sources exhibit spectacular features: their brightness at 100 keV exceeds that of conventional field emitters by two orders in magnitude. Due to the extremely small aberrations of diode field emitter extraction optics, the virtual source size of single-atom tips is on the order of 0.2 nm. As a consequence it illuminates an area 7 cm in diameter on a screen at a distance of 15 cm coherently. Projection electron micrographs taken with these sources reach spatial resolutions of atomic dimensions and in-line holograms are-due to the absence of lenses with their aberrations-not blurred. Their reconstruction is straightforward. By addition of a carbon nanotube biprism into the beam path of a projection microscope a lensless electron interferometer has been realized. In extremely ultrahigh vacuum systems flicker noise is practically absent in the new sources

  10. Absolute marine gravimetry with matter-wave interferometry. (United States)

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F


    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  11. Pipeline monitoring with interferometry in non-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    McCardle, Adrian; Rabus, Bernhard; Ghuman, Parwant [MacDonald Dettwiler, Richmond, BC (Canada); Freymueller, Jeff T. [University of Alaska, Fairbanks (United States)


    Interferometry has become a proven technique for accurately measuring ground movements caused by subsidence, landslides, earthquakes and volcanoes. Using space borne sensors such as the ERS, ENVISAT and RADARSAT satellites, ground deformation can be monitored on a millimeter level. Traditionally interferometry has been limited to arid areas however new technology has allowed for successful monitoring in vegetated regions and areas of changing land-cover. Analysis of ground movement of the Trans-Alaskan pipeline demonstrates how these techniques can offer pipeline engineers a new tool for observing potential dangers to pipeline integrity. Results from Interferometric Point Target Analysis were compared with GPS measurements and speckle tracking interferometry was demonstrated to measure a major earthquake. (author)

  12. Practical optical interferometry imaging at visible and infrared wavelengths

    CERN Document Server

    Buscher, David F


    Optical interferometry is a powerful technique to make images on angular scales hundreds of times smaller than is possible with the largest telescopes. This concise guide provides an introduction to the technique for graduate students and researchers who want to make interferometric observations and acts as a reference for technologists building new instruments. Starting from the principles of interference, the author covers the core concepts of interferometry, showing how the effects of the Earth's atmosphere can be overcome using closure phase, and the complete process of making an observation, from planning to image reconstruction. This rigorous approach emphasizes the use of rules-of-thumb for important parameters such as the signal-to-noise ratios, requirements for sampling the Fourier plane and predicting image quality. The handbook is supported by web resources, including the Python source code used to make many of the graphs, as well as an interferometry simulation framework, available at www.cambridg...

  13. Integrated Optics Achromatic Nuller for Stellar Interferometry (United States)

    Ksendzov, Alexander


    This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.

  14. Intracavity interferometry using synchronously pumped OPO (United States)

    Zavadilová, Alena; Vyhlídal, David; Kubeček, Václav; Šulc, Jan; Navrátil, Petr


    The concept of system for intracavity interferometry based on the beat note detection in subharmonic synchronously intracavity pumped optical parametrical oscillator (OPO) is presented. The system consisted of SESAM-modelocked, picosecond, diode pumped Nd:YVO4 laser, operating at wavelength 1.06 μm and tunable linear intracavity pumped OPO based on MgO:PPLN crystal, widely tunable in 1.5 μm able to deliver two independent trains of picosecond pulses. The optical length of the OPO cavity was set to be exactly twice the pumping cavity length. In this configuration the OPO produces signal pulses with the same repetition frequency as the pump laser but the signal consists of two completely independent pulse trains. For purpose of pump probe measurements the setup signal with half repetition rate and scalable amplitude was derived from the OPO signal using RF signal divider, electropotical modulator and fiber amplifier. The impact of one pump beam on the sample is detected by one probing OPO train, the other OPO train is used as a reference. The beat note measured using the intracavity interferometer is proportional to phase modulation caused by the pump beam. The bandwidth of observed beat-note was less than 1 Hz (FWHM), it corresponds to a phase shift measurement error of less than 1.5 × 10-7 rad without any active stabilization. Such compact low-cost system could be used for ultra-sensitive phase-difference measurements (e.g. nonlinear refractive index measurement) for wide range of material especially in spectral range important for telecom applications.

  15. Photon exchange and decoherence in neutron interferometry

    International Nuclear Information System (INIS)

    Sulyok, G.


    The general subject of the present work concerns the action of time-dependent, spatially restricted magnetic fields on the wave function of a neutron. Special focus lies on their application in neutron interferometry. For arbitrary time-periodic fields, the corresponding Schroedinger equation is solved analytically. It is then shown, how the occurring exchange of energy quanta between the neutron and the modes of the magnetic field appears in the temporal modulation of the interference pattern between the original wavefunction and the wavefunction altered by the magnetic field. By Fourier analysis of the time-resolved interference pattern, the transition probabilities for all possible energy transfers are deducible. Experimental results for fields consisting of up to five modes are presented. Extending the theoretical approach by quantizing the magnetic field allows deeper insights on the underlying physical processes. For a coherent field state with a high mean photon number, the results of the calculation with classical fields is reproduced. By increasing the number of field modes whose relative phases are randomly distributed, one approaches the noise regime which offers the possibility of modelling decoherence in the neutron interferometer. Options and limitations of this modelling procedure are investigated in detail both theoretically and experimentally. Noise sources are applied in one or both interferometer path, and their strength, frequency bandwidth and position to each other is varied. In addition, the influence of increasing spatial separation of the neutron wave packet is examined, since the resulting Schroedinger cat-like states play an important role in decoherence theory. (author) [de

  16. Super-virtual refraction interferometry: Theory

    KAUST Repository

    Bharadwaj, Pawan


    Inverting for the subsurface velocity distribution by refraction traveltime tomography is a well-accepted imaging method by both the exploration and earthquake seismology communities. A significant drawback, however, is that the recorded traces become noisier with increasing offset from the source position, and so prevents accurate picking of traveltimes in far-offset traces. To enhance the signal-to-noise ratio of the far-offset traces, we present the theory of super-virtual refraction interferometry where the signal-to-noise ratio (SNR) of far-offset head-wave arrivals can be theoretically increased by a factor proportional to N; here, N is the number of receiver and source positions associated with the recording and generation of the head-wave arrival. There are two steps to this methodology: correlation and summation of the data to generate traces with virtual head-wave arrivals, followed by the convolution of the data with the virtual traces to create traces with super-virtual head-wave arrivals. This method is valid for any medium that generates head-wave arrivals. There are at least three significant benefits to this methodology: 1). enhanced SNR of far-offset traces so the first-arrival traveltimes of the noisy far-offset traces can be more reliably picked to extend the useful aperture of data, 2). the SNR of head waves in a trace that arrive after the first arrival can be enhanced for accurate traveltime picking and subsequent inversion by traveltime tomography, and 3). common receiver-pair gathers can be analyzed to detect the presence of diving waves in the first arrivals, which can be used to assess the nature of the refracting boundary. © 2011 Society of Exploration Geophysicists.

  17. Interferometry correlations in central p+Pb collisions (United States)

    Bożek, Piotr; Bysiak, Sebastian


    We present results on interferometry correlations for pions emitted in central p+Pb collisions at √{s_{NN}}=5.02 TeV in a 3+1-dimensional viscous hydrodynamic model with initial conditions from the Glauber Monte Carlo model. The correlation function is calculated as a function of the pion pair rapidity. The extracted interferometry radii show a weak rapidity dependence, reflecting the lack of boost invariance of the pion distribution. A cross term between the out and long directions is found to be nonzero. The results obtained in the hydrodynamic model are in fair agreement with recent data of the ATLAS Collaboration.

  18. Acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Tribler, Peter Muller

    This thesis presents studies of boundary-driven acoustic streaming in microfluidic channels, which is a steady flow of the fluid initiated by the interactions of an oscillating acoustic standing wave and the rigid walls of the microchannel. The studies present analysis of the acoustic resonance......, the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...... oscillating plates. Furthermore, under general thermodynamic conditions, we derive the time-dependent first- and second-order equations for the conservation of mass, momentum, and energy. The coupling from fluid equations to particle motion is achieved through the expressions for the streaming-induced drag...

  19. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders


    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  20. Springer handbook of acoustics

    CERN Document Server


    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  1. Coda Wave Interferometry Method Applied in Structural Monitoring to Assess Damage Evolution in Masonry and Concrete Structures

    International Nuclear Information System (INIS)

    Masera, D; Bocca, P; Grazzini, A


    In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a 'damage-gauge' for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.

  2. Deep Water Ocean Acoustics (United States)


    analysis was conducted on the North Pacific Acoustics Laboratory Philippine Sea tests 2009 and 2010, both of which Dr. Heaney participated as a co-chief...obtained from the ambient noise field. In underwater acoustics , this travel time strongly depends on the depth and temperature and to a lesser al. 2012) and underwater volcanoes (Green at al. 2013). Guided wave propagation contributes to the limited acoustical attenuation by the SOFAR

  3. Laser interferometry of radiation driven gas jets (United States)

    Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.


    In a series of experiments performed at the 1MA Zebra pulsed power accelerator of the Nevada Terawatt Facility nitrogen gas jets were driven with the broadband x-ray flux produced during the collapse of a wire-array z-pinch implosion. The wire arrays were comprised of 4 and 8, 10μm-thick gold wires and 17μm-thick nickel wires, 2cm and 3cm tall, and 0.3cm in diameter. They radiated 12kJ to 16kJ of x-ray energy, most of it in soft x-ray photons of less than 1keV of energy, in a time interval of 30ns. This x-ray flux was used to drive a nitrogen gas jet located at 0.8cm from the axis of the z-pinch radiation source and produced with a supersonic nozzle. The x-ray flux ionizes the nitrogen gas thus turning it into a photoionized plasma. We used laser interferometry to probe the ionization of the plasma. To this end, a Mach-Zehnder interferometer at the wavelength of 266 nm was set up to extract the atom number density profile of the gas jet just before the Zebra shot, and air-wedge interferometers at 266 and 532 nm were used to determine the electron number density of the plasma right during the Zebra shot. The ratio of electron to atom number densities gives the distribution of average ionization state of the plasma. A python code was developed to perform the image data processing, extract phase shift spatial maps, and obtain the atom and electron number densities via Abel inversion. Preliminary results from the experiment are promising and do show that a plasma has been created in the gas jet driven by the x-ray flux, thus demonstrating the feasibility of a new experimental platform to study photoionized plasmas in the laboratory. These plasmas are found in astrophysical scenarios including x-ray binaries, active galactic nuclei, and the accretion disks surrounding black holes1. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.1R. C. Mancini et al, Phys. Plasmas 16, 041001 (2009)

  4. Determining the Speed of Sound and Heat Capacity Ratios of Gases by Acoustic Interferometry (United States)

    Varberg, Thomas D.; Pearlman, Bradley W.; Wyse, Ian A.; Gleason, Samuel P.; Kellett, Dalir H. P.; Moffett, Kenneth L.


    In this paper, we describe an experiment for the undergraduate physical chemistry laboratory in which students determine the speed of sound in the gases He, N[subscript 2], CO[subscript 2], and CF[subscript 3]CH[subscript 2]F. The experimental apparatus consists of a closed acrylic tube containing the gas under study. White audio noise is injected…

  5. Surface Acoustic Bloch Oscillations, the Wannier-Stark Ladder, and Landau-Zener Tunneling in a Solid (United States)

    de Lima, M. M., Jr.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.


    We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry.

  6. Shallow Water Acoustic Laboratory (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  7. Acoustic Signals and Systems

    DEFF Research Database (Denmark)


    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...

  8. Acoustic Technology Laboratory (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  9. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed


    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  10. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael


    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  11. Laboratory for Structural Acoustics (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  12. Matter wave interferometry in the light of Schroedinger's wave mechanics

    International Nuclear Information System (INIS)


    This is a pre-conference abstracts collection for 67 oral presentations and posters, 62 of them are in INIS scope and are treated individually. The subject matters are interferometers (mainly neutron), interferometry experiments and the related interpretation - and epistemological problems of quantum theory. (qui)

  13. Phase knife-edge laser Schlieren diffraction interferometry with ...

    Indian Academy of Sciences (India)

    The use of phase knife-edge as viewing diaphragm in Schlieren diffraction interferometry not only enhances the fringe contrast but also avoids the loss in phase information as it lets through light from all parts of the test object and its thin interfacing makes the method suitable even for studying weak disturbances. Keywords.

  14. Distinguishing between Dirac and Majorana neutrinos withtwo-particle interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Thomas D.


    Two-particle interferometry, a second-order interferenceeffect, is explored as another possible tool to distinguish betweenmassive Dirac and Majorana neutrinos. A simple theoretical framework isdiscussed in the context of several gedanken experiments. The method canin principle provide both the mass scale and the quantum nature of theneutrino for a certain class of incoherent left-handed sourcecurrents.

  15. North and northeast Greenland ice discharge from satellite radar interferometry

    DEFF Research Database (Denmark)

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.


    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...

  16. Time-lapse controlled-source electromagnetics using interferometry

    NARCIS (Netherlands)

    Hunziker, J.W.; Slob, E.C.; Wapenaar, C.P.A.

    In time-lapse controlled-source electromagnetics, it is crucial that the source and the receivers are positioned at exactly the same location at all times of measurement. We use interferometry by multidimensional deconvolution (MDD) to overcome problems in repeatability of the source location.

  17. Microquake seismic interferometry with SVD-enhanced Green's function recovery


    Melo, Gabriela; Malcolm, Alison E.


    The conditions under which seismic interferometry (SI) leads to the exact Green's function (GF) are rarely met in practice. As a result, we generally recover only estimates of the true GF. This raises the questions: How good an approximation to the GF can SI give? Can we improve this estimated GF?

  18. Application of Persistent Scatterer Interferometry (PSI) in monitoring ...

    Indian Academy of Sciences (India)

    Keywords. Slope instability; landslide; Lesser Himalaya; remote sensing; radar interferometry. Abstract. Orogenic movements and sub-tropical climate have rendered the slopes of the Himalayan region intensely deformed and weathered. As a result, the incidences of slope failure are quite common all along the Himalayan ...

  19. Radio astronomical interferometry and x-ray's computerized tomography

    International Nuclear Information System (INIS)

    Rodriguez, L.F.


    Radio astronomical interferometry and computerized tomography are techniques of great importance for astronomy and medicine, respectively. In this paper we emphasize that both techniques are based on the same mathematical principles, and present them as an example of interaction between basic and applied science. (author)

  20. A new polarized neutron interferometry facility at the NCNR

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, C.B. [Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188 (United States); Arif, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Cory, D.G. [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Mineeva, T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Nsofini, J.; Sarenac, D. [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Williams, C.J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Huber, M.G., E-mail: [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pushin, D.A., E-mail: [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)


    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  1. Application of interferometry to studies of glacier dynamics

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob


    Multi baseline repeat track interferometry (RTI) can potentially be used to measure both velocities and the micro topography of glaciers. The Danish Center for Remote Sensing (DCRS) in corporation with the Danish Polar Center (DPC) has established a test cite for studies of glacier dynamics on th...

  2. Exploitation of distributed scatterers in synthetic aperture radar interferometry

    NARCIS (Netherlands)

    Samiei Esfahany, S.


    During the last decades, time-series interferometric synthetic aperture radar (InSAR) has emerged as a powerful technique to measure various surface deformation phenomena of the earth. Early generations of time-series InSAR methodologies, i.e. Persistent Scatterer Interferometry (PSI), focused on

  3. Pion interferometry theory for the hydrodynamic stage of multiple processes

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.


    The double pion inclusive cross section for identical particles is described in hydrodynamical theory of multiparticle production. The pion interferometry theory is developed for the case when secondary particles are generated against the background of internal relativistic motion of radiative hadron matter. The connection between correlation functions in various schemes of experiment is found within the framework of relativistic Wigner functions formalism

  4. Micro-Gal level gravity measurements with cold atom interferometry

    International Nuclear Information System (INIS)

    Zhou Min-Kang; Duan Xiao-Chun; Chen Le-Le; Luo Qin; Xu Yao-Yao; Hu Zhong-Kun


    Developments of the micro-Gal level gravimeter based on atom interferometry are reviewed, and the recent progress and results of our group are also presented. Atom interferometric gravimeters have shown high resolution and accuracy for gravity measurements. This kind of quantum sensor has excited world-wide interest for both practical applications and fundamental research. (topical review)

  5. Global-scale seismic interferometry : Theory and numerical examples

    NARCIS (Netherlands)

    Ruigrok, E.N.; Draganov, D.S.; Wapenaar, K.


    Progress in the imaging of the mantle and core is partially limited by the sparse distribution of natural sources; the earthquake hypocenters are mainly along the active lithospheric plate boundaries. This problem can be approached with seismic interferometry. In recent years, there has been

  6. Michelson wide-field stellar interferometry : Principles and experimental verification

    NARCIS (Netherlands)

    Montilla, I.; Pereira, S.F.; Braat, J.J.M.


    A new interferometric technique for Michelson wide-field interferometry is presented that consists of a Michelson pupil-plane combination scheme in which a wide field of view can be achieved in one shot. This technique uses a stair-shaped mirror in the intermediate image plane of each telescope in

  7. Digital holographic interferometry applied to the study of tympanic membrane displacements (United States)

    Hernández-Montes, María del Socorro; Mendoza Santoyo, Fernando; Pérez López, Carlos; Muñoz Solís, Silvino; Esquivel, Jesús


    Quantitative studies of the mechanical properties of tympanic membrane (TM) are needed for better understanding of its role in detailed clinical evaluation, its research being of extreme importance because it is one of the most important structures of the middle ear. By finding the membrane's vibration patterns and quantifying the induced displacement it is possible to characterize and determine its physiological status. Digital holographic interferometry (DHI) has proved to be a reliable optical non-invasive and full-field-of-view technique for the investigation of different mechanical parameters of biological tissues, i.e., DHI has demonstrated an ability to detect displacement changes in quasi-real time and without the need to contact the sample's surface under study providing relevant information, such as clinical and mechanical sample properties. In this research fresh tympanic membrane specimens taken from post-mortem cats are subjected to acoustic stimuli in the audible frequency range producing resonant vibration patterns on the membrane, a feature that results in an ideal application for DHI. An important feature of this approach over other techniques previously used to study the tympanic membrane vibrations is that it only requires two images and less hardware to carry out the measurements, making of DHI a simpler and faster technique as compared to other proposed approaches. The results found show a very good agreement between the present and past measurements from previous research work, showing that DHI is a technique that no doubt will help to improve the understanding of the tympanic membrane's working mechanisms.

  8. Deep Water Ocean Acoustics (United States)


    Ocean Acoustics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...paper and presented on global acoustic propagation (including on Europa, a small moon of Jupiter ) at the International Conference of Sound and

  9. Acoustic emission source modeling

    Czech Academy of Sciences Publication Activity Database

    Hora, Petr; Červená, Olga


    Roč. 4, č. 1 (2010), s. 25-36 ISSN 1802-680X R&D Projects: GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission source * wave propagation * FEM Subject RIV: BI - Acoustics

  10. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik


    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  11. Ocean acoustic reverberation tomography. (United States)

    Dunn, Robert A


    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  12. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Augustsson, Per; Bruus, Henrik


    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems...

  13. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario


    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  14. Acoustic building infiltration measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Muehleisen, Ralph T.; Raman, Ganesh


    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  15. Acoustic well cleaner (United States)

    Maki, Jr., Voldi E.; Sharma, Mukul M.


    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  16. X-ray Talbot interferometry with capillary plates

    International Nuclear Information System (INIS)

    Momose, Atsushi; Kawamoto, Shinya


    An X-ray Talbot interferometer consisting of two capillary plates, which were used as X-ray amplitude gratings, was evaluated for X-ray phase imaging. A theoretical aspect of capillary X-ray Talbot interferometry is presented with a preliminary operation result using synchrotron radiation. A two-dimensional X-ray Talbot effect, or self-imaging effect, which was the basis of Talbot interferometry, was observed with the capillary plate, and moire images formed by the X-ray Talbot interferometer exhibited contrasts corresponding to the differential phase shift caused by phase objects placed in front of the interferometer. Finally, the possibility of quantitative phase measurement with a fringe scanning technique is discussed. (author)

  17. A recent history of science cases for optical interferometry (United States)

    Defrère, Denis; Aerts, Conny; Kishimoto, Makoto; Léna, Pierre


    Optical long-baseline interferometry is a unique and powerful technique for astronomical research. Since the 1980's (with I2T, GI2T, Mark I to III, SUSI, ...), optical interferometers have produced an increasing number of scientific papers covering various fields of astrophysics. As current interferometric facilities are reaching their maturity, we take the opportunity in this paper to summarize the conclusions of a few key meetings, workshops, and conferences dedicated to interferometry. We present the most persistent recommendations related to science cases and discuss some key technological developments required to address them. In the era of extremely large telescopes, optical long-baseline interferometers will remain crucial to probe the smallest spatial scales and make breakthrough discoveries.

  18. High-speed real-time holographic interferometry (United States)

    Yamamoto, Yoshitaka


    The principle of holography was invented by Dr. Gabor in 1948 before the invention of the laser. In 1962, after the invention of laser (in 1960: the first demonstration of laser oscillation by Maiman was achieved using a ruby cubic crystal), the off-axis reference beam holography was developed by Prof. Leith and Mr. Upatnieks. One of the most useful measuring techniques of the holography is a holographic interferometry. Holography enable to storage signal wave fronts and reconstruct it at later time, then the interference between the reconstructed signal wave fronts and the wave fronts come from the object to be able to generate an interference fringes. Real-time holographic interferometry can measure real-time phase-change of phenomena. Therefore, this method has the performance of continuously measuring phase change by coupling with high-speed cameras.

  19. Phase and fringe order determination in wavelength scanning interferometry. (United States)

    Moschetti, Giuseppe; Forbes, Alistair; Leach, Richard K; Jiang, Xiang; O'Connor, Daniel


    A method to obtain unambiguous surface height measurements using wavelength scanning interferometry with an improved repeatability, comparable to that obtainable using phase shifting interferometry, is reported. Rather than determining the conventional fringe frequency-derived z height directly, the method uses the frequency to resolve the fringe order ambiguity, and combine this information with the more accurate and repeatable fringe phase derived z height. A theoretical model to evaluate the method's performance in the presence of additive noise is derived and shown to be in good agreement with experiments. The measurement repeatability is improved by a factor of ten over that achieved when using frequency information alone, reaching the sub-nanometre range. Moreover, the z-axis non-linearity (bleed-through or ripple error) is reduced by a factor of ten. These order of magnitude improvements in measurement performance are demonstrated through a number of practical measurement examples.

  20. Optical Distortion Evaluation in Large Area Windows using Interferometry (United States)

    Youngquist, Robert C.; Skow, Miles; Nurge, Mark A.


    It is important that imagery seen through large area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach the distortion of an acrylic window is measured using three different methods; image comparison, Moiré interferometry, and phase-shifting interferometry.

  1. MAGIA - using atom interferometry to determine the Newtonian gravitational constant

    International Nuclear Information System (INIS)

    Stuhler, J; Fattori, M; Petelski, T; Tino, G M


    We describe our experiment MAGIA (misura accurata di G mediante interferometria atomica), in which we will use atom interferometry to perform a high precision measurement of the Newtonian gravitational constant G. Free-falling laser-cooled atoms in a vertical atomic fountain will be accelerated due to the gravitational potential of nearby source masses (SMs). Detecting this acceleration with techniques of Raman atom interferometry will enable us to assign a value to G. To suppress systematic effects we will implement a double-differential measurement. This includes launching two atom clouds in a gradiometer configuration and moving the SMs to different vertical positions. We briefly summarize the general idea of the MAGIA experiment and put it in the context of other high precision G-measurements. We present the current status of the experiment and report on analyses of the expected measurement accuracy


    Directory of Open Access Journals (Sweden)

    Muchiar Muchiar


    Full Text Available Simpangan getaran sebuah membran berupa membran bundar yang bergetar sinusoidal, telah dvisualisasikan dengan menggunakan Metode Interferometri Pola Spekel Elektronik. Pola spekel dari permukaan membran pada saat tidak bergetar dan pada saat sedang bergetar pada frekuensi dan amplitudo tertentu, masing-masing, direkam dengan kamera CCD dan datanya disimpan didalam komputer. Selanjutnya, masing-masing data pola spekel membran yang sedang bergetar tersebut di substraksi dengan data pola spekel membran dalam keadaan diam. Hasil yang diperoleh berupa visualisasi citra spekel simpangan rata-rata permukaan membran yang disertai dengan pola frinji tertentu. Bentuk dari pola frinji yang terjadi bersesuaian dengan pola simpangan getaran yang dialami oleh bagian permukaan membran. Sedangkan jumlah pola frinji yang terjadi bersesuain dengan besarnya simpangan rata-rata yang terjadi. Metode ini mensyaratkan perioda getaran membran jauh lebih pendek dibandingkan waktu perekaman kamera CCD. Dari segi kualitas, metode ini menghasilkan citra tidaklah sebaik atau setajam yang diperoleh dengan Metode Interferometri Holografi.

  3. Spectrally controlled interferometry for measurements of flat and spherical optics (United States)

    Salsbury, Chase; Olszak, Artur G.


    Conventional interferometry is widely used to measure spherical and at surfaces with nanometer level precision but is plagued by back reflections. We describe a new method of isolating the measurement surface by controlling spectral properties of the source (Spectrally Controlled Interferometry - SCI). Using spectral modulation of the interferometer's source enables formation of localized fringes where the optical path difference is non-zero. As a consequence it becomes possible to form white-light like fringes in common path interferometers, such as the Fizeau. The proposed setup does not require mechanical phase shifting, resulting in simpler instruments and the ability to upgrade existing interferometers. Furthermore, it allows absolute measurement of distance, including radius of curvature of lenses in a single setup with possibility of improving the throughput and removing some modes of failure.

  4. Holodiagram: elliptic visualizing interferometry, relativity, and light-in-flight. (United States)

    Abramson, Nils H


    In holographic interferometry, there is usually a static distance separating the point of illumination and the point of observation. In Special Relativity, this separation is dynamic and is caused by the velocity of the observer. The corrections needed to compensate for these separations are similar in the two fields. We use the ellipsoids of the holodiagram for measurement and in a graphic way to explain and evaluate optical resolution, gated viewing, radar, holography, three-dimensional interferometry, Special Relativity, and light-in-flight recordings. Lorentz contraction together with time dilation is explained as the result of the eccentricity of the measuring ellipsoid, caused by its velocity. The extremely thin ellipsoid of the very first light appears as a beam aimed directly at the observer, which might explain the wave or ray duality of light and entanglement. Finally, we introduce the concept of ellipsoids of observation.

  5. North and northeast Greenland ice discharge from satellite radar interferometry

    DEFF Research Database (Denmark)

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.


    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...... front, because basal melting is extensive at the underside of the floating glacier sections. The results suggest that the north and northeast parts of the Greenland ice sheet may be thinning and contributing positively to sea-level rise.......Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...

  6. Polarimetric SAR interferometry applied to land ice: modeling

    DEFF Research Database (Denmark)

    Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning


    depths. The validity of the scattering models is examined using L-band polarimetric interferometric SAR data acquired with the EMISAR system over an ice cap located in the percolation zone of the Greenland ice sheet. Radar reflectors were deployed on the ice surface prior to the data acquisition in order......This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...... scattering models are similar to the oriented-volume model and the random-volume-over-ground model used in vegetation studies, but the ice models are adapted to the different geometry of land ice. Also, due to compaction, land ice is not uniform; a fact that must be taken into account for large penetration...

  7. A novel plasmonic interferometry and the potential applications (United States)

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Chiangga, S.; Jaglan, J.; Amiri, I. S.; Yupapin, P.


    In this article, we have proposed the plasmonic interferometry concept and analytical details given. By using the conventional optical interferometry, which can be simply calculated by using the relationship between the electric field and electron mobility, the interference mobility visibility (fringe visibility) can be observed. The surface plasmons in the sensing arm of the Michelson interferometer is constructed by the stacked layers of the silicon-graphene-gold, allows to characterize the spatial resolution of light beams in terms of the electron mobility down to 100-nm scales, with measured coherence lengths as low as ∼100 nm for an incident wavelength of 1550 nm. We have demonstrated a compact plasmonic interferometer that can apply to the electron mean free paths measurement, from which the precise determination can be used for the high-resolution mean free path measurement and sensing applications. This system provides the practical simulation device parameters that can be fabricated and tested by the experimental platform.

  8. Atomic Interferometry with Detuned Counter-Propagating Electromagnetic Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ming -Yee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Atomic fountain interferometry uses atoms cooled with optical molasses to 1 μK, which are then launched in a fountain mode. The interferometer relies on the nonlinear Raman interaction of counter-propagating visible light pulses. We present models of these key transitions through a series of Hamiltonians. Our models, which have been verified against special cases with known solutions, allow us to incorporate the effects of non-ideal pulse shapes and realistic laser frequency or wavevector jitter.

  9. Pion interferometry of ultra-relativistic hadronic collisions

    International Nuclear Information System (INIS)

    Kolehmainen, K.


    Pion interferometry of ultra-relativistic hadronic collisions is described in the context of the inside-outside cascade model using a current ensemble method capable of describing an arbitrary distribution of pion sources with an arbitrary velocity distribution. The results are quite distinct from the usual Gaussian and Kopylov parameterizations. Extraction of the temperature parameter, effective source lifetime, and transverse size requires a full three-dimensional analysis of the correlation function in terms of the momentum difference. 7 refs., 4 figs

  10. Real-time laser holographic interferometry for aerodynamics

    International Nuclear Information System (INIS)

    Lee, G.


    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil pressure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer. 13 references

  11. Using Atom Interferometry to Search for New Forces

    International Nuclear Information System (INIS)

    Wacker, Jay G.


    Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10 2 and near-future advances will be able to rewrite the limits for forces with ranges from 100 (micro)m to 1km.

  12. Laser Development for Gravitational-Wave Interferometry in Space (United States)

    Numata, Kenji; Camp, Jordan


    We are reporting on our development work on laser (master oscillator) and optical amplifier systems for gravitational-wave interferometry in space. Our system is based on the mature, wave-guided optics technologies, which have advantages over bulk, crystal-based, free-space optics. We are investing in a new type of compact, low-noise master oscillator, called the planar-waveguide external cavity diode laser. We made measurements, including those of noise, and performed space-qualification tests.

  13. Using atom interferometry to search for new forces

    International Nuclear Information System (INIS)

    Wacker, Jay G.


    Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10 2 and near-future advances may be able to rewrite the limits for forces with ranges from 1 mm to 100 m.

  14. Planet finding prospects for the Space Interferometry Mission


    Ford, Eric B.; Tremaine, Scott


    The Space Interferometry Mission (SIM) will make precise astrometric measurements that can be used to detect planets around nearby stars. We have simulated SIM observations and estimated the ability of SIM to detect planets with given masses and orbital periods and measure their orbital elements. We combine these findings with an estimate of the mass and period distribution of planets determined from radial velocity surveys to predict the number and characteristics of planets SIM would likely...

  15. Neutron Interferometry in NPI Řež

    Czech Academy of Sciences Publication Activity Database

    Vrána, Miroslav; Mikula, Pavol; Lukáš, Petr; Ioffe, A.; Nistler, W.


    Roč. 70, - (2001), s. 465-467 ISSN 0031-9015. [Proceedings of the International Sympozium on Advanced Science Research /1./. Tokai, 31.10.2000-02.11.2000] R&D Projects: GA ČR GV202/97/K038; GA AV ČR IAA1048003 Institutional research plan: CEZ:AV0Z1048901 Keywords : neutron interferometry * scattering lenght Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.628, year: 2001

  16. Deformation Measurement Of Lumbar Vertebra By Holographic Interferometry (United States)

    Matsumoto, Toshiro; Kojima, Arata; Ogawa, Ryoukei; Iwata, Koichi; Nagata, Ryo


    The mechanical properties of normal lumbar vertebra and one with the interarticular part cut off to simulate hemi-spondylolysis were measured by the double exposure holographic interferometry. In the normal lumbar vertebra, displacement due to the load applied to the inferior articular process was greater than that of superior articular process under the same load. The interarticular part was subjected to the high stress. From these points, one of the valuable data to consider the cause of spondylolysis was obtained.

  17. Special topics in infrared interferometry. [Michelson interferometer development (United States)

    Hanel, R. A.


    Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.

  18. Neutron Interferometry at the National Institute of Standards and Technology

    International Nuclear Information System (INIS)

    Huber, M. G.; Sarenac, D.; Nsofini, J.; Pushin, D. A.; Arif, M.; Wood, C. J.; Cory, D. G.; Shahi, C. B.


    Neutron interferometry has proved to be a very precise technique for measuring the quantum mechanical phase of a neutron caused by a potential energy difference between two spatially separated neutron paths inside interferometer. The path length inside the interferometer can be many centimeters (and many centimeters apart) making it very practical to study a variety of samples, fields, potentials, and other macroscopic medium and quantum effects. The precision of neutron interferometry comes at a cost; neutron interferometers are very susceptible to environmental noise that is typically mitigated with large, active isolated enclosures. With recent advances in quantum information processing especially quantum error correction (QEC) codes we were able to demonstrate a neutron interferometer that is insensitive to vibrational noise. A facility at NIST’s Center for Neutron Research (NCNR) has just been commissioned with higher neutron flux than the NCNR’s older interferometer setup. This new facility is based on QEC neutron interferometer, thus improving the accessibility of neutron interferometry to the greater scientific community and expanding its applications to quantum computing, gravity, and material research

  19. Interferometry imaging technique for accurate deep-space probe positioning (United States)

    Zheng, Weimin; Tong, Fengxian; Zhang, Juan; Liu, Lei; Shu, Fengchun


    Very long baseline interferometry (VLBI) is a radio astronomy tool with very high spatial resolution. It uses two or more radio telescopes to track the faraway object and gets its visibility. The intensity distribution image of radio source can be obtained by the inverse Fourier transformation of the visibilities sampled on UV plane perpendicular to the line of sight. Chinese VLBI Network (CVN) consists of 5 radio telescopes, and its highest spatial resolution is equivalent to that of a ∼3000 km diameters single dish antenna. This paper introduces the interferometry imaging principle, the imaging results of ChangE lunar and Mars Express probes. The measured ChangE-3 (CE-3) Rover relative position accuracy is about 1 m by this method. The 1 m accuracy is verified by comparisons with Rover null position and the onboard stereo vision measurement results. The successful imaging of spacecraft indicates that the interferometry imaging technology can be used for accurate spacecraft positioning in the future.

  20. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Connections Overview Find a Meeting Host a Meeting Volunteer Become a Volunteer Opportunities Support Overview Patient Events ... ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree ...

  1. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... with AN Healthcare Providers Acoustic Neuroma Association Donate Now Newly Diagnosed What is AN? Request a Patient ... Volunteer About ANA Get Info Shop ANA Donate Now DONATE Ways to Give Legacy Society Team ANA © ...

  2. Acoustics Noise Test Cell (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  3. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Choosing a healthcare provider Request a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a ...

  4. Acoustic imaging system (United States)

    Smith, Richard W.


    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  5. Acoustic Igniter, Phase I (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  6. Cryogenic Acoustic Suppression Testing (United States)

    National Aeronautics and Space Administration — A proof-of-concept method utilizing a cryogenic fluid for acoustic suppression in rocket engine testing environments will be demonstrated. It is hypothesized that...

  7. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree Parkway Suite 108 ... About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational Video English English ...

  8. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree ... About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational ...

  9. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Click to learn more... LOGIN CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts ... Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational Video English English Arabic Catalan Chinese ( ...

  10. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Info Booklets Research Back ANA Survey/Registry AN Research ... About Back Learn more about ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic ...

  11. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects ... To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a healthcare provider Request a patient kit ...

  12. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Back Learn more about ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic ... 205-8211 About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home ...

  13. Department of Cybernetic Acoustics (United States)

    The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.

  14. Autonomous Acoustic Receiver System (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  15. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Learn more about ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma ... 8211 About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn ...

  16. Acoustic MIMO signal processing

    CERN Document Server

    Huang, Yiteng; Chen, Jingdong


    A timely and important book addressing a variety of acoustic signal processing problems under multiple-input multiple-output (MIMO) scenarios. It uniquely investigates these problems within a unified framework offering a novel and penetrating analysis.

  17. Thermal Acoustic Fatigue Apparatus (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  18. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M


    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  19. Acoustic ambient noise recorder

    Digital Repository Service at National Institute of Oceanography (India)

    Saran, A.K.; Navelkar, G.S.; Almeida, A.M.; More, S.R.; Chodankar, P.V.; Murty, C.S.

    with a robust outfit that can withstand high pressures and chemically corrosion resistant materials. Keeping these considerations in view, a CMOS micro-controller-based marine acoustic ambient noise recorder has been developed with a real time clock...

  20. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Request a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side ... Question To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a healthcare provider Request a patient ...

  1. Acoustic Igniter Project (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  2. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree Parkway ... About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational Video ...

  3. Analysis of surface absorbed dose in X-ray grating interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhili, E-mail: [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Ziyu, E-mail: [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)


    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications.

  4. Analysis of surface absorbed dose in X-ray grating interferometry

    International Nuclear Information System (INIS)

    Wang, Zhili; Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao; Wu, Ziyu


    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications

  5. Pulsed TV holography measurement and digital reconstruction of compression acoustic wave fields: application to nondestructive testing of thick metallic samples

    International Nuclear Information System (INIS)

    Trillo, C; Doval, A F; Deán-Ben, X L; López-Vázquez, J C; Fernández, J L; Hernández-Montes, S


    This paper describes a technique that numerically reconstructs the complex acoustic amplitude (i.e. the acoustic amplitude and phase) of a compression acoustic wave in the interior volume of a specimen from a set of full-field optical measurements of the instantaneous displacement of the surface. The volume of a thick specimen is probed in transmission mode by short bursts of narrowband compression acoustic waves generated at one of its faces. The temporal evolution of the displacement field induced by the bursts emerging at the opposite surface is measured by pulsed digital holographic interferometry (pulsed TV holography). A spatio-temporal 3D Fourier transform processing of the measured data yields the complex acoustic amplitude at the plane of the surface as a sequence of 2D complex-valued maps. Finally, a numerical implementation of the Rayleigh–Sommerfeld diffraction formula is employed to reconstruct the complex acoustic amplitude at other planes in the interior volume of the specimen. The whole procedure can be regarded as a combination of optical digital holography and acoustical holography methods. The technique was successfully tested on aluminium specimens with and without an internal artificial defect and sample results are presented. In particular, information about the shape and position of the defect was retrieved in the experiment performed on the flawed specimen, which indicates the potential applicability of the technique for the nondestructive testing of materials

  6. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas


    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  7. Electromagnetic interferometry in wavenumber and space domains in a layered earth

    NARCIS (Netherlands)

    Hunziker, J.W.; Slob, E.C.; Fan, Y.; Snieder, R.; Wapenaar, C.P.A.


    With interferometry applied to controlled-source electromagnetic data, the direct field and the airwave and all other effects related to the air-water interface can be suppressed in a data-driven way. Interferometry allows for retreival of the scattered field Green’s function of the subsurface or,

  8. Visualization and direct comparison of large displacements using difference holographic interferometry

    International Nuclear Information System (INIS)

    Necati Ecevit, F.; Aydin, R.


    The difference holographic interferometry provides the possibility of direct comparison of large displacements and deformations of two similar but different objects by application of a special kind of illumination. In this work, the principles of the difference holographic interferometry and the experimental results obtained by applying the single beam technique to large displacements is presented. (author). 10 refs, 4 figs

  9. Measurement of Microscopic Deformations Using Double-Exposure Holographic Interferometry and the Fourier Transform Method

    Directory of Open Access Journals (Sweden)

    Percival Almoro


    Full Text Available Microscopic deformations on the surface of a circular diaphragm were measured using double exposure holographic interferometry and Fourier transform method (FTM. The three-dimensional surface deformations were successfully visualized by applying FTM to holographic interferogram analysis. The minimum surface displacement measured was 0.317 µm. This was calibrated via the Michelson interferometry technique.

  10. Pneumatic low-coherence interferometry otoscope to quantify tympanic membrane mobility and middle ear pressure. (United States)

    Won, Jungeun; Monroy, Guillermo L; Huang, Pin-Chieh; Dsouza, Roshan; Hill, Malcolm C; Novak, Michael A; Porter, Ryan G; Chaney, Eric; Barkalifa, Ronit; Boppart, Stephen A


    Pneumatic otoscopy to assess the mobility of the tympanic membrane (TM) is a highly recommended diagnostic method of otitis media (OM), a widespread middle ear infection characterized by the fluid accumulation in the middle ear. Nonetheless, limited depth perception and subjective interpretation of small TM displacements have challenged the appropriate and efficient examination of TM dynamics experienced during OM. In this paper, a pneumatic otoscope integrated with low coherence interferometry (LCI) was adapted with a controlled pressure-generating system to record the pneumatic response of the TM and to estimate middle ear pressure (MEP). Forty-two ears diagnosed as normal (n = 25), with OM (n = 10), or associated with an upper respiratory infection (URI) (n = 7) were imaged with a pneumatic LCI otoscope with an axial, transverse, and temporal resolution of 6 µm, 20 µm, and 1 msec, respectively. The TM displacement under pneumatic pressure transients (a duration of 0.5 sec with an intensity of ± 150 daPa) was measured to compute two metrics (compliance and amplitude ratio). These metrics were correlated with peak acoustic admittance and MEP from tympanometry and statistically compared via Welch's t- test. As a result, the compliance represents pneumatic TM mobility, and the amplitude ratio estimates MEP. The presence of a middle ear effusion (MEE) significantly decreased compliance (p<0.001). The amplitude ratio of the OM group was statistically less than that of the normal group (p<0.01), indicating positive MEP. Unlike tympanometry, pneumatic LCI otoscopy quantifies TM mobility as well as MEP regardless of MEE presence. With combined benefits of pneumatic otoscopy and tympanometry, pneumatic LCI otoscopy may provide new quantitative metrics for understanding TM dynamics and diagnosing OM.

  11. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.


    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  12. Practical acoustic emission testing

    CERN Document Server


    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  13. Sea Turtle Acoustic Telemetry Data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic transmitters attached to sea turtles captured in various fishing gear enable the animals to be passively tracked. Acoustic receivers set up in an array...

  14. Advanced Active Acoustics Lab (AAAL) (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  15. Self-calibration in optical/infrared interferometry (United States)

    Millour, Florentin; Dalla Vedova, Gaetan


    Optical interferometry produces nowadays images of the observed stars. However, the image quality of the current facilities (VLTI, CHARA) is impaired by the lack of phases measurements. We will describe here a method used to improve the image reconstruction that takes profit of a badly used observable: the wavelength differential phase. This phase shares some properties with the interferometric phase. That method is parent to the self-calibration which was developed in the 80's for radio astronomy to get rid of calibratioon artifacts, and produces a significant improvement on image quality over the current available methods.

  16. Spherical grating based x-ray Talbot interferometry

    International Nuclear Information System (INIS)

    Cong, Wenxiang; Xi, Yan; Wang, Ge


    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  17. Precision Gravity Tests with Atom Interferometry in Space

    Energy Technology Data Exchange (ETDEWEB)

    Tino, G.M.; Sorrentino, F. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Aguilera, D. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Battelier, B.; Bertoldi, A. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Bodart, Q. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Bongs, K. [Midlands Ultracold Atom Research Centre School of Physics and Astronomy University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Bouyer, P. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Braxmaier, C. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Cacciapuoti, L. [European Space Agency, Research and Scientific Support Department, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Gaaloul, N. [Institute of Quantum Optics, Leibniz Universitaet Hannover, Welfengarten 1, D 30167 Hannover (Germany); Gürlebeck, N. [University of Bremen, Centre of Applied Space Technology and Microgravity (ZARM), Am Fallturm, D - 29359 Bremen (Germany); Hauth, M. [Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); and others


    Atom interferometry provides extremely sensitive and accurate tools for the measurement of inertial forces. Operation of atom interferometers in microgravity is expected to enhance the performance of such sensors. This paper presents two possible implementations of a dual {sup 85}Rb-{sup 87}Rb atom interferometer to perform differential gravity measurements in space, with the primary goal to test the Weak Equivalence Principle. The proposed scheme is in the framework of two projects of the European Space Agency, namely Q-WEP and STE-QUEST. The paper describes the baseline experimental configuration, and discusses the technology readiness, noise and error budget for the two proposed experiments.

  18. IMAP: Interferometry for Material Property Measurement in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, B.D.; Miller, S.L.; de Boer, M.P.


    An interferometric technique has been developed for non-destructive, high-confidence, in-situ determination of material properties in MEMS. By using interferometry to measure the full deflection curves of beams pulled toward the substrate under electrostatic loads, the actual behavior of the beams has been modeled. No other method for determining material properties allows such detailed knowledge of device behavior to be gathered. Values for material properties and non-idealities (such as support post compliance) have then been extracted which minimize the error between the measured and modeled deflections. High accuracy and resolution have been demonstrated, allowing the measurements to be used to enhance process control.

  19. Theory of decoherence in Bose-Einstein condensate interferometry

    International Nuclear Information System (INIS)

    Dalton, B J


    A full treatment of decoherence and dephasing effects in BEC interferometry has been developed based on using quantum correlation functions for treating interferometric effects. The BEC is described via a phase space distribution functional of the Wigner type for the condensate modes and the positive P type for the non-condensate modes. Ito equations for stochastic condensate and non-condensate field functions replace the functional Fokker-Planck equation for the distribution functional and stochastic averages of field function products determine the quantum correlation functions

  20. Recent advances in X-ray and neutron interferometry

    International Nuclear Information System (INIS)

    Bonse, U.


    Since their advent interferometry with X-rays and neutrons have been developed steadily. A number of excellent reviews is covering the development up to about five years ago. Advances since then are treated in this review. Topics included are: Understanding of angstrom wave interferometers, theory of operation, types, contrast, complementarity, strategies and refinement of measurement, nonlinear Fizeau effect with neutrons, action of gravity and inertia of neutron phase, interferometers with separated crystals, interferometer combining X-ray and optical operation, interferometer combining X-ray and neutron operation. (orig.)

  1. Displacement interferometry with stabilization of wavelength in air

    Czech Academy of Sciences Publication Activity Database

    Lazar, Josef; Holá, Miroslava; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk


    Roč. 20, č. 25 (2012), s. 27830-27837 ISSN 1094-4087 R&D Projects: GA ČR GA102/09/1276; GA ČR GPP102/11/P820; GA TA ČR TA02010711; GA TA ČR TE01020233; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : interferometry * instrumentation * measurement, and metrology Subject RIV: BH - Optics, Masers, Laser s Impact factor: 3.546, year: 2012

  2. Speckle Interferometry with the OCA Kuhn 22" Telescope (United States)

    Wasson, Rick


    Speckle interferometry measurements of double stars were made in 2015 and 2016, using the Kuhn 22-inch classical Cassegrain telescope of the Orange County Astronomers, a Point Grey Blackfly CMOS camera, and three interference filters. 272 observations are reported for 177 systems, with separations ranging from 0.29" to 2.9". Data reduction was by means of the REDUC and Speckle Tool Box programs. Equipment, observing procedures, calibration, data reduction, and analysis are described, and unusual results for 11 stars are discussed in detail.

  3. Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry. (United States)

    Winkler, Amy M; Bonnema, Garret T; Barton, Jennifer K


    Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.

  4. Modelling of a holographic interferometry based calorimeter for radiation dosimetry (United States)

    Beigzadeh, A. M.; Vaziri, M. R. Rashidian; Ziaie, F.


    In this research work, a model for predicting the behaviour of holographic interferometry based calorimeters for radiation dosimetry is introduced. Using this technique for radiation dosimetry via measuring the variations of refractive index due to energy deposition of radiation has several considerable advantages such as extreme sensitivity and ability of working without normally used temperature sensors that disturb the radiation field. We have shown that the results of our model are in good agreement with the experiments performed by other researchers under the same conditions. This model also reveals that these types of calorimeters have the additional and considerable merits of transforming the dose distribution to a set of discernible interference fringes.

  5. Holographic interferometry using a digital photo-camera

    International Nuclear Information System (INIS)

    Sekanina, H.; Hledik, S.


    The possibilities of running digital holographic interferometry using commonly available compact digital zoom photo-cameras are studied. The recently developed holographic setup, suitable especially for digital photo-cameras equipped with an un detachable object lens, is used. The method described enables a simple and straightforward way of both recording and reconstructing of a digital holographic interferograms. The feasibility of the new method is verified by digital reconstruction of the interferograms acquired, using a numerical code based on the fast Fourier transform. Experimental results obtained are presented and discussed. (authors)

  6. Frequency Noise Properties of Lasers for Interferometry in Nanometrology

    Czech Academy of Sciences Publication Activity Database

    Hrabina, Jan; Lazar, Josef; Holá, Miroslava; Číp, Ondřej


    Roč. 13, č. 2 (2013), s. 2206-2219 ISSN 1424-8220 R&D Projects: GA ČR GPP102/11/P820; GA ČR GA102/09/1276; GA AV ČR KAN311610701; GA MŠk ED0017/01/01; GA MŠk(CZ) LC06007 Institutional support: RVO:68081731 Keywords : nanometrology * laser noise * interferometry * nanopositioning * AFM Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.048, year: 2013

  7. Application of linear systems theory to characterize coherence scanning interferometry (United States)

    Mandal, Rahul; Palodhi, Kanik; Coupland, Jeremy; Leach, Richard; Mansfield, Daniel


    This paper considers coherence scanning interferometry as a linear filtering operation that is characterised by a point spread function in the space domain or equivalently a transfer function in the frequency domain. The applicability of the theory is discussed and the effects of these functions on the measured interferograms, and their influence on the resulting surface measurements, are described. The practical characterisation of coherence scanning interferometers using a spherical reference artefact is then considered and a new method to compensate measurement errors, based on a modified inverse filter, is demonstrated.

  8. Acoustic integrated extinction


    Norris, Andrew N.


    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we der...

  9. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin


    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  10. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.


    In order to improve the security of handling special nuclear materials at the Oak Ridge Y-12 Plant, a sensitive acoustic emission detector has been developed that will detect forcible entry through block or tile walls, concrete floors, or concrete/steel vault walls. A small, low-powered processor was designed to convert the output from a sensitive, crystal-type acoustic transducer to an alarm relay signal for use with a supervised alarm loop. The unit may be used to detect forcible entry through concrete, steel, block, tile, and/or glass

  11. Carbon Nanotube Underwater Acoustic Thermophone (United States)


    Attorney Docket No. 300009 1 of 8 A CARBON NANOTUBE UNDERWATER ACOUSTIC THERMOPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The...the Invention [0003] The present invention is an acoustically transparent carbon nanotube thermophone. (2) Description of the Prior Art [0004...amplitude of the resulting sound waves. [0006] Recently, there has been development of underwater acoustic carbon nanotube (CNT) yarn sheets capable

  12. how acoustic schwannomas?

    African Journals Online (AJOL)

    chemistry In the diagnosis of brain tumours and, furthermore, shows that acoustic schwannoma must be considered In the appropriate clinical setting, even in a group previously regarded as low-risk. S Atr Med J 1990; 78: 11-14. Studies from various parts of the world on the relative. freqIJency of primary intracranial tumours ...

  13. Nonlinear acoustic tomography

    International Nuclear Information System (INIS)

    Monk, P.


    The use of acoustic waves as probes to determine otherwise inaccessible properties of a medium is extremely widespread. Applications include sonar, medical imaging and non-destructive testing. Despite the importance of the applications, there is as yet no acceptable method for solving the full non-linear problem at resonance frequencies (frequencies at which the size of the features under investigations are approximately the wavelength of the incident acoustic field). The medical imaging problem, which consists in trying to determine the sound speed, density and absorption properties of a bounded inhomogeneous medium from scattered acoustic waves is the motivaiton for the investigation described in this paper. We shall present a solution technique for a standard model inverse acoustic scattering problem which consists of reconstructing the refractive index of an inhomogeneity from given far field data (far field data is essentially the measured scattered field at considerable distance from the inhomogeneity). This model inverse problem simplifies the inhomogeneity by neglecting density and absorption but includes two important features of the real problem: nonlinearity and illposedness. Furthermore the method we present can easily by extended to more general problems

  14. Acoustic emission from beryllium

    International Nuclear Information System (INIS)

    Heiple, C.R.; Adams, R.O.


    The acoustic emission from both powder and ingot source beryllium has been measured as a function of strain and prior heat treatment. Most measurements were made during tensile deformation, but a limited number of compression tests have also been performed. The acoustic emission observed was of the burst type, with little or no contribution from continuous type emission. The emission was characterized by the variation of burst rate and average energy per burst as a function of strain. The tensile behavior was qualitatively similar for all the materials tested. Burst rate maxima centered roughly at 0.1 percent and 1.0 percent plastic strain were observed. The magnitude but not the strain at the low strain burst rate peak was very sensitive to prior thermal treatment, while the higher strain burst rate peak was insensitive to prior heat treatment. An energy per burst maximum was observed at 0.2 percent plastic strain, the magnitude of which was moderately sensitive to heat treatment. The Kaiser effect is observed in the material studied. Emission during compression was similar to that observed in tension. The acoustic emission observed is attributed to dislocation motion, as proposed by James and Carpenter for LiF, NaCl, and Zn. Metallographic studies of the beryllium at various strains have ruled out microcracking and twin formation as major contributors to the acoustic emission

  15. Acoustic force spectroscopy

    NARCIS (Netherlands)

    Sitters, G.; Kamsma, D.; Thalhammer, G.; Ritsch-Marte, M.; Peterman, E.J.G.; Wuite, G.J.L.


    Force spectroscopy has become an indispensable tool to unravel the structural and mechanochemical properties of biomolecules. Here we extend the force spectroscopy toolbox with an acoustic manipulation device that can exert forces from subpiconewtons to hundreds of piconewtons on thousands of

  16. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... 770-205-8211 ANAwareness Week 2018 – read more Click to learn more... LOGIN CALENDAR ... DONATE Ways to Give Legacy Society Team ANA © 2018 Acoustic Neuroma Association • 600 Peachtree Parkway • Suite 108 • ...

  17. Diagnosing Acoustic Neuroma (United States)

    ... triggered by a patient’s symptoms. The most common presenting feature of acoustic neuromas, occurring in 90% of patients, is unilateral hearing loss. When "pure tone audiometry" is used, the most common finding is high frequency hearing loss. The hearing loss ...

  18. Interferometry in the era of time-domain astronomy (United States)

    Schaefer, Gail H.; Cassan, Arnaud; Gallenne, Alexandre; Roettenbacher, Rachael M.; Schneider, Jean


    The physical nature of time variable objects is often inferred from photometric light-curves and spectroscopic variations. Long-baseline optical interferometry has the power to resolve the spatial structure of time variable sources directly in order to measure their physical properties and test the physics of the underlying models. Recent interferometric studies of variable objects include measuring the angular expansion and spatial structure during the early stages of novae outbursts, studying the transits and tidal distortions of the components in eclipsing and interacting binaries, measuring the radial pulsations in Cepheid variables, monitoring changes in the circumstellar discs around rapidly rotating massive stars, and imaging starspots. Future applications include measuring the image size and centroid displacements in gravitational microlensing events, and imaging the transits of exoplanets. Ongoing and upcoming photometric surveys will dramatically increase the number of time-variable objects detected each year, providing many potential targets to observe interferometrically. For short-lived transient events, it is critical for interferometric arrays to have the flexibility to respond rapidly to targets of opportunity and optimize the selection of baselines and beam combiners to provide the necessary resolution and sensitivity to resolve the source as its brightness and size change. We discuss the science opportunities made possible by resolving variable sources using long baseline optical interferometry.

  19. Multi-link laser interferometry architecture for interspacecraft displacement metrology (United States)

    Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.


    Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80nm/√{Hz} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.

  20. Multi-link laser interferometry architecture for interspacecraft displacement metrology (United States)

    Francis, Samuel P.; Lam, Timothy T.-Y.; McClelland, David E.; Shaddock, Daniel A.


    Targeting a future Gravity Recovery and Climate Experiment (GRACE) mission, we present a new laser interferometry architecture that can be used to recover the displacement between two spacecraft from multiple interspacecraft measurements. We show it is possible to recover the displacement between the spacecraft centers of mass in post-processing by forming linear combinations of multiple, spatially offset, interspacecraft measurements. By canceling measurement error due to angular misalignment of the spacecraft, we remove the need for precise placement or alignment of the interferometer, potentially simplifying spacecraft integration. To realize this multi-link architecture, we propose an all-fiber interferometer, removing the need for any ultrastable optical components such as the GRACE Follow-On mission's triple mirror assembly. Using digitally enhanced heterodyne interferometry, the number of links is readily scalable, adding redundancy to our measurement. We present the concept, an example multi-link implementation and the signal processing required to recover the center of mass displacement from multiple link measurements. Finally, in a simulation, we analyze the limiting noise sources in a 9 link interferometer and ultimately show we can recover the 80 {nm}/√{ {Hz}} displacement sensitivity required by the GRACE Follow-On laser ranging interferometer.

  1. Atomic interactions in precision interferometry using Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Jamison, Alan O.; Gupta, Subhadeep; Kutz, J. Nathan


    We present theoretical tools for predicting and reducing the effects of atomic interactions in Bose-Einstein condensate (BEC) interferometry experiments. To address mean-field shifts during free propagation, we derive a robust scaling solution that reduces the three-dimensional Gross-Pitaevskii equation to a set of three simple differential equations valid for any interaction strength. To model the other common components of a BEC interferometer--condensate splitting, manipulation, and recombination--we generalize the slowly varying envelope reduction, providing both analytic handles and dramatically improved simulations. Applying these tools to a BEC interferometer to measure the fine structure constant, α[S. Gupta, K. Dieckmann, Z. Hadzibabic, and D. E. Pritchard, Phys. Rev. Lett. 89, 140401 (2002)], we find agreement with the results of the original experiment and demonstrate that atomic interactions do not preclude measurement to better than part-per-billion accuracy, even for atomic species with relatively large scattering lengths. These tools help make BEC interferometry a viable choice for a broad class of precision measurements.

  2. Algorithms and Array Design Criteria for Robust Imaging in Interferometry (United States)

    Kurien, Binoy George

    Optical interferometry is a technique for obtaining high-resolution imagery of a distant target by interfering light from multiple telescopes. Image restoration from interferometric measurements poses a unique set of challenges. The first challenge is that the measurement set provides only a sparse-sampling of the object's Fourier Transform and hence image formation from these measurements is an inherently ill-posed inverse problem. Secondly, atmospheric turbulence causes severe distortion of the phase of the Fourier samples. We develop array design conditions for unique Fourier phase recovery, as well as a comprehensive algorithmic framework based on the notion of redundant-spaced-calibration (RSC), which together achieve reliable image reconstruction in spite of these challenges. Within this framework, we see that classical interferometric observables such as the bispectrum and closure phase can limit sensitivity, and that generalized notions of these observables can improve both theoretical and empirical performance. Our framework leverages techniques from lattice theory to resolve integer phase ambiguities in the interferometric phase measurements, and from graph theory, to select a reliable set of generalized observables. We analyze the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures and corroborate this analysis with simulation results. We apply techniques from the field of compressed sensing to perform image reconstruction from the estimates of the object's Fourier coefficients. The end result is a comprehensive strategy to achieve well-posed and easily-predictable reconstruction performance in optical interferometry.

  3. Electron density interferometry measurement in laser-matter interaction

    International Nuclear Information System (INIS)

    Popovics-Chenais, C.


    This work is concerned with the laser-interferometry measurement of the electronic density in the corona and the conduction zone external part. Particularly, it is aimed at showing up density gradients and at their space-time localization. The first chapter recalls the density profile influence on the absorption principal mechanisms and the laser energy transport. In chapter two, the numerical and analytical hydrodynamic models describing the density profile are analysed. The influence on the density profile of the ponderomotive force associated to high oscillating electric fields is studied, together with the limited thermal conduction and suprathermal electron population. The mechanism action, in our measurement conditions, is numerically simulated. Calculations are made with experimental parameters. The measurement interaction conditions, together with the diagnostic method by high resolution laser interferometry are detailed. The results are analysed with the help of numerical simulation which is the experiment modeling. An overview of the mechanisms shown up by interferometric measurements and their correlation with other diagnostics is the conclusion of this work [fr

  4. Complex interferometry potential in case of sufficiently stable diagnostic system (United States)

    Kalal, M.


    Classical interferometry is one of the key methods among active optical diagnostics. Its more advanced version, which allows recording and subsequent reconstruction of up to three sets of data using just one data object —a complex interferogram—was developed in the past and became known as complex interferometry. Employing this diagnostics, not only the usual phase shift, but also the amplitude of the probing beam as well as the fringe contrast (leading directly to the phase shift time derivative) can be reconstructed simultaneously from such a complex interferogram. In this paper it will be demonstrated that even in the case of a not particularly good diagnostic beam quality these three quantities can be reconstructed with a high degree of accuracy provided both the diagnostic beam as well as the corresponding optical line feature a reasonable stability. Such stability requirement is important as in an ideal case four shots need to be gradually recorded (one by one): the signal complex interferogram, the reference interferogram as well as the intensity structures of the signal and reference part of the diagnostic beam. Two examples of complex interferograms obtained in experiments will be analyzed: the laser produced plasma (spark in the air) and the high pressure gas jet. A general ray-tracing based iterative algorithm will be outlined in order to increase a precision of the index of refraction spatial profile taking into account refraction effects (omitted in the Abel inversion) and employing the original reconstructed phase shift and amplitude.

  5. Matter wave interferometry as a tool for molecule metrology (United States)

    Gerlich, Stefan; Gring, Michael; Ulbricht, Hendrik; Hornberger, Klaus; Tuexen, Jens; Mayor, Marcel; Arndt, Markus


    Kapitza-Dirac-Talbot-Lau interferometry (KDTLI) has recently been established as an ideal method to perform quantum matter wave experiments with large, highly polarizable molecules in an unprecedented mass range of beyond 1000 atomic mass units [1]. Since the interference visibility reveals important information on the properties of the examined particles, such as their mass and polarizability, we identified KDTLI as a valuable tool for precision metrology. We demonstrate that quantum interferometry can therefore also serve as a powerful complement to mass spectrometry [2], in particular in cases where fragmentation may occur in the detector. Our new method is applicable to a wide range of molecules and is particularly valuable for characterizing neutral molecular beams. [1] S. Gerlich, L. Hackerm"uller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. M"uri, M. Mayor, M. Arndt, Nat. Phys. 2007, 3, 711 - 715. [2] Stefan Gerlich, Michael Gring, Hendrik Ulbricht, Klaus Hornberger, Jens T"uxen, Marcel Mayor, and Markus Arndt, Angew. Chem. Int. Ed. 2008, 47, 6195 - 6198.

  6. Select Internet Resources on Acoustics

    Directory of Open Access Journals (Sweden)

    Angela R. Davis


    Full Text Available Merriam-Webster (2016 defines acoustics as, “a science that deals with the production, control, transmission, reception, and effects of sounds.” According to Rossing (2014, the study of acoustics began in ancient Greece with Pythagoras’ study of vibrating strings on musical instruments. Since those early beginnings, famous scientists including Rayleigh, Alexander Graham Bell, and Thomas Edison, have helped expand the field of acoustics to include architectural, physical, engineering, structural, underwater, physiological and psychological, musical acoustics, and speech. Acoustics is a highly interdisciplinary field and researchers may need resources from physics, medicine, and engineering to understand all aspects of their research.

  7. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea


    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  8. High sensitivity Moire interferometry with phase shifting at nano resolution (United States)

    Chen, Bicheng

    Due to insatiate demand for miniaturization of electronics, there is a need for new techniques to measure full-field strain at micro-scale structures. In addition, Micro-Electronic-Mechanical-Systems (MEMS) require a high resolution and high sensitivity material property characterization technique. In this study, a theoretic model for a high sensitivity Moire Interferometry (MI) for measuring nano-scale strain field has been developed. The study also includes the application of the proposed measurement technique for the study of reliability of next generation nano-electronics/power electronics. The study includes both theoretical and experimental work. In the theoretical part, a far field modeling of a Moire Interferometer (MI) using the mode decomposition method is proposed according to the analytical formulation from the scalar diffraction theory. The wave propagation within the defined MI far field domain is solved analytically for a single frequency surface relieved grating structure following the Rayleigh-Sommerfeld formulation under the paraxial approximation. It is shown that the far-field electrical field and the intensity interferogram can be calculated using the mode decomposition method. Furthermore, the near-field (propagation distance EM) theory; and the EM fields are simulated in a few microns region above the surface of the diffraction grating. The study shows that there is a strong correlation (correlation factor R = 0.869) of spatial frequency response between EM field and strain field at the nanoscale. Experimentally, a 164 nm/pixel spatial resolution Moire Interferometer with automated full strain field calculation is proposed. Accurate full strain field maps are generated automatically by a combination of phase shifting technique (temporal data redundancy) and Continuous Wavelet Transform (CWT) (spatial data redundancy). A thermal experiment on BGA packaging is used to demonstrate the advantages of the proposed new design. To enhance the

  9. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai


    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  10. Material State Awareness for Composites Part I: Precursor Damage Analysis Using Ultrasonic Guided Coda Wave Interferometry (CWI). (United States)

    Patra, Subir; Banerjee, Sourav


    Detection of precursor damage followed by the quantification of the degraded material properties could lead to more accurate progressive failure models for composite materials. However, such information is not readily available. In composite materials, the precursor damages-for example matrix cracking, microcracks, voids, interlaminar pre-delamination crack joining matrix cracks, fiber micro-buckling, local fiber breakage, local debonding, etc.-are insensitive to the low-frequency ultrasonic guided-wave-based online nondestructive evaluation (NDE) or Structural Health Monitoring (SHM) (~100-~500 kHz) systems. Overcoming this barrier, in this article, an online ultrasonic technique is proposed using the coda part of the guided wave signal, which is often neglected. Although the first-arrival wave packets that contain the fundamental guided Lamb wave modes are unaltered, the coda wave packets however carry significant information about the precursor events with predictable phase shifts. The Taylor-series-based modified Coda Wave Interferometry (CWI) technique is proposed to quantify the stretch parameter to compensate the phase shifts in the coda wave as a result of precursor damage in composites. The CWI analysis was performed on five woven composite-fiber-reinforced-laminate specimens, and the precursor events were identified. Next, the precursor damage states were verified using high-frequency Scanning Acoustic Microscopy (SAM) and optical microscopy imaging.

  11. An acoustic prion assay

    Directory of Open Access Journals (Sweden)

    Gordon Hayward


    Full Text Available An acoustic prion assay has been demonstrated for sheep brain samples. Only five false positives and no false negatives were observed in a test of 45 positive and 45 negative samples. The acoustic prion sensor was constructed using a thickness shear mode quartz resonator coated with a covalently bound recombinant prion protein. The characteristic indicator of a scrapie infected sheep brain sample was an observed shoulder in the frequency decrease in response to a sample.The response of the sensor aligns with a conformational shift in the surface protein and with the propagation mechanism of the disease. This alignment is evident in the response timing and shape, dependence on concentration, cross species behaviour and impact of blood plasma. This alignment is far from sufficient to prove the mechanism of the sensor but it does offer the possibility of a rapid and inexpensive additional tool to explore prion disease. Keywords: Prions, Thickness shear mode quartz sensor

  12. Suppression through acoustics (United States)

    Beck, Kevin D.; Short, Kenneth R.; VanMeenen, Kirsten M.; Servatius, Richard J.


    This paper reviews research conducted by our laboratory exploring the possible use of acoustical stimuli as a tool for influencing behavior. Over the course of several programs, different types of acoustic stimuli have been evaluated for their effectiveness in disrupting targeting, balance, and high-order cognitive processes in both humans and animals. Escape responses are of particular use in this regard. An escape response serves not only as an objective measure of aversion, but as a potential substitute for ongoing behavior. We have also assessed whether the level of performance changes if the individual does not perform an escape response. In general these studies have both suggested certain types of sounds are more aversive or distracting than others. Although the laboratory development of additional stimuli needs to continue, we are taking the next step by testing some of the more effective stimuli in more applied experimental scenarios including those involving group dynamics.

  13. Acoustic classification of dwellings

    DEFF Research Database (Denmark)

    Berardi, Umberto; Rasmussen, Birgit


    Schemes for the classification of dwellings according to different building performances have been proposed in the last years worldwide. The general idea behind these schemes relates to the positive impact a higher label, and thus a better performance, should have. In particular, focusing on sound...... insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...... of descriptors, number of classes, and class intervals occurred between national schemes. However, a proposal “acoustic classification scheme for dwellings” has been developed recently in the European COST Action TU0901 with 32 member countries. This proposal has been accepted as an ISO work item. This paper...

  14. A Martian acoustic anemometer. (United States)

    Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W


    An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions.

  15. Osmotic Acoustic Source (United States)


    one side of the radiating surface that is on the order of one meter the length and width of the plane of the enclosure. The walls of the enclosure...DEPARTMENT OF THE NAVY OFFICE OF COUNSEL NAVAL UNDERSEA WARFARE CENTER DIVISION 1176 HOWELL STREET NEWPORT Rl 02841-1708...across a semi-permeable membrane. (2) Description of the Prior Art [0004] Low frequency acoustic sources such as in a range of one to ten Hertz are

  16. The acoustics of snoring. (United States)

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline


    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as judged by the bed partner, is due to an altered sound spectrum. Whether some acoustic aspects of snoring, such as changes in pitch, have predictive value for the presence of

  17. Deep Water Ocean Acoustics (United States)


    to a maximum of 143.1°. The back- azimuth as a function of frequency does show coherent behavior, at least within the observed 0.3° small time...level vs. Phone Number (similar to depth) as function of time as the source moved from 10-20 km away. The structure of this interference pattern...dimensional long-range acoustic propagation for improved localisation methods” Dr. Heaney visited Emanuel Coelho at CMRE in La Spezia Italy and

  18. Acoustic emission source modeling

    Directory of Open Access Journals (Sweden)

    Hora P.


    Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.

  19. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)


    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  20. Acoustically enhanced heat transport (United States)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.


    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  1. Seismic Interferometry Using Persistent Noise Sources for Temporal Subsurface Monitoring (United States)

    Dales, Philippe; Audet, Pascal; Olivier, Gerrit


    In passive source seismology, seismic interferometry typically refers to the cross correlation of ambient noise to construct an estimate of the Green's function between sensors. The presence of persistent natural and/or anthropogenic sources can bias or prevent the retrieval of these estimated Green's functions. Here we show how these strong persistent sources can be used to measure small changes in the medium between a source and either (or both) source-sensor pairs. The method relies on localizing the sources and using this information to identify and select cross-correlation functions for each source of interest. We illustrate this method by monitoring growth of a block cave at an underground mine using three nearly continuously operating ore crushers which dominate the wavefield. This technique should work equally well in natural environments using sources such as volcanic tremor, hydrothermal bubble cavitation, and microseisms.

  2. Application of resonance interferometry and holography for plasma diagnostics

    International Nuclear Information System (INIS)

    Drejden, G.V.; Zajdel', A.N.; Ostrovksya, G.V.; Ostrovskij, Yu.I.; Pobedonostseva, N.A.; Tanin, L.V.; Filippov, V.N.; Shedova, E.N.


    Methods of resonance interferometry and holography are discussed, and limits of their applications are considered. Resonance methods are distinguished by high sensitivity and selectivity in the comparison with conventional interferometric and holographic methods. Methods discussed are mainly applied in a comparatively dense plasma, although in some cases it can determine atom densities up to Nsub(a) = 10 9 cm -3 and lower. In the case of the plasma with Nsub(e) = 10 18 -10 19 cm -3 a minimal atom density observable is near Nsub(a) = 10 14 cm -3 . Requirements light sources are specified, and investigation methods are described. For potassium, sodium, lithium, and hydrogen plasma as examples the applicability of these methods is illustrated: atom and electron density are determined, and the plasma dynamics is investigated

  3. First measurement of laser wakefield oscillations by longitudinal interferometry

    International Nuclear Information System (INIS)

    Siders, C.W.; Le Blanc, S.P.; Rau, B.; Fisher, D.; Tajima, T.; Downer, M.C.; Babine, A.; Stepanov, A.; Sergeev, A.


    In this paper femtosecond time resolved measurements of the longitudinal and radial structure of laser wakefield oscillations using an all optical technique known as interferometric photon acceleration or longitudinal interferometry. In the experiment a probe pulse co-propagates behind an intense pulse (I=3x10 17 W/cm 2 , λ=0.8μm, τ=100fs) tightly focused in a helium gas. As the pump pulse ionizes the gas and exerts ponderomotive pressure on the resulting plasma, the probe pulses experiences electron density gradients behind the pump pulse which cause both DC phase shifts as well as spectral shifting of the probe pulse frequency spectrum. In order to detect the small changes in the frequency and phase with femtosecond resolution, our photon accelerator diagnostic uses multiple, temporally separated probe pulses which produce frequency domain interferograms. (AIP) copyright 1997 American Institute of Physics

  4. Demystifying back scatter interferometry: a sensitive refractive index detector

    DEFF Research Database (Denmark)

    Jepsen, Søren Terpager; Jørgensen, Thomas Martini; Trydal, Torleif


    acting like a common-path interferometer. METHODS: A HeNe laser is directed at a glass capillary with inner diameter of 1.4 mm and reflected light from air/glass and liquid/glass interfaces interfere to form an RI dependent intensity fringe pattern at a CCD detector. The fringe shift relative......BACKGROUND: Back Scatter Interferometry (BSI) is a sensitive method for detecting changes of the refractive index (RI) in small capillaries. The method was originally developed as an off-axial column detector for use in Liquid Chromatography or Capillary Electrophoresis systems, but it has been...... a set of NaCl standard solutions. RESULTS: Ray-tracing show that the basic interference pattern recorded with BSI can be fully described by two beams, one reflected from the surface of the capillary and a beam reflected from the back of the capillary wall. In accordance we find that the interferometric...

  5. Multi-image oil-film interferometry skin friction measurements

    International Nuclear Information System (INIS)

    Naughton, J W; Hind, M D


    The benefits of analyzing multiple interferogram images obtained using oil-film interferometry in order to determine wall shear stress are assessed. Both dual- and multi-image analysis approaches are implemented and compared to standard single interferogram approaches. Each of the analysis approaches is derived from the thin oil-film equation. To assess the different implementations, both experimental interferograms and simulated oil films are used. The simulations determine the oil-film height as a function of space and time by solving the thin oil-film equation subject to a known wall shear stress distribution, whereas experimental interferograms were obtained in a turbulent flat plate boundary layer. The results of analyzing these data with the three different analysis approaches suggest that they all work equally well when test conditions are approximately steady. For tunnels with long transients at startup or when multiple test conditions need to be measured in a single run, the multi-image approach is recommended. (paper)

  6. Point source atom interferometry with a cloud of finite size

    Energy Technology Data Exchange (ETDEWEB)

    Hoth, Gregory W., E-mail:; Pelle, Bruno; Riedl, Stefan; Kitching, John; Donley, Elizabeth A. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)


    We demonstrate a two axis gyroscope by the use of light pulse atom interferometry with an expanding cloud of atoms in the regime where the cloud has expanded by 1.1–5 times its initial size during the interrogation. Rotations are measured by analyzing spatial fringe patterns in the atom population obtained by imaging the final cloud. The fringes arise from a correlation between an atom's initial velocity and its final position. This correlation is naturally created by the expansion of the cloud, but it also depends on the initial atomic distribution. We show that the frequency and contrast of these spatial fringes depend on the details of the initial distribution and develop an analytical model to explain this dependence. We also discuss several challenges that must be overcome to realize a high-performance gyroscope with this technique.

  7. All-optical optoacoustic microscope based on wideband pulse interferometry. (United States)

    Wissmeyer, Georg; Soliman, Dominik; Shnaiderman, Rami; Rosenthal, Amir; Ntziachristos, Vasilis


    Optical and optoacoustic (photoacoustic) microscopy have been recently joined in hybrid implementations that resolve extended tissue contrast compared to each modality alone. Nevertheless, the application of the hybrid technique is limited by the requirement to combine an optical objective with ultrasound detection collecting signal from the same micro-volume. We present an all-optical optoacoustic microscope based on a pi-phase-shifted fiber Bragg grating (π-FBG) with coherence-restored pulsed interferometry (CRPI) used as the interrogation method. The sensor offers an ultra-small footprint and achieved higher sensitivity over piezoelectric transducers of similar size. We characterize the spectral bandwidth of the ultrasound detector and interrogate the imaging performance on phantoms and tissues. We show the first optoacoustic images of biological specimen recorded with π-FBG sensors. We discuss the potential uses of π-FBG sensors based on CRPI.

  8. Demonstration of SU(2)-symmetry by neutron interferometry

    International Nuclear Information System (INIS)

    Rauch, H.; Zeilinger, A.


    Neutron interferometry provides a direct test of the 4π-symmetry of a fermion wave function. The experiments performed with perfect crystal interferometers to demonstrate that SU(2)-symmetry property are reviewed. The measured periodicity value of 716.8 +- 3.8 degrees, which is the most precise one obtained up to now, is in good agreement with theoretical prediction. Effects are discussed which may give rise to deviations of the experimental result from the 4π value. Furthermore, an account of epistemological aspects is given relating to the question of the operational applicability of the term rotation in the interpretation of the experiments. Finally, proposals for new, more precise, experiments are made. Some of these experiments may have particular relevance in the context of considerations of a breaking of SU(2) symmetry under strong interaction

  9. Super-virtual refraction interferometry: an engineering field data example

    KAUST Repository

    Hanafy, Sherif M.


    The theory of super-virtual refraction interferometry (SVI) was recently developed to enhance the signal-to-noise ratio (SNR) of far-offset traces in refraction surveys. This enhancement of the SNR is proportional to √N and can be as high as N if an iterative procedure is used. Here N is the number of post-critical shot positions that coincides with the receiver locations. We now demonstrate the SNR enhancement of super-virtual refraction traces for one engineering-scale synthetic data and two field seismic data sets. The field data are collected over a normal fault in Saudi Arabia. Results show that both the SNR of the super-virtual data set and the number of reliable first-arrival traveltime picks are significantly increased. © 2012 European Association of Geoscientists & Engineers.

  10. Collinear phase matching for second harmonic generation using conoscopic interferometry (United States)

    De, A.; Puri, A.


    The problem of finding phase-matching directions in noncentrosymmetric biaxial crystals is simplified here by the use of Conoscopic interferometry. Based on vector relations for wave propagation in birefringent media and solutions to phase-matching equations, we show that phase matching directions can be located on the conoscopic interferograms and that fringe numbers for dark-isochromes can be used as a guide to find phase-matching directions for a biaxial crystal. This technique can be generalized and extended to any anisotropic crystal. We have demonstrated this method for the particular case of a biaxial KTiOPO4 crystal, where it is found to be particularly suitable for finding the optimum-phase-matching directions.

  11. Very Long Baseline Interferometry: Dependencies on Frequency Stability (United States)

    Nothnagel, Axel; Nilsson, Tobias; Schuh, Harald


    Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.

  12. Phase retrieval for interferometry imaging from microlens array (United States)

    Zhu, Zhihao; Qiu, Minpu


    It was considered to get interferometry data from microlens array and reconstruct initial image through it directly, while which used to be taken to calculate the phase difference to get the structure of objects in measurement technology. It broke through the depend of resolution improvement on the size of apertures, reducing the volume of image system vastly. Nevertheless, on account of the phase deficiency, this method could not show the details well enough to be generally used in measurement and control systems. Through support estimation of the target, with the feature extraction technology, the deconvolution function could be got, by which the sidelobe and pinniform structure in the "ditry" image caused by the lack of frequency could be eliminated, and phase retrieval was done. Simulation did the reconstruction experiment, yet had got relatively good detail presentations.

  13. Frequency selection for coda wave interferometry in concrete structures. (United States)

    Fröjd, Patrik; Ulriksen, Peter


    This study contributes to the establishment of frequency recommendations for use in coda wave interferometry structural health monitoring (SHM) systems for concrete structures. To this end, codas with widely different central frequencies were used to detect boreholes with different diameters in a large concrete floor slab, and to track increasing damage in a small concrete beam subjected to bending loads. SHM results were obtained for damage that can be simulated by drilled holes on the scale of a few mm or microcracks due to bending. These results suggest that signals in the range of 50-150kHz are suitable in large concrete structures where it is necessary to account for the high attenuation of high-frequency signals. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Interferometry and MHD turbulence measurements in toroidal pinches

    International Nuclear Information System (INIS)

    Dutt, T.L.; Evans, D.E.; Wilcock, P.D.


    A 10.6 micron interferometer produced 2 to 3 good quality fringes in the HBTX plasma. There is substantial agreement in the electron densities determined by interferometry and by Thomson scattering, but since the former is an absolute measurement and is systematically lower than the Thomson scattering values, the latter may be too great by about 35%. In RF Pinches, turbulence associated with the instability deflects the beam and corrupts the interferogram. However, if the intensity fluctuations induced in this beam by the turbulence, are measured, as is done in the second experiment performed in the FRSX plasma with a HCN laser, the frequency spectrum of the turbulence can be deduced. In this plasma, rms fluctuations in the density were measured by this means to be 20%, and the dominant frequency of the fluctuations multiplied by the tube diameter was approximately Alfven speed, favouring an interpretation of the gross turbulence in this plasma in terms of Alfen waves. (U.K.)

  15. Transverse beam profile reconstruction using synchrotron radiation interferometry

    Directory of Open Access Journals (Sweden)

    L. Torino


    Full Text Available Transverse beam size measurements in new generation of synchrotron light sources is a challenging task due to their characteristic small beam emittances and low couplings. Since the late 1990s, synchrotron radiation interferometry (SRI has been used in many accelerators to measure the beam size through the analysis of the spatial coherence of the synchrotron light. However, the standard SRI using a double-aperture system provides the beam size projection in a given direction. For this reason, the beam shape is not fully characterized because information about possible transverse beam tilts is not determined. In this report, we describe a technique to fully reconstruct the transverse beam profile based on a rotating double-pinhole mask, together with experimental results obtained at ALBA under different beam couplings. We also discuss how this method allows us to infer ultrasmall beam sizes in case of limitations of the standard SRI.

  16. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.


    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k......Rad. The precision limits of the measurement of dose were found to be ±4%. The procedure was simple and the holographic equipment stable and compact, thus allowing experimentation under routine laboratory conditions and limited space....

  17. Adaptive Interferometry Sensor for Detection of Nanoscale Displacements

    Directory of Open Access Journals (Sweden)

    Roman V. ROMASHKO


    Full Text Available In this work we present an adaptive holographic interferometry sensing system for measurement of nanoscale displacements of micro- and macro-objects. The system is based on using dynamic hologram continuously recorded in photorefractive CdTe crystal. Theoretical limit for displacement detection which can be provided by the system is 0.1 nm. It is experimentally demonstrated that system is able to detect a displacement from 0.7 nm up to 266 nm in linear regime. We also present theoretical model of adaptive interferometer operation which take into account a displacement speed. Due to its adaptive properties the measurement system can be used for inspection of sub-micro-scale objects with arbitrary shape and surface profile.

  18. Ocean Acoustic Propagation and Coherence Studies (United States)


    Propagation variability is an inescapable complicating factor for both active and passive sonar systems, and for underwater acoustic communications...framework, to be exploited in the use of underwater sound in shallow water. Our knowledge of acoustic field patterns in shallow water, building block...Ocean Acoustics and Signals Laboratory . Five acoustic studies are planned: 1. Canyon and slope acoustics : Identify purely geometrically controlled

  19. Towards Noise Tomography and Passive Monitoring Using Distributed Acoustic Sensing (United States)

    Paitz, P.; Fichtner, A.


    Distributed Acoustic Sensing (DAS) has the potential to revolutionize the field of seismic data acquisition. Thanks to their cost-effectiveness, fiber-optic cables may have the capability of complementing conventional geophones and seismometers by filling a niche of applications utilizing large amounts of data. Therefore, DAS may serve as an additional tool to investigate the internal structure of the Earth and its changes over time; on scales ranging from hydrocarbon or geothermal reservoirs to the entire globe. An additional potential may be in the existence of large fibre networks deployed already for telecommunication purposes. These networks that already exist today could serve as distributed seismic antennas. We investigate theoretically how ambient noise tomography may be used with DAS data. For this we extend the theory of seismic interferometry to the measurement of strain. With numerical, 2D finite-difference examples we investigate the impact of source and receiver effects. We study the effect of heterogeneous source distributions and the cable orientation by assessing similarities and differences to the Green's function. We also compare the obtained interferometric waveforms from strain interferometry to displacement interferometric wave fields obtained with existing methods. Intermediate results show that the obtained interferometric waveforms can be connected to the Green's Functions and provide consistent information about the propagation medium. These simulations will be extended to reservoir scale subsurface structures. Future work will include the application of the theory to real-data examples. The presented research depicts the early stage of a combination of theoretical investigations, numerical simulations and real-world data applications. We will therefore evaluate the potentials and shortcomings of DAS in reservoir monitoring and seismology at the current state, with a long-term vision of global seismic tomography utilizing DAS data from

  20. P-REx: The Piston Reconstruction Experiment for infrared interferometry (United States)

    Widmann, Felix; Pott, Jörg-Uwe; Velasco, Sergio


    For sensitive infrared interferometry, it is crucial to control the differential piston evolution between the used telescopes. This is classically done by the use of a fringe tracker. In this work, we develop a new method to reconstruct the temporal piston variation from the atmosphere, by using real-time data from adaptive optics (AO) wavefront sensing: the Piston Reconstruction Experiment (P-REx). In order to understand the principle performance of the system in a realistic multilayer atmosphere, it is first extensively tested in simulations. The gained insights are then used to apply P-REx to real data, in order to demonstrate the benefit of using P-REx as an auxiliary system in a real interferometer. All tests show positive results, which encourages further research and eventually a real implementation. Especially, the tests on on-sky data showed that the atmosphere is, under decent observing conditions, sufficiently well structured and stable, in order to apply P-REx. It was possible to conveniently reconstruct the piston evolution in two-thirds of the data sets from good observing conditions (r0 ˜ 30 cm). The main conclusion is that applying the piston reconstruction in a real system would reduce the piston variation from around 10 μm down to 1-2 μm over time-scales of up to two seconds. This suggests an application for mid-infrared interferometry, for example for MATISSE at the very large telescope interferometer or the large binocular telescope interferometer. P-REx therefore provides the possibility to improve interferometric measurements without the need for more complex AO systems than already in regular use at 8-m-class telescopes.

  1. Persistent Scatterer Interferometry (PSI Technique for Landslide Characterization and Monitoring

    Directory of Open Access Journals (Sweden)

    Nicola Casagli


    Full Text Available : The measurement of landslide superficial displacement often represents the most effective method for defining its behavior, allowing one to observe the relationship with triggering factors and to assess the effectiveness of the mitigation measures. Persistent Scatterer Interferometry (PSI represents a powerful tool to measure landslide displacement, as it offers a synoptic view that can be repeated at different time intervals and at various scales. In many cases, PSI data are integrated with in situ monitoring instrumentation, since the joint use of satellite and ground-based data facilitates the geological interpretation of a landslide and allows a better understanding of landslide geometry and kinematics. In this work, PSI interferometry and conventional ground-based monitoring techniques have been used to characterize and to monitor the Santo Stefano d’Aveto landslide located in the Northern Apennines, Italy. This landslide can be defined as an earth rotational slide. PSI analysis has contributed to a more in-depth investigation of the phenomenon. In particular, PSI measurements have allowed better redefining of the boundaries of the landslide and the state of activity, while the time series analysis has permitted better understanding of the deformation pattern and its relation with the causes of the landslide itself. The integration of ground-based monitoring data and PSI data have provided sound results for landslide characterization. The punctual information deriving from inclinometers can help in defining the actual location of the sliding surface and the involved volumes, while the measuring of pore water pressure conditions or water table level can suggest a correlation between the deformation patterns and the triggering factors.

  2. Surface deformation of Taipei basin detected by Differential SAR Interferometry (United States)

    Chen, Y.; Chang, C.; Yen, J.; Lin, M.


    Taiwan island is located between the southeastern periphery of the Eurasian plate and the Philippine Sea plate. The two converging plates produced very active tectonics, and can be seen by the high seismicity and deformation rate. Taipei, the highest populated area, center of politics, and economics in Taiwan, is in Taipei basin at the northern part of the island. There are several faults in and surrounding the basin, and the city is threatened with a high geological hazard potential that we should keep monitoring the crustal deformation to prevent and mitigate the disaster effect. The aims of our study is to apply the DInSAR technique to determine the surface deformation of Taipei basin area, and discussing the relation between the manifestation of deformation and the tectonically active region, Shanjiao fault. In the past few years, Differential SAR Interferometry (DInSAR) has been proved to be a powerful technique for monitoring the neotectonic activities and natural hazards. High spatial sampling rate of DInSAR technique allows studies of surface deformations with centimeter accuracy. In this area, we used ERS-1/2 SAR images acquired from 1993 to 2005 to generate 10 differential interferograms and processed the data using DIAPASON developed by CNES and SRTM global DEM.From our results, the deformation rate in Taipei is generally high in the western end of the basin along the Shanjiao fault and decrease eastward, while the subsidence center often appeared in the center of the Taipei basin. The neotectonic activity of the Shanjiao fault appeared to be insignificant by itself but it seemed to separate the subsiding basin from the surrounding areas. Further comparison between our DInSAR results and isopach of the Taipei basin revealed that the subsidence centers appeared in the interferograms did not coincide with the location where the sediments are thickest. Our results from differential interferometry will be compared to other geodetic measurements such as the

  3. Seismic tomography and ambient noise reflection interferometry on Reykjanes, SW Iceland (United States)

    Jousset, Philippe; Verdel, Arie; Ágústsson, Kristján; Blanck, Hanna; Franke, Steven; Metz, Malte; Ryberg, Trond; Weemstra, Cornelius; Hersir, Gylfi; Bruhn, David


    approximated by auto-correlating and stacking station ambient noise data for long periods of time. With few assumptions, single-station auto-correlations provide, underneath the station locations, local 1D high-resolution structural acoustic-contrast versus depth information. By applying the method to all network stations, a sparse map can thus be made of dominant zero-offset P-wave reflectivity in the upper few kilometres of the Reykjanes area. A logical further extension of this approach is to perform cross-correlation of all station-pairs in this seismometer network. In order to improve the lateral resolution of the subsurface structure, identifying non-zero-offset reflectivity in the pre-stack virtual source cross-correlation panels provides the opportunity to obtain subsurface reflectivity versus depth point information at locations in-between the seismic station positions. Time-lapse variations in these subsurface reflectivity can be studied by computing the correlations in different, but extended, time periods. We present results of the here described methods on optimized station network data. We show that the application of ambient noise interferometry for reflection retrieval and comparison of the herewith obtained results with those from applying both classical and noise tomography methods reduces uncertainties in, for geothermal exploitation, relevant subsurface parameters. In particular it increases the spatial resolution of subsurface images as compared to tomographic imaging results.

  4. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James


    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  5. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R


    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  6. The Balloon Experimental Twin Telescope for Infrared Interferometry : Returning to Flight (United States)

    National Aeronautics and Space Administration — The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter far-infrared (30-90 micron) Michelson interferometer, designed to fly on a...

  7. Neutron interferometry lessons in experimental quantum mechanics, wave-particle duality, and entanglement

    CERN Document Server

    Rauch, Helmut


    The quantum interference of de Broglie matter waves is probably one of the most startling and fundamental aspects of quantum mechanics. It continues to tax our imaginations and leads us to new experimental windows on nature. Quantum interference phenomena are vividly displayed in the wide assembly of neutron interferometry experiments, which have been carried out since the first demonstration of a perfect silicon crystal interferometer in 1974. Since the neutron experiences all four fundamental forces of nature (strong, weak, electromagnetic, and gravitational), interferometry with neutrons provides a fertile testing ground for theory and precision measurements. Many Gedanken experiments of quantum mechanics have become real due to neutron interferometry. Quantum mechanics is a part of physics where experiment and theory are inseparably intertwined. This general theme permeates the second edition of this book. It discusses more than 40 neutron interferometry experiments along with their theoretical motivation...

  8. On the relation between seismic interferometry and the migration resolution function

    NARCIS (Netherlands)

    Thorbecke, J.W.; Wapenaar, C.P.A.


    Seismic interferometry refers to the process of retrieving new seismic responses by crosscorrelating seismic observations at different receiver locations. Seismic migration is the process of forming an image of the subsurface by wavefield extrapolation. Comparing the expressions for backward

  9. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry, Phase II (United States)

    National Aeronautics and Space Administration — We propose to build a compact, high-precision single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Based on...

  10. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry, Phase I (United States)

    National Aeronautics and Space Administration — We propose to design a compact, high-precision, single-axis accelerometer based on atom interferometry that is applicable to operation in space environments. Our...

  11. Acoustic Imaging of Combustion Noise (United States)

    Ramohalli, K. N.; Seshan, P. K.


    Elliposidal acoustic mirror used to measure sound emitted at discrete points in burning turbulent jets. Mirror deemphasizes sources close to target source and excludes sources far from target. At acoustic frequency of 20 kHz, mirror resolves sound from region 1.25 cm wide. Currently used by NASA for research on jet flames. Produces clearly identifiable and measurable variation of acoustic spectral intensities along length of flame. Utilized in variety of monitoring or control systems involving flames or other reacting flows.

  12. Tunable coupled surface acoustic cavities (United States)

    de Lima, M. M.; Santos, P. V.; Kosevich, Yu. A.; Cantarero, A.


    We demonstrate the electric tuning of the acoustic field in acoustic microcavities (MCs) defined by a periodic arrangement of metal stripes within a surface acoustic delay line on LiNbO3 substrate. Interferometric measurements show the enhancement of the acoustic field distribution within a single MC, the presence of a "bonding" and "anti-bonding" modes for two strongly coupled MCs, as well as the positive dispersion of the "mini-bands" formed by five coupled MCs. The frequency and amplitude of the resonances can be controlled by the potential applied to the metal stripes.

  13. Sinusoidal Representation of Acoustic Signals (United States)

    Honda, Masaaki

    Sinusoidal representation of acoustic signals has been an important tool in speech and music processing like signal analysis, synthesis and time scale or pitch modifications. It can be applicable to arbitrary signals, which is an important advantage over other signal representations like physical modeling of acoustic signals. In sinusoidal representation, acoustic signals are composed as sums of sinusoid (sine wave) with different amplitudes, frequencies and phases, which is based on the timedependent short-time Fourier transform (STFT). This article describes the principles of acoustic signal analysis/synthesis based on a sinusoid representation with focus on sine waves with rapidly varying frequency.

  14. Acoustic Communications Measurement Systems (ACOMMS) (United States)

    Federal Laboratory Consortium — FUNCTION: Design and develop adaptive signal processing techniques to improve underwater acoustic communications and networking. Phase coherent and incoherent signal...

  15. NDE Acoustic Microscopy Research Laboratory (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  16. Combined Environment Acoustic Chamber (CEAC) (United States)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  17. Analysis of reconstructed interference fields in digital holographic interferometry using the polynomial phase transform

    International Nuclear Information System (INIS)

    Gorthi, Sai Siva; Rastogi, Pramod


    A noisy wrapped phase map is the end-output of commonly employed phase estimation methods in digital holographic interferometry. Hence filtering and unwrapping are necessary to obtain continuous phase distributions. This paper introduces a new approach for phase estimation in digital holographic interferometry using the polynomial phase transform. The proposed approach directly provides an accurate estimation of the unwrapped phase distribution from a noisy reconstructed interference field, thereby bypassing cumbersome and error-prone filtering and 2D phase unwrapping procedures

  18. Potential of the McMath-Pierce 1.6-Meter Solar Telescope for Speckle Interferometry (United States)

    Harshaw, Richard; Jones, Gregory; Wiley, Edward; Boyce, Patrick; Branston, Detrick; Rowe, David; Genet, Russell


    We explored the aiming and tracking accuracy of the McMath-Pierce 1.6 m solar telescope at Kitt Peak National Observatory as part of an investigation of using this telescope for speckle interferometry of close visual double stars. Several slews of various lengths looked for hysteresis in the positioning system (we found none of significance) and concluded that the 1.6 m telescope would make a useful telescope for speckle interferometry.

  19. Precise signal amplitude retrieval for a non-homogeneous diagnostic beam using complex interferometry approach

    Czech Academy of Sciences Publication Activity Database

    Krupka, M.; Kálal, M.; Dostál, Jan; Dudžák, Roman; Juha, Libor


    Roč. 12, Aug (2017), s. 1-6, č. článku C08012. ISSN 1748-0221 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Institutional support: RVO:68378271 Keywords : magnetic-field measurements * fully automated-analysis * laser-produced plasmas * image processing * interferometry * plasma diagnostics - interferometry * spectroscopy and imaging Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.220, year: 2016

  20. Quantitative measurement of the vibrational amplitude and phase in photorefractive time-average interferometry: A comparison with electronic speckle pattern interferometry

    DEFF Research Database (Denmark)

    Rohleder, Henrik; Petersen, Paul Michael; Marrakchi, A.


    and amplitude of the vibrating structure are demonstrated in photorefractive time average interferometry. The photorefractive interferometer is compared with the performance of a commercial electronic speckle pattern interferometer (ESPI). It is shown that the dynamic photorefractive holographic interferometer......Time-average interferometry is dealt with using four-wave mixing in photorefractive Bi12SiO20. By introducing a proper sinusoidal phase shift in the forward pump beam it is possible to measure the amplitude and phase everywhere on a vibrating object. Quantitative measurements of the phase...

  1. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.


    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  2. Double negative acoustic metastructure for attenuation of acoustic emissions (United States)

    Kumar, Sanjay; Bhushan, Pulak; Prakash, Om; Bhattacharya, Shantanu


    Acoustic metamaterials hold great potential for attenuation of low frequency acoustic emissions. However, a fundamental challenge is achieving high transmission loss over a broad frequency range. In this work, we report a double negative acoustic metastructure for absorption of low frequency acoustic emissions in an aircraft. This is achieved by utilizing a periodic array of hexagonal cells interconnected with a neck and mounted with an elastic membrane on both ends. An average transmission loss of 56 dB under 500 Hz and an overall absorption of over 48% have been realized experimentally. The negative mass density is derived from the dipolar resonances created as a result of the in-phase movement of the membranes. Further, the negative bulk modulus is ascribed to the combined effect of out-of-phase acceleration of the membranes and the Helmholtz resonator. The proposed metastructure enables absorption of low frequency acoustic emissions with improved functionality that is highly desirable for varied applications.

  3. Acoustic Mechanical Feedthroughs (United States)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea


    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  4. Study of shock-wave impingement on perforated plates using high-speed holographic interferometry (United States)

    Skews, Beric W.; Takayama, Kazuyoshi


    It has recently been established that the porosity of surfaces can have a significant effect on the reflection geometry of shock waves, and thus on the loads that are generated. This paper describes a comprehensive series of tests on the patterns of shock wave reflection from a surface covered with a series of slits, over the full range of angles of incidence from glancing to normal. The use of double-pulse interferometry is shown to be ideally suited to the study of complex compressible flow fields of this type, not only because of the high resolution but also because the tracking of fringes gives a very clear indication of both the general flow field as well as the fine structure, and thus helps clarify the mechanisms whereby the interaction process is modified from the case of reflection off a plane impervious wall. These features of the method allow a number of effects to be established which have not previously been evident, or are in conflict with the assumptions of previous studies. Specifically it is shown that the inflow angle relative to the plate is almost constant (at about 17 degrees) for shock incidence angles from zero to about 50 degrees and that the flow leaves the plate almost normal to the surface; although there is a slight drift in a direction opposite to that of the shock induced flow. Furthermore it is shown that many of the flow variables, and specifically the inflow velocity, exhibit a maximum in the vicinity of transition from regular to Mach reflection. An analysis of the motion of the acoustic waves generated from the lips of the perforations allows estimates to be made of the constancy of the inflow along the surface. These waves are convected with the flow and as they do not meet the wall at a right angle show that the convection is towards the wall. Using this method it is found that the inflow is constant behind the reflected wave in regular reflection but variable for the case of Mach reflection. Photographs of the region under the

  5. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model......The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...

  6. Acoustic Properties of Cellulose (United States)

    Trematerra, Amelia; Lombardi, Ilaria


    Cellulose is the oldest material for thermal insulation in construction field. Thomas Jefferson was the first architect that used the cellulose in his project of the Monticello house (1800). But only after 1945 that the cellulose from newsprint was used across America and northern Europe. In the 70s with the energy crisis it Austria, Czech Republic, Switzerland and Germany began the production of cellulose derived from paper newspapers. It used for both winter and summer thermal insulation, while respecting the environment. In this paper are reported acoustic measurements carried out with the tube of Kundt, with the cellulose melted and with glue with different thicknesses.

  7. Lecture Notes On Acoustics

    International Nuclear Information System (INIS)

    Kim, Yang Han


    This book mentions string vibration and wave, one-dimension wave and wave equation, characteristic impedance, governing equation of string, and wave energy from string, wave equation of wave and basic physical quantity like one-dimension wave equation, sound unit, sound intensity and energy, sound movement in a surface of discontinuity with transmission loss of sound by partition, and Snell's law, radiation, scatter and diffraction and sound in closed space with Sabine's theory, sound characteristic of closed space and duct acoustics.

  8. Quantum positron acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Metref, Hassina; Tribeche, Mouloud [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)


    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  9. Dynamic acoustic tractor beams

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: [Chevron, Area 52 Technology – ETC, Santa Fe, New Mexico 87508 (United States)


    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  10. Acoustic Center or Time Origin?

    DEFF Research Database (Denmark)

    Staffeldt, Henrik


    The paper discusses the acoustic center in relation to measurements of loudspeaker polar data. Also, it presents the related concept time origin and discusses the deviation that appears between positions of the acoustic center found by wavefront based and time based measuring methods....

  11. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans


    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  12. Acoustic Emission Technology and Application

    International Nuclear Information System (INIS)

    Joo, Y. S.; Lim, S. H.; Eom, H. S.; Kim, J. H.; Jung, H. K.


    Acoustic emission is the elastic wave that is generated by the rapid release of energy from the localized sources within a material. After the observation of acoustic emission phenomenon in 1950, the research and further investigation had been performed. Acoustic emission examination becomes a rapidly matured nondestructive testing method with demonstrated capabilities for characterizing material behavior and for detecting the defect. It is of interest as a possible passive monitoring technique for detecting, locating and characterizing the defects in component and structure. Acoustic emission technology has recently strengthened the on-line monitoring application for the detection of incipient failures and the assurance of structural integrity. The field of acoustic emission testing is still growing vigorously and presents many challenges. Especially, acoustic emission has been successfully applied in the leak detection of primary pressure boundary of nuclear power plants. In this state-of-art report, the principle, measurement and field applications of acoustic emission technique is reviewed and summarized. Acoustic emission technology will contribute to the assurance of nuclear safety as the on-line monitoring technique of structural integrity of NSSS components and structures

  13. Assessing ScanSAR Interferometry for Deformation Studies (United States)

    Buckley, S. M.; Gudipati, K.


    There is a trend in civil satellite SAR mission design to implement an imaging strategy that incorporates both stripmap mode and ScanSAR imaging. This represents a compromise between high resolution data collection and a desire for greater spatial coverage and more frequent revisit times. However, mixed mode imaging can greatly reduce the number of stripmap images available for measuring subtle ground deformation. Although ScanSAR-ScanSAR and ScanSAR-stripmap repeat-pass interferometry have been demonstrated, these approaches are infrequently used for single interferogram formation and nonexistent for InSAR time series analysis. For future mission design, e.g., a dedicated US InSAR mission, the effect of various ScanSAR system parameter choices on InSAR time series analysis also remains unexplored. Our objective is to determine the utility of ScanSAR differential interferometry. We will demonstrate the use of ScanSAR interferograms for several previous deformation studies: localized and broad-scale urban land subsidence, tunneling, volcanic surface movements and several examples associated with the seismic cycle. We also investigate the effect of various ScanSAR burst synchronization levels on our ability to detect and make quality measurements of deformation. To avoid the issues associated with Envisat ScanSAR burst alignment and to exploit a decade of InSAR measurements, we simulate ScanSAR data by bursting (throwing away range lines of) ERS-1/2 data. All the burst mode datasets are processed using a Modified SPECAN algorithm. To investigate the effects of burst misalignment, a number of cases with varying degrees of burst overlap are considered. In particular, we look at phase decorrelation as a function of percentage of burst overlap. Coherence clearly reduces as the percentage of overlap decreases and we find a useful threshold of 40-70% burst overlap depending on the study site. In order to get a more generalized understanding for different surface conditions

  14. Seeing Stars - Intensity Interferometry in the Laboratory & on the Ground (United States)

    Carlile, Colin; Dravins, Dainis


    In many ways it is a golden age for astronomy. Spectacular new discoveries, for example the detection of gravitational waves, are very dependent upon instrumental development. The specific instrument development we propose, Intensity Interferometry (II), aims toimprove the spatial resolution of optical telescopes by 100x to 50µas [1]. This is impractical to achieve by increasing the size of telescopes or by extending the capabilities of phase interferometry. II, if implemented on the Cherenkov Telescope Array (CTA) currently being installed in La Palma and Paranal, would record the light intensity – the photon train - from many different telescopes, up to 2 km apart, on a nanosecond timescale and compare them. The signal from the many pairs of telescopes would quantify the degree of correlation by extracting the second-order correlation function, and thus create an image. This is not a real space image. However we can invert the data by Fourier Transform and create a real image. The more telescopes, the better resolved and more physical is the image, enabling the study of sunspots on nearby stars; orbiting binary stars; or exoplanets traversing the disc of their own star. We understand the Sun well but we have little experimental knowledge of how representative it is of main sequence stars. To test the II method, at Lund Observatory we have set up a laboratory analogue comprising ten small telescopes observing an artificial star created by light from a laser. The method has been shown to work [2] and the telescope array has now been extended to two dimensions. We are in discussion with other groups to explore the possibility of implementing this method on real telescopes observing actual stars. We plan to do this with the prototype Small Size Telescopes being built by groups in Europe, and ultimately with the CTA itself. A Science Working Group for II has now been set up within the CTA Consortium, of which Lund University is an integral part. A Letter of Intent

  15. Wastewater treatment with acoustic separator (United States)

    Kambayashi, Takuya; Saeki, Tomonori; Buchanan, Ian


    Acoustic separation is a filter-free wastewater treatment method based on the forces generated in ultrasonic standing waves. In this report, a batch-system separator based on acoustic separation was demonstrated using a small-scale prototype acoustic separator to remove suspended solids from oil sand process-affected water (OSPW). By applying an acoustic separator to the batch use OSPW treatment, the required settling time, which was the time that the chemical oxygen demand (COD) decreased to the environmental criterion (<200 mg/L), could be shortened from 10 to 1 min. Moreover, for a 10 min settling time, the acoustic separator could reduce the FeCl3 dose as coagulant in OSPW treatment from 500 to 160 mg/L.

  16. Acoustic localization of triggered lightning (United States)

    Arechiga, Rene O.; Johnson, Jeffrey B.; Edens, Harald E.; Thomas, Ronald J.; Rison, William


    We use acoustic (3.3-500 Hz) arrays to locate local (thunder produced by triggered lightning in the Magdalena Mountains of central New Mexico. The locations of the thunder sources are determined by the array back azimuth and the elapsed time since discharge of the lightning flash. We compare the acoustic source locations with those obtained by the Lightning Mapping Array (LMA) from Langmuir Laboratory, which is capable of accurately locating the lightning channels. To estimate the location accuracy of the acoustic array we performed Monte Carlo simulations and measured the distance (nearest neighbors) between acoustic and LMA sources. For close sources (6 km) the error increases to 800 m for the nearest neighbors and 650 m for the Monte Carlo analysis. This work shows that thunder sources can be accurately located using acoustic signals.

  17. Coupled Acoustic-Mechanical Bandgaps

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Kook, Junghwan


    In this work, we study the existence of coupled bandgaps for corrugated plate structures and acoustic channels. The study is motivated by the observation that the performance of traditional bandgap structures, such as periodic plates, may be compromised due to the coupling to a surrounding acoustic...... medium and the presence of acoustic resonances. It is demonstrated that corrugation of the plate structure can introduce bending wave bandgaps and bandgaps in the acoustic domain in overlapping and audible frequency ranges. This effect is preserved also when taking the physical coupling between the two...... domains into account. Additionally, the coupling is shown to introduce extra gaps in the band structure due to modal interaction and the appearance of a cut-on frequency for the fundamental acoustic mode....

  18. Electron/electron acoustic instability

    International Nuclear Information System (INIS)

    Gary, S.P.


    The electron acoustic wave becomes a normal mode of an unmagnetized collisionless plasma in the presence of two electron components with similar densities, but strongly disparate temperatures. The characteristic frequency of this mode is the plasma frequency of the cooler electron component. If these two electron components have a relative drift speed several times the thermal speed of the cooler component, the electron/electron acoustic instability may arise. This paper describes the parametric dependences of the threshold drift speed and maximum growth rate of this instability, and compares these with the same properties of the electron/ion acoustic instability. Under the condition of zero current, the electron/ion acoustic instability typically has the lower threshold drift speed, so that observation of the electron/electron acoustic instability is a strong indication of the presence of an electrical current in the plasma

  19. Acoustic emission linear pulse holography (United States)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.


    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  20. Acoustics and Hearing

    CERN Document Server

    Damaske, Peter


    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  1. Omnidirectional ventilated acoustic barrier (United States)

    Zhang, Hai-long; Zhu, Yi-fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun


    As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a trade-off between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here, we design and experimentally implement an omnidirectional acoustic barrier with a planar profile, subwavelength thickness ( 0.18 λ ), yet high ventilation. The proposed mechanism is based on the interference between the resonant scattering of discrete states and the background scattering of continuous states which induces a Fano-like asymmetric transmission profile. Benefitting from the binary-structured design of the coiled unit and hollow pipe, it maximally simplifies the design and fabrication while ensuring the ventilation for all the non-resonant units with open tubes. The simulated and measured results agree well, showing the effectiveness of our proposed mechanism to block low frequency sound coming from various directions while allowing 63% of the air flow to pass. We anticipate our design to open routes to design sound insulators and to enable applications in traditionally unattainable cases such as those calling for noise reduction and cooling simultaneously.

  2. Time-reversal acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Mathias [Laboratoire Ondes et Acoustique, Ecole Superieure de Physique et de Chimie Industrielle de la Ville de Paris, Universite Denis Diderot, UMR CNRS 7587, 10 Rue Vauquelin, 75005 Paris (France)], E-mail:


    Time-reversal mirrors (TRMs) refocus an incident acoustic field to the position of the original source regardless of the complexity of the propagation medium. TRM's have now been implemented in a variety of physical scenarios from MHz ultrasonics with order centimeter aperture size to hundreds/thousands of Hz in ocean acoustics with order hundred meter aperture size. Common to this broad range of scales is a remarkable robustness exemplified by observations at all scales that the more complex the medium between the probe source and the TRM, the sharper the focus. The relation between the medium complexity and the size of the focal spot is studied in this paper. It is certainly the most exciting property of TRM compared to standard focusing devices. A TRM acts as an antenna that uses complex environments to appears wider than it is, resulting for a broadband pulse in a refocusing quality that does not depend of the TRM aperture. In this paper, we investigate the time-reversal approach in various media of increasing complexity and we discuss the link existing between time-reversal approach and local helioseismology where Green's functions can be extracted from diffusive noise.

  3. Prosthetic clone and natural human tooth comparison by speckle interferometry (United States)

    Slangen, Pierre; Corn, Stephane; Fages, Michel; Raynal, Jacques; Cuisinier, Frederic J. G.


    New trends in dental prosthodontic interventions tend to preserve the maximum of "body" structure. With the evolution of CAD-CAM techniques, it is now possible to measure "in mouth" the remaining dental tissues. The prosthetic crown is then designed using this shape on which it will be glued on, and also by taking into account the contact surface of the opposite jaw tooth. Several theories discuss on the glue thickness and formulation, but also on the way to evolve to a more biocompatible crown and also new biomechanical concepts. In order to validate these new concepts and materials, and to study the mechanical properties and mechanical integrity of the prosthesis, high resolution optical measurements of the deformations of the glue and the crown are needed. Samples are two intact premolars extracted for orthodontics reasons. The reference sample has no modifications on the tooth while the second sample tooth is shaped to receive a feldspathic ceramic monoblock crown which will be glued. This crown was manufactured with a chairside CAD-CAM system from an intra-oral optical print. The software allows to realize a nearly perfect clone of the reference sample. The necessary space for the glue is also entered with ideal values. This duplication process yields to obtain two samples with identical anatomy for further processing. The glue joint thickness can also be modified if required. The purpose is to compare the behaviour of a natural tooth and its prosthetic clone manufactured with "biomechanical" concepts. Vertical cut samples have been used to deal with planar object observation, and also to look "inside" the tooth. We have developed a complete apparatus enabling the study of the compressive mechanical behaviour of the concerned tooth by speckle interferometry. Because in plane displacements are of great interest for orthodontic measurements1, an optical fiber in-plane sensitive interferometer has been designed. The fibers are wrapped around piezoelectric

  4. Applications of atom interferometry - from ground to space (United States)

    Schubert, Christian; Rasel, Ernst Maria; Gaaloul, Naceur; Ertmer, Wolfgang


    Atom interferometry is utilized for the measurement of rotations [1], accelerations [2] and for tests of fundamental physics [3]. In these devices, three laser light pulses separated by a free evolution time coherently manipulate the matter waves which resembles the Mach-Zehnder geometry in optics. Atom gravimeters demonstrated an accuracy of few microgal [2,4], and atom gradiometers showed a noise floor of 30 E Hz^{-1/2} [5]. Further enhancements of atom interferometers are anticipated by the integration of novel source concepts providing ultracold atoms, extending the free fall time of the atoms, and enhanced techniques for coherent manipulation. Sources providing Bose-Einstein condensates recently demontrated a flux compatible with precision experiments [6]. All of these aspects are studied in the transportable quantum gravimeter QG-1 and the very long baseline atom interferometry teststand in Hannover [7] with the goal of surpassing the microgal regime. Going beyond ground based setups, the QUANTUS collaboration exploits the unique features of a microgravity environment in drop tower experiments [8] and in a sounding rocket mission. The payloads are compact and robust atom optics experiments based on atom chips [6], enabling technology for transportable sensors on ground as a byproduct. More prominently, they are pathfinders for proposed satellite missions as tests of the universality of free fall [9] and gradiometry based on atom interferometers [10]. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] PRL 114 063002 2015 [2] Nature 400 849 1999 [3] PRL 112 203002 2014 [4] NJP 13 065026 2011 [5] PRA 65 033608 2002 [6] NJP 17 065001 2015 [7] NJP 17 035011 2015 [8] PRL 110 093602 2013 [9

  5. Laser Micromachining and Information Discovery Using a Dual Beam Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Theppakuttaikomaraswamy, Senthil P. [Iowa State Univ., Ames, IA (United States)


    Lasers have proven to be among the most promising tools for micromachining because they can process features down to the size of the laser wavelength (smaller than 1 micrometer) and they provide a non-contact technology for machining. The demand for incorporating in-situ diagnostics technology into the micromachining environment is driven by the increasing need for producing micro-parts of high quality and accuracy. Laser interferometry can be used as an on-line monitoring tool and it is the aim of this work to enhance the understanding and application of Michelson interferometry principle for the in-situ diagnostics of the machining depth on the sub-micron and micron scales. micromachining is done on two different materials and a comprehensive investigation is done to control the width and depth of the machined feature. To control the width of the feature, laser micromachining is done on copper and a detailed analysis is performed. The objective of this experiment is to make a precision mask for sputtering with an array of holes on it using an Nd:YAG laser of 532 nm wavelength. The diameter of the hole is 50 μm and the spacing between holes (the distance between the centers) is 100 μm. Michelson interferometer is integrated with a laser machining system to control the depth of machining. An excimer laser of 308 nm wavelength is used for micromachining. A He-Ne laser of 632.8 nm wavelength is used as the light source for the interferometer. Interference patterns are created due to the change in the path length between the two interferometer arms. The machined depth information is obtained from the interference patterns on an oscilloscope detected by a photodiode. To compare the predicted depth by the interferometer with the true machining depth, a surface profilometer is used to measure the actual machining depth on the silicon. It is observed that the depths of machining obtained by the surface profile measurement are in accordance with the interferometer

  6. Quantitative determination of testosterone levels with biolayer interferometry. (United States)

    Zhang, Hao; Li, Wei; Luo, Hong; Xiong, Guangming; Yu, Yuanhua


    Natural and synthetic steroid hormones are widely spread in the environment and are considered as pollutants due to their endocrine activities, even at low concentrations, which are harmful to human health. To detect steroid hormones in the environment, a novel biosensor system was developed based on the principle of biolayer interferometry. Detection is based on changes in the interference pattern of white light reflected from the surface of an optical fiber with bound biomolecules. Monitoring interactions between molecules does not require radioactive, enzymatic, or fluorescent labels. Here, 2 double-stranded DNA fragments of operator 1 (OP1) and OP2 containing 10-bp palindromic sequences in chromosomal Comamonas testosteroni DNA (ATCC11996) were surface-immobilized to streptavidin sensors. Interference changes were detected when repressor protein RepA bound the DNA sequences. DNA-protein interactions were characterized and kinetic parameters were obtained. The dissociation constants between the OP1 and OP2 DNA sequences and RepA were 9.865 × 10 -9  M and 2.750 × 10 -8  M, respectively. The reactions showed high specifically and affinity. Because binding of the 10-bp palindromic sequence and RepA was affected by RepA-testosterone binding, the steroid could be quantitatively determined rapidly using the biosensor system. The mechanism of the binding assay was as follows. RepA could bind both OP1 and testosterone. RepA binding to testosterone changed the protein conformation, which influenced the binding between RepA and OP1. The percentage of the signal detected negative correlation with the testosterone concentration. A standard curve was obtained, and the correlation coefficient value was approximately 0.97. We could quantitatively determine testosterone levels between 2.13 and 136.63 ng/ml. Each sample could be quantitatively detected in 17 min. These results suggested that the specific interaction between double-stranded OP1 DNA and the RepA protein

  7. A procedure for noise uncoupling in laser interferometry

    CERN Document Server

    Barone, F; Rosa, R D; Eleuteri, A; Milano, L; Qipiani, K


    A numerical procedure for noise recognition and uncoupling is described. The procedure is applied to a Michelson interferometer and is effective in seismic and acoustic noise uncoupling from the output signal of the interferometer. Due to the low data flow coming from the instrumentation this uncoupling can be performed in real time and it is useful as a data quality procedure for interferometer data output.

  8. Review of Progress in Acoustic Levitation (United States)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.


    Acoustic levitation uses acoustic radiation forces to counteract gravity and suspend objects in mid-air. Although acoustic levitation was first demonstrated almost a century ago, for a long time, it was limited to objects much smaller than the acoustic wavelength levitating at fixed positions in space. Recent advances in acoustic levitation now allow not only suspending but also rotating and translating objects in three dimensions. Acoustic levitation is also no longer restricted to small objects and can now be employed to levitate objects larger than the acoustic wavelength. This article reviews the progress of acoustic levitation, focusing on the working mechanism of different types of acoustic levitation devices developed to date. We start with a brief review of the theory. Then, we review the acoustic levitation methods to suspend objects at fixed positions, followed by the techniques that allow the manipulation of objects. Finally, we present a brief summary and offer some future perspectives for acoustic levitation.

  9. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning


    acoustic design process and to set up a strategy to develop future programmes. The emphasis is put on the first three out of four phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference...... to the design of Bagsvaerd Church by Jørn Utzon. The paper discusses the advantages and disadvantages of the programme in each phase compared to the works of architects not using acoustic simulation programmes. The conclusion of the paper points towards the need to apply the acoustic simulation programmes...

  10. Compensation of sampling error in frequency scanning interferometry (United States)

    Shang, Yue; Lin, Jiarui; Yang, Linghui; Ren, Yongjie


    Absolute distance measurement techniques are of significant interest in the field of large volume metrology. Ones which could offer an ability of ADM and high accuracy will improve the efficiency and the quality of large assemblies. Frequency scanning interferometry (FSI) is a kind of ADM technique which use a variable synthetic-wavelength achieved by tuning the optical frequency continuously. FSI could offer a relative accuracy of several ppm in a range of tens of meters. In a FSI ranging system, it is necessary to get knowledge of the tuning range of optical frequency, which could be done by using of gas absorption cell, femtosecond laser comb, F-P etalon and the most used: a predicted auxiliary interferometer. As the result of the measurement is calculated by the tuning range of optical frequency, a length drift of the auxiliary interferometer will make a contribution in error of the result. Analysis of sampling error caused by the drift of the auxiliary interferometer has been done and a real-time compensation system has been proposed to minimize the drift of the auxiliary interferometer. The simulation has proved the analysis and the error has been decreased.

  11. Multiwavelength interferometry system for the Orion laser facility. (United States)

    Patankar, S; Gumbrell, E T; Robinson, T S; Lowe, H F; Giltrap, S; Price, C J; Stuart, N H; Kemshall, P; Fyrth, J; Luis, J; Skidmore, J W; Smith, R A


    We report on the design and testing of a multiwavelength interferometry system for the Orion laser facility based upon the use of self-path matching Wollaston prisms. The use of UV corrected achromatic optics allows for both easy alignment with an eye-safe light source and small (∼ millimeter) offsets to the focal lengths between different operational wavelengths. Interferograms are demonstrated at wavelengths corresponding to first, second, and fourth harmonics of a 1054 nm Nd:glass probe beam. Example data confirms the broadband achromatic capability of the imaging system with operation from the UV (263 nm) to visible (527 nm) and demonstrates that features as small as 5 μm can be resolved for object sizes of 15 by 10 mm. Results are also shown for an off-harmonic wavelength that will underpin a future capability. The primary optics package is accommodated inside the footprint of a ten-inch manipulator to allow the system to be deployed from a multitude of viewing angles inside the 4 m diameter Orion target chamber.

  12. Probing infrared detectors through energy-absorption interferometry (United States)

    Moinard, Dan; Withington, Stafford; Thomas, Christopher N.


    We describe an interferometric technique capable of fully characterizing the optical response of few-mode and multi-mode detectors using only power measurements, and its implementation at 1550 nm wavelength. EnergyAbsorption Interferometry (EAI) is an experimental procedure where the system under test is excited with two coherent, phase-locked sources. As the relative phase between the sources is varied, a fringe is observed in the detector output. Iterating over source positions, the fringes' complex visibilities allow the two-point detector response function to be retrieved: this correlation function corresponds to the state of coherence to which the detector is maximally sensitive. This detector response function can then be decomposed into a set of natural modes, in which the detector is incoherently sensitive to power. EAI therefore allows the reconstruction of the individual degrees of freedom through which the detector can absorb energy, including their relative sensitivities and full spatial forms. Coupling mechanisms into absorbing structures and their underlying solidstate phenomena can thus be studied, with direct applications in improving current infrared detector technology. EAI has previously been demonstrated for millimeter wavelength. Here, we outline the theoretical basis of EAI, and present a room-temperature 1550 nm wavelength infrared experiment we have constructed. Finally, we discuss how this experimental system will allow us to study optical coupling into fiber-based systems and near-infrared detectors.

  13. Atmospheric pressure loading parameters from very long baseline interferometry observations (United States)

    Macmillan, D. S.; Gipson, John M.


    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  14. Coherent-light-boosted, sub-shot noise, quantum interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Plick, William N; Dowling, Jonathan P [Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Agarwal, Girish S, E-mail: [Department of Physics, Oklahoma State University, Stillwater, OK 74078 (United States)


    We present in this paper a new scheme for optical interferometry. We utilize coherent-beam-stimulated two-mode squeezed light, which interacts with a phase shifter and is then squeezed again before detection. Our theoretical device has the potential to reach far below the shot-noise limit in phase sensitivity. This new proposal avoids the pitfalls of other setups, such as difficulty in creating the required resource. Furthermore, our scheme requires no complicated detection protocol, relying instead only on simple intensity measurement. Also, bright, coherent sources 'boost' squeezed light, creating a very sensitive device. This hybrid scheme relies on no unknown components and can be constructed with current technology. In this paper, we present our analysis of this relatively straightforward device, using the operator propagation method. We derive the phase sensitivity and provide a simple numerical example of the power of our new proposal. Sensitivity to unknown phase shifts scales as a shot-noise-limited Mach-Zehnder interferometer, multiplied by a sub-Heisenberg contribution from the squeezed light.

  15. Coherent-light-boosted, sub-shot noise, quantum interferometry

    International Nuclear Information System (INIS)

    Plick, William N; Dowling, Jonathan P; Agarwal, Girish S


    We present in this paper a new scheme for optical interferometry. We utilize coherent-beam-stimulated two-mode squeezed light, which interacts with a phase shifter and is then squeezed again before detection. Our theoretical device has the potential to reach far below the shot-noise limit in phase sensitivity. This new proposal avoids the pitfalls of other setups, such as difficulty in creating the required resource. Furthermore, our scheme requires no complicated detection protocol, relying instead only on simple intensity measurement. Also, bright, coherent sources 'boost' squeezed light, creating a very sensitive device. This hybrid scheme relies on no unknown components and can be constructed with current technology. In this paper, we present our analysis of this relatively straightforward device, using the operator propagation method. We derive the phase sensitivity and provide a simple numerical example of the power of our new proposal. Sensitivity to unknown phase shifts scales as a shot-noise-limited Mach-Zehnder interferometer, multiplied by a sub-Heisenberg contribution from the squeezed light.

  16. High Precision Signal Processing Algorithm for White Light Interferometry

    Directory of Open Access Journals (Sweden)

    Jeonggon Harrison Kim


    Full Text Available A new signal processing algorithm for absolute temperature measurement using white light interferometry has been proposed and investigated theoretically. The proposed algorithm determines the phase delay of an interferometer with very high precision (<< one fringe by identifying the zero order fringe peak of cross-correlation of two fringe scans of white light interferometer. The algorithm features cross-correlation of interferometer fringe scans, hypothesis testing and fine tuning. The hypothesis test looks for a zero order fringe peak candidate about which the cross-correlation is symmetric minimizing the uncertainty of mis-identification. Fine tuning provides the proposed algorithm with high precision subsample resolution phase delay estimation capability. The shot noise limited performance of the proposed algorithm has been analyzed using computer simulations. Root-mean-square (RMS phase error of the estimated zero order fringe peak has been calculated for the changes of three different parameters (SNR, fringe scan sample rate, coherence length of light source. Computer simulations showed that the proposed signal processing algorithm identified the zero order fringe peak with a miss rate of 3 x 10-4 at 31 dB SNR and the extrapolated miss rate at 35 dB was 3 x 10-8. Also, at 35 dB SNR, RMS phase error less than 10-3 fringe was obtained. The proposed signal processing algorithm uses a software approach that is potentially inexpensive, simple and fast.

  17. Atom interferometry in space: Thermal management and magnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Milke, Alexander; Kubelka-Lange, André; Gürlebeck, Norman, E-mail:; Rievers, Benny; Herrmann, Sven [Center of Applied Space Technology and Microgravity (ZARM), University Bremen, Am Fallturm, 28359 Bremen (Germany); Schuldt, Thilo [DLR Institute for Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Braxmaier, Claus [Center of Applied Space Technology and Microgravity (ZARM), University Bremen, Am Fallturm, 28359 Bremen (Germany); DLR Institute for Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany)


    Atom interferometry is an exciting tool to probe fundamental physics. It is considered especially apt to test the universality of free fall by using two different sorts of atoms. The increasing sensitivity required for this kind of experiment sets severe requirements on its environments, instrument control, and systematic effects. This can partially be mitigated by going to space as was proposed, for example, in the Spacetime Explorer and Quantum Equivalence Principle Space Test (STE-QUEST) mission. However, the requirements on the instrument are still very challenging. For example, the specifications of the STE-QUEST mission imply that the Feshbach coils of the atom interferometer are allowed to change their radius only by about 260 nm or 2.6 × 10{sup −4} % due to thermal expansion although they consume an average power of 22 W. Also Earth's magnetic field has to be suppressed by a factor of 10{sup 5}. We show in this article that with the right design such thermal and magnetic requirements can indeed be met and that these are not an impediment for the exciting physics possible with atom interferometers in space.

  18. All-Sky Interferometry with Spherical Harmonic Transit Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.Richard [Canadian Inst. Theor. Astrophys.; Sigurdson, Kris [British Columbia U.; Pen, Ue-Li [Canadian Inst. Theor. Astrophys.; Stebbins, Albert [Fermilab; Sitwell, Michael [British Columbia U.


    In this paper we describe the spherical harmonic transit telescope, a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved sky complications of traditional interferometry and so is particularly well suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics that allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loeve transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor twenty below the 21cm signal even in highly contaminated regions of the sky. This is despite the presence of the angle-frequency mode mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-world data analysis framework for 21cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with twenty-first century 21cm science.

  19. Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts

    Directory of Open Access Journals (Sweden)

    Shane R. Cloude


    Full Text Available We investigate multichannel imaging radar systems employing coherent combinations of polarimetry and interferometry (Pol-InSAR. Such systems are well suited for the extraction of bio- and geophysical parameters by evaluating the combined scattering from surfaces and volumes. This combination leads to several important differences between the design of Pol-InSAR sensors and conventional single polarisation SAR interferometers. We first highlight these differences and then investigate the Pol-InSAR performance of two proposed spaceborne SAR systems (ALOS/PalSAR and TerraSAR-L operating in repeat-pass mode. For this, we introduce the novel concept of a phase tube which enables (1 a quantitative assessment of the Pol-InSAR performance, (2 a comparison between different sensor configurations, and (3 an optimization of the instrument settings for different Pol-InSAR applications. The phase tube may hence serve as an interface between system engineers and application-oriented scientists. The performance analysis reveals major limitations for even moderate levels of temporal decorrelation. Such deteriorations may be avoided in single-pass sensor configurations and we demonstrate the potential benefits from the use of future bi- and multistatic SAR interferometers.

  20. Using Clocks and Atomic Interferometry for Gravity Field Observations (United States)

    Müller, Jürgen


    New technology developed in the frame of fundamental physics may lead to enhanced capabilities for geodetic applications such as refined observations of the Earth's gravity field. Here, we will present new sensor measurement concepts that apply atomic interferometry for gravimetry and clock measurements for observing potential values. In the first case, gravity anomalies can be determined by observing free-falling atoms (quantum gravimetry). In the second case, highly precise optical clocks can be used to measure differences of the gravity potential over long distances (relativistic geodesy). Principally, also inter-satellite ranging between test masses in space with nanometer accuracy belongs to these novel developments. We will show, how the new measurement concepts are connected to classical geodetic concepts, e.g. geopotential numbers and clock readings. We will illustrate the application of these new methods and their benefit for geodesy, where local and global mass variations can be observed with unforeseen accuracy and resolution, mass variations that reflect processes in the Earth system. We will present a few examples where geodesy will potentially benefit from these developments. Thus, the novel technologies might be applied for defining and realizing height systems in a new way, but also for fast local gravimetric surveys and exploration.

  1. X-ray laser interferometry: A new tool for AGEX

    International Nuclear Information System (INIS)

    Wan, A.S.; Moreno, J.C.; Libby, S.B.


    Collisionally pumped soft x-ray lasers now operate over a wavelength range extending from 4--40 nm. With the recent advances in the development of multilayer mirrors and beamsplitters in the soft x-ray regime, we can utilize the unique properties of x-ray lasers to study large, rapidly evolving laser-driven plasmas with high electron densities. By employing a shorter wavelength x-ray laser, as compared to using conventional optical laser as the probe source, we can access a much higher density regime while reducing refractive effects which limit the spatial resolution and data interpretation. Using a neon-like yttrium x-ray laser which operates at a wavelength of 15.5 mn, we have performed a series of soft x-ray laser interferometry experiments, operated in the skewed Mach-Zehnder configuration, to characterize plasmas relevant to both weapons and inertial confinement fusion. The two-dimensional density profiles obtained from the interferograms allow us to validate and benchmark our numerical models used to study the physics in the high-energy density regime, relevant to both weapons and inertial confinement fusion

  2. Validating Laser-Induced Birefringence Theory with Plasma Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cecilia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cornell Univ., Ithaca, NY (United States)


    Intense laser beams crossing paths in plasma is theorized to induce birefringence in the medium, resulting from density and refractive index modulations that affect the polarization of incoming light. The goal of the associated experiment, conducted on Janus at Lawrence Livermore’s Jupiter Laser Facility, was to create a tunable laser-plasma waveplate to verify the relationship between dephasing angle and beam intensity, plasma density, plasma temperature, and interaction length. Interferometry analysis of the plasma channel was performed to obtain a density map and to constrain temperature measured from Thomson scattering. Various analysis techniques, including Fast Fourier transform (FFT) and two variations of fringe-counting, were tried because interferograms captured in this experiment contained unusual features such as fringe discontinuity at channel edges, saddle points, and islands. The chosen method is flexible, semi-automated, and uses a fringe tracking algorithm on a reduced image of pre-traced synthetic fringes. Ultimately, a maximum dephasing angle of 49.6° was achieved using a 1200 μm interaction length, and the experimental results appear to agree with predictions.

  3. Investigating ground instabilities in Indonesia through SAR interferometry (United States)

    Bovenga, Fabio; Refice, Alberto; Belmonte, Antonella; Nutricato, Raffaele; Nitti, Davide Oscar; Chiaradia, Maria Teresa; Valkaniotis, Sotirios; Gkioni, Sofia; Kosma, Chrysanthi; Ganas, Athanassis; Manunta, Paolo; Elizar; Darusman; Bally, Philippe


    Indonesia is periodically affected by severe volcanic eruptions and earthquakes, which are geologically coupled to the convergence of the Australian tectonic plate beneath the Sunda Plate. Multi-temporal SAR interferometry (MTI) can be used to support studying and modelling of terrain movements. This work is aimed at performing an analysis of ground displacements over Indonesian sites through MTI techniques. Test sites have been selected according to the availability of archived SAR data, GNSS networks, and geological data. A stack of COSMO-SkyMed data, acquired in stripmap mode between 2011 and 2015, has been selected over the Banda Aceh region in Sumatra island. Geological maps of the test sites are available, and several GNSS stations from the Continuously Operating Reference Stations Indonesian network are found in the area of interest. Both the SPINUA and the StaMPS MTI algorithms have been used for processing the data, and deriving displacement maps. The ground deformations detected on the area are interpreted according to the available geological and geophysical information. The MTI results seem to confirm the inactivity of the Aceh fault segment, while the lack of coherent targets hinders reliable displacement measurements along the Seulineum segment. MTI data additionally allowed to identify local, non-tectonic ground instabilities: several areas are affected by subsidence due to unconsolidated coastal and alluvial sediments, deserving more investigations by local authorities. Finally, MTI results could be useful to integrate and update data from the existing GPS network.

  4. Distortion of two-pion interferometry by multipion correlations

    International Nuclear Information System (INIS)

    Zhang, W.N.; Liu, Y.M.; Wang, S.; Liu, Q.J.; Jiang, J.; Keane, D.; Shao, Y.; Chu, S.Y.; Fung, S.Y.


    Multipion correlations arising from the symmetrization of the n-pion wave function affect the extracted information from two-pion correlation measurements. The influence of multipion correlations on a sample of like-pion pairs can be expressed as a multipion correlation factor, the distribution of which offers good sensitivity to the multipion correlation effect. Analyses of the multipion correlation factor for two Bevalac streamer chamber data samples of 2.1A GeV Ne+Pb and 1.8A GeV Ar+Pb collisions show that the multipion correlation effect in the former sample is greater than in the latter. This result mainly arises from the fact that the pion source for Ne projectiles is smaller than for Ar projectiles. The residual correlations in the reference sample are related to the multipion correlation factor in multipion events, which can be expressed as a residual correlation factor. The influence of multipion correlations on two-pion interferometry analyses arises from the ratio of the residual correlation factor to the multipion correlation factor

  5. Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts (United States)

    Krieger, Gerhard; Papathanassiou, Konstantinos Panagiotis; Cloude, Shane R.


    We investigate multichannel imaging radar systems employing coherent combinations of polarimetry and interferometry (Pol-InSAR). Such systems are well suited for the extraction of bio- and geophysical parameters by evaluating the combined scattering from surfaces and volumes. This combination leads to several important differences between the design of Pol-InSAR sensors and conventional single polarisation SAR interferometers. We first highlight these differences and then investigate the Pol-InSAR performance of two proposed spaceborne SAR systems (ALOS/PalSAR and TerraSAR-L) operating in repeat-pass mode. For this, we introduce the novel concept of a phase tube which enables (1) a quantitative assessment of the Pol-InSAR performance, (2) a comparison between different sensor configurations, and (3) an optimization of the instrument settings for different Pol-InSAR applications. The phase tube may hence serve as an interface between system engineers and application-oriented scientists. The performance analysis reveals major limitations for even moderate levels of temporal decorrelation. Such deteriorations may be avoided in single-pass sensor configurations and we demonstrate the potential benefits from the use of future bi- and multistatic SAR interferometers.

  6. Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry

    Directory of Open Access Journals (Sweden)

    A. J. Spargo


    Full Text Available Mesospheric gravity wave (GW momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E experiments (conducted from July 1997 to June 1998 are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions. The received beams were analysed with hybrid Doppler interferometry (HDI (Holdsworth and Reid, 1998, principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997, later re-introduced by Hocking (2005 and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010 of the accuracy of the meteor radar technique.

  7. Amplitude and phase characterization by diffracted beam interferometry: blind dbi

    International Nuclear Information System (INIS)

    Lopez Lago, E; Gonzalez Nunez, H; De la Fuente, R


    Diffracted beam interferometry is a self referenced method characterization technique whose operation principle is based on the reconstruction of the phase of a beam starting from the interference data between the beam and its diffracted copy. The phase is recovered indirectly by means of an iterative algorithm that relates the irradiances of the interfering beams and its phase difference. The first experimental demonstration of DBI was implemented on a Mach-Zehnder interferometer which incorporated an afocal imaging system in each arm, in order to form an image of a common object in different planes at the output of the interferometer. The irradiance data as well as the phase difference data were picked up from one of the image planes and they were introduced in the iterative algorithm. In this work we discuss a modification of the algorithm that allows to reconstruct simultaneously the amplitude and phase of the wavefront starting from, exclusively, the phase difference between the two waves that interfere in one of the image planes. This new algorithm improves the reconstruction process because the data acquisition process is faster and consequently the method is less influenced by environment disturbances. The method has been applied successfully to the characterization of phase plates and laser beams as well as to the local characterization of ophthalmic lenses.

  8. Research on long-range grating interferometry with nanometer resolution

    International Nuclear Information System (INIS)

    Chu, Xingchun; Zhao, Shanghong; Lü, Haibao


    Grating interferometry that features long range and nanometer resolution is presented. The optical system was established based on a single long metrology grating. The large fringe multiplication was achieved by properly selecting two high-order diffraction beams to form a fringe pattern. The fringe pattern collected by a linear array was first tailored to a few multiples of fringes in order to suppress the effect of the energy leakage on phase-extracting precision when the fast Fourier transform (FFT) algorithm was used to calculate its phase. Thus, the phase-extracting precision of a tailored fringe pattern by FFT was greatly improved. Based on this, a novel subdividing method, which exploited the time-shift property of FFT, was developed to subdivide the fringe with large multiple and high accuracy. Numerical results show that the system resolution reaches 1 nm. The experimental results obtained against a capacitive sensor in the sub-mm range show that the measurement precision of the system is less than 10 nm. (technical design note)

  9. Distributed gas sensing with optical fibre photothermal interferometry. (United States)

    Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan


    We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.

  10. Disentangling stellar activity from exoplanetary signals with interferometry

    Directory of Open Access Journals (Sweden)

    Ligi Roxanne


    Full Text Available Stellar activity can express as many forms at stellar surfaces: dark spots, convective cells, bright plages. Particularly, dark spots and bright plages add noise on photometric data or radial velocity measurements used to detect exoplanets, and thus lead to false detection or disrupt their derived parameters. Since interferometry provides a very high angular resolution, it may constitute an interesting solution to distinguish the signal of a transiting exoplanet and that of stellar activity. It has also been shown that granulation adds bias in visibility and closure phase measurements, affecting in turn the derived stellar parameters. We analyze the noises generated by dark spots on interferometric observables and compare them to exoplanet signals. We investigate the current interferometric instruments able to measure and disentangle these signals, and show that there is a lack in spatial resolution. We thus give a prospective of the improvements to be brought on future interferometers, which would also significantly extend the number of available targets.

  11. Precision displacement interferometry with stabilization of wavelength on air

    Directory of Open Access Journals (Sweden)

    Buchta Z.


    Full Text Available We present an interferometric technique based on differential interferometry setup for measurement in the subnanometer scale in atmospheric conditions. The motivation for development of this ultraprecise technique is coming from the field of nanometrology. The key limiting factor in any optical measurement are fluctuations of the refractive index of air representing a source of uncertainty on the 10-6level when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of overdetermined interferometric setup where a reference length is derived from a mechanical frame made from a material with very low thermal coefficient on the 10-8level. The technique allows to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third represents a reference for stabilization of the wavelength of the laser source. The principle is demonstrated on an experimental setup and a set of measurements describing the performance is presented.

  12. Wave-particle dualism in matter wave interferometry

    International Nuclear Information System (INIS)

    Rauch, H.


    Neutron interferometry is a unique tool for investigations in the field of particle-wave dualism because massive elementary particles behave like waves within the interferometer. The invention of perfect crystal neutron interferometers providing widely separated coherent beams stimulated a great variety of experiments with matter waves in the field of basic quantum mechanics. The phase of the spatial and spinor wave function become a measurable quantity and can be influenced individually. High degrees of coherence and high order interferences have been observed by this technique. The 4π-symmetry of a spinor wave function and the mutual modulation of nuclear and magnetic phase shifts have been measured in the past. Recent experiments dealt with polarized neutron beams, which are handled to realize the spin-superposition of two oppositionally polarized subbeams resulting in final polarization perpendicular to both initial beam polarizations. The different action on the coherent beams of static and dynamic flippers have been visualized. Monolithic multicrystal arrangements in Laue position can also be used to achieve an extremely high energy (10 -9 eV) or angular resolution (0.001 sec of arc). This feature is based on the Pendelloesung interference within the perfect crystal. A transverse coherence length up to 6.5 mm is deduced from single slit diffraction experiments. (Auth.)

  13. Development of a Multi-Point Microwave Interferometry (MPMI) Method

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Paul Elliott [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Marcia A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jilek, Brook Anton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of the MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.

  14. Iterative interferometry-based method for picking microseismic events (United States)

    Iqbal, Naveed; Al-Shuhail, Abdullatif A.; Kaka, SanLinn I.; Liu, Entao; Raj, Anupama Govinda; McClellan, James H.


    Continuous microseismic monitoring of hydraulic fracturing is commonly used in many engineering, environmental, mining, and petroleum applications. Microseismic signals recorded at the surface, suffer from excessive noise that complicates first-break picking and subsequent data processing and analysis. This study presents a new first-break picking algorithm that employs concepts from seismic interferometry and time-frequency (TF) analysis. The algorithm first uses a TF plot to manually pick a reference first-break and then iterates the steps of cross-correlation, alignment, and stacking to enhance the signal-to-noise ratio of the relative first breaks. The reference first-break is subsequently used to calculate final first breaks from the relative ones. Testing on synthetic and real data sets at high levels of additive noise shows that the algorithm enhances the first-break picking considerably. Furthermore, results show that only two iterations are needed to converge to the true first breaks. Indeed, iterating more can have detrimental effects on the algorithm due to increasing correlation of random noise.

  15. Enhancing core-diffracted arrivals by supervirtual interferometry

    KAUST Repository

    Bharadwaj, P.


    A supervirtual interferometry (SVI) method is presented that can enhance the signal-to-noise ratio (SNR) of core diffracted waveforms by as much as O( √ N), where N is the number of inline receivers that record the core-mantle boundary (CMB) diffractions from more than one event. Here, the events are chosen to be approximately inline with the receivers along the same great circle. Results with synthetic and teleseismic data recorded by USArray stations demonstrate that formerly unusable records with low SNR can be transformed to high SNR records with clearly visible CMB diffractions. Another benefit is that SVI allows for the recording of a virtual earthquake at stations not deployed during the time of the earthquake. This means that portable arrays such as USArray can extend the aperture of one recorded earthquake from the West coast to the East coast, even though the teleseism might have only been recorded during theWest coast deployment. In summary, SVI applied to teleseismic data can significantly enlarge the catalogue of usable records both in SNR and available aperture for analysing CMB diffractions. A potential drawback of this method is that it generally provides the correct kinematics of CMB diffractions, but does not necessarily preserve correct amplitude information. © The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society.

  16. Gravity sensing using Very Long Baseline Atom Interferometry (United States)

    Schlippert, D.; Wodey, E.; Meiners, C.; Tell, D.; Schubert, C.; Ertmer, W.; Rasel, E. M.


    Very Long Baseline Atom Interferometry (VLBAI) has applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Thanks to the quadratic scaling of the phase shift with increasing free evolution time, extending the baseline of atomic gravimeters from tens of centimeters to meters puts resolutions of 10-13g and beyond in reach.We present the design and progress of key elements of the VLBAI-test stand: a dual-species source of Rb and Yb, a high-performance two-layer magnetic shield, and an active vibration isolation system allowing for unprecedented stability of the mirror acting as an inertial reference. We envisage a vibration-limited short-term sensitivity to gravitational acceleration of 1x10-8 m/s-2Hz-1/2 and up to a factor of 25 improvement when including additional correlation with a broadband seismometer. Here, the supreme long-term stability of atomic gravity sensors opens the route towards competition with superconducting gravimeters. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of Yb and Rb atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level of <10-13, potentially surpassing the best experiments to date.

  17. MR of acoustic neuromas

    International Nuclear Information System (INIS)

    Suzuki, Masayuki; Takashima, Tsutomu; Kadoya, Masumi; Takahashi, Shiroh; Miyayama, Shiroh; Taira, Sakae; Kashihara, Kengo; Yamashima, Tetsumori; Itoh, Haruhide


    In this report, the relationship of acoustic neuromas to the adjacent cranial nerves is discussed. On T 1 -weighted images, the trigeminal nerve was detected in all 13 cases. Mild to marked compression of these nerves by the tumors was observed in eight cases. The extent of compression did not always correspond to the clinical symptoms. In four cases with a maximum tumor diameter of 2 cm or less, the 7th and 8th cranial nerves were identified. There was no facial palsy in these patients. Two patients with a tumor diameter of more than 2 cm also had no facial palsy. All patients, including those with small tumors, complained of hearing loss and/or tinnitus. While MR imaging has some limitations, it is an effective imaging modality for showing the relationship between tumors and nerves. (author)

  18. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J


    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...... a minor effect on the power spectra, i.e. the maximum jumps from one spectral peak to another. Experiments with deconvolution demonstrate that the emission generating system at least at a fixed intensity can be regarded as being linear and characterized by its impulse response which is similar...... to the emission evoked by click stimuli. It is concluded that significant information is obtained by the click rather than by the tonal stimuli. The click-evoked emissions were also recorded from both ears in a consecutive series of 100 full-term and otherwise normal babies 2-4 days after birth. The emission...

  19. Acoustics of friction (United States)

    Akay, Adnan


    This article presents an overview of the acoustics of friction by covering friction sounds, friction-induced vibrations and waves in solids, and descriptions of other frictional phenomena related to acoustics. Friction, resulting from the sliding contact of solids, often gives rise to diverse forms of waves and oscillations within solids which frequently lead to radiation of sound to the surrounding media. Among the many everyday examples of friction sounds, violin music and brake noise in automobiles represent the two extremes in terms of the sounds they produce and the mechanisms by which they are generated. Of the multiple examples of friction sounds in nature, insect sounds are prominent. Friction also provides a means by which energy dissipation takes place at the interface of solids. Friction damping that develops between surfaces, such as joints and connections, in some cases requires only microscopic motion to dissipate energy. Modeling of friction-induced vibrations and friction damping in mechanical systems requires an accurate description of friction for which only approximations exist. While many of the components that contribute to friction can be modeled, computational requirements become prohibitive for their contemporaneous calculation. Furthermore, quantification of friction at the atomic scale still remains elusive. At the atomic scale, friction becomes a mechanism that converts the kinetic energy associated with the relative motion of surfaces to thermal energy. However, the description of the conversion to thermal energy represented by a disordered state of oscillations of atoms in a solid is still not well understood. At the macroscopic level, friction interacts with the vibrations and waves that it causes. Such interaction sets up a feedback between the friction force and waves at the surfaces, thereby making friction and surface motion interdependent. Such interdependence forms the basis for friction-induced motion as in the case of

  20. Reconstruction of surface waves using super virtual interferometry: an example from the Forsmark site, Sweden (United States)

    Xu, Zhuo; Juhlin, Christopher; Han, Liguo; Zhang, Fengjiao


    Seismic interferometry is a technique that enables the extraction of the seismic impulse response (Green's function) between two receivers. The retrieved response is generally dominated by surface waves when sources are located at or near the surface of the Earth. In onshore seismic exploration, dealing with complex near-surface conditions is one of the main challenges for seismic data processing. In some cases, seismic interferometry can be used for suppressing surface waves without the use of a priori near-surface velocity model. Aside from being an effective tool for surface wave attenuation, the reconstructed surface waves generated by seismic interferometry contain useful information about near-surface heterogeneities and can be used to characterize the near-surface velocity field. In this study, we apply super virtual interferometry (SVI) to a real onshore data set from the Forsmark site, central Sweden, with the primary aim of characterizing shallow-subsurface structure. This is accomplished by improving the dispersion characteristics of the surface waves. We also show that SVI performs better than conventional correlation-type and convolution-type interferometry when reconstructing surface waves, both in synthetic and real data. We use the dispersive behaviour of the reconstructed surface waves to infer the geological structure of the shallow subsurface.

  1. Perspective: Acoustic metamaterials in transition

    KAUST Repository

    Wu, Ying


    Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles that guide the structure design rules as well as provide the basis for wave functionalities. Recent examples include resonance-based acoustic metasurfaces that offer flexible control of acoustic wave propagation such as focusing and re-direction; parity-time (PT)-symmetric acoustics that utilizes the general concept of pairing loss and gain to achieve perfect absorption at a single frequency; and topological phononics that can provide one-way edge state propagation. However, such novel functionalities are not without constraints. Metasurface elements rely on resonances to enhance their coupling to the incident wave; hence, its functionality is limited to a narrow frequency band. Topological phononics is the result of the special lattice symmetry that must be fixed at the fabrication stage. Overcoming such constraints naturally forms the basis for further developments. We identify two emergent directions: Integration of acoustic metamaterial elements for achieving broadband characteristics as well as acoustic wave manipulation tasks more complex than the single demonstrative functionality; and active acoustic metamaterials that can adapt to environment as well as to go beyond the constraints on the passive acoustic metamaterials. Examples of a successful recent integration of multi-resonators in achieving broadband sound absorption can be found in optimal sound-absorbing structures, which utilize causality constraint as a design tool in realizing the target-set absorption spectrum with a minimal sample thickness. Active acoustic metamaterials have also demonstrated the capability to tune bandgaps as well as to alter property of resonances in real time through stiffening of the spring constants, in addition to the PT symmetric

  2. Acoustic of monolithic dome structures

    Directory of Open Access Journals (Sweden)

    Mostafa Refat Ismail


    The interior of monolithic domes have perfect, concave shapes to ensure that sound travels through the dome and perfectly collected at different vocal points. These dome structures are utilized for domestic use because the scale allows the focal points to be positioned across daily life activities, thereby affecting the sonic comfort of the internal space. This study examines the various acoustic treatments and parametric configurations of monolithic dome sizes. A geometric relationship of acoustic treatment and dome radius is established to provide architects guidelines on the correct selection of absorption needed to maintain the acoustic comfort of these special spaces.

  3. North Pacific Acoustic Laboratory and Deep Water Acoustics (United States)


    During FY16 the primary effort has been working on manuscripts as summarized below: 1) A test of deep water Rytov theory at 284 Hz and 107 km in... signal , while the ambient noise field is in direct competition with the received signal . Research conducted in the North Pacific Acoustic Laboratory...low-frequency, long-range, deep water, broadband acoustic propagation, the effects of ocean variability on signal coherence, and the fundamental

  4. Měření indexu lomu vzduchu pomocí interferometrie nízké koherence

    Czech Academy of Sciences Publication Activity Database

    Pikálek, Tomáš; Buchta, Zdeněk


    Roč. 62, č. 10 (2017), s. 253-256 ISSN 0447-6441 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : air refractive index * laser interferometry * low-coherence interferometry Subject RIV: BH - Optics, Masers, Laser s OBOR OECD: Optics (including laser optics and quantum optics)

  5. Isotropic transformation acoustics and applications (United States)

    Su, Xiaoshi; Norris, Andrew N.


    A novel class of acoustic metamaterial is proposed for directional collimation of a cylindrical source into a plane wave beam. The effect is based on transformation acoustics which retains the exact form of the wave equation under conformal mapping from a circular region to a triangular area. The transformation is adjustable, allowing the acoustic energy to be equally radiated in three directions, or preferentially in a single direction. Importantly, the material properties in the physical domain are isotropic and therefore practically realizable. Two example devices are proposed using cylindrical elastic shells in water as the metamaterial elements and demonstrated using full wave simulations. This approach has potential applications beyond acoustic antenna design in beam-steering and wavefront manipulation.

  6. An Experimental Introduction to Acoustics (United States)

    Black, Andy Nicholas; Magruder, Robert H.


    Learning and understanding physics requires more than studying physics texts. It requires doing physics. Doing research is a key opportunity for students to connect physical principles with their everyday experience. A powerful way to introduce students to research and technique is through subjects in which they might find interest. Presented is an experiment that serves to introduce an advanced undergraduate or high school student to conducting research in acoustics via an experiment involving a standard dreadnought acoustic guitar, recording industry-related equipment, and relevant industrial analysis software. This experimental process is applicable to a wide range of acoustical topics including both acoustic and electric instruments. Also, the student has a hands-on experience with relevant audio engineering technology to study physical principles.

  7. Thermal/acoustical insulation foam (United States)

    Lin, R. Y.; Struzik, E. A.


    Lightweight low-density substance can be used as fire resistant insulation in aircraft. Material density can be controlled over range from 0.6-1.2 pounds per cubic foot and has good thermal and acoustic properties.

  8. NCPA Enhancement for Physical Acoustics

    National Research Council Canada - National Science Library

    Bass, Henry


    ...-rate scientists and students and carry out effective, ONR-supported research. Specific objectives of this grant are to support research and recruitment by enhancing the infrastructure in physical acoustics...

  9. Acoustic agglomeration methods and apparatus (United States)

    Barmatz, M. B. (Inventor)


    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  10. Reverberant Acoustic Test Facility (RATF) (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  11. PVT Degradation Studies: Acoustic Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tucker, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. This document reports on a study of acoustic techniques to determine whether they can provide a diagnostic for the fogging of PVT. Different ultrasound techniques were employed for detecting the level of internal fogging in PVT, including wave velocity measurements, attenuation, nonlinear acoustics, and acoustic microscopy. The results indicate that there are linear relations between the wave velocity and wave attenuation with the level of internal fogging. The effects of fogging on ultrasound wave attenuation is further verified by acoustic microscopy imaging, where regions with fog in the specimen demonstration higher levels of attenuation compared to clear regions. Results from the nonlinear ultrasound measurements were inconclusive due to high sensitivities to transducer coupling and fixture variabilities.

  12. A Transportable Gravity Gradiometer Based on Atom Interferometry (United States)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.


    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving

  13. Protein diffusion coefficients determined by macroscopic-gradient Rayleigh interferometry and dynamic light scattering. (United States)

    Annunziata, Onofrio; Buzatu, Daniela; Albright, John G


    Dynamic light scattering (DLS) is extensively used for measuring macromolecule diffusion coefficients. Contrary to classical techniques based on macroscopic concentration gradients, DLS probes microscopic fluctuations in concentration. DLS accuracy and its concordance with macroscopic-gradient techniques remains an outstanding important issue. We measured lysozyme diffusion coefficients in aqueous salt using both DLS and Rayleigh interferometry, a highly accurate macroscopic-gradient technique. The precision of our results is unprecedented. We find that our DLS values were systematically 2% higher than interferometry values. We believe that our interferometric measurements have produced the most accurate diffusion data ever reported for a protein, providing a new standard for quality control of DLS measurements. Furthermore, by interferometry, we have determined the whole diffusion coefficient matrix required for rigorously describing lysozyme-salt coupled diffusion. For the first time, we experimentally demonstrate that DLS does not provide the protein diffusion coefficient but one eigenvalue of the diffusion coefficient matrix.

  14. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements (United States)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu


    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  15. A portable magneto-optical trap with prospects for atom interferometry in civil engineering (United States)

    Hinton, A.; Perea-Ortiz, M.; Winch, J.; Briggs, J.; Freer, S.; Moustoukas, D.; Powell-Gill, S.; Squire, C.; Lamb, A.; Rammeloo, C.; Stray, B.; Voulazeris, G.; Zhu, L.; Kaushik, A.; Lien, Y.-H.; Niggebaum, A.; Rodgers, A.; Stabrawa, A.; Boddice, D.; Plant, S. R.; Tuckwell, G. W.; Bongs, K.; Metje, N.; Holynski, M.


    The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 107 atoms within a system package of 20 l and 10 kg, consuming 80 W of power. This article is part of the themed issue 'Quantum technology for the 21st century'.

  16. Sensor influence in digital 3λ holographic interferometry

    International Nuclear Information System (INIS)

    Desse, J M; Picart, P; Tankam, P


    In digital holographic interferometry, the resolution of the reconstructed hologram depends on the pixel size and pixel number of the sensor used for recording. When different wavelengths are simultaneously used as a luminous source for the interferometer, the shape and the overlapping of three filters of a color sensor strongly influence the three reconstructed images. This problem can be directly visualized in 2D Fourier planes on red, green and blue channels. To better understand this problem and to avoid parasitic images generated at the reconstruction, three different sensors have been tested: a CCD sensor equipped with a Bayer filter, a Foveon sensor and a 3CCD sensor. The first one is a Bayer mosaic where one half of the pixels detect the green color and only one-quarter detect the red or blue color. As the missing data are interpolated among color detection positions, offsets and artifacts are generated. The second one is a specific sensor constituted with three stacked photodiode layers. Its technology is different from that of the classical color mosaic sensor because each pixel location detects the three colors simultaneously. So, the three colors are recorded simultaneously with identical spatial resolution, which corresponds to the spatial resolution of the sensor. However, the spectral curve of the sensor is large along each wavelength since the color segmentation is based on the penetration depth of the photons in silicon. Finally, with a 3CCD sensor, each image is recorded on three different sensors with the same resolution. In order to test the sensor influence, we have developed a specific optical bench which allows the near wake flow around a circular cylinder at Mach 0.45 to be characterized. Finally, best results have been obtained with the 3CDD sensor

  17. MEGARA Optics: Sub-aperture Stitching Interferometry for Large Surfaces (United States)

    Aguirre-Aguirre, Daniel; Carrasco, Esperanza; Izazaga-Pérez, Rafael; Páez, Gonzalo; Granados-Agustín, Fermín; Percino-Zacarías, Elizabeth; Gil de Paz, Armando; Gallego, Jesús; Iglesias-Páramo, Jorge; Villalobos-Mendoza, Brenda


    In this work, we present a detailed analysis of sub-aperture interferogram stitching software to test circular and elliptical clear apertures with diameters and long axes up to 272 and 180 mm, respectively, from the Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía (MEGARA). MEGARA is a new spectrograph for the Gran Telescopio Canarias (GTC). It offers a resolution between 6000 and 20000 via the use of volume phase holographic gratings. It has an integral field unit and a set of robots for multi-object spectroscopy at the telescope focal plane. The output end of the fibers forms the spectrograph pseudo-slit. The fixed geometry of the collimator and camera configuration requires prisms in addition to the flat windows of the volume phase holographic gratings. There are 73 optical elements of large aperture and high precision manufactured in Mexico at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the Centro de Investigaciones en Óptica (CIO). The principle of stitching interferometry is to divide the surface being tested into overlapping small sections, which allows an easier analysis (Kim & Wyant 1981). This capability is ideal for non-contact tests for unique and large optics as required by astronomical instruments. We show that the results obtained with our sub-aperture stitching algorithm were consistent with other methods that analyze the entire aperture. We used this method to analyze the 24 MEGARA prisms that could not be tested otherwise. The instrument has been successfully commissioned at GTC in all the spectral configurations. The fulfillment of the irregularity specifications was one of the necessary conditions to comply with the spectral requirements.

  18. Miniaturization of speckle interferometry for rapid strain analysis (United States)

    Wegner, Ronny; Ettemeyer, Andreas


    Today's industry demands high-performance components meeting toughest mechanical features and ultimate safety standards. Especially in automotive and aircraft industry the development focuses on tailor-made design and solutions according to customer specifications. To reconcile economy, light-weight construction has become a key issue. Many companies are looking for new advanced strain/stress analysis techniques to improve cost efficiency and the limitations of classical methods. Detection of weak points and fatigue tests are carried out mainly with strain gauges which need careful application and experience. ESPI (electronic speckle pattern interferometry) allows a rapid, full field and 3D-measurement without contact. This paper presents the principle and application of a new miniaturized laser optical sensor combining contour and deformation measurement. In its basic employment ESPI is an interferometric method measuring deformations at modern working materials with high accuracy. Here also a module for contouring was developed and integrated into a single interferometer. Therefore even at complex components it is possible to measure and display strain-fields and -gradients with respect to the underlying contour. The new sensor is a unique device for flexible strain-analysis at welded-materials, extrusions, engines, car-bodies, etc. Without preparation and due to the full field and 3D- measurement 'hot spots' are shown, reducing the testing procedure and increasing the reliability of the complex component testing significantly. In this paper the recent development of a miniaturized ESPI-interferometer for strain and stress measurement is described. Advanced features according to classical techniques are specified and new applications in material and component testing are presented.

  19. Ka-band SAR interferometry studies for the SWOT mission (United States)

    Fernandez, D. E.; Fu, L.; Rodriguez, E.; Hodges, R.; Brown, S.


    The primary objective of the NRC Decadal Survey recommended SWOT (Surface Water and Ocean Topography) Mission is to measure the water elevation of the global oceans, as well as terrestrial water bodies (such as rivers, lakes, reservoirs, and wetlands), to answer key scientific questions on the kinetic energy of ocean circulation, the spatial and temporal variability of the world's surface freshwater storage and discharge, and to provide societal benefits on predicting climate change, coastal zone management, flood prediction, and water resources management. The SWOT mission plans to carry the following suite of microwave instruments: a Ka-band interferometer, a dual-frequency nadir altimeter, and a multi-frequency water-vapor radiometer dedicated to measuring wet tropospheric path delay to correct the radar measurements. We are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to reduce the risk of the main technological drivers of SWOT, by addressing the following technologies: the Ka-band radar interferometric antenna design, the on-board interferometric SAR processor, and the internally calibrated high-frequency radiometer. The goal is to significantly enhance the readiness level of the new technologies required for SWOT, while laying the foundations for the next-generation missions to map water elevation for studying Earth. The first two technologies address the challenges of the Ka-band SAR interferometry, while the high- frequency radiometer addresses the requirement for small-scale wet tropospheric corrections for coastal zone applications. In this paper, we present the scientific rational, need and objectives behind these technology items currently under development.

  20. Acoustical Properties of Contemporary Mosques

    Directory of Open Access Journals (Sweden)

    Karaman Özgül Yılmaz


    Full Text Available Religious buildings are important for many communities because of their representation of different beliefs. In such structures, the sense of individuality or unity & togetherness are created according to variable worship activities; these different uses have also different acoustical requirements. In order to create the desired feeling in the space at the required time, rooms should be evaluated in terms of acoustical conditions.

  1. Local earthquake interferometry of the IRIS Community Wavefield Experiment, Grant County, Oklahoma (United States)

    Eddy, A. C.; Harder, S. H.


    The IRIS Community Wavefield Experiment was deployed in Grant County, located in north central Oklahoma, from June 21 to July 27, 2016. Data from all nodes were recorded at 250 samples per second between June 21 and July 20 along three lines. The main line was 12.5 km long oriented east-west and consisted of 129 nodes. The other two lines were 5.5 km long north-south oriented with 49 nodes each. During this time, approximately 150 earthquakes of magnitude 1.0 to 4.4 were recorded in the surrounding counties of Oklahoma and Kansas. Ideally, sources for local earthquake interferometry should be near surface events that produce high frequency body waves. Unlike ambient noise seismic interferometry (ANSI), which uses days, weeks, or even months of continuously recorded seismic data, local earthquake interferometry uses only short segments ( 2 min.) of data. Interferometry in this case is based on the cross-correlation of body wave surface multiples where the event source is translated to a reference station in the array, which acts as a virtual source. Multiples recorded between the reference station and all other stations can be cross-correlated to produce a clear seismic trace. This process will be repeated with every node acting as the reference station for all events. The resulting shot gather will then be processed and analyzed for quality and accuracy. Successful application of local earthquake interferometry will produce a crustal image with identifiable sedimentary and basement reflectors and possibly a Moho reflection. Economically, local earthquake interferometry could lower the time and resource cost of active and passive seismic surveys while improving subsurface image quality in urban settings or areas of limited access. The applications of this method can potentially be expanded with the inclusion of seismic events with a magnitude of 1.0 or lower.

  2. Demonstration of Geometric Landau-Zener Interferometry in a Superconducting Qubit (United States)

    Tan, Xinsheng; Zhang, Dan-Wei; Zhang, Zhentao; Yu, Yang; Han, Siyuan; Zhu, Shi-Liang


    Geometric quantum manipulation and Landau-Zener interferometry have been separately explored in many quantum systems. In this Letter, we combine these two approaches to study the dynamics of a superconducting phase qubit. We experimentally demonstrate Landau-Zener interferometry based on the pure geometric phases in this solid-state qubit. We observe the interference caused by a pure geometric phase accumulated in the evolution between two consecutive Landau-Zener transitions, while the dynamical phase is canceled out by a spin-echo pulse. The full controllability of the qubit state as a function of the intrinsically robust geometric phase provides a promising approach for quantum state manipulation.

  3. Application of optical single-sideband laser in Raman atom interferometry (United States)

    Zhu, Lingxiao; Lien, Yu-Hung; Hinton, Andrew; Niggebaum, Alexander; Rammeloo, Clemens; Bongs, Kai; Holynski, Michael


    A frequency doubled I/Q modulator based optical single-sideband (OSSB) laser system is demonstrated for atomic physics research, specifically for atom interferometry where the presence of additional sidebands causes parasitic transitions. The performance of the OSSB technique and the spectrum after second harmonic generation are measured and analyzed. The additional sidebands are removed with better than 20 dB suppression, and the influence of parasitic transitions upon stimulated Raman transitions at varying spatial positions is shown to be removed beneath experimental noise. This technique will facilitate the development of compact atom interferometry based sensors with improved accuracy and reduced complexity.

  4. Precise signal amplitude retrieval for a non-homogeneous diagnostic beam using complex interferometry approach

    Czech Academy of Sciences Publication Activity Database

    Krupka, Michal; Kálal, Milan; Dostál, Jan; Dudžák, Roman; Juha, Libor


    Roč. 12, August (2017), č. článku C08012. ISSN 1748-0221. [European Conference on Plasma Diagnostics (ECPD2017)/2./. Bordeaux, 18.04.2017-21.04.2017] R&D Projects: GA MŠk(CZ) LM2015083 Institutional support: RVO:61389021 Keywords : Image processing * Interferometry * Plasma diagnostics - interferometry * Spectroscopy and imaging Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016

  5. Generation of interferogram for D-InSAR based on contoured correlation interferometry (United States)

    Long, Xuejun; Fu, Sihua; Yu, Qifeng; Yang, Xia


    Synthetic Aperture Radar interferometry (InSAR) is a rapidly developing technique for earth observation. Differential InSAR (D-InSAR) technique, based on InSAR, is a new method for earthquake deformation detection and land subsidence monitoring. In this paper, an innovative method of generation of interferogram for D-InSAR based on contoured correlation interferometry (CCI) is presented, which may directly generate interferogram with almost no speckle noise or blurring. The data processing results of the Mani earthquake indicate that D-InSAR CCI method can effectively reduce or even remove the decorrelation noise, even in the area with serious decorrelation.

  6. Acoustics of the Intonarumori (United States)

    Serafin, Stefania


    The Intonarumori were a family of musical instruments invented by the Italian futurist composer and painter Luigi Russolo. Each Intonarumori was made of a wooden parallelepiped sound box, inside which a wheel of different sizes and materials was setting into vibration a catgut or metal string. The pitch of the string was varied by using a lever, while the speed of the wheel was controlled by the performer using a crank. At one end of the string there was a drumhead that transmitted vibrations to the speaker. Unfortunately, all the original Intonarumori were destroyed after a fire during World War II. Since then, researchers have tried to understand the sound production mechanism of such instruments, especially by consulting the patents compiled by Russolo or by reading his book ``The art of noise.'' In this paper we describe the acoustics of the Intonarumori. Based on such description, we propose physical models that simulate such instruments. The intonarumori's string is modeled using a one dimensional waveguide, which is excited either by an impact or a friction model. The body of the instrument is modeled using a 3-D rectangular mesh, while the horn is considered as an omnidirectional radiator.

  7. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu


    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.


    Energy Technology Data Exchange (ETDEWEB)

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra


    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  9. Nuclear medicine image registration by spatially noncoherent interferometry. (United States)

    Scheiber, C; Malet, Y; Sirat, G; Grucker, D


    This article introduces a technique for obtaining high-resolution body contour data in the same coordinate frame as that of a rotating gamma camera, using a miniature range finder, the conoscope, mounted on the camera gantry. One potential application of the technique is accurate coregistration in longitudinal brain SPECT studies, using the face of the patient (or "mask"), instead of SPECT slices, to coregister subsequent acquisitions involving the brain. Conoscopic holography is an interferometry technique that relies on spatially incoherent light interference in birefringent crystals. In this study, the conoscope was used to measure the absolute distance (Z) between a light source reflected from the skin and its observation plane. This light was emitted by a 0.2-mW laser diode. A scanning system was used to image the face during SPECT acquisition. The system consisted of a motor-driven mirror (Y axis) and the gamma-camera gantry (1 profile was obtained for each rotation step, X axis). The system was calibrated to place the conoscopic measurements and SPECT slices in the same coordinate frame. Through a simple and robust calibration of the system, the SE for measurements performed on geometric shapes was less than 2 mm, i.e., less than the actual pixel size of the SPECT data. Biometric measurements of an anthropomorphic brain phantom were within 3%-5% of actual values. The mask data were used to register images of a brain phantom and of a volunteer's brain, respectively. The rigid transformation that allowed the merging of masks by visual inspection was applied to the 2 sets of SPECT slices to perform the fusion of the data. At the cost of an additional low-cost setup integrated into the gamma-camera gantry, real-time data about the surface of the head were obtained. As in all other surface-based techniques (as opposed to volume-based techniques), this method allows the match of data independently from the dataset of interest and facilitates further registration

  10. Analysis of error functions in speckle shearing interferometry

    International Nuclear Information System (INIS)

    Wan Saffiey Wan Abdullah


    Electronic Speckle Pattern Shearing Interferometry (ESPSI) or shearography has successfully been used in NDT for slope (∂w/ (∂x and / or (∂w/ (∂y) measurement while strain measurement (∂u/ ∂x, ∂v/ ∂y, ∂u/ ∂y and (∂v/ (∂x) is still under investigation. This method is well accepted in industrial applications especially in the aerospace industry. Demand of this method is increasing due to complexity of the test materials and objects. ESPSI has successfully performed in NDT only for qualitative measurement whilst quantitative measurement is the current aim of many manufacturers. Industrial use of such equipment is being completed without considering the errors arising from numerous sources, including wavefront divergence. The majority of commercial systems are operated with diverging object illumination wave fronts without considering the curvature of the object illumination wavefront or the object geometry, when calculating the interferometer fringe function and quantifying data. This thesis reports the novel approach in quantified maximum phase change difference analysis for derivative out-of-plane (OOP) and in-plane (IP) cases that propagate from the divergent illumination wavefront compared to collimated illumination. The theoretical of maximum phase difference is formulated by means of three dependent variables, these being the object distance, illuminated diameter, center of illuminated area and camera distance and illumination angle. The relative maximum phase change difference that may contributed to the error in the measurement analysis in this scope of research is defined by the difference of maximum phase difference value measured by divergent illumination wavefront relative to the maximum phase difference value of collimated illumination wavefront, taken at the edge of illuminated area. Experimental validation using test objects for derivative out-of-plane and derivative in-plane deformation, using a single illumination wavefront

  11. Looking inside the microseismic cloud using seismic interferometry (United States)

    Matzel, E.; Rhode, A.; Morency, C.; Templeton, D. C.; Pyle, M. L.


    Microseismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Thousands of microquakes are often associated with an active site. This cloud of microseismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the faulting region, itself. The virtual seismometer method (VSM) is a technique of seismic interferometry that provides precise estimates of the GF between earthquakes. In many ways the converse of ambient noise correlation, it is very sensitive to the source parameters (location, mechanism and magnitude) and to the Earth structure in the source region. In a region with 1000 microseisms, we can calculate roughly 500,000 waveforms sampling the active zone. At the same time, VSM collapses the computation domain down to the size of the cloud of microseismicity, often by 2-3 orders of magnitude. In simple terms VSM involves correlating the waveforms from a pair of events recorded at an individual station and then stacking the results over all stations to obtain the final result. In the far-field, when most of the stations in a network fall along a line between the two events, the result is an estimate of the GF between the two, modified by the source terms. In this geometry each earthquake is effectively a virtual seismometer recording all the others. When applied to microquakes, this alignment is often not met, and we also need to address the effects of the geometry between the two microquakes relative to each seismometer. Nonetheless, the technique is quite robust, and highly sensitive to the microseismic cloud. Using data from the Salton Sea geothermal region, we demonstrate the power of the technique, illustrating our ability to scale the technique from the far-field, where sources are well separated, to the near field where their locations fall within each other's uncertainty ellipse. VSM provides better

  12. Radiological evaluation of acoustic neurinoma

    International Nuclear Information System (INIS)

    Lee, Jong Tae; Park, Chang Yun; Choi, Byung So


    All 25 patients surgically proven acoustic neurinoma was analysed clinically, radiographically at Severance Hospital of Yonsei Univ. The patients not proved surgically in spite of clinical diagnosis of acoustic neurinoma was excluded from this study. The results are summarized as follows; The clinical findings are; 1. The incidence of tumor in female was twice more frequent than in male and the range of age was 20-50 years peak of age at onset of symptom. 2. The clinical symptoms were variable from unilateral hearing impairment or less (100%), headache (84%) to tinnitus (60%) in order of frequency. 3. The tumor growth in the left cerebellopontine angle was twice more than in the right side with the radio of 16:8. However, in one case bilateral simultaneous growth of acoustic neurinoma was noted. The radiological findings are: The best radiographic method to study the shape and size of internal acoustic canal to demonstrate erosion or destruction of petrous pyramida was considered to be straight frontal view and tomography of the skull in our series. 1. The shape of internal acoustic canal in tumors were straight (in 2 cases), bulbous (in 12 cases), and flared (in 11 cases). Particularly there was erosion or destruction of petrous bone in all of the flared cases of canal. 2. The acoustic meatal erosion was mainly suprameatal in 14 cases of 17 which was noted definite erosion radiographically. 3. The difference of height (vertical diameter) of both side of acoustic canal were follows; 6 cases among 25 was in the range of 0-2 mm measurement, remainder was more than 2 mm. Hence the variation in greater than 1 mm in between both sides of canal in same patient should be regard as abnormal as of acoustic neurinoma. 4. The carotid angiogram shows hydrocephalic pattern in 12 cases among 17. 5. In the vertebral angiogram of 8 cases, anterolateral displacement of basilar artery (in 6 caes), the upward displacement of superior cerebellar artery (in 4 cases) was common findings

  13. Sonification of acoustic emission data (United States)

    Raith, Manuel; Große, Christian


    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  14. Acoustic constituents of prosodic typology (United States)

    Komatsu, Masahiko

    Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The


    Directory of Open Access Journals (Sweden)

    Aleksandr Skvortsov


    Full Text Available The research of influence of life environment adverse factors on physical development and health of population is an actual problem of ecology. The aspects of the most actual problems of the modern world, namely environmental industrial noise pollution are considered in the article. Industrial facilities everywhere have noisy equipment. Noise is a significant factors of negative influenceon people and environment. Combined effects of noise and of other physical pollutions on people may cause amplification of their negative impact. If the noise pollution level from the object in a residential area exceeds the permissible levels (MPL, noise protection measures can be initiated. Today, the most common design decisions for noise protection are sound absorbing construction, noise screens and barriers, acousting housings, soundproff cabins. Many of them are popular, others are less known. The article deals with one of the most wide spread means of noise protection – a portable acoustic screen. The aim of the research is to determine the efficiency of portable acoustic screens. It is shown that the installation of such structures can reduce the average value of the sound level. The authors analyzed acoustic screens as device to reduce noise pollution. The authors offer a potable acoustic screen differing from the used easyness, mobility, minimum price and good sound protective properties. Effectiveness, a sound absorption coefficient and sound conductivity coefficient of a portable acoustic screen are evaluated. The descriptions of the algorithm calculations and the combination of technical solutions have practical originality. The results of the research demonstrate the advantages of the proposed solutions for reducing noise levels in the agro-industrial complex.

  16. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.


    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  17. Azimuthally sensitive Hanbury Brown-Twiss interferometry measured with the ALICE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gramling, Johanna Lena


    Bose-Einstein correlations of identical pions emitted in high-energy particle collisions provide information about the size of the source region in space-time. If analyzed via HBT Interferometry in several directions with respect to the reaction plane, the shape of the source can be extracted. Hence, HBT Interferometry provides an excellent tool to probe the characteristics of the quark-gluon plasma possibly created in high-energy heavy-ion collisions. This thesis introduces the main theoretical concepts of particle physics, the quark gluon plasma and the technique of HBT interferometry. The ALICE experiment at the CERN Large Hadron Collider (LHC) is explained and the first azimuthallyintegrated results measured in Pb-Pb collisions at √(s{sub NN})=2.76 TeV with ALICE are presented. A detailed two-track resolution study leading to a global pair cut for HBT analyses has been performed, and a framework for the event plane determination has been developed. The results from azimuthally sensitive HBT interferometry are compared to theoretical models and previous measurements at lower energies. Oscillations of the transverse radii in dependence on the pair emission angle are observed, consistent with a source that is extended out-of-plane.

  18. A new method of electron density measurement by Fabry-Perot interferometry

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Mase, Atsushi


    A new method for determining the electron density of a thin plasma by means of Fabry-Perot interferometry is proposed. The interferometer consists of two plasma layers and dielectric material surrounded by two plasma layers. The transmittance of electromagnetic waves across the interferometer is calculated, and Fabry-Perot resonances are frequency when the width of a plasma layer is known. (author)

  19. Optical interferometry methods used to study stress wave propagetion in a human skull

    Czech Academy of Sciences Publication Activity Database

    Trnka, Jan; Dvořáková, Pavla; Veselý, Eduard


    Roč. 2, č. 3 (2004), s. 29-34 ISSN 0732-8818 R&D Projects: GA AV ČR IAA2076904 Institutional research plan: CEZ:AV0Z2076919 Keywords : double-pulse * holo-interferometry * stress waves Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.322, year: 2004

  20. Evaluation of back scatter interferometry, a method for detecting protein binding in solution

    DEFF Research Database (Denmark)

    Jepsen, S. T.; Jørgensen, Thomas Martini; Zong, Weiyong


    Back Scatter Interferometry (BSI) has been proposed to be a highly sensitive and versatile refractive index sensor usable for analytical detection of biomarker and protein interactions in solution. However the existing literature on BSI lacks a physical explanation of why protein interactions...

  1. Analysis of capillary interferometry for measuring refractive indices of minute samples. (United States)

    Qi, Shengwen; Yang, Xiuqin; Zhang, Chunping; Zhang, Lianshun; Wang, Xinyu; Xu, Tang; Tian, Jianguo; Zhang, Guangyin


    A method of measuring the refractive indices of minute samples by analyzing capillary interferometry is introduced. With the interference theory of light, the intensity distribution of an interference fringe pattern formed by a cylindrical tube of a capillary is obtained, and the influence of some parameters on the fringes are discussed. The measurement accuracy and its relative problems are analyzed.

  2. Novel implementation of an ISO standard method for primary vibration calibration by laser interferometry

    CSIR Research Space (South Africa)

    Veldman, CS


    Full Text Available An implementation of the sine-approximation method of ISO 16063-11 (primary vibration calibration by laser interferometry) is described. The quadrature interference signals are generated using an interferometer as described in method 3 of ISO 16063...

  3. Thermal and electrical properties of porphyrin derivatives and their relevance for molecule interferometry

    NARCIS (Netherlands)

    Deachapunya, S.; Stefanov, A.; Berninger, M.; Ulbricht, H.; Reiger, E.; Doltsinis, N.L.; Arndt, M.


    The authors present new measurements of thermal and electrical properties for two porphyrin derivatives. They determine their sublimation enthalpy from the temperature dependence of the effusive beam intensity. The authors study H2TPP and Fe(TPP)Cl in matter-wave interferometry. Both molecules have

  4. Speckle Interferometry with the McMath-Pierce East Auxiliary Telescope (United States)

    Harshaw, Richard; Ray, Jimmy; Douglass, David; Prause, Lori; Genet, Russell


    Engineering runs and tests on the McMath-Pierce 0.8 meter East Auxiliary telescope successfully configured the telescope for speckle interferometry observations of close visual double stars. This paper reports the procedure and results of the speckle analysis of four double stars.

  5. Decoherence dynamics in interferometry with one-dimensional bose-einstein condensates

    DEFF Research Database (Denmark)

    Schumm, Thorsten; Hofferberth, Sebastian; Schmiedmayer, Jörg


    We perform interferometry with one-dimensional Bose-Einstein condensates in a double well potential. Using dressed adiabatic potentials on an atomchip, we dynamically split BECs, imposing a macroscopic coherence on the system. Fluctuations of the order parameter are revealed as local shifts in th...

  6. Influence of error sources in speckle interferometry using only two speckle patterns (United States)

    Arai, Yasuhiko


    Speckle interferometry is an important deformation measurement method for objects with rough surfaces. Recently, a fringe analysis method that uses only one speckle pattern before deformation and one after deformation was proposed. The measurement accuracy of this method is known to depend on experimental conditions. In this paper, the improvement of the measurement accuracy of this method is discussed in comparison with the advanced technologies of off-axis digital holography. It is highly effective to introduce the experiences of the advanced technologies of digital holography to speckle interferometry. However, it should also be considered that both technologies have different purposes. Because digital holography is basically a technology which records images, the influence of the quantity of deformation has never been discussed in digital holography in detail. In this study, the measurement accuracy of speckle interferometry is investigated through a precise comparison of the experimental results from both technologies. It was confirmed that the conditions for digital holography are not always suitable for improving the measurement accuracy of speckle interferometry.

  7. Laboratoř interferometrie a vysoce koherentních laserů

    Czech Academy of Sciences Publication Activity Database

    Lazar, Josef; Číp, Ondřej; Petrů, František; Jedlička, Petr; Mikel, Břetislav; Růžička, Bohdan; Buchta, Zdeněk; Matoušek, Vít


    Roč. 51, č. 1 (2006), s. 4-6 ISSN 0447-6441 R&D Projects: GA ČR GA102/04/2109; GA AV ČR IAA200650504; GA AV ČR KJB200650503 Institutional research plan: CEZ:AV0Z20650511 Keywords : stabilized lasers * interferometry * refractometry Subject RIV: BH - Optics, Masers, Lasers

  8. Using Airborne SAR Interferometry to Measure the Elevation of a Greenland Ice Cap

    DEFF Research Database (Denmark)

    Dall, Jørgen; Keller, K.; Madsen, S.N.


    A digital elevation model (DEM) of an ice cap in Greenland has been generated from airborne SAR interferometry data, calibrated with a new algorithm, and compared with airborne laser altimetry profiles and carrier-phase differential GPS measurements of radar reflectors deployed on the ice cap...

  9. Use of seismic interferometry to improve the imaging of a heterogeneous landfill

    NARCIS (Netherlands)

    Konstantaki, L.A.; Draganov, D.S.; Ghose, R.; Heimovaara, T.J.


    In this study we investigate the application of seismic interferometry (SI) to seismic reflection data recorded over a landfill. Landfills represent strongly heterogeneous subsurfaces making the seismic reflection imaging challenging. We show that SI improves the imaging of high-density areas, which

  10. Radar Interferometry Detection of Hinge Line Migration on Rutford Ice Stream and Carlson Inlet, Antarctica (United States)

    Rignot, Eric


    Satellite synthetic-aperture radar (SAR) Interferometry is employed to map the hinge line, or limit of tidal flexing, of Rutford Ice Stream and Carlson Inlet, Antarctica, and detect its migration between 1992 and 1996. The hinge line is mapped using a model fit from an elastic beam theory.

  11. Quantification of the neutron dark-field imaging signal in grating interferometry

    Czech Academy of Sciences Publication Activity Database

    Grünzweig, C.; Kopeček, Jaromír; Betz, B.; Kaestner, A.; Jefimovs, K.; Kohlbrecher, J.; Gasser, U.; Bunk, O.; David, C.; Lehmann, E.; Donath, T.; Pfeiffer, F.


    Roč. 88, č. 12 (2012), "125104-1"-"125104-6" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : neutron scattering (including small - angle scattering ) * atom and neutron interferometry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  12. Modeling surface deformation observed with synthetic aperture radar interferometry at Campi Flegrei caldera

    NARCIS (Netherlands)

    Lundgren, P.; Usai, S.; Sansosti, E.; Lanari, R.; Tesauro, M.; Fornaro, G.; Berardino, P.


    Satellite radar interferometry of Campi Flegrei caldera, Italy, reveals a pattern of subsidence during the period 1993–1998. Interferograms spanning the first half of the observation period (1993–1995) have a lower amplitude and average rate of subsidence than those spanning either the second half

  13. Measurement of the influence of dispersion on white-light interferometry

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, Pavel; Soubusta, Jan


    Roč. 43, č. 4 (2004), s. 766-770 ISSN 0003-6935 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : white-light interferometry * height profile * smooth surface Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.799, year: 2004

  14. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    CERN Document Server

    Walz, D


    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor.

  15. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry

    NARCIS (Netherlands)

    Nishitsuji, Y.; Rowe, CA; Wapenaar, C.P.A.; Draganov, D.S.


    The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection

  16. A Study of Wave Propagation in a Human Skull Using Laser Interferometry

    Czech Academy of Sciences Publication Activity Database

    Trnka, Jan; Veselý, Eduard; Dvořáková, Pavla

    vol.2, č. 1 (2004), s. 27-30 ISSN 0732-8818 R&D Projects: GA AV ČR IAA2076904 Institutional research plan: CEZ:AV0Z2076919 Keywords : laser interferometry * human skull * guided waves Subject RIV: BH - Optics, Masers, Laser s Impact factor: 0.322, year: 2004

  17. Methods of direct measurement of the refraction index of air using high-resolution laser interferometry

    Czech Academy of Sciences Publication Activity Database

    Číp, Ondřej; Petrů, František; Matoušek, V.; Buchta, Z.; Lazar, Josef


    Roč. 49, č. 3 (2004), s. 88-90 ISSN 0447-6441 R&D Projects: GA AV ČR IBS2065009 Keywords : laser interferometry * refraction index * Fabry-Perot interferometer Subject RIV: BH - Optics, Masers, Lasers

  18. Soft-X-Ray Laser Interferometry of a Dense Plasma using a Lloyd mirror. (United States)

    Moreno, C. H.; Marconi, M. C.; Kanizay, K.; Rocca, J. J.


    X-Ray lasers can significantly expand the maximum plasma size and electron densities accessible to laser interferometry. Recently, a soft-x-ray laser pumped by the NOVA laser at LLNL was used in combination with a Mach-Zehnder interferometer to study large-scale laser-created plasmas(L.B. Da Silva et al), Phys. Rev. Lett. 74, 3991, (1995). The recent demonstration of saturated discharge-pumped soft x-ray laser(J.J. Rocca et al), Phys. Rev. Lett. 77, 1476, (1996) opened the possibility of conducting soft x-ray laser interferometry of dense plasmas with a table-top laser. The subsequent measurement of the spatial coherence of this laser(M. Marconi et al), Phys. Rev. Lett., 79, 2799, (1997) gave additional support to this possibility. In this communication we report the first demonstration of soft x-ray plasma interferometry experiment performed with a table-top laser. A capillary discharge-pumped 46.9 nm laser was used in combination with a Lloyd mirror to perform time resolved interferometry in a pinch discharge. Analysis of the interferograms allowed to quantify the spatial distribution of the electron density in the region adjacent to the cathode. This work was supported by DOE grant DE-FG03-98DP00208. We also acknowledge the support of NSF for the development of the laser.

  19. Iceland rising : Solid Earth response to ice retreat inferred from satellite radar interferometry and visocelastic modeling

    NARCIS (Netherlands)

    Auriac, A.; Spaans, K.H.; Sigmundsson, F.; Hooper, A.; Schmidt, P.; Lund, B.


    A broad uplift occurs in Iceland in response to the retreat of ice caps, which began circa 1890. Until now, this deformation signal has been measured primarily using GPS at points some distance away from the ice caps. Here, for the first time we use satellite radar interferometry (interferometric

  20. Anthropogenic impact signatures revealed in the travelling ionospheric disturbances by regional GPS interferometry (United States)

    Zakharov, V. I.; Ilyushin, Ya A.


    With the technique of the radio interferometry of the navigational satellite signals, we investigate the travelling ionospheric disturbances generated by large urban agglomeration. We resolve detailed structure of the ionospheric disturbances field and attribute disturbances to particular atmospheric wave sources in the agglomeration. Wave generation efficiency revealed from the observational data well agrees with the theoretical prediction derived from energetic considerations.

  1. Software-based acoustical measurements

    CERN Document Server

    Miyara, Federico


    This textbook provides a detailed introduction to the use of software in combination with simple and economical hardware (a sound level meter with calibrated AC output and a digital recording system) to obtain sophisticated measurements usually requiring expensive equipment. It emphasizes the use of free, open source, and multiplatform software. Many commercial acoustical measurement systems use software algorithms as an integral component; however the methods are not disclosed. This book enables the reader to develop useful algorithms and provides insight into the use of digital audio editing tools to document features in the signal. Topics covered include acoustical measurement principles, in-depth critical study of uncertainty applied to acoustical measurements, digital signal processing from the basics, and metrologically-oriented spectral and statistical analysis of signals. The student will gain a deep understanding of the use of software for measurement purposes; the ability to implement software-based...

  2. Prototype acoustic resonance spectroscopy monitor

    International Nuclear Information System (INIS)

    Sinha, D.N.; Olinger, C.T.


    This report reports on work performed for the International Atomic Energy Agency (IAEA) through the Program Office for Technical Assistance (POTAS). In this work, we investigate possible applications of nondestructive acoustics measurements to facilitate IAEA safeguards at bulk processing facilities. Two different acoustic techniques for verifying the internal structure of a processing tank were investigated. During this effort we also examined two acoustic techniques for assessing the fill level within a processing tank. The fill-level measurements could be made highly portable and have an added safeguards advantage that they can also detect stratification of fill material. This later application may be particularly useful in confirming the absence of stratification in plutonium processing tanks before accountability samples are withdrawn

  3. Classroom acoustics: Three pilot studies (United States)

    Smaldino, Joseph J.


    This paper summarizes three related pilot projects designed to focus on the possible effects of classroom acoustics on fine auditory discrimination as it relates to language acquisition, especially English as a second language. The first study investigated the influence of improving the signal-to-noise ratio on the differentiation of English phonemes. The results showed better differentiation with better signal-to-noise ratio. The second studied speech perception in noise by young adults for whom English was a second language. The outcome indicated that the second language learners required a better signal-to-noise ratio to perform equally to the native language participants. The last study surveyed the acoustic conditions of preschool and day care classrooms, wherein first and second language learning occurs. The survey suggested an unfavorable acoustic environment for language learning.

  4. Acoustic multivariate condition monitoring - AMCM

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhave, P.E. [Vestfold College, Maritime Dept., Toensberg (Norway)


    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  5. Performance of several viscothermal acoustic finite elements

    NARCIS (Netherlands)

    Kampinga, W.R.; Wijnant, Ysbrand H.; de Boer, Andries


    Viscothermal acoustics can be described by the linearized Navier Stokes equations. Besides inertia and compressibility, these equations take the heat conductivity and the viscosity of the medium (air) into account. These 'viscothermal' effects are significant in, for example, miniature acoustic

  6. Golden Gate and Pt. Reyes Acoustic Detections (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains detections of acoustic tagged fish from two general locations: Golden Gate (east and west line) and Pt. Reyes. Several Vemco 69khz acoustic...

  7. Subwoofer and nanotube butterfly acoustic flame extinction

    NARCIS (Netherlands)

    Aliev, Ali E.; Mayo, Nathanael K.; Baughman, Ray H.; Mills, Brent T.; Habtour, Ed


    Nonchemical flame control using acoustic waves from a subwoofer and a lightweight carbon nanotube thermoacoustic projector was demonstrated. The intent was to manipulate flame intensity, direction and propagation. The mechanisms of flame suppression using low frequency acoustic waves were discussed.

  8. Study on a multi-delay spectral interferometry for stellar radial velocity measurement (United States)

    Zhang, Kai; Jiang, Haijiao; Tang, Jin; Ji, Hangxin; Zhu, Yongtian; Wang, Liang


    High accuracy radial velocity measurement isn't only one of the most important methods for detecting earth-like Exoplanets, but also one of the main developing fields of astronomical observation technologies in future. Externally dispersed interferometry (EDI) generates a kind of particular interference spectrum through combining a fixed-delay interferometer with a medium-resolution spectrograph. It effectively enhances radial velocity measuring accuracy by several times. Another further study on multi-delay interferometry was gradually developed after observation success with only a fixed-delay, and its relative instrumentation makes more impressive performance in near Infrared band. Multi-delay is capable of giving wider coverage from low to high frequency in Fourier field so that gives a higher accuracy in radial velocity measurement. To study on this new technology and verify its feasibility at Guo Shoujing telescope (LAMOST), an experimental instrumentation with single fixed-delay named MESSI has been built and tested at our lab. Another experimental study on multi-delay spectral interferometry given here is being done as well. Basically, this multi-delay experimental system is designed in according to the similar instrument named TEDI at Palomar observatory and the preliminary test result of MESSI. Due to existence of LAMOST spectrograph at lab, a multi-delay interferometer design actually dominates our work. It's generally composed of three parts, respectively science optics, phase-stabilizing optics and delay-calibrating optics. To switch different fixed delays smoothly during observation, the delay-calibrating optics is possibly useful to get high repeatability during switching motion through polychromatic interferometry. Although this metrology is based on white light interferometry in theory, it's different that integrates all of interference signals independently obtained by different monochromatic light in order to avoid dispersion error caused by

  9. Historic perspective of the acoustic otoscope. (United States)

    Walsh, F P; Cox, L C; MacDonald, C B


    The acoustic otoscope, originally called the acoustic reflectometer, was developed and produced by John and David Teele in the early 1980s. Since initial production, two different instrument versions have been developed by two separate companies. During the period of time in which the acoustic otoscope has been in production, there have been numerous studies reported with the two instrument versions. We provide a historic summary of the acoustic otoscope, summarize the pertinent studies, and address the contrasting results found in the literature.

  10. Physical foundations of technical acoustics

    CERN Document Server

    Malecki, I


    Physical Foundations of Technical Acoustics discusses theoretical foundations of acoustical engineering. It is not so much a technical compendium as a systematic statement of physical laws so conceived that technologists might find in it all the information they need to become acquainted with the physical meaning and mathematical expression of phenomena they encounter in their work. To facilitate the acquirement of notions, which lie beyond a layman's grasp, the plan of narration adopted consists in beginning with the simplest idealized cases and then gradually moving on to the truest possibl

  11. Acoustic target models and phenomenology (United States)

    Neiswander, Paul R.; Kaiser, Stephen G.


    Ground-based and airborne acoustic systems often target vehicles that are powered by reciprocating internal combustion engines. Typically the far-field acoustic spectra of these vehicles are dominated by a few narrow spectral lines that are harmonically related. The dominant harmonics change with engine speed and also with emission angle. This paper describes a simple model that recreates some of this variability. The model breaks the far-field signature into two components: the generation of a train of pressure pulses at each exhaust outlet, and the radiation of sound pressures from the outlet(s) to the far field. Predictions are compared with field test data for two ground vehicles.

  12. Phase conjugation of acoustic beams (United States)

    Bunkin, F. V.; Vlasov, D. V.; Kravtsov, Iu. A.

    The paper presents a classification of methods for the phase conjugation (PC) of wave fields of various physical natures on the basis of such nonliner interactions as stimulated scattering, and three- and four-wave interactions. Among the latter, attention is given to holographic (volume and surface) and parametric PC schemes, permitting PC with amplification. The possibility of developing phase-conjugated devices using acoustic PC devices on the basis of various nonlinear effects is considered. Experimental results pertaining to the PC of sound fields are presented, and possible applications of acoustic PC devices are indicated.

  13. On Architectural Acoustics Design using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning


    The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...

  14. Measuring ship acoustic signatures against mine threat

    NARCIS (Netherlands)

    Jong, C.A.F. de; Quesson, B.A.J.; Ainslie, M.A.; Vermeulen, R.C.N.


    The NATO standard ‘AMP-15’ [1] provides procedures for the measurement and reporting of the acoustic signature of ships and for the establishment of acoustic signature goals to counter the naval mine threat. Measurements are carried out at dedicated shallow water acoustic ranges. Measurements

  15. Acoustic communication in plant–animal interactions

    NARCIS (Netherlands)

    Schöner, M.G.; Simon, R.; Schöner, C.R.


    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant–animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound

  16. Predicting and auralizing acoustics in classrooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge


    Although classrooms have fairly simple geometries, this type of room is known to cause problems when trying to predict their acoustics using room acoustics computer modeling. Some typical features from a room acoustics point of view are: Parallel walls, low ceilings (the rooms are flat), uneven...

  17. The Acoustical Apparatus of Rudolph Koenig. (United States)

    Greenslade, Thomas B., Jr.


    Discusses the history of Rudolph Koenig's contribution to the development of acoustical apparatus. Contributions include the clock fork to determine absolute acoustic frequencies, a forerunner of the oscilloscope called the manometric flame, and an acoustic interference apparatus used in the Fourier synthesis of musical sounds. (MDH)

  18. Application of holography in jet acoustic studies

    Indian Academy of Sciences (India)

    Source strength distribution on a jet boundary was obtained from measurements using the principle of acoustic holography. Measurements were conducted in an open field. Measurement of acoustic pressure on a cylindrical twodimensional contour located close to the vibrating jet boundary was used to obtain the acoustic ...

  19. Outdoor Acoustics as a General Discipline

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo


    A tutorial paper exploring the characteristics of sound outdoors. Outdoor acoustics is contrasted to room acoustics. A number of important aspects of outdoor acoustics are exemplified and theoretical approaches are outlined. These are influence of ground impedance, influence of weather, screening...

  20. Investigation of intracavity phase interferometry applied to nano-metrology (United States)

    Luo, Xuan

    Intracavity phase interferometry is sensing technique developed at UNM, in which a physical quantity to be measured is put as integral part of a mode-locked laser. It relies on the fact that any intracavity phase shift of an intracavity pulse will result in a frequency change of the whole pulse train. The implementations of IPI requires the operation of a mode-locked laser in which two pulses circulate independently, i.e. with no phase coupling between them. IPI has been demonstrated with a variety of laser systems, to detect either non-reciprocal effects (such as rotation, magnetic field), or phase changes that can be made periodic at the repetition rate of the laser cavity. The purpose of this work is to study the feasibility of applying this technique to the measurement of non-periodic (i.e. slow) changes in optical path. The new concept to measure sub-nanometer displacement uses an optoelectronic modulator (EOM) inside the cavity. The operation of the mode-locked laser after insertion of such an element in its cavity is analyzed. Several laser systems have been tried for the implementation of IPI. Two of them are presented in this thesis. The first one is a Nd:YVO4 laser, mode-locked by a multiple quantum wells (MQW) saturable absorber. The presence of a solid state saturable absorber introduced a dead band in the beat note response of the system. A new coupling between group and phase velocity was discovered experimentally, and explained through simulation. This coupling affects negatively the operation of the system, since the repetition rate is no longer a reliable fixed quantity. The coupling could be eliminated by replacing the MQW with a dye jet absorber. A first demonstration of a slow optical path change (in the nm range) was made. The system that appeared at first the most promising is the intracavity optical parametric oscillator (OPO) synchronously pumped by a mode-locked Ti:Sapphire lasers. Bringing the unstable behavior of that laser under control