WorldWideScience

Sample records for sweet sorghum crop

  1. Radiation balance in the sweet sorghum crop

    International Nuclear Information System (INIS)

    Assis, F.N. de; Mendez, M.E.G.; Martins, S.R.; Verona, L.A.

    1987-01-01

    The fluxes of incident solar radiation, reflected and net radiation were measured during the growing cicle of two fields of sweet sorghum (Sorghum bicolor L.), cus. BR-501 and BR-503, maintained under convenient irrigation level. Resultant data allowed to estimate the crop albedo as well as the estimates of Rn. (M.A.C.) [pt

  2. Sweet Sorghum Crop. Effect of the Compost Application

    International Nuclear Information System (INIS)

    Negro, M. J.; Solano, M. L.; Carrasco, J.; Ciria, P.

    1998-01-01

    A 3 year-plot experiments were performed to determined the possible persistence of the positive effects of treating soil with compost. For this purpose, a sweet sorghum bagasse compost has been used. Experiments were achieved with sweet sorghum (Sorghum bicolor. L. Moench) vr Dale as energy crop. Similar sorghum productivities were obtained both in plots with consecutive compost applications and in plots amended with mineral fertilizers. No residual effect after three years has been detected. It could be due to the low dose of compost application. (Author) 27 refs

  3. Sorghums as energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Lipinsky, E. S.; Kresovich, S.

    1980-01-01

    The botanical, physiological, and agronomic characteristics of sorghum are described. Integration concepts to improve sorghum prospects are discussed as follows: multiple sweet sorghum crops each year, integration with sugarcane, integration with sugar beets, integration with starch crops, sweet stemmed grain sorghum, and integration with lignocellulosic crops. (MHR)

  4. Cover crop and nitrogen fertilization influence soil carbon and nitrogen under bioenergy sweet sorghum

    Science.gov (United States)

    Cover crop and N fertilization may maintain soil C and N levels under sweet sorghum (Sorghum bicolor [L.] Moench) biomass harvested for bioenergy production. The effect of cover crops (hairy vetch [Vicia villosa Roth], rye [Secaele cereale L.], hairy vetch/rye mixture, and the control [no cover crop...

  5. Enhanced ethanol production from stalk juice of sweet sorghum by ...

    African Journals Online (AJOL)

    Sweet sorghum (sugar sorghum, Sorghum bicolor) is one kind of non-grain energy crops. As a novel green regenerated high-energy crop with high utility value, high yield of biomass, the sweet sorghum is widely used and developed in China. Stalk juice of sweet sorghum was used as the main substrate for ethanol ...

  6. Sweet Sorghum crop. Effect of the Compost Application; Cultivo de Sorgo Dulce. Efecto de la Aplicacion de Compost

    Energy Technology Data Exchange (ETDEWEB)

    Negro, M.J.; Solano, M.L.; Carrasco, J.; Ciria, P.

    1998-12-01

    A 3 year-plot experiments were performed to determined the possible persistence of the positive effects of treating soil with compost. For this purpose, a sweet sorghum bagasse compost has been used. Experiments were achieved with sweet sorghum (Sorghum bicolor. L. Moench) vr Dale as energy crop. Similar sorghum productivities were obtained both in plots with consecutive compost applications and in plots amended with mineral fertilizers. No residual effect after three years has been detected. It could be due to the low dose of compost application. (Author) 27 refs.

  7. Sweet sorghum as a model system for bioenergy crops.

    Science.gov (United States)

    Calviño, Martín; Messing, Joachim

    2012-06-01

    Bioenergy is the reduction of carbon via photosynthesis. Currently, this energy is harvested as liquid fuel through fermentation. A major concern, however, is input cost, in particular use of excess water and nitrogen, derived from an energy-negative process, the Haber-Bosch method. Furthermore, the shortage of arable land creates competition between uses for food and fuel, resulting in increased living expenses. This review seeks to summarize recent knowledge in genetics, genomics, and gene expression of a rising model species for bioenergy applications, sorghum. Its diploid genome has been sequenced, it has favorable low-input cost traits, and genetic crosses between different cultivars can be used to study allelic variations of genes involved in stem sugar metabolism and incremental biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Evaluation of sweet sorghum as a potential ethanol crop in Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Horton, David Scott

    2011-08-01

    Petroleum prices have made alternative fuel crops a viable option for ethanol production. Sweet sorghum [Sorghum bicolor] is a non-food crop that may produce large quantities of ethanol with minimal inputs. Eleven cultivars were planted in 2008 and 2009 as a half-season crop. Four-row plots 6.9 m by 0.5 m, were monitored bimonthly for °Brix, height, and sugar accumulation. Yield and extractable sap were taken at the end of season. Stalk yield was greatest for the cultivar Sugar Top (4945 kg ha-1) and lowest for Simon (1054 kg ha-1). Dale ranked highest ethanol output (807 L ha-1) while Simon (123 L ha-1) is the lowest. All cultivars peak Brix accumulation occurs in early October. Individual sugar concentrations indicated sucrose is the predominant sugar with glucose and fructose levels dependent on cultivar. Supplemental ethanol in fermented wort was the best preservative tested to halt degradation of sorghum wort.

  9. Nitrogen Balance During Sweet Sorghum Cropping Cycle as Affected by Irrigation and Fertilization Rate

    Directory of Open Access Journals (Sweden)

    Stella Lovelli

    Full Text Available A two-year trial was carried out on sweet sorghum, grown in semi-arid environments of southern Europe. The trial was aimed to monitor the main components of the crop N-balance under different irrigation regimes and nitrogen fertilization rates, in factorial combination. A rainfed condition (only one watering soon after sowing was compared with a deficit irrigation regime and a full irrigation treatment (50 and 100% restoration of total crop water consumption, respectively. Crop nitrogen uptake always showed to be the highest N-balance components and was included in the range of 125-194 kg ha-1 during 1997-1998, with respect to the total shoot biomass, according to the nitrogen fertilization rate; consequently, it significantly reduced both nitrogen concentration in the soil solution and the total nitrogen loss due to drainage. Nitrogen concentration in the drainage water didn’t result to be strictly dependent on the rate of fertiliser applied but on the actual soil nitrogen content; the maximum registered value of total nitrogen lost by leaching was 1.9 kg ha-1. Differently, total nitrogen loss due to volatilisation was proportional to the amount of fertilizer applied; irrigation favourably reduced this kind of loss. The limited amount of Nvolatilisation loss was probably due to the neutral pH soil conditions; as an order of magnitude, referring to the highest fertilized but rainfed treatment, the utmost N-volatilisation loss was equal to 5.5 Kg ha-1, as an average over the three years, that is to say less than the 5% of the fertilization rate. A fertilisation rate of 120 Kg ha-1 of nitrogen, together with water application, generally produced a balance between crop N-uptake and total N-loss due to volatilisation and drainage (only the stalk biomass was considered in this calculation. Lower rates of fertilizing nitrogen, indeed, determined a depletion in the soil nitrogen content because of the high crop biomass and the strong N-uptake by the

  10. Nitrogen Balance During Sweet Sorghum Cropping Cycle as Affected by Irrigation and Fertilization Rate

    Directory of Open Access Journals (Sweden)

    Michele Perniola

    2011-02-01

    Full Text Available A two-year trial was carried out on sweet sorghum, grown in semi-arid environments of southern Europe. The trial was aimed to monitor the main components of the crop N-balance under different irrigation regimes and nitrogen fertilization rates, in factorial combination. A rainfed condition (only one watering soon after sowing was compared with a deficit irrigation regime and a full irrigation treatment (50 and 100% restoration of total crop water consumption, respectively. Crop nitrogen uptake always showed to be the highest N-balance components and was included in the range of 125-194 kg ha-1 during 1997-1998, with respect to the total shoot biomass, according to the nitrogen fertilization rate; consequently, it significantly reduced both nitrogen concentration in the soil solution and the total nitrogen loss due to drainage. Nitrogen concentration in the drainage water didn’t result to be strictly dependent on the rate of fertiliser applied but on the actual soil nitrogen content; the maximum registered value of total nitrogen lost by leaching was 1.9 kg ha-1. Differently, total nitrogen loss due to volatilisation was proportional to the amount of fertilizer applied; irrigation favourably reduced this kind of loss. The limited amount of Nvolatilisation loss was probably due to the neutral pH soil conditions; as an order of magnitude, referring to the highest fertilized but rainfed treatment, the utmost N-volatilisation loss was equal to 5.5 Kg ha-1, as an average over the three years, that is to say less than the 5% of the fertilization rate. A fertilisation rate of 120 Kg ha-1 of nitrogen, together with water application, generally produced a balance between crop N-uptake and total N-loss due to volatilisation and drainage (only the stalk biomass was considered in this calculation. Lower rates of fertilizing nitrogen, indeed, determined a depletion in the soil nitrogen content because of the high crop biomass and the strong N-uptake by the

  11. Heterosis in Sweet Sorghum and Selection of a New Sweet Sorghum Hybrid for Use in Syrup

    Science.gov (United States)

    Although heterosis is well established in grain and forage sorghum [Sorghum bicolor (L.) Moench], reports of heterosis in sweet sorghum are limited to results from grain sorghum x sweet sorghum hybrids. Recent development of cytoplasmic male-sterile sweet sorghum lines allows creation of sweet sorg...

  12. Identification of widely varying levels of resistance to meloidogyne incognita in sweet sorghum

    Science.gov (United States)

    Sweet sorghum (Sorghum bicolor) is a potential bioenergy crop that could be incorporated into annual cropping systems in the southern US, where it would likely be rotated with cotton. The desirability of including sweet sorghum in a cotton cropping system will be influenced by sweet sorghum’s host ...

  13. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shenglian; Xu, Taoying; Chen, Liang [Hunan Univ., Changsha (China). College of Environmental Science and Engineering] [and others

    2012-02-15

    The effects of Bacillus sp. SLS18, a plant-growth-promoting endophyte, on the biomass production and Mn/Cd uptake of sweet sorghum (Sorghum bicolor L.), Phytolacca acinosa Roxb., and Solanum nigrum L. were investigated. SLS18 displayed multiple heavy metals and antibiotics resistances. The strain also exhibited the capacity of producing indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase. In pot experiments, SLS18 could not only infect plants effectively but also significantly increase the biomass of the three tested plants in the presence of Mn/Cd. The promoting effect order of SLS18 on the biomass of the tested plants was sweet sorghum > P. acinosa > S. nigrum L. In the presence of Mn (2,000 mg kg{sup -1}) and Cd (50 mg kg{sup -1}) in vermiculite, the total Mn/Cd uptakes in the aerial parts of sweet sorghum, P. acinosa, and S. nigrum L. were increased by 65.2%/40.0%, 55.2%/31.1%, and 18.6%/25.6%, respectively, compared to the uninoculated controls. This demonstrates that the symbiont of SLS18 and sweet sorghum has the potential of improving sweet sorghum biomass production and its total metal uptake on heavy metal-polluted marginal land. It offers the potential that heavy metal-polluted marginal land could be utilized in planting sweet sorghum as biofuel feedstock for ethanol production, which not only gives a promising phytoremediation strategy but also eases the competition for limited fertile farmland between energy crops and food crops. (orig.)

  14. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18.

    Science.gov (United States)

    Luo, Shenglian; Xu, Taoying; Chen, Liang; Chen, Jueliang; Rao, Chan; Xiao, Xiao; Wan, Yong; Zeng, Guangming; Long, Fei; Liu, Chengbin; Liu, Yutang

    2012-02-01

    The effects of Bacillus sp. SLS18, a plant-growth-promoting endophyte, on the biomass production and Mn/Cd uptake of sweet sorghum (Sorghum bicolor L.), Phytolacca acinosa Roxb., and Solanum nigrum L. were investigated. SLS18 displayed multiple heavy metals and antibiotics resistances. The strain also exhibited the capacity of producing indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase. In pot experiments, SLS18 could not only infect plants effectively but also significantly increase the biomass of the three tested plants in the presence of Mn/Cd. The promoting effect order of SLS18 on the biomass of the tested plants was sweet sorghum > P. acinosa > S. nigrum L. In the presence of Mn (2,000 mg kg(-1)) and Cd (50 mg kg(-1)) in vermiculite, the total Mn/Cd uptakes in the aerial parts of sweet sorghum, P. acinosa, and S. nigrum L. were increased by 65.2%/40.0%, 55.2%/31.1%, and 18.6%/25.6%, respectively, compared to the uninoculated controls. This demonstrates that the symbiont of SLS18 and sweet sorghum has the potential of improving sweet sorghum biomass production and its total metal uptake on heavy metal-polluted marginal land. It offers the potential that heavy metal-polluted marginal land could be utilized in planting sweet sorghum as biofuel feedstock for ethanol production, which not only gives a promising phytoremediation strategy but also eases the competition for limited fertile farmland between energy crops and food crops.

  15. Economic feasibility of producing sweet sorghum as an ethanol feedstock in the southeastern United States

    International Nuclear Information System (INIS)

    Linton, Joseph A.; Miller, J. Corey; Little, Randall D.; Petrolia, Daniel R.; Coble, Keith H.

    2011-01-01

    This study examines the feasibility of producing sweet sorghum (Sorghum bicolor (L.) Moench) as an ethanol feedstock in the southeastern United States through representative counties in Mississippi. We construct enterprise budgets along with estimates of transportation costs to estimate sweet sorghum producers' breakeven costs for producing and delivering sweet sorghum biomass. This breakeven cost for the sweet sorghum producer is used to estimate breakeven costs for the ethanol producer based on wholesale ethanol price, production costs, and transportation and marketing costs. Stochastic models are developed to estimate profits for sweet sorghum and competing crops in two representative counties in Mississippi, with sweet sorghum consistently yielding losses in both counties. -- Highlights: → We examine the economic feasibility of sweet sorghum as an ethanol feedstock. → We construct enterprise budgets along with estimates of transportation costs. → We estimate breakeven costs for producing and delivering sweet sorghum biomass. → Stochastic models determine profits for sweet sorghum in two Mississippi counties.

  16. Problems, control, and opportunity of starch in the large scale processing of sugarcane and sweet sorghum

    Science.gov (United States)

    Both sugarcane (Saccharum officinarum) and sweet sorghum (Sorghum bicolor) crops are members of the grass (Poaceae) family, and consist of stalks rich in soluble sugars. The extracted juice from both of these crops contains insoluble starch, with much greater quantities occurring in sweet sorghum. ...

  17. The productive potentials of sweet sorghum ethanol in China

    International Nuclear Information System (INIS)

    Zhang, Caixia; Xie, Gaodi; Li, Shimei; Ge, Liqiang; He, Tingting

    2010-01-01

    As one of the important non-grain energy crops, sweet sorghum has attracted the attention of scientific community and decision makers of the world since decades. But insufficient study has been done about the spatial suitability distribution and ethanol potential of sweet sorghum in China. This paper attempts to probe into the spatial distribution and ethanol potential of sweet sorghum in China by ArcGIS methods. Data used for the analysis include the spatial data of climate, soil, topography and land use, and literatures relevant for sweet sorghum studies. The results show that although sweet sorghum can be planted in the majority of lands in China, the suitable unused lands for large-scale planting (unit area not less than 100 hm 2 ) are only as much as 78.6 x 10 4 hm 2 ; and the productive potentials of ethanol from these lands are 157.1 x 10 4 -294.6 x 10 4 t/year, which can only meet 24.8-46.4% of current demand for E10 (gasoline mixed with 10% ethanol) in China (assumption of the energy efficiency of E10 is equivalent to that of pure petroleum). If all the common grain sorghum at present were replaced by sweet sorghum, the average ethanol yield of 244.0 x 10 4 t/year can be added, and thus the productive potentials of sweet sorghum ethanol can satisfy 63.2-84.9% of current demand for E10 of China. In general, Heilongjiang, Jilin, Inner Mongolia and Liaoning rank the highest in productive potentials of sweet sorghum ethanol, followed by Hebei, Shanxi, Sichuan, and some other provinces. It is suggested that these regions should be regarded as the priority development zones for sweet sorghum ethanol in China.

  18. The environment strongly affects estimates of heterosis in hybrid sweet sorghum

    Science.gov (United States)

    Sweet sorghum (Sorghum bicolor (L.) Moench) has potential as a biofuel feedstock but hybrid cultivars are needed to support an industry based on this crop. The purpose of this study was to compare five inbred sweet sorghum lines and 15 hybrids derived from them, and to determine the extent of envir...

  19. Heterosis and combining ability of F1 hybrid sweet sorghum in Thailand

    Science.gov (United States)

    Sweet sorghum (Sorghum bicolor (L.) Moench) is a sugar-based biofuel crop that is well-suited to tropical environments. Most sweet sorghum cultivars are open-pollinated, but hybrids could offer yield and seed production advantages. Fifteen hybrids were generated among five female and three male pa...

  20. General and specific combining ability of F1-hybrid sweet sorghum in Thailand

    Science.gov (United States)

    Sweet sorghum (Sorghum bicolor (L.) Moench) is a promising biofuel crop that accumulates fermentable sugar in the stalk and can be directly fermented as bioethanol. Currently, most of sweet sorghum cultivars are pure lines. However, developing high-yielding hybrids has many advantages. To date there...

  1. Stability and use of sweet sorghum bagasse

    Science.gov (United States)

    With sweet sorghum production and subsequent accumulation of bagasse on the rise, it is important to look for novel uses for its by-products. Bagasse, the solid fibrous product left after sweet sorghum stalks are crushed to remove juice, is partially reapplied to the field to enhance subsequent cro...

  2. Characterization of Nitrogen use efficiency in sweet sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Dweikat, Ismail [University of Nebraska; Clemente, Thomas [University of Nebrask

    2014-09-09

    Sweet sorghum (Sorghum bicolor L. Moench) has the potential to augment the increasing demand for alternative fuels and for the production of input efficient, environmentally friendly bioenergy crops. Nitrogen (N) and water availability are considered two of the major limiting factors in crop growth. Nitrogen fertilization accounts for about 40% of the total production cost in sorghum. In cereals, including sorghum, the nitrogen use efficiency (NUE) from fertilizer is approximately 33% of the amount applied. There is therefore extensive concern in relation to the N that is not used by the plant, which is lost by leaching of nitrate, denitrification from the soil, and loss of ammonia to the atmosphere, all of which can have deleterious environmental effects. To improve the potential of sweet sorghum as a leading and cost effective bioenergy crop, the enhancement of NUE must be addressed. To this end, we have identified a sorghum line (SanChi San) that displays about 25% increase in NUE over other sorghum lines. As such, the overarching goal of this project is to employ three complementary strategies to enhance the ability of sweet sorghum to become an efficient nitrogen user. To achieve the project goal, we will pursue the following specific objectives: Objective 1: Phenotypic characterization of SanChi San/Ck60 RILs under low and moderate N-availability including biochemical profiles, vegetative growth and seed yield Objective 2: Conduct quantitative trait loci (QTL) analysis and marker identification for nitrogen use efficiency (NUE) in a grain sorghum RIL population. Objective 3: Identify novel candidate genes for NUE using proteomic and gene expression profiling comparisons of high- and low-NUE RILs. Candidate genes will be brought into the pipeline for transgenic manipulation of NUE This project will apply the latest genomics resources to discover genes controlling NUE, one of the most complex and economically important traits in cereal crops. As a result of the

  3. Variation in Biomass Composition Components among Forage, Biomass, Sorghum-Sudangrass, and Sweet Sorghum Types

    Energy Technology Data Exchange (ETDEWEB)

    Stefaniak, T. R.; Dahlberg, J. A.; Bean, B. W.; Dighe, N.; Wolfrum, E. J.; Rooney, W. L.

    2012-07-01

    Alternative biomass sources must be developed if the United States is to meet the goal in the U.S. Energy Security Act of 2007 to derive 30% of its petroleum from renewable sources, and several different biomass crops are currently in development. Sorghum [Sorghum bicolor (L.) Moench] is one such crop that will be an important feedstock source for biofuel production. As composition influences productivity, there exists a need to understand the range in composition observed within the crop. The goal of this research was to assess the range in dietary fiber composition observed within different types of biomass sorghums. A total of 152 sorghum samples were divided into the four end-use types of sorghum: biomass, forage, sorghum-sudangrass, and sweet. These samples were analyzed chemically using dietary fiber analysis performed at the National Renewable Energy Laboratory using published protocols. Significant variation among the groups was detected for glucan and ash. Positive and highly significant correlations were detected between structural carbohydrates in the biomass and sweet sorghums while many of these correlations were negative or not significant in the forage and sorghum-sudangrass types. In addition, a wide range of variation was present within each group indicating that there is potential to manipulate the composition of the crop.

  4. Biological hydrogen production from sweet sorghum by thermophilic bacteria

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de T.; Budde, M.A.W.; Koukios, E.G.; Gylnos, A.; Reczey, K.

    2004-01-01

    Sweet sorghum cultivation was carried out in South-west Greece. The fresh biomass yield was about 126 t/ha. Stalks weight accounts for 82% of total crop weight while leaves and panicle account for 17% and 1%, respectively. The major components in variety 'Keller' stalks were, based on dry weight,

  5. Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Vrije, de G.J.; Koukios, E.G.; Claassen, P.A.M.

    2010-01-01

    Pretreatment of sweet sorghum bagasse, an energy crop residue, with NaOH for the production of fermentable substrates, was investigated. Optimal conditions for the alkaline pretreatment of sweet sorghum bagasse were realized at 10% NaOH (w/w dry matter). A delignification of 46% was then observed,

  6. Genetic Dissection of Bioenergy-Related Traits in Sweet Sorghum (Sorghum bicolor) under Danish Agro-Climatic Conditions

    DEFF Research Database (Denmark)

    Mocoeur, Anne Raymonde Joelle

    plant for sequencing in 2009 promoting it as a C4 model plant. Among the very diverse genetic resources available for sorghum, sweet sorghum plants; amassing large quantities of juice-rich and sugar-rich stem, grain and vegetative biomass; have been enlightened as bioenergy crop as it can produced from...... a single plant food, feed and fuel. Sweet sorghum has gained interest in Europe to replace maize, for biogas and bioenergy productions, but this versatile crop is sensitive to chilling temperatures and little breeding efforts have been done toward its cold acclimation. The state-of-art of using...... in Denmark using a panel of genetic and genomic tools. A large bi-parental QTL mapping study was carried out by using several mapping populations progenies, derived from a cross between a sweet and grain sorghum and they were grown and phenotyped in China and Denmark. The genetic map used for this bi...

  7. Fuel ethanol production from sweet sorghum bagasse using microwave irradiation

    International Nuclear Information System (INIS)

    Marx, Sanette; Ndaba, Busiswa; Chiyanzu, Idan; Schabort, Corneels

    2014-01-01

    Sweet sorghum is a hardy crop that can be grown on marginal land and can provide both food and energy in an integrated food and energy system. Lignocellulose rich sweet sorghum bagasse (solid left over after starch and juice extraction) can be converted to bioethanol using a variety of technologies. The largest barrier to commercial production of fuel ethanol from lignocellulosic material remains the high processing costs associated with enzymatic hydrolysis and the use of acids and bases in the pretreatment step. In this paper, sweet sorghum bagasse was pretreated and hydrolysed in a single step using microwave irradiation. A total sugar yield of 820 g kg −1 was obtained in a 50 g kg −1 sulphuric acid solution in water, with a power input of 43.2 kJ g −1 of dry biomass (i.e. 20 min at 180 W power setting). An ethanol yield based on total sugar of 480 g kg −1 was obtained after 24 h of fermentation using a mixed culture of organisms. These results show the potential for producing as much as 0.252 m 3  tonne −1 or 33 m 3  ha −1 ethanol using only the lignocellulose part of the stalks, which is high enough to make the process economically attractive. - Highlights: • Different sweet sorghum cultivars were harvested at 3 and 6 months. • Sweet sorghum bagasse was converted to ethanol. • Microwave pretreatment and hydrolysis was done in a single step. • Sugar rich hydrolysates were converted to ethanol using co-fermentation

  8. Evaluation of sweet sorghum (Sorghum bicolor L. [Moench]) on several population density for bioethanol production

    Science.gov (United States)

    Suwarti; Efendi, R.; Massinai, R.; Pabendon, M. B.

    2018-03-01

    Sweet sorghum (Sorghum bicolor L. [Moench]) crop management that is use for raw source of bioethanol for industrial purpose in Indonesia is less developed. The aim of this research was to evaluated sweet sorghum variety at several population to determine optimum density for juice production. Experiment design was set on split-plot design with three replications, conducted on August to December 2016 at the Indonesian Cereals Research Institute Research Station, Maros South Sulawesi. Main plot were six variation of plant row, and sub plot were three sweet sorghum varieties. Result of the study showed that plant population was high significanty affect to stalk weight, total biomass yield, leaf weight, and also significantly affect bagass weight and juice volume. Varieties were high significantly different in plant height, juice volume, and number of nodes. Super 1 variety on population at 166,667 plants/ha (P1) was obtained the highest juice volume (19,445 lHa-1), meanwhile the highest brix value obtained from Numbu at the same plants population. Furthermore juice volume had significant correlation with biomass weight at the r=0.73. Based on ethanol production, Super 2 and Numbu had the highest volume at 83.333 plants/ha density (P3) and Super 1 at 166.667 plants/ha density with the ethanol volume were 827.68 l Ha-1, 1116.50 l/ha and 993.62 l Ha-1 respectively.

  9. Experimental study on bread yeast cultured in sweet sorghum juice

    International Nuclear Information System (INIS)

    Wang Jufang; Dong Xicun; Li Wenjian; Xiao Guoqing; Ma Liang; Gao Feng

    2008-01-01

    As a substitute for food supplies, sweet sorghum juice with high grade has demonstrated out- standing advantage in fermentation. To obtain the optimized fermentation conditions, the growth, the bio- mass of bread yeast cultured in sweet sorghum juice and total residual sugar were investigated in the paper. The fermentation was performed and optimized in a 10-100 1 bio-reactor. The results show that the application of sweet sorghum juice in bread yeast production is very potential. (authors)

  10. The effect of alpha amylase enzyme on quality of sweet sorghum juice for chrystal sugar

    Science.gov (United States)

    Marwati, T.; Cahyaningrum, N.; Widodo, S.; Astiati, U. T.; Budiyanto, A.; Wahyudiono; Arif, A. B.; Richana, N.

    2018-01-01

    Sweet sorghum juice (Sorghum bicolor L. Moench) has characteristics similar to sugar cane juice and potentially used for sugar substitutes that can support food security. Nevertheless the sweet sorghum juicecontain starch which impede sorghum sugar crystallization. Therefore, research on the enzymatic process is needed to convert starch into reducing sugar. The experimental design used was the Factorial Randomized Design with the first factor was alpha amylase enzyme concentration (0, 20, 40, 60, 80, 100, 120 μL/100 mL) and second factor was incubation time (0, 30, 60, 90 minute) at temperature 100°C. The experiment was conducted on fresh sweet sorghum. The results showed that the addition of the alpha amylase enzyme increased the content of reducing sugar and decreased levels of starch. Elevating concentration of alpha amylase enzyme will increase the reducing sugar content in sweet sorghum juice. The optimum alpha amylase enzyme concentration to produce the highest total sugar was 80 μL/100 mL of sweet sorghum juice with the optimum incubation time was 90 minutes. The results of this study are expected to create a new sweetener for sugar substitution. From the economic prospective aspect, sorghum is a potential crop and can be relied upon to support the success of the food diversification program which further leads to the world food security

  11. Identification of STOP1-Like Proteins Associated With Aluminum Tolerance in Sweet Sorghum (Sorghum bicolor L.

    Directory of Open Access Journals (Sweden)

    Sheng Huang

    2018-02-01

    Full Text Available Aluminum (Al toxicity in acidic soils affects crop production worldwide. C2H2-type zinc finger transcription factor STOP1/ART1-mediated expression of Al tolerance genes has been shown to be important for Al resistance in Arabidopsis, rice and other crop plants. Here, we identified and characterized four STOP1-like proteins (SbSTOP1a, SbSTOP1b, SbSTOP1c, and SbSTOP1d in sweet sorghum, a variant of grain sorghum (Sorghum bicolor L.. Al induced the transcription of the four SbSTOP1 genes in both time- and Al concentration-dependent manners. All SbSTOP1 proteins localized to the cell nucleus, and they showed transcriptional activity in a yeast expression system. In the HEK 293 coexpression system, SbSTOP1d showed transcriptional regulation of SbSTAR2 and SbMATE, indicating the possible existence of another SbSTOP1 and SbSTAR2-dependent Al tolerance mechanism in sorghum apart from the reported SbMATE-mediated Al exclusion mechanism. A transgenic complementation assay showed that SbSTOP1d significantly rescued the Al-sensitivity characteristic of the Atstop1 mutant. Additionally, yeast two-hybrid and bimolecular fluorescence complementation (BiFC assays showed that SbSTOP1d interacted with SbSTOP1b and SbSTOP1d itself, suggesting that SbSTOP1 may function as a homodimer and/or heterodimer. These results indicate that STOP1 plays an important role in Al tolerance in sweet sorghum and extend our understanding of the complex regulatory mechanisms of STOP1-like proteins in response to Al toxicity.

  12. Fermentation of sweet sorghum syrup to butanol in the presence of natural nutrients and inhibitors

    Science.gov (United States)

    Sweet sorghum syrups represent a renewable raw material that can be available year-round for production of biofuels and biochemicals. Sweet sorghum sugars have been used as sources for butanol production in the past but most often the studies focused on sweet sorghum juice and not on sweet sorghum s...

  13. Preliminary investigation into the pressing process of sweet pearl millet and sweet sorghum biomass for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Crepeau, M.; Khelifi, M.; Vanasse, A. [Laval Univ., Quebec City, PQ (Canada). Dept. of Soil Science and Agri-Food Engineering

    2010-07-01

    Corn is the main source for biofuel production in North America. However, both sweet pearl millet and sweet sorghum crops represent an interesting alternative to corn for ethanol production because of their high biomass yield under a wide range of environmental conditions and high concentration of readily fermentable sugars. Coproducts such as pressing residues can be also be utilized so that nothing is lost in the process. However, in order to improve the extraction of juice for ethanol production, the pressing process of this biomass must be optimized. Preliminary experiments were therefore conducted to optimize the juice extraction from sweet pearl millet and sweet sorghum using 2 different presses, notably a screw press and a manually operated hydraulic press. Both types of biomass were either chopped finely or coarsely and were exposed to various pressures with the hydraulic press. The volume of juice extracted from both crops increased linearly with increasing pressure. Sweet sorghum appeared to be a better feedstock for ethanol production because it produced about 0.03 to 0.06 litre of juice per kg of biomass more than sweet pearl millet. Juice extraction was more effective with the screw press, but only a small difference was noted between the 2 chopping modes.

  14. Cost to deliver sweet sorghum fermentables to a central plant

    International Nuclear Information System (INIS)

    Cundiff, J.S.

    1991-01-01

    The major obstacle to a sweet sorghum-for-ethanol industry in the Piedmont of Virginia is the short harvest season of eight weeks. A Piedmont harvesting system is described that will enable the Piedmont to compete with Louisiana in production of sweet sorghum for ethanol. The cost to supply feedstock (up to the point fermentation begins) for a one million GPY ethanol plant was estimated to be $2.35/gal expected ethanol yield. This amount compared favorably with two other options

  15. Inclusion of sweet sorghum flour in bread formulations | Araujo ...

    African Journals Online (AJOL)

    Sweet sorghum (Sorghum bicolor L. Moench) has been studied as an additional source of raw material for production or partial replacement of foods due to its high fiber concentration. Its consumption is associated with the prevention of some diseases and nutritional benefits. The aim of this study was to evaluate the partial ...

  16. Electrochemical evaluation of sweet sorghum fermentable sugar bioenergy feedstock

    Science.gov (United States)

    Redox active constituents of sorghum, e.g., anthocyanin, flavonoids, and aconitic acid, putatively contribute to its pest resistance. Electrochemical reactivity of sweet sorghum stem juice was evaluated using cyclic voltammetry (CV) for five male (Atlas, Chinese, Dale, Isidomba, N98) and three fema...

  17. Mineral composition and biomass partitioning of sweet sorghum grown for bioenergy in the southeastern USA

    International Nuclear Information System (INIS)

    Singh, M.P.; Erickson, J.E.; Sollenberger, L.E.; Woodard, K.R.; Vendramini, J.M.B.; Fedenko, J.R.

    2012-01-01

    Biomass yield and tissue mineral composition can affect total energy yield potential, conversion efficiencies and environmental impacts, but relatively few data are available for sweet sorghum [Sorghum bicolor (L.) Moench] grown in the southeastern USA. Therefore, a study was conducted at two locations in North and Central Florida on marginal sand soils comparing the effects of planting date (PD) on dry biomass yield and mineral composition of leaf, stem, and grain heads for ‘M-81E’ and ‘Dale’ sweet sorghum cultivars. Overall tissue mineral concentrations were relatively low for sweet sorghum, attributable to low K and Ca concentrations. Ash and mineral concentrations were generally greater for Dale, especially for the early PD. Leaf and grain heads were greater in mineral concentrations compared to stems. Dry biomass yield averaged 19.4 Mg ha −1 and was greater for M-81E and the early PD. Stems accounted for 73% of the total biomass compared to leaves (13%) across all treatments. Total N, P, and K removals averaged 136, 27.6, and 81.4 kg ha −1 , respectively. Overall, leaves removed 30, 23, and 19% of total N, P, and K compared to 34, 34, and 61% by stem, respectively. Considering lower biomass but greater mineral concentrations in leaf and grain heads compared to stems, returning leaf residues and possibly grain heads to the soil have the potential to offset nutrient and energy inputs needed on these marginal soils and enhance the sustainability of sweet sorghum cropping systems.

  18. Impact of added nutrients in sweet sorghum syrup fermentation to produce ethanol

    Science.gov (United States)

    This work demonstrated that sweet sorghum syrup was efficiently converted to ethanol by yeast. Fermentation broth with sweet sorghum syrup performed better (at least faster) than with only pure sugars due to the pH-buffering effect of sweet sorghum syrup solutions. Sugar solutions containing up to 2...

  19. Sweet Sorghum Alternative Fuel and Feed Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Slack, Donald C. [Univ. of Arizona, Tucson, AZ (United States). Agricultural and Biosystems Engineering Dept.; Kaltenbach, C. Colin [Univ. of Arizona, Tucson, AZ (United States)

    2013-07-30

    The University of Arizona undertook a “pilot” project to grow sweet sorghum on a field scale (rather than a plot scale), produce juice from the sweet sorghum, deliver the juice to a bio-refinery and process it to fuel-grade ethanol. We also evaluated the bagasse for suitability as a livestock feed and as a fuel. In addition to these objectives we evaluated methods of juice preservation, ligno-cellulosic conversion of the bagasse to fermentable sugars and alternative methods of juice extraction.

  20. Characterization of the small RNA component of the transcriptome from grain and sweet sorghum stems

    Directory of Open Access Journals (Sweden)

    Messing Joachim

    2011-07-01

    Full Text Available Abstract Background Sorghum belongs to the tribe of the Andropogoneae that includes potential biofuel crops like switchgrass, Miscanthus and successful biofuel crops like corn and sugarcane. However, from a genomics point of view sorghum has compared to these other species a simpler genome because it lacks the additional rounds of whole genome duplication events. Therefore, it has become possible to generate a high-quality genome sequence. Furthermore, cultivars exists that rival sugarcane in levels of stem sugar so that a genetic approach can be used to investigate which genes are differentially expressed to achieve high levels of stem sugar. Results Here, we characterized the small RNA component of the transcriptome from grain and sweet sorghum stems, and from F2 plants derived from their cross that segregated for sugar content and flowering time. We found that variation in miR172 and miR395 expression correlated with flowering time whereas variation in miR169 expression correlated with sugar content in stems. Interestingly, genotypic differences in the ratio of miR395 to miR395* were identified, with miR395* species expressed as abundantly as miR395 in sweet sorghum but not in grain sorghum. Finally, we provided experimental evidence for previously annotated miRNAs detecting the expression of 25 miRNA families from the 27 known and discovered 9 new miRNAs candidates in the sorghum genome. Conclusions Sequencing the small RNA component of sorghum stem tissue provides us with experimental evidence for previously predicted microRNAs in the sorghum genome and microRNAs with a potential role in stem sugar accumulation and flowering time.

  1. Sustaining Milk Production by use Sorghum Silage and Sweet Potato and Sweet Potato Vines

    International Nuclear Information System (INIS)

    Ouda, J.O

    2002-01-01

    Dairy sector in Kenya is an important source of rural employment and farm income besides provision of milk consumed in the urban centres. Dairy cattle nutrition and sustenance of production through out the year are constraints to production. Feeding during dry season is a major problem and can be alleviated through cultivation of high yielding fodder crops and feed conservation. The current work evaluated the nutritive value of sorghum silage (SS) and sweet potato vines (SPV) as feeds for dairy production in the dry highlands. On-station work involved performance trial of dairy cattle fed on varying proportions of SS and SPV while on farm work involved demonstration and popularization of sorghum and SPV utilization technology. The dry matter (DM), crude protein, (CP) neutral detergent fibre (NDF) and acid detergent lignin (ADL) contents for SS ranged from 267.3-350.7, 50.0-70.6, 60.8 and 55.0-67.3 g kg - 1 respectively. The corresponding values for SPV were 129.5-190.4, 83.4-179.1, 300.9-383.5 and 61.5-68.0 g kg - 1. Daily milk yield ranged from 3.44 l d - 1 when SS alone was fed to 15 l d - 1 when combination of SS and SPV was fed to dairy cows. Most farmers rationed sorghum and fed as green chop besides SS especially during the dry season. Improvement and sustenance of milk production was observed on-farm, showing that sorghum and SPV utilization technology has generated great potential of enhancing dairy production

  2. Repeated-batch ethanol fermentation from sweet sorghum juice by ...

    African Journals Online (AJOL)

    . It was found that sweet sorghum juice (SSJ) containing 100 g l-1 of total sugar without nutrient supplement could be used as the low-cost IP medium instead of the typical IP medium or yeast extract malt extract (YM) medium. Ethanol ...

  3. Preserving fermentation potential of sweet sorghum via ensiling

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, V.G.; Linden, J.C.; Henk, L.L.; Lange, K.D.

    1987-01-01

    Ensiling served to preserve the endogenous sugars in sweet sorghum and also rendered fibrous constituents more labile to enzymatic hydrolysis. When cellulase enzymes were added directly to the ensiling mixture, yields of fermentable sugar approached those obtained from submerged enzymatic hydrolysis of ensiled material. In situ hydrolysis greatly reduced capital equipment costs and resulted in a much higher return on investment.

  4. Effect of Harvesting Stage on Sweet Sorghum (Sorghum bicolor L. Genotypes in Western Kenya

    Directory of Open Access Journals (Sweden)

    Moses Owuor Oyier

    2017-01-01

    Full Text Available Harvesting stage of sweet sorghum (Sorghum bicolor L. Moench cane is an important aspect in the content of sugar for production of industrial alcohol. Four sweet sorghum genotypes were evaluated for harvesting stage in a randomized complete block design. In order to determine sorghum harvest growth stage for bioethanol production, sorghum canes were harvested at intervals of seven days after anthesis. The genotypes were evaluated at different stages of development for maximum production of bioethanol from flowering to physiological maturity. The canes were crushed and juice fermented to produce ethanol. Measurements of chlorophyll were taken at various stages as well as panicles from the harvested canes. Dried kernels at 14% moisture content were also weighed at various stages. Chlorophyll, grain weight, absolute ethanol volume, juice volume, cane yield, and brix showed significant (p=0.05 differences for genotypes as well as the stages of harvesting. Results from this study showed that harvesting sweet sorghum at stages IV and V (104 to 117 days after planting would be appropriate for production of kernels and ethanol. EUSS10 has the highest ethanol potential (1062.78 l ha−1 due to excellent juice volume (22976.9 l ha−1 and EUSS11 (985.26 l ha−1 due to its high brix (16.21.

  5. Influence of Sowing Times, Densities, and Soils to Biomass and Ethanol Yield of Sweet Sorghum

    Directory of Open Access Journals (Sweden)

    Tran Dang Xuan

    2015-08-01

    Full Text Available The use of biofuels helps to reduce the dependency on fossil fuels and therefore decreases CO2 emission. Ethanol mixed with gasoline in mandatory percentages has been used in many countries. However, production of ethanol mainly depends on food crops, commonly associated with problems such as governmental policies and social controversies. Sweet sorghum (Sorghum bicolor (L. Moench is one of the most potential and appropriate alternative crops for biofuel production because of its high biomass and sugar content, strong tolerance to environmental stress conditions and diseases, and wide adaptability to various soils and climates. The aim of this study was to select prospective varieties of sweet sorghum, optimum sowing times and densities to achieve high yields of ethanol production and to establish stable operational conditions in cultivating this crop. The summer-autumn cropping season combined with the sowing densities of 8.3–10.9 plant m−2 obtained the highest ethanol yield. Among cultivated locations, the soil with pH of 5.5 and contents of Al and Zn of 39.4 and 0.6 g kg−1, respectively, was the best condition to have an ethanol yield >5000 L ha−1. The pH ≥ 6.0 may be responsible for the significant reduction of zinc content in soils, which decreases both biomass of sweet sorghum and ethanol yield, while contents of N, P, K, organic carbon (OC and cation exchange capacity (CEC, and Fe likely play no role. The cultivar 4A was the preferred candidate for ethanol production and resistant to pests and diseases, especially cut worm (Agrotis spp..

  6. TECHNOLOGICAL ADVANCES IN THE OBTAINING OF ETHANOL FROM Sweet sorghum (Sorghum bicolor (L. Moench

    Directory of Open Access Journals (Sweden)

    Sandro Pedroso Cunha

    2010-11-01

    Full Text Available ABSTRACT: Replacing the use of gasoline with ethanol in vehicles reduces by 90% CO2 emissions, this justifies the interest in the use of bioethanol as renewable energy. Besides sugar cane, cassava, maize and sugar beet special emphasis is being given to sorghum (Sorghum bicolor L. Moench to produce ethanol for its productivity and resistance. The sorghum is grown in Rio Grande do Sul with a production of about 70,000 tons / year. Embrapa has a program to develop cultivars of sorghum from the time the Pro-Alcohol and currently 25 new varieties of sorghum are being evaluated. Several factors are relevant in the optimization of production such as increased productivity and reduced costs in the production of ethanol. This study aimed to survey recent data that will assess production parameters of ethanol from sorghum. Factors such as reducing the risk of bacterial contamination, the means conducive to fermentation processes or grain sorghum stalk through the use of pretreatment of the sample, have been of great importance because it is basically turning cellulosic biomass into fermentable sugars. Superior genotypes of sweet sorghum for ethanol production are of utmost importance, as well as better ways to convert sugars into ethanol. Lignin, toxic against microorganisms, prevents the conversion of lignocellulose into ethanol. The conversion of lignocellulosic ethanol compounds based on the hydrolysis of cellulose producing simple sugars and fermenting those sugars into ethanol through microbiology.

  7. Varieties of sweet sorghum Super-1 and Super-2 and its equipment for bioethanol in Indonesia

    Science.gov (United States)

    Pabendon, M. B.; Efendi, R.; Santoso, S. B.; Prastowo, B.

    2017-05-01

    The demands for alternative sources of energy are currently growing because people now are more aware of the many negative impacts fossil fuel gives to the environment. Plant based renewable energy provides potential sources of energy with advantages of cleaner fuel effect and capability of integration with food crop production. Sorghum have been considered to be a highly potential source of food, feed and fuel, especially sweet stalk sorghum that posses both functions as source of food from its grain and fuel made from its stalk juice. Sorghum varieties are well known to have excellent adaptability in marginal areas, especially drought prone areas where other food crops are unable to thrive. The current paper aimed to share ongoing research on many functional uses of sweet stalk sorghum varieties released at Indonesian Cereals Research Institute (ICERI). Among many varieties that had been released were two sweet stalk sorghum varieties SUPER-1 and SUPER-2 released in 2013 that stands out in biomass yield and bioethanol production. Based on various researches conducted at different location and planting season, yield potential of biomass ranged at 30 - 40 t/ha with higher yield occurred during dry season. Stalk juice sugar content in brix were found to be higher in dry season ranged at 13.6 % to 18.4 %, and the amount of juice stalk was obtained at about 30-50 % from total biomass yield. Furthermore, bioethanol production from stalk juice after fermentation was at the range of 8 to 10 % from total stalk juice volume. Modification of processing equipment of bioethanol have also been carried out and was able to increased the concentration of ethanol being distilled from 85% -92% to 90% -95%. Another result obtained was able to decreased fermentation time from 14-21 days to 6-10 days. Furthermore, the yield of ethanol from juice was also from an average of 4.95% to 6.75%.

  8. Evaluation of KTJT-1, an early-maturity of sweet sorghum acquired by carbon ions irradiation

    International Nuclear Information System (INIS)

    Dong Xicun; Li Wenjian

    2014-01-01

    Sweet sorghum has the potential of becoming a useful energy crop. An early-maturity mutant of sweet sorghum, KFJT-1, was obtained by carbon ions irradiation of KFJT-CK, a wild plant. In this paper, we evaluate the mutant from the length and fresh weight of radicle and leaves after seed germination, the growth rate at the elongation stage, and the internodal parameters under field trail condition. The results showed that the seedling growth of KFJT-1 was inhibited by carbon ions irradiation, and the leaf length, the fresh weight of radicle and leaves from KFJT-1 decreased by 15.32%, 76.27%, and 27.08% than those of KFJT-CK, respectively. However, the growth rate of KFJT-1 on July 12, July 27 and August 1 increased by 16.19%, 59.28% and 26.87%, respectively, compared with the KFJT-CK. The stalk diameter, total biomass yield and sugar content of KFJT-1 was higher than those of KFJT-CK, despite that the plant height of KFJT-1 was significantly less than KFJT-CK (P<0.05). In addition, KFJT-1 differed from KFJT-CK in the internodal length, weight and sugar content. In conclusion, the early-maturity mutant of KFJT-1 will be a promising variety for sweet sorghum industrialization in Gansu province, China. (authors)

  9. Sugar cane/sweet sorghum as an ethanol feedstock in Louisiana and Piedmont

    International Nuclear Information System (INIS)

    Marsh, L.S.; Cundiff, J.S.

    1991-01-01

    Cost to provide readily fermentable feedstock for a year round sweet sorghum-to-ethanol production facility, up to the point at which fermentation begins, was determined. It was assumed that sweet sorghum is produced on marginal crop lands in the Southeastern Piedmont, and is purchased, standing in the field by a central ethanol production facility. Feedstock cost varied from $1.96 to $2.98/gal of ethanol potential depending on harvest system and use of by-products. Major contributors to feedstock cost were field production, harvest/field processing, and cost to evaporate juice to a storable syrup. Cost to transport feedstock to a central production facility, and cost of storage were relatively minor components of total cost, contributing only $0.05 and $0.06/gal ethanol potential, respectively. For a point of comparison, cost of producing ethanol feedstock from sugar cane, based on current processing practices in Louisiana sugar mills, was determined to be $2.50/gal ethanol potential. This cost is higher than determined for most options in the Piedmont for two reasons: (1) sugar cane demands a higher price in Louisiana than was assumed for sweet sorghum in the Piedmont, and (2) little market exists in Louisiana for by-products of sugar milling, consequently, no by-product credit was assigned. Current market value of ethanol must approximately double before a sweet sorghum-to-ethanol industry in the Piedmont could be economically viable, as no opportunity was identified for a significant reduction in feedstock cost

  10. Crop Factors Influencing Ethanol Production from Sorghum Juice and Bagasse

    Directory of Open Access Journals (Sweden)

    Lorenzo Capecchi

    2017-07-01

    Full Text Available This study investigated the effects of two soil moisture levels (SM (30% and 70% soil available water and three harvests (90 days, 118 days, and 151 days after seeding on sweet (S506 and fiber (B133 sorghum genotypes under rain-sheltered conditions. Juice and bagasse-derived ethanol and their sum (EtOHBJ, EtOHB, and EtOHJ+B, respectively were assessed. Water use efficiency (WUE was determined for sorghum dry weight (DW and EtOHJ+B. S506 had similar DW, but higher sugar content than B133, resulting in higher EtOHJ (+32% and EtOHJ+B (+9%. High SM-enhanced DW, juice and sugars content, determining a strong EtOHJ+B increase (+99% vs. low SM. Late harvest enhanced DW and EtOHJ+B (+107% vs. early harvest, despite decreasing extractives and increasing structural fiber components. Water use efficiency of EtOHJ+B improved with high vs. low SM, although differences faded in late harvest. Upscale of EtOHJ+B and WUE data indicated a range of 21,000–82,000 ha of sorghum cultivation and 60–117 Mm3 of irrigation water, as amounts of resources needed to supply an 85,000 m3·yr−1 bio-ethanol plant. This large variation in land and water needs depended on specific combinations between crop factors SM and harvests.

  11. Effects of Nitrogen Application on Growth and Ethanol Yield of Sweet Sorghum [Sorghum bicolor (L. Moench] Varieties

    Directory of Open Access Journals (Sweden)

    Oluwatoyin Olugbemi

    2016-01-01

    Full Text Available A study was carried out in two locations, Ilorin (8° 29′ N; 4° 35′ E; about 310 m asl and Ejiba (8° 17′ N; 5° 39′ E; about 246 m asl, at the Southern Guinea Savannah agroecological zone of Nigeria to assess the effect of nitrogen fertilizer on the growth and ethanol yield of four sweet sorghum varieties (NTJ-2, 64 DTN, SW Makarfi 2006, and SW Dansadau 2007. Five N fertilizer levels (0, 40, 80, 120, and 160 kg ha−1 were used in a 4 × 5 factorial experiment, laid out in split-plots arrangement. The application of nitrogen fertilizer was shown to enhance the growth of sweet sorghum as observed in the plant height, LAI, CGR, and other growth indices. Nitrogen fertilizer application also enhanced the ethanol yield of the crop, as variations in growth parameters and ethanol yield were observed among the four varieties studied. The variety SW Dansadau 2007 was observed as the most promising in terms of growth and ethanol yield, and the application of 120 kg N ha−1 resulted in the best ethanol yield at the study area.

  12. Novel storage technologies for raw and clarified syrup biomass feedstocks from sweet sorghum (Sorghum bicolor L. Moench)

    Science.gov (United States)

    Attention is currently focused on developing sustainable supply chains of sugar feedstocks for new, flexible biorefineries. Fundamental processing needs identified by industry for the large-scale manufacture of biofuels and bioproducts from sweet sorghum (Sorghum bicolor L. Moench) include stabiliz...

  13. Repeated-Batch Ethanol Production from Sweet Sorghum Juice by Saccharomyces cerevisiae Immobilized on Sweet Sorghum Stalks

    Directory of Open Access Journals (Sweden)

    Prasit Jaisil

    2012-04-01

    Full Text Available Sweet sorghum stalks were used as a low cost carrier for immobilization of Saccharomyces cerevisiae NP 01 to produce ethanol from sweet sorghum juice. The effects on ethanol production of carrier size (6 × 6 × 6 to 20 × 20 × 20 mm3 and initial cell concentrations (5 × 107 to 2 × 108 cells mL−1 for cell immobilization were investigated. The ethanol production medium was the juice containing 230 g L−1 of total sugar without nutrient supplementation. The fermentations were carried out under static conditions in 500-mL air-locked Erlenmeyer flasks at 30 °C. The results showed that the optimum size of sorghum stalk pieces for repeated-batch ethanol production was 6 × 6 × 6 mm3, while the optimum initial cell concentration for the immobilization was 1.0 × 108 cells mL−1. The immobilized yeast under these conditions could be used for at least eight successive batches without any losses of ethanol production efficiencies. The average ethanol concentration, productivity and yield of the eight successive batches were 99.28 ± 3.53 g L−1, 1.36 ± 0.05 g L−1 h−1 and 0.47 ± 0.03 g g−1, respectively.

  14. Sweet Sorghum Genetic Diversity and Association Mapping for Brix and Height

    Directory of Open Access Journals (Sweden)

    Seth C. Murray

    2009-03-01

    Full Text Available Sweet sorghum [ (L. Moench], like its close relative, sugarcane ( spp., has been selected to accumulate high levels of edible sugars in the stem. Sweet sorghums are tall and produce high biomass in addition to sugar. Little has been documented about the genetic relationships and diversity within sweet sorghums and how sweet sorghums relate to grain sorghum racial types. In this study, a diverse panel of 125 sorghums (mostly sweet was successfully genotyped with 47 simple sequence repeats (SSRs and 322 single nucleotide polymorphisms (SNPs. Using both distance-based and model-based methods, we identified three main genetic groupings of sweet sorghums. Based on observed phenotypes and known origins we classified the three groups as historical and modern syrup, modern sugar/energy types, and amber types. Using SSR markers also scored in an available large grain sorghum germplasm panel, we found that these three sweet groupings clustered with kafir/bicolor, caudatum, and bicolor types, respectively. Using the information on population structure and relatedness, association mapping was performed for height and stem sugar (brix traits. Three significant associations for height were detected. Two of these, on chromosomes 9 and 6, support published QTL studies. One significant association for brix, on chromosome 1, 12kb from a glucose-6-phosphate isomerase homolog, was detected.

  15. Preservation of sugar content in ensiled sweet sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.; Sipocz, J.; Kaszas, I. [Pannon Univ. of Agricultural Sciences, Mosonmagyarovar (Hungary). Dept. of Animal Nutrition; Szakacs, G.; Gyepes, A. [Technical Univ. of Budapest (Hungary). Dept. of Agricultural Chemical Technology; Tengerdy, R.P. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Microbiology

    1997-04-01

    Ensiling in the presence of 0.5% formic acid preserved the sugar content of sweet sorghum, while in enzyme-assisted ensiling (ENLAC) with in situ produced enzymes, the sugar loss in 30 days was 28.6%. The ENLAC silage contained 1.5% lactic acid and 0.6% ethanol which might be recovered as value-added secondary products, in addition to the high quality residue as animal feed. Overall the formic acid ensiling is the better choice for sugar preservation, storage and prolonged bioprocessing for biofuel production. (Author)

  16. Assessment of yield stability in sorghum | Adugna | African Crop ...

    African Journals Online (AJOL)

    Sorghum (Sorghum bicolor L. (Moench)) is the third major cereal crop in Ethiopia in terms of area and production next to tef (Eragrostis tef) and maize (Zea mays). It is the major crop in drought stressed lowland areas that cover 66% of the total arable land in the country. Yield stability is one of the setbacks facing plant ...

  17. Effect of Excessive Soil Moisture Stress on Sweet Sorghum: Physiological Changes and Productivity

    International Nuclear Information System (INIS)

    Zhang, F.; Wang, Y.; Yu, H.; Zhu, K.; Zhang, Z.; Zou, F. L. J.

    2016-01-01

    Sweet sorghum [Sorghum bicolor (L.) Moench] is a potential bioenergy feedstock. Research explaining the response of sweet sorghum to excessive soil moisture (EM) stress at different growth stage is limited. To investigate the effect of EM stress on sweet sorghum antioxidant enzymes, osmotic regulation, biomass, quality, and ethanol production, an experiment was conducted in a glasshouse at the National Sorghum Improvement Center, Shenyang, China. Sweet sorghum (cv. LiaoTian1) was studied in four irrigation treatments with a randomized block design method. The results showed that the protective enzyme, particularly the SOD, CAT and APX in it, was significantly affected by EM stress. EM stress deleteriously affected sweet sorghum growth, resulting in a remarkable reduction of aboveground biomass, stalk juice quality, stalk juice yield, and thus, decreased ethanol yield. EM stress also caused significant reduction in plant relative water content, which further decreased stalk juice extraction rate. Sweet sorghum grown under light, medium, and heavy EM treatments displayed 5, 19, and 30% fresh stalk yield reduction, which showed a significant difference compared to control. The estimated juice ethanol yield significantly declined from 1407 ha/sup -1/ (under optimum soil moisture) to 1272, 970, and 734 L ha/sup -1/ respectively. (author)

  18. Optimization and analysis of a bioethanol agro-industrial system from sweet sorghum

    International Nuclear Information System (INIS)

    Guo, Ying; Hu, Shan-ying; Li, You-run; Chen, Ding-jiang; Zhu, Bing; Smith, Karl M.

    2010-01-01

    The use of non-food crops for bioethanol production represents an important trend for renewable energy in China. In this paper, a bioethanol agro-industrial system with distributed fermentation plants from sweet sorghum is presented. The system consists of the following processes: sweet sorghum cultivation, crude ethanol production, ethanol refining and by-product utilization. The plant capacities of crude ethanol and pure ethanol, in different fractions of useful land, are optimized. Assuming a minimum cost of investment, transport, operation and so on, the optimum capacity of the pure ethanol factory is 50,000 tonnes/year. Moreover, this bioethanol system, which requires ca. 13,300 ha (hectares) of non-cultivated land to supply the raw materials, can provide 26,000 jobs for rural workers. The income from the sale of the crops is approximately 71 million RMB Yuan and the ethanol production income is approximately 94 million RMB Yuan. The potential savings in CO 2 emissions are ca. 423,000 tonnes/year and clear economic, social and environmental benefits can be realized. (author)

  19. Technical Feasibility and Comprehensive Sustainability Assessment of Sweet Sorghum for Bioethanol Production in China

    Directory of Open Access Journals (Sweden)

    Xiaolin Yang

    2018-03-01

    Full Text Available Under dual pressures of energy and environmental security, sweet sorghum is becoming one of the most promising feedstocks for biofuel production. In the present study, the technical feasibility of sweet sorghum production was assessed in eight agricultural regions in China using the Sweet Sorghum Production Technique Maturity Model. Three top typical agricultural zones were then selected for further sustainability assessment of sweet sorghum production: Northeast China (NEC, Huang-Huai-Hai Basin (HHHB and Ganxin Region (GX. Assessment results demonstrated that NEC exhibited the best sustainable production of sweet sorghum, with a degree of technical maturity value of 0.8066, followed by HHHB and GX, with corresponding values of 0.7531 and 0.6594, respectively. Prospective economic profitability analysis indicated that bioethanol production from sweet sorghum was not feasible using current technologies in China. More efforts are needed to dramatically improve feedstock mechanization logistics while developing new bioethanol productive technology to reduce the total cost. This study provides insight and information to guide further technological development toward profitable industrialization and large-scale sweet sorghum bioethanol production.

  20. A novel wild-type Saccharomyces cerevisiae strain TSH1 in scaling-up of solid-state fermentation of ethanol from sweet sorghum stalks.

    Directory of Open Access Journals (Sweden)

    Ran Du

    Full Text Available The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sorghum stalks can be cost-effectively utilized for ethanol fermentation in large-scale industrial production and commercialization remains unclear. In this study, we identified a novel Saccharomyces cerevisiae strain, TSH1, from the soil in which sweet sorghum stalks were stored. This strain exhibited excellent ethanol fermentative capacity and ability to withstand stressful solid-state fermentation conditions. Furthermore, we gradually scaled up from a 500-mL flask to a 127-m3 rotary-drum fermenter and eventually constructed a 550-m3 rotary-drum fermentation system to establish an efficient industrial fermentation platform based on TSH1. The batch fermentations were completed in less than 20 hours, with up to 96 tons of crushed sweet sorghum stalks in the 550-m3 fermenter reaching 88% of relative theoretical ethanol yield (RTEY. These results collectively demonstrate that ethanol solid-state fermentation technology can be a highly efficient and low-cost solution for utilizing sweet sorghum, providing a feasible and economical means of developing non-food bioethanol.

  1. A Novel Wild-Type Saccharomyces cerevisiae Strain TSH1 in Scaling-Up of Solid-State Fermentation of Ethanol from Sweet Sorghum Stalks

    Science.gov (United States)

    Feng, Quanzhou; Li, Peipei; Zhang, Lei; Chang, Sandra; Li, Shizhong

    2014-01-01

    The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sorghum stalks can be cost-effectively utilized for ethanol fermentation in large-scale industrial production and commercialization remains unclear. In this study, we identified a novel Saccharomyces cerevisiae strain, TSH1, from the soil in which sweet sorghum stalks were stored. This strain exhibited excellent ethanol fermentative capacity and ability to withstand stressful solid-state fermentation conditions. Furthermore, we gradually scaled up from a 500-mL flask to a 127-m3 rotary-drum fermenter and eventually constructed a 550-m3 rotary-drum fermentation system to establish an efficient industrial fermentation platform based on TSH1. The batch fermentations were completed in less than 20 hours, with up to 96 tons of crushed sweet sorghum stalks in the 550-m3 fermenter reaching 88% of relative theoretical ethanol yield (RTEY). These results collectively demonstrate that ethanol solid-state fermentation technology can be a highly efficient and low-cost solution for utilizing sweet sorghum, providing a feasible and economical means of developing non-food bioethanol. PMID:24736641

  2. A novel wild-type Saccharomyces cerevisiae strain TSH1 in scaling-up of solid-state fermentation of ethanol from sweet sorghum stalks.

    Science.gov (United States)

    Du, Ran; Yan, Jianbin; Feng, Quanzhou; Li, Peipei; Zhang, Lei; Chang, Sandra; Li, Shizhong

    2014-01-01

    The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sorghum stalks can be cost-effectively utilized for ethanol fermentation in large-scale industrial production and commercialization remains unclear. In this study, we identified a novel Saccharomyces cerevisiae strain, TSH1, from the soil in which sweet sorghum stalks were stored. This strain exhibited excellent ethanol fermentative capacity and ability to withstand stressful solid-state fermentation conditions. Furthermore, we gradually scaled up from a 500-mL flask to a 127-m3 rotary-drum fermenter and eventually constructed a 550-m3 rotary-drum fermentation system to establish an efficient industrial fermentation platform based on TSH1. The batch fermentations were completed in less than 20 hours, with up to 96 tons of crushed sweet sorghum stalks in the 550-m3 fermenter reaching 88% of relative theoretical ethanol yield (RTEY). These results collectively demonstrate that ethanol solid-state fermentation technology can be a highly efficient and low-cost solution for utilizing sweet sorghum, providing a feasible and economical means of developing non-food bioethanol.

  3. The Kraft Pulp And Paper Properties of Sweet Sorghum Bagasse (Sorghum bicolor L Moench

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2015-05-01

    Full Text Available This study investigated the potency of sweet sorghum (Sorghum bicolor bagasse as raw material for pulp and paper using kraft pulping. The effects of alkali and sulfidity loading on kraft pulp and paper properties were also investigated. The pulping condition of the kraft pulp consisted of three levels of alkali loading (17, 19 and 22% and sulfidity loading (20, 22 and 24%. The maximum cooking temperature was 170°C for 4 h with a liquid to wood ratio of 10:1. Kraft pulping of this Numbu bagasse produced good pulp indicated by high screen yield and delignification selectivity with a low Kappa number (< 10. The unbleached pulp sheet produced a superior brightness level and a high burst index. The increase of active alkali loading tended to produce a negative effect on the pulp yield, Kappa number and paper sheet properties. Therefore, it is suggested to use a lower active alkaline concentration.

  4. A novel cost-effective technology to convert sucrose and homocelluloses in sweet sorghum stalks into ethanol

    Science.gov (United States)

    2013-01-01

    Background Sweet sorghum is regarded as a very promising energy crop for ethanol production because it not only supplies grain and sugar, but also offers lignocellulosic resource. Cost-competitive ethanol production requires bioconversion of all carbohydrates in stalks including of both sucrose and lignocellulose hydrolyzed into fermentable sugars. However, it is still a main challenge to reduce ethanol production cost and improve feasibility of industrial application. An integration of the different operations within the whole process is a potential solution. Results An integrated process combined advanced solid-state fermentation technology (ASSF) and alkaline pretreatment was presented in this work. Soluble sugars in sweet sorghum stalks were firstly converted into ethanol by ASSF using crushed stalks directly. Then, the operation combining ethanol distillation and alkaline pretreatment was performed in one distillation-reactor simultaneously. The corresponding investigation indicated that the addition of alkali did not affect the ethanol recovery. The effect of three alkalis, NaOH, KOH and Ca(OH)2 on pretreatment were investigated. The results indicated the delignification of lignocellulose by NaOH and KOH was more significant than that by Ca(OH)2, and the highest removal of xylan was caused by NaOH. Moreover, an optimized alkali loading of 10% (w/w DM) NaOH was determined. Under this favorable pretreatment condition, enzymatic hydrolysis of sweet sorghum bagasse following pretreatment was investigated. 92.0% of glucan and 53.3% of xylan conversion were obtained at enzyme loading of 10 FPU/g glucan. The fermentation of hydrolyzed slurry was performed using an engineered stain, Zymomonas mobilis TSH-01. A mass balance of the overall process was calculated, and 91.9 kg was achieved from one tonne of fresh sweet sorghum stalk. Conclusions A low energy-consumption integrated technology for ethanol production from sweet sorghum stalks was presented in this work

  5. Sweet sorghum biomass. Part 3. Cultivars and plant constituents

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.A.; Reeves, S.A. Jr.

    1981-10-01

    With their adaptability to extensive land areas, rapid growth characteristics, modest water requirements and high carbohydrate contents, the sweet sorghums have become prime candidates for renewable energy sources. With this objective, the high-sucrose requirement of cultivars suitable for crystalline raw sugar production becomes less important than the requirement for a high content of total fermentable sugars, i.e., sucrose plus dextrose and levulose. The results of field trials with several different cultivars in southern Texas during 1978 and 1979 are reported here. Among the constituents measured were, total sugars, soluble solids other than sugars, fiber, starch, lipids, and protein. The effects of harvest date and row-spacing on total sugars was also examined. (17 references).

  6. Sweet sorghum for ethanol industry for the Piedmont

    Energy Technology Data Exchange (ETDEWEB)

    Cundiff, J.S.; Vaughan, D.H.

    1987-08-01

    Approximately one-third of the idle cropland in the Piedmont counties of the five southern states, Virginia, North Carolina, South Carolina, Georgia and Alabama, would have to be planted in sweet sorghum with an average yield of 40 t/ha to produce a volume of ethanol equal to the volume of petroleum fuel purchased by farmers in the Piedmont counties (518 million L/year), assuming that 65% of the fermentable sugar is extracted. If the by-products are ensiled for cattle feed, it is sufficient to feed 1.5 times the entire cattle population of the Piedmont of Virginia, and 3.0, 0.78, 1.25 an 1.16 times the Piedmont cattle population in North Carolina, South Carolina, Georgia and Alabama, respectively. 1 fig., 3 tabs., 5 refs.

  7. Bioenergy production from sweet sorghum stalks via a biorefinery perspective.

    Science.gov (United States)

    Nozari, Behzad; Mirmohamadsadeghi, Safoora; Karimi, Keikhosro

    2018-04-01

    Besides free sugars, sweet sorghum stalks contain cellulose and hemicellulose that can be used for biofuel production. The pretreatment of stalks without the extraction of free sugars is more complicated than typical lignocelluloses, because of the degradation of free sugars during most pretreatment processes. In this study, the bioconversion of sweet sorghum stalks into biogas and bioethanol was studied using an improved organosolv pretreatment within a biorefinery framework. The organosolv pretreatment was developed using an aqueous solution of ethanol (EtOH) and isopropanol (IPOH). The process was optimized to obtain a liquor containing free sugars with the least sugar degradations together with a highly degradable solid fraction. The liquor was subjected to anaerobic digestion for biomethane production, while the solid was used for ethanol production via simultaneous saccharification and fermentation (SSF). The most influencing pretreatment parameters, i.e., temperature, time, alcohol to water ratio, EtOH to IPOH ratio, and the presence or absence of sulfuric acid (as a catalyst), were adjusted to achieve the highest yields of bioconversion. The maximum methane and ethanol production yields of 271.2 mL CH 4 /g VS and 87.8% (equal to the gasoline equivalent of 0.170 and 0.241 L/kg, respectively) were achieved from the liquor and pretreated solid, respectively; however, they were obtained at different optimum conditions. Considering the biorefinery perspective, the highest gasoline equivalent of 0.249 L/kg was efficiently obtained from the whole process after pretreatment at 140 °C for 30 min using 60:20 EtOH/IPOH ratio in the presence of 1% sulfuric acid. Further analyses, including enzymatic adsorption/desorption, compositional analysis, FTIR, and SEM, were conducted to investigate the effects of this newly developed pretreatment on the substrate.

  8. A two stage silo/digester for methane production from sweet sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Egg, R.P.; Coble, C.G.; Hicks, D.D.

    1985-01-01

    A pilot scale silo/anaerobic digester was constructed to evaluate ensiling for storage of sweet sorghum used for methane production. Leachate from ensiled sweet sorghum was circulated through a packed bed anaerobic digester to produce methane. After 133 days of operation, methane was still being produced. Specific methane yield in the anaerobic filter was 0.27 m/sup 3//kg COD added and 0.34 m/sup 3//kg COD removed. COD removal was 79.6%.

  9. Tamarind (Tamarindus indica linn.) and Sweet Sorghum (Sorghum bicolor L.Moench): their Potential Utilization in Phytotherapy

    OpenAIRE

    Regina D Loria; Norman G. De Jesus; Filomena K. Reyes; Honorio M. Soriano Jr

    2015-01-01

    The use of botanical extracts and essential oil in skin care has been increasing due to greater demand on the part of consumers to use natural ingredients. Tamarind and Sweet Sorghum really have   big potentials  for reaching the public and showcasing its benefits , thus this study could encourage growers to raise more Tamarind and Sweet Sorghum in their areas not only as  food but as a raw material in the production of natural products which are for health and wellness. Both Tamarind and Swe...

  10. 78 FR 55171 - Common Crop Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions

    Science.gov (United States)

    2013-09-10

    ...-0001] RIN 0563-AC37 Common Crop Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions... Corporation (FCIC) finalizes the Common Crop Insurance Regulations, Processing Sweet Corn Crop Insurance... changes to the Common Crop Insurance Regulations (7 CFR part 457), Processing Sweet Corn Crop Insurance...

  11. Effects of main traits of sweet sorghum irradiated by carbon ions

    International Nuclear Information System (INIS)

    Li Wenjian; He Jingyu; Liu Qingfang; Yu Lixia; Dong Xicun

    2009-01-01

    To investigate the influence of carbon ion irradiation on important agronomic characters of sweet sorghum, dry seeds of Sweet Sorghum BJ0601 and BJ0602 were irradiated by 100 MeV/u 12 C +6 ion beam to different doses at Heavy Ion Accelerator National Laboratory in Lanzhou (HIANLL). When matured, the main traits of sweet sorghum were measured. The correlation coefficient of five main agronomic characters, i.e. number of node, plant height, stalk diameter, sugar content and stem weight per plant, were analyzed using the SPSS 13.0 software. The results indicated that the obvious influence of sweet sorghum irradiated by carbon ion beam was observed. In addition, the correlation of main traits was studied. This study may provide rudimental data to select novel variety of sweet sorghum suited for fuel ethanol production. In addition, the average of sugar content of early mutant BJ0601-1 is higher than BJ0601 in M2, and the sugar content of sweet sorghum may be improved by carbon ion beam irradiation. (authors)

  12. A preliminary investigation of the water use efficiency of sweet ...

    African Journals Online (AJOL)

    ... compared to Ukulinga research farm. The results from this study showed that the WUE of sweet sorghum was sensitive to plant density. The WUE values confirm that sweet sorghum has high WUE under different climatic conditions. Keywords: water use efficiency; ethanol yield; biofuel crop; plant density, sweet sorghum, ...

  13. Preservation of Sugar Content in Ensiled Sweet Sorghum Silage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z. (Inst. of Grassland Research, Agricultural Univ., Beijing 100094 (China)). e-mail: yuzhu3@sohu.com; Sun, Q.Z. (Grassland Research Inst. of Chinese Academy of Agriculture Science, Hohhot 010010 (China)). E-mail:sunqz@126.com

    2008-10-15

    This experiment chose Sweet sorghum as material, analyzing its sugar and other ingredients by adding different additives (formic acid, formaldehyde, formic acid + formaldehyde, formic acid + propionic acid, Na{sub 2}S{sub 2}O{sub 5} and ammonia). The results showed that adding formic acid and formaldehyde individual or together preserved the sugar well. When adding individual, the best leaves were both 0.5%. When adding together, 0.7% formic acid and formaldehyde was better than others. Adding formic acid and propionic acid together also had good effect on the preservation of sugar, and 0.5% leave was better. 0.5% Na{sub 2}S{sub 2}O{sub 5} and 0.7% Na{sub 2}S{sub 2}O{sub 5} can preserve the sugar well, while 0.3% Na{sub 2}S{sub 2}O{sub 5} and ammonia had no effect on the preservation of sugar

  14. SOME CONSIDERATIONS ON THE PROSPECTS OF SORGHUM CROP

    Directory of Open Access Journals (Sweden)

    Agatha POPESCU

    2014-10-01

    Full Text Available The paper purpose was to analyze the sorghum statement at world, EU and Romania level in order to establish the main trends in the future of this crop. Sorghum is an important cereal coming on the 5th position after maize, rice, wheat and barley at world level due to its importance in human nutrition, animal feed, in producing bioethanol and green energy, and due to its good impact on environment. It is cultivated on all the continents, in the tropical, subtropical and temperate areas due to its resistance to drought, production potential, low inputs and production cost. It is an alternative to maize crop being more utilized as substituent in animal diets. The world sorghum production reached 63,811 thousand metric tons in 2014, the main producers being the USA, Mexico, Nigeria, India, Argentina, Ethiopia, Sudan and China. The world consumption of sorghum reached 63,148 thousand metric tons and it is continuously increasing. The sorghum exports accounted for 7,690 thousand metric tons in 2014, of which the USA export represents 4,600 thousand metric tons. Besides the USA, other exporting countries are Argentina, Australia, Ethiopia, India, Nigeria, Uruguay, while the main importing countries are China, Japan, Chile, Colombia, Mexico, the EU, Sudan. In 2014, the EU produced 576 thousand metric tons sorghum, imported 200 thousand metric tons, and consumed 770 thousand metric tons. The main EU producers of sorghum are France, Italy, Romania, Spain and Hungary. In 2012, Romania cultivated 20,000 ha with sorghum crop, 18 times more than in 2077. Also, in 2012, Romania produced 37.5 thousand tons of sorghum grains, by 31 times more than in 2007. The sorghum yield was 1,875 kg/ha by 66% higher in 2012 compared to 2007. Therefore, these figures show the increasing importance of sorghum crop at world level. Because Romania is situated in suitable geographical area for producing sorghum, it could increase production and become a more important supplier

  15. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    Directory of Open Access Journals (Sweden)

    Lantian Ren

    2015-06-01

    Full Text Available This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum in China under different scenarios. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study estimates that the logistics cost of corn stover and sweet sorghum stalk to be $52.95/dry metric ton and $52.64/dry metric ton, respectively, for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk decreases to $36.01/dry metric ton and $35.76/dry metric ton, respectively. The study also includes a sensitivity analysis to identify the cost factors that cause logistics cost variation. Results of the sensitivity analysis show that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, with a variation of $6 to $12/dry metric ton.

  16. Utilization of sweet sorghum juice for the production of astaxanthin as a biorefinery co-product by phaffia rhodozyma

    Science.gov (United States)

    Co-product generation in a biorefinery process is crucial to allow ethanol production from agricultural feedstocks to be economically viable. One feedstock that has underutilized potential in the U.S. is sweet sorghum. The stalks of sweet sorghum can be crushed to produce a juice rich in soluble sug...

  17. Reducing sugar production of sweet sorghum bagasse kraft pulp

    Science.gov (United States)

    Solihat, Nissa Nurfajrin; Fajriutami, Triyani; Adi, Deddy Triyono Nugroho; Fatriasari, Widya; Hermiati, Euis

    2017-01-01

    Kraft pulping of sweet sorghum bagasse (SSB) has been used for effective delignification method for cellulose production. This study was conducted to evaluate the performance pulp kraft of SSB for reducing sugar production. The study intended to investigate the effect of active alkali and sulfidity loading variation of SSB pulp kraft on reducing sugar yield per biomass. The SSB pulp was prepared after pulping using three variations of active alkali (17, 19, and 22%) and sulfidity loading (20, 22, and 24%) at 170°C for 4 h with liquor to wood ratio of 10. A total of 9 pulps were obtained from these pretreatments. Delignification pretreatment has been succesfully removed lignin and hemicellulose more than 90% and 50%, respectively. Increasing active alkali and sulfidity loading has significantly increased lignin removal caused by disruption of the cell wall structure for releasing lignin into black liquor in the cellulose extraction. The enzymatic hydrolysis of pulp was carried out with cellulase loading of 40 FPU per g substrate in the shaking incubator at 50°C and 150 rpm for 78 h. For each 24 h, the reducing sugar yield (DNS assay) has been observed. Even though the lignin and hemicellulose loss occurred along with higher active alkali loading, this condition tends to decrease its yield. The reducing sugar concentration varied between 7-8 g/L. Increasing active alkali and sulfidity was significantly decreased the reducing sugar per biomass. Pulp delignified by 17% active alkali and 20% sulfidity has demonstrated the maximum reducing sugar yield per biomass of 45.57% resulted after 72 h enzymatic hydrolysis. These results indicated that kraft pulping was success to degrade more lignin and hemicellulose content to facilitate the enzyme for breaking down the cellulose into its sugar monomer. A high loss of lignin and hemicellulose are not single factor to improve digestibility of SSB. This sugar has potential for yeast fermented into bioethanol.

  18. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves.

    Science.gov (United States)

    Sui, Na; Yang, Zhen; Liu, Mingli; Wang, Baoshan

    2015-07-19

    Sweet sorghum is an annual C4 crop considered to be one of the most promising bio-energy crops due to its high sugar content in stem, yet it is poorly understood how this plant increases its sugar content in response to salt stress. In response to high NaCl, many of its major processes, such as photosynthesis, protein synthesis, energy and lipid metabolism, are inhibited. Interestingly, sugar content in sweet sorghum stems remains constant or even increases in several salt-tolerant species. In this study, the transcript profiles of two sweet sorghum inbred lines (salt-tolerant M-81E and salt-sensitive Roma) were analyzed in the presence of 0 mM or 150 mM NaCl in order to elucidate the molecular mechanisms that lead to higher sugar content during salt stress. We identified 864 and 930 differentially expressed genes between control plants and those subjected to salt stress in both M-81E and Roma strains. We determined that the majority of these genes are involved in photosynthesis, carbon fixation, and starch and sucrose metabolism. Genes important for maintaining photosystem structure and for regulating electron transport were less affected by salt stress in the M-81E line compared to the salt-sensitive Roma line. In addition, expression of genes encoding NADP(+)-malate enzyme and sucrose synthetase was up-regulated and expression of genes encoding invertase was down-regulated under salt stress in M-81E. In contrast, the expression of these genes showed the opposite trend in Roma under salt stress. The results we obtained revealed that the salt-tolerant genotype M-81E leads to increased sugar content under salt stress by protecting important structures of photosystems, by enhancing the accumulation of photosynthetic products, by increasing the production of sucrose synthetase and by inhibiting sucrose decomposition.

  19. Evaluation of Ethanol Production and Cogeneration of Energy by Sweet Sorghum Culture

    Directory of Open Access Journals (Sweden)

    Fábio Olivieri De Nóbile

    2014-06-01

    Full Text Available The scarcity of fossil fuels and environmental pollution have led to the discussions of new biofuels. For this reason new sources of renewable fuels are sought and an alternative to ethanol production, besides sugar cane, is sweet sorghum, using it as a complement, not as a competitor of sugar cane, considering that the demand for biofuels is growing on a large scale worldwide. The aim was to analyze the production of ethanol and the cogeneration of sweet sorghum in the offseason of sugar cane, and to compare the yield of sweet sorghum with sugar cane, the processes to obtain and to produce etnhanol from sweet sorgo and the production cost, supplying the lack of raw materials in the offseason and increasing the period of grinding mill. The methodology used was a bibliographical review in scientific journals, books and internet. In a near future, with research of new more productive varieties, sweet sorghum is an alternative to produce ethanol during the offseason of sugar cane for its short cycle of sowing and harvesting, besides climatic factors which favor its development and utilization of the same systems used for the production of ethanol from sugar cane.

  20. Assimilation, partitioning, and nonstructural carbohydrates in sweet compared with grain sorghum

    International Nuclear Information System (INIS)

    Vietor, D.M.; Miller, F.R.

    1990-01-01

    Nonstructural carbohydrate concentrations in stems are greater for sweet than grain sorghums [Sorghum bicolor (L.) Moench]. Knowledge of plant characteristics associated with high nonstructural carbohydrates in sweet sorghum will air efforts to increase nonstructural carbohydrates in grain sorghum stems. This study tested the hypothesis that variation of CO 2 assimilation rate, leaf area, branching at upper nodes, and partitioning of 14 C-labeled assimilate to main stems are associated with variation of stem nonstructural carbohydrates. A sweet (Atlas X Rio) and a grain (ATx623 X RTx5388) hybrid, stages near and after physiological maturity, and defoliation and gibberellic acid (GA 3 ) treatments provided sources of variation for study. Concentrations of nonstructural carbohydrates in lower and upper stems of the sweet hybrid were 1.4 and 2.7 times higher, respectively, than for the grain hybrid, after physiological maturity. Variation in branching, including 14 C-assimilate partitioning to branches, was not consistently associated with hybrid differences in stem nonstructural carbohydrates. Increased recovery (twofold) of 14 C-assimilate in roots and labeled leaves corresponded with lower percentages of 14 C-assimilate and lower concentrations of nonstructural carbohydrates in stems of the grain hybrid. Leaf areas and leaf CO 2 exchange rate were twice as great for the sweet hybrid. Although defoliation of the sweet hybrid minimized leaf area differences between hybrids, the sweet hybrid accumulated twice as much nonstructural carbohydrates in branches after physiological maturity. Greater potentials for CO 2 assimilation and for 14 C-assimilate accumulation in mature stem tissue were associated with higher levels of stem nonstructural carbohydrates in the sweet compared with the grain hybrid

  1. Evaluation of three cultivars of sweet sorghum as feedstocks for ethanol production in the Southeast United States

    Directory of Open Access Journals (Sweden)

    Daniel E. Ekefre

    2017-12-01

    Full Text Available Sweet sorghum has become a promising alternative feedstock for biofuel production because it can be grown under reduced inputs, responds to stress more efficiently than traditional crops, and has large biomass production potential. A three-year field study was conducted to evaluate three cultivars of sweet sorghum as bioenergy crops in the Southeast United States (Fort Valley, Georgia: Dale, M81 E and Theis. Parameters evaluated were: plant density, stalk height, and diameter, number of nodes, biomass yield, juice yield, °Bx, sugar production, and theoretical ethanol yields. Yields were measured at 85, 99, and 113 days after planting. Plant fresh weight was the highest for Theis (1096 g and the lowest for Dale (896 g. M81 E reported the highest stalk dry weight (27 Mg ha−1 and Theis reported the lowest (21 Mg ha−1. Theis ranked the highest °Bx (14.9, whereas M81 E was the lowest (13.2. Juice yield was the greatest for M81 E (10915 L ha−1 and the lowest for Dale (6724 L ha−1. Theoretical conservative sugar yield was the greatest for Theis (13 Mg ha−1 and the lowest for Dale (9 Mg ha−1. Theoretical ethanol yield was the greatest for Theis (7619 L ha−1 and the lowest for Dale (5077 L ha−1.

  2. Modeling of fermentative hydrogen production from sweet sorghum extract based on modified ADM1

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    of fermentative hydrogen production from the extractable sugars of sweet sorghum biomass. Kinetic parameters for sugars’ consumption and yield coefficients of acetic, propionic and butyric acid production were estimated using the experimental data obtained from the steady states of a CSTR. Batch experiments were...

  3. Radiation-induced grafting of sweet sorghum stalk for copper(II) removal from aqueous solution

    International Nuclear Information System (INIS)

    Dong, Jing; Hu, Jun; Wang, Jianlong

    2013-01-01

    Highlights: • Radiation-induced grafting was used to modify the stalk. • Cellulose, hemicellulose and lignin participated in grafting reaction. • Both the structure and composition of stalk had influence on grafting. • The sorption capacity of the grafted stalk increased about five times. -- Abstract: The influence of main components (cellulose, hemicellulose and lignin) of the sweet sorghum stalk on radiation-induced grafting reaction and adsorption of copper from aqueous solution was investigated. Sweet sorghum stalk was grafted with acrylic acid induced by γ-irradiation. The results showed that the grafted stalk contained 1.6 mmol/g carboxyl groups, and its maximal adsorption capacity was 13.32 mg/g. The cellulose, hemicellulose and lignin of the raw materials were confirmed to involve in grafting reaction through comparing the grafting yield and the structure of the grafted materials. Both the structure and the composition of the sweet sorghum stalk had influence on the grafting reaction and adsorption capacity. The adsorption capacity of the grafted sweet sorghum stalk increased about five times, and the adsorption isotherm of the grafted materials conformed to the Langmuir model. The main mechanism for copper adsorption involved in ion exchange

  4. Case Study: Commercialization of sweet sorghum juice clarification for large-scale syrup manufacture

    Science.gov (United States)

    The precipitation and burning of insoluble granules of starch from sweet sorghum juice on heating coils prevented the large scale manufacture of syrup at a new industrial plant in Missouri, USA. To remove insoluble starch granules, a series of small and large-scale experiments were conducted at the...

  5. Detecting adulterated commercial sweet sorghum syrups with ion chromatography oligosaccharide fingerprint profiles

    Science.gov (United States)

    Commercial sweet sorghum syrups can be adulterated with inexpensive sugar syrups, particularly high fructose corn syrup (HFCS) or corn syrup, and sold at a relatively low market price or even mis-branded. This undermines the economic stability of the current small-scale producers of food-grade swee...

  6. Impact of potential fermentation inhibitors present in sweet sorghum sugar solutions

    Science.gov (United States)

    In this work, the fermentation of the sweet sorghum sugars sucrose, glucose, and fructose to ethanol was studied in the presence of acetic, lactic and aconitic acid, which are present in the juice or produced by microorganisms during prolonged storage of harvested materials or juice. An industrial s...

  7. DESIGN AND DEVELOPMENT OF SPECIAL CUTTING SYSTEM FOR SWEET SORGHUM HARVESTER

    Directory of Open Access Journals (Sweden)

    OMID GHAHRAE

    2009-03-01

    Full Text Available Sweet Sorghum is similar to racemose maize with about 3m height and 0.5-3cm thickness of stalk. Sweet Sorghum has sweet flavor stalk, which is used for sugar production. Developed cutting mechanism in this research has a rotary disk with 50 cm diameter and four cutting blades that spin clockwise. The stalks are cut with the impact and inertia forces at the linear velocity of 27 m/s, by cutting blades. This system has a simple bar mechanism guiding the whole-stalk to one side. The cutting quality tests were achieved by two series of blades with 30°and 45° blade angles on the stalk. The results showed that the stalk cutting surface with 30° blade angle was smooth and without fracture on filaments and vasculums, compared to that of 45° blade angle. Blade penetration was accomplished very well with 30° blade angle.

  8. Effects of the genotype and environment interaction on sugar accumulation in sweet sorghum varieties (Sorghum bicolor -{L.}- Moench grown in the lowland tropics of Colombia

    Directory of Open Access Journals (Sweden)

    Jaime Humberto Bernal

    2014-12-01

    Full Text Available Sugar production in sweet sorghums is affected by the environment. Therefore, in this study on the effects of the genotype x environment interaction on sugar accumulation, plant traits associated with the sugar content in the stem were evaluated in ten sorghum genotypes grown in six contrasting environments. The results indicated that the stem dry weight, juice sugar concentration (°Brix, stem sugar content and juice volume were controlled by the genetic constitution of the genotype, with a large environmental contribution to their expression. The results allowed for the identification of the sweet sorghum genotypes that have a high potential for the biofuel agroindustry due to their high sugar contents in the environmental conditions of Palmira, Espinal, Cerete and Codazzi. Humid tropical environments such as Gaitan and Villavicencio were less favorable for the competitive production of sweet sorghums for bioethanol due to their low levels of solar radiation and soil fertility.

  9. Structural and physicochemical characteristics of starch from sugar cane and sweet sorghum stalks.

    Science.gov (United States)

    Alves, Fernanda Viginotti; Polesi, Luís Fernando; Aguiar, Cláudio Lima; Sarmento, Silene Bruder Silveira

    2014-10-13

    The starch present in sugar cane and sorghum juice has been considered a problem to the sugar industry. The objective of this work was to study the structural and physicochemical characteristics of the starch present in sugar cane and sweet sorghum. Sugar cane and sweet sorghum starches presented small granules (maximum 5.9 and 7.9 μm), A-type diffraction pattern, high degree of relative crystallinity (44.4 and 42.0%), and low amylose content (17.5 and 16.4%), respectively. Sugar cane starch presented more uniformity in granule shape and size, more homogeneity in amylose chain length, higher number of long lateral chains of amylopectin, and higher susceptibility to enzymatic digestion. Besides being in higher amount in the juice, sweet sorghum starch presented lower values for thermal properties of gelatinization, as well as higher swelling factor, which can cause more problems during processing. Additional studies are needed to evaluate the variety and maturity influence on these properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market sweet corn crop insurance provisions. 457... sweet corn crop insurance provisions. The fresh market sweet corn crop insurance provisions for the 2008... Reinsured Policies Fresh Market Sweet Corn Crop Provisions 1. Definitions Allowable cost.—The dollar amount...

  11. 7 CFR 457.154 - Processing sweet corn crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Processing sweet corn crop insurance provisions. 457... sweet corn crop insurance provisions. The Processing Sweet Corn Crop Insurance Provisions for the 1998... policies: Processing Sweet Corn Crop Provisions If a conflict exists among the policy provisions, the order...

  12. Evaluation of biobutanol production by Clostridium beijerinckii NRRL B-592 using sweet sorghum as carbon source

    Directory of Open Access Journals (Sweden)

    Luiz Jardel Visioli

    2015-09-01

    Full Text Available In this research it was evaluated the production of biobutanol by Clostridium beijerinckiiNRRL B-592 using sweet sorghum juice as carbon source. Operational variables, like pH and initial inoculum size, as well as supplementation of industrial media with yeast extract and tryptone, were evaluated. The maximum butanol obtained was 2.12g kg-1 using 12.5% of inoculum size, 0.05g 100mL-1 of tryptone and 0.1g 100mL-1 of yeast extract and initial pH of 5.5. The main contribution of this research was to show a systematic procedure for development of a low cost industrial media for biobutanol production from sweet sorghum.

  13. Effect of substrate concentration on fermentative hydrogen production from sweet sorghum extract

    DEFF Research Database (Denmark)

    Antonopoulou, G; Gavala, Hariklia N.; Skiadas, Ioannis

    2011-01-01

    The present study focuses on the influence of substrate concentration on the fermentative hydrogen production from the sugars of sweet sorghum extract, in a continuous stirred tank bioreactor. The reactor was operated at a Hydraulic Retention Time of 12 h and substrate concentrations ranging from...... 9895 to 20990 mg/L, in glucose equivalents. The maximum hydrogen production rate and yield were obtained at the concentration of 17000 mg carbohydrates/L and were 2.93 ± 0.09 L H2 /L reactor /d and 0.74 ± 0.02 mol H2 / mol glucose consumed or 8.81 ± 0.02 LH2 / kg sweet sorghum, respectively. The main...

  14. Effects of Gamma Irradiation on Ruminal Degradation of Samurai 1 Sweet Sorghum Bagasse

    Directory of Open Access Journals (Sweden)

    T. Wahyono

    2017-06-01

    Full Text Available The purpose of this study was to investigate the influence of gamma irradiation on dry matter, organic matter, and neutral detergent fiber degradability of Samurai 1 sweet sorghum bagasse, to facilitate its utilization in ruminant diets. Sorghum bagasse was obtained from Samurai 1 sorghum stem by-product after juice extraction. Gamma irradiation was carried out in a cobalt-60 irradiator in the Center for the Application of Isotopes and Radiation. Two polyethylene packages of samples were irradiated in gamma cell (Co-60 at doses of 50 and 100 kGy in the presence of air. Treatments were untreated/unirradiated and  50- and 100-kGy gamma irradiation. Sample were incubated in the rumen for periods of 0, 8, 24, 48, and 72 h with in sacco method. The observed parameters were the degradations of dry matter (DM, organic matter (OM, and neutral detergent fiber (NDF. DM, OM and NDF degradation characteristics were also observed. DM degradation of 50 kGy irradiation dose started higher than untreated samples after 24 hours incubation while OM degradation started higher than untreated samples after 48 hours incubation. DM and OM degradation of 100 kGy irradiation started higher than untreated after 8 hours incubation. Gamma irradiation treatment of 50 kGy and 100 kGy could increase NDF degradation on 8 to 72 hours incubation. Irradiation was also capable to increase NDF degradation rate (c fraction and ruminal effective degradation (ED value on Samurai 1 sweet sorghum bagasse. Gamma Irradiation could break down the lignocellulose materials, break β 1,4 branch chain of cellulose and make it easily digested for rumen bacteria. The best dose of gamma irradiation for processing Samurai 1 sweet sorghum bagasse as a fiber source for ruminants was 100 kGy.Received: 10 December 2015; Revised: 10 October 2016; Accepted: 10 October 2016

  15. Economics and Uncertainty of Lignocellulosic Biofuel Production from Energy Cane and Sweet Sorghum in South Texas

    OpenAIRE

    Monge, Juan J.; Ribera, Luis A.; Jifon, John L.; Silva, Jorge A. da; Richardson, James W.

    2014-01-01

    Government support uncertainty, scarce yiel d information, and the inherent risk in bio- economic phenomena are some of the deterrents faced by investors in the nascent cellulosic biofuel industry. A financial probabilistic model was developed to contrast the economic feasibility of producing cellulosic biofuels from energy cane and sweet sorghum using three technologies: hydrolysis, pyrolysis, and gasification. Hydrolysis and pyrolysis proved feasible (showed possibilities of a positive net ...

  16. Obtaining alternative fuel from sweet sorghum in the conditions of the Republic of Tatarstan

    Science.gov (United States)

    Kashapov, N. F.; Nafikov, M. M.; Gilmanshin, I. R.; Nigmatzyanov, A. R.

    2017-09-01

    In the agro-industrial complex of the Russian Federation the main types of energy resources is the FCM (fuel-lubricating materials), electricity, coal and gas. Priority energy is determined depending on the orientation of the activity of the agricultural enterprise. In the cost of getting products one of the key factors is its energy intensity. Under the energy intensity means the amount of energy expended per unit of finished product. Domestic manufacturers lag behind on this indicator from their foreign colleagues. Greatly influenced by the climatic conditions of production, which affects the amount of energy expended annually becoming more expensive. In the article, the authors address a topical issue of renewable(alternative) fuels from sweet sorghum in the stems of which contains from 14 to 21 % sugar. In the Republic of Tatarstan tested and introduced varieties of sweet sorghum. On the basis of literary data and carried out their own research given a set of equipment and presents non-waste production chain of biodiesel and fuel pellets from stems of sweet sorghum.

  17. Chemical, sensory and rheological properties of porridges from processed sorghum (Sorghum bicolor), bambara groundnut (Vigna subterranea L. Verdc) and sweet potato (Ipomoea batatas) flours.

    Science.gov (United States)

    Nnam, N M

    2001-01-01

    The chemical, sensory and rheological properties of porridges made from blends of sprouted sorghum, bambara groundnuts and fermented sweet potatoes were examined. Sorghum and bambara groundnuts were sprouted for 48 h while sweet potatoes were fermented for the same period. Blends were formulated from the processed ingredients in the ratio of 60:40:0, 57:42:1, 55:44:1 and 52:46:2 (protein basis) of sorghum, bambara groundnuts and sweet potatoes. Porridges were prepared from the composite flours and the traditional sorghum complementary food. Standard assay methods were used to evaluate the flours for nutrient composition. The porridges were also tested for sensory properties and viscosity. Processing increased the levels of most of the nutrients evaluated. Relative to the sorghum traditional complementary food, the composite flours had higher levels of lipids, protein, ash, crude fiber and minerals (p < 0.05). The porridges from the composite flours were generally liked slightly by the panelists and were about seven times less viscous than the porridge from the traditional sorghum complementary food. Use of the composite flours, particularly the 52:46:2 blend, as a traditional complementary food should be encouraged in Nigeria especially with the increasing cost of commercial complementary foods.

  18. Exploitation of sweet sorghum biomass for biofuel production using mixed acidogenic and methanogenic cultures and pure cultures of ruminococcus albus

    International Nuclear Information System (INIS)

    Ntaikou, I.; Antonopoulou, G.; Marazioti, C.; Lyberatos, G.

    2008-01-01

    Full text: The present study focuses on the exploitation of sweet sorghum biomass for gas biofuel production in continuous and batch systems. Sweet sorghum is an annual C 4 plant of tropical origin, well-adapted to sub-tropical and temperate regions and highly productive in biomass. It is rich in readily fermentable sugars and thus it can be considered as an excellent raw material for biohydrogen production from many different fermentative microorganisms. Extraction of free sugars from the sorghum stalks was achieved using water at 30 degrees centigrade. After the extraction process a liquid fraction (sorghum extract), rich in sucrose, and a solid fraction (sorghum cellulosic-hemicellulosic residues or sorghum bagasse), containing the cellulose and hemicelluloses, were obtained. A two-step continuous process was developed for the biological hydrogen production and the subsequent production of biogas from sweet sorghum extract. In the first reactor sugars were fermented to hydrogen, volatile fatty acids and alcohols b mixed acidogenic culture derived from the indigenous microfauna of sweet sorghum. The hydrogen producing reactor was operated at five different hydraulic retention times (HRT), i.e 24h, 12h, 8h, 6h and 4h. The HRT of 12h proved to be the most effective leading to the production 10.4 L H 2 /kg sweet sorghum biomass. Subsequently, the effluent was fed to the methanogenic reactor, where all the residual organic compounds were digested by an acclimated methanogenic culture derived from activated sludge. The operation of the methanogenic reactor was studied at three different HRTs, i.e 20d, 15d and 10d with the latter being the most prosing leading to the production 35.2 L CH 4 /kg sweet sorghum biomass. Both continuous and batch cultures were used for the investigation of hydrogen production from sweet sorghum biomass using Ruminococcus albus. R. albus is an important, fibrolytic bacterium of the rumen that can hydrolyse both cellulose and hemicellulose

  19. Potencialidades do sorgo sacarino [Sorghum bicolor (L. Moench] para a produção sustentável de bioetanol no Alentejo The potential of sweet sorghum [Sorghum bicolor (L. Moench] for sustainable bioethanol production in Alentejo

    Directory of Open Access Journals (Sweden)

    M.E.V. Lourenço

    2007-01-01

    Full Text Available Fazem-se algumas considerações sobre a importância dos biocombustíveis (biodiesel e bioetanol, num futuro próximo, e acerca das potencialidades do sorgo sacarino para a produção de bioetanol. Apresentam-se resultados de um ensaio de quatro dotações de rega (1500, 2500, 3500 e 4500 m³/ha aplicadas a uma variedade de sorgo sacarino. Avaliou-se a concentração em sólidos solúveis (ºBrix nos caules verdes e a altura das plantas ao longo do ciclo. Determinou-se a produção de matéria verde em caules e de matéria seca em caules, folhas e inflorescências. Estimou-se também a produção de açúcar e bioetanol por hectare. Os dados revelaram que a dotação de rega mais aconselhável foi a de 4500 m³/ha pois conduziu aos melhores resultados em todos os parâmetros, excepto no que se refere ao Brix que foi semelhante à da dotação de 3500 m ³/ha (17 e 16%, respectivamente. Com aquela dotação de rega, se os resultados se confirmarem, será de esperar que, no Alentejo, as produções de bioetanol, da referida cultura, sejam superiores a 5000 l/ha.The importance of biofuels (biodiesel and bioethanol in the next future, and the potential of sweet sorghum for bioethanol production are discussed. Results of a trial with four irrigation treatments (1500, 2500, 3500 e 4500 m³/ha applied, to one variety of sweet sorghum, are presented. The soluble solids content (ºBrix of the fresh stalks and plant height were monitored along the life cycle of the crop. The yield of fresh stalks and the dry matter yield of stalks, leaves and inflorescences were determined. Sugar and bioethanol yields were also estimated. The results showed that the 4500 m³/ha irrigation treatment conducted to the best results in all variables, except for the Brix values that were similar to the 3500 m³/ha treatment (17 and 16%, respectively. With that irrigation treatment, and if the results are confirmed in the future, it will be expected that bioethanol yields from

  20. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources

    International Nuclear Information System (INIS)

    Vicente, J.; Carrasco, J.E.; Negro, M.J.

    1996-01-01

    The purpose of this work is to study the aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the protein synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH4NO3. taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing spillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO3 as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources. (Author) 15 refs

  1. Potensi penggunaan beberapa varietas sorgum manis (Sorghum bicolor (L. Moench sebagai tanaman pakan

    Directory of Open Access Journals (Sweden)

    Mustikoweni Purnomohadi

    2012-02-01

    Full Text Available Sweet sorghum is a versatile crop that can be used as grain crop, sugar alcohol production and even as forage crop. The aim of this study was to evaluate the potential use of sweet sorghum either as grain crop or forage crop. The experiment used four varieties of sweet sorghum: Rio, Cawley, Keller and Wray, which were planted in polybag with six replication using Completely Randomized Design. The result of the research showed that Keller and Wray had longer vegetative growth, and good quality of chemical composition for forage than Rio and Cawley.

  2. Fermentation characteristics of different purpose sorghum silage

    Directory of Open Access Journals (Sweden)

    Arthur Behling Neto

    2017-08-01

    Full Text Available Sorghum stands out among other plants recommended for ensiling due to its forage composition, its resistance to drought, and its planting range. New cultivars of grain and sweet sorghum that can be used for silage production are available, but there is little information regarding their ensiling characteristics. The aim of this study was to evaluate the fermentation characteristics at the ensiling of different purpose sorghum cultivars, at two crop periods. The trial was carried out at the Plant Production Department of the Federal Institute of Education, Science and Technology of Rondônia, Colorado do Oeste campus, Rondônia, Brazil, and chemical analyses were performed at the Laboratory of Animal Nutrition, at the Federal University of Mato Grosso, Cuiabá campus, Mato Grosso, Brazil. The experimental design used was a randomized block, in split-plot design, with four replicates. The plot treatments consisted of six sorghum cultivars grown for different purposes (grain sorghum: BRS 308 and BRS 310; forage sorghum: BR 655 and BRS 610; sweet sorghum: BRS 506 and CMSXS 647. Split-plot treatments consisted of two cropping seasons (first crop and second crop. The grain sorghum cultivar BRS 310 was the only one that had suitable dry matter content for ensiling; however, it was also the only one that did not show ideal water soluble carbohydrate content for ensiling. Nevertheless, all treatments presented pH below than 4.2 and ammonia nitrogen lower than 12% of total N, which indicates that the fermentation inside the silo had proceeded well. For sweet sorghum cultivars, higher ethanol and butyric acid content were observed for the first crop than for the second crop. All evaluated sorghum cultivars can be used for silage production, but the use of sweet sorghum is recommended at the second crop.

  3. Overexpression of sweet sorghum cryptochrome 1a confers hypersensitivity to blue light, abscisic acid and salinity in Arabidopsis.

    Science.gov (United States)

    Zhou, Tingting; Meng, Lingyang; Ma, Yue; Liu, Qing; Zhang, Yunyun; Yang, Zhenming; Yang, Deguang; Bian, Mingdi

    2018-02-01

    This work provides the bioinformatics, expression pattern and functional analyses of cryptochrome 1a from sweet sorghum (SbCRY1a), together with an exploration of the signaling mechanism mediated by SbCRY1a. Sweet sorghum [Sorghum bicolor (L.) Moench] is considered to be an ideal candidate for biofuel production due to its high efficiency of photosynthesis and the ability to maintain yield under harsh environmental conditions. Blue light receptor cryptochromes regulate multiple aspects of plant growth and development. Here, we reported the function and signal mechanism of sweet sorghum cryptochrome 1a (SbCRY1a) to explore its potential for genetic improvement of sweet sorghum varieties. SbCRY1a transcripts experienced almost 24 h diurnal cycling; however, its protein abundance showed no oscillation. Overexpression of SbCRY1a in Arabidopsis rescued the phenotype of cry1 mutant in a blue light-specific manner and regulated HY5 accumulation under blue light. SbCRY1a protein was present in both nucleus and cytoplasm. The photoexcited SbCRY1a interacted directly with a putative RING E3 ubiquitin ligase constitutive photomorphogenesis 1 (COP1) from sweet sorghum (SbCOP1) instead of SbSPA1 to suppress SbCOP1-SbHY5 interaction responding to blue light. These observations indicate that the function and signaling mechanism of cryptochromes are basically conservative between monocotyledons and dicotyledons. Moreover, SbCRY1a-overexpressed transgenic Arabidopsis showed oversensitive to abscisic acid (ABA) and salinity. The ABA-responsive gene ABI5 was up-regulated evidently in SbCRY1a transgenic lines, suggesting that SbCRY1a might regulate ABA signaling through the HY5-ABI5 regulon.

  4. Statistical analysis of NaOH pretreatment effects on sweet sorghum bagasse characteristics

    Science.gov (United States)

    Putri, Ary Mauliva Hada; Wahyuni, Eka Tri; Sudiyani, Yanni

    2017-01-01

    We analyze the behavior of sweet sorghum bagasse characteristics before and after NaOH pretreatments by statistical analysis. These characteristics include the percentages of lignocellulosic materials and the degree of crystallinity. We use the chi-square method to get the values of fitted parameters, and then deploy student's t-test to check whether they are significantly different from zero at 99.73% confidence level (C.L.). We obtain, in the cases of hemicellulose and lignin, that their percentages after pretreatment decrease statistically. On the other hand, crystallinity does not possess similar behavior as the data proves that all fitted parameters in this case might be consistent with zero. Our statistical result is then cross examined with the observations from X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy, showing pretty good agreement. This result may indicate that the 10% NaOH pretreatment might not be sufficient in changing the crystallinity index of the sweet sorghum bagasse.

  5. Optimization of biohydrogen production from sweet sorghum syrup using statistical methods

    Energy Technology Data Exchange (ETDEWEB)

    Saraphirom, Piyawadee [Department of Biology, Faculty of Science and Technology, Rajabhat Maha Sarakham University, A.Muang, Maha Sarakham 44000 (Thailand); Department of Biotechnology, Faculty of Technology, Khon Kaen University, A. Muang, Khon Kaen 40002 (Thailand); Reungsang, Alissara [Department of Biotechnology, Faculty of Technology, Khon Kaen University, A. Muang, Khon Kaen 40002 (Thailand); Fermentation Research Center for Value Added of Agricultural Products, Faculty of Technology, Khon Kaen University, A. Muang, Khon Kaen 40002 (Thailand)

    2010-12-15

    This study employed statistically based experimental designs to optimize fermentation conditions for hydrogen production from sweet sorghum syrup by anaerobic mixed cultures. Initial screening of important factors influencing hydrogen production, i.e., total sugar, initial pH, nutrient solution, iron (II) sulphate (FeSO{sub 4}), peptone and sodium bicarbonate was conducted by the Plackett-Burman method. Results indicated that only FeSO{sub 4} had statistically significant (P {<=} 0.005) influences on specific hydrogen production (P{sub s}) while total sugar and initial pH had an interdependent effect on P{sub s}. Optimal conditions for the maximal P{sub s} were 25 g/L total sugar, 4.75 initial pH and 1.45 g/L FeSO{sub 4} in which P{sub s} of 6897 mL H{sub 2}/L was estimated. Estimated optimum conditions revealed only 0.04% difference from the actual P{sub s} of 6864 mL H{sub 2}/L which suggested that the optimal conditions obtained can be practically applied to produce hydrogen from sweet sorghum syrup with the least error. (author)

  6. Effect of grape pomace on fermentation quality and aerobic stability of sweet sorghum silage.

    Science.gov (United States)

    Li, Ping; Shen, Yixin; You, Minghong; Zhang, Yu; Yan, Jiajun; Li, Daxue; Bai, Shiqie

    2017-10-01

    The objective of this study was to evaluate the effect of grape pomace (GP) with different adding levels (0%, 5%, 10% and 15%, fresh matter basis), alone (GP-LAB) or in combine with an inoculant LAB (GP+LAB), on the fermentation quality and aerobic stability of sweet sorghum silage. After 90 days of ensiling in vacuumized mini-silos, silages were subject to a 7-day aerobic stability test, in which chemical, microbial and polyphenol composition were measured. In the GP-LAB group, adding GP decreased (P butyric acid in silage. In the GP+LAB group, adding GP increased (P butyric acid concentration in silage. Polyphenol level was reduced (P fermentation. During aerobic exposure, the fungi count, pH value and silage temperature increased (P fermentation products, microbial counts, chemical and polyphenol composition were considered, the use of 10% GP+LAB at ensiling could provide a valuable source for improved fermentation quality and aerobic stability of sweet sorghum silage. © 2017 Japanese Society of Animal Science.

  7. Influence of pH on fermentative hydrogen production from sweet sorghum extract

    Energy Technology Data Exchange (ETDEWEB)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis V.; Lyberatos, Gerasimos [Department of Chemical Engineering, University of Patras, 1 Karatheodori st., GR 26500 Patras (Greece); Institute of Chemical Engineering and High Temperature Chemical Processes, GR 26504 Patras (Greece)

    2010-03-15

    The present study focused on the influence of pH on the fermentative hydrogen production from the sugars of sweet sorghum extract, in a continuous stirred tank bioreactor. The reactor was operated at a Hydraulic Retention Time of 12 h and a pH range of 3.5-6.5. The maximum hydrogen production rate and yield were obtained at pH 5.3 and were 1752 {+-} 54 mL H{sub 2}/d or 3.50 {+-} 0.07 L H{sub 2}/L reactor/d and 0.93 {+-} 0.03 mol H{sub 2}/mol glucose consumed or 10.51 L H{sub 2}/kg sweet sorghum, respectively. The main metabolic product at this pH value was butyric acid. The hydrogen productivity and yield were still at high levels for the pH range of 5.3-4.7, suggesting a pH value of 4.7 as optimum for hydrogen production from an economical point of view, since the energy demand for chemicals is lower at this pH. At this pH range, the dominant fermentation product was butyric acid but when the pH culture sharply decreased to 3.5, hydrogen evolution ceased and the dominant metabolic products were lactic acid and ethanol. (author)

  8. Optimization pretreatment condition of sweet sorghum bagasse for production of second generation bioethanol

    Science.gov (United States)

    Sudiyani, Yanni; Waluyo, Joko; Triwahyuni, Eka; Burhani, Dian; Muryanto, Primandaru, Prasetyo; Riandy, Andika Putra; Sumardi, Novia

    2017-01-01

    The bagasse residue of Sweet sorghum (Sorghum bicolor (L.) Moench) consist of cellulose 39.48%; hemicellulose 16.56% and lignin 24.77% that can be converted to ethanol. Pretreatment is of great importance to ethanol yield. In this study, pretreatment process was conducted in a 5-liter reactor using NaOH 10% at various temperature 110, 130, 150°C and reaction time 10, 20, 30 minutes and optimizing severity parameter (log R0 between 1.3 - 2.9). The statistical analysis using two way anova showed that third variations of temperature give different effects significant on lignin, hemicellulose and cellulose content at 95% the confidence level. The optimum pretreatment of bagasse sorghum were obtained with Log R0 value between 2.4-2.9. High severity value in pretreatment condition reduce lignin almost 84-86%, maximum reducing lignin content was 86% obtained at temperature 150°C for 20 minutes reaction time and cellulose increased almost two times the initial content.

  9. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills.

    Science.gov (United States)

    Kim, Misook; Day, Donal F

    2011-07-01

    A challenge facing the biofuel industry is to develop an economically viable and sustainable biorefinery. The existing potential biorefineries in Louisiana, raw sugar mills, operate only 3 months of the year. For year-round operation, they must adopt other feedstocks, besides sugar cane, as supplemental feedstocks. Energy cane and sweet sorghum have different harvest times, but can be processed for bio-ethanol using the same equipment. Juice of energy cane contains 9.8% fermentable sugars and that of sweet sorghum, 11.8%. Chemical composition of sugar cane bagasse was determined to be 42% cellulose, 25% hemicellulose, and 20% lignin, and that of energy cane was 43% cellulose, 24% hemicellulose, and 22% lignin. Sweet sorghum was 45% cellulose, 27% hemicellulose, and 21% lignin. Theoretical ethanol yields would be 3,609 kg per ha from sugar cane, 12,938 kg per ha from energy cane, and 5,804 kg per ha from sweet sorghum.

  10. Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils.

    Science.gov (United States)

    Jia, Weitao; Lv, Sulian; Feng, Juanjuan; Li, Jihong; Li, Yinxin; Li, Shizhong

    2016-09-01

    Cadmium (Cd) contamination is a worldwide environmental problem, and remediation of Cd pollution is of great significance for food production as well as human health. Here, the responses of sweet sorghum cv. 'M-81E' to cadmium stress were studied for its potential as an energy plant in restoring soils contaminated by cadmium. In hydroponic experiments, the biomass of 'M-81E' showed no obvious change under 10 μM cadmium treatment. Cadmium concentration was the highest in roots of seedlings as well as mature plants, but in agricultural practice, the valuable and harvested parts of sweet sorghum are shoots, so promoting the translocation of cadmium to shoots is of great importance in order to improve its phytoremediation capacity. Further histochemical assays with dithizone staining revealed that cadmium was mainly concentrated in the stele of roots and scattered in intercellular space of caulicles. Moreover, the correlation analysis showed that Cd had a negative relationship with iron (Fe), zinc (Zn), and manganese (Mn) in caulicles and leaves and a positive relationship with Fe in roots. These results implied that cadmium might compete with Fe, Zn, and Mn for the transport binding sites and further prevent their translocation to shoots. In addition, transmission electron microscopic observations showed that under 100 μM cadmium treatment, the structure of chloroplast was impaired and the cell wall of vascular bundle cells in leaves and xylem and phloem cells in roots turned thicker compared to control. In summary, morphophysiological characteristic analysis demonstrated sweet sorghum can absorb cadmium and the growth is not negatively affected by mild level cadmium stress; thus, it is a promising material for the phytoremediation of cadmium-contaminated soils considering its economic benefit. This study also points out potential strategies to improve the phytoremediation capacity of sweet sorghum through genetic modification of transporters and cell wall

  11. Peculiarities in covering the requirements for seed material of sorghum crops

    Directory of Open Access Journals (Sweden)

    С. І. Мельник

    2017-12-01

    Full Text Available Purpose. To assess the demand for sorghum seed material and sufficiency of domestic seeds. Results. The analysis of the State register for the period of 2002–2012 showed that there was the tendency not only towards increasing quantity of sorghum crops in general but their substitution by hybrids of foreign breeding. During the period from 2002 to 2017, 72 sorghum varieties were entered on the State register in total, among them only 12 varieties were of domestic breeding, the rest 60 was presented by foreign breeding institutions. Investigation results allowed to determine that the production of base and prebase seeds of sorghum in 2010 amounted to 1,3 t, in 2016 was 43 t. During the same period the production of sugar sorghum increased from 0,2 to 12,0 t, grass sorghum – from 4,0 to 83 t. In 2017, requirements of acreage of such crops as grass sorghum and broomcorn were completely satisfied by the amount of grown seeds. At the same time, the need for seeds of sorghum and sugar sorghum can not be covered completely at the expense of domestic varieties reproduction. In 2017, general demand for sorghum seeds was 400,5 t, among which only 42,0 t was of domestic production. The rest demand for seeds will be met at the expense of import of foreign breeding seeds into the country to be grown and prepared for sowing abroad. Conclusions. In the Register of plant varieties suitable for dissemination in Ukraine, there are 72 sorghum varieties among them only 12 varieties were of domestic breeding, that is 17%, as compared to 83% of recommended great sorghum varieties of foreign breeding. In Ukraine, the area occupied by sorghum cultivation was 22,8 thou ha in 2005, up to 2017 it increased to 89,0 thou ha, and accordingly the demand for seeds run up from 102,6 to 400,5 t. The area occupied by the sugar sorghum in 2005 amounted to only 2,6 thou ha, in 2017 – 20,0 thou ha, that accordingly determined increase of demand for seed material from 13,0 to 99

  12. Experimental Study on Calcium Hydroxide-Assisted Delignification of Hydrothermally Treated Sweet Sorghum Bagasse

    Directory of Open Access Journals (Sweden)

    Jiby Kudakasseril Kurian

    2014-01-01

    Full Text Available The hydrothermally treated sweet sorghum bagasse (SSB powder was treated using Ca(OH2 to extract the lignin from it. Changes in chemical composition of SSB and the formation of sugars and hydrolytic products were studied. The optimum conditions of 10% (g/g substrate Ca(OH2 and 106.3 min of isothermal treatment residence time at 394 K resulted in 69.67 ± 1.26% of the lignin extracted from the hydrothermally treated SSB powder, producing a solid residue containing 68.29 ± 0.31% residual cellulose and 13.26 ± 0.32% residual lignin in it. The Ca(OH2 concentration and isothermal treatment residence time were significant in the responses observed. Treatment using Ca(OH2 is one of the potential processes for the on-farm processing of lignocellulosic materials.

  13. Sorghum - An alternative energy crop for marginal lands and reclamation sites

    Science.gov (United States)

    Lukas, Stefan; Theiß, Markus; Jäkel, Kerstin

    2017-04-01

    The production of biogas and the associated cultivation of energy crops are still of great importance. Considering increasing restrictions for the cultivation of standard biogas crop maize regarding an environmentally friendly production of biomass, a wider range of energy crops is needed. The cultivation of sorghum can contribute to this. As maize, sorghum is a C4-plant and offers a high biomass yield potential. Originated in the semi-arid tropics, sorghum is well adapted to warm and dry climate and particularly noted for its drought tolerance compared to maize. It also makes few demands on soil quality and shows a good capability of nutrient acquisition. Therefore, particularly on marginal areas and reclamation sites with low soil nutrient and water content sorghum can contribute to secure crop yield and income of farmers. The applied research project aims at and reflects on the establishment of sorghum as a profitable and ecological friendly cropping alternative to maize, especially in the face of probable climate change with increasing risks for agriculture. For this purpose, site differentiated growing and cultivar trials with a standardized planting design as well as several practical on-farm field experiments were conducted. The agronomical and economic results will lead to scientifically based procedures and standards for agricultural practice with respect to cultivation methods (drilling, pest-management, fertilization), cropping sequence and technique, cropping period or position in crop rotation. Even by now there is a promising feedback from the agricultural practice linked with an increasing demand for information. Moreover, the specific cropping area is increasing continuously. Therefore, the leading signs for the establishment of sorghum as profitable alternative to maize biogas production are positive. Sorghum cultures perform best as main crops in the warm D locations in the middle and East German dry areas. Here, the contribution margin

  14. Profitability of sorghum-legume cropping practices among ...

    African Journals Online (AJOL)

    Mo

    kilogram. Besides that, groundnut and sorghum-legume intercrops incurred the highest variable costs which could have negatively affected their gross margins. Corresponding gross margins from the different enterprises were generated as shown in table 2. Analysis of variance on the Gross margin of sorghum-cowpea ...

  15. Effects of Extrusion Pretreatment Parameters on Sweet Sorghum Bagasse Enzymatic Hydrolysis and Its Subsequent Conversion into Bioethanol

    Science.gov (United States)

    Heredia-Olea, Erick; Pérez-Carrillo, Esther; Serna-Saldívar, Sergio O.

    2015-01-01

    Second-generation bioethanol production from sweet sorghum bagasse first extruded at different conditions and then treated with cell wall degrading enzymes and fermented with I. orientalis was determined. The twin extruder parameters tested were barrel temperature, screws speed, and feedstock moisture content using surface response methodology. The best extrusion conditions were 100°C, 200 rpm, and 30% conditioning moisture content. This nonchemical and continuous pretreatment did not generate inhibitory compounds. The extruded feedstocks were saccharified varying the biocatalysis time and solids loading. The best conditions were 20% solids loading and 72 h of enzymatic treatment. These particular conditions converted 70% of the total fibrous carbohydrates into total fermentable C5 and C6 sugars. The extruded enzymatically hydrolyzed sweet sorghum bagasse was fermented with the strain I. orientalis at 12% solids obtaining a yield of 198.1 mL of ethanol per kilogram of bagasse (dw). PMID:25866776

  16. Effects of Extrusion Pretreatment Parameters on Sweet Sorghum Bagasse Enzymatic Hydrolysis and Its Subsequent Conversion into Bioethanol

    Directory of Open Access Journals (Sweden)

    Erick Heredia-Olea

    2015-01-01

    Full Text Available Second-generation bioethanol production from sweet sorghum bagasse first extruded at different conditions and then treated with cell wall degrading enzymes and fermented with I. orientalis was determined. The twin extruder parameters tested were barrel temperature, screws speed, and feedstock moisture content using surface response methodology. The best extrusion conditions were 100°C, 200 rpm, and 30% conditioning moisture content. This nonchemical and continuous pretreatment did not generate inhibitory compounds. The extruded feedstocks were saccharified varying the biocatalysis time and solids loading. The best conditions were 20% solids loading and 72 h of enzymatic treatment. These particular conditions converted 70% of the total fibrous carbohydrates into total fermentable C5 and C6 sugars. The extruded enzymatically hydrolyzed sweet sorghum bagasse was fermented with the strain I. orientalis at 12% solids obtaining a yield of 198.1 mL of ethanol per kilogram of bagasse (dw.

  17. Effect of Increase in Plant Density on Stem Yield and Sucrose Content in Two Sweet Sorghum Cultivars

    Directory of Open Access Journals (Sweden)

    A Soleymani

    2011-01-01

    Full Text Available Abstract In order to evaluate the effect of increase plant density on stalk yield and sucrose content in two sweet sorghum cultivars, an experiment was conducted at Research Farm of Isfahan University located at Zaghmar village. A split plot layout within a randomized complete block design with tree replication was used. Main plots were plant densities (100, 200, 300, 400, 500 and 600 thousand plant/ha and subplots were cultivars (Rio and Keller. The effect of plant density at hard dough harvest stage on plant height, stem diameter, number of tillers, stem fresh weight and juice yield were significant but had no significant effect on brix, sucrose percentage and purity. The highest juice yield and purity were produced by 400 thousand plants/ha. Keller was significantly superior for plant height, stem diameter, stem fresh weight, juice yield and brix at hard dough harvest stage as compared to Rio. Number of tiller per plant of Rio was significantly more than Keller. There were no significant difference between two cultivars for sucrose percentage and purity but sucrose percentage in Keller had highest as compared to Rio. Maximum stem fresh weight, juice yield, sucrose percentage and purity were obtained at hard dough harvest stag. On the basis of the results obtained, 400 thousand plant/ha plant density, Keller cultivar and hard dough harvest stage might be suitable for sweet sorghum production under the condition similar to the present study. Keywords: Sweet sorghum, Stem yield, Sucrose percentage, Harvesting stages

  18. Changes in the sugar content of sweet sorghum stems under natural conditions during winter in saline soil of the Yellow River Delta

    Science.gov (United States)

    Li, Ying; Yuan, Fang; Wang, Baoshan

    2018-02-01

    In order to investigate the maximum storage period during their natural growth state, the sweet sorghum (Sorghum bicolor L. Moench) stems of four cultivars were analyzed to determine changes in contents of water, total sugars, main soluble sugars and the enzyme activity. From early November 2016 to late January 2017, the decrease in the total sugar content and the contents of sucrose, glucose and fructose slowed down, and the enzyme activities (sucrose synthase and sucrose phosphate synthase) involving sucrose metabolism in the stem remained stable. However, these indicators decreased significantly after the end of January 2017. Low temperatures and a dry environment were conducive to the storage of the sweet sorghum stems. During the winter (from early November 2016 to late January 2017) in northern China, the sweet sorghum plants can be stored naturally in the field via regulating sowing dates, which saves a lot of storage space and production costs for bioethanol company.

  19. Nutritional value of sorghum silage of different purposes

    Directory of Open Access Journals (Sweden)

    Arthur Behling Neto

    Full Text Available ABSTRACT Sorghum is a crop that stands out as an alternative to corn due to lower soil fertility demand and increased tolerance to drought. Lack of information about the qualitative behaviour of sorghum hinders the recommendation of different purpose sorghum cultivars. The goal was to evaluate the chemical composition and in vitro digestibility of different purpose sorghum cultivar silages, at two cropping seasons. The trial was conducted at the Plant Production Department, Federal Institute of Education, Science and Technology of Rondônia, Colorado do Oeste campus, and chemical analyses and in vitro incubation were performed at the Laboratory of Animal Nutrition, Federal University of Mato Grosso, Cuiabá campus. The experimental design was a randomized block with a split-plot arrangement and four replications. Plot treatments consisted of six different purpose sorghum cultivars (BRS 308 and BRS 310, grain sorghum; BR 655 and BRS 610, forage sorghum; and BRS 506 and CMSXS 647, sweet sorghum. Split-plot treatments consisted of two cropping periods (first crop and second crop. Forage sorghum cultivar BRS 655 demonstrated higher non-fiber carbohydrate content and lower potentially digestible fibre content than the other cultivars did. Sweet sorghum cultivars had higher levels of water soluble carbohydrates and non-protein nitrogen based on protein, lower indigestible neutral detergent fibre content at second crop, and higher in vitro dry matter digestibility than the other cultivars. The silages of sweet sorghum cultivars BRS 506 and CMSXS 647, and forage sorghum cultivar BRS 655 presented higher nutritional values.

  20. Effects of applying oil-extracted microalgae on the fermentation quality, feed-nutritive value and aerobic stability of ensiled sweet sorghum.

    Science.gov (United States)

    Chen, Lei; Yuan, Xianjun; Li, Junfeng; Dong, Zhihao; Shao, Tao

    2018-02-19

    A laboratory-silo study was conducted to evaluate the fermentation quality, feed-nutritive value and aerobic stability of sweet sorghum silage with or without oil-extracted microalgae supplementation. Sweet sorghum was mixed with four microalgae levels (0%, 1%, 2% and 3% on a dry matter basis; Control, M1, M2 and M3, respectively) and ensiled for 45 d. Further, the four experimental silages were subjected to an aerobic stability test lasting 7 d. All the silages except M3 silage had good fermentative characteristics with low pH and ammonia nitrogen concentrations, and high lactic acid concentrations and favorable microbial parameters. Meanwhile, oil-extracted microalgae supplementation improved the feed-nutritional value of sweet sorghum silage. Fibre (neutral detergent fibre, acid detergent fibre, acid detergent lignin and cellulose) and acid detergent insoluble protein concentrations decreased (P sweet sorghum silage by 43.8 and more than 143%, respectively, and decreased the clostridia spore counts during the stage of air exposure. Sweet sorghum silage produced with 2% oil-extracted microalgae addition was the most suitable for animal use due to the optimal balance of fermentation quality, feed-nutritional value and aerobic stability, which is merit further in vivo studies using grazing ruminants. This article is protected by copyright. All rights reserved.

  1. Evaluating shade effects on crop productivity in sorghum-legume intercropping systems using support vector machines

    Science.gov (United States)

    Sorghum-legume intercropping has the potential to improve forage productivity, resource use efficiency, and forage quality under irrigation in the Southern High Plains of the United States. Crop production is conversion of solar radiation into biomass and solar radiation is wasted early in the seaso...

  2. Effect on stone lines on soil chemical characteristics under continuous sorghum cropping in semiarid Burkina Faso

    NARCIS (Netherlands)

    Zougmore, R.; Gnankambary, Z.; Guillobez, L.S.; Stroosnijder, L.

    2002-01-01

    In the semiarid Sahel, farmers commonly lay stone lines in fields to disperse runoff. This study was conducted in northern Burkina Faso to assess the chemical fertility of soil under a permanent, non-fertilised sorghum crop, which is the main production system in this area, 5 years after laying

  3. Potential of producing and harvesting sugarcane and sweet sorghum as a renewable biomass energy resource. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, B.J.; Ricaud, R.

    1979-07-31

    Manufacturers of land clearing equipment, land leveling, ditching machinery, mold board plows, and lister plows are listed. A combined list of manufacturers of sugar cane tillage equipment is presented. Lists of manufacturers are included for the following types of equipment: planting, irrigation, spraying equipment, aerial application spraying and dusting equipment, power units, harvesting, loaders, and transport units. Methods of mechanical harvesting sugarcane and sweet sorghum grown from improved planting and production treatments are evaluated. Commercial mechanical systems available for harvesting maximum sugarcane biomass in the sugar production areas of the United States. (MHR)

  4. Review of Sorghum Production Practices: Applications for Bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Downing, Mark [ORNL

    2010-06-01

    Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

  5. Cellulosic butanol biofuel production from sweet sorghum bagasse (SSB): Impact of hot water pretreatment and solid loadings on fermentation employing Clostridium beijerinckii P260

    Science.gov (United States)

    A novel butanol fermentation process was developed in which sweet sorghum bagasse (SSB) was pretreated using liquid hot water (LHW) pretreatment technique followed by enzymatic hydrolysis and butanol (acetone butanol ethanol; ABE) fermentation. A pretreatment temperature of 200 deg C resulted in the...

  6. Butanol production from sweet sorghum bagasse (SSB) with high solids content: part I – comparison of liquid hot water pretreatment with dilute sulfuric acid

    Science.gov (United States)

    In these studies we pretreated sweet sorghum bagasse (SSB) using liquid hot water (LHW) or dilute H2SO4 (2 g·L-1) at 190 deg C for zero min (as soon as temperature reached 190 deg C, cooling was started) to reduce generation of sugar degradation fermentation inhibiting products such as furfural and ...

  7. Adaptability and Stability Study of Selected Sweet Sorghum Genotypes for Ethanol Production under Different Environments Using AMMI Analysis and GGE Biplots

    Directory of Open Access Journals (Sweden)

    Justice Kipkorir Rono

    2016-01-01

    Full Text Available The genotype and environment interaction influences the selection criteria of sorghum (Sorghum bicolor genotypes. Eight sweet sorghum genotypes were evaluated at five different locations in two growing seasons of 2014. The aim was to determine the interaction between genotype and environment on cane, juice, and ethanol yield and to identify best genotypes for bioethanol production in Kenya. The experiments were conducted in a randomized complete block design replicated three times. Sorghum canes were harvested at hard dough stage of grain development and passed through rollers to obtain juice that was then fermented to obtain ethanol. Cane, juice, and ethanol yield was analyzed using the additive main effect and multiplication interaction model (AMMI and genotype plus genotype by environment (GGE biplot. The combined analysis of variance of cane and juice yield of sorghum genotypes showed that sweet sorghum genotypes were significantly (P<0.05 affected by environments (E, genotypes (G and genotype by environment interaction (GEI. GGE biplot showed high yielding genotypes EUSS10, ACFC003/12, SS14, and EUSS11 for cane yield; EUSS10, EUSS11, and SS14 for juice yield; and EUSS10, SS04, SS14, and ACFC003/12 for ethanol yield. Genotype SS14 showed high general adaptability for cane, juice, and ethanol yield.

  8. Effect of Nitrogen Rate on Quantitative and Qualitative Forage Yield of Maize, Pearl Millet and Sorghum in Double Cropping System

    Directory of Open Access Journals (Sweden)

    sh Khalesro

    2012-02-01

    Full Text Available Abstract In order to compare three summer forage grasses including sorghum (Sorghum bicolor cv. Speedfeed, corn (Zea mayz S.C. 704 and pearl millet (Pennisetum americanum cv. Nutrifeed for green chop forage production in double cropping system, a field experiment was conducted at research field of Tarbiat Modares University on 2006 growing season. Treatments were arranged in a split- plot design based on randomized complete blocks with four replications. In this research three forage crops as main factor and nitrogen rates (100, 200 and 300 kg N. ha-1 from the urea source as the sub- plot were studied. Results showed the positive response of crops to nitrogen increment, in such a manner that millet with 300 kg N ha-1 produced 85.8 t ha-1 fresh forage (%20.3 more than sorghum and %30.9 more than corn. Regarding to the sustainable agriculture objects, millet and sorghum with 200 kg N ha-1could be suggested. Forage yield advantages of millet and sorghum to corn was %10 and %12 respectively. They produce 72.4 and 73.5 t ha-1 fresh forage under this treatment. Finally regarding to general advantages of sorghum and millet to corn, especially in unsuitable condition like as drought and poor soil fertility, it seems that changing the corn with sorghum or pearl millet could be an appropriate option. Also decision making for recommending one of sorghum and millet need to more information like qualitative attributes in details and determining animal feeding indices (voluntary intake using in vivo methods. Keywords: Sorghum, Pearl millet, Corn, Nitrogen, Forage, Organic matter, Crud protein

  9. Evaluation of yield and forage quality in main and ratoon crops of different sorghum lines

    Directory of Open Access Journals (Sweden)

    K.S. Vinutha

    2017-01-01

    Full Text Available Improving the yield and quality of sorghum (Sorghum bicolor forage for livestock feeding is a major breeding objective, because of sorghum’s inherently high biomass accumulation, high productivity per unit water utilized and its ability to produce a ratoon crop after harvesting of the plant crop. Newly bred sorghum lines, including 36 lines falling in 5 different categories, i.e. 12 experimental dual-purpose lines, 6 germplasm accessions from the ICRISAT collection, 11 commercial varieties and hybrids, 6 forage varieties and 1 bmr mutant line, were evaluated in terms of fodder yield, quality and ratooning ability. The main crop produced more dry biomass (P<0.05 at 80 days after planting (mean 22.87 t DM/ha; range 17.32‒33.82 t DM/ha than the ratoon crop (mean 8.47 t DM/ha; range 3.2‒17.42 t DM/ha after a further 80 days of growth. Mean nitrogen concentration in forage did not differ greatly between main and ratoon crops (2.56 vs. 2.40%, respectively but there was wide variation between lines (2.06‒2.89%. The line N 610 recorded highest N percentage of 2.89%, followed by SSG 59 3 (2.86% and SX 17 (2.81%. Highest acid detergent fiber % was recorded by ICSV 12008 (42.1%, closely followed by CO 31 and IS 34638 (40.0%. The least acid detergent lignin % was observed in MLSH-296 Gold (3.59%, ICSV 700 (3.75% and ICSSH 28 (3.83%. Metabolizable energy concentration was highest in N 610, Phule Yashodha and SX 17 (mean 8.34 MJ/kg DM, while in vitro organic matter digestibility ranged from 52.5 to 62.6%. The main crop contained much higher mean concentrations of the cyanogenic glycoside, dhurrin, than the ratoon (639 vs. 233 ppm, respectively with ranges of 38 to 2,298 ppm and 7 to 767 ppm, respectively. There was no significant correlation between dhurrin concentration and dry biomass yield so breeding and selection for low dhurrin concentrations should not jeopardize yields. Hence, breeding for sorghum can target simultaneously both quality and

  10. Direct fermentation of sweet sorghum juice by Clostridium acetobutylicum and Clostridium tetanomorphum to produce bio-butanol and organic acids

    Directory of Open Access Journals (Sweden)

    B. Ndaba

    2015-06-01

    Full Text Available Single- and co-culture clostridial fermentation was conducted to obtain organic alcohols and acids from sweet sorghum juice as a low cost feedstock. Different inoculum concentrations of single cultures (3, 5, 10 v/v % as well as different ratios of C. acetobutylicum to C. tetanomorphum (3:10, 10:3, 6.5:6.5, 3:3, and 10:10 v/v %, respectively were utilized for the fermentation. The maximum butanol concentration of 6.49 g/L was obtained after 96 h fermentation with 10 % v/v C. acetobutylicum as a single culture. The fermentation with 10% v/v C. tetanomorphum resulted in more than 5 g/l butyric acid production. Major organic acid concentration (lactic acid of 2.7 g/L was produced when an inoculum ratio of 6.5: 6.5 %v/v C. acetobutylicum to C. tetanomorphum was used.

  11. Life cycle assessment of fuel ethanol produced from soluble sugar in sweet sorghum stalks in North China

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ning; Yang, Yang; Cai, Hao; Liu, Jingru; Ren, Lantian; Yang, Jianxin; Xie, Guang Hui

    2017-09-01

    This paper describes the results of a life cycle assessment of sweet sorghum stalk (SSS)-based ethanol in North China. We determined the environmental performance of SSS-based ethanol and examined its advantages and disadvantages, as compared to gasoline, focusing on the life cycle of feedstock production, transportation, ethanol production and distribution, and use. The GREET transportation model and the method developed by the Centre of Environmental Sciences at Leiden University (CML method) were used to compile a life cycle inventory and to assess environmental impacts. Results indicate that SSS-based ethanol has advantages in terms of energy consumption, with a well to wheel decrease of 85% fossil energy and 44% global warming potential, as compared with gasoline. Abiotic depletion potential, acidification potential, and photochemical ozone creation potential were also 50–90% lower than in the case of gasoline, while human health toxic potential was 36% lower. However, SSS-based sorghum did not have advantages over gasoline in terms of life cycle cost, land use, and water consumption. Results indicate that such an evaluation cannot just consider a few types of environmental impacts, researchers should promote systematic and comprehensive life cycle assessment of ethanol to guide the development of an energy strategy for China.

  12. ADM1-based modeling of methane production from acidified sweet sorghum extractin a two stage process

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    The present study focused on the application of the Anaerobic Digestion Model 1 οn the methane production from acidified sorghum extract generated from a hydrogen producing bioreactor in a two-stage anaerobic process. The kinetic parameters for hydrogen and volatile fatty acids consumption were e...

  13. 7 CFR 457.112 - Hybrid sorghum seed crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... total compensation specified in the hybrid sorghum seed processor contract. If your hybrid sorghum seed... Testing Seeds” of the Association of Official Seed Analysts. Commercial hybrid sorghum seed. The offspring...

  14. Fermentation of sweet sorghum derived sugars to butyric acid at high titer and productivity by a moderate thermophile Clostridium thermobutyricum at 50°C.

    Science.gov (United States)

    Wang, Liang; Ou, Mark S; Nieves, Ismael; Erickson, John E; Vermerris, Wilfred; Ingram, L O; Shanmugam, K T

    2015-12-01

    In this study, a moderate thermophile Clostridium thermobutyricum is shown to ferment the sugars in sweet sorghum juice treated with invertase and supplemented with tryptone (10 g L(-1)) and yeast extract (10 g L(-1)) at 50°C to 44 g L(-1) butyrate at a calculated highest volumetric productivity of 1.45 g L(-1)h(-1) (molar butyrate yield of 0.85 based on sugars fermented). This volumetric productivity is among the highest reported for batch fermentations. Sugars from acid and enzyme-treated sweet sorghum bagasse were also fermented to butyrate by this organism with a molar yield of 0.81 (based on the amount of cellulose and hemicellulose). By combining the results from juice and bagasse, the calculated yield of butyric acid is approximately 90 kg per tonne of fresh sweet sorghum stalk. This study demonstrates that C. thermobutyricum can be an effective microbial biocatalyst for production of bio-based butyrate from renewable feedstocks at 50°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum.

    Science.gov (United States)

    Das, Lalitendu; Liu, Enshi; Saeed, Areej; Williams, David W; Hu, Hongqiang; Li, Chenlin; Ray, Allison E; Shi, Jian

    2017-11-01

    This study takes combined field trial, lab experiment, and economic analysis approaches to evaluate the potential of industrial hemp in comparison with kenaf, switchgrass and biomass sorghum. Agronomy data suggest that the per hectare yield (5437kg) of industrial hemp stem alone was at a similar level with switchgrass and sorghum; while the hemp plants require reduced inputs. Field trial also showed that ∼1230kg/ha hemp grain can be harvested in addition to stems. Results show a predicted ethanol yield of ∼82gallons/dry ton hemp stems, which is comparable to the other three tested feedstocks. A comparative cost analysis indicates that industrial hemp could generate higher per hectare gross profit than the other crops if both hemp grains and biofuels from hemp stem were counted. These combined evaluation results demonstrate that industrial hemp has great potential to become a promising regional commodity crop for producing both biofuels and value-added products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of feeding processed sweet sorghum (Sorghum bicolour (L moench crushed residue based complete ration on growth performance and feeding behavior of murrah buffalo calves

    Directory of Open Access Journals (Sweden)

    Y. Ramana Reddy

    2013-06-01

    Full Text Available Aim: The objective of the present study is to know the effect of feeding processed sweet sorghum (Sorghum bicolour (L moench crushed residue (SSCR based complete ration on growth, feeding behavior and cost of gain in Murrah buffalo calves in order to compare the feeding value of SSCR with sorghum straw (SS and also find out the efficient way of utilization of SSCR in the diets of growing buffalo calves. Materials and Methods: Experimental complete rations were formulated with SSCR and concentrate in 50:50 ratio and processed in to SSCR chopped and concentrate (SSCRC, mash (SSCRM and expander extruder pellets (SSCRP. The control ration was SS based complete feed processed in to mash (SSM. 24 Murrah buffalo calves (Average 137 kg body weight and aged 1 year 2 months were randomly distributed into 4 experimental groups of 6 animals each in a completely randomized design and the experimental rations were offered to 4 groups randomly for a period of 150 days. A 7 day digestion trial was conducted at the end of 150 day growth trial to find out the nutrient digestibility of experimental rations. Eating and ruminating activities were noted every 5 minutes, and each activity was assumed to persist for the entire 5 minutes. Sorting behavior in the calves was observed physically at the time of feeding. The cost of the rations was calculated on the basis of processing cost and the prevailing market prices of the feed ingredients. Results: The DM intake (g/d, digestibilities of DM, organic matter, crude protein and nitrogen free extract and nitrogen (N balance were higher (P<0.05 in buffalo calves fed SSCRP ration but, comparable among SSCRC, SSCRM and SSM rations. Higher (P<0.01 average daily gain (g, lower feed conversion ratio (FCR was observed in calves fed SSCRP ration, while comparable among SSCRC, SSCRM and SSM rations. Eating, rumination and total chewing time (minutes/d,minutes/kg DMI and minutes/kg NDFI and number of chews for eating, rumination

  17. The Uptake of 134Cs From Soil To Sweet Potatoes Crops (Ipomoea batatas)

    International Nuclear Information System (INIS)

    Octolia Togibasa T; Idam Arif; Putu Sukmabuana, Poppy Intan Tjahaja

    2009-01-01

    This research studied the uptake of radiocesium from soil to crops. Study on food crops required to know the dose that can be received by human if there is a reactor accident or as a result of the global fall out in the area of tropical climate. Sweet potato crops cultivated on soil was contaminated with 134 Cs with the concentration of 167.62 Bq/gr. Sweet potatoes also cultivated on soil non contaminated as a control. Observation was carried out every 7 days for the contaminated media and 14 days for the control media, by sampling 3 plants and soil. The plants and soil samples were dried in with a temperature of 100 o C for 3 hours in the oven, and then counted using gamma spectrometer. The results indicated that sweet potato crops have significant ability to uptake 134 Cs from soil. The maximum plant uptake took place at the beginning of the cultivation with T F value of 1.26 and distributed to the entire plant.The tuber was formed at the sixth week, with T F value of 13.16. The highest concentration located at the root and tuber, it is important to note because the tuber is the main part of sweet potatoes crops which consumed by human. (author)

  18. Utilization of Organic Fertilizer on Sweet Corn (Zea mays saccharata Sturt Crop at Shallow Swamp Land

    Directory of Open Access Journals (Sweden)

    Midranisiah

    2017-01-01

    Full Text Available Shallow lowland swamp area has significant potential for cultivation of sweet corn crop. This lowland swamp has rich natural resources such as organic fertilizers from chicken dunk, cow dunk, oil palm fresh bunches and legume cover crops (LCC that are not maximally utilized yet by farmers. These organic fertilizers can be utilized to increase the growth and production of sweet corn crop. The research objective was to determine organic fertilizer types that capable to increase the growth and production of sweet corn crop at shallow lowland swamp area. This research had been conducted from January to April 2015 in Pulau Semambu Village, North Indralaya Subdistrict, Ogan Ilir District, South Sumatra Province. The design used in this research was non-factorial Randomized Block Design (RBD with four treatments of organic fertilizer types with six replications for each treatment. The treatments were consisted of organic fertilizers from chicken dunk, cow dunk, oil palm fresh bunches and legume cover crops (LCC. The results showed that treatment of organic fertilizers from chicken dunk could increase the growth and production of sweet corn at shallow lowland swamp area with yield level of 4.37 kg.plot −1.

  19. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments.

    Science.gov (United States)

    Truong, Sandra K; McCormick, Ryan F; Mullet, John E

    2017-01-01

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development

  20. Solanum americanum: reservoir for Potato virus Y and Cucumber mosaic virus in sweet pepper crops

    Directory of Open Access Journals (Sweden)

    Monika Fecury Moura

    2014-03-01

    Full Text Available Weeds can act as important reservoirs for viruses. Solanum americanum (Black nightshade is a common weed in Brazil and samples showing mosaic were collected from sweet pepper crops to verify the presence of viruses. One sample showed mixed infection between Cucumber mosaic virus (CMV and Potato virus Y (PVY and one sample showed simple infection by PVY. Both virus species were transmitted by plant extract and caused mosaic in tomato (Solanum lycopersicum cv. Santa Clara, sweet pepper (Capsicum annuum cv. Magda, Nicotiana benthamiana and N. tabaccum TNN, and local lesions on Chenopodium quinoa, C. murale and C. amaranticolor. The coat protein sequences for CMV and PVY found in S. americanum are phylogenetically more related to isolates from tomato. We conclude that S. americanum can act as a reservoir for different viruses during and between sweet pepper crop seasons.

  1. Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: Hydrolysis kinetic, purification and molecular docking study.

    Science.gov (United States)

    Wu, Qiongying; Du, Jinjuan; Jia, Junqiang; Kuang, Cong

    2016-05-15

    In this study, sweet sorghum grain protein (SSGP) was hydrolyzed using alcalase yielding ACE inhibitory peptides. A kinetic model was proposed to describe the enzymolysis process of SSGP. The kinetic parameters, a and b, were determined according to experimental data. It was found that the model was reliable to describe the kinetic behaviour for SSGP hydrolysis by alcalase. After hydrolysis, the SSGP hydrolysate with DH of 19% exhibited the strongest ACE inhibitory activity and the hydrolysate was then used to isolate ACE inhibitory peptides. A novel ACE inhibitory peptide was successfully purified from this hydrolysate by ultrafiltration, ion exchange chromatography, gel filtration chromatography, and reversed-phased high performance liquid chromatography (RP-HPLC). The amino acid sequence of the purified peptide was identified as Thr-Leu-Ser (IC50=102.1 μM). The molecular docking studies revealed that the ACE inhibition of the tripeptide was mainly attributed to its C-terminal Ser, which can effectively interact with the S1 and S2 pockets of ACE. Our studies suggest that the tripeptide from the SSGP hydrolysate can be utilized to develop functional food ingredients or pharmaceuticals for prevention of hypertension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Isolation and molecular identification of lactic acid bacteria from King grass and their application to improve the fermentation quality of sweet Sorghum.

    Science.gov (United States)

    Shah, Assar Ali; Xianjun, Yuan; Zhihao, Dong; Junfeng, Li; Shao, Tao

    2017-12-04

    The aim of the present study was isolation and molecular identification of lactic acid bacteria from King grass and their application to improve the fermentation quality of sweet Sorghum. Seventy-six strains of LAB were isolated; five strains were selected for Physiological and morphological tests and 16S rRNA sequencing. All five strains grew at different pH 3.5-8.0, different temperature 35, 40, 45, 50 °C and different NaCl concentrations 3, 6.5, 9.5%. Strains HDASK were identified Lactobacillus plantarum and SK3907, SK2A32, SK3A42 and ASKDD Pediococcus acidilactici. Three isolated strains and one commercial strain were added to sweet sorghum. Silage was prepared of four treatments and one control with three replicates as control (SKC, adding 2 ml/kg sterilizing water), L. plantarum commercial bacteria (SKP), L. plantarum (HDASK) isolated from King grass (SKA), P. acidilactici (SK3907) isolated from King grass (SKB) and P. acidilactici (ASKDD) isolated from King grass (SKD). All silage were prepared using polyethylene terephthalate bottles, and incubated at room temperature for different ensiling days. The level of pH, acetic acid, NH3-N, water soluble carbohydrate and butyric acid was significantly (P mold and LAB were significantly (P Sorghum silage.

  3. Sorghum bicolor L. Moench

    African Journals Online (AJOL)

    lillian

    2011-09-05

    Sep 5, 2011 ... Sorghum (Sorghum bicolor L. Moench) is one of the important cereal crops utilized worldwide for human food, animal ... The Kenyan government recognizes the importance of drought- tolerant crops like sorghum in .... the intra-plant competition for nutrients, water and sunlight. Seed rates depend on the.

  4. Effect of the steam explosion pretreatment on enzymatic hydrolysis of eucalyptus wood and sweet sorghum bagasse

    International Nuclear Information System (INIS)

    Negro, M.J.; Martinez, J.M.; Manero, J.; Saez, F.; Martin, C.

    1990-01-01

    The effect of steam explosion treatment on the enzymatic hydrolysis yield of two different lignocellulosic substrates is studied. Raw materials have been pretreated in a pilot plant designed to work in batch and equiped with a reactor vessel of 2 1 working volume where biomass was heated at the desired temperature and then exploded and recovered in a cyclone. Temperatures from 190 to 230 o C and reaction times from 2 to 8 min. have been assayed. The efficiency of the steam explosion treatment has been evaluated on the composition of the lignocellulosic materials as well as on their enzymatic hydrolysis yield using a cellulolytic complex from T. reesei. Results show a high solubilization rate of hemicelluloses ands variable losses of cellulose and lignin depending on the conditions tested. Enzymatic hydrolysis yields of both substrates experimented remarkable increments, correspondig the highest values obtained to 210 o C; 2 min. and 210 o C; 4 min. for sorghum bagasse and eucaliptus wood respectivelly. (Author). 13 refs

  5. Effect of the steam explosion pretreatment on enzymatic hydrolysis of eucalyptus wood and sweet sorghum baggages

    International Nuclear Information System (INIS)

    Negro, M. J.; Martinez, J. M.; Manero, J.; Saez, F.; Martin, C.

    1991-01-01

    The effect of steam explosion treatment on the enzymatic hydrolysis yield of two different lignocellulosic substrates is studied. Raw materials have been pretreated in a pilot plant designed to work in batch and equipped with a reactor vessel of 2 1 working volume where biomass was heated at the desired temperature and then exploded and recovered in a cyclone. Temperatures from 190 to 230 degree celsius and reaction times from 2 to 8 min. have been assayed. The efficiency of the steam explosion treatment has been evaluated on the composition of the lignocellulosic materials as well as on their enzymatic hydrolysis yield using a cellulolytic complex from T. reesel. Results show a high solubilization rate of hemicelluloses and variable losses of cellulose and lignin depending on the conditions tested. Enzymatic hydrolysis yields of both substrates experimented remarkable increments, corresponding the highest values obtained to 210 degree celsius; 2 min. and 21O degree celsius; 4 min. for sorghum bagasse and eucalyptus wood respectively. (Author) 13 refs

  6. The use of dried spent yeast as a low-cost nitrogen supplement in ethanol fermentation from sweet sorghum juice under very high gravity conditions

    OpenAIRE

    Sridee,Worawut; Laopaiboon,Lakkana; Jaisil,Prasit; Laopaiboon,Pattana

    2011-01-01

    Dried spent yeast (DSY) was used as a low-cost nitrogen supplement for ethanol fermentation from sweet sorghum juice under very high gravity (VHG) conditions by Saccharomyces cerevisiae NP 01. The fermentation was carried out at 30ºC in a 5-litre bioreactor. The results showed that DSY promoted ethanol production efficiencies. The ethanol concentration (P), productivity (Qp) and yield (Yp/s) of the sterile juice (total sugar of 280 g l-1) supplemented with 8 g l-1 of DSY were not different fr...

  7. Butanol biorefineries: Use of novel technologies to produce biofuel butanol from sweet sorghum bagasse (SSB)

    Science.gov (United States)

    In order to produce butanol biofuel at a competitive price, agricultural residues such as SSB should be used. This feedstock was studied as a substitute to corn to lower feedstock costs and broaden beyond a food crop. In addition, cutting edge science & technology was applied. In these studies we us...

  8. Effects of different acid hydrolyses on the conversion of sweet sorghum bagasse into C5 and C6 sugars and yeast inhibitors using response surface methodology.

    Science.gov (United States)

    Heredia-Olea, Erick; Pérez-Carrillo, Esther; Serna-Saldívar, Sergio O

    2012-09-01

    Two different diluted acid pretreatments (sulfuric and hydrochloric acid) and one mixture of these acids were tested in sweet sorghum bagasse and analyzed through surface response methodologies. The response variables were C5 and C6 sugars and inhibitors (acetic acid, 5-hydroxymethylfurfural, and furfural). Results indicated that the three different pretreatments yielded similar amounts of total potentially fermentable sugars. The proposed acid hydrolysis schemes liberated 56-57% of total sugars available in the sweet sorghum bagasse (390-415 mg sugar/g bagasse) and 44-61 mg total inhibitors/g bagasse. A mild detoxification was effectively used in the optimized hydrolysates, but did not have effect an effect in the HCl/H(2)SO(4) mixture. The acetic acid and HMF significantly decreased in the HCl and H(2)SO(4) detoxified hydrolysates without any significant degradation of sugars. The HCl treatment was a good alternative due to its relatively lower hydrolysis time and adequate generation of C5 and C6 fermentable sugars. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The Potential to Reduce Nitrogen Loss Through Rotating Different Sorghum Varieties in Greenhouse Vegetable Field

    Directory of Open Access Journals (Sweden)

    KANG Ling-yun

    2015-06-01

    Full Text Available In North China plain, excessive fertilization in vegetable greenhouse always results in nitrate accumulation in soil and possible nitrogen leaching with potential environmental risk. It is necessary to rotate appropriate catch crop to absorb surplus nitrogen in fallow season and reduce rootzone nitrate level. An experiment was carried out to select suitable sorghum variety as catch crop to reduce nitrogen loss in Beijing suburb. Six common varieties were used in the experiment as conventional catch crop, sweet corn as the control. The results indicated that the biomass, root growth and nitrogen accumulation in shoots of sorghum Jinza 12 were highest in the catch crops. It demonstrated that the variety Jinza 12 was an appropriate catch crop for reducing nitrogen accumulation in surface soil layer compared with sweet corn. Meanwhile, variety Jiliang 2 maintained highest proportion of soil NH4+-N content after urea application, which might be related to the biological nitrification inhibitors (BNI released by the root system of sorghum. It implied that sorghum could be used as catch crop to reduce nitrogen loss through plant extraction i.e. nitrogen uptake and stabilization i.e. BNI inhibition, in comparison with sweet corn.

  10. Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery

    Science.gov (United States)

    Monteiro, Sildomar Takahashi; Minekawa, Yohei; Kosugi, Yukio; Akazawa, Tsuneya; Oda, Kunio

    Hyperspectral image data provides a powerful tool for non-destructive crop analysis. This paper investigates a hyperspectral image data-processing method to predict the sweetness and amino acid content of soybean crops. Regression models based on artificial neural networks were developed in order to calculate the level of sucrose, glucose, fructose, and nitrogen concentrations, which can be related to the sweetness and amino acid content of vegetables. A performance analysis was conducted comparing regression models obtained using different preprocessing methods, namely, raw reflectance, second derivative, and principal components analysis. This method is demonstrated using high-resolution hyperspectral data of wavelengths ranging from the visible to the near infrared acquired from an experimental field of green vegetable soybeans. The best predictions were achieved using a nonlinear regression model of the second derivative transformed dataset. Glucose could be predicted with greater accuracy, followed by sucrose, fructose and nitrogen. The proposed method provides the possibility to provide relatively accurate maps predicting the chemical content of soybean crop fields.

  11. Double row spacing and drip irrigation as technical options in energy sorghum management

    Directory of Open Access Journals (Sweden)

    Neri Roncucci

    2014-02-01

    Full Text Available The effect of two row spacing configurations and four water supply levels was investigated on sweet and fibre sorghum in Central Italy for two consecutive years. Results highlighted the influence of both irrigation and row spatial configuration on crop productivity. Indeed, several studies have pointed out the positive response of sorghum to irrigation in Mediterranean climate, as in this environment water stress represents one of the main limiting factors on crop productivity. On the other hand, few attempts have been made to explore the role of row spacing on energy sorghum productivity. Results outlined an average increase in sorghum dry biomass yield ranging from +23% to +79% at variable rates of water supply as compared to rainfed control. The positive effect of irrigation was also observed on leaf area index and radiation use efficiency. Moreover, we observed a crop yield increase, from 9% to 20%, under double row spacing compared to the standard planting pattern (i.e. single row spacing. Finally, it was confirmed the efficient use of water by sorghum and the great ability of sorghum to increase its biomass yield in response to increasing volumes of water supplied. Therefore, this work suggests how row spacing configuration and drip irrigation could be feasible technical options to increase sorghum biomass yields in Mediterranean environments. These techniques should be experienced by farmers towards a sustainable intensification of current cropping systems.

  12. Overcoming Phosphorus Deficiency in West African Pearl Millet and Sorghum Production Systems: Promising Options for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Dorcus C. GEMENET

    2016-09-01

    Full Text Available West Africa (WA is among the most food insecure regions. Rapid human population growth and stagnating crop yields greatly contribute to this fact. Poor soil fertility, especially low plant available phosphorus (P is constraining food production in the region. P-fertilizer use in WA is among the lowest in the world due to inaccessibility and high prices, unaffordable to resource-poor farmers. This article provides an overview of soil P-deficiency in WA and opportunities to overcome it by exploiting sorghum and pearl millet genetic diversity. The topic is examined from the perspectives of plant breeding, soil science, plant physiology, plant nutrition, and agronomy, thereby referring to recent results obtained in a joint interdisciplinary research project, and reported literature. Specific objectives are to summarize: (1 The global problem of P scarcity and how it will affect WA farmers; (2 Soil P dynamics in WA soils; (3 Plant responses to P deficiency; (4 Opportunities to breed for improved crop adaptation to P-limited conditions; (5 Challenges and trade-offs for improving sorghum and pearl millet adaptation to low-P conditions in WA; and (6 Systems approaches to addressing soil P-deficiency in WA.Sorghum and pearl millet in WA exhibit highly significant genetic variation for P-uptake efficiency, P-utilization efficiency, and grain yield under P-limited conditions indicating the possibility of breeding P-efficient varieties. Direct selection under P-limited conditions was more efficient than indirect selection under high-P conditions. Combining P-uptake and P-utilization efficiency is recommendable for WA to avoid further soil mining. Genomic regions responsible for P-uptake, P-utilization efficiency, and grain yield under low-P have been identified in WA sorghum and pearl millet, and marker-assisted selection could be possible once these genomic regions are validated. Developing P-efficient genotypes may not however be a sustainable solution in

  13. Granivorous birds and sorghum crop in the province of Villa Clara,Cuba

    Directory of Open Access Journals (Sweden)

    Orlando Miguel Saucedo Castillo

    2017-07-01

    Full Text Available In order to reduce the damages granivorous birds cause to sorghum (Sorghum bicolor L. Moench in the province of Villa Clara, Cuba, research based on the determination of the major endemic, migratory birds and their relationship with the distribution were made space of historical meteorological variables in the province in the seasonal behavior of birds in different climatic regions. Population to sorghum producers grouped in different forms surveys were conducted, which yielded a large database, such as the determination of the main grain-eating birds percentage damage incurred, varieties, grain color, growth stage and other indicators. Nine main species affecting sorghum grain-eating birds in our province were recorded; Passer domesticus, Lonchura malacca, Lonchura punctulata, Dives atroviolaceus, Passerina cyanea, Zonotrichia leucophrys, Columbina passerine, Zenaida macroura y Zenaida asiatica. The spatial distribution of meteorological variables and their relation to the seasonal behavior of birds in different climatic regions of the province was determined, based on record four preferential habitat areas. The results allowed us to provide companies and different forms of production in Villa Clara, the possibility of a varietal structure planting of sorghum on the basis of different preferential areas granivorous birds, together with the morphological and physiological characteristics of different genotypes introduced in agricultural production of the province and nationally.

  14. Using deficit irrigation with treated wastewater to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa

    Directory of Open Access Journals (Sweden)

    Abdelaziz HIRICH

    2014-07-01

    Full Text Available Several experiments were conducted in the south of Morocco (IAV-CHA, Agadir during two seasons 2010 and 2011 in order to evaluate the effect of deficit irrigation with treated wastewater on several crops (quinoa, sweet corn, faba bean and chickpeas. During the first season (2010 three crops were tested, quinoa, chickpeas and sweet corn applying 6 deficit irrigation treatments during all crop stages alternating 100% of full irrigation as non-stress condition and 50% of full irrigation as water deficit condition applied during vegetative growth, flowering and grain filling stage. For all crops, the highest water productivity and yield were obtained when deficit irrigation was applied during the vegetative growth stage. During the second season (2011 two cultivars of quinoa, faba bean and sweet corn have been cultivated applying 6 deficit irrigation treatments (rainfed, 0, 25, 50, 75 and 100% of full irrigation only during the vegetative growth stage, while in the rest of crop cycle full irrigation was provided except for rainfed treatment. For quinoa and faba bean, treatment receiving 50% of full irrigation during vegetative growth stage recorded the highest yield and water productivity, while for sweet corn applying 75% of full irrigation was the optimal treatment in terms of yield and water productivity.

  15. THE STRUCTURE AND YIELD LEVEL OF SWEET CORN DEPENDING ON THE TYPE OF WINTER CATCH CROPS AND WEED CONTROL METHOD

    Directory of Open Access Journals (Sweden)

    Robert Rosa

    2014-10-01

    Full Text Available Organic manuring is suggested to be necessary in sweet corn cultivation. It is not always possible to use farmyard manure due to economic, production or technical reasons. Catch crops used as green manures can be an alternative source of organic matter. The experiment was carried out in central-east Poland (52°06’N, 22°55’E, in years 2008–2011. The successive effect of winter catch crops (hairy vetch, white clover, winter rye, Italian ryegrass, winter turnip rape and the type of weed control on the growth and yielding of sweet corn was examined. The catch crops were sown in early September, incorporated in early May. The effect of the winter catch crops on yield was compared to the effect of FYM at a rate of 30 t·ha-1 and the control without organic manuring. The sweet corn was grown directly after organic fertilization. Three methods of weed control was used: Hw – hand weeding, twice during the growing period, GCM – herbicide Guardian CompleteMix 664 SE, immediately after sowing the seed corn, Z+T – a mixture of herbicides Zeagran 340 SE + Titus 25 WG, in the 3–4 leaf stage sweet corn. The highest yields of biomass were found for winter rye (35.5 t·ha-1 FM and 7.3 t·ha-1 DM, the most of macroelements accumulated winter turnip rape (480.2 kg N+P+K+Ca+Mg·ha-1. Generally, leguminous catch crops had similar to the FYM and better than non-leguminous catch crops yield-forming effect. The highest yield of marketable ears of sweet corn was obtained after FYM (14.4 t·ha-1 and after hairy vetch catch crop (14.0 t·ha-1. A similar yield-forming effect also had white clover and Italian ryegrass. The most of ears from 1 ha was achieved after white clover catch crop (59.3 tausend, similar after FYM and hairy vetch catch crop. The highest kernel yields were found after FYM (10.7 t·ha-1. The yields of kernel after hairy vetch and white clover catch crops were significantly higher than after non-leguminous catch crops. Z+T weed control

  16. Sorghum bioenergy cropping systems: production potential and early indications of soil benefits under limited water

    Science.gov (United States)

    A two year field study was conducted to evaluate biofuel production potential of two forage sorghum cultivars differing in brown midrib trait under non-irrigated and deficit irrigation conditions in the semiarid Southern High Plains of the U.S. Cultivar SP1990 (non-bmr = conventional cell wall comp...

  17. Dynamic evolution of herbivore-induced sesquiterpene biosynthesis in sorghum and related grass crops.

    Science.gov (United States)

    Zhuang, Xiaofeng; Köllner, Tobias G; Zhao, Nan; Li, Guanglin; Jiang, Yifan; Zhu, Liucun; Ma, Jianxin; Degenhardt, Jörg; Chen, Feng

    2012-01-01

    Sorghum (Sorghum bicolor) plants damaged by insects emit a blend of volatiles, predominantly sesquiterpenes, that are implicated in attracting natural enemies of the attacking insects. To characterize sesquiterpene biosynthesis in sorghum, seven terpene synthase (TPS) genes, SbTPS1 through SbTPS7, were identified based on their evolutionary relatedness to known sesquiterpene synthase genes from maize and rice. While SbTPS6 and SbTPS7 encode truncated proteins, all other TPS genes were determined to encode functional sesquiterpene synthases. Both SbTPS1 and SbTPS2 produced the major products zingiberene, β-bisabolene and β-sesquiphellandrene, but with opposite ratios of zingiberene to β-sesquiphellandrene. SbTPS3 produced (E)-α-bergamotene and (E)-β-farnesene. SbTPS4 formed (E)-β-caryophyllene as the major product. SbTPS5 produced mostly (E)-α-bergamotene and (Z)-γ-bisabolene. Based on the genome sequences of sorghum, maize and rice and the sesquiterpene synthase genes they contain, collinearity analysis identified the orthologs of sorghum sesquiterpene synthase genes, except for SbTPS4, in maize and rice. Phylogenetic analysis implied that SbTPS1, SbTPS2 and SbTPS3, which exist as tandem repeats, evolved as a consequence of local gene duplication in a lineage-specific manner. Structural modeling and site-directed mutagenesis experiments revealed that three amino acids in the active site play critical roles in defining product specificity of SbTPS1, SbTPS2, SbTPS3 and their orthologs in maize and rice. The naturally occurring functional variations of sesquiterpene synthases within and between species suggest that multiple mechanisms, including lineage-specific gene duplication, subfunctionalization, neofunctionalization and pseudogenization of duplicated genes, have all played a role in the dynamic evolution of insect-induced sesquiterpene biosynthesis in grasses. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  18. Biochar potential in intensive cultivation of Capsicum annuum L. (sweet pepper): crop yield and plant protection.

    Science.gov (United States)

    Kumar, Abhay; Elad, Yigal; Tsechansky, Ludmila; Abrol, Vikas; Lew, Beni; Offenbach, Rivka; Graber, Ellen R

    2018-01-01

    The influence of various biochars on crop yield and disease resistance of Capsicum annuum L. (sweet pepper) under modern, high input, intensive net house cultivation was tested over the course of 2011-2014 in the Arava desert region of Israel. A pot experiment with Lactuca sativa L. (lettuce) grown in the absence of fertilizer employed the 3-year-old field trial soils to determine if biochar treatments contributed to soil intrinsic fertility. Biochar amendments resulted in a significant increase in the number and weight of pepper fruits over 3 years. Concomitant with the increased yield, biochar significantly decreased the severity of powdery mildew (Leveillula taurica) disease and broad mite (Polyphagotarsonemus latus) pest infestation. Biochar additions resulted in increased soil organic matter but did not influence the pH, electrical conductivity or soil or plant mineral nutrients. Intrinsic fertility experiments with lettuce showed that two of the four biochar-treated field soils had significant positive impacts on lettuce fresh weight and total chlorophyll, carotenoid and anthocyanin contents. Biochar-based soil management can enhance the functioning of intensive, commercial, net house production of peppers under the tested conditions, resulting in increased crop yield and plant resistance to disease over several years. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. (Sorghum bicolor (L.) Moench)

    Indian Academy of Sciences (India)

    to the increasing deployment of genetically modified (GM) crops in developing countries (James 2011), scientific risk assessment of transgenic crops and its impact on convention- ally bred crops and crop wild relatives is needed to establish adequate biosafety regulations. Research is under way to develop GM sorghum (S.

  20. Microeconomic aspects of energy crops cultivation

    International Nuclear Information System (INIS)

    Bartolelli, V.; Mutinati, G.; Pisani, F.

    1992-01-01

    The topic of energy crops, namely of those crops designed to produce biomass to transform into ethanol, has been explored, in Italy and abroad, in all its technical and agronomical aspects. The microeconomic aspect, including the evaluation of convenience for the farmer in adopting such crops, is, on the contrary, less well researched. RENAGRI has developed a research methodology able to give information about the level of convenience of two energy crops (Sweet Sorghum and Topinambour) and has applied it to different Italian agricultural situations, in order to verify the existence of conditions favourable to the cultivation of the two crops, or to indicate the necessity of eventual subvention. (author)

  1. Atmospheric dynamics in Laboratory Biosphere with wheat and sweet potato crops

    Science.gov (United States)

    Dempster, W. F.; Allen, J. P.; Alling, A.; Nelson, M.; Silvertone, S.; van Thillo, M.

    Laboratory Biosphere is a 40 m3 closed life system equipped with 12000 watts of high pressure sodium lamps over planting beds with 5.37 m2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, eg. hourly. To focus on inherent characteristics of the crop as distinct from its area or the volume of the chamber, we report fixation and respiration rates in millimoles per hour per square meter of planted area. An 85 day crop of USU Apogee wheat under a 16 hour lighted / 8 hour dark regime peaked in fixation rate at about 100 mmol h-1 m-2 approximately 24 days after planting. Light intensity was about 840 mol m-2 s-1. Dark respiration peaked at about 31 mmol h-1 m-2 at the same time. Thereafter, both fixation and respiration declined toward zero as harvest time approached. A residual soil respiration rate of about 1.9 mmol h-1 m-2 was observed in the dark closed chamber for 100 days after the harvest. A 126 day crop of Tuskegee TU-82-155 sweet potato behaved quite differently. Under a 680 mol m-2 s-1, 18 hour lighted / 6 hour dark regime, fixation during lighted hours rose to a plateau ranging from about 27 to 48 mmol h-1 m-2 after 42 days and respiration settled into a range of 12 to 23 mmol h-1 m-2. These rates continued unabated until the harvest at 126 days, suggesting that tuber biomass production might have continued at about the same rate for some time beyond the harvest time that was exercised in this experiment. In both experiments CO2 levels were allowed to range widely from a few hundred ppm to about 3000 ppm, which permitted observation of fixation rates both at varying CO2 concentrations and at each number of days after planting. This enables plotting the fixation rate as a function of both variables. Understanding the atmospheric dynamics of individual crops will be essential for design and atmospheric management of more

  2. Atmospheric dynamics in the “Laboratory Biosphere” with wheat and sweet potato crops

    Science.gov (United States)

    Dempster, William F.; Allen, J. P.; Alling, A.; Silverstone, S.; Van Thillo, M.

    Laboratory Biosphere is a 40-m 3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m 2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, e.g., hourly. To focus on inherent characteristics of the crop as distinct from its area or the volume of the chamber, we report fixation and respiration rates in mmol h -1 m -2 of planted area. An 85-day crop of USU Apogee wheat under a 16-h lighted/8-h dark regime peaked in fixation rate at about 100 mmol h -1 m -2 approximately 24 days after planting. Light intensity was about 840 μmol m -2 s -1. Dark respiration peaked at about 31 mmol h -1 m -2 at the same time. Thereafter, both fixation and respiration declined toward zero as harvest time approached. A residual soil respiration rate of about 1.9 mmol h -1 m -2 was observed in the dark closed chamber for 100 days after the harvest. A 126-day crop of Tuskegee TU-82-155 sweet potato behaved quite differently. Under a 680 μmol m -2 s -1, 18-h lighted/6-h dark regime, fixation during lighted hours rose to a plateau ranging from about 27 to 48 mmol h -1 m -2 after 42 days and dark respiration settled into a range of 12-23 mmol h -1 m -2. These rates continued unabated until the harvest at 126 days, suggesting that tuber biomass production might have continued at about the same rate for some time beyond the harvest time that was exercised in this experiment. In both experiments CO 2 levels were allowed to range widely from a few hundred to about 3000 ppm, which permitted observation of fixation rates both at varying CO 2 concentrations and at each number of days after planting. This enables plotting the fixation rate as a function of both variables. Understanding the atmospheric dynamics of individual crops will be essential for design and atmospheric management of more complex CELSS which

  3. The optimization of l-lactic acid production from sweet sorghum juice by mixed fermentation of Bacillus coagulans and Lactobacillus rhamnosus under unsterile conditions.

    Science.gov (United States)

    Wang, Yong; Chen, Changjing; Cai, Di; Wang, Zheng; Qin, Peiyong; Tan, Tianwei

    2016-10-01

    The cost reduction of raw material and sterilization could increase the economic feasibility of l-lactic acid fermentation, and the development of an cost-effective and efficient process is highly desired. To improve the efficiency of open fermentation by Lactobacillus rhamnosus based on sweet sorghum juice (SSJ) and to overcome sucrose utilization deficiency of Bacillus coagulans, a mixed fermentation was developed. Besides, the optimization of pH, sugar concentration and fermentation medium were also studied. Under the condition of mixed fermentation and controlled pH, a higher yield of 96.3% was achieved, compared to that (68.8%) in sole Lactobacillus rhamnosus fermentation. With an optimized sugar concentration and a stepwise-controlled pH, the l-lactic acid titer, yield and productivity reached 121gL(-1), 94.6% and 2.18gL(-1)h(-1), respectively. Furthermore, corn steep powder (CSP) as a cheap source of nitrogen and salts was proved to be an efficient supplement to SSJ in this process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sorghum, Miscanthus & Co: Energy crops as potential host plants of western corn rootworm larvae

    Directory of Open Access Journals (Sweden)

    Gloyna, Kai

    2014-02-01

    Full Text Available In a series of greenhouse experiments the host status and quality of 49 biofuel plants for the larvae of WCR were evaluated. The plants tested (18 species and varieties of Sorghum, 16 forage grasses, 6 Miscanthus genotypes, 6 Panicum varieties and 3 broadleaf species were grown for at least three weeks before they were used in the bioassays. The insects used in the experiments were obtained from a non diapausing laboratory strain originally from the US and maintained by BTL since 2006. Only neonate larvae (not older than 24 hours were used in the bioassays. In each experiment up to six species or varieties of plants were tested each with 10 replicates (containers. A susceptible maize variety was used as a positive control in each experiment. Each plant container was infested with ten neonate WCR larvae using a fine art brush. After inoculation the plants were not watered for at least 24 hours to facilitate the establishment of the larvae. The experiments were terminated after 18 days. To extract surviving larvae the soil and roots of test plants were carefully examined by hand and then transferred to a modified MacFadyen heat extractor with an extraction temperature of 45 °C. To assess the host quality the number of larvae recovered, the widths of their head capsules and dry weights were recorded. The larvae were dried at 40 °C for at least 72 hours and then weighed on an electronic micro balance. Of the 21 forage and switch grasses examined 16 hosted WCR larvae. However, the percentage of larvae that survived for 18 days, their dry weights and head capsule widths were significantly less than that recorded for larvae that developed on maize roots. The roots of most (i.e. 15 of the 18 Sorghum species or varieties tested were unsuitable for the development of WCR larvae. For the remaining three Sorghum species a maximum of only two larvae (of 100 inoculated were recovered. These results indicate that species of Sorghum are very poor quality

  5. Effects of Moringa oleifera LAM, Leguminous Plants and NPK Fertilizer Comparatively on Orange Fleshed Sweet Potato in Alley Cropping System

    Directory of Open Access Journals (Sweden)

    IN Abdullahi

    2014-09-01

    Full Text Available The research work conducted at the Teaching and Research Farm of University of Abuja was aimed at assessing the effect of Moringa oleifera, selected leguminous plants and inorganic fertilizer on the performance of orange fleshed sweet potato in Alley Cropping System. Randomized Complete Block Design (RCBD using five treatments with three replications was applied. Data collected include: percentage survival of sweet potato, length per vine (cm, number of leaves per vine, leaf area of sweet potato, weed dry matter (g/m2, yield of sweet potato roots. Highest number of leaves (28 per plant was recorded in the control plot while the plots with NPK fertilizer had the highest length per vine (94.55cm though not significantly (p>0.05 different from others. Higher percent survival (88% of sweet potato was recorded from control plots. Stands grown in Arachis hypogeae plots produced the highest leaf area (0.202m2 while plots in which NPK fertilizer was applied experienced highest weed dry matter (4.083g/m2 although highest root yield (1.2t/ha was recorded from the plots with NPK fertilizer. DOI: http://dx.doi.org/10.3126/ije.v3i3.11061 International Journal of Environment Vol.3(3 2014: 24-35

  6. THE EFFECT OF WINTER CATCH CROPS ON WEED INFESTATION IN SWEET CORN DEPENDING ON THE WEED CONTROL METHODS

    Directory of Open Access Journals (Sweden)

    Robert Rosa

    2015-02-01

    Full Text Available An experiment was carried out in east-central Poland (52°06’ N, 22°55’ E over 2008–2011 to study the effect of winter catch crops on the weed infestation, number, and fresh matter of weeds in sweet corn (Zea mays L. var. saccharata. The following winter catch crops were grown: hairy vetch (Vicia villosa Roth., white clover (Trifolium repens L., winter rye (Secale cereale L., Italian ryegrass (Lolium multiflorum L. and winter turnip rape (Brassica rapa var. typica Posp.. The catch crops were sown in early September and incorporated in early May. The effect of the catch crops was compared to the effect of FYM (30 t·ha-1 and control without organic manuring (NOM. Three methods of weed control were used: HW – hand weeding, twice during the growing period, GCM – the herbicide Guardian Complete Mix 664 SE, immediately after sowing of corn seeds, Z+T – a mixture of the herbicides Zeagran 340 SE and Titus 25 WG applied at the 3–4-leaf stage of sweet corn growth. Rye and turnip rape catch crops had least weeds in their fresh matter. Sweet corn following winter catch crops was less infested by weeds than corn following farmyard manure and non-manured corn. Least weeds and their lowest weight were found after SC, BRT and VV. LM and BRT reduced weed species numbers compared with FYM and NOM. The greatest weed species diversity, determined at the corn flowering stage, was determined after SC and FYM. The number and weight of weeds were significantly lower when chemically controlled compared with hand weeding. The best results were observed after a post-emergent application of the mixture Z+T. The weed species diversity on Z+T-treated plots was clearly lower compared with GCM and HW.

  7. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources; El compostaje como tecnologia para el tratamiento de residuos: compostaje de bagazo de sorgo dulce con diferentes fuentes nitrogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J.; Carrasco, J.E.; Negro, M.J.

    1996-10-01

    The purpose of this work is to study aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the proteic synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, in industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH{sub 4}NO{sub 3}, taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37 degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing stillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO{sub 3} as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources.

  8. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources; El compostaje como tecnologIa para el tratamiento de residuos: compostaje de bagazo de sorgo dulce con diferentes fuentes nitrogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J.; Carrasco, J.E.; Negro, M.J.

    1996-07-01

    The purpose of this work is to study the aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the protein synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH4NO3. taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing spillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO3 as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources. (Author) 15 refs.

  9. Crimped Cover Crop Legume Residue Effects on Sweet Corn (Zea mays L.) Yield in Puerto Rico

    Science.gov (United States)

    Crimped legume residue can control weeds and supply N for sweet corn production if biomass is sufficient. Three sweet corn (Zea mays L.) open pollinated variety “Suresweet 2011” plantings (April, 2013; July 2013; February 2014) were conducted on an Oxisol (very fine, kaolinitic, isohyperthermic and...

  10. Effect of shade on photosynthetic pigments in the tropical root crops: yam, taro, tannia, cassava and sweet potato

    International Nuclear Information System (INIS)

    Johnston, M.; Onwueme, I.C.

    1998-01-01

    Plants of yam, taro, tannia, cassava and sweet potato were raised under shade or in full sunlight and the effect of shade on leaf chlorophyll and carotenoids was examined to determine and compare the relative shade tolerance and adaptability of the var ious species. All five species of root crops adapted to shade. The chlorophyll concentration was higher, while the chlorophyll a:b ratio, carotenoids per unit chlorophyll and the weight per unit area of leaf were lower in the shade than in the sun in yam, tannia, taro, cassava and sweet potato. All species had larger leaves and more chlorophyll per leaf in the shade. The extent of the changes, however, differed between species. The aroids (taro and tannia) appeared to be shade-tolerant species as their chlorophyll a:b ratios changed less than those of the other species in the shade, suggesting that their light-harvesting systems may be normally adapted to shade conditions. Taro and tannia also adapted to shade by a greater proportional increase in leaf size, a smaller reduction in leaf weight per unit area and a greater proportional increase in chlorophyll and carotenoids per leaf than the other species. Yam compensated for shade by having a large proportional increase in leaf size and appeared to be moderately tolerant of shade. Sweet potato and cassava appeared to be the least tolerant of shade of the major tropical root crops. (author)

  11. Gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8 during high-temperature ethanol fermentation using sweet sorghum juice.

    Science.gov (United States)

    Techaparin, Atiya; Thanonkeo, Pornthap; Klanrit, Preekamol

    2017-10-01

    To investigate gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8, a potential high-ethanol producer, in response to various stresses during high-temperature ethanol fermentation using sweet sorghum juice (SSJ) under optimal conditions. The maximal ethanol concentration obtained by S. cerevisiae KKU-VN8 using SSJ at 40 °C was 66.6 g/l, with a productivity of 1.39 g/l/h and a theoretical ethanol yield of 81%. Quantitative RT-PCR assays were performed to investigate the gene expression profiles of S. cerevisiae KKU-VN8. Differential expression of genes encoding heat-shock proteins (HSP82, HSP104, SSA4), genes involved in trehalose metabolism (TPS1, TPS2, NTH1) and genes involved the glycolytic pathway (ADH1, ADH2, CDC19) at various time points during fermentation was observed. The expression levels of HSP82, HSP104, SSA4, ADH1 and CDC19 were significantly higher than those of the controls (10.2-, 4-, 8-, 8.9- and 5.9-fold higher, respectively). In contrast, the expression levels of TPS1, TPS2, NTH1 and ADH2 were approx. 2-fold less than those of the controls. The highly expressed genes encoding heat-shock proteins, HSP82 and SSA4, potentially play an important role in helping S. cerevisiae KKU-VN8 cope with various stresses that occur during high-temperature fermentation, leading to higher ethanol production efficiency.

  12. Crop yield and light/energy efficiency in a closed ecological system: Laboratory Biosphere experiments with wheat and sweet potato

    Science.gov (United States)

    Nelson, M.; Dempster, W. F.; Silverstone, S.; Alling, A.; Allen, J. P.; van Thillo, M.

    Two crop growth experiments in the soil-based closed ecological facility, Laboratory Biosphere, were conducted from 2003 to 2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted at two densities, 400 and 800 seeds m -2. The lighting regime for the wheat crop was 16 h of light - 8 h dark at a total light intensity of around 840 μmol m -2 s -1 and 48.4 mol m -2 d -1 over 84 days. Average biomass was 1395 g m -2, 16.0 g m -2 d -1 and average seed production was 689 g m -2 and 7.9 g m -2 d -1. The less densely planted side was more productive than the denser planting, with 1634 g m -2 and 18.8 g m -2 d -1 of biomass vs. 1156 g m -2 and 13.3 g m -2 d -1; and a seed harvest of 812.3 g m -2 and 9.3 g m -2 d -1 vs. 566.5 g m -2 and 6.5 g m -2 d -1. Harvest index was 0.49 for the wheat crop. The experiment with sweet potato used TU-82-155 a compact variety developed at Tuskegee University. Light during the sweet potato experiment, on a 18 h on/6 h dark cycle, totaled 5568 total moles of light per square meter in 126 days for the sweet potatoes, or an average of 44.2 mol m -2 d -1. Temperature regime was 28 ± 3 °C day/22 ± 4 °C night. Sweet potato tuber yield was 39.7 kg wet weight, or an average of 7.4 kg m -2, and 7.7 kg dry weight of tubers since dry weight was about 18.6% wet weight. Average per day production was 58.7 g m -2 d -1 wet weight and 11.3 g m -2 d -1. For the wheat, average light efficiency was 0.34 g biomass per mole, and 0.17 g seed per mole. The best area of wheat had an efficiency of light utilization of 0.51 g biomass per mole and 0.22 g seed per mole. For the sweet potato crop, light efficiency per tuber wet weight was 1.33 g mol -1 and 0.34 g dry weight of tuber per mole of light. The best area of tuber production had 1.77 g mol -1 wet weight and 0.34 g mol -1 of light dry weight. The Laboratory Biosphere experiment's light efficiency was somewhat higher than the USU field results but

  13. Ex ante assessment of dual-purpose sweet potato in the crop-livestock system of western Kenya: a minimum-data approach

    NARCIS (Netherlands)

    Claessens, L.; Stoorvogel, J.J.; Antle, J.M.

    2008-01-01

    Mixed crop¿livestock systems have a crucial role to play in meeting the agricultural production challenges of smallholder farmers in sub-Saharan Africa. Sweet potato is seen as a potential remedial crop for these farmers because of its high productivity and low input requirements, while its

  14. Unmanned aircraft system-derived crop height and normalized difference vegetation index metrics for sorghum yield and aphid stress assessment

    Science.gov (United States)

    Stanton, Carly; Starek, Michael J.; Elliott, Norman; Brewer, Michael; Maeda, Murilo M.; Chu, Tianxing

    2017-04-01

    A small, fixed-wing unmanned aircraft system (UAS) was used to survey a replicated small plot field experiment designed to estimate sorghum damage caused by an invasive aphid. Plant stress varied among 40 plots through manipulation of aphid densities. Equipped with a consumer-grade near-infrared camera, the UAS was flown on a recurring basis over the growing season. The raw imagery was processed using structure-from-motion to generate normalized difference vegetation index (NDVI) maps of the fields and three-dimensional point clouds. NDVI and plant height metrics were averaged on a per plot basis and evaluated for their ability to identify aphid-induced plant stress. Experimental soil signal filtering was performed on both metrics, and a method filtering low near-infrared values before NDVI calculation was found to be the most effective. UAS NDVI was compared with NDVI from sensors onboard a manned aircraft and a tractor. The correlation results showed dependence on the growth stage. Plot averages of NDVI and canopy height values were compared with per-plot yield at 14% moisture and aphid density. The UAS measures of plant height and NDVI were correlated to plot averages of yield and insect density. Negative correlations between aphid density and NDVI were seen near the end of the season in the most damaged crops.

  15. Can GM sorghum impact Africa?

    Science.gov (United States)

    Botha, Gerda M; Viljoen, Christopher D

    2008-02-01

    It is said that genetic modification (GM) of grain sorghum has the potential to alleviate hunger in Africa. To this end, millions of dollars have been committed to developing GM sorghum. Current developments in the genetic engineering of sorghum are similar to efforts to improve cassava and other traditional African crops, as well as rice in Asia. On closer analysis, GM sorghum is faced with the same limitations as 'Golden Rice' (GM rice) in the context of combating vitamin A deficiency (VAD) efficiently and sustainably. Thus, it is questionable whether the cost of developing GM sorghum can be justified when compared to the cost of investing in sustainable agricultural practice in Africa.

  16. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jeffrey A. [Univ. of California, Parlier, CA (United States). Kearney Research and Extension Center; Wolfrum, Edward J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Process and Analytical Engineering Group

    2010-09-28

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  17. Retention of Provitamin A Carotenoids in Staple Crops Targeted for Biofortification in Africa: Cassava, Maize and Sweet Potato

    Science.gov (United States)

    De Moura, Fabiana F.; Miloff, Alexander; Boy, Erick

    2015-01-01

    HarvestPlus, part of the Consultative Group on Internation Agriculture research (CGIAR) Program on Agriculture for Nutrition and Health (A4NH) uses conventional plant breeding techniques to develop staple food crops that are rich in micronutrients, a food-based approach to reduce micronutrient malnutrition known as biofortification. The nutritional breeding targets are established based on the food intake of target populations, nutrient losses during storage and processing and bioavailability. This review collates the evidence on the retention of provitamin A carotenoid (pVAC) after processing, cooking, and storing of the staple crops targeted for pVAC biofortification: cassava, maize, and sweet potato. Sun drying was more detrimental to the pVAC levels (27–56% retention) in cassava than shade (59%) or oven (55–91%) drying, while the pVAC retention levels (66–96%) in sweet potato were not significantly different among the various drying methods. Overall, boiling and steaming had higher pVAC retention (80–98%) compared to baking (30–70%) and frying (18–54%). Gari, the most frequently consumed form of cassava in West Africa had the lowest pVAC retention (10–30%). The pVAC retention of maize grain and cassava and sweet potato flour reached levels as low as 20% after 1–4 months of storage and was highly dependent on genotype. Therefore, we recommend that an evaluation of the pVAC degradation rate among different genotypes be performed before a high pVAC crop is promoted. PMID:24915386

  18. Energy performance and efficiency of two sugar crops for the biofuel supply chain. Perspectives for sustainable field management in southern Italy

    International Nuclear Information System (INIS)

    Garofalo, Pasquale; D'Andrea, Laura; Vonella, A. Vittorio; Rinaldi, Michele; Palumbo, A. Domenico

    2015-01-01

    Improvement of the energy balance and efficiency for reduced input of cropping systems is one of the main goals for the cultivation of energy crops. In this field study, two sugar crops for bioethanol production were cultivated under different soil tillage management (conventional; no tillage) and mineral nitrogen application (0, 75, 150 kg N ha −1 ): sweet sorghum and sugar beet. The energy performance and efficiency along the bioethanol supply chain were analysed and compared. Both of these crops showed good growth adaptation to the different soil and nitrogen management, and thus the energy return, resource and energy efficiencies were significantly improved in the low-input system. Sweet sorghum provided better responses in terms of water and nitrogen use efficiency for biomass accumulation, as well as its energy yield and net gain, compared to sugar beet, whereas sugar beet showed higher energy efficiency than sorghum. According to these data, both of these crops can be cultivated in a Mediterranean environment with low energy input, which guarantees good crop and energy performances for biofuel strategy planning. - Highlights: • Two sugar crops for the bioethanol supply chain were evaluated. • Energy performances and efficiencies were assessed under different energy input. • Sugar yield resulted not compromised by the different crop management. • The energy gain was improved with low energy input at field level. • Sweet sorghum gave the highest energy yield, sugar beet the energy efficiency.

  19. Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings

    DEFF Research Database (Denmark)

    Ngara, Rudo; Ndimba, Roya; Borch-Jensen, Jonas

    2012-01-01

    sorghum variety, MN1618, were planted and grown on solid MS growth medium with or without 100mM NaCl. Heat shock protein expression immunoblotting assays demonstrated that this salt treatment induced stress within natural physiological parameters for our experimental material. 2D PAGE in combination......Sorghum bicolor, a drought tolerant cereal crop, is not only an important food source in the semi arid/arid regions but also a potential model for studying and gaining a better understanding of the molecular mechanisms of drought and salt stress tolerance in cereals. In this study, seeds of a sweet...... with MS/MS proteomics techniques were used to separate, visualise and identify salinity stress responsive proteins in young sorghum leaves. Out of 281 Coomassie stainable spots, 118 showed statistically significant responses (p...

  20. Genetic dissection of bioenerrgy traits in sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Vermerris, Wilfred; Kresovich, Stephen; Murray, Seth; Pedersen, Jeffery; Rooney, William; Sattler, Scott.

    2012-06-15

    these lines is in progress. Objective 2 The experiments from this objective have been completed and the data were published in the journal Crop Science by Felderhoff et al. (2012). A second publication by Felderhoff et al. is in progress (see publication list for full details). The experiments were based on a mapping population derived from the sweet sorghum 'Rio' and the dry-stalk grain sorghum BTx3197. The main findings were: 1) The apparent juiciness of the sorghum stalk, based on the appearance of a cut stem surface (moist vs. pithy), is not representative of the moisture content of the stalk. This was surprising, as pithy stalks have been associated with low moisture content. This means that in order to assess 'juiciness', a different evaluation needs to be used, for example by removing juice with a roller press or by measuring the difference in mass between a fresh and dried stalk segment. 2) A total of five QTLs associated with juice volume (corrected for height) or moisture content were identified, but not all QTLs were detected in all environments, providing evidence for genotype x environment interactions. This finding complicates breeding for juice volume using marker-assisted selection. 3) The QTL for sugar concentration identified on chromosome 3, and the subject of Objective 1, was confirmed in this mapping population, but unlike in previous studies (Murray et al., 2008), the presence of this QTL was associated with negative impacts on agronomic performance (fresh and dry biomass yield, juice yield). Consequently, introgression of the Brix QTL from Rio as part of a commercial breeding program will require monitoring of the precise impacts of this QTL on agronomic performance. 4) The absence of dominance effects for the Brix trait (= sugar concentration) indicated that Brix must be high in both parents to produce high Brix in hybrids. This means an extra constraint on the development of hybrid parents. With the results from Objective 1

  1. Identification, Characterization and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L. Moench, a Food, Fodder and Biofuel Crop

    Directory of Open Access Journals (Sweden)

    KRISHAN MOHAN RAI

    2016-08-01

    Full Text Available Biomass based alternative fuels offer a solution to the world’s ever-increasing energy demand. With the ability to produce high biomass in marginal lands with low inputs, sorghum has a great potential to meet second-generation biofuel needs. Despite the sorghum crop importance in biofuel and fodder industry, there is no comprehensive information available on the cell wall related genes and gene families (biosynthetic and modification. It is important to identify the cell wall related genes to understand the cell wall biosynthetic process as well as to facilitate biomass manipulation. Genome-wide analysis using gene family specific Hidden Markov Model of conserved domains identified 520 genes distributed among 20 gene families related to biosynthesis/modification of various cell wall polymers such as cellulose, hemicellulose, pectin and lignin. Chromosomal localization analysis of these genes revealed that about 65% of cell wall related genes were confined to four chromosomes (Chr. 1-4. Further, 53 tandem duplication events involving 146 genes were identified in these gene families which could be associated with expansion of genes within families in sorghum. Additionally, we also identified 137 Simple Sequence Repeats related to 112 genes and target sites for 10 miRNAs in some important families such as cellulose synthase, cellulose synthase-like and laccases, etc. To gain further insight into potential functional roles, expression analysis of these gene families was performed using publicly available data sets in various tissues and under abiotic stress conditions. Expression analysis showed tissue specificity as well as differential expression under abiotic stress conditions. Overall, our study provides a comprehensive information on cell wall related genes families in sorghum which offers a valuable resource to develop strategies for altering biomass composition by plant breeding and genetic engineering approaches.

  2. Biotech/GM crops in horticulture: plum cv. HoneySweet resistant to plum pox virus

    Science.gov (United States)

    Commercialization of Biotech crops started in 1995. By 2011, genetically modified (GM) crops were grown world-wide on 160 million ha. Only 114.507 ha of GM crops were grown in Europe, of that, 114.490 ha were Bt maize and 17 ha were potato for industrial starch production. Currently, developing c...

  3. Sugarcane aphid spatial distribution in grain sorghum fields

    Science.gov (United States)

    Sorghum is an important summer grain crop in the United States. In 2014, the U.S. produced 432 million bushels of sorghum valued at $1.67 billion on more than 6 million acres. The sugarcane aphid, Melanaphis sacchari (Zehntner), was discovered in damaging numbers in grain sorghum, Sorghum bicolor ...

  4. Farmers' information on sweet potato production and millipede infestation in north-eastern Uganda. I. Associations between spatial and temporal crop diversity and the level of pest infestation

    NARCIS (Netherlands)

    Ebregt, E.; Struik, P.C.; Abidin, P.E.; Odongo, B.

    2004-01-01

    Sweet potato (Ipomoea batatas (L.) Lamk) is an important staple food for the people of north-eastern Uganda. Crop yields per unit area are low partly because of biological constraints, including pests like millipedes. The objective of this study was to generate information on pest incidence and

  5. Determination of region-specific data of yield and quality of alternatives to silage maize in fodder crops – field trails with forage gras and clover grass mixtures, Sorghum as well as whole plant silage of grain

    Directory of Open Access Journals (Sweden)

    Wosnitza, Andrea

    2014-02-01

    Full Text Available This project should generate current regional results over a period of three years about the parameter yield and quality of alternative fodder crops to maize; this includes grass and clover grass mixtures, silage maize, varieties of Sorghum/millets and whole plant silages of wheat, rye and triticale. The tested silage maize showed the highest and most reliable average dry matter yield with 23 tons per hectare, with a very low variance. The Sorghum and millet varieties had dry matter yields of 3 to 5 tons per hectare below the silage maize yield but with individual values fluctuating in a broad range within years and locations. With values far below 28% the dry matter contents were not suitable for ensiling. The grass and clover grass mixtures are good, stable and established alternatives to maize for silage. They achieved high yields comparable with these of Sorghum but stable and with a highly suitable dry matter content for ensiling. The yield of the whole plant silages was up to 22% lower compared with maize. So none of the alternative crops can compete with the high level yield of silage maize in its favoured region, therefore would be a combination of two crops recommended. But some individual locally adapted mixtures or varieties of the alternative crops reached nearly 80% of the maize yield. Silage maize showed the highest level of the net energy content for lactation (NEL, followed by the values of the fodder crops and the whole plant silages. The Sorghum varieties showed the lowest NEL value of all tested cultures. The highest crude protein showed the fodder crops contents. Silage maize, Sorghum and the whole plant silages had values lying nearly around the 50% mark of the fodder crops.

  6. Investigation the Vertical Distribution of Leaf Area and Dry Matter of Sweet Basil (Ocimum basilicum L., Borage (Borago officinalis L. and Cover Crops in Competition with Weeds

    Directory of Open Access Journals (Sweden)

    zeinab shirzadi margavi

    2017-10-01

    Full Text Available Introduction Distribution of leaf area and dry matter are the effective factors that influence on absorption the radiation, evaporation and transpiration of canopy and eventually dry matter accumulation and grain yield in plants. Plant canopy is the spatial arrangement of shoots in a plant population. In plant canopy, leaves are responsible for radiation absorption and gas exchange with the outside. Stem and branches arrange photosynthetic organs somehow, which gas exchange and light distribution best done. The effect of canopy structure on gas exchange and absorption of radiation in plant communities caused detailed study of the canopy structure to be more important. Materials and methods In order to investigate the vertical distribution of leaf area and dry matter of borage and sweet basil in competition with weeds by cover crops treatments, a field experiment was carried out in a randomized complete block design with 8 treatments and 3 replications in Agricultural Sciences and Natural Resources University of Sari in 2013. Treatments were cover crops mung bean (Vigna radiata L. and Persian clover (Trifolium resupinatum L. in the rows between the sweet basil (Ocimum basilicum L. and borage (Borago officinalis L.. Moreover, in order to evaluate the effectiveness of cover crops to control weeds, pure stand of sweet basil and borage in terms of weeding and no weed controls per replicates were used. Each plot was included 5 rows of medicinal plants. Cover crop inter-seeded simultaneously in the main crop. Estimation of leaf area and dry matter of each plant in different canopy layers (0-20, 20-40, 40-60, 80.100, 100-120 and 120-140 cm were done after 75 planting days, with 1 m × 1 m quadrate per plot. For this purpose a vertical card board frame marked in 20-cm increments was used in the field as a guide to cut standing plants (crops, cover crops and weeds into 20-cm strata increments (Mosier & Oliver, 1995. All samples were transferred to the

  7. Analysis of Traits Related to Weed Competitiveness in Sweet Corn (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Natalia de Leon

    2012-03-01

    Full Text Available Weed management in sweet corn can be costly; genetic improvements in sweet corn competitiveness may reduce this expense. Competitive ability can exist as weed suppressive ability (WSA, or crop tolerance (CT. Previous studies in corn have found year of hybrid release, maturity, plant height, leaf angle and leafiness may affect WSA, while hybrid era, maturity, and plant height may affect CT. However, many of these studies were limited to very few genotypes. The objective of this study was to assess the effects of phenomorphological traits on sweet corn competitiveness and the inheritance of these traits. An incomplete half-diallel from seven historic sweet corn inbred lines of varying morphologies was evaluated in a split-block randomized complete block design in three environments. Forage sorghum was interplanted in half of the blocks to act as a model weed. Significant differences among hybrids were generally found for both phenomorphological traits and traits measuring WSA and CT, such as sorghum biomass and yield stability, respectively. Crop plant height was most predictive of WSA and CT. In this set of genotypes, competitive ability may be passed with reasonable fidelity from parent to offspring, suggesting that sweet corn could be bred for competitive ability.

  8. Identification of differentially expressed genes in sorghum (Sorghum bicolor) brown midrib mutants

    Science.gov (United States)

    Sorghum (Sorghum bicolor L.), with a high biomass yield and excellent tolerance to drought and low nutrition, has been recommended as one of the most competitive bioenergy crops. Brown midrib (bmr) mutant sorghum with reduced lignin content showed a high potential for the improvement of bioethanol ...

  9. Baseline survey on factors affecting sorghum production and use in ...

    African Journals Online (AJOL)

    Sorghum (Sorghum bicolor (L.) Moench) is an under-utilized crop and one of the most important cereal crops in semi-arid tropics. In Kenya, sorghum is grown in the often drought-prone marginal agricultural areas of Eastern, Nyanza and Coast Provinces. Due to its C4 photosynthetic nature, extensive root system, waxy ...

  10. Genetic architecture of kernel composition in global sorghum germplasm

    Science.gov (United States)

    Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop for dryland areas in the United States and for small-holder farmers in Africa. Natural variation of sorghum grain composition (protein, fat, and starch) between accessions can be used for crop improvement, but the genetic controls are...

  11. Identification of Sweet Sorghum accessions with seedling cold tolerance using both lab cold germination test and field early Spring planting evaluation

    Science.gov (United States)

    Cultivars with quick seedling emergence and stand establishment at early spring cold conditions may be planted early in the same region with an extended period of plant growth and can potentially increase either grain yield, stem sugar yield, or biomass production of sorghum. Planting cultivars with...

  12. Allelopathic effects of water extracts of Sorghum halepense (L. Pers., Convolvulus arvensis L. and Cirsium arvense Scop. on early seedling growth of some leguminous crops

    Directory of Open Access Journals (Sweden)

    Irena Golubinova

    2014-03-01

    Full Text Available In order to study the allelopathic effect of aboveground dry biomass of Sorghum halepense, Convolvulus arvensis and Cirsium arvense on seed germination and early seedling growth of Pisum sativum (L., varieties Mir (winter form and Kerpo (spring form; Vicia sativa (L., variety Tempo, and Medicago sativa (L., variety Dara, a laboratory experiment was conducted at the Institute of Forage Crops - Pleven. Four concentrations: 1.25, 2.5, 5.0 and 10.0% were applied to each weed biotype used to study allelopathic effects. The results showed that weed extracts significantly decreased germination percentage, shoot and root length (cm, shoot and root weight (g, and seed vigor index (SVI1 and SVI2 of the tested species. In general, the variable effects are related to the weed species and extract concentrations.

  13. Benefits of Vetch and Rye Cover Crops to Sweet Corn under No-Tillage

    NARCIS (Netherlands)

    Zotarelli, L.; Avila, L.; Scholberg, J.M.S.; Alves, B.J.R.

    2009-01-01

    Leguminous cover crops (CCs) may reduce N fertilizer requirements by fixing N biologically and storing leftover N-fertilizer applied in the previous year. The objective of this study was to determine the contribution of CCs [rye (Secale cereal L.) and hairy vetch (Vicia villosa Roth)] on plant N

  14. Kinetics of potassium release in sweet potato cropped soils: a case study in the highlands of Papua New Guinea

    Science.gov (United States)

    Rajashekhar Rao, B. K.

    2015-02-01

    The present study attempts to employ potassium (K) release parameters to identify soil-quality degradation due to changed land use patterns in sweet potato (Ipomoea batatas (L.) Lam) farms of the highlands of Papua New Guinea. Rapid population increase in the region increased pressure on the land to intensify subsistence production mainly by reducing fallow periods. Such continuous cropping practice coupled with lack of K fertilization practices could lead to a rapid loss of soil fertility and soil-resource degradation. The study aims to evaluate the effects of crop intensification on the K-release pattern and identify soil groups vulnerable to K depletion. Soils with widely differing exchangeable and non-exchangeable K contents were sequentially extracted for periods between 1 and 569 h in 0.01 M CaCl2, and K-release data were fitted to four mathematical models: first order, power, parabolic diffusion and Elovich equations. Results showed two distinct parts in the K-release curves, and 58-80% of total K was released to solution phase within 76 h (first five extractions) with 20-42% K released in the later parts (after 76 h). Soils from older farms that were subjected to intensive and prolonged land use showed significantly (P farms recently brought to cultivation (new farms). Among the four equations, first-order and power equations best described the K-release pattern; the constant b, an index of K-release rates, ranged from 0.005 to 0.008 mg kg-1 h-1 in the first-order model and was between 0.14 and 0.83 mg kg-1 h-1 in the power model for the soils. In the non-volcanic soils, model constant b values were significantly (P < 0.05) higher than the volcanic soils, thus indicating the vulnerability of volcanic soils to K deficiency. The volcanic soils cropped for several crop cycles need immediate management interventions either through improved fallow management or through mineral fertilizers plus animal manures to sustain productivity.

  15. Fitotoxicidade causada por herbicidas na fase inicial de desenvolvimento da cultura do sorgo Phytotoxicity caused by herbicides to sorghum crop at early stages of development

    Directory of Open Access Journals (Sweden)

    P.C. Magalhães

    2000-01-01

    ículas e de grãos. Os tratamentos que proporcionaram os mais altos rendimentos foram: paraquat + espalhante adesivo, ametryn + óleo mineral, retirada mecânica de folhas e cyanazine + simazine aplicados no estádio de 6 folhas. À exceção do tratamento cyanazine + simazine aplicado no estádio de 4 folhas, o uso de herbicidas em pós-emergência inicial e área total na cultura do sorgo mostrou-se seletiva . Mesmo quando houve injúrias, decorrentes da ação dos herbicidas, elas não foram suficientes para prejudicar a produção. O bom controle das plantas daninhas proveniente do uso dos herbicidas possibilitou ao sorgo expressar melhor seu potencial produtivo.The application of herbicides in early broadcast postemergence and band directed of herbicides in sorghum has raised considerably with increasing planting acreage in Brazil. However, these products can cause phytoxicity since they are not completely selective to the crop. Since these herbicides basically block metabolic processes in the plants, one questions what effects these injuries will have on grain yield. Therefore, the objective of this research was to study the phytotoxic effect caused by the application of herbicides on the crop, at the initial phase and at late postemergence in directed spray, as well as on sorghum grain yield. This study was carried out during the growing season of 1994/95 and 1995/96, using the hybrid BR 700, in a complete randomized block design, with 12 treatments and four replications. The treatments consisted of the combination of the following herbicides at several rates: cyanazine + simazine with or without mineral oil, applied at the 4-and-6 leaf growth stages; paraquat + adjuvant and ametryn + mineral oil, applied as directed spray at the 12-leaf growth stage. The control treatments were weed free and weeded plus mechanical defoliation of the first, second and third pair of sorghum leaves at the 12-leaf stage. Leaf area, plant dry weight, leaf chlorophyll content, plant

  16. Estimation of in situ mating systems in wild sorghum (Sorghum ...

    Indian Academy of Sciences (India)

    The high outcrossing rates of wild/weedy sorghum populations in Ethiopia indicate a high potential for crop genes (including transgenes) to spread within the wild pool. Therefore, effective risk management strategies may be needed if the introgression of transgenes or other crop genes from improved cultivars into wild or ...

  17. Suppression of the invasive plant mile-a-minute (Mikania micrantha) by local crop sweet potato (Ipomoea batatas) by means of higher growth rate and competition for soil nutrients.

    Science.gov (United States)

    Shen, Shicai; Xu, Gaofeng; Clements, David Roy; Jin, Guimei; Chen, Aidong; Zhang, Fudou; Kato-Noguchi, Hisashi

    2015-01-28

    There are a variety of ways of increasing crop diversity to increase agricultural sustainability and in turn having a positive influence on nearby natural ecosystems. Competitive crops may provide potent management tools against invasive plants. To elucidate the competitive mechanisms between a sweet potato crop (Ipomoea batatas) and an invasive plant, mile-a-minute (Mikania micrantha), field experiments were carried out in Longchuan County of Yunnan Province, Southwest China, utilizing a de Wit replacement series. The trial incorporated seven ratios of sweet potato and mile-a-minute plants in 25 m(2) plots. In monoculture, the total biomass, biomass of adventitious root, leafstalk length, and leaf area of sweet potato were all higher than those of mile-a-minute, and in mixed culture the plant height, branch, leaf, stem node, adventitious root, flowering and biomass of mile-a-minute were suppressed significantly (P sweet potato was less than 1.0 in mixed culture, indicating that intraspecific competition was less than interspecific competition. The competitive balance index of sweet potato demonstrated a higher competitive ability than mile-a-minute. Except pH, other soil nutrient contents of initial soil (CK) were significantly higher than those of seven treatments. The concentrations of soil organic matter, total N, total K, available N, available P, available K, exchange Ca, exchange Mg, available Mn, and available B were significantly greater (P sweet potato monoculture soil, and were reduced by the competition of sweet potato in the mixture. Evidently sweet potato has a competitive advantage in terms of plant growth characteristics and greater absorption of soil nutrients. Thus, planting sweet potato is a promising technique for reducing infestations of mile-a-minute, providing weed management benefits and economic returns from harvest of sweet potatoes. This study also shows the potential value of replacement control methods which may apply to other crop

  18. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop

    Science.gov (United States)

    Kyndt, Tina; Quispe, Dora; Zhai, Hong; Jarret, Robert; Ghislain, Marc; Liu, Qingchang; Gheysen, Godelieve

    2015-01-01

    Agrobacterium rhizogenes and Agrobacterium tumefaciens are plant pathogenic bacteria capable of transferring DNA fragments [transfer DNA (T-DNA)] bearing functional genes into the host plant genome. This naturally occurring mechanism has been adapted by plant biotechnologists to develop genetically modified crops that today are grown on more than 10% of the world’s arable land, although their use can result in considerable controversy. While assembling small interfering RNAs, or siRNAs, of sweet potato plants for metagenomic analysis, sequences homologous to T-DNA sequences from Agrobacterium spp. were discovered. Simple and quantitative PCR, Southern blotting, genome walking, and bacterial artificial chromosome library screening and sequencing unambiguously demonstrated that two different T-DNA regions (IbT-DNA1 and IbT-DNA2) are present in the cultivated sweet potato (Ipomoea batatas [L.] Lam.) genome and that these foreign genes are expressed at detectable levels in different tissues of the sweet potato plant. IbT-DNA1 was found to contain four open reading frames (ORFs) homologous to the tryptophan-2-monooxygenase (iaaM), indole-3-acetamide hydrolase (iaaH), C-protein (C-prot), and agrocinopine synthase (Acs) genes of Agrobacterium spp. IbT-DNA1 was detected in all 291 cultigens examined, but not in close wild relatives. IbT-DNA2 contained at least five ORFs with significant homology to the ORF14, ORF17n, rooting locus (Rol)B/RolC, ORF13, and ORF18/ORF17n genes of A. rhizogenes. IbT-DNA2 was detected in 45 of 217 genotypes that included both cultivated and wild species. Our finding, that sweet potato is naturally transgenic while being a widely and traditionally consumed food crop, could affect the current consumer distrust of the safety of transgenic food crops. PMID:25902487

  19. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop.

    Science.gov (United States)

    Kyndt, Tina; Quispe, Dora; Zhai, Hong; Jarret, Robert; Ghislain, Marc; Liu, Qingchang; Gheysen, Godelieve; Kreuze, Jan F

    2015-05-05

    Agrobacterium rhizogenes and Agrobacterium tumefaciens are plant pathogenic bacteria capable of transferring DNA fragments [transfer DNA (T-DNA)] bearing functional genes into the host plant genome. This naturally occurring mechanism has been adapted by plant biotechnologists to develop genetically modified crops that today are grown on more than 10% of the world's arable land, although their use can result in considerable controversy. While assembling small interfering RNAs, or siRNAs, of sweet potato plants for metagenomic analysis, sequences homologous to T-DNA sequences from Agrobacterium spp. were discovered. Simple and quantitative PCR, Southern blotting, genome walking, and bacterial artificial chromosome library screening and sequencing unambiguously demonstrated that two different T-DNA regions (IbT-DNA1 and IbT-DNA2) are present in the cultivated sweet potato (Ipomoea batatas [L.] Lam.) genome and that these foreign genes are expressed at detectable levels in different tissues of the sweet potato plant. IbT-DNA1 was found to contain four open reading frames (ORFs) homologous to the tryptophan-2-monooxygenase (iaaM), indole-3-acetamide hydrolase (iaaH), C-protein (C-prot), and agrocinopine synthase (Acs) genes of Agrobacterium spp. IbT-DNA1 was detected in all 291 cultigens examined, but not in close wild relatives. IbT-DNA2 contained at least five ORFs with significant homology to the ORF14, ORF17n, rooting locus (Rol)B/RolC, ORF13, and ORF18/ORF17n genes of A. rhizogenes. IbT-DNA2 was detected in 45 of 217 genotypes that included both cultivated and wild species. Our finding, that sweet potato is naturally transgenic while being a widely and traditionally consumed food crop, could affect the current consumer distrust of the safety of transgenic food crops.

  20. A survey of on-farm seed production practices of sorghum ...

    African Journals Online (AJOL)

    Sorghum (Sorghum bicolor L. Moench) is one of the important cereal crops utilized worldwide for human food, animal feed and to a lesser extent as a raw material in commercial food industries. The crop is a strategic commodity for food security, particularly in harsh environments. In Kenya, sorghum is an important crop ...

  1. Effect of organic and inorganic supply on Al detoxification and sorghum crop yield in ferralitic soils from Burundi

    Directory of Open Access Journals (Sweden)

    Van den Berghe, C.

    1992-01-01

    Full Text Available A methodology has been tested to evaluate the agronomic effectiveness of organic fertilizers in combination or not with chemical fertilizers and lime on a ferralitic soil in Burundi. The experiments have shown that the samples obtained by weighing the mixed organic matter with water to obtain a paste are representative and the method by comparison of the regression coefficients after linear transformation of the response curve can also be applied on organic sources, when freshly applied. There were no significant differences at the 5 % level at 1 or 3 months between the sources for dry matter production of sorghum with and without fertilizer. Only when lime was applied these differences existed. For farmyard manure the effects of farmyard manure and farmyard manure * fertilizer on Al detoxification were significantly different at the 10 % level. All sources showed only differences on Al detoxification at the 5 % level when lime was applied.

  2. Sorghum stem yield and soluble carbohydrates under different ...

    African Journals Online (AJOL)

    The aim of this study was to select the most suitable cultivar for salty land in this geographical area. Two sweet sorghum cultivars (Keller and Sofra) and one grain sorghum cultivar (Kimia) were grown in greenhouse benches under four salinity levels of 2, 4, 8 and 12 dSm-1 to evaluate the effects of salinity on stem yield and ...

  3. Nutritional value and sensory properties of sorghum gruel enriched ...

    African Journals Online (AJOL)

    Background: Sorghum gruel is a breakfast cereal that is commonly eaten by adults and also used as complementary food for infants in southwest Nigeria. Objective: To determine the nutritional value and sensory properties of sorghum gruel enriched with date palm and sweet potato flour using different proportions.

  4. Studies on the Production of Bio-Ethanol from Brown Guinea Corn (Sorghum Bicolor L.), Pearl Millet (Penisetum Typhoides) and Sweet Potato (Ipomea Batatas) Using Modified Method

    OpenAIRE

    Ubwa, Simon Terver; Abah, J.; Igbum, O.G.; Nwadinigwe, C.A.

    2016-01-01

    This study determined mean volume distillate, percentage purity and specific gravity of bio-ethanol produced by the modification of the methods of Benue Brewery Limited (BBL), Makurdi and that of Mathewson using guinea corn, pearl millet and sweet potato as feedstocks. The modified reaction pathway yielded bio-ethanol of significantly (P < 0.01) higher mean volume distillate and percentage purity. Pearl millet feedstock yielded the highest mean volume distillate (98.00cm3) while gu...

  5. Chemical composition and nutritive value of South African sorghum ...

    African Journals Online (AJOL)

    Mabelebele, Monnye

    2015-07-20

    Jul 20, 2015 ... Abstract. Sorghum (Sorghum bicolor (L.) Moench) is the fifth most important grain crop after wheat, rice, maize and barley. It is cultivated for food and feed in America, Asia, Australia and Africa. Newly developed sorghum varieties should be evaluated for their suitability as food and feed. The physical ...

  6. Mapping and characterisation of the sorghum cell suspension ...

    African Journals Online (AJOL)

    Here we reported the first secretomic study of sorghum (Sorghum bicolor), a naturally drought tolerant cereal crop. In this study, we used a gel-based proteomic approach in combination with mass spectrometry to separate and identify proteins secreted into the culture medium of sorghum cell suspensions, a first step ...

  7. Accelerated aging in sorghum sacarino seeds Sorghum bicolor (L. Moench

    Directory of Open Access Journals (Sweden)

    Cristiane Deuner

    2017-07-01

    Full Text Available Saccharin sorghum is cultivated from seeds, requiring adequate production, harvesting and drying techniques to ensure the availability of quality seed and, therefore. The objective was to evaluate the initial quality by studying a more adequate methodology of the accelerated aging test for the evaluation of the physiological potential of sorghum seeds. The research was conducted in the Laboratory of Seed Analysis of the Department of Plant Science, Federal University of Pelotas, in Pelotas, Rio Grande do Sul. A completely randomized experimental design with 4 replicates was used. Four lots of sweet sorghum seeds were used. First we assessed the quality of the seeds by the following tests: water content, germination, first count and emergency field. Following evaluation of initial quality, lots were submitted to the traditional aging test and use saturated saline, in periods of 12, 24, 48, 72, 96 and 120 hours at 41 °C. Exposure of seeds for 24 hours at 41 °C in accelerated aging with saturated NaCl and use for 48h at 41 °C in traditional accelerated aging are suitable to differentiate batches of sweet sorghum seeds.

  8. Mapping of shoot fly tolerance loci in sorghum using SSR markers

    Indian Academy of Sciences (India)

    Abstract. Sorghum (Sorghum bicolor (L.) Moench) is one of the most important crops in the semiarid regions of the world. One of the important biotic constraints to sorghum production in India is the shoot fly which attacks sorghum at the seedling stage. Identification of the genomic regions containing quantitative trait loci ...

  9. Evaluation of the multi-seeded (msd) mutant of sorghum for ethanol production

    Science.gov (United States)

    Grain sorghum [Sorghum bicolor (L.) Moench], a cost effective crop in semiarid regions, is an underestimated supplement to corn in starch based ethanol production. Twenty three multi-seeded (msd) mutant sorghums and one wild type sorghum BTx623 were evaluated for ethanol production and effect of che...

  10. Water Use and Quality Footprints of Biofuel Crops in Florida

    Science.gov (United States)

    Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.

    2013-12-01

    The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the

  11. Advances in sorghum genetic mapping with implications for sorghum improvement

    International Nuclear Information System (INIS)

    Lee, M.

    1998-01-01

    Despite the importance of the sorghum crop, comprehensive genetic characterization has been limited. Therefore, the primary goal of this research program was to develop basic genetic tools to facilitate research in the genetics and breeding of sorghum. The first phase of this project consisted of constructing a genetic map based on restriction fragment length polymorphisms (RFLPs). The ISU sorghum map was created through linkage analysis of 78 F2 plants of an intraspecific cross between inbred CK60 and accession PI229828. Subsequent mapping, efforts in several labs have enriched the sorghum map to the point where it now contains over 1,500 loci defined by RFLPs and many others defined by mutant phenotypes and QTLs. The ISU map consists of 201 loci distributed among 10 linkage groups covering 1299 cM. Comparison of sorghum and maize RFLP maps on the basis of common sets of DNA probes revealed a high degree of conservation as reflected by homology, copy number, and colinearity. Examples of conserved and rearranged locus orders were observed. The same sorghum population was used to map genetic factors (mutants and QTLS) for several traits including vegetative and reproductive morphology, maturity, insect, and disease resistance. Four QTLs for plant height, an important character for sorghum adaptation in temperate latitudes for grain production, were identified in a sample of 152 F2 plants whereas 6 QTLs were detected among their F3 progeny. These observations and assessments of other traits at 4 QTLs common to F2 plants and their F3 progeny indicate some of these regions correspond to loci (dw) previously identified on the basis of alleles with highly qualitative effects. Four of the six sorghum plant height QTLs seem to be orthologous to plant height QTLs in maize. Other possible instances of orthologous QTLs included regions for maturity and tillering. These observations suggest that the conservation of the maize and sorghum genomes encompasses sequence homology

  12. The effect of cover crop and crop rotation on soil water storage and on sorghum yield Efeito de cultura de cobertura e de rotação de cultura no armazenamento de água do solo e no rendimento de sorgo

    Directory of Open Access Journals (Sweden)

    Demóstenes Marcos Pedrosa de Azevedo

    1999-03-01

    Full Text Available Crop rotation and cover crop can be important means for enhancing crop yield in rainfed areas such as the lower Coastal Bend Region of Texas, USA. A trial was conducted in 1995 as part of a long-term cropping experiment (7 years to investigate the effect of oat (Avena sativa L. cover and rotation on soil water storage and yield of sorghum (Sorghum bicolor L.. The trial design was a RCB in a split-plot arrangement with four replicates. Rotation sequences were the main plots and oat cover crop the subplots. Cover crop reduced sorghum grain yield. This effect was attributed to a reduced concentration of available soil N and less soil water storage under this treatment. By delaying cover termination, the residue with a high C/N acted as an N sink through competition and/or immobilization instead of an N source to sorghum plants. Crop rotation had a significantly positive effect on sorghum yield and this effect was attributed to a significantly larger amount of N concentration under these rotation sequences.Rotação de cultura e cultura de cobertura constituem importantes meios para melhoria do rendimento de culturas em áreas de sequeiro como a região "Coastal Bend" do Estado do Texas. Um ensaio foi conduzido em 1995, como parte de um experimento de longa duração (7 anos, com o objetivo de investigar o efeito da aveia (Avena sativa L. como cultura de cobertura, e da rotação de cultura, no armazenamento da água do solo e no rendimento do sorgo (Sorghum bicolor L.. O delineamento experimental adotado foi o de blocos ao acaso, em parcelas subdivididas, com quatro repetições. As rotações foram alocadas nas parcelas, e a cultura de cobertura, nas subparcelas. A cultura de cobertura reduziu o rendimento do sorgo. Este efeito foi atribuído à reduzida concentração de N disponível do solo. Por atraso no extermínio e incorporação da aveia, seu resíduo, com elevada relação C/N, atuou como dreno, pela imobilização, em lugar de ser fonte

  13. Comparison of Chemical and Degradability Characteristics of Green Forage and Silage of Sorghums Varieties with Corn Using In vitro

    Directory of Open Access Journals (Sweden)

    A. Hedayatipour

    2012-10-01

    Full Text Available The chemical and fermentative parameters of three fresh forages and silages of sorghum including Sweet, Pegah and Speedfeed varieties were compared with corn using in vitro method, also degradability coefficients of forages and silages were determined by in situ method. Forages were planted in the same condition and harvested in soft dough stage, then ensilaged in four replicates for each time of 30, 60 and 90 days of preservation in mini silos. Buffering capacity in green Sweet sorghum was lower than corn and Speedfeed, and acid detergent fiber and water soluble carbohydrates respectively were significantly highest and lowest in fresh forage of Speedfeed sorghum. In time of 60 days, percent of acid detergent lignin of corn silage was lower than Sweet and Speedfeed sorghum silages; similarly, residual water soluble carbohydrate was lowest in corn silage. The lactate Concentration in corn and Pegah sorghums was higher than Sweet and Speedfeed silages. In corn and Sweet sorghum silages, Contents of acetic acid and ammonium nitrogen were highest and lowest, respectively. In nylon bag experiment, Degradation rate of corn and Pegah sorghum forages were significantly higher than Sweet and Speedfeed sorghums that cause to more effective degradability with passage rate of 0.08 in this forages. Also, the slowly degradation coefficient of corn silage was higher than sorghums silages. In conclusion, Speedfeed sorghum forage is not suitable for making silage in comparison others, and corn silage had more potential of degradability.

  14. Accumulation of stem sugar and its remobilisation in response to drought stress in a sweet sorghum genotype and its near-isogenic lines carrying different stay-green loci.

    Science.gov (United States)

    Ghate, T; Deshpande, S; Bhargava, S

    2017-05-01

    Near isogenic lines (NILs) of sweet sorghum genotype S35 into which individual stay green loci were introgressed, were used to understand the contribution of Stay green loci to stem sugar accumulation and its remobilization under drought stress exposure. Sugar and starch content, activities of sugar metabolism enzymes and levels of their expression were studied in the 3rd (source) leaf from panicle and the 5th (sugar storing) internode of the three lines, in irrigated plants and in plants exposed to a brief drought exposure at the panicle emergence stage. Annotation of genes in the respective Stay green loci introgressed in the NILs was carried out using bioinformatics tools. The leaves of NILs accumulated more photoassimilates and the internodes accumulated more sugar, as compared to the parent S35 line. Drought stress exposure led to a decrease in the starch and sugar levels in leaves of all three lines, while an increase in sugar levels was observed in internodes of the NILs. Sugar fluxes were accompanied by alterations in the activities of sugar metabolizing enzymes as well as the expression of genes related to sugar metabolism and transport. Remobilization of sugars from the stem internodes was apparent in the NILs when subjected to drought stress, since the peduncle, which supports the panicle, showed an increase in the sugar content, even when photoassimation in source leaves was reduced. Several genes related to carbohydrate metabolism were located in the Stay green loci, which probably contributed to variation in the parameters studied. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Genetic diversity study of sorghum (Sorghum bicolor (L. Moenc genotypes, Ethiopia

    Directory of Open Access Journals (Sweden)

    Tesfaye Kassahun

    2017-12-01

    Full Text Available Sorghum bicolor is one of the most important cereal crops around the world, particularly in Africa, highly cultivated for dietary staple. For this reason, a good knowledge and usage of this genetic resource in sorghum accessions is highly vital for improving crop quality. Analysis of genetic variability among the accessions will enable accurate results in breeding. The research design used was augmented design, which is common in many gene banks. This research finding would be used later by plant breeders to select best performers for further evaluation of the crop and obtain a new variety of sorghum.

  16. A survey of sorghum downy mildew in sorghum in the Sudano ...

    African Journals Online (AJOL)

    An extensive survey was conducted across the 13 states constituting the Sudan and Sahel savanna agro-ecological zones of Nigeria to determine the occurrence and distribution of sorghum downy mildew in sorghum during the 2008 growing season. The survey was conducted at two different stages of the crop ...

  17. (Lablab purpureus (L.) Sweet)

    Indian Academy of Sciences (India)

    2014-04-16

    Apr 16, 2014 ... and Byregowda 2005) and used as vegetable (immature green soft pods and immature grains) and forage (NRC. 2006). It is cultivated either as a pure crop or intercropped with finger millet, groundnut, castor, corn, pearl millet or sorghum. In Karnataka, dolichos bean is grown in an area of 85,000 hectares ...

  18. Establishment of sorghum cell suspension culture system for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-03-18

    Mar 18, 2008 ... Key words: Sorghum, proteomics, callus, cell suspension cultures, total soluble protein, secretome. INTRODUCTION. Sorghum, a cereal crop native to Africa, is drought- tolerant, surviving periods of water deficit (Rosenow et al., 1983). The crop is grown in the semi-arid regions of. Africa and Asia primarily ...

  19. Assessment of genetic diversity in sorghum accessions using ...

    African Journals Online (AJOL)

    uwerhiavwe

    3Agricultural Research Council - Grain Crops Institute, Private Bag X1251, Potchefstroom 2520, South Africa. Accepted 21 February, 2013. Amplified ... the main areas of sorghum domestication (Deu et al.,. 1994). Assessment of sorghum ... characterise genetic diversity within and among crop species and these will help in ...

  20. Development of Perennial Grain Sorghum

    Directory of Open Access Journals (Sweden)

    Stan Cox

    2018-01-01

    Full Text Available Perennial germplasm derived from crosses between Sorghum bicolor and either S. halepense or S. propinquum is being developed with the goal of preventing and reversing soil degradation in the world’s grain sorghum-growing regions. Perennial grain sorghum plants produce subterranean stems known as rhizomes that sprout to form the next season’s crop. In Kansas, breeding perennial sorghum involves crossing S. bicolor cultivars or breeding lines to S. halepense or perennial S. bicolorn × S. halepense breeding lines, selecting perennial plants from F2 or subsequent populations, crossing those plants with S. bicolor, and repeating the cycle. A retrospective field trial in Kansas showed that selection and backcrossing during 2002–2009 had improved grain yields and seed weights of breeding lines. Second-season grain yields of sorghum lines regrowing from rhizomes were similar to yields in the first season. Further selection cycles have been completed since 2009. Many rhizomatous lines that cannot survive winters in Kansas are perennial at subtropical or tropical locations in North America and Africa. Grain yield in Kansas was not correlated with rhizomatousness in either Kansas or Uganda. Genomic regions affecting rhizome growth and development have been mapped, providing new breeding tools. The S. halepense gene pool may harbor many alleles useful for improving sorghum for a broad range of traits in addition to perenniality.

  1. Exploring the benefits of growing bioenergy crops to activate lead-contaminated agricultural land: a case study on sweet potatoes.

    Science.gov (United States)

    Cheng, Shu-Fen; Huang, Chin-Yuan; Chen, Kuo-Lin; Lin, Sheng-Chien; Lin, Yung-Cheng

    2015-03-01

    Phytoremediation is the most environmentally friendly remediation technology for heavy metal contaminated soil. However, the phytoremediation approach requires a long time to yield results, and the plants used must be economically profitable to maintain the sustainability of the process. Because high levels of bioethanol can be produced from sweet potatoes, an experiment was conducted by planting sweet potatoes in a lead-contaminated site to observe their growth and lead-uptake capacity, thereby enabling the evaluation of the phytoremediation efficiency of sweet potatoes. The lead content in the soil was approximately 6000 mg kg(-1), and the phytoavailable Pb content was 1766 mg kg(-1). Three starch-rich sweet potato varieties, Tainung No. 10 (TNG-10), Tainung No. 31 (TNG-31), and Tainung No. 57 (TNG-57), were used in the experiment. The results indicated that TNG-10, TNG-31, and TNG-57 had fresh root tuber yields of 94.5, 133.0, and 47.5 ton ha(-1) year(-1), produced 9450, 13,297, and 4748 L ha(-1) year(-1) of bioethanol, and removed 2.68, 7.73, and 3.22 kg ha(-1) year(-1) of lead, respectively. TNG-31 yielded the highest bioethanol production and the highest lead removal in the lead-contaminated site. Therefore, implementing phytoremediation by planting TNG-31 would decrease lead content and generate income, thereby rendering the sustainable and applicable activation of contaminated soil possible.

  2. Whole-Genome Analysis of Candidate genes Associated with Seed Size and Weight in Sorghum bicolor Reveals Signatures of Artificial Selection and Insights into Parallel Domestication in Cereal Crops.

    Science.gov (United States)

    Tao, Yongfu; Mace, Emma S; Tai, Shuaishuai; Cruickshank, Alan; Campbell, Bradley C; Zhao, Xianrong; Van Oosterom, Erik J; Godwin, Ian D; Botella, Jose R; Jordan, David R

    2017-01-01

    Seed size and seed weight are major quality attributes and important determinants of yield that have been strongly selected for during crop domestication. Limited information is available about the genetic control and genes associated with seed size and weight in sorghum. This study identified sorghum orthologs of genes with proven effects on seed size and weight in other plant species and searched for evidence of selection during domestication by utilizing resequencing data from a diversity panel. In total, 114 seed size candidate genes were identified in sorghum, 63 of which exhibited signals of purifying selection during domestication. A significant number of these genes also had domestication signatures in maize and rice, consistent with the parallel domestication of seed size in cereals. Seed size candidate genes that exhibited differentially high expression levels in seed were also found more likely to be under selection during domestication, supporting the hypothesis that modification to seed size during domestication preferentially targeted genes for intrinsic seed size rather than genes associated with physiological factors involved in the carbohydrate supply and transport. Our results provide improved understanding of the complex genetic control of seed size and weight and the impact of domestication on these genes.

  3. Sorghum used to fodder production in dry farming

    Directory of Open Access Journals (Sweden)

    G. Ferruzzi

    2010-04-01

    Full Text Available In Italy water deficient increase forward to cultivate resistant crops for forage production. In the present research it has been studied the opportunity of using 2 varieties of sorghum: the “Sweet Creek”, used as green forage and for silage and the “True”, with thinner stalks, used as hay. The fodder production and the dhurrin content during the vegetative phase of the 2 varieties were recorded. Production and chemical characteristics of green and preserved fodders (hay and silage were determined; moreover the nutritive value and the in vitro digestibility of DM were measured. Results confirm the good adaptation of the sorghum to the water limited conditions as those ones in which the test has been carried out; green and preserved fodders yield were high, however during the hay harvest problems due to the different drying dynamics of leaves and stalks were found. The dhurrin content of these two varieties, even in the young phase, allows the use for grazing of the regrown, which have good bunching.

  4. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Salvatore L. Cosentino

    2008-06-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  5. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Giuseppina M. D’Agosta

    2011-02-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  6. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Capareda, Sergio [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; El-Halwagi, Mahmoud [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Hall, Kenneth R. [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Holtzapple, Mark [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Searcy, Royce [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; Thompson, Wayne H. [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Baltensperger, David [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Myatt, Robert [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Blumenthal, Jurg [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previous findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum bioenergy yields

  7. Efeitos da água salina e da adubação azotada na composição foliar em macronutrientes e na produção do sorgo sacarino Influence of saline water and nitrogen application on leaf nutrient concentrations and yield of sweet sorghum

    Directory of Open Access Journals (Sweden)

    Mª Graça Serrão

    2011-07-01

    Full Text Available Avaliou-se o efeito das combinações de quatro níveis diferenciados de N com três níveis de NaCl, veiculados ao solo pela água de rega, nas concentrações foliares de N, P, K, Ca, Mg e Na em sorgo sacarino (Sorghum bicolor ssp. saccharatum, em dois anos consecutivos de um ensaio instalado num Fluvissolo Êutrico, em Alvalade-Sado, provido de um sistema de rega gota-a-gota ("Fonte tripla linear". Pesquisaram-se relações entre os teores foliares dos nutrientes e a produção de matéria seca (caules, folhas + panículas e total e entre níveis de N e de NaCl e teores foliares médios de nutrientes. Foi a disponibilidade do azoto no solo que, mais do que a salinidade, afetou a absorção de nutrientes, com reflexo nos teores foliares e na produção. O teor foliar de N foi o melhor indicador na previsão da produção de caules do sorgo sacarino.We evaluated the influence of the combinations of four N levels with three NaCl levels, applied through irrigation, on leaf N, P, K, Ca, Mg, and Na concentrations of sweet sorghum (Sorghum bicolor ssp. saccharatum, in two consecutive years of an experiment established on a Eutric Fluvisol in Alvalade-Sado region, equipped with a drip irrigation system ("Triple Linear Source". The relationships between leaf nutrient concentrations and dry matter production (stems, leaves, and aerial biomass, and between N and NaCl levels and the leaf nutrient concentrations were also searched. It was nitrogen availability in soil that, more than salinity, affected nutrient uptake, with reflexes on the leaf concentrations and the yields. Leaf N concentration was the best indicator for predicting the stems production of sweet sorghum.

  8. Modifying lignin composition and content of sorghum biomass for improved bioenergy conversion

    Science.gov (United States)

    Sorghum (Sorghum bicolor) is an opportune crop for bioenergy due to its high yield potential, and lower nitrogen and water requirements. Transgenic constructs expressing monolignol biosynthetic genes under control of 35S promoter have been developed and used for sorghum transformation to examine the...

  9. Biological and water-use efficiencies of sorghum-groundnut intercrop

    African Journals Online (AJOL)

    In order to compare water-use efficiency of sole crops and intercrops, 2 experiments were conducted in 2 consecutive years with sorghum (Sorghum bicolor L. Moench) and groundnut (Arachis hypogaea L.) on a loamy, Grossarenic Paleudult. In a randomized block, split-plot design, sorghum (SS), groundnut (GG), ...

  10. Diversity, users' perception and food processing of sorghum: implications for dietary iron and zinc supply

    NARCIS (Netherlands)

    Kayodé, A.P.P.

    2006-01-01

    This thesis focuses on the diversity of sorghum and its post-harvest processing into food. We studied the contribution that sorghum can make to Fe and Zn intake by poor people in Africa, using the situation in Benin as a study context. The culinary and sensory characteristics of sorghum crops and

  11. The population structure of wild sorghum species in agro-ecological ...

    African Journals Online (AJOL)

    There is need to understand the genetic structure of wild sorghums that grow alongside cultivated traditional sorghum varieties in order to assess the potential effect of crop genes in wild populations. In this study, 175 wild sorghum samples were collected from 13 agroecological zones (AEZs) from three counties in Western ...

  12. Sorghum yield and associated satellite-derived meteorological ...

    African Journals Online (AJOL)

    Sorghum (Sorghum bicolor) yield for five seasons (2005/6 to 2009/10) from the Botswana Department of Crop Production Station in Pandamatenga, actual rainfall from the Botswana Meteorologial Services, and Normalised Difference Vegetation Index (NDVI) and Satellite Rainfall Estimates (RFEs) data from Famine Early ...

  13. Height growth and moisture distribution in Sorghum intercropped ...

    African Journals Online (AJOL)

    Growth and moisture distribution assessments of sorghum intercropped with Parkia, Leucaena and Gmelina on plinthustalf in the Southern Guinea Savanna Zone of Nigeria were carried out over four growing seasons. Compared to sole crop, reduced sorghum height (15 and 30 %) due to Gmelina was observed in the ...

  14. Potential of multiseeded mutant (msd) to boost sorghum grain yield

    Science.gov (United States)

    Seed number per plant is an important determinant of the grain yield in cereal and other crops. We have isolated a class of multiseeded (msd) sorghum (Sorghum bicolor L. Moench) mutants that are capable of producing three times the seed number and twice the seed weight per panicle as compared with t...

  15. Performance evaluation of biomass sorghum in Hawaii and Texas

    Science.gov (United States)

    Although biomass sorghum [Sorghum bicolor (L.) Moench] has been identified as a high yielding bioenergy feedstock crop on the continental USA, there is lack of conclusive data on its performance in HI. The objective of this study was to (i) determine the adaptability and productivity of two biomass...

  16. Herbaceous energy crops: a general survey and a microeconomic analysis

    International Nuclear Information System (INIS)

    Caserta, G.

    1995-01-01

    Liquid fuels (bioethanol and biooil) derived from herbaceous crops are considered beneficial for the environment and human health especially if they are used as fuels for motor vehicles. The choice of the most suited crop to be cultivated for liquid biofuel production depends on many factors; the most important being the economic convenience for farmers to cultivate the new energy crop in place of the traditional ones. In order to analyse the conditions which favour the cultivation and selling of specific energy crops, a simple methodology is proposed, based on the calculation of the ''threshold price'' of the energy crop products. The ''threshold price'' is the minimum price at which the primary products of the energy crop, i.e., roots, tubers, seeds, etc., must be sold in order to obtain a gross margin equal to that usually obtained from the traditional crop which is replaced by the energy crop. As a case-study, this methodology has been applied to twelve Italian provinces where the cultivation of six energy crops, both in productive lands and set-aside lands, is examined. The crops considered are sugar beet, sweet sorghum and topinambour, useful for bioethanol production; and rapeseed, sunflower and soya, which are usually employed for the production of biooil. (Author)

  17. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2016-01-01

    Full Text Available Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass production potential, excellent nitrogen usage efficiency, wide adaptability, drought resistance, and water lodging tolerance and salinity resistance. The ability to withstand severe drought conditions and its high water usage efficiency make sorghum a good renewable feedstock suitable for cultivation in arid regions, such as the southern US and many areas in Africa and Asia. Sorghum varieties include grain sorghum, sweet sorghum, and biomass sorghum. Grain sorghum, having starch content equivalent to corn, has been considered as a feedstock for ethanol production. Its tannin content, however, may cause problems during enzyme hydrolysis. Sweet sorghum juice contains sucrose, glucose and fructose, which are readily fermentable by Saccharomyces cerevisiae and hence is a good substrate for ethanol fermentation. The enzyme invertase, however, needs to be added to convert sucrose to glucose and fructose if the juice is used for production of industrial chemicals in fermentation processes that employ microorganisms incapable of metabolizing sucrose. Biomass sorghum requires pretreatment prior to enzymatic hydrolysis to generate fermentable sugars to be used in the subsequent fermentation process. This report reviews the current knowledge on bioconversion of sorghum to fuels and chemicals and identifies areas that deserve further studies.

  18. Determinants of sweet potato value addition among smallholder ...

    African Journals Online (AJOL)

    Sweet potato is an important food security promoted crop in Nigeria. The recognition of its relative health benefits has resulted in fresh consumption as well as the utilization of processed products such as sweet potato chips, fries and pre-cut, flour, and pureed sweet potatoes. This study examined the determinants of sweet ...

  19. SILAGE QUALITY OF CORN AND SORGHUM ADDED WITH FORAGE PEANUTS

    Directory of Open Access Journals (Sweden)

    WALKÍRIA GUIMARÃES CARVALHO

    2016-01-01

    Full Text Available Corn and sorghum are standard silage crops because of their fermentative characteristics. While corn and sorghum silages have lower crude protein (CP contents than other crops, intercropping with legumes can increase CP content. Furthermore, one way to increase CP content is the addition of legumes to silage. Consequently, the research objective was to evaluate the fermentative and bromatological characteristics of corn (Zea mays and sorghum (Sorghum bicolor silages added with forage peanuts (Arachis pintoi. The experimental design was completely randomized with four replicates. The treatments consisted of corn silage, sorghum silage, forage peanut silage, corn silage with 30% forage peanut, and sorghum silage with 30% forage peanut. The results showed that the corn and sorghum added with peanut helped to improve the silage fermentative and bromatological characteristics, proving to be an efficient technique for silage quality. The forage peanut silage had lower fermentative characteristics than the corn and sorghum silages. However, the forage peanut silage had a greater CP content, which increased the protein contents of the corn and sorghum silages when intercropped with forage peanuts.

  20. Harnessing sorghum and millet biotechnology for food and health

    CSIR Research Space (South Africa)

    O'Kennedy, MM

    2006-11-01

    Full Text Available species. The current state of sorghum and millet transformation technology is summarised and applications in the improvement of nutritional quality and the resistance to pathogens and pests for crops grown in Africa and Asia is discussed. Regulatory...

  1. Energy efficiency of crops grown for biogas production in a large-scale farm in Poland

    International Nuclear Information System (INIS)

    Jankowski, Krzysztof Józef; Dubis, Bogdan; Budzyński, Wojciech Stefan; Bórawski, Piotr; Bułkowska, Katarzyna

    2016-01-01

    This article presents the results of a 3-year field study into the yield and energy efficiency of maize, sweet sorghum, giant miscanthus, Amur silver grass, Virginia fanpetals and alfalfa with timothy grass grown in a farm in north-eastern Poland. The species with the highest DMY (dry matter yield) were the giant miscanthus (25.3 Mg ha −1 y −1 ) and maize (22.7 Mg ha −1 y −1 ). The production of 1 Mg of giant miscanthus DMY was least energy-intensive (0.74 GJ). In the remaining species, the energy inputs required to produce 1 Mg of DMY ranged from 1.12 to 1.40 GJ (maize, Amur silver grass, sweet sorghum) to 2.66 GJ (Virginia fanpetals). Giant miscanthus and maize were characterized by the highest energy outputs of 468 and 404 GJ ha −1 y −1 , respectively. The biomass of the remaining crops accumulated 31–68% less energy. In the climate of north-eastern Poland, the most energy-efficient crop was giant miscanthus (25.0), followed by maize (15.8), Amur silver grass (14.7) and sweet sorghum (12.5), whereas the lowest values of the energy efficiency ratio were noted in alfalfa with timothy grass (10.0) and Virginia fanpetals (7.0). - Highlights: • Giant miscanthus and maize produced high DMY (25.3 and 22.7 Mg ha −1 y −1 ). • Giant miscanthus and maize delivered high energy outputs (468 and 404 GJ ha −1 y −1 ). • The energy input per 1 Mg of giant miscanthus DMY was determined at 0.74 GJ. • In the others crops, the production of 1 Mg DMY required 1.5–3.6-times more energy. • The highest energy efficiency ratio was obtained for giant miscanthus production.

  2. RAF/5/071: Enhancing Crop Nutrition and Soil and Water Management and Technology Transfer in Irrigated Systems for Increased Food Production and Income Generation (AFRA)

    International Nuclear Information System (INIS)

    Sijali, I.

    2017-01-01

    The overall objective is to enhance food security, income and the resilience of smallholder farmers through climate change adaptive, mitigation and coping strategies and specific objective to Improve water and nitrogen use efficiency under different irrigated cropping systems using quantifying nuclear technique. Technologies perfected at KALRO transferred to pastoral communities (Maasai land). Technologies included drip irrigation systems for vegetables and orchards, water harvesting ponds dam lining, Solar pump, greenhouse management techniques and introduction of new crops such as sweet potatoes, green grams and sorghums. A low-cost solar-powered irrigation pump has been developed by on-station testing and demonstration was done for a small solar pump

  3. EVALUATION OF GRAIN SORGHUM CULTIVARS FOR DOUBLE CROPPING IN THE SOUTHWEST OF GOIÁS STATE, BRAZIL AVALIAÇÃO DE CULTIVARES DE SORGO GRANÍFERO NA SAFRINHA NO SUDOESTE DO ESTADO DE GOIÁS

    Directory of Open Access Journals (Sweden)

    Eduardo Bezerra de Morães

    2009-03-01

    Full Text Available

    Sorghum is a crop of great importance for double cropping, in the Brazilian Central-West region. Within this region, in the Southwestern Goiás State, a research was conducted to select sorghum (Sorghum bicolor (L. Moench cultivars, in the municipalities of Montividiu, Rio Verde, and Santa Helena de Goiás. A randomized blocks design, with four replications, was used. The grain sorghum cultivars tested were: BR 304, 741, 822, Catuy, and the experimental hybrid V 00069. The cultivars were sown on March 5, 2005. The evaluated characteristics were: yield, weight of thousand grains, plant height, and flowering and maturation dates. The results showed the interaction genotype x environment for all evaluated characteristics. The region of Montividiu presented better potential for sorghum grain production. Early flowering and harvest allowed higher grain yields.

     

  4. Classification of sorghum germplasm accessions using multivariete ...

    African Journals Online (AJOL)

    Classification of sorghum germplasm accessions using multivariete methods. I E Ezeaku, S C Gupta, V R Prabhakar. Abstract. (African Crop Science Journal 1999 7(1): 97-108). http://dx.doi.org/10.4314/acsj.v7i1.27782 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors ...

  5. Characterization of biochemical behavior of sorghum ( Sorghum ...

    African Journals Online (AJOL)

    The aim of this research was to characterize the biochemical behavior of sorghum plants under saline stress using multivariate statistical analysis methods for efficient management of Sorghum bicolor [Moench.]). The experimental design was completely randomized design composed of three saline concentrations (0, 1.5 ...

  6. Sweet Stuff

    Science.gov (United States)

    Williams, Kathryn R.

    2001-11-01

    Readers wanting to nibble some sweet stuff can find a sizable collection of Journal articles via an online search with "sugar" in the title field. The papers cover topics varying from structure and nomenclature, demonstrations, and experiments for laboratories at all levels, to the history and technology of commercial sugar production. A separate search using the title word "sweet" locates additional articles covering all types of sweeteners and models relating sweetness to chemical structure.

  7. Achievements and problems in the weed control in grain sorghum (Sorghum Bicolor Moench.

    Directory of Open Access Journals (Sweden)

    Gr. Delchev

    2017-09-01

    Full Text Available Abstract. Chemical control has emerged as the most efficient method of weed control. Herbicides combinations and tank mixtures of herbicides with adjuvants, fertilizers, growth regulators, fungicides, insecticides are more effective than when applied alone on sorghum crops. Their combined use often leads to high synergistic effect on yield. The use of herbicide antidotes for the treatment of seeds in sorghum is a safe way to overcome its high sensitivity to many herbicides. Data regarding herbicide for chemical control of annual graminaceous weeds in sorghum crops are quite scarce even worldwide. Problem is the persistence of some herbicides used in the predecessors on succeeding crops, which is directly related to the weather conditions during their degradation. Most of the information on sorghum relates to the conventional technology for weed control. There is no information about the new Concep technology in grain sorghum. A serious problem is also the volunteers of the Clearfield and Express sun sunflower. They have resistance to herbicides different from that of conventional sunflower hybrids. There is no information yet in scientific literature on control of these volunteers.

  8. Rate and Timing Effects of Growth Regulating Herbicides Applications on Grain Sorghum (Sorghum bicolor Growth and Yield

    Directory of Open Access Journals (Sweden)

    Thierry E. Besançon

    2016-01-01

    Full Text Available Dicamba and 2,4-D are among the most common and inexpensive herbicides used to control broadleaf weeds. However, different studies have pointed the risk of crop injury and grain sorghum yield reduction with postemergence applications of 2,4-D. No research data on grain sorghum response to 2,4-D or dicamba exists in the Southeastern United States. Consequently, a study was conducted to investigate crop growth and yield response to 2,4-D (100, 220, and 330 g acid equivalent ha−1 and dicamba (280 g acid equivalent ha−1 applied on 20 to 65 cm tall sorghum. Greater stunting resulted from 2,4-D applied at 330 g acid equivalent ha−1 or below 45 cm tall sorghum whereas lodging prevailed with 2,4-D at 330 g acid equivalent ha−1 and dicamba applied beyond 35 cm tall crop. Regardless of local environmental conditions, 2,4-D applied up to 35 cm tall did not negatively impact grain yield. There was a trend for yields to be somewhat lower when 2,4-D was applied on 45 or 55 cm tall sorghum whereas application on 65 cm tall sorghum systematically decreased yields. More caution should be taken with dicamba since yield reduction has been reported as early as applications made on 35 cm tall sorghum for a potentially dicamba sensitive cultivar.

  9. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    Dogaris, Ioannis; Gkounta, Olga; Mamma, Diomi; Kekos, Dimitris [National Technical Univ. of Athens, Zografou (Greece). Biotechnology Lab.

    2012-07-15

    Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16 % at pretreatment and 8 % at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2 g/100 g SB; 210 C; 10 min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and {beta}-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6 g/l or 84.7 % of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3 % and 89.6 %, respectively. (orig.)

  10. Fermentation substrate and forage from south Florida cropping sequences

    Energy Technology Data Exchange (ETDEWEB)

    Kalmbacher, R.S.; Martin, F.G.; Mislevy, P.

    1985-01-01

    Zea mays (maize), Sorghum bicolor (sorghum), Ipomoea batatas (Sweet potato), Helianthus tuberosus (Jerusalem artichoke) and Manihot esculenta (cassava) were grown as alcohol biomass crops in various sequences in 1981 and 1982, on a sandy, siliceous, hyperthermic, typic Haplaquod soil. Herbage yield and yield of non-fermentable by-products were measured as potential cattle feed. Grain produced from Z. mays followed by S. bicolor averaged 11.4 Mg/ha and was greater (P less than 0.05) than other graincrop sequences. Highest (P less than 0.05) root yields were from I. batatas (5.1 Mg/ha) in 1981 and M. esculenta (5.3 Mg/ha) in 1982. Total nonstructural carbohydrate was greatest for Z. mays/S. bicolor (6.0 Mg/ha) and Z. mays/I. batatas (6.8 Mg/ha) sequences. Crops of I. batatas and M. esculenta were hindered by high rainfall and poorly drained soil. Cropping sequences including Z. mays and S. bicolor produced more cattle feed, and they can be expected to produce more alcohol biomass with fewer cultural problems, on south-central Florida flatwoods soils. 20 references.

  11. Taxonomy Icon Data: sorghum [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available sorghum Sorghum bicolor Sorghum_bicolor_L.png Sorghum_bicolor_NL.png Sorghum_bicolor_S.png Sorghum_bicolor..._NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorghum+bicolor&t=L http://b...iosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorghum+bicolor&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorghum+bicolor...&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Sorghum+bicolor&t=NS ...

  12. Sweet Play

    Science.gov (United States)

    Leung, Shuk-kwan S.; Lo, Jane-Jane

    2010-01-01

    This article features Sweet play math, a "math by the month" activity that involves decorating and making sugar cubes. Teachers may want to substitute straws, paper squares, alphabet blocks, or such commercially made manipulatives as Unifix[R] cubes for the real sweets. Given no allergy concerns, teachers and students alike would enjoy some sweet…

  13. Sweet Conclusion

    Science.gov (United States)

    Shirley, Britt M.; Wooldridge, Barbara Ross; Camp, Kerri M.

    2012-01-01

    Jen Harrington is the owner and pastry chef of Sweet Conclusion, a bakery in Tampa, Florida. Most of Harrington's business comes from baking wedding cakes, but she has been attempting to attract customers to her retail bakery, where she sells cupcakes, pies, ice cream, and coffee. Nearly four years she opened Sweet Conclusion, the retail part of…

  14. Impact of various storage conditions on enzymatic activity, biomass components and conversion to ethanol yields from sorghum biomass used as a bioenergy crop.

    Science.gov (United States)

    Rigdon, Anne R; Jumpponen, Ari; Vadlani, Praveen V; Maier, Dirk E

    2013-03-01

    With increased mandates for biofuel production in the US, ethanol production from lignocellulosic substrates is burgeoning, highlighting the need for thorough examination of the biofuel production supply chain. This research focused on the impact storage has on biomass, particularly photoperiod-sensitive sorghum biomass. Biomass quality parameters were monitored and included biomass components, cellulose, hemicellulose and lignin, along with extra-cellular enzymatic activity (EEA) responsible for cellulose and hemicellulose degradation and conversion to ethanol yields. Analyses revealed dramatic decreases in uncovered treatments, specifically reduced dry matter content from 88% to 59.9%, cellulose content from 35.3% to 25%, hemicellulose content from 23.7% to 16.0% and ethanol production of 0.20 to 0.02gL(-1) after 6months storage along with almost double EEA activities. In contrast, biomass components, EEA and ethanol yields remained relatively stable in covered treatments, indicating covering of biomass during storage is essential for optimal substrate retention and ethanol yields. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Comparative evaluation of different machines for seedbed for sorghum

    Science.gov (United States)

    Kashapov, N. F.; Nafikov, M. M.; Gazetdinov, M. Kh; Nafikova, M. M.; Nigmatzyanov, A. R.

    2017-09-01

    The purpose of research - selection of the optimal composition of agricultural equipment for seedbed preparation for sweet sorghum. Identified and disclosed to the essential characteristics of technology. Thus, innovation in relation to agribusiness - is a new technology, new equipment, new plant varieties, new fertilizers and plant protection products. A special place is occupied by technical-technological and production innovatsii. In order to optimize the total cost in the cultivation of sorghum it is recommended to review the composition of sowing complexes, in order to optimize the timing of sowing, as well as reducing the complexity of the implementation.

  16. Nutrient and carbohydrate partitioning in sorghum stover

    International Nuclear Information System (INIS)

    Powell, J.M.; Hons, F.M.; McBee, G.G.

    1991-01-01

    Sorghum [Sorghum bicolor (L.) Moench] stover has been demonstrated to be a potential biomass energy source. Complete aboveground crop removal, however, can result in soil degradation. Differential dry matter, nutrient, and carbohydrate partitioning by sorghum cultivars may allow management strategies that return certain parts to the field while removing other portions for alternative uses, such as energy production. A field study was conducted to determine N,P,K, nonstructural carbohydrate, cellulose hemicellulose, and lignin distributions in stover of three diverse sorghum cultivars of differing harvest indices. Determinations were based on total vegetative biomass; total blades; total stalks; and upper middle, and lower blades and stalks. Concentrations of N and P were higher in blades than stalks and generally declines from upper to lower stover parts. Large carbohydrate and lignin concentration differences were observed on the basis of cultivar and stover part. Greater nutrient partitioning to the upper third of the intermediate and forage-type sorghum stovers was observed as compared to the conventional grain cultivar. Stover carbohydrates for all cultivars were mainly contained in the lower two-thirds of the stalk fraction. A system was proposed for returning upper stover portion to soil, while removing remaining portions for alternative uses

  17. Characterization of genetic diversity of high temperature tolerance in sorghum

    Science.gov (United States)

    As global warming becomes inevitable, the sustainability of agricultural production in US and worldwide faces serious threat from extreme weather conditions, such as drought and elevated extreme temperatures (heat waves). Among cereal crops, sorghum is considered a versatile crop for semiarid area a...

  18. Proximate analysis of Sweet Potato Toasted Granules | Meludu ...

    African Journals Online (AJOL)

    Sweet potato is an important root crop in the food system of many African countries. The yield, nutrition and economic potential of sweet potato have been identified as very high. In this study, sweet potato was processed and toasted into granules. The proximate analysis performed on the toasted granules showed protein, ...

  19. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    Science.gov (United States)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  20. Bioactivity of flours of seeds of leguminous crops Pisum sativum ...

    African Journals Online (AJOL)

    Bioactivity of flours of seeds of leguminous crops Pisum sativum, Phaseolus vulgaris and Glycine max used as botanical insecticides against Sitophilus oryzae Linnaeus (Coleoptera: Curculionidae) on sorghum grains.

  1. Yield and Quality of Forage Sorghum and Different Amaranth Species (Amaranthus spp.) Biomass

    OpenAIRE

    Pospišil, Ana; Pospišil, Milan; Maćešić, Dubravko; Svečnjak, Zlatko

    2009-01-01

    The objective of investigations carried out on the experimental field of the Faculty of Agriculture, Zagreb, in 2002, 2003 and 2004 was to compare green mass and dry matter yields of forage sorghum and amaranth, and the nutritional value of these two crops at several development stages. Investigations included two amaranth cultivars: ‘1008’ (Amaranthus hypochondriacus L.) and ‘Koniz’ (Amaranthus hypochondriacus L. x Amaranthus hybridus L.), and forage sorghum, hybrid Grazer N (Sorghum bicolor...

  2. Estimation of in situ mating systems in wild sorghum (Sorghum ...

    Indian Academy of Sciences (India)

    Because transgenic sorghum (Sorghum bicolor L.) is being developed for Africa, we investigated the potential for transgenes to spread to conspecific wild/weedy sorghum populations in Ethiopia, which is considered the centre of origin of cultivated sorghum. In the current study, the extent of outcrossing, and uniparental and ...

  3. Sorghum as an alternative of cultivation to maize; Sorghumhirse als Anbaualternative zum Mais

    Energy Technology Data Exchange (ETDEWEB)

    Jaekel, Kerstin; Theiss, Markus; Poetzschke, Karen [Saechsisches Landesamt fuer Umwelt, Landwirtschaft und Geologie (LfULG), Dresden (Germany)] [and others

    2013-10-01

    Due to their high dry matter yield potential Sorghum bicolor and Sorghum bicolor x sudanense are well fitted as feedstock for biogas production. Similar to maize, both species show a high efficiency in their use of water (C4-plants). However, Sorghum has a higher drought tolerance in comparison with maize but is more sensitive to low temperatures. Hence a cultivation of Sorghum is recommendable especially in dry and relatively warm regions, including recultivated areas and even on loess soil, provided that the required temperatures are given. Due to the fact that Sorghum is not affected by the corn root worm, it also could gain relevance in regions were the cultivation of maize is restricted. Furthermore, Sorghum is usable as a catch crop as well as a main crop because of its variable sowing time. Catch crop cultivation, however, yields a significantly lower amount of dry matter and -quality which is a result of its shorter vegetation period. Owing to its higher crude fiber concentration Sorghum achieves a lower theoretically attainable specific methane yield (Weissbach) than maize. Thus only on rare occasions Sorghum does achieve methane yields per hectare that are comparable to maize. Eventually, the competitiveness of Sorghum greatly depends on provision of enhanced cultivars achieved through genetic improvement. (orig.)

  4. Use of sorghum straw (Sorghum bicolor for second generation ethanol production: pretreatment and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Wilton Soares Cardoso

    2013-01-01

    Full Text Available Agronomic biomass yields of forage sorghum BRS 655 presented similar results to other energy crops, producing 9 to 12.6 tons/ha (dry mass of sorghum straw. The objective of this study was to evaluate the lignocellulosic part of this cultivar in terms of its potential in the different unit processes in the production of cellulosic ethanol, measuring the effects of pretreatment and enzymatic hydrolysis. Three types of pre-treatments for two reaction times were conducted to evaluate the characteristics of the pulp for subsequent saccharification. The pulp pretreated by alkali, and by acid followed by delignification, attained hydrolysis rates of over 90%.

  5. Supplemental irrigation for grain sorghum production in the US eastern Coastal Plain

    Science.gov (United States)

    Grain sorghum is an important grain crop throughout the world and is generally considered drought tolerant. Recently, in the US eastern Coastal Plain region, there was an emphasis on increasing regional grain production with grain sorghum having an important role. The region soils have low water hol...

  6. Yield and forage value of a dual-purpose bmr-12 sorghum hybrid

    Science.gov (United States)

    Grain sorghum [Sorghum bicolor (L.) Moench] is an important crop for rainfed production systems with 2.7 million ha grown in the USA in 2013. The brown-midrib (bmr) mutations, especially bmr-12, have resulted in low stover lignin and high fiber digestibility without reducing grain yield in some sor...

  7. Conversion of sorghum stover into animal feed with white-rot fungi ...

    African Journals Online (AJOL)

    Treatment of crop residues with some species of white-rot fungi can enhance the nutritive value. After the fungal treatment of sorghum (Sorghum bicolor) stover with two white-rot fungi in a solid state fermentation, the chemical composition and in vitro digestibility of the resultant substrate was determined. The results show a ...

  8. Sowing rules for estimating rainfed yield potential of sorghum and maize in Burkina Faso

    NARCIS (Netherlands)

    Wolf, J.; Quattara, K.; Supit, I.

    2015-01-01

    To reduce the dependence on local expert knowledge, which is important for large-scale crop modelling studies, we analyzed sowing dates and rules for maize (Zea mays L.) and sorghum (Sorghum bicolor (L.)) at three locations in Burkina Faso with strongly decreasing rainfall amounts from south to

  9. Mineral content in grains of seven food-grade sorghum hybrids grown in Mediterranean environment

    Science.gov (United States)

    Sorghum is a major crop used for food, feed and industrial purposes worldwide. The objective of this study was to determine the mineral content in grains of seven white food-grade sorghum hybrids bred and adapted for growth in the central USA and grown in a Mediterranean area of Southern Italy. The ...

  10. Mutation breeding of pearl millet and sorghum

    International Nuclear Information System (INIS)

    Hanna, W.W.

    1982-01-01

    Pearl millet and sorghum are important food and feed crops grown mostly in semi-arid regions of the world. Although there exists a large amount of genetic variability in both species, it does not always satisfy the needs of plant breeders in improving varieties with regard to yield, quality, resistance or environmental adaptation. Plant breeders interested in using induced mutations for variety improvement will find in this review information about the techniques used by others. (author)

  11. Effect of the steam explosion pretreatment on enzymatic hydrolysis of eucalyptus wood and sweet sorghum baggages; Efecto del pretratamiento con explosion por vapor en la hidrolisis enzimatica de madera de eucalipto y bagazo de sorgo

    Energy Technology Data Exchange (ETDEWEB)

    Negro, M. J.; Martinez, J. M.; Manero, J.; Saez, F.; Martin, C.

    1991-07-01

    The effect of steam explosion treatment on the enzymatic hydrolysis yield of two different lignocellulosic substrates is studied. Raw materials have been pretreated in a pilot plant designed to work in batch and equipped with a reactor vessel of 2 1 working volume where biomass was heated at the desired temperature and then exploded and recovered in a cyclone. Temperatures from 190 to 230 degree celsius and reaction times from 2 to 8 min. have been assayed. The efficiency of the steam explosion treatment has been evaluated on the composition of the lignocellulosic materials as well as on their enzymatic hydrolysis yield using a cellulolytic complex from T. reesel. Results show a high solubilization rate of hemicelluloses and variable losses of cellulose and lignin depending on the conditions tested. Enzymatic hydrolysis yields of both substrates experimented remarkable increments, corresponding the highest values obtained to 210 degree celsius; 2 min. and 21O degree celsius; 4 min. for sorghum bagasse and eucalyptus wood respectively. (Author) 13 refs.

  12. Folksong based appraisal of bioecocultural heritage of sorghum (Sorghum bicolor (L. Moench: A new approach in ethnobiology

    Directory of Open Access Journals (Sweden)

    Mekbib Firew

    2009-07-01

    Full Text Available Abstract Background Sorghum is one of the main staple crops for the world's poorest and most food insecure people. As Ethiopia is the centre of origin and diversity for sorghum, the crop has been cultivated for thousands of years and hence the heritage of the crop is expected to be rich. Folksong based appraisal of bioecocultural heritage has not been done before. Methods In order to assess the bioecocultural heritage of sorghum by folksongs various research methods were employed. These included focus group discussions with 360 farmers, direct on-farm participatory monitoring and observation with 120 farmers, and key informant interviews with 60 farmers and development agents. Relevant secondary data was also collected from the museum curators and historians. Results The crop is intimately associated with the life of the farmers. The association of sorghum with the farmers from seed selection to utilization is presented using folksongs. These include both tune and textual (ballad stories or poems types. Folksongs described how farmers maintain a number of varieties on-farm for many biological, socio-economic, ecological, ethnological and cultural reasons. Farmers describe sorghum as follows: Leaf number is less than twenty; Panicle hold a thousand seeds; a clever farmer takes hold of it. In addition, they described the various farmers' varieties ethnobotanically by songs. The relative importance of sorghum vis-à-vis others crops is similarly explained in folksong terms. Conclusion The qualitative description of farmers' characterisation of the crop systems based on folksongs is a new system of appraising farmers' bioecocultural heritage. Hence, researchers, in addition to formal and quantitative descriptions, should use the folksong system for enhanced characterisation and utilization of bioecocultural heritages. In general, the salient characteristics of the folksongs used in describing the bioecocultural heritages are their oral traditions

  13. Rate and Timing Effects of Growth Regulating Herbicides Applications on Grain Sorghum (Sorghum bicolor) Growth and Yield

    OpenAIRE

    Thierry E. Besançon; Ranjit Riar; Ronnie W. Heiniger; Randy Weisz; Wesley J. Everman

    2016-01-01

    Dicamba and 2,4-D are among the most common and inexpensive herbicides used to control broadleaf weeds. However, different studies have pointed the risk of crop injury and grain sorghum yield reduction with postemergence applications of 2,4-D. No research data on grain sorghum response to 2,4-D or dicamba exists in the Southeastern United States. Consequently, a study was conducted to investigate crop growth and yield response to 2,4-D (100, 220, and 330 g acid equivalent ha−1) and dicamba (2...

  14. Incorporating a Sorghum Habitat for Enhancing Lady Beetles (Coleoptera: Coccinellidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available Lady beetles (Coleoptera: Coccinellidae prey on insect pests in cotton. The objective of this 2 yr on-farm study was to document the impact of a grain sorghum trap crop on the density of Coccinellidae on nearby cotton. Scymnus spp., Coccinella septempunctata (L., Hippodamia convergens Guérin-Méneville, Harmonia axyridis (Pallas, Coleomegilla maculata (De Geer, Cycloneda munda (Say, and Olla v-nigrum (Mulsant were found in sorghum over both years. Lady beetle compositions in sorghum and cotton and in yellow pyramidal traps were similar. For both years, density of lady beetles generally was higher on cotton with sorghum than on control cotton. Our results indicate that sorghum was a source of lady beetles in cotton, and thus incorporation of a sorghum habitat in farmscapes with cotton has great potential to enhance biocontrol of insect pests in cotton.

  15. In planta transformation of sorghum (Sorghum bicolor (L.) Moench ...

    Indian Academy of Sciences (India)

    : Advances for the genetic improvement of sorghum (Sorghum bicolor (L.) Moench). In Vitro Cell Dev. Biol. Plant 37, 504–. 515. Penna S. 2003 Building stress tolerance through over-producing trehalose in transgenic plants. Trends Plant Sci.

  16. Introduction of sorghum (Sorghum bicolor (L.) Moench) into China ...

    African Journals Online (AJOL)

    The sorghum is a plant, which has been intentionally introduced in China for foods needs. It is a plant of African origin, which is much cultivated in the northern hemisphere. For millions of people in the semiarid tropic temperature of Asia and Africa, sorghum is the most important staple food. Sorghum is becoming one of the ...

  17. Insects infesting sorghum (Sorghum bicolor L. Moench) panicles in ...

    African Journals Online (AJOL)

    Surveys in the Upper East Region showed that sorghum panicles were attacked by an insect pest complex of which midge, mirid and pentatomid bugs and head caterpillars were most prominent. Midge was most important on late-planted sorghums while mirid bugs constituted the main pests of early sorghums. The mirid ...

  18. Potential impacts of bioprocessing of sweet potato: Review.

    Science.gov (United States)

    El Sheikha, Aly Farag; Ray, Ramesh C

    2017-02-11

    Sweet potato (Ipomoea batatas L.) is among the major food crops in the world and is cultivated in all tropical and subtropical regions particularly in Asia, Africa, and the Pacific. Asia and Africa regions account for 95% of the world's production. Among the root and tuber crops grown in the world, sweet potato ranks second after cassava. In previous decades, sweet potato represented food and feed security, now it offers income generation possibilities, through bioprocessing products. Bioprocessing of sweet potato offers novel opportunities to commercialize this crop by developing a number of functional foods and beverages such as sour starch, lacto-pickle, lacto-juice, soy sauce, acidophilus milk, sweet potato curd and yogurt, and alcoholic drinks through either solid state or submerged fermentation. Sweet potato tops, especially leaves are preserved as hay or silage. Sweet potato flour and bagassae are used as substrates for production of microbial protein, enzymes, organic acids, monosodium glutamate, chitosan, etc. Additionally, sweet potato is a promising candidate for production of bioethanol. This review deals with the development of various products from sweet potato by application of bioprocessing technology. To the best of our knowledge, there is no review paper on the potential impacts of the sweet potato bioprocessing.

  19. Establishment of optimum plant densities for dry season sorghum ...

    African Journals Online (AJOL)

    (Received 21 April, 1998; accepted 2 December, 2001) Abstract Dry season transplanted sorghum is grown on Vertisols in the Lake Chad Basin at approximately 10,000 plants ha-1. Increasing plant density was hypothesised to be one way of increasing yields in this cropping system. To test this hypothesis, a trial was ...

  20. Characterizing Sorghum Panicles using 3D Point Clouds

    Science.gov (United States)

    Lonesome, M.; Popescu, S. C.; Horne, D. W.; Pugh, N. A.; Rooney, W.

    2017-12-01

    To address demands of population growth and impacts of global climate change, plant breeders must increase crop yield through genetic improvement. However, plant phenotyping, the characterization of a plant's physical attributes, remains a primary bottleneck in modern crop improvement programs. 3D point clouds generated from terrestrial laser scanning (TLS) and unmanned aerial systems (UAS) based structure from motion (SfM) are a promising data source to increase the efficiency of screening plant material in breeding programs. This study develops and evaluates methods for characterizing sorghum (Sorghum bicolor) panicles (heads) in field plots from both TLS and UAS-based SfM point clouds. The TLS point cloud over experimental sorghum field at Texas A&M farm in Burleston County TX were collected using a FARO Focus X330 3D laser scanner. SfM point cloud was generated from UAS imagery captured using a Phantom 3 Professional UAS at 10m altitude and 85% image overlap. The panicle detection method applies point cloud reflectance, height and point density attributes characteristic of sorghum panicles to detect them and estimate their dimensions (panicle length and width) through image classification and clustering procedures. We compare the derived panicle counts and panicle sizes with field-based and manually digitized measurements in selected plots and study the strengths and limitations of each data source for sorghum panicle characterization.

  1. Control of sweet potato virus diseases.

    Science.gov (United States)

    Loebenstein, Gad

    2015-01-01

    Sweet potato (Ipomoea batatas) is ranked seventh in global food crop production and is the third most important root crop after potato and cassava. Sweet potatoes are vegetative propagated from vines, root slips (sprouts), or tubers. Therefore, virus diseases can be a major constrain, reducing yields markedly, often more than 50%. The main viruses worldwide are Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV). Effects on yields by SPFMV or SPCSV alone are minor, or but in complex infection by the two or other viruses yield losses of 50%. The orthodox way of controlling viruses in vegetative propagated crops is by supplying the growers with virus-tested planting material. High-yielding plants are tested for freedom of viruses by PCR, serology, and grafting to sweet potato virus indicator plants. After this, meristem tips are taken from those plants that reacted negative. The meristems were grown into plants which were kept under insect-proof conditions and away from other sweet potato material for distribution to farmers after another cycle of reproduction. © 2015 Elsevier Inc. All rights reserved.

  2. Sorghum-sudangrass responses to nitrogen and tillage following polyphenol-containing legumes, alfalfa, reed canarygrass, and kale

    Science.gov (United States)

    The collective effects of protein-binding polyphenols (PBP), preceding forage type, tillage, and fertilizer N on soil NO3-N production, N uptake, and dry matter yield (DMY) of N-demanding crops such as sorghum-sudangrass [SS, Sorghum bicolor (L.) Moench x S. sudanese Piper] are poorly understood. Th...

  3. The pigments of sorghum pericarp are associated with the contents of cartenoids and pro-vitamin A

    Science.gov (United States)

    Sorghum is a staple crop consumed in certain regions of Africa and Asia, where vitamin A deficiency is prevalent. However, the correlation of sorghum intake and vitamin A deficiency is contradictory. The objective of this study was to identify and quantify the carotenoids and pro-vitamin A in the se...

  4. Productivity and residual benefits of grain legumes to sorghum under semi-arid conditions in southwestern Zimbabwe

    NARCIS (Netherlands)

    Ncube, B.; Twomlow, S.J.; Wijk, van M.T.; Dimes, J.P.; Giller, K.E.

    2007-01-01

    The productivity and residual benefits of four grain legumes to sorghum (Sorghum bicolor) grown in rotation were measured under semi-arid conditions over three cropping seasons. Two varieties of each of the grain legumes; cowpea (Vigna unguiculata); groundnut (Arachis hypogaea); pigeon pea (Cajanus

  5. Diversification of Sweet Potato Blends and Utilization for Malnutrition and Poverty Alleviation

    OpenAIRE

    A. A. Ladele; N. T. Meludu; O. Ezekiel; T. F. Olaoye; O. M. Okanlawon

    2015-01-01

    Value addition to agricultural produce is of possible potential in reducing poverty, improving food security and malnutrition, therefore the need to develop small and microenterprises of sweet potato production. A study was carried out in Nigeria to determine the acceptability of blends sweet potato (Ipomea batatas) and commodities yellow maize (Zea mays), millet (Pennisetum glaucum), soybean (Glycine max), bambara groundnut (Vigna subterranean), guinea corn (Sorghum vulg...

  6. Sorghum bi-color

    African Journals Online (AJOL)

    sunny

    2014-11-12

    Nov 12, 2014 ... Biomass materials require reduction and densification for the purpose of handling and space requirements. Guinea corn (Sorghum bi-color) is a major source of biomass material in the tropic regions. The densification process involves some ... a closed-end die, the temperature and the use of binder.

  7. SWEET POTATO CULTURE – PROMISING TREND OF RUSSIAN VEGETABLE GROWING

    OpenAIRE

    V. B. Podlesny

    2014-01-01

    Results of research of possibility of introduction of a new for the Russian Federation tuberous crop culture, sweet potato, are presented. The influence of planting dates on the yield of this culture was studied. According to the field experiment, the high yield of sweet potato tuber and resistance to diseases and pests were revealed.

  8. A review of therapeutic potentials of sweet potato: Pharmacological ...

    African Journals Online (AJOL)

    Sweet potato (Ipomoea batatas) is a global food crop, now being recognized as a functional food due to several of its nutraceutical components. Several experimental studies have reported that sweet potato can generally be beneficial in the prevention or treatment of chronic diseases through its antioxidant, ...

  9. 7 CFR 1221.28 - Sorghum.

    Science.gov (United States)

    2010-01-01

    ... means any harvested portion of Sorghum bicolor (L.) Moench or any related species of the genus Sorghum... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND...

  10. Sustainable Biofuel Project: Emergy Analysis of South Florida Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Amponsah, Nana Yaw [Intelligentsia International, Inc., LaBelle, FL (United States); Izursa, Jose-Luis [Intelligentsia International, Inc., LaBelle, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States). Soil and Water Sciences Dept.; Capece, John C. [Intelligentsia International, Inc., LaBelle, FL (United States)

    2012-11-15

    This study evaluates the sustainability of various farming systems, namely (1) sugarcane on organic and mineral soils and (2) energycane and sweet sorghum on mineral soils. The primary objective of the study is to compare the relative sustainability matrices of these energy crops and their respective farming systems. These matrices should guide decision and policy makers to determine the overall sustainability of an intended or proposed bioethanol project related to any of these studied crops. Several different methods of energy analysis have been proposed to assess the feasibility or sustainability of projects exploiting natural resources (such as (Life Cycle Analysis, Energy Analysis, Exergy Analysis, Cost Benefit Analysis, Ecological Footprint, etc.). This study primarily focused on the concept of Emergy Analysis, a quantitative analytical technique for determining the values of nonmonied and monied resources, services and commodities in common units of the solar energy it took to make them. With this Emergy Analysis study, the Hendry County Sustainable Biofuels Center intends to provide useful perspective for different stakeholder groups to (1) assess and compare the sustainability levels of above named crops cultivation on mineral soils and organic soils for ethanol production and (2) identify processes within the cultivation that could be targeted for improvements. The results provide as much insight into the assumptions inherent in the investigated approaches as they do into the farming systems in this study.

  11. Effects of Urin Cow Dosage on Growth and Production of Sorgum Plant (Sorghum Bicolor L) on Peat Land

    Science.gov (United States)

    Utami Lestari, Sri; Andrian, Andi

    2017-12-01

    Sweet sorghum (Sorghum bicolor (L)), is a potential cultivated plant, especially in marginal and dry areas, sorghum has an important role as a source of carbohydrates, sorghum is expected as an alternative choice for peatland cultivation, with the use of peatlands is also expected Raising awareness of the environment by cultivating more environmentally friendly plants. The aim of this research is to know the influence and get the best dosage of cow urine on growth and production of Sorghum (Sorghum bicolor L) plant on peat soil. The experiment was conducted experimentally by using Completely Randomized Design (RAL), with one factor, namely: Cow urine administration, given in 5 treatments and 4 replications, resulting in 20 trials. Each experimental unit consists of 4 plants and 2 plants to be sampled. The factors studied were A0 = dose of cow urine 0 cc / 1, A1 = dose of cow urine 25 cc / 1, A2 = dose of cow urine 50 cc / 1, A3 = dose of cow urine 75 cc / 1, A4 = dose Cow urine 100 cc / 1. Conclusion Giving of cow urine has significant effect on growth and production of sorghum plant which is seen on the parameters of plant height, leaf length, leaf width. While wet weight 100 seeds and dry weight of 100 seeds of sorghum plants have no significant effect. The best dose is given by A4 treatment with the best dose of 100 cc / 1.

  12. Sorghum to Ethanol Research Initiative: Cooperative Research and Development Final Report, CRADA Number CRD-08-291

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, E.

    2011-10-01

    The goal of this project was to investigate the feasibility of using sorghum to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a portion of the feedstocks required to produce renewable domestic transportation fuels.

  13. Detection of sweet potato virus C, sweet potato virus 2 and sweet potato feathery mottle virus in Portugal.

    Science.gov (United States)

    Varanda, Carla M R; Santos, Susana J; Oliveira, Mônica D M; Clara, Maria Ivone E; Félix, Maria Rosário F

    2015-06-01

    Field sweet potato plants showing virus-like symptoms, as stunting, leaf distortion, mosaic and chlorosis, were collected in southwest Portugal and tested for the presence of four potyviruses, sweet potato virus C (SPVC), sweet potato virus 2 (SPV2), sweet potato feathery mottle virus (SPFMV), sweet potato virus G (SPVG), and the crinivirus sweet potato chlorotic stunt virus (SPCSV). DsRNA fractions were extracted from symptomatic leaves and used as templates in single and multiplex RT-PCR assays using previously described specific primers for each analyzed virus. The amplified reaction products for SPVC, SPV2 and SPFMV were of expected size, and direct sequencing of PCR products revealed that they correspond to the coat protein gene (CP) and showed 98%, 99% and 99% identity, respectively, to those viruses. Comparison of the CP genomic and amino acid sequences of the Portuguese viral isolates recovered here with those of ten other sequences of isolates obtained in different countries retrieved from the GenBank showed very few differences. The application of the RT-PCR assays revealed for the first time the presence of SPVC and SPFMV in the sweet potato crop in Portugal, the absence of SPVG and SPCSV in tested plants, as well as the occurrence of triple virus infections under field conditions.

  14. Gene flow from Sorghum bicolor to its weedy relatives and its ...

    African Journals Online (AJOL)

    computer user

    2015-04-29

    Apr 29, 2015 ... Crop alleles might have an impact on the fitness of the crop x weed hybrids and may ...... Bird preference for the larger seeded weedy sorghums may have had some impact on reducing the estimated HEQ. Growth of small-scale agriculture in the regions around Lake. Victoria may have led to heavy weeding ...

  15. Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication

    OpenAIRE

    Tang, Haibao; Cuevas, Hugo E.; Das, Sayan; Sezen, Uzay U.; Zhou, Chengbo; Guo, Hui; Goff, Valorie H.; Ge, Zhengxiang; Clemente, Thomas E.; Paterson, Andrew H.

    2013-01-01

    Suppression of seed shattering was a key step during crop domestication that we have previously suggested to be convergent among independent cereal lineages. Positional, association, expression, and mutant complementation data all implicate a WRKY transcription factor, SpWRKY, in conferring shattering to a wild sorghum relative, Sorghum propinquum. We hypothesize that SpWRKY functions in a manner analogous to Medicago and Arabidopsis homologs that regulate cell wall biosynthesis genes, with l...

  16. Sorghum and rice: Mali

    International Nuclear Information System (INIS)

    2003-01-01

    Agriculture is the mainstay of the Malian economy and yet cereal imports absorb 6.5% of GDP. Food self-sufficiency is therefore a national priority. The Joint FAO/IAEA Division is supporting a programme to improve local varieties of sorghum and rice by using nuclear techniques to develop new cultivars that will produce higher yields under Mali's semi-arid climatic conditions. (IAEA)

  17. Insect pests associated with cowpea – sorghum intercropping system by considering the phenological stages

    Directory of Open Access Journals (Sweden)

    Diana González Aguiar

    2016-10-01

    Full Text Available The research aims to determine the main insect pest populations and their behavior in the combination cowpea - sorghum. This work took into account the phenology of each crop. The study was conducted on a Cambisol soil from the Basic Unit of Cooperative Production “Día y Noche”, which belongs to the Basic Unit of Cooperative Production “28 de Octubre”, Santa Clara municipality, Villa Clara province, Cuba. The experimental design was a random blocks included four treatments and four repetitions. The first arrangement consisted of two rows of cowpea for each row of sorghum; the second one included three rows of cowpea and one row of sorghum. The other treatments were the monocultures of cowpea and sorghum. The methodology included visual observations of plants with a weekly frequency until crop harvest to detect the presence of the insects. Also, the phenology of each crop was considered. The phytophagous insects quantified in the cowpea crop belong to the families Chrysomelidae, Pyralidae, Cicadellidae, while in the sorghum crop, these insects belong to the families Noctuidae and Aphididae. Finally, the results showed the positive effects of both spatial arrangements with a smaller incidence of insect pest populations.

  18. Chemical control of wild sorghum (sorghum arundinaceum Del. Stapf. in faba bean (vicia faba L.) in the Northern State of Sudan

    International Nuclear Information System (INIS)

    Bedry, K. A. M.; Elamin, A. E. M.

    2011-01-01

    An experiment was conducted at Merowe Research Station farm, in the Northern State, Sudan, during 2008/2009 and 2009/2010 seasons. The objectives of the experiment were to determine the damage inflicted by a wild sorghum species (Sorghum arundinaceum (Del.) Stapf. ) on the yield of faba bean (Vicia faba L.) and to evaluate the efficacy of the post-emergence herbicide clodinafop-propargyl (Topik) on wild sorghum and its effect on faba bean yield. The wild sorghum reduced faba bean crop stand and straw and seed yields by 53% - 76%, 76% - 79% and 88% - 91%, respectively, compared with the hand-weeded control. Faba bean was tolerant to the herbicide. The herbicide, at all rates, effected complete (100%) and persistent control of the wild sorghum and resulted in faba bean seed yield comparable to the hand-weeded control. The lowest dose (0.075 kg a.i/ha) of the herbicide used was equal to 75% of the dose recommended for the control of wild sorghum in wheat. It is concluded that clodinafop-propargyl at 0.075 kg a.e/ha could be used in controlling wild sorghum in faba bean. At this rate, the marginal rate of return was about 35 which indicating that every monetary unit (SDG 1) invested in the mentioned treatment would be returned back, plus additional amount of 35 SDG.(Author)

  19. In planta transformation of sorghum (Sorghum bicolor (L.) Moench)

    Indian Academy of Sciences (India)

    An in planta transformation protocol for sorghum (Sorghum bicolor (L.) Moench) using shoot apical meristem of germinating seedlings is reported in this study. Agrobacterium tumefaciens strain, LBA4404 with pCAMBIA1303 vector and construct pCAMBIA1303TPS1 were individually used for transformation. Since, the ...

  20. A Dynamic Sorghum (Sorghum Bicolor (L.) Moench) diversity ...

    African Journals Online (AJOL)

    traits reported about the Ethiopian species include a devastating resistant to pest, sorghum midge (Contarinia ..... conservation and utilization point of view, as the names farmers give to varieties is the unit that farmers ..... fragmentation of sorghum landraces and allow the evolution of new landraces through temporal and ...

  1. Effect of partial replacement of sorghum ( Sorghum bicolor ) dust for ...

    African Journals Online (AJOL)

    Effect of partial replacement of sorghum (Sorghum bicolor) dust for maize (Zea mays) in broiler starter ration. BU Ekenyem, EC Ndubuisi, L Anyanwu. Abstract. No Abstract. Animal Production Research Advances Vol. 4 (2) 2008: pp. 88-91. http://dx.doi.org/10.4314/apra.v4i2.36434 · AJOL African Journals Online. HOW TO ...

  2. Iron content in forage sorghum (Sorghum bicolor (L.) Moench ...

    African Journals Online (AJOL)

    Sorghum hybrid was harvested, and iron content of it was analyzed with an atomic absorption spectrophotometer on background correction (BGC) mode. In order to analyze the iron (Fe) content of the sorghum with the spectrophotometer, three different slit widths conditions were used; 0.15, 0.20 and 0.25 nm. Absorbance ...

  3. ( amala ) made from sweet potato flour ( elubo )

    African Journals Online (AJOL)

    Describing the sensory characteristics of new or modified products is an integral part of food quality control. Sweet potato amala as an important end product could serve as an avenue for utilization of the crop, however, sensory attributes that will influence and ensure consumer acceptability need to be determined.

  4. Crop yields of sorhgum and soybeans in an intercrop. | Akunda ...

    African Journals Online (AJOL)

    The yields of the three seasons of sorghum and soybeans are reported. In the first season, the sole crop yields of soybeans increased with increase in plant populations, contrary to the intercrops. Intercropping had significant influence of yields (p = 0.05). During this period, sorghum in sole stand increased with the increase ...

  5. Inclusion of sweet sorghum flour in bread formulations

    African Journals Online (AJOL)

    User

    2015-05-13

    May 13, 2015 ... Alimentos. 22(2). Fellows P (2006) Tecnologia do processamento de alimentos: princípios e prática. ed Porto Alegre: Artmed. 2(6):1-602. Fernandes MS, Wang SH, Ascheri J LR, Oliveira MF, Costa SAJ. (2002). Produtos extrusados expandidos de misturas de canjiquinha e soja para uso como petiscos.

  6. Fitomassa e relação C/N em consórcios de sorgo e milho com espécies de cobertura Biomass and C/N ratio in intercrops of sorghum and maize with cover crops

    Directory of Open Access Journals (Sweden)

    Paulo Claudeir Gomes da Silva

    2009-11-01

    following treatments: monocultures of sorghum and maize and their intercrops with pigeon pea, sunn hemp, sunflower, turnip forage, white lupine, in the plots; and cut management times, at 60, 90 and 120 days after sowing, in the subplots. Intercrops of sorghum and maize with other species significantly outweighed the biomass productivity of their monocultures, which accumulated less N and had higher C/N ratio of biomass. The best cut management time is at 120 days after sowing of the cover crops, for dry biomass yield. Cutting at 90 days after sowing promoted the greater N accumulation and the lower C/N ratios.

  7. Prospecting for Energy-Rich Renewable Raw Materials: Sorghum Stem Case Study.

    Directory of Open Access Journals (Sweden)

    Caitlin S Byrt

    Full Text Available Sorghum vegetative tissues are becoming increasingly important for biofuel production. The composition of sorghum stem tissues is influenced by genotype, environment and photoperiod sensitivity, and varies widely between varieties and also between different stem tissues (outer rind vs inner pith. Here, the amount of cellulose, (1,3;1,4-β-glucan, arabinose and xylose in the stems of twelve diverse sorghum varieties, including four photoperiod-sensitive varieties, was measured. At maturity, most photoperiod-insensitive lines had 1% w/w (1,3;1,4-β-glucan in stem pith tissue whilst photoperiod-sensitive varieties remained in a vegetative stage and accumulated up to 6% w/w (1,3;1,4-β-glucan in the same tissue. Three sorghum lines were chosen for further study: a cultivated grain variety (Sorghum bicolor BTx623, a sweet variety (S. bicolor Rio and a photoperiod-sensitive wild line (S. bicolor ssp. verticilliflorum Arun. The Arun line accumulated 5.5% w/w (1,3;1,4-β-glucan and had higher SbCslF6 and SbCslH3 transcript levels in pith tissues than did photoperiod-insensitive varieties Rio and BTx623 (<1% w/w pith (1,3;1,4-β-glucan. To assess the digestibility of the three varieties, stem tissue was treated with either hydrolytic enzymes or dilute acid and the release of fermentable glucose was determined. Despite having the highest lignin content, Arun yielded significantly more glucose than the other varieties, and theoretical calculation of ethanol yields was 10 344 L ha-1 from this sorghum stem tissue. These data indicate that sorghum stem (1,3;1,4-β-glucan content may have a significant effect on digestibility and bioethanol yields. This information opens new avenues of research to generate sorghum lines optimised for biofuel production.

  8. Identification and characterization of 4 missense mutations in brown midrib 12 (Bmr12); the caffeic O-methyltranferase (COMT) of sorghum

    Science.gov (United States)

    Modifying lignin content and composition are targets to improve bioenergy crops for cellulosic conversion to biofuels. In sorghum and other C4 grasses, the brown midrib mutants have been shown to reduce lignin content and alter its composition. Bmr12 encodes the sorghum caffeic O-methyltransferase...

  9. Teste de um modelo de monitoramento de água no solo para uma cultura de sorgo submetida a diferentes tratamentos de irrigação Test of a soil water assessment model for a sorghum crop under different irrigation treatments

    Directory of Open Access Journals (Sweden)

    Marcelo Bento Paes de Camargo

    1994-01-01

    Full Text Available Um modelo de balanço hídrico diário utilizando informações de estação meteorológica automática, fenologia e informações edáficas foi ajustado e testado para uma cultura de sorgo usando experimentos de campo com diferentes tratamentos de irrigação durante o verão de 1990 e 1991, em Mead, Estado de Nebraska-EUA. Estimativas do total de água no solo a partir do balanço hídrico compararam-se bem com as leituras de sonda de nêutrons tomadas nos diferentes tratamentos. O desempenho do modelo, por camadas de solo, indicou pequena subestimativa da umidade nas camadas superiores, pequena superestimativa nas inferiores e boa estimativa nas intermediárias. A eliminação desses erros resultaria em melhor desempenho do modelo nas diferentes camadas. Boas estimativas do total de água no solo podem ser obtidas através deste balanço hídrico edafoclimático modificado com base em informações fenológicas, edáficas e de dados obtidos de estações meteorológicas automáticas.A model to monitor the soil water status using automated weather station data, crop phenology, and soil information was adjusted and tested for a sorghum crop using field experiments with eight different water treatments in a randomized split factorial block irrigation design during the 1990 and 1991 growing seasons at Mead, Nebraska-USA. Estimates of the total soil water content from the soil water balance model matched well with neutron-probe readings in the sorghum crop. Model performance by soil layer indicates slight underestimates of soil water content in the upper layers of soil, slight overestimates of soil water content in the lower soil layers, and close agreement between simulated and observed soil water contents in the middle soil layers. Elimination of these small offseting errors from the model would result in an improved performance within layers. One possible means of eliminating the error is to adjust the root soil water extraction slightly away

  10. 605 Salad crops: Root, bulb, and tuber Crops

    Science.gov (United States)

    Root and tuber crops (potato, cassava, sweet potato, and yams) comprise 4 of the 10 major food staples of the world and serve as a major source of energy for the poor of developing nations. Minimal strain placed on agro ecosystems by root and tuber crops highlight their welcomed contribution to the ...

  11. Characterization of Sorghum and Millet with Special Reference to Fatty Acid and Volatile Profile.

    Directory of Open Access Journals (Sweden)

    Muhammad Farhan Jahangir Chughtai

    2015-07-01

    Full Text Available Sorghum and millet are important food staples in semi-arid tropics of Asia and Africa. Sorghum and millet are cereal grains that have prospective to be used as substitute to wheat flour for celiac patients. These are considered as the good source of many important and essential fatty acids. The volatile profiling of these two important crops is comparable to other cereals as well. The present study was an effort to explore biochemical composition of commercially available sorghum and millet varieties with special reference to their fatty acid and volatile profiling. Chemical composition of sorghum and millet was determined according to respective methods. Fatty acid methyl esters were prepared and then subjected to GC-FID for fatty acids analysis. The results indicated that both sorghum and millet oils are rich in essential fatty acids comprising mono and polyunsaturated fatty acids. Main fatty acids that are identified in current study includes palmitic acid, oleic acid, palmitoleic acid, behenic acid, linoleic acid, linoleic acid, stearic acid, myristic acid, etc. On the other hand volatile compounds from sorghum and millet were determined by preparing their respective volatile samples by using calvenger apparatus with suitable volatile extracting solvent. Volatile samples were then subjected to GC-MS analysis and respected results were compared with NIST library. About 30 different volatiles were identified in millet varieties while 35 different compounds were discovered in sorghum varieties belonging to aldehydes, ketones, benzene derivatives, esters, alcohols, sulphur compounds.

  12. Assessment of genetic diversity of sweet potato in Puerto Rico

    Science.gov (United States)

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand ...

  13. Possibilities of sweet potato [ Ipomoea batatas (L.) Lam] value chain ...

    African Journals Online (AJOL)

    Sweet potato is one of the most important food security promoted root crops in the world, especially in sub-Saharan Africa. Unfortunately, the crop is still neglected and underutilized in Benin Republic. To establish baseline data for its better utilization for upgrading its value chain, 10 selected local varieties (01 cream, ...

  14. Piecemeal versus one-time harvesting of sweet potato in north-east Uganda with special reference to pest damage

    NARCIS (Netherlands)

    Ebregt, E.; Struik, P.C.; Odongo, B.; Abidin, P.E.

    2007-01-01

    In north-eastern Uganda, the sweet potato crop of small subsistence farmers is severely affected by many pests, including (rough) sweet potato weevils, nematodes and millipedes. Field experiments with sweet potato (Ipomoea batatas (L.) Lam.) were conducted at Arapai Station in Soroti District,

  15. Critical periods of sorghum and palisadegrass in intercropped cultivation for climatic risk zoning

    Directory of Open Access Journals (Sweden)

    Nino Rodrigo Cabral de Barros Lima

    2011-07-01

    Full Text Available The objective of this work was to define critical periods for sorghum and palisadegrass cultivated on crop-livestock integrated systems under water deficit. An experiment was carried out in a completely random block design with four treatments (control and interruption of water supply in three periods and three replicates. Water supply was interrupted until soil water humidity was close to permanent wilting point at the phases: germination of palisadegrass seeds; start of tillering of palisadegrass and initiation of panicles of shorghum; start of shorghum flowering. Water deficit starting at palisadegrass germination delayed intital development of the plants because of the reduction in tillering. Water restriction at panicle initiation phase and at sorghum flowering determined reduction of grain production. Critical periods for intercrop of sorghum and palisadegrass correspond to palisadegrass germination phase and flowering and panicle inititation phase of sorghum.

  16. Mapping and candidate genes associated with saccharification yield in sorghum.

    Science.gov (United States)

    Wang, Yi-Hong; Acharya, Aniruddha; Burrell, A Millie; Klein, Robert R; Klein, Patricia E; Hasenstein, Karl H

    2013-11-01

    Sorghum (Sorghum bicolor (L.) Moench) is a high-yielding, stress tolerant energy crop for lignocellulosic-based biofuel production. Saccharification is a process by which hydrolytic enzymes break down lignocellulosic materials to fermentable sugars for biofuel production, and mapping and identifying genes underlying saccharification yield is an important first step to genetically improve the plant for higher biofuel productivity. In this study, we used the ICRISAT sorghum mini core germplasm collection and 14 739 single nucleotide polymorphism markers to map saccharification yield. Seven marker loci were associated with saccharification yield and five of these loci were syntenic with regions in the maize genome that contain quantitative trait loci underlying saccharification yield and cell wall component traits. Candidate genes from the seven loci were identified but must be validated, with the most promising candidates being β-tubulin, which determines the orientation of cellulose microfibrils in plant secondary cell walls, and NST1, a master transcription factor controlling secondary cell wall biosynthesis in fibers. Other candidate genes underlying the different saccharification loci included genes that play a role in vascular development and suberin deposition in plants. The identified loci and candidate genes provide information into the factors controlling saccharification yield and may facilitate increasing biofuel production in sorghum.

  17. Influence de la rotation culturale, de la fertilisation et du labour sur les populations de nématodes phytoparasites du sorgho (Sorghum bicolor (L. Moench

    Directory of Open Access Journals (Sweden)

    Traoré, M.

    2012-01-01

    Full Text Available Influence of crop rotation, fertilization and tillage on populations of plant parasitic nematodes of sorghum (Sorghum bicolor (L. Moench. The soil nematodes of three long-term trials (1960, 1980 and 1990 representing the production of sorghum (Sorghum bicolor (L. Moench under different agricultural practices (rotation, tillage and fertilization in the Center West of Burkina Faso, have been explored in the wake of the harvest during the agricultural season 2007/2008. The objective was to identify these nematodes and to study the influence of agricultural practices on this nematofauna. Nematodes were extracted by the method of Seinhorst elutriator. Plant-parasitic nematodes identified are Pratylenchus brachyurus, Tylenchorhynchus martini, Helicotylenchus multicinctus, Scutellonema Caveness, Criconemoides curvatum, Telotylenchus indicus and Xiphinema sp. The first three species represent approximately 98% of individuals surveyed. On the first site, the treatments involving mineral fertilizer and recycling of sorghum straw were favorable for the control of nematodes instead of treatments involving manure. As for rotations, monoculture of sorghum was more infested by nematodes than the rotations sorghum – cowpea and sorghum – cotton. On the second site, the nitrogen has increased of infestation by the two major nematodes in comparison to treatments without nitrogen, with the exception of treatment with anaerobic compost incorporation. On the third site, deep plowing has been unfavorable to the main nematode sorghum compared to shallow tillage. The nematofauna in fallow was more diversified than in cultivated sites and P. brachyurus, the main nematode related to sorghum has fallen sharply in fallow.

  18. Factors That Influence Technical Efficiency of Sorghum Production: A Case of Small Holder Sorghum Producers in Lower Eastern Kenya

    Directory of Open Access Journals (Sweden)

    Evaline Chepng’etich

    2015-01-01

    Full Text Available Majority of the rural households in Kenya depend on agriculture as a source of food and livelihood. Agricultural productivity has been declining due to many factors resulting in increased food insecurity in the country. Consequently, there is a renewed interest in promoting drought-tolerant crops such as sorghum which thrives in the arid and semiarid lands of the developing world. However, performance of sorghum production among the smallholder farmers has still remained low. This study was thus carried out to identify factors that influence technical efficiency of sorghum production among smallholder farmers in Machakos and Makindu districts of the lower eastern Kenya. Collected data on farm and farmer characteristics were analysed by use of descriptive statistics and Tobit model. Result highlights show that technical efficiency was influenced positively by formal education level of the household, experience in sorghum farming, membership in farmers associations, use of hired labour, production advice, and use of manure. Surprisingly household size, meant to enhance labour, had a negative influence. To increase technical efficiency, efforts should focus on improving information flows on agronomic practices. Farmers should also be encouraged to form and actively participate in various farmers associations, which enhance learning and pooling of labour resources, hence improving technical efficiency.

  19. The current incidence of viral disease in korean sweet potatoes and development of multiplex rt-PCR assays for simultaneous detection of eight sweet potato viruses.

    Science.gov (United States)

    Kwak, Hae-Ryun; Kim, Mi-Kyeong; Shin, Jun-Chul; Lee, Ye-Ji; Seo, Jang-Kyun; Lee, Hyeong-Un; Jung, Mi-Nam; Kim, Sun-Hyung; Choi, Hong-Soo

    2014-12-01

    Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV) and sweet potato virus C (SPVC) were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1), Sweet potato virus G (SPVG), Sweet potato leaf curl virus (SPLCV), Sweet potato virus 2 ( SPV2), Sweet potato chlorotic fleck virus (SPCFV), and Sweet potato latent virus (SPLV) were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1) in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded.

  20. The Current Incidence of Viral Disease in Korean Sweet Potatoes and Development of Multiplex RT-PCR Assays for Simultaneous Detection of Eight Sweet Potato Viruses

    Directory of Open Access Journals (Sweden)

    Hae-Ryun Kwak

    2014-12-01

    Full Text Available Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV and sweet potato virus C (SPVC were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1, Sweet potato virus G (SPVG, Sweet potato leaf curl virus (SPLCV, Sweet potato virus 2 ( SPV2, Sweet potato chlorotic fleck virus (SPCFV, and Sweet potato latent virus (SPLV were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1 in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded.

  1. The importance of dietary protein in human health: combating protein deficiency in sub-Saharan Africa through transgenic biofortified sorghum.

    Science.gov (United States)

    Henley, E C; Taylor, J R N; Obukosia, S D

    2010-01-01

    Child malnutrition is increasing in Africa. Protein deficiency is an important cause since protein is essential for both growth and maintenance of muscle mass. Sorghum is a major staple food in Africa on account of its hardiness as a crop. However, sorghum protein is very deficient in the indispensable amino acid lysine and on cooking has poor protein digestibility. This results in sorghum having a very low Protein Digestibility Corrected Amino Acid Score (PDCAAS). The Africa Biofortified Sorghum project, a Grand Challenges in Global Heath project, is undertaking research to biofortify sorghum in terms of protein and micronutrient quality using genetic engineering. Lysine and protein digestibility have been improved by suppression of synthesis of the kafirin storage proteins. Transgenic biofortified sorghum has double the PDCAAS of conventional sorghum. This improvement should enable a young child to meet most of its protein and energy requirements from biofortified sorghum porridge. This together with the improvement in micronutrients could provide the basis of a sustainable and broadly comprehensive solution to child malnutrition in many African countries. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Effects of fertilizer types and different companion crops on the ...

    African Journals Online (AJOL)

    A field experiment was conducted in 2002 and 2003 cropping seasons, at the University of Ibadan Teaching and Research Farm to evaluate the effects of fertilizer types and different companion crops on the performance of sweet potato. The results obtained showed that the growth and yield of sweet potato were ...

  3. Sequence-indexed mutant library for fast discovery of casual gene mutations for drought tolerance in sorghum

    Science.gov (United States)

    As the filth largest grain crop in the world, sorghum is well adapted to high temperature, drought, and low fertilizer input conditions. It can also be used as a fodder and bioenergy crop. Given the trend of global warming, depletion of refresh water resources, reduction in arable land due to soil d...

  4. Virginia Grain Sorghum Performance Tests, 2016

    OpenAIRE

    Balota, Maria; Oakes, Joseph; Mehl, H. L.; Acharya, Bhupendra

    2017-01-01

    Offers data about the grain sorghum testing program, and evaluations of commercial and experimental varieties of grain sorghum. Statistical analyses are provided, as well as information on relative yield, grain moisture, head mold, and more.

  5. Virginia Grain Sorghum Performance Tests, 2015

    OpenAIRE

    Balota, Maria; Oakes, Joseph; Thomason, Wade Everett; Pitman, Robert Melvin, 1948-; Mehl, H. L.

    2016-01-01

    Offers data about the grain sorghum testing program, and evaluations of commercial and experimental varieties of grain sorghum. Statistical analyses are provided, as well as information on relative yield, grain moisture, head mold, and more.

  6. Genome-Wide Identification of Sorghum bicolor Laccases Reveals Potential Targets for Lignin Modification

    Directory of Open Access Journals (Sweden)

    Jinhui Wang

    2017-05-01

    Full Text Available Laccase is a key enzyme in plant lignin biosynthesis as it catalyzes the final step of monolignols polymerization. Sweet sorghum [Sorghum bicolor (L. Moench] is considered as an ideal feedstock for ethanol production, but lignin greatly limits the production efficiency. No comprehensive analysis on laccase has ever been conducted in S. bicolor, although it appears as the most promising target for engineering lignocellulosic feedstock. The aim of our work is to systematically characterize S. bicolor laccase gene family and to identify the lignin-specific candidates. A total of twenty-seven laccase candidates (SbLAC1-SbLAC27 were identified in S. bicolor. All SbLACs comprised the equivalent L1-L4 signature sequences and three typical Cu-oxidase domains, but exhibited diverse intron-exon patterns and relatively low sequence identity. They were divided into six groups by phylogenetic clustering, revealing potential distinct functions, while SbLAC5 was considered as the closest lignin-specific candidate. qRT-PCR analysis deciphered that SbLAC genes were expressed preferentially in roots and young internodes of sweet sorghum, and SbLAC5 showed high expression, adding the evidence that SbLAC5 was bona fide involved in lignin biosynthesis. Besides, high abundance of SbLAC6 transcripts was detected, correlating it a potential role in lignin biosynthesis. Diverse cis regulatory elements were recognized in SbLACs promoters, indicating putative interaction with transcription factors. Seven SbLACs were found to be potential targets of sbi-miRNAs. Moreover, putative phosphorylation sites in SbLAC sequences were identified. Our research adds to the knowledge for lignin profile modification in sweet sorghum.

  7. Effect of carboxymethyl cellulose (CMC) as biopolymers to the edible film sorghum starch hydrophobicity characteristics

    Science.gov (United States)

    Putri, Rr. Dewi Artanti; Setiawan, Aji; Anggraini, Puji D.

    2017-03-01

    The use of synthetic plastic should be limited because it causes the plastic waste that can not be decomposed quickly, triggering environmental problems. The solution of the plastic usage is the use of biodegradable plastic as packaging which is environmentally friendly. Synthesis of edible film can be done with a variety of components. The component mixture of starch and cellulose derivative products are one of the methods for making edible film. Sorghum is a species of cereal crops containing starch amounted to 80.42%, where the use of sorghum in Indonesia merely fodder. Therefore, sorghum is a potential material to be used as a source of starch synthesis edible film. This research aims to study the characteristics of edible starch films Sorghum and assess the effect of CMC (Carboxymethyl Cellulose) as additional materials on the characteristics of biopolymers edible film produced sorghum starch. This study is started with the production of sorghum starch, then the film synthesizing with addition of CMC (5, 10, 15, 20, and 25% w/w starch), and finally the hydrophobicity characteristics test (water uptake test and water solubility test). The addition of CMC will decrease the percentage of water absorption to the film with lowest level of 65.8% in the degree of CMC in 25% (w/w starch). The addition of CMC also influences the water solubility of film, where in the degree of 25% CMC (w/w starch) the solubility of water was the lowest, which was 28.2% TSM.

  8. Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis.

    Science.gov (United States)

    Upadhyaya, Hari D; Wang, Yi-Hong; Sharma, Rajan; Sharma, Shivali

    2013-06-01

    Anthracnose in sorghum caused by Colletotrichum sublineolum is one of the most destructive diseases affecting sorghum production under warm and humid conditions. Markers and genes linked to resistance to the disease are important for plant breeding. Using 14,739 SNP markers, we have mapped eight loci linked to resistance in sorghum through association analysis of a sorghum mini-core collection consisting of 242 diverse accessions evaluated for anthracnose resistance for 2 years in the field. The mini-core was representative of the International Crops Research Institute for the Semi-Arid Tropics' world-wide sorghum landrace collection. Eight marker loci were associated with anthracnose resistance in both years. Except locus 8, disease resistance-related genes were found in all loci based on their physical distance from linked SNP markers. These include two NB-ARC class of R genes on chromosome 10 that were partially homologous to the rice blast resistance gene Pib, two hypersensitive response-related genes: autophagy-related protein 3 on chromosome 1 and 4 harpin-induced 1 (Hin1) homologs on chromosome 8, a RAV transcription factor that is also part of R gene pathway, an oxysterol-binding protein that functions in the non-specific host resistance, and homologs of menthone:neomenthol reductase (MNR) that catalyzes a menthone reduction to produce the antimicrobial neomenthol. These genes and markers may be developed into molecular tools for genetic improvement of anthracnose resistance in sorghum.

  9. Whole Genome Sequencing Reveals Potential New Targets for Improving Nitrogen Uptake and Utilization in Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    Karen Massel

    2016-10-01

    Full Text Available Nitrogen (N fertilizers are a major agricultural input where more than 100 million tons are supplied annually. Cereals are particularly inefficient at soil N uptake, where the unrecovered nitrogen causes serious environmental damage. Sorghum bicolor (sorghum is an important cereal crop, particularly in resource-poor semi-arid regions, and is known to have a high NUE in comparison to other major cereals under limited N conditions. This study provides the first assessment of genetic diversity and signatures of selection across 230 fully sequenced genes putatively involved in the uptake and mobilization of N from a diverse panel of sorghum lines. This comprehensive analysis reveals an overall reduction in diversity as a result of domestication and a total of 128 genes displaying signatures of purifying selection, thereby revealing possible gene targets to improve NUE in sorghum and cereals alike. A number of key genes appear to have been involved in selective sweeps, reducing their sequence diversity. The ammonium transporter (AMT genes generally had low allelic diversity, whereas a substantial number of nitrate/peptide transporter 1 (NRT1/PTR genes had higher nucleotide diversity in domesticated germplasm. Interestingly, members of the distinct race Guinea margaritiferum contained a number of unique alleles, and along with the wild sorghum species, represent a rich resource of new variation for plant improvement of NUE in sorghum.

  10. Compositional and Agronomic Evaluation of Sorghum Biomass as a Potential Feedstock for Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, J.; Wolfrum, E.; Bean, B.; Rooney, W. L.

    2011-12-01

    One goal of the Biomass Research and Development Technical Advisory Committee was to replace 30% of current U.S. petroleum consumption with biofuels by 2030. This will take mixtures of various feedstocks; an annual biomass feedstock such as sorghum will play an important role in meeting this goal. Commercial forage sorghum samples collected from field trials grown in Bushland, TX in 2007 were evaluated for both agronomic and compositional traits. Biomass compositional analysis of the samples was performed at the National Renewable Energy Lab in Golden, CO following NREL Laboratory Analytical Procedures. Depending on the specific cultivar, several additional years of yield data for this location were considered in establishing agronomic potential. Results confirm that sorghum forages can produce high biomass yields over multiple years and varied growing conditions. In addition, the composition of sorghum shows significant variation, as would be expected for most crops. Using theoretical estimates for ethanol production, the sorghum commercial forages examined in this study could produce an average of 6147 L ha{sup -1} of renewable fuels. Given its genetic variability, a known genomic sequence, a robust seed industry, and biomass composition, sorghum will be an important annual feedstock to meet the alternative fuel production goals legislated by the US Energy Security Act of 2007.

  11. Incorporating a sorghum habitat for enhancing lady beetles (Coleoptera:Coccinellidae) in cotton

    Science.gov (United States)

    Lady beetles (Coleoptera: Coccinellidae) are important predators of cotton insect pests. The objective of this 2-yr on-farm study was to examine the ability of a sorghum trap crop with Euschistus spp. pheromone baited capture traps to enhance these predators in cotton in Georgia. Scymnus spp., Cocci...

  12. Quality of farmers' varieties of sorghum and derived foods as perceived by consumers in Benin

    NARCIS (Netherlands)

    Kayodé, A.P.P.; Adegbidi, A.; Hounhouigan, J.D.; Linnemann, A.R.; Nout, M.J.R.

    2005-01-01

    Culinary and sensory characteristics of sorghum crops and derived foods in northern Benin were investigated using rapid appraisal and quantitative survey methods. Three food categories were identified: pastes, porridges, and beverages. In the main town, all of these are encountered. In other areas,

  13. The present state of research and exploitation of biotech (GM) crops in horticulture: results of research on plum cv. 'HoneySweet' resistant to plum pox virus (Sharka) and the deregulation of this cultivar in the CR & Europe

    Science.gov (United States)

    Gentically modified (GM) crops were grown world-wide on 160 million ha in 2011. Only 114.57 ha of GM crops were grown in Europe, of that, 114.90 ha were Bt maize and 17 ha were potato for industrial starch production. Commercialization of Biotech crops started in 1995. Currently, developing count...

  14. Sugarcane Aphid (Hemiptera: Aphididae): A New Pest on Sorghum in North America.

    Science.gov (United States)

    Bowling, Robert D; Brewer, Michael J; Kerns, David L; Gordy, John; Seiter, Nick; Elliott, Norman E; Buntin, G David; Way, M O; Royer, T A; Biles, Stephen; Maxson, Erin

    2016-01-01

    In 2013, the sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), a new invasive pest of sorghum species in North America, was confirmed on sorghum in 4 states and 38 counties in the United States. In 2015, the aphid was reported on sorghum in 17 states and over 400 counties as well as all sorghum-producing regions in Mexico. Ability to overwinter on living annual and perennial hosts in southern sorghum-producing areas and wind-aided movement of alate aphids appear to be the main factors in its impressive geographic spread in North America. Morphological characteristics of the sugarcane aphid include dark tarsi, cornicles, and antennae, allowing easy differentiation from other aphids on the crop. Sugarcane aphid damages sorghum by removing sap and covering plants with honeydew, causing general plant decline and yield loss. Honeydew and sooty mold can disrupt harvesting. The aphid's high reproductive rate on susceptible sorghum hybrids has resulted in reports of yield loss ranging from 10% to greater than 50%. In response, a combination of research-based data and field observations has supported development of state extension identification, scouting, and treatment guides that aid in initiating insecticide applications to prevent yield losses. Highly efficacious insecticides have been identified and when complemented by weekly scouting and use of thresholds, economic loss by sugarcane aphid can be minimized. Some commercial sorghum hybrids are partially resistant to the aphid, and plant breeders have identified other lines with sugarcane aphid resistance. A very diverse community of predators and parasitoids of sugarcane aphid has been identified, and their value to limit sugarcane aphid population growth is under investigation.

  15. Effect of salinity and silicon application on oxidative damage of sorghum [sorghum bicolor (L.) moench.

    International Nuclear Information System (INIS)

    Kafi, M.; Nabati, J.; Masoumi, A.; Mehrgerdi, M.Z.

    2011-01-01

    Application of silicon (Si) to soil is considered as an alternative approach to alleviate salinity stress in crop plants. Therefore, a field experiment was conducted to investigate the effects of Si application [control (without Si), 1.44 and 1.92 g.kg /sup -1/ soil on membrane stability index (MSI), relative water content (RWC), leaf proline, soluble sugars, antioxidant activity, total phenols and dry matter accumulation of two sorghum (Sorghum bicolor) cultivars under three levels of salinity of irrigation water (5.2, 10.5 and 23.1 dS m/sup -1/ . The results showed that leaf proline content, activities of ascorbate peroxidase (APX) and glutathione reductase (GR), Na/sup +/ concentration significantly increased only at high level of salinity, while, RWC Si caused an and dry matter accumulation were significantly decreased at all salinity levels. Soil application of 1.44 g.kg/sup -1/ increase in the activities of APX, catalase (CAT), superoxide dismutase (SOD), peroxidase (PRO), glutathione reductase soil Si caused an increase in membrane stabilityindex, (GR), total antioxidant and total phenol contents and 1.92 g.kg/sup -1/ soluble sugar and total phenol contents, CAT, SOD and total antioxidant activity. Soluble sugars, total phenols, SOD and total antioxidant activity and dry matter accumulation in cv. Omidbakhsh were higher than those in cv. Sepideh. In conclusion, alleviation of salinity stress by exogenous application of Si was found to be associated partly with enhanced antioxidant activity. (author)

  16. Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought.

    Science.gov (United States)

    Ogbaga, Chukwuma C; Stepien, Piotr; Johnson, Giles N

    2014-10-01

    Sorghum is one of the most drought tolerant crops but surprisingly, little is known about the mechanisms achieving this. We have compared physiological and biochemical responses to drought in two sorghum cultivars with contrasting drought tolerance. These closely related cultivars have starkly contrasting responses to water deficit. In the less tolerant Samsorg 40, drought induced progressive loss of photosynthesis. The more drought tolerant Samsorg 17 maintained photosynthesis, transpiration and chlorophyll content until the most extreme conditions. In Samsorg 40, there was a highly specific down-regulation of selected proteins, with loss of PSII and Rubisco but maintenance of PSI and cytochrome b6 f, allowing plants to maintain ATP synthesis. The nitrogen released allows for accumulation of glycine betaine and proline. To the best of our knowledge, this is the first example of specific reengineering of the photosynthetic apparatus in response to drought. In contrast, in Samsorg 17 we detected no substantial change in the photosynthetic apparatus. Rather, plants showed constitutively high soluble sugar concentration, enabling them to maintain transpiration and photosynthesis, even in extremely dry conditions. The implications for these strikingly contrasted strategies are discussed in relation to agricultural and natural systems. © 2014 Scandinavian Plant Physiology Society.

  17. Identification of differentially expressed genes in sorghum (Sorghum bicolor) brown midrib mutants.

    Science.gov (United States)

    Yan, Li; Liu, Shuwei; Zhao, Shuangyi; Kang, Yali; Wang, Duoxiang; Gu, Tongwei; Xin, Zhanguo; Xia, Guangmin; Huang, Yinghua

    2012-12-01

    Sorghum, a species able to produce a high yield of biomass and tolerate both drought and poor soil fertility, is considered to be a potential bioenergy crop candidate. The reduced lignin content characteristic of brown midrib (bmr) mutants improves the efficiency of bioethanol conversion from biomass. Suppression subtractive hybridization combined with cDNA microarray profiling was performed to characterize differential gene expression in a set of 13 bmr mutants, which accumulate significantly less lignin than the wild-type plant BTx623. Among the 153 differentially expressed genes identified, 43 were upregulated and 110 downregulated in the mutants. A semi-quantitative RT-PCR analysis applied to 12 of these genes largely validated the microarray analysis data. The transcript abundance of genes encoding l-phenylalanine ammonia lyase and cinnamyl alcohol dehydrogenase was less in the mutants than in the wild type, consistent with the expectation that both enzymes are associated with lignin synthesis. However, the gene responsible for the lignin synthesis enzyme cinnamic acid 4-hydroxylase was upregulated in the mutants, indicating that the production of monolignol from l-phenylalanine may involve more than one pathway. The identity of the differentially expressed genes could be useful for breeding sorghum with improved efficiency of bioethanol conversion from lignocellulosic biomass. Copyright © Physiologia Plantarum 2012.

  18. Short-term high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain sorghum

    Science.gov (United States)

    Grain sorghum (Sorghum bicolor L. Moench) crop yield is significantly compromised by high temperature stress-induced male sterility, and is attributed to reduced cell wall invertase (CWI)-mediated sucrose hydrolysis in microspores and anthers leading to altered carbohydrate metabolism and starch def...

  19. Production of biomass/energy crops on phosphatic clay soils in central Florida

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, J.A. [Univ. of Florida, Bartow, FL (United States); Prine, G.M.; Woodard, K.R. [Univ. of Florida, Gainesville, FL (United States); Anderson, D.L. [Univ. of Florida, Belle Glade, FL (United States); Shibles, D.B.; Riddle, T.C. [Mined Lands Agricultural Research/Demonstration Project, Bartow, FL (United States)

    1993-12-31

    Phosphatic clay is a byproduct of phosphate mining. Presently more than 40,470 ha have been created, most in central Florida, and about 810 ha are being added each year. Phosphatic clays have high fertility and high water holding capacity, reducing fertilization costs and producing high yields without irrigation. Based on 10 years of research, scientists have selected tall annual-regenerating perennial C-4 grasses as having the greatest potential for biomass production in Florida. The purpose of this work was to determine the feasibility of growing these tall perennial grasses for biomass on phosphatic clay. Elephantgrass, sugarcane and energycane, and erianthus were planted in duplicate replications on phosphatic clay soil in late August, 1986. yield was measured by one harvest in December or January each year for four years. Nitrogen fertilization included 112 kg ha{sup {minus}1} the first year followed by 134 kg ha{sup {minus}1} for the next three years. Nitrogen is the only supplemental nutrient needed to grow all tall grass crops on phosphatic clay. The average annual oven dry matter yield over the 4-yr period was 36.3 Mg ha{sup {minus}1} for PI 300086 elephantgrass, 45.2 for N51 elephantgrass, 42.5 for L79-1002 energycane, 49.0 for US72-1153 energycane, 49.7 for US78-1009 sugarcane, 52.2 for US56-9 sugarcane, 56.2 for CP72-1210 sugarcane, and 48.8 for 1K-7647 erianthus. More recent work has utilized domestic sewage sludge as a nitrogen source for the tall grasses. Preliminary sugar yields of selected sugarcane accessions & sweet sorghum were 4.7 Mg ha{sup {minus}1} for CP72-1210, 12.5 for US67-2022, 3.4 for US78-1009 and 1.3 Mg ha{sup {minus}1} for sweet sorghum. The high yields of the tall grasses grown on phosphatic clay with low inputs indicate a great potential for these crops as a source of renewable energy. A sustainable cropping system may be maintained by utilizing municipal sewage sludge as a nitrogen source with tall grasses on phosphatic clay.

  20. Sweet potato weevil (Cylas formicarius) incidence in the humid lowlands of Papua New Guinea

    NARCIS (Netherlands)

    Powell, K.S.; Hartemink, A.E.; Eganae, J.F.; Walo, C.; Poloma, S.

    2001-01-01

    Sweet potato is the main staple crop in PNG and this paper presents a study from the humid lowlands of the Morobe Province. Three experiments were carried out at two locations (Hobu and Unitech) to evaluate the effect of inorganic fertiliser inputs and fallow vegetation on the incidence of sweet

  1. Assessment of Genetic Variability in Sorghum Accessions (Sorghum ...

    African Journals Online (AJOL)

    ADOWIE PERE

    The polymorphic information content (PIC) of individual primer ranged from 0.34 to 0.70 with a mean value of 0.54 indicating enough ... Keywords: Sorghum; Simple Sequence Repeat markers; Genetic variation; Polymorphic Information Content;. Coefficient of ... based techniques include Restriction Fragment Length.

  2. A Dynamic Sorghum (Sorghum Bicolor (L.) Moench) diversity ...

    African Journals Online (AJOL)

    based on evenness indices showed that Tanqua-Abergelle has the highest diversity. (Shannon =0.86; Brillouin ... the high altitude areas, the indigenous germplasm has often been the only adapted materials suitable for ...... fragmentation of sorghum landraces and allow the evolution of new landraces through temporal and ...

  3. Sorghum [Sorghum bicolor (L.) Moench] Seed Quality as Affected by ...

    African Journals Online (AJOL)

    The experimental design was a three factorial split-split block design in the rain fed Sorghum bicolor (L.) Moench producing areas of Bomet County of Kenya. Treatments within the block were randomized. There were three factors which included variety at two levels (improved and local varieties); fertilizer application at two ...

  4. Effects of Genotype and Growth Temperature on the Contents of Tannin, Phytate and In Vitro Iron Availability of Sorghum Grains

    Science.gov (United States)

    Wu, Gangcheng; Johnson, Stuart K.; Bornman, Janet F.; Bennett, Sarita J.; Singh, Vijaya; Simic, Azra; Fang, Zhongxiang

    2016-01-01

    Background It has been predicted that the global temperature will rise in the future, which means crops including sorghum will likely be grown under higher temperatures, and consequently may affect the nutritional properties. Methods The effects of two growth temperatures (OT, day/night 32/21°C; HT 38/21°C) on tannin, phytate, mineral, and in vitro iron availability of raw and cooked grains (as porridge) of six sorghum genotypes were investigated. Results Tannin content significantly decreased across all sorghum genotypes under high growth temperature (P ≤0.05), while the phytate and mineral contents maintained the same level, increased or decreased significantly, depending on the genotype. The in vitro iron availability in most sorghum genotypes was also significantly reduced under high temperature, except for Ai4, which showed a pronounced increase (P ≤0.05). The cooking process significantly reduced tannin content in all sorghum genotypes (P ≤0.05), while the phytate content and in vitro iron availability were not significantly affected. Conclusions This research provides some new information on sorghum grain nutritional properties when grown under predicted future higher temperatures, which could be important for humans where sorghum grains are consumed as staple food. PMID:26859483

  5. (Lablab purpureus (L.) Sweet)

    African Journals Online (AJOL)

    Schaaffhausen, R.V. (1963). Dolichos lablab or Hyacinth bean: its uses for feed, food and soil improvement. Economic Botany, 17: 146-153. Selvan, S.P. and Gopalaswamy N. (1993). Effect of planting pattern and intercrops in sorghum under dry land conditions. Madras Agric. J., 80: 690-692. Shivashankar, G. and Kulkarni, ...

  6. Crop resources. [18 papers

    Energy Technology Data Exchange (ETDEWEB)

    Seigler, D.S. (ed.)

    1977-01-01

    Eighteen papers originally presented as a symposium on Crop Resources at the 17th annual meeting of the Society for Economic Botany in Urbana, Illinois, June 13 to 17, 1976 comprise this book. The papers are: Potential Wealth in New Crops: Research and Development, L. H. Princen; Plant Introductions--A Source of New Crops, George A. White; Nonfood Uses for Commercial Vegetable Oil Crops, E. H. Pryde; New Industrial Potentials for Carbohydrates, F. H. Otey; The Current Importance of Plants as a Source of Drugs, Norman R. Farnsworth; Potentials for Development of Wild Plants as Row Crops for Use by Man, Arnold Krochmal and Connie Krochmal; Recent Evidence in Support of the Tropical Origin of New World Crops, C. Earle Smith, Jr.; Requirements for a Green Revolution, G. F. Sprague; How Green Can a Revolution Be, Jack R. Harlan; Increasing Cereal Yields: Evolution under Domestication, J. M. J. de Wet; Hevea Rubber: Past and Future, Ernest P. Imle; Horseradish--Problems and Research in Illinois, A. M. Rhodes; Dioscorea--The Pill Crop, Norman Applezweig; Plant Derivatives for Insect Control, Robert L. Metcalf; Evolutionary Dynamics of Sorghum Domestication, J. M. J. de Wet and Y. Shecter; The Origin and Future of Wheat, E. R. Sears; Current Thoughts on Origins, Present Status, and Future of Soybeans, T. Hymowitz and C. A. Newell; and The Origin of Corn--Studies of the Last Hundred Years, Garrison Wilkes. (MCW)

  7. Plant population and row spacing on biomass sorghum yield performance

    Directory of Open Access Journals (Sweden)

    Andre May

    2015-01-01

    Full Text Available ABSTRACT: Biomass sorghum is one of the most promising crops for the production of electricity through the burning in high-pressure boilers, due to its high calorific value, high yield, seed propagation, short cycle, and to the possibility of full mechanization of its agricultural processes. However, there is still a lack of information about its cultural practices. To this end, this research aimed to evaluate the influence of row spacing and plant population on the yield performance of biomass sorghum. The experimental design was a randomized block, in factorial scheme of 4 x 4, with four row spacings (0.5, 0.7, 0.9 and 1.1m, and four plant populations (80,000; 100,000; 120,000 and 140,000 plants ha-1, with three replications. The characteristics evaluated were: plant height, stem diameter, number of leaves, number of tillers per plant, fresh weight per plant and biomass. Total biomass yield was greatly influenced by the row spacing, showing a sharp reduction when row spacing increased, in the two years of study, changing from 180.27 to 114.42t ha-1 in the 2012/13 crop year, and from 146.50 to 102.56t ha-1 in the 2013/14 crop year, for 0.5 and 1.1m between rows, respectively. The lowest yields observed in the second year of the study were due to unfavorable weather conditions in the period.

  8. components in induced sorghum mutants

    African Journals Online (AJOL)

    (1984) evaluated induced mutation and hybridisation methods for producing genetic variability in 15 quantitative characters of sorghum. Their results showed large variability in grain yield, plant maturity, plant height and panicles length. Selected mutants with favorable properties can be directly combined in varietal hybrids.

  9. Arsenic-contaminated soils. Phytotoxicity studies with sunflower and sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Lyubun, Y.V.; Kosterin, P.V.; Zakharova, E.A.; Fedorov, E.E. [Inst. of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov (Russian Federation); Shcherbakov, A.A. [Saratov Military Inst. of Radiological, Chemical and Biological Defence, Saratov (Russian Federation)

    2002-07-01

    ,4-D. (c) Mixed cropping of sorghum and sunflower may be another way of improving phytoremediation. (orig.)

  10. Chemical constituents and health effects of sweet potato.

    Science.gov (United States)

    Wang, Sunan; Nie, Shaoping; Zhu, Fan

    2016-11-01

    Sweet potatoes are becoming a research focus in recent years due to their unique nutritional and functional properties. Bioactive carbohydrates, proteins, lipids, carotenoids, anthocyanins, conjugated phenolic acids, and minerals represent versatile nutrients in different parts (tubers, leaves, stems, and stalks) of sweet potato. The unique composition of sweet potato contributes to their various health benefits, such as antioxidative, hepatoprotective, antiinflammatory, antitumor, antidiabetic, antimicrobial, antiobesity, antiaging effects. Factors affecting the nutritional composition and bio-functions of sweet potato include the varieties, plant parts, extraction time and solvents, postharvest storage, and processing. The assays for bio-function evaluation also contribute to the variations among different studies. This review summarizes the current knowledge of the chemical composition of sweet potato, and their bio-functions studied in vitro and in vivo. Leaves, stems, and stalks of sweet potato remain much underutilized on commercial levels. Sweet potato can be further developed as a sustainable crop for diverse nutritionally enhanced and value-added food products to promote human health. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Forage crops can be a source of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-08

    The possible use of forage crops as feedstocks for ethanol production is being investigated by the Solar Energy Research Institute. Such crops such as Sudan grass, alfalfa and ensiled sorghum have lower lignin contents than woody plants and should be easier to convert to fermentable sugars. The fixed capital investment appears to be about $2.00 per gallon of ethanol capacity.

  12. Crop model usefulness in drylands of southern Africa: an application ...

    African Journals Online (AJOL)

    Data limitations in southern Africa frequently hinder adequate assessment of crop models before application. ... three locations to represent varying cropping and physical conditions in southern Africa, i.e. maize and sorghum (Mohale's Hoek, Lesotho and Big Bend, Swaziland) and maize and groundnut (Lilongwe, Malawi).

  13. Sweeteners and sweetness enhancers.

    Science.gov (United States)

    Belloir, Christine; Neiers, Fabrice; Briand, Loïc

    2017-07-01

    The current review summarizes and discusses current knowledge on sweeteners and sweetness enhancers. The perception of sweet taste is mediated by the type 1 taste receptor 2 (T1R2)/type 1 taste receptor 3 (T1R3) receptor, which is expressed in the oral cavity, where it provides input on the caloric and macronutrient contents of ingested food. This receptor recognizes all the compounds (natural or artificial) perceived as sweet by people. Sweeteners are highly chemically diverse including natural sugars, sugar alcohols, natural and synthetic sweeteners, and sweet-tasting proteins. This single receptor is also the target for developing novel sweet enhancers. Importantly, the expression of a functional T1R2/T1R3 receptor is described in numerous extraoral tissues. In this review, the physiological impact of sweeteners is discussed. Sweeteners and sweetness enhancers are perceived through the T1R2/T1R3 taste receptor present both in mouth and numerous extraoral tissues. The accumulated knowledge on sugar substitutes raises the issue of potential health effects.

  14. 1978 Insect Pest Management Guide: Field and Forage Crops. Circular 899.

    Science.gov (United States)

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of field crop pests. Suggestions are given for selection, dosage and application of insecticides to control pests in field corn, alfalfa and clover, small grains, soybeans and grain sorghum. (CS)

  15. Yellow sweet potato flour: use in sweet bread processing to increase β-carotene content and improve quality

    Directory of Open Access Journals (Sweden)

    AMANDA C. NOGUEIRA

    2018-02-01

    Full Text Available ABSTRACT Yellow sweet potato is mostly produced by small farmers, and may be a source of energy and carotenoids in the human diet, but it is a highly perishable crop. To increase its industrial application, yellow sweet potato flour has been produced for use in bakery products. This study aimed to evaluate the technological quality and the carotenoids content in sweet breads produced with the replacement of wheat flour by 0, 3, 6, and 9% yellow sweet potato flour. Breads were characterized by technological parameters and β-carotene levels during nine days of storage. Tukey’s test (p<0.05 was used for comparison between means. The increase in yellow sweet potato flour concentrations in bread led to a decrease of specific volume and firmness, and an increase in water activity, moisture, orange coloring, and carotenoids. During storage, the most significant changes were observed after the fifth day, with a decrease in intensity of the orange color. The β-carotene content was 0.1656 to 0.4715 µg/g in breads with yellow sweet potato flour. This work showed a novel use of yellow sweet potato in breads, which brings benefits to consumers’ health and for the agricultural business.

  16. Effect of particle treatment and adhesive type on physical, mechanical, and durability properties of particleboard made from Sorghum Bagasse

    Science.gov (United States)

    Heri Iswanto, Apri; Supriyanto; Fatriasari, Widya; Susilowati, Arida

    2018-03-01

    Refers to chemical content of sweet sorghum stalk especially for Numbu varian, sorghum bagasse issuitable for materials of particleboard. The objective of the experiment was to evaluate of particle treatment on physichal, mechanical, and durability properties of particleboard made from sorghum bagasse. For particle treatment, Sorghum bagasse immersed in cold water and hot water for 24 and 1 hours respectively. Particleboards were produced in size 25 by 25 cm2 with thickness and density target of 0.8 cm and 0.7 g/cm3. Amount of 10% Urea formaldehyde (UF) and 7% isocyanat (MDI) adhesive level used for manufacturing of board. Particle and adhesive were blended with rotary blending. Afterward, it was placed into mat former with size of 25 by 25 cm2. Mat was pressed by hot press machine. The pressing was conducted on 130°C temperature for UF resin and 160°C for MDI resin, pressure of 25 kg/cm2 and pressing time for 10 minutes. The results showed that particle soaking in hot water produced of lower thickness swelling compared to untreated board. Similar trend also occuron particleboard whichwas bonded with MDI resin. MDI as exterior adhesive resulted good performance in dimensional stability of sorghum bagasse particleboard. For UF bonded particleboard, immersing in hot water resulted in the low MOR, MOE and IB parameter. It’s contrary with MDI bonded particleboard.

  17. Simulating the Probability of Grain Sorghum Maturity before the First Frost in Northeastern Colorado

    Directory of Open Access Journals (Sweden)

    Gregory S. McMaster

    2016-09-01

    Full Text Available Expanding grain sorghum [Sorghum bicolor (L. Moench] production northward from southeastern Colorado is thought to be limited by shorter growing seasons due to lower temperatures and earlier frost dates. This study used a simulation model for predicting crop phenology (PhenologyMMS to estimate the probability of reaching physiological maturity before the first fall frost for a variety of agronomic practices in northeastern Colorado. Physiological maturity for seven planting dates (1 May to 12 June, four seedbed moisture conditions affecting seedling emergence (from Optimum to Planted in Dust, and three maturity classes (Early, Medium, and Late were simulated using historical weather data from nine locations for both irrigated and dryland phenological parameters. The probability of reaching maturity before the first frost was slightly higher under dryland conditions, decreased as latitude, longitude, and elevation increased, planting date was delayed, and for later maturity classes. The results provide producers with estimates of the reliability of growing grain sorghum in northeastern Colorado.

  18. Custo de produção e rentabilidade das culturas de alface, rabanete, rúcula e repolho em cultivo solteiro e consorciadas com pimentão Production cost and profitability of lettuce, radish, arugula and cabbage sole crop and intercropped with sweet pepper

    Directory of Open Access Journals (Sweden)

    Bráulio Luciano Alves Rezende

    2009-02-01

    Full Text Available Realizou-se, o trabalho na UNESP, Jaboticabal, SP, com o objetivo de avaliar a rentabilidade das culturas de alface, rabanete, rúcula e repolho, em cultivo solteiro e consorciadas com pimentão. A determinação dos custos de produção das culturas em cultivo solteiro e em consórcio foi realizada com base na metodologia do custo operacional total (COT, com valores referentes a março de 2005. Para o cálculo da receita bruta, considerou-se o preço do setor atacadista, CEAGESP, no mês de março de 2005. Os COT das culturas de repolho, rúcula, alface e rabanete, quando consorciadas com pimentão, tiveram redução de 34,0%, 24,7%, 21,3% e 20,8% em relação aos seus respectivos cultivos solteiros. As culturas de alface e rabanete consorciadas com pimentão apresentaram aumento na receita líquida em 49,6% e 13,9%, respectivamente, quando comparadas com seus cultivos solteiros. A maior rentabilidade foi obtida em consórcio de pimentão com alface. A taxa de retorno e índice de lucratividade dos consórcios foram superiores aos observados nas monoculturas.This work was carried out at UNESP, in Jaboticabal, SP, with the aim of evaluating the production cost and profitability of lettuce, radish, arugula and cabbage sole crop and intercropped with sweet pepper. The determination of the production cost was accomplished with base on the methodology of the total operational cost (TOC, in March of 2005. For the calculation of the gross revenue, the price of the wholesale sector, CEAGESP, applied in March 2005, was considered,. The TOC of the cultures cabbage, arugula, lettuce and radish when intercropped with sweet pepper had a reduction of 34.0%, 24.7%, 21.3% and 20.8%, when compared to their respective single cultivation. The cultures of lettuce and radish intercropped with sweet pepper had net revenue increase of 49.6% and 13.9%, respectively, when compared to their single cultivation. The largest profitability was obtained when sweet pepper was

  19. Evaluation of four sorghum varieties in the utilization of sorghum flour tortillas

    Science.gov (United States)

    Gluten-free flour tortillas were made with five different sorghum flours to evaluate flour quality. Four sorghum varieties were used along with a commercial sorghum flour. The four varieties were: Fontanelle-625 (F-625), Fontanelle-1000 (F-1000), ATx631xRTx2907(NE#20), and 5040C. The tortilla wei...

  20. Developing new markers and QTL mapping for greenbug resistance in sorghum [Sorghum bicolor (L.) Moench

    Science.gov (United States)

    Greenbug is a major damaging insect to sorghum production in the United States. Among various virulent greenbug biotypes, biotype I is the most predominant and severe for sorghum. To combat with the damaging pest, greenbug resistant sources were obtained from screening sorghum germplasm collection...

  1. A highly conserved NB-LRR encoding gene cluster effective against Setosphaeria turcica in sorghum

    Directory of Open Access Journals (Sweden)

    Martin Tom

    2011-11-01

    Full Text Available Abstract Background The fungal pathogen Setosphaeria turcica causes turcicum or northern leaf blight disease on maize, sorghum and related grasses. A prevalent foliar disease found worldwide where the two host crops, maize and sorghum are grown. The aim of the present study was to find genes controlling the host defense response to this devastating plant pathogen. A cDNA-AFLP approach was taken to identify candidate sequences, which functions were further validated via virus induced gene silencing (VIGS, and real-time PCR analysis. Phylogenetic analysis was performed to address evolutionary events. Results cDNA-AFLP analysis was run on susceptible and resistant sorghum and maize genotypes to identify resistance-related sequences. One CC-NB-LRR encoding gene GRMZM2G005347 was found among the up-regulated maize transcripts after fungal challenge. The new plant resistance gene was designated as St referring to S. turcica. Genome sequence comparison revealed that the CC-NB-LRR encoding St genes are located on chromosome 2 in maize, and on chromosome 5 in sorghum. The six St sorghum genes reside in three pairs in one locus. When the sorghum St genes were silenced via VIGS, the resistance was clearly compromised, an observation that was supported by real-time PCR. Database searches and phylogenetic analysis suggest that the St genes have a common ancestor present before the grass subfamily split 50-70 million years ago. Today, 6 genes are present in sorghum, 9 in rice and foxtail millet, respectively, 3 in maize and 4 in Brachypodium distachyon. The St gene homologs have all highly conserved sequences, and commonly reside as gene pairs in the grass genomes. Conclusions Resistance genes to S. turcica, with a CC-NB-LRR protein domain architecture, have been found in maize and sorghum. VIGS analysis revealed their importance in the surveillance to S. turcica in sorghum. The St genes are highly conserved in sorghum, rice, foxtail millet, maize and

  2. Registration of Adu and Barkume: Improved Sweet Potato ( Ipomoea ...

    African Journals Online (AJOL)

    Two improved sweet potato (Ipomoea batatas) varieties, namely, Adu (Cuba-2) and Barkume (TIS-8250-2) were developed by Root and Tuber Crops Improvement Program and approved by the National Variety Releasing Committee in 2007. The performances of the varieties were evaluated at four locations in the eastern ...

  3. Transmission of Sweet Potato Leaf Curl Virus by Bemisia tabaci

    Science.gov (United States)

    Sweetpotato, Ipomoea batatas (L.) Lam. (Solanales: Convolvulaceae), is an important world food crop, and Asia is the focal production region. Because it is vegetatively propagated, sweetpotato is especially prone to accumulate infections by several viruses. Sweet potato leaf curl virus (SPLCV) (ss...

  4. Genetic Diversity of Local and Introduced Sweet Potato [Ipomoea ...

    African Journals Online (AJOL)

    This study was therefore conducted to estimate the genetic diversity of 114 Sweet potato [Ipomoea batatas (L.) Lam] accessions obtained from Nigeria, Asia, Latin America and Local collections along with two improved varieties. Accessions were planted in 2012/13 cropping season at Haramaya University, eastern Ethiopia ...

  5. Agronomic assessment of some sweet potato varieties for ...

    African Journals Online (AJOL)

    Field experiments were conducted at the National Root Crops Research Institute sub-station, Otobi, in 2006 and 2007 to assess the suitability of improved sweet potato varieties for intercropping with pigeonpea and also to determine the planting pattern and the productivity of the intercropping system. Intercropping ...

  6. Biochemical response of sweet potato to bemul-wax coating ...

    African Journals Online (AJOL)

    Sweet potato (Ipomoea batatas Linn) tuber is a very nutritious but highly perishable crop that is subject to high wastages due to non-availability of appropriate storage techniques. This work assessed the effectiveness of treating the tubers with calcium chloride dip (CCD), bemul-wax (B-wax) and their combinations ...

  7. Towards the development of sweet potato-based couscous for ...

    African Journals Online (AJOL)

    Sweet potato processing and consumption patterns are very limited in Benin. The present study aimed to suggest a new utilization of the crop as food. Roots from a white flesh variety were processed into flour and later into couscous. This couscous was steam-cooked following the same procedure as a wheat-based ...

  8. Assessment of the productivity of sweet potato varieties grown on ...

    African Journals Online (AJOL)

    The agronomic effectiveness and economic viability of soil amendment with prunings of agro-forestry tree species in sweet potato production on a highly weathered soil of South Eastern Nigeria were assessed in a field study conducted in 2010 and 2011 at the research farm of the National Root Crops Research Institute, ...

  9. Genetic Fingerprinting of Sweet Potato [ Ipomoea batatas (L.) Lam ...

    African Journals Online (AJOL)

    Sweet potato is an important staple crop and many varieties have been released into farmers' fields in Nigeria, but no reliable means in tracking their identity, thus causing multiple naming of these varieties among farmers. The objective of the study is to establish objectively and reliable means of identifying released, local ...

  10. Adoption of sweet potato production technologies in Abia State ...

    African Journals Online (AJOL)

    Adoption of sweet potato production technologies in Abia State, Nigeria. ... Journal of Agriculture and Social Research (JASR) ... Institute of Tropical Agriculture (IITA) Ibadan and National Root Crops Research Institute (NRCRI) Umudike to eliminate constraints associated with farmers' use of local production technologies.

  11. Improving obstacle awareness for robotic harvesting of sweet-pepper

    NARCIS (Netherlands)

    Bac, C.W.

    2015-01-01

    Abstract

    Obstacles are densely spaced in a sweet-pepper crop and they limit the free workspace for a robot that can detach the fruit from the plant. Previous harvesting robots mostly attempted to detach a fruit without using any information of obstacles, thereby reducing

  12. Survival analysis of flower and fruit abortion in sweet pepper

    NARCIS (Netherlands)

    Wubs, A.M.; Heuvelink, E.; Marcelis, L.F.M.; Hemerik, L.

    2007-01-01

    In order to obtain a crop growth model that can simulate inter- and intra-plant variation in fruit set, fruit abortion times in sweet pepper were analysed by means of survival analysis. Survival analysis is a statistical technique dealing with the timing of events. The Cox proportional hazards model

  13. Sweetness and food preference.

    Science.gov (United States)

    Drewnowski, Adam; Mennella, Julie A; Johnson, Susan L; Bellisle, France

    2012-06-01

    Human desire for sweet taste spans all ages, races, and cultures. Throughout evolution, sweetness has had a role in human nutrition, helping to orient feeding behavior toward foods providing both energy and essential nutrients. Infants and young children in particular base many of their food choices on familiarity and sweet taste. The low cost and ready availability of energy-containing sweeteners in the food supply has led to concerns that the rising consumption of added sugars is the driving force behind the obesity epidemic. Low-calorie sweeteners are one option for maintaining sweet taste while reducing the energy content of children's diets. However, their use has led to further concerns that dissociating sweetness from energy may disrupt the balance between taste response, appetite, and consumption patterns, especially during development. Further studies, preferably based on longitudinal cohorts, are needed to clarify the developmental trajectory of taste responses to low-calorie sweeteners and their potential impact on the diet quality of children and youth.

  14. Examining the impact of climate change and variability on sweet potatoes in East Africa

    Science.gov (United States)

    Ddumba, S. D.; Andresen, J.; Moore, N. J.; Olson, J.; Snapp, S.; Winkler, J. A.

    2013-12-01

    Climate change is one of the biggest challenges to food security for the rapidly increasing population of East Africa. Rainfall is becoming more variable and temperatures are rising, consequently leading to increased occurrence of droughts and floods, and, changes in the timing and length of growing seasons. These changes have serious implications on crop production with the greatest impact likely to be on C4 crops such as cereals compared to C3 crops such as root tubers. Sweet potatoes is one the four most important food crops in East Africa owing to its high nutrition and calorie content, and, high tolerance to heat and drought, but little is known about how the crop will be affected by climate change. This study identifies the major climatic constraints to sweet potato production and examines the impact of projected future climates on sweet potato production in East Africa during the next 10 to 30 years. A process-based Sweet POTato COMputer Simulation (SPOTCOMS) model is used to assess four sweet potato cultivars; Naspot 1, Naspot 10, Naspot 11 and SPK 004-Ejumula. This is work in progress but preliminary results from the crop modeling experiments and the strength and weakness of the crop model will be presented.

  15. A sorghum (Sorghum bicolor mutant with altered carbon isotope ratio.

    Directory of Open Access Journals (Sweden)

    Govinda Rizal

    Full Text Available Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium's efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor mutant with a low δ13C characteristic. A mutant (named Mut33 with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT. The back-cross (BC1F1 progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used

  16. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States.

    Science.gov (United States)

    Cai, Hao; Dunn, Jennifer B; Wang, Zhichao; Han, Jeongwoo; Wang, Michael Q

    2013-10-02

    The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse

  17. Past and present dynamics of sorghum and pearl millet diversity in Mount Kenya region.

    Science.gov (United States)

    Labeyrie, Vanesse; Deu, Monique; Dussert, Yann; Rono, Bernard; Lamy, Françoise; Marangu, Charles; Kiambi, Dan; Calatayud, Caroline; Coppens d'Eeckenbrugge, Geo; Robert, Thierry; Leclerc, Christian

    2016-12-01

    Crop populations in smallholder farming systems are shaped by the interaction of biological, ecological, and social processes, occurring on different spatiotemporal scales. Understanding these dynamics is fundamental for the conservation of crop genetic resources. In this study, we investigated the processes involved in sorghum and pearl millet diversity dynamics on Mount Kenya. Surveys were conducted in ten sites distributed along two elevation transects and occupied by six ethnolinguistic groups. Varieties of both species grown in each site were inventoried and characterized using SSR markers. Genetic diversity was analyzed using both individual- and population-based approaches. Surveys of seed lot sources allowed characterizing seed-mediated gene flow. Past sorghum diffusion dynamics were explored by comparing Mount Kenya sorghum diversity with that of the African continent. The absence of structure in pearl millet genetic diversity indicated common ancestry and/or important pollen- and seed-mediated gene flow. On the contrary, sorghum varietal and genetic diversity showed geographic patterns, pointing to different ancestry of varieties, limited pollen-mediated gene flow, and geographic patterns in seed-mediated gene flow. Social and ecological processes involved in shaping seed-mediated gene flow are further discussed.

  18. Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication.

    Science.gov (United States)

    Tang, Haibao; Cuevas, Hugo E; Das, Sayan; Sezen, Uzay U; Zhou, Chengbo; Guo, Hui; Goff, Valorie H; Ge, Zhengxiang; Clemente, Thomas E; Paterson, Andrew H

    2013-09-24

    Suppression of seed shattering was a key step during crop domestication that we have previously suggested to be convergent among independent cereal lineages. Positional, association, expression, and mutant complementation data all implicate a WRKY transcription factor, SpWRKY, in conferring shattering to a wild sorghum relative, Sorghum propinquum. We hypothesize that SpWRKY functions in a manner analogous to Medicago and Arabidopsis homologs that regulate cell wall biosynthesis genes, with low expression toward the end of floral development derepressing downstream cell wall biosynthesis genes to allow deposition of lignin that initiates the abscission zone in the seed-pedicel junction. The recent discovery of a YABBY locus that confers shattering within Sorghum bicolor and other cereals validated our prior hypothesis that some parallel domestication may have been convergent. Ironically, however, the shattering allele of SpWRKY appears to be recently evolved in S. propinquum and illustrates a case in which the genetic control of a trait in a wild relative fails to extrapolate even to closely related crops. Remarkably, the SpWRKY and YABBY loci lie only 300 kb apart and may have appeared to be a single genetic locus in some sorghum populations.

  19. Silage quality of sorghum and Urochloa brizantha cultivars monocropped or intercropped in different planting systems

    Directory of Open Access Journals (Sweden)

    Matheus Gonçalves Ribeiro

    2017-07-01

    Full Text Available Recently it has emerged a technique for silage production of intercropping systems of annual crop with forage through crop-livestock integration, aiming to reduce the deficit forage in the offseason. The study was conducted to evaluate the fermentation characteristics and nutritional value of silage of sorghum and Urochloa brizantha cultivars monocropped or intercropped in different planting systems. The experiment was a randomized block design, with three replications, in a 3x2+4 factorial arrangement, with three cultivars of Urochloa brizantha (Marandu; Xaraes and Piata intercropped with grain sorghum in two planting systems (row and between rows and four monocrops (Sorghum, Marandu palisadegrass, Xaraes palisadegrass and Piata palisadegrass. The planting system of intercropping systems did not interfere with fermentation characteristics and chemical composition of silages. The same was found for Urochloa cultivars. Silages from intercropping sorghum with Urochloa brizantha cultivars had lower pH values, buffering capacity, acetic and butyric acids and higher values of lactic acid, besides showed superior quality, as for the parameters dry matter, ether extract and total digestible nutrient than silages from grasses produced in monocropping system. Therefore, silages of intercropping systems ensure fermentation and nutritional quality, providing interesting supplementary bulky options to be used in the offseason for feeding animals.

  20. Case Study: Trap Crop with Pheromone Traps for Suppressing Euschistus servus (Heteroptera: Pentatomidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available The brown stink bug, Euschistus servus (Say, can disperse from source habitats, including corn, Zea mays L., and peanut, Arachis hypogaea L., into cotton, Gossypium hirsutum L. Therefore, a 2-year on-farm experiment was conducted to determine the effectiveness of a sorghum (Sorghum bicolor (L. Moench spp. bicolor trap crop, with or without Euschistus spp. pheromone traps, to suppress dispersal of this pest to cotton. In 2004, density of E. servus was lower in cotton fields with sorghum trap crops (with or without pheromone traps compared to control cotton fields. Similarly, in 2006, density of E. servus was lower in cotton fields with sorghum trap crops and pheromone traps compared to control cotton fields. Thus, the combination of the sorghum trap crop and pheromone traps effectively suppressed dispersal of E. servus into cotton. Inclusion of pheromone traps with trap crops potentially offers additional benefits, including: (1 reducing the density of E. servus adults in a trap crop, especially females, to possibly decrease the local population over time and reduce the overwintering population, (2 reducing dispersal of E. servus adults from the trap crop into cotton, and (3 potentially attracting more dispersing E. servus adults into a trap crop during a period of time when preferred food is not prevalent in the landscape.

  1. N, P or K doses on the dry matter and crude protein yield in maize and sorghum for silage

    Directory of Open Access Journals (Sweden)

    Júnior Melo Damian

    2017-03-01

    Full Text Available Maize and sorghum are the main raw materials in the production of silage for animal feed, with mineral fertilization being worthy of note when the goal is to increase gains in the amount and quality of the forage. This study aimed at evaluating the contribution of N, P or K doses to the dry matter and crude protein yield in maize and sorghum grown for silage. The experiments were carried out in a randomized block design, with four replications, during five successive crops of maize (three summer seasons and sorghum (two off-season. Five doses of N (0 kg ha-1, 50 kg ha-1, 100 kg ha-1, 150 kg ha-1 and 200 kg ha-1, five doses of P2O5 (0 kg ha-1, 40 kg ha-1, 80 kg ha-1, 120 kg ha-1 and 160 kg ha-1 and five doses of K2O (0 kg ha-1, 30 kg ha-1, 60 kg ha-1, 90 kg ha-1 and 120 kg ha-1 were applied to each crop in the same experimental area. The N doses contributed to an increase in the crude protein yield in the five successive crops of maize and sorghum, together with an increase in dry matter and/or protein concentration. Crude protein increased 59.5-312.9 % for both crops. The soils used for the succession cropping system of maize and sorghum for silage had "very high" levels of P and K. Therefore, the P fertilization had no effect on the dry matter or crude protein yield in the first year of cultivation, similarly to the K fertilization during the five successive crop seasons.

  2. Quantitative genetic analysis of agronomic and morphological traits in sorghum, Sorghum bicolor

    Science.gov (United States)

    Mohammed, Riyazaddin; Are, Ashok K.; Bhavanasi, Ramaiah; Munghate, Rajendra S.; Kavi Kishor, Polavarapu B.; Sharma, Hari C.

    2015-01-01

    The productivity in sorghum is low, owing to various biotic and abiotic constraints. Combining insect resistance with desirable agronomic and morphological traits is important to increase sorghum productivity. Therefore, it is important to understand the variability for various agronomic traits, their heritabilities and nature of gene action to develop appropriate strategies for crop improvement. Therefore, a full diallel set of 10 parents and their 90 crosses including reciprocals were evaluated in replicated trials during the 2013–14 rainy and postrainy seasons. The crosses between the parents with early- and late-flowering flowered early, indicating dominance of earliness for anthesis in the test material used. Association between the shoot fly resistance, morphological, and agronomic traits suggested complex interactions between shoot fly resistance and morphological traits. Significance of the mean sum of squares for GCA (general combining ability) and SCA (specific combining ability) of all the studied traits suggested the importance of both additive and non-additive components in inheritance of these traits. The GCA/SCA, and the predictability ratios indicated predominance of additive gene effects for majority of the traits studied. High broad-sense and narrow-sense heritability estimates were observed for most of the morphological and agronomic traits. The significance of reciprocal combining ability effects for days to 50% flowering, plant height and 100 seed weight, suggested maternal effects for inheritance of these traits. Plant height and grain yield across seasons, days to 50% flowering, inflorescence exsertion, and panicle shape in the postrainy season showed greater specific combining ability variance, indicating the predominance of non-additive type of gene action/epistatic interactions in controlling the expression of these traits. Additive gene action in the rainy season, and dominance in the postrainy season for days to 50% flowering and plant

  3. Effects of different companion crops on the performance of cassava ...

    African Journals Online (AJOL)

    Experiments were conducted at the Teaching and Research Farm of the University of Ibadan in 1998/1999 and 1999/2000 cropping seasons to determine the effects of different intercropping systems which included: sole cassava, cassava/maize, cassava/maize/sweet potato and cassava/cocoyam/sweet potato on the ...

  4. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum

    Science.gov (United States)

    Variation in flowering time was essential during widespread crop domestication and optimal timing of reproduction remains critical to modern agriculture. Ma1, the major repressor of flowering in sorghum in long days, was identified as the pseudo-response regulator protein PRR37. Three prr37 allele...

  5. Phylogenetic relationship among Kenyan sorghum germplasms ...

    African Journals Online (AJOL)

    Lines MSCRO2, MSCRC1 and MSCRN60, screened to be Al tolerant were genetically related at 70% average linkage similarity level and therefore recommend their further development as a food security measure in Kenya. Keywords: Aluminium (Al) toxicity, Sorghum bicolor, Sorghum bicolor multi-drug, toxic extrusion ...

  6. Genetic diversity and population structure among sorghum ...

    African Journals Online (AJOL)

    The Western Ethiopian region harbors a unique set of sorghum germplasm adapted to conditions not conventional to sorghums grown in other parts of the world. Accessions from the region possess unique resistance to multiple leaf and grain diseases. This study is aimed at exploring the extent of genetic variation and ...

  7. Productivity and Competitiveness of Sorghum Production in ...

    African Journals Online (AJOL)

    farming, the study sought to analyze the productivity and competitiveness of sorghum production in northern Ghana with particular reference to varieties produced for the brewery industry. A Policy Analysis Matrix (PAM) approach was used in the analysis. The PAM results showed that sorghum production in the study areas ...

  8. Sorghum biotechnology for food and health

    CSIR Research Space (South Africa)

    Mehlo, L

    2006-02-01

    Full Text Available The goal of this project is to develop transgenic sorghum varieties that will deliver essential amino acids (lysine, threonine and tryptophan), vitamins A and E, iron and zinc - all of which are deficient in sorghum - to African populations...

  9. Structure and chemistry of the sorghum grain

    Science.gov (United States)

    Sorghum is grown around the world and often under harsh and variable environmental conditions. Combined with the high degree of genetic diversity present in sorghum, this can result in substantial variability in grain composition and grain quality. While similar to other cereal grains such as maize ...

  10. Production of Ogi from germinated sorghum supplemented with ...

    African Journals Online (AJOL)

    Three varieties of sorghum grains were germinated before fermentation to Ogi. The protein and ash contents of Sorghum vulgare, Sorghum guineensis and Sorghum bicolor increased by 7.20 and 40.20%; 5.44 and 29.20%; and 4.00 and 42.18% respectively. Fermentation of the germinated grains however caused ...

  11. Yellow sweet potato flour: use in sweet bread processing to increase β-carotene content and improve quality.

    Science.gov (United States)

    Nogueira, Amanda C; Sehn, Georgia A R; Rebellato, Ana Paula; Coutinho, Janclei P; Godoy, Helena T; Chang, Yoon K; Steel, Caroline J; Clerici, Maria Teresa P S

    2018-01-01

    Yellow sweet potato is mostly produced by small farmers, and may be a source of energy and carotenoids in the human diet, but it is a highly perishable crop. To increase its industrial application, yellow sweet potato flour has been produced for use in bakery products. This study aimed to evaluate the technological quality and the carotenoids content in sweet breads produced with the replacement of wheat flour by 0, 3, 6, and 9% yellow sweet potato flour. Breads were characterized by technological parameters and β-carotene levels during nine days of storage. Tukey's test (psweet potato flour concentrations in bread led to a decrease of specific volume and firmness, and an increase in water activity, moisture, orange coloring, and carotenoids. During storage, the most significant changes were observed after the fifth day, with a decrease in intensity of the orange color. The β-carotene content was 0.1656 to 0.4715 µg/g in breads with yellow sweet potato flour. This work showed a novel use of yellow sweet potato in breads, which brings benefits to consumers' health and for the agricultural business.

  12. Phylogenetic reconstruction using four low-copy nuclear loci strongly supports a polyphyletic origin of the genus Sorghum.

    Science.gov (United States)

    Hawkins, Jennifer S; Ramachandran, Dhanushya; Henderson, Ashley; Freeman, Jasmine; Carlise, Michael; Harris, Alex; Willison-Headley, Zachary

    2015-08-01

    Sorghum is an essential grain crop whose evolutionary placement within the Andropogoneae has been the subject of scrutiny for decades. Early studies using cytogenetic and morphological data point to a poly- or paraphyletic origin of the genus; however, acceptance of poly- or paraphyly has been met with resistance. This study aimed to address the species relationships within Sorghum, in addition to the placement of Sorghum within the tribe, using a phylogenetic approach and employing broad taxon sampling. From 16 diverse Sorghum species, eight low-copy nuclear loci were sequenced that are known to play a role in morphological diversity and have been previously used to study evolutionary relationships in grasses. Further, the data for four of these loci were combined with those from 57 members of the Andropogoneae in order to determine the placement of Sorghum within the tribe. Both maximum likelihood and Bayesian analyses were performed on multilocus concatenated data matrices. The Sorghum-specific topology provides strong support for two major lineages, in alignment with earlier studies employing chloroplast and internal transcribed spacer (ITS) markers. Clade I is composed of the Eu-, Chaeto- and Heterosorghum, while clade II contains the Stipo- and Parasorghum. When combined with data from the Andropogoneae, Clade II resolves as sister to a clade containing Miscanthus and Saccharum with high posterior probability and bootstrap support, and to the exclusion of Clade I. The results provide compelling evidence for a two-lineage polyphyletic ancestry of Sorghum within the larger Andropogoneae, i.e. the derivation of the two major Sorghum clades from a unique common ancestor. Rejection of monophyly in previous molecular studies is probably due to limited taxon sampling outside of the genus. The clade consisting of Para- and Stiposorghum resolves as sister to Miscanthus and Saccharum with strong node support. © The Author 2015. Published by Oxford University Press on

  13. Potential for breeding sweet pepper adapted to cooler growing conditions : a physiological and genetic analysis of growth traits in Capsicum

    NARCIS (Netherlands)

    Swart, de E.A.M.

    2007-01-01

    Sweet pepper (Capsicum annuum L.) is an important greenhouse crop in theNetherlands. In 2005, the production area of sweet pepper in the

  14. Honeybees as an aid in improving labour conditions in sweet bell pepper greenhouses: reduction of pollen allergy

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Blacquière, T.; Jong, de N.W.; Groot, de H.

    2004-01-01

    Sweet bell pepper is the most important greenhouse vegetable crop in the Netherlands. It is grown on an area of 10,000 hectares, and about 8000 people are working in these greenhouses. One third of these workers sooner or later develop an occupational allergy to the sweet bell pepper pollen. The

  15. Two distinct classes of QTL determine rust resistance in sorghum.

    Science.gov (United States)

    Wang, Xuemin; Mace, Emma; Hunt, Colleen; Cruickshank, Alan; Henzell, Robert; Parkes, Heidi; Jordan, David

    2014-12-31

    Agriculture is facing enormous challenges to feed a growing population in the face of rapidly evolving pests and pathogens. The rusts, in particular, are a major pathogen of cereal crops with the potential to cause large reductions in yield. Improving stable disease resistance is an on-going major and challenging focus for many plant breeding programs, due to the rapidly evolving nature of the pathogen. Sorghum is a major summer cereal crop that is also a host for a rust pathogen Puccinia purpurea, which occurs in almost all sorghum growing areas of the world, causing direct and indirect yield losses in sorghum worldwide, however knowledge about its genetic control is still limited. In order to further investigate this issue, QTL and association mapping methods were implemented to study rust resistance in three bi-parental populations and an association mapping set of elite breeding lines in different environments. In total, 64 significant or highly significant QTL and 21 suggestive rust resistance QTL were identified representing 55 unique genomic regions. Comparisons across populations within the current study and with rust QTL identified previously in both sorghum and maize revealed a high degree of correspondence in QTL location. Negative phenotypic correlations were observed between rust, maturity and height, indicating a trend for both early maturing and shorter genotypes to be more susceptible to rust. The significant amount of QTL co-location across traits, in addition to the consistency in the direction of QTL allele effects, has provided evidence to support pleiotropic QTL action across rust, height, maturity and stay-green, supporting the role of carbon stress in susceptibility to rust. Classical rust resistance QTL regions that did not co-locate with height, maturity or stay-green QTL were found to be significantly enriched for the defence-related NBS-encoding gene family, in contrast to the lack of defence-related gene enrichment in multi-trait effect

  16. Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Sander C.; van de Ven, Gerrie W.J.; van Ittersum, Martin K.; Giller, Ken E. [Plant Production Systems Group, Wageningen University, P.O. Box 430, 6700 AK Wageningen (Netherlands)

    2010-05-15

    We compared the production-ecological sustainability of biofuel production from several major crops that are also commonly used for production of food or feed, based on current production practices in major production areas. The set of nine sustainability indicators focused on resource use efficiency, soil quality, net energy production and greenhouse gas emissions, disregarding socio-economic or biodiversity aspects and land use change. Based on these nine production-ecological indicators and attributing equal importance to each indicator, biofuel produced from oil palm (South East Asia), sugarcane (Brazil) and sweet sorghum (China) appeared most sustainable: these crops make the most efficient use of land, water, nitrogen and energy resources, while pesticide applications are relatively low in relation to the net energy produced. Provided there is no land use change, greenhouse gas emissions of these three biofuels are substantially reduced compared with fossil fuels. Oil palm was most sustainable with respect to the maintenance of soil quality. Maize (USA) and wheat (Northwest Europe) as feedstock for ethanol perform poorly for nearly all indicators. Sugar beet (Northwest Europe), cassava (Thailand), rapeseed (Northwest Europe) and soybean (USA) take an intermediate position. (author)

  17. Effect of intercropping varieties of sweet potato and okra in an ultisol ...

    African Journals Online (AJOL)

    A field experiment was conducted at the research farm of the National Root Crops Research Institute (NRCRI), Umudike in 2000 and 2001 cropping seasons to access the productivity of three sweet potato cultivars intercropped with three okra cultivars. Intercropping generally increased okra plant height while intercropping ...

  18. Nitrogen Use Efficiency of taro and sweet potato in the humid lowlands of Papua New Guinea

    NARCIS (Netherlands)

    Hartemink, A.E.; Johnston, M.; O'Sullivan, J.N.; Poloma, S.

    2000-01-01

    Root crops are an important staple food in the Pacific region. Yields are generally low and inorganic fertilizers are deemed an option to increase root crop production. The effects of inorganic N fertilizers on upland taro (Colocasia esculenta (L.) Schott) and sweet potato (Ipomoea batatas (L.)

  19. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress.

    Science.gov (United States)

    Chopra, Ratan; Burow, Gloria; Hayes, Chad; Emendack, Yves; Xin, Zhanguo; Burke, John

    2015-12-09

    Sorghum is a versatile cereal crop, with excellent heat and drought tolerance. However, it is susceptible to early-season cold stress (12-15 °C) which limits stand-establishment and seedling growth. To gain further insights on the molecular mechanism of cold tolerance in sorghum we performed transcriptome profiling between known cold sensitive and tolerant sorghum lines using RNA sequencing technology under control and cold stress treatments. Here we report on the identification of differentially expressed genes (DEGs) between contrasting sorghum genotypes, HongkeZi (cold tolerant) and BTx623 (cold sensitive) under cool and control temperatures using RNAseq approach to elucidate the molecular basis of sorghum response to cold stress. Furthermore, we validated bi-allelic variants in the form of single nucleotide polymorphism (SNPs) between the cold susceptible and tolerant lines of sorghum. An analysis of transcriptome profile showed that in response to cold, a total of 1910 DEGs were detected under cold and control temperatures in both genotypes. We identified a subset of genes under cold stress for downstream analysis, including transcription factors that exhibit differential abundance between the sensitive and tolerant genotypes. We identified transcription factors including Dehydration-responsive element-binding factors, C-repeat binding factors, and Ethylene responsive transcription factors as significantly upregulated during cold stress in cold tolerant HKZ. Additionally, specific genes such as plant cytochromes, glutathione s-transferases, and heat shock proteins were found differentially regulated under cold stress between cold tolerant and susceptible genotype of sorghum. A total of 41,603 SNP were identified between the cold sensitive and tolerant genotypes with minimum read of four. Approximately 89 % of the 114 SNP sites selected for evaluation were validated using endpoint genotyping technology. A new strategy which involved an integrated analysis of

  20. Lipids characterization of ultrasound and microwave processed germinated sorghum.

    Science.gov (United States)

    Hassan, Sadia; Imran, Muhammad; Ahmad, Nazir; Khan, Muhammad Kamran

    2017-06-27

    Cereal crops and oilseeds provide diverse pool of fatty acids with characteristic properties. Sorghum (Sorghum bicolor (L.) Moench) provides the staple food with serving as main source of energy and protein. Germination of sorghum generally increases the nutritive value of seeds and the effects of germination on lipids composition of seeds vary greatly with processing conditions. Therefore, the current study was conducted to compare the effect of emerging processing techniques such as ultrasound (US) and microwave (MW) on fatty acids composition and oil yield of sorghum seeds before and after germination. Initially sorghum grains were soaked with 5% NaOCl (sodium hypochlorite) for surface sterilization. Afterwards, grains were soaked in excess water for 22 h at room temperature and were divided into four portions. The first portion (100 g grains) was subjected to germination without applying any microwave and ultrasonic treatment (T 0 ). Second portion was further divided into four groups (T 1 , T 2 , T 3 , T 4 ) (100 g of each group) and grains were subjected to ultrasonic treatments using two different ultrasonic intensities (US 1 : 40%; US 2 : 60%) within range of 0-100% and with two different time durations (t US1 : 5 min; t US2 : 10 min) at constant temperature. Third portion was also divided into four groups (T 1 , T 2 , T 3 , T 4 ) (100 g of each group) and exposed to microwave treatments at two different power levels (MW 1 : 450 watt; MW 2 : 700 watt) within the range of 100-900 W for two different time durations (t MW1 : 15 s; t MW2 : 30s). Similarly, fourth portion was divided into four groups (T 1 , T 2 , T 3 , T 4 ) (100 g of each group). Each group was exposed to both MW (MW 1 , MW 2 ) (100-900 watt power) & US (US 1 , US 2 ) (0-100% intensity) treatments at two different time levels (t US , t MW ). Then, germination was carried out and pre-treated raw and pre-treated germinated sorghum grains were analyzed for total oil yield, fatty acid

  1. Sorghum and black oat forage production and its nutritive value under phosphate levels

    Directory of Open Access Journals (Sweden)

    Rasiel Restelatto

    2017-03-01

    Full Text Available Phosphorus (P is one of the most limiting mineral elements for biomass and grain production in tropical soils. This study was undertaken to assess the influence of P on herbage accumulation (DM and the nutritive value of forage sorghum (Sorghum bicolor and black oat (Avena strigosa in succession. Evaluated treatments were P fertilization levels of 0, 50, 100, 150 and 200 kg of P2O5 ha-1 distributed in a randomized complete block design with three replicates. The treatments were applied at sorghum seeding in the summer 2010/2011 and 2011/2012. Black oat was seeded following sorghum in 2011 with no additional P fertilization. Herbage production and its nutritive value were assessed by successive cuts. The greatest sorghum DM yields were obtained at the highest phosphate level tested (200 kg P2O5 ha-1, with residual response in subsequent black oat. There was no effect of P fertilization levels on the nutritive values of both crops, considering crude protein (CP levels, in vitro dry matter digestibility (IVDMD, neutral detergent fiber (NDF and acid detergent fiber (ADF, what demonstrates that P addition has no effect in forage nutritive value, especially when the soil P levels are classified as medium or high. The plant P recovery efficiency decreased when increasing P fertilization levels for both sorghum and black oat. The level of 50 kg P2O5 ha-1 year-1 presented the greatest P recovery by plants, which supports the idea of less fertilizer use with more efficiency.

  2. Rates of return to sorghum and millet research investments: A meta-analysis.

    Science.gov (United States)

    Zereyesus, Yacob A; Dalton, Timothy J

    2017-01-01

    Sorghum and millet grow in some of the most heterogeneous and austere agroecologies around the world. These crops are amongst the top five cereal sources of food and feed. Yet, few studies document the impact of sorghum and millet genetic enhancement. The Internal Rate of Return (ROR) is one of the most popular metrics used to measure the economic return on investment on agricultural research and development (R&D). This study conducted a meta-analysis of 59 sorghum and millet ROR estimates obtained from 25 sources published between 1958 and 2015. The average rate of return to sorghum and millet R&D investment is between 54-76 percent per year. All studies computed social rather than private RORs because the technologies were developed using public funds originating from host country National Agricultural Research Systems (NARS) and international organizations such as the INTSORMIL CRSP, ICRISAT and others. Nearly three quarter of the studies focused only on sorghum (72 percent) and around one tenth of the studies (8 percent) on millet. Regression models analyzed the determinants of variation in the reported RORs. Results show that ex-ante type and self-evaluated type of analyses are positively and significantly associated with the ROR estimates. Compared to estimates conducted by a university, results from international institutions and other mixed organizations provided significantly smaller estimates. Estimates conducted at national level also are significantly lower than those conducted at sub-national levels. The ROR is higher for studies conducted in the United States and for those conducted more recently. The study also reconstructed modified internal rate of return (MIRR) for a sub-sample of the reported RORs following recent methods from the literature. These results show that the MIRR estimates are significantly smaller than the reported ROR estimates. Both results indicate that investment in sorghum and millet research generates high social rates of

  3. Potential for Optical Sensor-Based Nitrogen Fertilization in Grain Sorghum (Sorghum bicolor L. Moench) in Arkansas

    Science.gov (United States)

    Rosales Rodriguez, Kamil

    Ground-based active-optical (GBAO) crop sensors have become an effective tool to improve nitrogen (N) use efficiency and to predict yield early in the growing season, particularly for grass crops. Commercially available canopy sensors calculate the normalized difference vegetative index (NDVI) by emitting light in the red and near infrared range of the electromagnetic spectrum. The NDVI is used to evaluate vigor status and to estimate yield potential. However, few studies have been conducted to compare the performance of commercially available sensors. Therefore, a study was conducted using the most common crop canopy sensors: i) N-Tech's GreenSeeker(TM) (GS), ii) Holland Scientific's Crop Circle(TM) (CC), and iii) Minolta's SPAD-502 chlorophyll content meter (CCM). The objective of this study was to find the optimum time for sensing and compare the relative performance of the sensors in estimating the yield potential of grain sorghum (Sorghum bicolor L. Moench). Treatments included six levels of N fertilization (0, 37, 74, 111, 148, and 185 kg N/ ha), applied in a single split 20 days after planting (DAP). Treatments were arranged in a randomized complete block design with five replications, in four locations in Arkansas, during 2012 and 2013. Sensors readings at vegetative growth stages V3, 4, 5 and 6. Results from simple regression analysis showed that the V3-V4 growth stage correlated better with grain yield than readings collected and any other time. In season estimated yield (INSEY) obtained at V3 captured 41, 57, 78, and 61% of the variation in grain sorghum yield when red NDVI of GS, red NDVI of CC, red edge for CC and CCM, respectively, were used. Results from these studies suggest that the CC sensor has a better potential for in-season site-specific N application in Arkansas than the GS sensor. The GS reflectance values appear to saturate after the V3 stage, in contrast with CC values that allow for discrimination past the V3 Stage. Therefore, the red

  4. Preliminary process engineering evaluation of ethanol production from vegetative crops

    Science.gov (United States)

    Moreira, A. R.; Linden, J. C.; Smith, D. H.; Villet, R. H.

    1982-12-01

    Vegetative crops show good potential as feedstock for ethanol production via cellulose hydrolysis and yeast fermentation. The low levels of lignin encountered in young plant tissues show an inverse relationship with the high cellulose digestibility during hydrolysis with cellulose enzymes. Ensiled sorghum species and brown midrib mutants of sorghum exhibit high glucose yields after enzyme hydrolysis as well. Vegetative crop materials as candidate feedstocks for ethanol manufacture should continue to be studied. The species studied so far are high value cash crops and result in relatively high costs for the final ethanol product. Unconventional crops, such as pigweed, kochia, and Russian thistle, which can use water efficiently and grow on relatively arid land under conditions not ideal for food production, should be carefully evaluated with regard to their cultivation requirements, photosynthesis rates, and cellulose digestibility. Such crops should result in more favorable process economics for alcohol production.

  5. Determining water use of sorghum from two-source energy balance and radiometric temperatures

    Directory of Open Access Journals (Sweden)

    J. M. Sánchez

    2011-10-01

    Full Text Available Estimates of surface actual evapotranspiration (ET can assist in predicting crop water requirements. An alternative to the traditional crop-coefficient methods are the energy balance models. The objective of this research was to show how surface temperature observations can be used, together with a two-source energy balance model, to determine crop water use throughout the different phenological stages of a crop grown. Radiometric temperatures were collected in a sorghum (Sorghum bicolor field as part of an experimental campaign carried out in Barrax, Spain, during the 2010 summer growing season. Performance of the Simplified Two-Source Energy Balance (STSEB model was evaluated by comparison of estimated ET with values measured on a weighing lysimeter. Errors of ±0.14 mm h−1 and ±1.0 mm d−1 were obtained at hourly and daily scales, respectively. Total accumulated crop water use during the campaign was underestimated by 5%. It is then shown that thermal radiometry can provide precise crop water necessities and is a promising tool for irrigation management.

  6. Radiation-use efficiency response to vapor pressure deficit for maize and sorghum

    International Nuclear Information System (INIS)

    Kiniry, J.R.; Landivar, J.A.; Witt, M.; Gerik, T.J.; Cavero, J.; Wade, L.J.

    1998-01-01

    Variability within a crop species in the amount of dry mass produced per unit intercepted solar radiation, or radiation-use efficiency (RUE), is important for the quantification of plant productivity. RUE has been used to integrate (1) leaf area, (2) solar radiation interception, and (3) productivity per unit leaf area into crop productivity. Responsiveness of RUE to vapor pressure deficit (VPD) should relate closely to responsiveness of CO 2 exchange rate (CER) to VPD. The objective of this study was to compare independent RUE measurements to published response functions relating VPD with RUE of maize (Zea mays L.) and grain sorghum [Sorghum bicolor L. (Moench)]. Data sets from five locations covering a wide range of mean VPD values were compared to published response functions. Predicted RUE values were nearly always within the 95% confidence intervals of measurements. Measured RUE of maize decreased as VPD increased from 0.9 to 1.7 kPa. For sorghum, measured values of RUE agreed closely with predictions. RUE of sorghum decreased as VPD increased from 1.1 to 2.2 kPa. The relative RUE:VPD responses for these two species were similar to CER:VPD responses reported in the literature. Thus, these RUE:VPD responses may be general and appear to be related to carbon exchange rates. We calculated the expected impacts of VPD on RUE at three USA locations during maize and sorghum growing seasons. The RUE:VPD equations offer hope in describing location effects and time-of-year effects on RUE. (author)

  7. The Effect of Soil Fertilizers on Yield and Growth Traits of Sorghum (Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    R Kamaei

    2016-07-01

    , but they had significant effects on characteristics of root length colonization, specific root length, leaf area index, crop yield, number of seeds per panicle and thousand grains weight .The results demonstrated that the highest percent of root length colonization (82, specific root length (51.82 m root in 25 cm3 soil, leaf area index (5.47, seed yield (425.62 g.m-2, number of seeds in panicle (635 were obtained in mycorhhiza with Nitroxine® treatment. The highest weight of thousands seeds (29.26 g was gained in simultaneous use of mycrhhoriza and vermicampost. On the basis of our results, the integration of mycrhhoriza with Nitroxine® is suggested as the best fertilizer treatment for sorghum. Conclusions The results showed that the application of mycorrhiza with nitroxin had the greatest effect on growth characteristics and yield of sorghum. It seems that whenever there was a source of nitrogen beside the mycorrhiza, the performance of sorghum was higher. Undoubtedly, application of bio and organic fertilizers specially in poor soils, have positive effects on soil physical and nutritional characteristics. On the other hand according to economical, environmental and social aspects, they are benefits and could be appropriate alternative for chemical fertilizers in future.

  8. Effect of liquid amendments on sorghum growth in an ultisol

    International Nuclear Information System (INIS)

    Camacho, Manuel E.; Cabalceta-Aguilar, Gilberto; Molina-Rojas, Eloy

    2015-01-01

    The effect of the application of liquid amendments was evaluated in a Ultisol cultivated with sorghum. The research was conducted between August and November 2011 at the Centro de Investigaciones Agronomicas, San Jose, Costa Rica. In 800 ml pots of Ultisol seeded with sorghum, the following treatments were applied: control were lime, calcium carbonate in doses of 10 and 20 l/ha, magnesium oxide in doses of 10 and 20 l/ha, carbonate calcium + magnesium oxide in doses of 5 + 5 and 10 + 10 l/ha, respectively. The plants were harvested at six weeks, which were determined leaf area, dry and fresh weight of aerial and root biomass, nutrient absorption and soil chemical characteristics. The treatments of calcium carbonate and in mixture with magnesium oxide obtained the best values of leaf area and the highest values of fresh and dry weight both for both root and aerial part of the sorghum. Little significant differences were found between treatments of liquid lime but there were important differences with respect to the control with no lime with the variables of weight of biomass. Liquid calcium carbonate increased the Ca uptake significantly, and the treatment of carbon + oxides in doses of 10 l/ha showed the highest absorption of Mg. An improvement in soil fertility was caused by all treatments of amendments, the most outstanding being the treatment of magnesium oxide in doses of 20 l/ha, which decreased the exchangeable acidity from 9.02 to 0.36 cmol (+)/l, the percentage of acid saturation was low from 95 to 3.3% and the pH increased from 5.0 to 5.7. The net amendments had a positive effect on the indicator crop and soil fertility. (author) [es

  9. Growth and nitrogen fixation and uptake in Dhaincha/Sorghum intercropping system under saline and non-saline conditions

    International Nuclear Information System (INIS)

    Kurdali, K.; Janat, M.; Khalifa, K.

    2004-01-01

    Two field experiments on dhaincha (sesbania aculeata pers) and sorghum (Sorghum bicolor L.) grown in monocropping and intercropping systems was conducted under non-saline and saline conditions to evaluate dry matter production, total nitrogen (N) yield, land equivalent ratio (LER), soil N uptake and N 2 -fixation using 15 N isotope dilution method. The first experiment was conducted under non-saline conditions, three different combinations of sesbania (ses) and sorghum (sor) were investigated in the intercropping system (2ses: 1sor; Ises: 1sor and 1ses: 2sor, row ratio). Whereas, in the second experiment, only one combination (1ses: 1sor row ratio) was tested under saline conditions. Results of the first experiment showed that dry matter yield of sole sorghum was higher than that of sole sesbania, and was similar to that produced by the intercropping treatments; however, its total N uptake was the lowest, with no significant differences being found between sole sesbania and intercropping treatments. The LERs in 2ses: 1sor and 1ses:2sor treatments were higher than one, reflecting a greater advantage of intercropping system in terms of land used efficiency. In the second experiment, dry matter yield of a sole crop of sesbania was significantly higher than that of a sole sorghum or a mixed treatment. Total Nitrogen uptake in sesbania grown alone was four times higher than that of sole sorghum; whereas, the mixed cropping was 260% greater than of the sole sorghum. In both experiments, percentages of N 2 fixed by the sesbania in the intercropping system were considerably enhanced relative to sole cropping of sesbania. On the other hand, the magnitude of intraspecific competition of soil N uptake was affected by the different arrangement of crops in the mixture, and it was considerably reduced in the 2ses: 1sor row ratio. Results on the relative growth of plants on saline soil compared with that on non-saline soil clearly demonstrated that sesbania was more salt tolerant

  10. Sandwich or sweets?

    DEFF Research Database (Denmark)

    Kraus, Alexandra; Piqueras-Fiszman, Betina

    2016-01-01

    Desire, purchase, and consumption of fast-moving consumer goods often follow actual motivational states instead of habitual preferences. This has led to an increasing interest within health sciences to investigate the causes for irrational eating behaviours among consumers, particularly...... foods (sandwich and sweets) on visual analogue scales, as well as implicit approach–avoidance tendencies and implicit positive–negative associations with two variants of the recoding-free Implicit Association Tests (IAT-RFs). At first, all participants (N = 108) unwrapped, smelled, and explicitly judged...... the two foods, then all watched a video clip (during which half of the participants were allowed to eat the sandwich but not the sweets), and finally they all performed the two indirect measurements. Thus, desire for the foods was experimentally manipulated between participants. We hypothesized...

  11. Comparison of fluoride effects on germination and growth of Zea mays, Glycine max and Sorghum vulgare.

    Science.gov (United States)

    Fina, Brenda L; Lupo, Maela; Dri, Nicolas; Lombarte, Mercedes; Rigalli, Alfredo

    2016-08-01

    Fluorosis is a disease caused by over-exposure to fluoride (F). Argentina's rural lands have higher fluorine content than urban lands. Evidence confirms that plants grown in fluoridated areas could have higher F content. We compared F uptake and growth of crops grown in different F concentrations. The effect of 0-8 ppm F concentrations on maize, soybeans and sorghum germination and growth was compared. After 6 days seeding, the germination was determined, the roots and aerial parts lengths were measured, and vigor index was calculated. F content was measured in each part of the plants. Controls with equal concentrations of NaCl were carried out. Significant decrease in roots and aerial parts lengths, and in vigor index of maize and soybeans plants was observed with F concentrations greater than 2 ppm. This was not observed in sorghum seedlings. Also, the amount of F in all crops augmented as F increases, being higher in roots and ungerminated seeds. Sorghum was the crop with the highest F content. Fluoride decreased the germination and growth of maize and soybeans and therefore could influence on their production. Conversely, sorghum seems to be resistant to the action of F. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Assessment of genetic diversity of sweet potato in Puerto Rico.

    Science.gov (United States)

    Rodriguez-Bonilla, Lorraine; Cuevas, Hugo E; Montero-Rojas, Milly; Bird-Pico, Fernando; Luciano-Rosario, Dianiris; Siritunga, Dimuth

    2014-01-01

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied.

  13. Malt hydrolysis of sweet-potatoes and eddoes for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hosein, Rhonda; Mellowes, W.A. (University of the West Indies, St. Augustine, Trinidad. Dept. of Chemical Engineering)

    1989-01-01

    In the Caribbean the main root crops produced are cassava, sweet-potatoes, eddoes, dasheen and yam. The production of ethanol from these starchy substrates first requires the hydrolysis of the starch into simpler sugars. Hydrolysis can be performed enzymatically or by means of acids. The root crops selected for study were sweet-potatoes (Ipomoea batatas) and eddoes (Colocasia antiquorum esculenta var. globulifera). They were hydrolysed using the enzymes contained in malt. The sugars obtained under the above conditions were 5.6 and 5.4% (w/v) for sweet-potatoes and eddoes, respectively. The corresponding starch conversions were 88 and 92%. Fermentation of the above hydrolysates gave alcohol in the region of 2.3 and 2.2% (v/v) for sweet-potatoes and eddoes, respectively. The conversion of sugar to alcohol was 91 and 89%. (author).

  14. Review of anthraquinone applications for pest management and agricultural crop protection.

    Science.gov (United States)

    DeLiberto, Shelagh T; Werner, Scott J

    2016-10-01

    We have reviewed published anthraquinone applications for international pest management and agricultural crop protection from 1943 to 2016. Anthraquinone (AQ) is commonly found in dyes, pigments and many plants and organisms. Avian repellent research with AQ began in the 1940s. In the context of pest management, AQ is currently used as a chemical repellent, perch deterrent, insecticide and feeding deterrent in many wild birds, and in some mammals, insects and fishes. Criteria for evaluation of effective chemical repellents include efficacy, potential for wildlife hazards, phytotoxicity and environmental persistence. As a biopesticide, AQ often meets these criteria of efficacy for the non-lethal management of agricultural depredation caused by wildlife. We summarize published applications of AQ for the protection of newly planted and maturing crops from pest birds. Conventional applications of AQ-based repellents include preplant seed treatments [e.g. corn (Zea mays L.), rice (Oryza sativa L.), sunflower (Helianthus annuus L.), wheat (Triticum spp.), millet (Panicum spp.), sorghum (Sorghum bicolor L.), pelletized feed and forest tree species] and foliar applications for rice, sunflower, lettuce (Lactuca sativa L.), turf, sugar beets (Beta vulgaris L.), soybean (Glycine max L.), sweet corn and nursery, fruit and nut crops. In addition to agricultural repellent applications, AQ has also been used to treat toxicants for the protection of non-target birds. Few studies have demonstrated AQ repellency in mammals, including wild boar (Sus scrofa, L.), thirteen-lined ground squirrels (Ictidomys tridecemlineatus, Mitchill), black-tailed prairie dogs (Cyomys ludovicainus, Ord.), common voles (Microtus arvalis, Pallas), house mice (Mus musculus, L.), Tristram's jirds (Meriones tristrami, Thomas) and black rats (Rattus rattus L.). Natural sources of AQ and its derivatives have also been identified as insecticides and insect repellents. As a natural or synthetic biopesticide, AQ

  15. effect of sorghum seed treatment in burkina faso varies with baseline

    African Journals Online (AJOL)

    ACSS

    or indirectly provide protection against pathogens propagating to high levels in fields showing low baseline yield, low baseline emergence and a strong effect of seed treatments. From the literature of other crops (soybean, sweet corn) a few reports exist of an interaction between trial location and the effect of antifungal seed.

  16. Reconciling Conflicting Phylogenies in the Origin of Sweet Potato and Dispersal to Polynesia.

    Science.gov (United States)

    Muñoz-Rodríguez, Pablo; Carruthers, Tom; Wood, John R I; Williams, Bethany R M; Weitemier, Kevin; Kronmiller, Brent; Ellis, David; Anglin, Noelle L; Longway, Lucas; Harris, Stephen A; Rausher, Mark D; Kelly, Steven; Liston, Aaron; Scotland, Robert W

    2018-04-23

    The sweet potato is one of the world's most widely consumed crops, yet its evolutionary history is poorly understood. In this paper, we present a comprehensive phylogenetic study of all species closely related to the sweet potato and address several questions pertaining to the sweet potato that remained unanswered. Our research combined genome skimming and target DNA capture to sequence whole chloroplasts and 605 single-copy nuclear regions from 199 specimens representing the sweet potato and all of its crop wild relatives (CWRs). We present strongly supported nuclear and chloroplast phylogenies demonstrating that the sweet potato had an autopolyploid origin and that Ipomoea trifida is its closest relative, confirming that no other extant species were involved in its origin. Phylogenetic analysis of nuclear and chloroplast genomes shows conflicting topologies regarding the monophyly of the sweet potato. The process of chloroplast capture explains these conflicting patterns, showing that I. trifida had a dual role in the origin of the sweet potato, first as its progenitor and second as the species with which the sweet potato introgressed so one of its lineages could capture an I. trifida chloroplast. In addition, we provide evidence that the sweet potato was present in Polynesia in pre-human times. This, together with several other examples of long-distance dispersal in Ipomoea, negates the need to invoke ancient human-mediated transport as an explanation for its presence in Polynesia. These results have important implications for understanding the origin and evolution of a major global food crop and question the existence of pre-Columbian contacts between Polynesia and the American continent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. 3D Sorghum Reconstructions from Depth Images Identify QTL Regulating Shoot Architecture.

    Science.gov (United States)

    McCormick, Ryan F; Truong, Sandra K; Mullet, John E

    2016-10-01

    Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height, leaf angle, and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Nitrogen levels and yeast viability during ethanol fermentation of grain sorghum containing condensed tannins

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, J.T.; NeSmith, C.

    1988-01-01

    Selected varieties of sorghum, Sorghum bicolor (L.) Moench, give high crop yields and they also return to favorable energy balance in terms of energy calories produced per cultural energy invested. The brown, condensed-tannin, bird- and mold-resistant varieties illustrate these advantages, but their nutritional value and ability to support the expected rate of ethanol fermentation is significantly lower than that of non-brown sorghums. It has been previously shown that the addition of nitrogen to brown sorghum mash supports a high rate of fermentative metabolism without removing the tannins, and suggested that the basis for the inhibition of ethanol fermentation was nitrogen starvation of the yeast cells. In this investigation, it is demonstrated that the addition of protease enzyme to mash results in an increase in amino nitrogen sufficient to support accelerated rates of ethanol fermentation by yeast cells. Thus, the hypothesis commonly cited in the literature that the presumed inhibitor, condensed tannins, function to reduce fermentative metabolism solely via the binding and precipitation of proteins is rejected.

  19. influence of cowpea genotype and sorghum-cropping system on ...

    African Journals Online (AJOL)

    DR. AMINU

    using seed dressing and varietal resistance. Samaru Journal of Agricultural Research. 17: 13-. 23. Karungi, J., Nampala, M. P., Adipala, E., Kyamanywa, S. and. Ogenga-Latigo, M. W. (1999). Population dynamics of selected cowpea insect pests as influenced by different management practices in eastern Uganda.

  20. Genetic Variation and Phenotypic Response of 15 Sweet Corn (Zea mays L.) Hybrids to Population Density

    OpenAIRE

    Shelton, Adrienne; Tracy, William

    2013-01-01

    Planting sweet corn at higher densities may increase the canopy cover, reducing light transmission to the understory and suppressing weed growth. High planting densities can also negatively impact the crop, however, by decreasing ear size and overall yield. The objective of this study was to determine the potential for increased density tolerance of 15 sweet corn hybrids by estimating the general combining ability (GCA) and specific combining ability (SCA) for traits of interest. In 2010 and ...

  1. Analysis of Traits Related to Weed Competitiveness in Sweet Corn ( Zea mays L.)

    OpenAIRE

    Jared P. Zystro; Natalia de Leon; William F. Tracy

    2012-01-01

    Weed management in sweet corn can be costly; genetic improvements in sweet corn competitiveness may reduce this expense. Competitive ability can exist as weed suppressive ability (WSA), or crop tolerance (CT). Previous studies in corn have found year of hybrid release, maturity, plant height, leaf angle and leafiness may affect WSA, while hybrid era, maturity, and plant height may affect CT. However, many of these studies were limited to very few genotypes. The objective of this study was to ...

  2. Selection of promising sweet potato clones using projective mapping.

    Science.gov (United States)

    Vicente, Esteban; Ares, Gastón; Rodríguez, Gustavo; Varela, Pablo; Bologna, Franco; Lado, Joanna

    2017-01-01

    Increasing demand for sweet potato in regions with temperate climates has triggered interest in the development of new cultivars. Breeding of this crop should consider sensory characteristics in order to meet consumers' expectations. This requires the application of simple and cost-effective methodologies that allow quality evaluation from a sensory perspective. With the objective of identifying the key sensory characteristics of different sweet potato genotypes, two commercial cultivars and seven clones were evaluated during three consecutive years using projective mapping by an untrained consumer panel. This methodology allowed the discrimination of the genotypes, identifying similarities and differences among groups based on sensory terms selected by the assessors. Genotypes were differentiated in terms of texture and flavor characteristics (firmness, moisture, smoothness, creaminess, flavor intensity, sweetness and bitterness). Materials for future crossings were identified. The evaluation of the sensory characteristics of sweet potato clones and cultivars using projective mapping is a quick, cost-effective and reliable tool for the selection of new advanced sweet potato clones with superior sensory characteristics compared to the reference cultivars INIA Arapey and Cuarí. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants. With the......Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants....... With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay......-green cultivars do not display significant effects with regards to productivity. In several crops, the stay-green phenotype is observed to be associated with a higher drought resistance and a better performance under low nitrogen conditions. Among the approaches used to achieve stay-green phenotypes in transgenic...

  4. Yield response of ten varieties of sweet potato (Ipomoea batatas L. cultivated on dryland in rainy season

    Directory of Open Access Journals (Sweden)

    Akbar Saitama

    2017-07-01

    Full Text Available Sweet potato is a tuber commodity and one of alternative crops in Indonesia. The demand of sweet potato in Indonesia continues to increase. However, the supply of sweet potatoes for consumption estimated is 2020 in Indonesia will be deficit. Low production of sweet potato is basically due to the decrease of land area as cultivation production and also sweet potatoes have a low yield when planted in rainy season. Based on the high utilization of sweet potato make demand for this commodities continues to increase.Therefore, several strategies to increase crop yields of sweet potato needs to be done. This study aimed to elucidate various sweet potato varieties that can cultivated on dry land in the rainy season. This study was conducted from November 2016 until March 2017 using a randomized block design with treatments of  ten varieties of sweet potato consisting of (V1 Papua Solossa variety, (V2 Jago variety, (V3 Kidal variety, (V4 Antin-1variety, (V5 Sari variety, (V6 Sawentar variety, (V7 Beta-2variety, (V8 Antin-2variety, (V9 Antin-3 variety, (V10 Beta-1variety. The results showed different responses of each variety.The vegetative growth was high as shown by the LAI value of 7.23 at 90 days after planting. In conclusion, the sweet potato leaves had to be prune to boost the agronomic yield. Yields of  ten varieties of sweet potato crops ranged from 8.86 to 44.76 t/ha. Some varieties such as Sari, Papua Salosa and Beta-2 varieties showed high yield although they were planted in moorland conditions in the rainy season.

  5. a survey of sorghum downy mildew in sorghum in the sudano

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. An extensive survey was conducted across the 13 states constituting the Sudan and Sahel savanna agro-ecological zones of Nigeria to determine the occurrence and distribution of sorghum downy mildew in sorghum during the 2008 growing season. The survey was conducted at two different stages of the ...

  6. Radioinduced variation in genetic improvement of sorghum (Sorghum bicolor (l.). Moench)

    International Nuclear Information System (INIS)

    Gutierrez del Rio, E.

    1984-01-01

    A genetic variability study among 25 varieties of sorghum (Sorghum bicolor (L.) Moench) is presented. The populations are irradiated with 0, 10, 20, 30, 40, 50 and 60 Krads of cobalt 60 as far as M 5 generation. An individual selection is done taking into consideration agronomic characteristics like precocity, type, size. height of the plant. (M.A.C.) [pt

  7. Water use of sorghum ( Sorghum bicolor L. Moench) in response to ...

    African Journals Online (AJOL)

    It is vital to understand how rainfall onset, amount and distribution between planting dates affect sorghum yield and water use, in order to aid planting date and cultivar selection. This study investigated morphological, physiological, phenological, yield and water use characteristics of different sorghum genotypes in response ...

  8. Analysis of aluminium sensitivity in sorghum (Sorghum bicolor (L.) Moench) genotypes

    NARCIS (Netherlands)

    Tan, K.

    1993-01-01

    Twelve genotypes of sorghum ( Sorghum bicolor (L.) Moench) differing in Al sensitivity were grown in an acid soil (with additions of lime or MgSO 4 ) and in nutrient solutions (with or without Al at constant pH) for periods between 14 and 35 days.

  9. Feeding potential of summer grain crop residues for woolled sheep ...

    African Journals Online (AJOL)

    Dohne Merino wethers grazed crop residues of lupins, dry beans, soybeans, sunflower, sorghum and maize at a stocking rate of 10 wethers/ha. Three wethers in every treatment ... Digestible organic matter and protein intake of sheep generally decreased with time as grain availability declined. At commencement of grazing ...

  10. Visitantes florais e produção de frutos em cultura de laranja ( Citrus sinensis L. Osbeck = Floral visitors and fruit production on sweet orange crop ( Citrus sinensis L. Osbeck

    Directory of Open Access Journals (Sweden)

    Lourdes Maria Gamito

    2006-10-01

    Full Text Available O presente experimento foi realizado em florada de laranja (Citrus sinensis L. Osbeck, variedade Pera-Rio, com os objetivos de estudar os insetos visitantes nas flores d e laranjeira, o seu comportamento nas flores, o tipo de coleta efetuada e o efeito dessas visitas na produção de frutos, em quantidade e qualidade. Os dados de freqüência foram obtidos por contagem nos primeiros 10 minutos de cada horário, das 8h às 18h, em três dias distintos, percorrendo-se as linhas da cultura. O comportamento forrageiro de cada espécie de inseto foi avaliado através de observações visuais, no decorrer do dia, no período experimental. Os insetos observados foram abelhas africanizadas Apis mellifera, Trigona spinipes e Tetragonisca angustula. As abelhas A. mellifera foram os visitantes florais maisfreqüentes e preferiram coletar néctar comparado ao pólen. Os botões florais descobertos produziram mais frutos que os botões florais cobertos. Os frutos decorrentes do tratamento coberto foram menores, mais ácidos e com menor quantidade de vitamina C que os frutos do tratamento descoberto. The present experiment was carried out in flowerage of sweet orange(Citrus sinensis L. Osbeck, Pera-rio variety, to study the insects involv ed in pollination, their behaviour in the flower (nectar or pollen collection and the effect of the pollination on fruit production (quantity and quality. More frequent insects were recorded daily (counted during ten minutes, every hour from 8:00 a.m. to 6:00 p.m., with three replications. The forage behaviour and nectar and/or pollen collect was also observed. The insect visitors onflowers were Africanized honey bee Apis mellifera, followed by stingless bees Trigona spinipes and Tetragonisca angustula. A. mellifera were the most frequent visitors and preferred to collectnectar than pollen. The uncovered flowers -buds produced more fruits than the covered ones. Another observation was that fruits derived from covered

  11. Suppression of reproductive characteristics of the invasive plant Mikania micrantha by sweet potato competition.

    Science.gov (United States)

    Shen, Shicai; Xu, Gaofeng; Clements, David Roy; Jin, Guimei; Liu, Shufang; Yang, Yanxian; Chen, Aidong; Zhang, Fudou; Kato-Noguchi, Hisashi

    2016-06-20

    As a means of biologically controlling Mikania micrantha H.B.K. in Yunnan, China, the influence of sweet potato [Ipomoea batatas (L.) Lam.] on its reproductive characteristics was studied. The trial utilized a de Wit replacement series incorporating six ratios of sweet potato and M. micrantha plants in 25 m(2) plots over 2 years. Budding of M. micrantha occurred at the end of September; flowering and fruiting occurred from October to February. Flowering phenology of M. micrantha was delayed (P sweet potato. Reproductive allocation, reproductive investment and reproductive index of M. micrantha were significantly reduced (P sweet potato densities. Apidae bees, and Calliphoridae or Syrphidae flies were the most abundant visitors to M. micrantha flowers. Overall flower visits decreased (P sweet potato increased. Thus the mechanism by which sweet potato suppressed sexual reproduction in M. micrantha was essentially two-fold: causing a delay in flowering phenology and reducing pollinator visits. The number, biomass, length, set rate, germination rate, and 1000-grain dry weight of M. micrantha seeds were suppressed (P sweet potato competition. With proportional increases in sweet potato, sexual and asexual seedling populations of M. micrantha were significantly reduced (P sweet potato. These results suggest that sweet potato significantly suppresses the reproductive ability of the invasive species M. micrantha, and is a promising alternative to traditional biological control and other methods of control. Planting sweet potato in conjunction with other control methods could provide a comprehensive strategy for managing M. micrantha. The scenario of controlling M. micrantha by utilizing a crop with a similar growth form may provide a useful model for similar management strategies in other systems.

  12. The comprehensive analysis of sorghum cultivated in Poland for energy purposes: Separate hydrolysis and fermentation and simultaneous saccharification and fermentation methods and their impact on bioethanol effectiveness and volatile by-products from the grain and the energy potential of sorghum straw.

    Science.gov (United States)

    Szambelan, Katarzyna; Nowak, Jacek; Frankowski, Jakub; Szwengiel, Artur; Jeleń, Henryk; Burczyk, Henryk

    2017-12-06

    The aim of this work was to study the potential of sorghum crop cultivated in European climate as an energy material. The investigation showed strong interaction between the fermentation method and the sorghum cultivar. It was also noted that the cultivar with the highest grain yield showed the highest yield of ethanol per hectare, achieving 1269 L/ha in SHF (separate hydrolysis and fermentation) and 1248 L/ha in SSF (simultaneous saccharification and fermentation). Chromatographic analysis of raw spirits showed that smaller amounts of impurities are formed in the SSF process than in the SHF process. The calorific value of sorghum straw was also measured, and amounted to 16,050-16,840 kJ/kg. The results have demonstrated the high value of sorghum as grain for bioethanol production and as straw as a valuable feedstock for forming pellets or briquettes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Embryogenesis in sweet potato, Ipomea batatas (L.) Lam

    International Nuclear Information System (INIS)

    Sonnino, A.; Mini, P.

    1997-01-01

    Sweet potato (Ipomoea batatas (L.) Lam) ranks sixth among the cultivated crops of the world. In fact, it represents a major staple food in many tropical countries. Recently this crop has been proposed as a source of starch for industrial utilization. Somatic embryogenesis could prove useful as an alternative to traditional propagation by cuttings, which is labour intensive and can transmit diseases. Somatic embryos are reported to originate from single cells, so that, if regenerated from mutagenized tissues, should give rise to solid mutants. 2 refs

  14. Sorghum

    African Journals Online (AJOL)

    soil. Any adverse effects of rapid dehydration are more than offset by the benefits of faster emer- gence and vigorous seedling growth (Harris et 01. 1999), This ..... of Variation; LSD = L<;ast. Significance DiJference at p

  15. Sorghum

    NARCIS (Netherlands)

    Kumar, U.; Craufurd, P.; Gowda, C.L.L.; Kumar, A.A.; Claessens, L.F.G.

    2012-01-01

    The document attempts to distil what is currently known about the likely impacts of climate change on the commodities and natural resources that comprise the mandate of CGIAR and its 15 Centres. It was designed as one background document for a review carried out by the High Level Panel of Experts on

  16. Screening of malting sorghum samples for lactic acid bacteria with ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... fermentum and Lactobacillus acidophilus, respectively. LAB isolated from three varieties of sorghum grains undergoing malting exhibited the ability to produce bacteriocin and hydrogen peroxide. Key words: Lactic acid bacteria, sorghum varieties, malting, bacteriocin, hydrogen peroxide. INTRODUCTION.

  17. 76 FR 314 - Sorghum Promotion, Research, and Information Program: Referendum

    Science.gov (United States)

    2011-01-04

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service [Doc. No. AMS-LS-10-0103] Sorghum Promotion, Research, and Information Program: Referendum AGENCY: Agricultural Marketing Service, USDA. ACTION: Notice of Opportunity to Participate in the Sorghum Promotion, Research, and Information...

  18. Sweetness, satiation, and satiety.

    Science.gov (United States)

    Bellisle, France; Drewnowski, Adam; Anderson, G Harvey; Westerterp-Plantenga, Margriet; Martin, Corby K

    2012-06-01

    Satiation and satiety are central concepts in the understanding of appetite control and both have to do with the inhibition of eating. Satiation occurs during an eating episode and brings it to an end. Satiety starts after the end of eating and prevents further eating before the return of hunger. Enhancing satiation and satiety derived from foodstuffs was perceived as a means to facilitate weight control. Many studies have examined the various sensory, cognitive, postingestive, and postabsorptive factors that can potentially contribute to the inhibition of eating. In such studies, careful attention to study design is crucial for correct interpretation of the results. Although sweetness is a potent sensory stimulus of intake, sweet-tasting products produce satiation and satiety as a result of their volume as well as their nutrient and energy content. The particular case of energy intake from fluids has generated much research and it is still debated whether energy from fluids is as satiating as energy ingested from solid foods. This review discusses the satiating power of foods and drinks containing nutritive and nonnutritive sweeteners. The brain mechanisms of food reward (in terms of "liking" and "wanting") are also addressed. Finally, we highlight the importance of reward homeostasis, which can help prevent eating in the absence of hunger, for the control of intake.

  19. Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1

    Science.gov (United States)

    Wu, Yuye; Li, Xianran; Xiang, Wenwen; Zhu, Chengsong; Lin, Zhongwei; Wu, Yun; Li, Jiarui; Pandravada, Satchidanand; Ridder, Dustan D.; Bai, Guihua; Wang, Ming L.; Trick, Harold N.; Bean, Scott R.; Tuinstra, Mitchell R.; Tesso, Tesfaye T.; Yu, Jianming

    2012-01-01

    Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a. Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b. Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health. PMID:22699509

  20. Comparing the water-use-efficiency of maize and biomass sorghum grown in the rain-fed, Midwestern US.

    Science.gov (United States)

    Roby, M.; VanLoocke, A. D.; Heaton, E.; Miguez, F.; Salas Fernandez, M.

    2015-12-01

    Uncertainty in the quantity and timing of precipitation in a changing climate, combined with an increased demand for non-grain ethanol feedstock, may necessitate expanding the production of more water-use-efficient and less drought sensitive crops for biofuel applications. Research suggests that biomass sorghum [Sorghum bicolor (L.) Moench] is more drought tolerant and can produce more biomass than maize in water-limiting environments; however, sorghum water use data are scarce for the rain-fed Midwestern US. To address this gap, a replicated (n=3) side-by-side trial was established in Ames, Iowa to determine cumulative water use and water-use-efficiency of maize and biomass sorghum throughout the 2014 and 2015 growing seasons. Latent heat flux was estimated using the residual in the energy balance technique. Continuous micrometeorological measurements were supplemented by periodic measurements of leaf area index (LAI) and above-ground biomass. Water use (WU), aboveground biomass, and water-use-efficiency (WUE) were found to be similar for both crop types in 2014; data from the 2015 growing season are currently being processed. In 2015, leaf gas exchange measurements were made with a portable photosynthesis instrument. Photosynthetic parameters from gas exchange measurements will be implemented in a semi-mechanistic crop model (BioCro) as a method for scaling WUE estimates across the rain-fed Midwestern US driven with future climate projections. This research highlights the importance of understanding the potential effects of expanding biomass sorghum production on the hydrologic cycle of the Midwestern, US.

  1. Selección de cultivares forrajeros de sorgo (Sorghum bicolor y mijo (Pennisetum americanum por índices de eficiencia de producción y calidad

    Directory of Open Access Journals (Sweden)

    Jaime Ru\\u00EDz Vega

    2005-01-01

    Full Text Available Con el propósito de identificar cultivares de sorgo y mijo forrajeros con alta eficienciade producción de materia seca y calidad para condiciones deriego restringido, situación cada vez mas frecuente debido alabatimiento de los niveles freáticos en el período primavera-verano, se sembraron el 23 de marzo de 1998 en Santa CruzXoxocotlán, Oaxaca, México, seis variedades comerciales desorgo forrajero (Sorghum bicolor y una de mijo perla (Pennisetum americanum, además de seis líneas de mijo perla provenientes del International Crop Research Institute for the Semiarid Tropics (ICRISAT, Hyderabad, India. Apartir de losdatos de producción de materia seca, se generaron dos índices,uno llamado de productividad modificado (IPM y otro de productividad (IP, para facilitar la selección de materiales. ElIPM superó al IPen su capacidad para discriminar los materiales por mayor eficiencia de producción de forraje de calidad.En promedio, los genotipos de sorgo fueron más eficientes para producir materia seca, especialmente Sweet Sioux y Domor,este último caracterizado por mostrar poca variación entre cortes. Sin embargo, los mijos NELC C4 y ICMH 423, podríanser utilizados por campesinos que dispongan de menos agua ytengan urgencia de forraje, dada su alta eficiencia de producción de materia seca de buena calidad en el primer corte.

  2. Fermentation and enzyme treatments for sorghum

    Directory of Open Access Journals (Sweden)

    Patrícia Fernanda Schons

    2012-03-01

    Full Text Available Sorghum (Sorghum bicolor Moench is the fifth most produced cereal worldwide. However, some varieties of this cereal contain antinutritional factors, such as tannins and phytate that may form stable complexes with proteins and minerals which decreases digestibility and nutritional value. The present study sought to diminish antinutritional tannins and phytate present in sorghum grains. Three different treatments were studied for that purpose, using enzymes tannase (945 U/Kg sorghum, phytase (2640 U/Kg sorghum and Paecilomyces variotii (1.6 X 10(7 spores/mL; A Tannase, phytase and Paecilomyces variotii, during 5 and 10 days; B An innovative blend made of tanase and phytase for 5 days followed by a Pv increase for 5 more days; C a third treatment where the reversed order of B was used starting with Pv for 5 days and then the blend of tannase and phytase for 5 more days. The results have shown that on average the three treatments were able to reduce total phenols and both hydrolysable and condensed tannins by 40.6, 38.92 and 58.00 %, respectively. Phytase increased the amount of available inorganic phosphorous, on the average by 78.3 %. The most promising results concerning tannins and phytate decreases were obtained by the enzymes combination of tannase and phytase. The three treatments have shown effective on diminishing tannin and phytate contents in sorghum flour which leads us to affirm that the proposed treatments can be used to increase the nutritive value of sorghum grains destined for either animal feeds or human nutrition.

  3. Genetic diversity of Sorghum bicolor (L.) Moench landraces from ...

    African Journals Online (AJOL)

    ABEL

    2015-04-22

    Apr 22, 2015 ... preservation of their genetic potential. The objective of this study was to assess the genetic diversity of sorghum (Sorghum bicolor (L.) Moench) cultivated in the Northwest of Benin and to reveal certain fundamental evolutionary mechanisms. A total of 61 accessions of sorghum landraces belonging to the.

  4. sorghum yield and associated satellite-derived meteorological

    African Journals Online (AJOL)

    ACSS

    a relationship between sorghum yield and meteorological parameters (measured and satellite-derived). Sorghum. (Sorghum bicolor) ... Vegetation Index (NDVI) and Satellite Rainfall Estimates (RFEs) data from Famine Early Warning Systems. Network .... project raster image and either seasonal NDVI or seasonal RFEs ...

  5. Morphological responses of forage sorghums to salinity and ...

    African Journals Online (AJOL)

    The response of forage sorghum [Sorghum bicolor (L.) Moench] varieties to salinity and irrigation frequency were studied from December 2007 to December 2009. Two forage sorghum varieties (Speedfeed and KFS4) were grown under salinity levels of 0, 5, 10 and 15 dS m-1 and irrigated when the leaf water potential ...

  6. Sorghum head bug infestation and mould infection on the grain ...

    African Journals Online (AJOL)

    Sorghum (Sorghum bicolor) panicle is reported to be attacked by a myriad of insect pest species, whose infestation predisposes the grains to fungal infection, thereby compromising their quality. A complex of bugs has been reported to infest sorghum, thereby affecting quality of grains in West Africa. The objective of this ...

  7. Effect of Sources and Storage Conditions on Quality of Sorghum ...

    African Journals Online (AJOL)

    A study was conducted in three agro-ecological zones of Tanzania to investigate sources, status, quality and storage conditions of sorghum (Sorghum bicolor L.) seeds. Sorghum seed samples were collected from Kwimba (Lake zone), Chamwino (Central zone) and Kilosa (Eastern zone) districts. In surveyed districts 83.3 ...

  8. Effect of Tillage and Fertilizer Practices on Sorghum Production in ...

    African Journals Online (AJOL)

    Sorghum (Sorghum bicolor L. Moench) production is mainly constrained by soil water and nutrient deficits in northern Ethiopia. The aim of this research was to evaluate the effects of tillage and fertilizer practices on productivity of two sorghum varieties in Abergelle area, northern Ethiopia. The experimental design was ...

  9. Optimum size distribution of sorghum grist for brewing purposes ...

    African Journals Online (AJOL)

    The effect of particle size distribution of malted sorghum grist on extract yield and lautering performance was assessed. Sorghum grist particle size evaluation was carried out by sieve analysis after milling. The malted sorghum grist with proportions of coarse, fine, and flour particles in the ratio of 0.36: 0.25: 0.39 respectively ...

  10. Short communication: Effect of water treatment of sorghum on the ...

    African Journals Online (AJOL)

    It was observed that water treatment reduced the tannin contents of sorghum. Birds fed diets A, E and F showed the best weight gains, and diet G showed a better weight gain than diets B, C and D. The best feed efficiency was observed in chicks fed diets with treated sorghum compared with those fed raw sorghum.

  11. Response of Sorghum bicolor L. to Residual Phosphate on Two Contrasting Soils Previously Planted to Cowpea or Maize

    Directory of Open Access Journals (Sweden)

    Tola Omolayo Olasunkanmi

    2016-01-01

    Full Text Available Proper fertilizer nutrient management through adequate utilization of the residual value coupled with healthy crop rotation contributes significantly to sustainable crop production. This study was conducted to evaluate the direct and residual effects of two rock phosphate (RP materials on two contrasting soils previously planted with either the cereal crop or the leguminous crop. The effectiveness of the RP materials as substitute for the conventional P fertilizers was evaluated using single superphosphate as reference at the Department of Agronomy, University of Ibadan, Ibadan, Nigeria. The experiments were 2 × 2 × 4 factorial in completely randomized design. The test crops in the first cropping performed better on the slightly acidic loamy sand than on the strongly acidic sandy clay loam. Performance of each crop was improved by P supply in the first and second cropping. Single superphosphate proved to be more efficient than the RPs in the first cropping but not as effective as MRP in the second cropping. In the second cropping, sorghum performed better on the soil previously cropped to cowpea while Morocco RP had the highest residual effect among the P-fertilizer sources. It is evident that rock phosphates are better substitutes to the conventional phosphorus fertilizers due to their long term residual effect in soils. The positive effects of healthy rotation of crops as well as the negative effects of low soil pH are also quite obvious.

  12. Arsenic, Pb, Cu, Zn, and P accumulation by sweet potato grown on broiler litter ash amended Pb and As contaminated soils

    Science.gov (United States)

    Sweet potato [Ipomoea batatas (L) Lam] is an important food crop grown in tropical and subtropical areas of the world. It is generally grown for its carbohydrates rich tuber. Sweet potato leaves rich in vitamin B, ß-carotene, iron, calcium, zinc and protein have been used as leafy vegetables in diff...

  13. Production and nutrition rates of piatã grass and hybrid sorghum at different cutting ages - doi: 10.4025/actascianimsci.v35i3.18016

    Directory of Open Access Journals (Sweden)

    Luciano da Silva Cabral

    2013-07-01

    Full Text Available The influence of cutting age on yield and nutrition rates of piatã grass (Brachiaria brizantha cv. BRS Piatã and hybrid sorghum (Sorghum spp. cv. BRS 801 under an integrated crop-livestock system was evaluated. The trial was carried out at the Embrapa Beef Cattle (20°27¢ S; 54°37¢ W in Campo Grande, Mato Grosso do Sul State, Brazil, between April and October 2009. Experimental design consisted of randomized blocks with four replicates. Treatments were distributed across a split-plot design, which included three production systems (single piatã grass; single hybrid sorghum; mixed cultivation of sorghum and piatã grass. Half-plots consisted of three forage ages at harvest (with 70, 90 and 110 days after seeding. Variables included agronomical characteristics, productivity and nutrition value. Regardless of the evaluated systems, cutting age affected agronomical characteristics and in vitro digestibility of organic matter (IVDOM. Production was highest (4,048 kg ha-1 within the integrated system. Regardless of cutting age, monoculture sorghum had the highest crude protein level. Results showed that integrated sorghum and piatã grasses were an asset for forage productivity. Forages had higher rates in crude protein and in in vitro digestibility of organic matter on the 70th day after seeding.   

  14. Exploiting Nutritional Value of Staple Foods in the World’s Semi-Arid Areas: Risks, Benefits, Challenges and Opportunities of Sorghum

    Directory of Open Access Journals (Sweden)

    Ilaria Proietti

    2015-03-01

    Full Text Available Sorghum (Sorghum bicolor (L. Moench is a drought-resistant crop and an important food resource in terms of nutritional as well as social-economic values, especially in semi-arid environments. Cultivar selection and processing methods have been observed to impact on composition and functional and nutritional value of sorghum. Amino acid imbalance, cyanogenic glycosides, endogenous anti-nutrients, mycotoxins and toxic elements are among factors impairing its nutritional value. This paper reviews possible approaches (varieties selection, production practices, cooking processes to improve the benefits-to-risks balance of sorghum meal, to mitigate the risk of deficiencies and/or imbalances and to improve effects on human nutrition. Opportunity for avoiding dietary diversification in high sorghum consumers is also discussed, e.g., tryptophan and niacin deficits potentially related to pellagra, or unavailability of proteins and divalent cations (e.g., Fe, Zn due to the antinutrient activity of phytic acid and tannins. As potential candidate for production investments, the role of sorghum in preserving biological diversity is also considered.

  15. Evaluating Genetic Variability of Sorghum Mutant Lines Tolerant to Acid Soil

    Directory of Open Access Journals (Sweden)

    W. Puspitasari

    2012-12-01

    Full Text Available High rainfall in some parts in Indonesia causes soil become acidic. The main constraint of acid soil is phosphor (P deficiency and aluminum (Al toxicity which decrease plant productivity. To overcome this problem, it is important to develop a crop variety tolerant to such conditions. Sorghum is probably one of the potential crops to meet that objective. Sorghum has been reported to have wide adaptability to various agro-ecology and can be used as food and animal feed. Unfortunately, sorghum is not Indonesian origin so its genetic variability is still low. From previous breeding works with induced mutation, some promising mutant lines have been developed. These mutant lines were included in the experiment carried out in Tenjo with soil condition was classified as acid soil with pH 4.8 and exchangeable-Al content 2.43 me/100 g. The objectives of this experiment were to study the magnitude of genetic variability of agronomy and grain quality characters in sorghum in order to facilitate the breeding improvement of the species. Plant materials used in this study were ten genotypes, including 6 mutant lines and 4 control varieties. The randomized block design with three replications was used in the experiment. The genetic variabilities of agronomic and grain quality characters existed among genotypes, such as plant height, number of leaves, stalk diameter, biomass weight, panicle length, grain yield per plant, 100 seed weight and tannin content in the grain. The broad sense heritabilities of agronomic characters were estimated ranging from medium to high. Grain yield showed significantly positive correlation with agronomic characters observed, but it was negatively correlated with protein content

  16. Field damage of sorghum (Sorghum bicolor) with reduced lignin levels by naturally occurring insect pests and pathogens

    Science.gov (United States)

    Mutant lines of sorghum with low levels of lignin are potentially useful for bioenergy production, but may have problems with insects or disease. Field grown normal and low lignin bmr6 and bmr12 sorghum (Sorghum bicolor) were examined for insect and disease damage in the field, and insect damage in ...

  17. Sweet potato for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dangler, J.M.; Locascio, S.J.; Halsey, L.H.

    1984-01-01

    Field experiments were conducted in 1980 and 1981 to determine the root and plant top yield of sweet potato (Ipomoea batatas L. (Lam)) grown on a sandy soil. Cultivars 'GaTG-3', 'Morado', 'Rojo Blanco', 'Travis' and 'White Star' were evaluated at 2 harvest times. Mean starch yields from 'GaTG-3' at 105-115 days (7.2 t/hectare) and at 210-230 days (9.6 ton/hectare) during two seasons were higher than from the other cultivars. With an increase in the growth period from 105-115 to 210-230 days the means starch yield increased from 4.6 to 7.3 t/hectare but the starch concentration of all cultivars decreased significantly during the same period.

  18. Potential of Three Trap Crops in Managing Nezara viridula (Hemiptera: Pentatomidae) on Tomatoes in Florida.

    Science.gov (United States)

    Gordon, T L; Haseeb, M; Kanga, L H B; Legaspi, J C

    2017-12-05

    The southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae), is a serious insect pest of tomatoes in Florida. In this study, we examined the use of three species of trap crops to manage N. viridula in North Florida tomato crops in 2014 and 2015. We used striped sunflower (Helianthus annuus) (Asterales: Asteraceae) and wild game feed sorghum (Sorghum bicolor) (Poales: Poaceae) in both years, but different species of millet each year: browntop millet (Panicum ramosum) (Poales: Poaceae) in 2014 and pearl millet (Pennisetum glaucum) (Poales: Poaceae) in 2015. The number of stink bug adults collected from wild game feed sorghum exceeded the number from sunflower, and none were collected from either species of millet. Sorghum attracted a significantly higher number of adults than did striped sunflower; however, both sunflower and sorghum attracted the adults of N. viridula. Adults of the pest feed on the sorghum panicle and sunflower head (inflorescence). Although fewer stink bugs were found feeding on sunflower, the sunflower was found to be a good source of other natural enemies and pollinators and also attracted significantly greater numbers of the brown stink bug Euschistus servus (Say) (Hemiptera: Pentatomidae) (another pest of tomatoes). While this study demonstrated the effectiveness of sorghum, we recommend that sorghum be planted with another trap crop, preferably sunflower, for better preventive control of the southern green stink bug. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Inhibitors in sorghum biomass during growth and processing into fuel

    Energy Technology Data Exchange (ETDEWEB)

    Waniska, R.D.; Ring, A.S.; Doherty, C.A.; Poe, J.H.; Rooney, L.W.

    1988-01-01

    The presence and inhibitory activity of phenolic compounds in sorghum biomass were determined. Sorghum contains phenolic compounds at all stages of growth, with higher levels in leaves and glumes compared to stalks and caryopses. These phenolic compounds inhibited alpha- and gluco-amylase activity. Storage of sorghum resulted in increased levels of some phenolic acids. Levels of free phenolic compounds in ensiled sorghum leachate were sufficient to inhibit the hydrolysis of carbohydrates. The phenolic compounds from sorghum appeared to be detoxified during anaerobic digestion.

  20. Sweetness prediction of natural compounds.

    Science.gov (United States)

    Chéron, Jean-Baptiste; Casciuc, Iuri; Golebiowski, Jérôme; Antonczak, Serge; Fiorucci, Sébastien

    2017-04-15

    Based on the most exhaustive database of sweeteners with known sweetness values, a new quantitative structure-activity relationship model for sweetness prediction has been set up. Analysis of the physico-chemical properties of sweeteners in the database indicates that the structure of most potent sweeteners combines a hydrophobic scaffold functionalized by a limited number of hydrogen bond sites (less than 4 hydrogen bond donors and 10 acceptors), with a moderate molecular weight ranging from 350 to 450g·mol -1 . Prediction of sweetness, bitterness and toxicity properties of the largest database of natural compounds have been performed. In silico screening reveals that the majority of the predicted natural intense sweeteners comprise saponin or stevioside scaffolds. The model highlights that their sweetness potency is comparable to known natural sweeteners. The identified compounds provide a rational basis to initiate the design and chemosensory analysis of new low-calorie sweeteners. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. ‘JAFFA’ SWEET ORANGE PLANTS GRAFTED ONTO FIVE ROOTSTOCKS

    Directory of Open Access Journals (Sweden)

    ELÍDIO LILIANO CARLOS BACAR

    2017-12-01

    Full Text Available ABSTRACT Low genetic diversity of citrus scion and rootstock cultivars makes the crop more vulnerable to diseases and pests. The objective of this study was to evaluate the performance of ‘Jaffa’ sweet orange grafted onto five rootstocks over six harvests in subtropical conditions in the north of Paraná state, Brazil. The experiment used a randomized block design, with six replications and two trees per plot, spaced at 7.0 m x 4.0 m. The rootstocks were: ‘Rangpur’ lime, ‘Cleopatra’ and ‘Sunki’ mandarins, ‘Fepagro C-13’ citrange, and ‘Swingle’ citrumelo. The variables evaluated were vigor, yield, and yield efficiency of the trees as well as the physical and chemical characteristics of the fruits. Data were subjected to analysis of variance, complemented by Scott-Knott test at 5% probability. The smallest tree canopy for ‘Jaffa’ sweet orange plants was induced by the ‘Rangpur’ lime rootstock. The trees had the same cumulative yield performance over six seasons for all rootstocks. The best yield efficiency for ‘Jaffa’ sweet orange trees was provided by ‘Fepagro C-13’ citrange rootstock. With regard to fruit quality, no differences were observed among the rootstocks and the ‘Jaffa’ sweet orange fruits met the standards required by the fresh fruit market and the fruit processing industry.

  2. Crop Depredation by Birds in Deccan Plateau, India

    Directory of Open Access Journals (Sweden)

    Manoj Ashokrao Kale

    2014-01-01

    Full Text Available Extent of crop depredation in agricultural fields of groundnut, pearl millet, peas, sorghum and sunflower was assessed in Pune, Akola and Amravati, the three productive districts of Maharashtra, India. The study included interviews with the farmers, identification of the bird species responsible for the crop depredation and actual field assessment of damage. The problem of crop depredation is severe for the crops mostly during harvesting season. Most farmers were not satisfied with the conventional bird repelling techniques. A maximum depredation was observed by Sorghum crops by house sparrows Passer domesticus, baya weavers Ploceus philippinus, and rose-ringed parakeets Psittacula krameri, accounting to 52% of the total damage. Blue rock pigeons Columba livia damaged 42% of the peas crop (chick peas and pigeon peas, while house sparrows and baya weaver damaged the groundnut crop by 26% in the sampling plots. House sparrow Passer domesticus and baya weaver Ploceus philippinus damaged the groundnut crop in the sampling plots just after the sowing period. The sustainable solution for reducing crop depredation is a need for the farmers and also such techniques will help avoid direct or indirect effects of use of lethal bird control techniques on bird species.

  3. Intense sweetness surpasses cocaine reward.

    Directory of Open Access Journals (Sweden)

    Magalie Lenoir

    Full Text Available BACKGROUND: Refined sugars (e.g., sucrose, fructose were absent in the diet of most people until very recently in human history. Today overconsumption of diets rich in sugars contributes together with other factors to drive the current obesity epidemic. Overconsumption of sugar-dense foods or beverages is initially motivated by the pleasure of sweet taste and is often compared to drug addiction. Though there are many biological commonalities between sweetened diets and drugs of abuse, the addictive potential of the former relative to the latter is currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that when rats were allowed to choose mutually-exclusively between water sweetened with saccharin-an intense calorie-free sweetener-and intravenous cocaine-a highly addictive and harmful substance-the large majority of animals (94% preferred the sweet taste of saccharin. The preference for saccharin was not attributable to its unnatural ability to induce sweetness without calories because the same preference was also observed with sucrose, a natural sugar. Finally, the preference for saccharin was not surmountable by increasing doses of cocaine and was observed despite either cocaine intoxication, sensitization or intake escalation-the latter being a hallmark of drug addiction. CONCLUSIONS: Our findings clearly demonstrate that intense sweetness can surpass cocaine reward, even in drug-sensitized and -addicted individuals. We speculate that the addictive potential of intense sweetness results from an inborn hypersensitivity to sweet tastants. In most mammals, including rats and humans, sweet receptors evolved in ancestral environments poor in sugars and are thus not adapted to high concentrations of sweet tastants. The supranormal stimulation of these receptors by sugar-rich diets, such as those now widely available in modern societies, would generate a supranormal reward signal in the brain, with the potential to override self

  4. Diurnal oscillation of SBE expression in sorghum endosperm

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chuanxin; Mutisya, J.; Rosenquist, S.; Baguma, Y.; Jansson, C.

    2009-01-15

    Spatial and temporal expression patterns of the sorghum SBEI, SBEIIA and SBEIIB genes, encoding, respectively, starch branching enzyme (SBE) I, IIA and IIB, in the developing endosperm of sorghum (Sorghum bicolor) were studied. Full-length genomic and cDNA clones for sorghum was cloned and the SBEIIA cDNA was used together with gene-specific probes for sorghum SBEIIB and SBEI. In contrast to sorghum SBEIIB, which was expressed primarily in endosperm and embryo, SBEIIA was expressed also in vegetative tissues. All three genes shared a similar temporal expression profile during endosperm development, with a maximum activity at 15-24 days after pollination. This is different from barley and maize where SBEI gene activity showed a significantly later onset compared to that of SBEIIA and SBEIIB. Expression of the three SBE genes in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle.

  5. Quantization of total fumonisins produced by Fusarium verticillioides strains in some maize and sorghum genotypes by ELISA

    Directory of Open Access Journals (Sweden)

    Zamani Majid

    2011-01-01

    Full Text Available Fusarium verticillioides is one of the most prevalent Fusarium species on maize and sorghum, causing Fusarium ear rot and sorghum grain mold in warm and humid regions of Iran. The pathogen produces potent mycotoxins known as fumonisins. In order to determine mycotoxin (fumonisins production on different maize and sorghum genotypes, a field trial was carried out based on a randomized complete block design with 10 treatments and three replications for each crop at Gorgan station in 2010. The ears of corn plants were inoculated by spore suspension of the mixture of some virulent F. verticillioides isolates using an ear inoculation method (Nail Punch. The sorghum panicles were also inoculated by spraying of spore suspension isolates at f lowering stage. All infected kernels were evaluated by ELISA kits (AgraQuant Fumonisin Kit; Romer Labs, Austria for their total fumonisins production at the physiological maturing stage. All genotypes showed statistically significant difference in their fumonisin production in Gorgan. The results of fumonisins analysis obtained from ELISA test showed that lines 1 (Resistant and 3 (Susceptible with 2.4 ppm and 13.7 ppm had the least and highest amount of total fumonisins respectively among all maize genotypes. Also among all sorghum genotypes, genotypes 10 and 6 with 0.2 ppm and 4.8 ppm had the least and the highest amount of total fumonisins respectively. The results of this experiment demonstrated that fumonisin production level in maize kernels (maybe as maize kernels are the main host of this fungus was significantly higher than sorghum kernels in Gorgan region.

  6. Importance of seed-borne fungi of sorghum and pearl millet in Burkina Faso and their control using plant extracts

    DEFF Research Database (Denmark)

    Zida, Elisabeth Pawindé; Sérémé, Paco; Leth, Vibeke

    2008-01-01

    recorded on each crop by the blotter test. Six essential oils of plants were investigated for their inhibitory activity against eight pathogenic fungi. Thirty four and 27 fungal species were found in seed samples of sorghum and pearl millet, respectively. Phoma sp. and Fusarium moniliforme infected 95...... pathogens. Development of plant extracts for the control of seed-borne pathogens and public awareness on seed-borne diseases management measures for maintaining quality seed should be increased....

  7. Campuran Kompos Tandan Kosong Kelapa Sawit Dengan Kompos Lcc Dan Pupuk Fosfor Terhadap Pertumbuhan Dan Hasil Sorgum (Sorghum Bicolor (L.))

    OpenAIRE

    Handayani, Yulia; Sjofjan, Jurnawaty; Yetti, Husna

    2015-01-01

    This research is aimed to determine the effect of oil palm empty fruit bunches compost mixed with leguminosa cover crop compost and phosphorus fertilizers at some compositions and to get the best mixed toward growth and result of sorghum. This research was conducted at the experiment land of Agriculture Faculty of Riau University, Pekanbaru, from December 2013 to April 2014. This research used factorial completely randomized design (CRD) consisted of two factors and three replications. As for...

  8. Comportamento da cultura do sorgo em função do tipo de rodas compactadoras e cargas verticais impostas na operação de semeadura Behavior of sorghum crop according to the press whells type and vertical loads imposed in the sowing operation

    Directory of Open Access Journals (Sweden)

    Jorge W. Cortez

    2006-08-01

    Full Text Available O sorgo pode ser cultivado em áreas e situações ambientais secas e quentes, em que a produtividade de outros cereais é antieconômica. Quando a semeadura do sorgo é realizada de modo eficiente, os benefícios podem ser verificados em sua produtividade. O objetivo deste trabalho foi avaliar o comportamento da cultura do sorgo semeado sob três níveis de carga vertical impostas sobre as rodas compactadoras das semeadoras-adubadoras. O experimento foi conduzido na FAZU - Faculdades Associadas de Uberaba (MG, no delineamento em blocos ao acaso, no esquema de parcelas subdivididas, com três modelos de rodas compactadoras e três cargas verticais, com cinco repetições. Observou-se que não houve efeito dos tratamentos tipo de rodas compactadoras e cargas em relação aos dias para emergência, mas a regressão linear mostrou significância para carga vertical. A altura, o teor médio de água das plantas e a produção de matéria verde e seca do sorgo não diferiram entre os tratamentos.Sorghum can be cultivated in areas and environmental situations droughts and hot, which other cereals productivity is uneconomical. When sorghum sowing is accomplished in an efficient way benefits can be verified in productivity. The objective of this work was to evaluate the behavior of sorghum sowed under three levels of vertical load imposed on the press wheels of the seeder. The experiment was carried out in FAZU - Faculdades Associadas de Uberaba (MG, Brazil, with plots arranged in randomized complete block design in split-plot, with three models of press wheels and three vertical loads with five repetitions. It was observed that there were not effect of the press wheels and loads treatments in relation to the days for emergency, but the lineal regression showed significant for vertical load. The height, the medium moisture of the plants and the production of green and dry matter of the sorghum did not differ among the treatments.

  9. Assessment of Climate Change Impacts and Evaluation of Adaptation Strategies for Grain Sorghum and Cotton Production in the Texas High Plains

    Science.gov (United States)

    Kothari, K.; Ale, S.; Bordovsky, J.; Hoogenboom, G.; Munster, C. L.

    2017-12-01

    The semi-arid Texas High Plains (THP) is one of the most productive agricultural regions in the United States. However, agriculture in the THP is faced with the challenges of rapid groundwater depletion in the underlying Ogallala Aquifer, restrictions on pumping groundwater, recurring droughts, and projected warmer and drier future climatic conditions. Therefore, it is imperative to adopt strategies that enhance climate change resilience of THP agriculture to maintain a sustainable agricultural economy in this region. The overall goal of this study is to assess the impacts of climate change and potential reduction in groundwater availability on production of two major crops in the region, cotton and grain sorghum, and suggest adaptation strategies using the Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model. The DSSAT model was calibrated and evaluated using data from the long-term cotton-sorghum rotation experiments conducted at Helms Farm near Halfway in the THP. After achieving a satisfactory calibration for crop yield (RMSE cotton and sorghum yields and water use. The Multivariate Adaptive Constructed Analogs (MACA) projected future climate datasets from nine CMIP5 global climate models (GCMs) and two representative concentration pathways (RCP 4.5 and 8.5) were used in this study. Preliminary results indicated a reduction in irrigated grain sorghum yield per hectare by 6% and 8%, and a reduction in dryland sorghum yield per hectare by 9% and 17% under RCP 4.5 and RCP 8.5 scenarios, respectively. Grain sorghum future water use declined by about 2% and 5% under RCP 4.5 and RCP 8.5, respectively. Climate change impacts on cotton production and evaluation of several adaptation strategies such as incorporating heat and drought tolerances in cultivars, early planting, shifting to short season varieties, and deficit irrigation are currently being studied.

  10. Effect of different crop species and mixtures and storage methods on ethanol production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Houck, W.S.

    1986-08-01

    Corn, grain sorghum, wheat and barley were tested for ethanol production as pure species and in mixtures. Some compensatory responses were discovered such as foam reduction in barley feedstocks. Cull potatoes were also tested for ethanol production in their pure state and in combination with grain sorghum. Potato producers could derive additional income if cull potatoes could be profitably used in the production of ethanol. A potato and grain mixture may alleviate the necessity of adding additional grinding equipment to process fleshy high moisture material. It is noteworthy to point out that the hammer mill employed at NMSU Agricultural Science Center at Clovis had no problems in processing potatoes in their pure form. Ensiling storage for high moisture corn and sweet sorghum was tested to determine the effect on ethanol production. High moisture corn proved to be an acceptable feedstock for ethanol production. Because of significant deterioration of the ensiled sweet sorghum samples, further investigation into appropriate techniques to simulate silage on a small-scale is needed. 6 refs., 16 figs., 9 tabs.

  11. Effect of sowing date on grain quality of sorghum ( Sorghum bicolor ...

    African Journals Online (AJOL)

    IVHAA) while minerals; iron and zinc were determined using Atomic Absorption Spectrophotometry. Significant site by variety by sowing date interactions at P < 0.05 level of probability were obtained for protein, iron and zinc content of sorghum ...

  12. Effect of Tillage on Soil Properties and Yield of Sorghum ( Sorghum ...

    African Journals Online (AJOL)

    season 2005 and lateseason 2006 on an Alfisol of southwest Nigeria to assess the effect of five tillage methods on soil properties and yield of sorghum. The tillage treatments were zero tillage, manual clearing, ploughing, ploughing plus ...

  13. Biolistic mediated sorghum (Sorghum bicolor L. Moench) transformation via mannose and bialaphos based selection systems

    CSIR Research Space (South Africa)

    Grootboom, AW

    2010-01-01

    Full Text Available studied the utility of bialaphos and phosphomannose isomerase selectable markers in microprojectile mediated transformation of P898012, a sorghum inbred line generally considered amenable to in vitro manipulation. Two plasmids containing bar gene, encoding...

  14. Energy crops in rotation. A review

    Energy Technology Data Exchange (ETDEWEB)

    Zegada-Lizarazu, Walter; Monti, Andrea [Department of Agroenvironmental Science and Technology, University of Bologna, Viale G. Fanin, 44 - 40127, Bologna (Italy)

    2011-01-15

    the rotation; furthermore, a considerable number of lesser-known energy crops such as biomass sorghum (Sorghum spp.), hemp (Cannabis sativa), kenaf (Hibiscus cannabinus), Ethiopian mustard (Brassica carinata) could be expected to lead to even greater benefits according to literature. Therefore, this review aimed at systematizing and reorganizing the existing and fragmentary information on these crops while stressing major knowledge gaps to be urgently investigated. (author)

  15. Expression Pattern of the Alpha-Kafirin Promoter Coupled with a Signal Peptide from Sorghum bicolor L. Moench

    Directory of Open Access Journals (Sweden)

    Norazlina Ahmad

    2012-01-01

    Full Text Available Regulatory sequences with endosperm specificity are essential for foreign gene expression in the desired tissue for both grain quality improvement and molecular pharming. In this study, promoters of seed storage α-kafirin genes coupled with signal sequence (ss were isolated from Sorghum bicolor L. Moench genomic DNA by PCR. The α-kafirin promoter (α-kaf contains endosperm specificity-determining motifs, prolamin-box, the O2-box 1, CATC, and TATA boxes required for α-kafirin gene expression in sorghum seeds. The constructs pMB-Ubi-gfp and pMB-kaf-gfp were microprojectile bombarded into various sorghum and sweet corn explants. GFP expression was detected on all explants using the Ubi promoter but only in seeds for the α-kaf promoter. This shows that the α-kaf promoter isolated was functional and demonstrated seed-specific GFP expression. The constructs pMB-Ubi-ss-gfp and pMB-kaf-ss-gfp were also bombarded into the same explants. Detection of GFP expression showed that the signal peptide (SP::GFP fusion can assemble and fold properly, preserving the fluorescent properties of GFP.

  16. Growth and N2-fixation of Dhaincha C-3/Sorghum C-4 and Dhaincha C-3/Sunflower C-3 intercropping systems using the 15N and 13C natural abundance method technique

    International Nuclear Information System (INIS)

    Kurdali, F.

    2007-06-01

    A field experiment on dhaincha C 3 (Sesbania aculeata Pers), sunflower C 3 (Helianthus annuus L.) and sorghum C 4 (Sorghum bicolor L.) plants grown in monocropping and intercropping systems was conducted to evaluate seed yield, dry matter production, total N yield, land equivalent ratio (LER), intraspecific competition for soil N uptake, water use efficiency (WUE) and N 2 -fixation using the 15 N natural abundance technique (δ 15 N ). Moreover, carbon isotope discrimination (Δ13 C ) was determined to assess factors responsible for crop performance variability in the different cropping systems. Intercropping of sesbania/sorghum showed greater efficiency over monocropping in producing dry matter, during the entire growth period, as indicated by the LERs (>1); whereas, the efficiency of producing dry matter in the sesbania /sunflower intercropping was similar to that in the monocropping system (LER=1). Moreover, sorghum plants (C 4 ) was more competitive than sesbania (C 3 ) for soil N uptake; whereas, sesbania seemed to be more competitive than its associated sunflower (C 3 ). N uptake in the mixed stand of sesbania/sorghum was improved due to the increase in soil N uptake by the component sorghum and the higher root nodule activity of component sesbania without affecting the amount of N 2 fixed. In both cropping systems, sesbania plants fixed almost the same amount of N 2 (an average of 105 kg N/ha) although the number of rows in the mixed stand was 2/3 of that in the pure stand. This gives an advantage of the intercropping over sole cropping system with regards to N 2 -fixation. 13 C discrimination in plant materials was found to be affected by plant species and the cropping system. Factors affected Δ13 C in plants grown in the mixed stand relative to solely grown crops are discussed.(author)

  17. Crop rotation in the Valle Calido del Alto Magdalena a sustainable focus of high yield

    International Nuclear Information System (INIS)

    Alfaro Rodriguez, Ricardo; Maria Caicedo, Antonio; Amezquita Collazos, Edgar; Castro Franco, Hugo Eduardo

    1996-01-01

    Experiments were carried out during five years at the Nataima Research Center, located at 431 m.a.s.l, with average temperature of 28 Celsius degrades and annual rainfall of 1274 Boyaca mm, on a soil classified as Arenic Haplustalf, to evaluate different crops rotation based on rice and sorghum; the combinations used were as follows; rice-rice (R-R), rice-- soybean (R-SY), rice-crotalaria-sorghum (R-C-S), sorghum-sorghum (S-S), sorghum-soybean (S-SY) and cotton-sorghum (Al-S). Simultaneously it was evaluated the response to four nitrogen levels, which allowed to find out yield functions and optimum economical. The rotations S-SY, R-SY and AI-S have been the best qualified from an environmental perspective. Sorghum-soybean rotation presents increases in yield compared with expected values, which allows thinking that it is a truly sustainable rotation. This rotation also had an excellent profitability and for that reason is considered the best option within the goals of this work

  18. Impact of Brewery Waste Sludge on Sorghum (Sorghum bicolor L. Moench Productivity and Soil Fertility in Harari Regional State, Eastern Ethiopia

    Directory of Open Access Journals (Sweden)

    Nano Alemu Daba

    2017-04-01

    Full Text Available The study was conducted on farmers' field in sofi district of Harari Regional State during 2013/2014 main cropping season, eastern Ethiopia, to investigate the impact of brewery sludge on sorghum production and soil fertility. The treatments comprised seven levels of brewery sludges (0, 2.5, 5.0, 7.5, 10.0, 12.5 and 15.0 t ha-1 and NP inorganic fertilizer at recommended rate, arranged in randomized complete block design with four replications. Application of brewery sludge at 15 t ha-1 significantly increased the yield and biomass yield of sorghum by 79 and 85% over control and by 57 and 67% over NP application, respectively. There was no effect of brewery sludge application on heavy metals concentrations in soil after crop harvest, compared to international standard tolerable level. Co and Se levels were high in the control as well as in the soils treated with brewery sludge indicating the already high concentration of these heavy metals in the soils of the area. Plots, which received higher brewery sludge application, resulted in decreased or less percentage of grain nitrogen content showing the independence of grain protein content on lower brewery sludge level. The nitrogen uptake by sorghum grain, straw and the total was maximum (52.68, 44.25 and 79.03 kg ha-1, respectively with the application of brewery waste sludge at 10 and 15 t ha-1 which were significantly higher than the other brewery sludge and NP mineral fertilizer applications.

  19. Use of hybridization (F1 in forage sorghum (Sorghum bicolor (L. Moench breeding

    Directory of Open Access Journals (Sweden)

    Pataki Imre

    2010-01-01

    Full Text Available In plants with bisexual flowers, the development of hybrids and F1 seed production is only possible by using cytoplasmatic male sterility. The discovery of such sterility and the maintainers has made it possible to utilize the phenomenon of heterosis to improve yields and yield components in forage sorghum. It has been shown that the best way to develop forage sorghum hybrids is to cross grain sorghum as the female parent and Sudan grass as the male. The objective of this study was to develop a forage sorghum hybrid for the production of green matter to be used either fresh or for silage. The sorghum hybrid developed in these efforts (Siloking is intended for multiple cutting, as the basal nodes produce buds and regrowth takes place. The performance of the new hybrid with respect to yield and quality was compared to that of the forage sorghum cultivar NS Džin. In a two-year study conducted under different growing conditions in four locations, Siloking produced an average green matter yield of 86.29 t ha-1 (two cuts, a dry matter yield of 25.34 t ha-1, and a crude protein content of 11.85 %. Siloking outperformed NS Džin in terms of yield and quality. .

  20. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.R.; Li, Y.C.; Klassen, W. [University of Florida, Homestead, FL (United States). Center for Tropical Research & Education

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.

  1. PROTEIN ENRICHMENT OF SPENT SORGHUM RESIDUE USING ...

    African Journals Online (AJOL)

    BSN

    The optimum concentration of spent sorghum for protein enrichment with S. cerevisiae was 7.Sg/100 ml. Th.: protein ... production of single sell protein using Candida utilis and cassava starch effluem as substrate. ... wastes as substrates, Kluyveromyces fragilis and milk whey coconut water as substrate (Rahmat et al.,. 1995 ...

  2. Changes in sorghum starch during parboiling

    CSIR Research Space (South Africa)

    Young, R

    1993-03-01

    Full Text Available Sorghum grains varying in grain hardness or endosperm texture (soft and intermediate) and starch composition (nonwaxy and waxy) were parboiled. Whole grain (one volume) and water (three volumes) were boiled, soaked for 12 hr, and brought to boil...

  3. Brown midrib sorghum deserves a look

    Science.gov (United States)

    Forage sorghum varieties have been developed to allow them to thrive under low moisture and poor soil conditions while producing adequate amounts of forage. In addition, newer varieties, such as the brown midrib (BMR) hybrids, can be alternatives to conventional varieties as they contain less lignin...

  4. Phylogenetic diversity and relationships among sorghum ...

    African Journals Online (AJOL)

    Two DNA-based fingerprinting techniques, simple sequence repeats (SSR) and random amplified polymorphic DNA (RAPD) analyses, were applied in sorghum ... indicated that the genetic distances calculated from SSR data were highly correlated with the distances based on the geographic origin and race classifications.

  5. Genetic diversity among sorghum landraces and polymorphism ...

    African Journals Online (AJOL)

    Microsatellites or simple sequence repeats (SSR) are playing an important role in molecular breeding. This investigation was undertaken to study the genetic diversity among local sorghum accessions from two different agro-ecological zones of Burkina Faso and to assess the polymorphism within local improved varieties ...

  6. Accumulation of heavy metals using Sorghum sp

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Petrová, Šárka; Vaňková, Radomíra; Song, J.; Vaněk, Tomáš

    2014-01-01

    Roč. 104, JUN 2014 (2014), s. 15-24 ISSN 0045-6535 R&D Projects: GA MŠk LH12162; GA MŠk(CZ) LD13029 Institutional support: RVO:61389030 Keywords : Sorghum * Cadmium * Zinc Subject RIV: EF - Botanics Impact factor: 3.340, year: 2014

  7. Atrazine Metabolism in Resistant Corn and Sorghum

    Science.gov (United States)

    Shimabukuro, R. H.

    1968-01-01

    The metabolism of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) in the resistant species, corn (Zea mays L.) and sorghum (Sorghum vulgare Pers.) was not the same. In corn, atrazine was metabolized via both the 2-hydroxylation and N-dealkylation pathways while sorghum metabolized atrazine via the N-dealkylation pathway. Atrazine metabolism in corn yielded the metabolites, 2-hydroxy-4-ethylamino-6-isopropylamino-s-triazine (hydroxyatrazine), 2-hydroxy-4-amino-6-isopropylamino-s-triazine (hydroxycompound I), and 2-hydroxy-4-amino-6-ethylamino-s-triazine (hydroxycompound II). None of these hydroxylated derivatives appeared as metabolites of atrazine in sorghum. Hydroxycompounds I and II were formed in 2 ways in corn: (1) by benzoxazinone-catalyzed hydrolysis of 2-chloro-4-amino-6-isopropylamino-s-triazine (compound I) and 2-chloro-4-amino-6-ethylamino-s-triazine (compound II) that were formed by N-dealkylation of atrazine and (2) by N-dealkylation of hydroxyatrazine, the major atrazine metabolite in corn. The interaction of the 2-hydroxylation and N-dealkylation pathways in corn results in the formation of the 3 hydroxylated non-phytotoxic derivatives of atrazine. Images PMID:16656991

  8. Organic versus conventional fertilization effects on sweet basil (Ocimum basilicum L.) growth in a greenhouse system

    Science.gov (United States)

    Ocimum basilicum L. (sweet basil) is an essential oil producing crop used in culinary and fragrance applications. The objective of this controlled environment study was to evaluate the effects of organic and conventional fertilization, (applied at two nitrogen rates, 150 and 250 kg N/ha), on plant g...

  9. Analysis of the genetic diversity of selected East African sweet potato

    African Journals Online (AJOL)

    Sweet potato (Ipomea batatas [L.] Lam.) is an economically important crop in East Africa chiefly grown by small holder farmers. Sharing of vines for planting is a very common occurrence among these farmers and eventually varieties are given local names, making it hard to trace the original pedigree. It is therefore important ...

  10. Is the begomovirus, sweet potato leaf curl virus, really seed transmitted in sweetpotato?

    Science.gov (United States)

    Sweetpotato is one of the major root crops in the world and is also widely grown in the southern United States. Sweet potato leaf curl virus (SPLCV) is a begomovirus posing a serious threat to sweetpotato production worldwide and is primarily transmitted by whitefly (Bemisia tabaci) or through veget...

  11. 61-64 Registration of "Tola" Sweet Potato [Ipomoea batatas(L.

    African Journals Online (AJOL)

    tosheba

    Potato Post Harvest in East Africa,” CIP Sub-. Project Annual Progress Report, CIP Library,. Lima, pp 24 - 50. Purseglove, J. A. 1972. Tropical crops: Dicotyledons. Landon, Longman. Teshome Anshebo. 2002. Evaluation of sweet potato. (Ipomeabatatas Lam.) clones for high yield storage root yield with high starch and low ...

  12. Goss’s wilt incidence in sweet corn is independent of transgenic traits and glyphosate

    Science.gov (United States)

    Recently claims have been made that the use of glyphosate and transgenic crop traits increases the risk of plant diseases. Transgenic traits used widely for years in dent corn are now available in commercial sweet corn cultivars, specifically, the combination of glyphosate resistance (GR) and Lepid...

  13. Weed control using ammonium nonanoate and cultivation in organic Vidalia sweet onion production

    Science.gov (United States)

    Ammonium nonanoate is registered for weed control in certified organic crop production and may be useful to control cool-season weeds in organic Vidalia® sweet onion. Cultivation with a tine weeder has been identified as a cost-effective means of weed control, but delays in cultivation cause some w...

  14. Effect of low temperature during the night in young sweet pepper plants

    NARCIS (Netherlands)

    Gorbe Sanchez, Elisa; Heuvelink, E.; Jalink, H.; Stanghellini, C.

    2015-01-01

    The optimization of heating in greenhouses should be an energy saving target in the cultivation of sweet pepper plants; from both an environmental and economical point of view. It is important to understand the effect of low temperatures on this crop. While the effect of low temperature has been

  15. Whitefly transmission of Sweet potato leaf curl virus in sweetpotato germplasm

    Science.gov (United States)

    Sweetpotato, Ipomoea batatas (L.) Lam., is among an extensive number of plant species attacked by Bemisia tabaci (Gennadius). Because this important world food crop is vegetatively propagated, it can conveniently accumulate infections by several viruses. Sweet potato leaf curl virus (SPLCV) (ssDNA...

  16. Yield decline of sweet potato in the humid lowlands of Papua New Guinea

    NARCIS (Netherlands)

    Hartemink, A.E.; Poloma, S.; Maino, M.; Powell, K.S.; Eganae, J.; O'Sullivan, J.N.

    2000-01-01

    Sweet potato (Ipomoea batatas (L.) Lam) is the major staple crop in Papua New Guinea and experiments were conducted investigating factors affecting yield decline. Yields of unfertilized plots were related to rainfall and measured changes in soil properties, nematode (Meloidogyne sp., Rotylenchulus

  17. Manipulating plant geometry to improve microclimate, grain yield, and harvest index in grain sorghum.

    Science.gov (United States)

    Thapa, Sushil; Stewart, Bob A; Xue, Qingwu; Chen, Yuanquan

    2017-01-01

    Cultivar selection, planting geometry, and plant population are the key factors determining grain sorghum yields in water deficit areas. The objective of this study was to investigate whether clump geometry (three plants clustered) improves microclimate within crop canopy when plants are grown under varying water levels. In a 2-yr sorghum (Sorghum bicolor L. Moench) greenhouse study, plants were grown at two geometries (clump and conventional evenly spaced planting, ESP), two water levels (high and low, representing well-watered and water-limited condition, respectively), and three soil surface treatments (lid covered, straw-mulched, and bare). Air temperature and relative humidity (RH) within the plant canopy were measured every five minutes at different growth stages. Mean vapor pressure deficits (VPDs) within the clumps were consistently lower than those for ESPs, indicating that clumps improved the microclimate. Clumps had significantly higher harvest index (HI) compared to ESPs (0.48 vs. 0.43), which was largely due to clumps having an average of 0.4 tillers per plant compared to 1.2 tillers per plant for ESPs. Grain yield in the current study was similar between clumps and ESPs. However, our results suggest that improved microclimate was likely a reason for clumps producing significantly higher grain yields compared to ESPs in previous studies.

  18. Effects of untreated and treated wastewater at the morphological, physiological and biochemical levels on seed germination and development of sorghum (Sorghum bicolor (L.) Moench), alfalfa (Medicago sativa L.) and fescue (Festuca arundinacea Schreb.).

    Science.gov (United States)

    Rekik, Imen; Chaabane, Zayneb; Missaoui, Amara; Bouket, Ali Chenari; Luptakova, Lenka; Elleuch, Amine; Belbahri, Lassaad

    2017-03-15

    Wastewater reuse in agriculture may help mitigate water scarcity. This may be reached if high quality treatments removing harmful pollutants are applied. The aim of the present study was to compare the effect of untreated (UTW) and treated wastewater (TW) on germination and seedlings development of alfalfa (Medicago sativa L.), fescue (Festuca arundinacea Schreb.) and sorghum (Sorghum bicolor (L.) Moench). UTW presented high turbidity (130 NTU), chemical and biological oxygen demand (COD, 719mgL -1 , BOD 5, 291mgL -1 ) and metal concentrations. These levels caused mortality (18% for fescue), decreased germination speed in seeds (37.5% for alfalfa) and reductions of root and stem length in seedlings (80% and 22% respectively for alfalfa). Adverse effects on seeds germination were reflected at the biochemical level by increased H 2 O 2 levels (6 times for sorghum after 5days) and by increased Malondialdehyde (MDA) levels (more than 600 times for sorghum roots) during seedlings development. When TW was used, these parameters were close to control seeds ones. They were also dependent on plant species and developmental stage. Therefore, for efficient reclaimed wastewater reuse in irrigation, suitable crops, displaying wide tolerance to toxic contents during germination and later seedling development stages have to be selected. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Transformation of heat shock protein gene (HspB-C) of helicobacter pylori into sweet potato varieties

    International Nuclear Information System (INIS)

    Wu Jie; Yan Wenzhao; Zhou Yu; Zhang Xuemei

    2010-01-01

    Sweet potato which is one of the most important crops in the world has many advantages as a new bioreactor. Helicobacter pylori, as a kind of cancer-causing factor by the World Health Organization, has a strong immunogenicity, and its monoclonal antibody has bactericidal activity, which has the possibility as the vaccine components. In this research, we have constructed the plant expression vector with heat shock protein gene (HspB-C) of Helicobacter pylori. This vector was transformed by agrobactrium tumefaciens EHA105 into four sweet potato varieties. After callus-induction and re-differentiation, we got the transgenic plants from sweet potato variety of Nancy holl. (authors)

  20. Sweetness and Food Preference123

    Science.gov (United States)

    Drewnowski, Adam; Mennella, Julie A.; Johnson, Susan L.; Bellisle, France

    2012-01-01

    Human desire for sweet taste spans all ages, races, and cultures. Throughout evolution, sweetness has had a role in human nutrition, helping to orient feeding behavior toward foods providing both energy and essential nutrients. Infants and young children in particular base many of their food choices on familiarity and sweet taste. The low cost and ready availability of energy-containing sweeteners in the food supply has led to concerns that the rising consumption of added sugars is the driving force behind the obesity epidemic. Low-calorie sweeteners are one option for maintaining sweet taste while reducing the energy content of children’s diets. However, their use has led to further concerns that dissociating sweetness from energy may disrupt the balance between taste response, appetite, and consumption patterns, especially during development. Further studies, preferably based on longitudinal cohorts, are needed to clarify the developmental trajectory of taste responses to low-calorie sweeteners and their potential impact on the diet quality of children and youth. PMID:22573785