WorldWideScience

Sample records for swedish nuclear power

  1. Safety Assessment - Swedish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kjellstroem, B.

    1996-01-01

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs

  2. Operating experience from Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    During 1997 the PWRs in Ringhals performed extremely well (capability factors 85-90%), the unit Ringhals 2 reached the best capability factor since commercial operation started in 1976. The BWRs made an average 76% capability, which is somewhat less than in 1996. The slightly reduced capability derives from ongoing modernization projects at several units. At the youngest plants, Forsmark 3 and Oskarshamn 3, capability and utilization were very high. Events and data for 1997 are given for each reactor, together with operational statistics for the years 1990-1997. A number of safety-related events are reported, which occurred st the Swedish plants during 1997. These events are classified as level 1 or higher on the international nuclear event scale (INES).

  3. Operating experience from Swedish nuclear power plants 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The total production of electricity from Swedish nuclear power plants was 65.6 TWh during 2002, which is a decrease compared to 2001. The energy capability factor for the 11 Swedish reactors averaged 80.8%. The PWRs at Ringhals averaged 87.6%, while the BWRs, not counting Oskarshamn 1, reached 89.2%. No events, which in accordance to conventions should be reported to IAEA, have occurred during 2002. Operational statistics are presented for each Swedish reactor. The hydroelectric power was 66 TWh, 16% lower than 2000. Wind power contributed 0.5 TWh, and remaining production sources, mainly from solid fuel plants combined with district heating, contributed 10.9 TWh. The electricity generation totalled 143 TWh, considerably less than the record high 2001 figure of 158.7 TWh. The preliminary figures for export were 14.8 TWh and and for import 20.1 TWh.

  4. Emergy Evaluation of a Swedish Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kindberg, Anna

    2007-03-01

    Today it is common to evaluate and compare energy systems in terms of emission of greenhouse gases. However, energy systems should not only reduce their pollution but also give a large energy return. One method used to measure energy efficiency is emergy (embodied energy, energy memory) evaluation, which was developed by the system ecologist Howard T. Odum. Odum defines emergy as the available energy of one kind previously used up directly and indirectly to make a service or product. Both work of nature and work of human economy in generating products and services are calculated in terms of emergy. Work of nature takes the form of natural resources and work of human economy includes labour, services and products used to transform natural resources into something of value to the economy. The quotient between work of nature and work of human economy gives the emergy return on investment of the investigated product. With this in mind the present work is an attempt to make an emergy evaluation of a Swedish nuclear power plant to estimate its emergy return on investment. The emergy return on investment ratio of a Swedish nuclear power plant is calculated to approximately 11 in this diploma thesis. This means that for all emergy the Swedish economy has invested in the nuclear power plant it gets 11 times more emergy in return in the form of electricity generated by nuclear power. The method used in this work may facilitate future emergy evaluations of other energy systems

  5. Emergy Evaluation of a Swedish Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kindberg, Anna

    2007-03-15

    Today it is common to evaluate and compare energy systems in terms of emission of greenhouse gases. However, energy systems should not only reduce their pollution but also give a large energy return. One method used to measure energy efficiency is emergy (embodied energy, energy memory) evaluation, which was developed by the system ecologist Howard T. Odum. Odum defines emergy as the available energy of one kind previously used up directly and indirectly to make a service or product. Both work of nature and work of human economy in generating products and services are calculated in terms of emergy. Work of nature takes the form of natural resources and work of human economy includes labour, services and products used to transform natural resources into something of value to the economy. The quotient between work of nature and work of human economy gives the emergy return on investment of the investigated product. With this in mind the present work is an attempt to make an emergy evaluation of a Swedish nuclear power plant to estimate its emergy return on investment. The emergy return on investment ratio of a Swedish nuclear power plant is calculated to approximately 11 in this diploma thesis. This means that for all emergy the Swedish economy has invested in the nuclear power plant it gets 11 times more emergy in return in the form of electricity generated by nuclear power. The method used in this work may facilitate future emergy evaluations of other energy systems.

  6. Technology and costs for decommissioning of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs

  7. A list of abnormal occurences at Swedish nuclear power stations

    International Nuclear Information System (INIS)

    McHugh, B.

    1974-08-01

    This report consists of a list of extracts from documents belonging to Statens Kaernkraftinspektion (SKI) in Sweden. It deals with non-routine occurrences at the Swedish nuclear power stations which are in operation or where test operations of components and systems have started. The investigation has included matter about the following nuclear power plants: Barsebaeck-1, Oskarshamn-1, Oskarshamn-2, Ringhals-1, Ringhals-2, Aagesta. In all cases from the start of the test operations up to latest the 1st of June 1974. (M.S.)

  8. Failure data collection from a Swedish nuclear power plant

    International Nuclear Information System (INIS)

    Andersson, B.; Bhattacharyya, A.; Hilding, S.

    1975-01-01

    The Swedish nuclear utilities have formed a joint working group in the field of reliability data of thermal power plants, nuclear and fossil fuelled. The primary task of the working group is to create a standard procedure of collecting failure data from the Swedish nuclear power plants in operation. The failure data will be stored in a joint data bank. A first test collection of such data has been implemented on Oskarshamn I, and the experience with this work is discussed in this report. Reliability analysis of an engineering system is based on the availability of pertinent information on the system components. Right from the beginning within the Swedish nuclear industry the consensus has been that such data can be suitably obtained by monitoring the operating power stations. This has led to a co-operative arrangement between the vendor, ASEA-ATOM and a utility, Oskarshamnsverkets Kraftgrupp AB (OKG) to utilize information from component malfunctions in the reliability analysis. The utility prepares component failure reports which are sent to the vendor for further treatment. Experience gathered to date indicates that this arrangement is effective although many persons are involved in this process of information transmittal. The present set-up is flexible enough to accommodate necessary changes in view of problems which arise now and then in monitoring a complex system like a nuclear power station. This report briefly describes the structure of the failure data collection system. The way in which the raw data collection is done in the station by the owner and the subsequent data processing by the vendor is discussed. A brief status report of the information collected since 1971 is given. It can be concluded that valuable reliability data can be obtained by monitoring component failure reports from an operating power plant. Two requirements are, however, that all the parties involved in the arrangement follow given instructions carefully and that the assumed

  9. Changes in control room at Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Kecklund, Lena

    2005-09-01

    The Swedish nuclear power plants were commissioned during a period between 1972 and 1985 and the instrumentation and control equipment are basically from that period. For several years there have been plans made for changes in all the nuclear power plants and to a certain extent the changes in control equipment and monitoring rooms have also been implemented. The object of this project was to make a comprehensive review of the changes in control room design implemented in the Swedish nuclear power plants and to describe how the MTO- (Man-Technology-Organisation) and (Man-Machine-Interface) -issues have been integrated in the process. The survey is intended to give an overall picture of the changes in control room design and man-machine-interface made in the Swedish control rooms, in order to get a deeper knowledge of the change management process and its results as well as of the management of MTO-issues in these projects. The units included in this survey are: Oskarhamn reactor 2 and 3; Ringhals reactor 2, 3 and 4; Forsmark reactor 1, 2 and 3. The Oskarshamn 1 unit has not been included in this report as it has recently undergone an extensive modernisation program as well as a detailed inspection by the SKI (Swedish Nuclear Power Inspectorate). At Ringhals 2 the modernisation work is carried out at present and the unit is also subjected to extensive inspection activities carried out by SKI and is therefore not part of this survey. This report also includes a short description of relevant standards and requirements. Then follows a presentation of the results of the plant survey, presented as case studies for three companies OKG, Ringhals and FKA. Control room changes are summarized as well as the results on specific MTO issues which has been surveyed. In all the power companies there is a joint way of working with projects concerning plant modifications. This process is described for each company separately. In the concluding of the report the strengths and

  10. Opinions of the Swedish people on nuclear power and final disposal of nuclear wastes after Chernobyl

    International Nuclear Information System (INIS)

    Holmberg, Soeren

    1988-10-01

    Swedish public opinion, post-Chernobyl, on nuclear power and waste is analyzed and commented. The three main issues are: To what extent did the Chernobyl-accidendt influence the public opinion on nuclear power; How are the opinions on nuclear power connected to sex, age, political preferences; Should disposed high level nuclear waste be retrievable or not. The report is the result of several public opinion surveys. (L.E)

  11. Technology and costs for decommissioning the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1986-05-01

    The study shows that, from the viewpoint of radiological safety, a nuclear power plant can be dismantled immediately after it has been shut down and the fuel has been removed, which is estimated to take about one year. Most of the equipment that will be used in decommissioning is already available and is used routinely in maintenance and rebuilding work at the nuclear power plants. Special equipment need only be developed for dismantlement of the reactor vessel and for demolishing of heavy concrete structures. The dismantling of a nuclear power plant can be accomplished in about five years, with an average labour force of about 200 men. The maximum labour force required for Ringhals 1 has been estimated at about 500 men during the first years, when active systems are being dismantled in a number of fronts in the plant. During the last years when the buildings are being demolished, approximately 50 men are required. In order to limit the labour requirement and the dose burden to the personnel, the material is taken out in as large pieces as possible. The cost of decommissioning a boiling water reactor (BWR) of the size of Ringhals 1 has been estimated to be about MSEK 540 in January 1986 prices, and for a pressurized water reactor (PWR, Ringhals 2) about MSEK 460. The cost for the other Swedish nuclear power plants lie in the range of MSEK 410-760. These are the direct cost for the decommissioning work, to which must be added the costs of transportation and disposal of the decommissioning waste, about 100 000 m/sup3/. These costs have been estimated to be about MSEK 600 for the 12 Swedish reactors. (author)

  12. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    In 2005, no severe events occurred which challenged the safety at the Swedish nuclear power plants. However, some events have been given a special focus. The 'Gudrun' storm, which occurred in January 2005, affected the operation of the reactors at Ringhals and Barsebaeck 2. At Ringhals, the switchyards were affected by salt deposits and, at Barsebaeck, the 400kV grid was subjected to interruptions. The long-term trend is that the total number of fuel defects in Swedish reactors is decreasing. The damage that occurs nowadays has mainly been caused by small objects entering the fuel via the coolant and fretting holes in the cladding. To reduce the number of defects of this type, fuel with filters is successively being introduced to prevent debris from entering the fuel assemblies and cyclone filters in the facility which cleans the coolant. Since the mid-nineties, the pressurised water reactors, Ringhals 2, 3 and 4, have had problems with fuel rod bowing in excess of the safety analysis calculations. Ringhals AB (RAB) has adopted measures to rectify the bowing. Follow-up work shows that the fuel rod bowing is decreasing. The followup in 2005 of damaged tubes in the Ringhals 4 steam generators indicates a continued slow damage propagation. Tubes with defects of such a limited extent that there are adequate margins to rupture and loosening have been kept in operation. Damaged tubes with insufficient margins have plugged. During the year, previously observed minor leakage from the reactor containment in Ringhals 2 was investigated in greater detail and repaired. The investigations showed extensive corrosion attack caused by deficiencies in connection with containment construction. The ageing of electrical cables and other equipment in the I-C systems has been examined by SKI. Regulatory supervision has so far shown that these issues are largely handled in a satisfactory manner by the licensees but that certain supplementary investigations and other measures

  13. Quarterly report of the Swedish Nuclear Power Inspectorate April - June 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The inspectorate has the supervision of the nuclear power plants and other nuclear installations. The report includes statements of security inspections of the Swedish nuclear power plants and accounts of handling, transport and storing of fissionable materials. Safety problems in Studsvik and at ASEA- ATOM concerning nuclear fuel and nuclear waste are discussed. (G.B.)

  14. Handling of waste at Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Mandahl, B.; Persson, B.; Wikdahl, C.E.

    1977-01-01

    The Swedish nuclear power program started with a 460 MW BWR at Oskarshamn in 1972. The main practical experience in nuclear waste management originates from this unit. Since 1975 five further reactor units have been taken into use and there are now definite plans for a total of 13 units. The waste handling in Sweden now considered is therefore orientated towards a system with 13 operational units. The paper describes the end products and the waste handling systems currently in use. Present day methods and equipment will be discussed as well as trends towards modification of these techniques. Estimates will be made of the quantities of the end products and their radioactive content. Necessary decay times before the waste can be released as nonactive material will also be estimated. Lay-out and capacity of the waste stores at some plants and the need for transport equipment at the sites will be described. The paper also discusses the need for centralized long term storage and even methods for centralized waste treatment aimed at reducing the volume of materials requiring storage

  15. The research strategy of the Swedish Nuclear Power Inspectorate

    International Nuclear Information System (INIS)

    2002-06-01

    In its directive to the Swedish Nuclear Power Inspectorate for 2001 and 2002, the Government asked for a report on SKI's future research strategy. This report is meant to describe future needs for SKI's regulatory and supervisory work, the need for expertise in Sweden and the possibility of international co-operation. SKI's research currently focuses on a number of strategically important areas such as reactor technology, materials and fuel issues, human factors, nuclear waste and nuclear safeguards. Over the past decade, the nuclear infrastructure has changed considerably. The nuclear power companies' previous organisations with specialist expertise and resources have been successively closed down or converted into consulting companies. Furthermore, education and research in the nuclear area at universities have been considerably reduced and expertise, resources and interest in the area have thereby decreased. A review of the availability of expertise in Sweden shows that, in many areas, resources are adequate, but that SKI, in certain cases, needs to provide focused support in order to maintain the expertise that SKI needs for its regulatory and supervisory activities. The analysis highlights two areas without any real education and research: 'Materials testing and control' and 'Management, control and organisation'. Education and research in the latter area lacks a safety perspective. SKI intends to take the initiative to conduct work within both of these areas. Since national research resources are limited, SKI has, for a long time, actively participated in international research. SKI is prioritising co-operation on research conducted in the OECD/NEA and is participating in a large number of projects organised within this framework. Since Sweden joined the EU, the importance of joint European work has increased. SKI is itself also actively participating and supporting Swedish organisations participating in European Commission projects and intends to support

  16. Views on safety culture at Swedish and Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Hammar, L.; Wahlstroem, B.; Kettunen, J.

    2000-02-01

    The report presents the results of interviews about safety culture at Swedish and Finnish nuclear power plants. The aim is to promote the safety work and increase the debate about safety in nuclear power plants, by showing that the safety culture is an important safety factor. The interviews point out different threats, which may become real. It is therefor necessary that the safety aspects get support from of the society and the power plant owners. (EHS)

  17. Design of alarm systems in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Thunberg, Anna; Osvalder, Anna-Lisa

    2008-04-01

    Research within the area of improving alarm system design and performance has mainly focused on new alarm systems. However, smaller modernisations of legacy systems are more common in the Swedish nuclear industry than design of totally new systems. This imposes problems when the new system should function together with the old system. This project deals with the special concerns raised by modernisation projects. The objective of the project has been to increase the understanding of the relationship between the operator's performance and the design of the alarm system. Of major concern has been to consider the cognitive abilities of the operator, different operator roles and work situations, and varying need of information. The aim of the project has been to complement existing alarm design guidance and to develop user-centred alarm design concepts. Different case studies have been performed in several industry sectors (nuclear, oil refining, pulp and paper, aviation and medical care) to identify best practice. Several empirical studies have been performed within the nuclear area to investigate the operator's need of information, performance and workload in different operating modes. The aspect of teamwork has also been considered. The analyses show that the operator has different roles in different work situations which affect both the type of information needed and how the information is processed. In full power operation, the interaction between the operator and the alarm system is driven by internal factors and the operator tries to maintain high situation awareness by actively searching for information. The operator wants to optimise the process and need detailed information with possibilities to follow-up and get historical data. In disturbance management, the operator is more dependent on external information presented by the alarm system. The new compilation of alarm guidance is based on the operator's varying needs in different working situations and is

  18. Quarterly report - Swedish Nuclear Power Inspectorate. April - June 1982

    International Nuclear Information System (INIS)

    1982-01-01

    The inspectorate controls the realization of the instructions for the nuclear power plants. During the second quarter of 1982 nine plants have been in operation. Ringhals 4 has started with test runs. Different disturbances of the operation of the plants are reported on diagrams. The security at Studsvik and at the nuclear fuel fabrication of ASEA-Atom is dealt with and minor incidents are described. (G.B.)

  19. Human factors in maintenance: development and research in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Salo, I.; Svenson, O.

    2001-11-01

    The report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects. (au)

  20. Human factors in maintenance: Development and research in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Salo, I.; Svensson, Ola

    2001-11-01

    The present report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects

  1. Human factors in maintenance: Development and research in Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Salo, I. [Lund Univ. (Sweden). Dept. of Psychology; Svensson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    2001-11-01

    The present report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects.

  2. Quality assurance requirements for the operation of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1983-09-01

    An adaption of NRC's 10 CFR 50, Appendis B (Quality Assurance Criteria for Nuclear Power and Fuel Reprocessing Plants) to Swedish conditions is presented. No references are given to regulations standards etc that influence the requirements and their adaption to local conditions. (Aa)

  3. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    International Nuclear Information System (INIS)

    2008-01-01

    The safety level of the plants is maintained at an acceptable level. SKI has in its regulatory supervision not found any known deficiencies in the barriers which could result in release of radioactive substances in excess of the permitted levels. SKI considers that improvements have been implemented during the year in the management, control and following up of safety work at the plants. In some cases, however, SKI has imposed requirements that improvements be made. Extensive measures are under way at the nuclear power plants to comply with the safety requirements in SKI's regulations, SKIFS 2004:2 concerning the design and construction of nuclear power reactors, and the stricter requirements regarding physical protection. Concurrently preparations are underway at eight of the ten units for thermal power increases. At the Forsmark plant considerable efforts have been during the year to correct the deficiencies in the safety culture and quality assurance system that became apparent in 2006. A programme to improve the execution of activities has been established in accordance with SKI's decision. SKI considers that the plant has developed in a positive direction but that there are further possibilities for improvement with regard to internal control. This is amongst other things concerns the areas internal auditing, independent safety review function, and working methods. SKI has had special supervision of the plant since 28 September, 2006. At the Oskarshamn plant work has been carried out to improve the organisation and routines in several areas. The plant has established routines which provide the basis to ensure that decisions are taken in a stringent manner. The quality assurance system has a clearer structure and there is a better defined division of work. Some measures remain however to be dealt with in 2008. The Ringhals plant has also worked with attitudes to routines and internal control. SKI considers that the measures have good prerequisites to provide a

  4. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The safety level of the plants is maintained at an acceptable level. SKI has in its regulatory supervision not found any known deficiencies in the barriers which could result in release of radioactive substances in excess of the permitted levels. SKI considers that improvements have been implemented during the year in the management, control and following up of safety work at the plants. In some cases, SKI has imposed requirements that improvements be made. Extensive measures are under way at the nuclear power plants to comply with the safety requirements in SKI's regulations, SKIFS 2004:2 concerning the design and construction of nuclear power reactors, and the stricter requirements regarding physical protection. Concurrently preparations are underway at eight of the ten units for thermal power increases. At the Forsmark plant considerable efforts have been during the year to correct the deficiencies in the safety culture and quality assurance system that became apparent in 2006. A programme to improve the execution of activities has been established in accordance with SKI's decision. SKI considers that the plant has developed in a positive direction but that there are further possibilities for improvement with regard to internal control. This is amongst other things concerns the areas internal auditing, independent safety review function, and working methods. SKI has had special supervision of the plant since 28 September, 2006. At the Oskarshamn plant work has been carried out to improve the organisation and routines in several areas. The plant has established routines which provide the basis to ensure that decisions are taken in a stringent manner. The quality assurance system has a clearer structure and there is a better defined division of work. Some measures remain to be dealt with in 2008. The Ringhals plant has also worked with attitudes to routines and internal control. SKI considers that the measures have good prerequisites to provide a

  5. Summary of operational experience in Swedish nuclear power plants 1995

    International Nuclear Information System (INIS)

    1996-01-01

    A summary of two pages for each Swedish reactor is given with availability, number of scrams, collective radiation doses and events for 1995. Special reports are presented on some specific issues: Bowed fuel assemblies at Ringhals, Incorrect opening pressure of the main safety valves at Ringhals, Measures to restore and upgrade safety at Oskarshamn 1, and the Decontamination of the reactor vessel at Oskarshamn 1. Figs

  6. Fundamental design bases for independent core cooling in Swedish nuclear power reactors

    International Nuclear Information System (INIS)

    Jelinek, Tomas

    2015-01-01

    New regulations on design and construction of nuclear power plants came into force in 2005. The need of an independent core cooling system and if the regulations should include such a requirement was discussed. The Swedish Radiation Safety authority (SSM) decided to not include such a requirement because of open questions about the water balance and started to investigate the consequences of an independent core cooling system. The investigation is now finished and SSM is also looking at the lessons learned from the accident in Fukushima 2011. One of the most important measures in the Swedish national action plan is the implementation of an independent core cooling function for all Swedish power plants. SSM has investigated the basic design criteria for such a function where some important questions are the level of defence in depth and the acceptance criteria. There is also a question about independence between the levels of defence in depth that SSM have included in the criteria. Another issue that has to be taken into account is the complexity of the system and the need of automation where independence and simplicity are very strong criteria. In the beginning of 2014 a memorandum was finalized regarding fundamental design bases for independent core cooling in Swedish nuclear power reactors. A decision based on this memorandum with an implementation plan will be made in the first half of 2014. Sweden is also investigating the possibility to have armed personnel on site, which is not allowed currently. The result from the investigation will have impact on the possibility to use mobile equipment and the level of protection of permanent equipment. In this paper, SSM will present the memorandum for design bases for independent core cooling in Swedish nuclear power reactors that was finalized in March 20147 that also describe SSM's position regarding independence and automation of the independent core cooling function. This memorandum describes the Swedish

  7. Knowledge transfer in Swedish Nuclear Power Plants in connection with retirements

    International Nuclear Information System (INIS)

    Larsson, Annika; Ohlsson, Kjell; Roos, Anna

    2007-01-01

    This report displays how the Swedish nuclear power plants Forsmark, Oskarshamn and Ringhals work with knowledge management. The report also consists of a literature review of appropriate ways to extract tacit knowledge as well as methods to transfer competence. The report is made up of a smaller number of interviews at the nuclear power plants in combination with a questionnaire distributed to a larger number of people at the plants. The results of the interview study is that only one of the Swedish nuclear power plants have a programme to transfer knowledge from older staff to newer. This is, however, not a programme for everyone. Another plant has a programme for knowledge building, but only for their specialists. At both plants, which lack a programme, the interviewees request more structure in knowledge transfer; even though they feel the current way of transferring knowledge with mentors works well. Besides more structure, interviewees present a wish to have more time for knowledge transfer as well as the opportunity to recruit more than needed. Recruiting more than needed is however not very simple due to multiple causes such as nominal sizing departments and a difficulty of recruiting people to work far from larger cities. The way things are now, many feel too under-staffed and under a lot of time pressure daily to also have time for knowledge transfer besides their normal work

  8. Swedish nuclear waste efforts

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981.

  9. Analysis of human performance problems at the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Bento, J.P.

    1988-01-01

    The last five years of operation of all Swedish nuclear power plants have been studied with respect to human performance problems by analysing all scrams and licensee event reports (LERs). Thus, the study covers 165 scrams and 1318 LERs. As general results, 39% of the scrams and 27% of the LERs, as an average for the years 1983-1987, are caused by human performance problems. Among the items studied, emphasis has been put on the analysis of the causal categories involved in human performance problems resulting in plant events. The most significant causal categories appear to be Work organization, Procedures not followed, Work place ergonomics and Human variability

  10. The Swedish concept for disposal of waste arising from the operation of nuclear power plants

    International Nuclear Information System (INIS)

    Carlsson, J.

    1996-01-01

    The Swedish nuclear power programme consists of 12 reactors producing 50% of the electricity in Sweden. It is stated by law that a waste producer has to make sure a safe handling and disposal of his radioactive waste. SKB is performing necessary activities on behalf of the waste producers. A system is in operation today that will manage all the radioactive waste produced in the country. The system consists of a transportation system, a final repository for operational waste and an interim storage facility for spent fuel. What remains to be built is an encapsulation plant for the spent fuel and a deep repository for final disposal of spent fuel and other long lived waste. All costs for managing and disposal of radioactive waste is paid by the owners of the nuclear power utilities. (author) 9 figs

  11. European stress tests for nuclear power plants. The Swedish National Report

    International Nuclear Information System (INIS)

    2011-01-01

    On 11 March 2011, the Tohoku region in north Honshu, Japan, suffered a severe earthquake with an ensuing tsunami and an accident at the Fukushima Dai-ichi nuclear power plant. Due to the accident the Council of the European Union declared in late March that Member States were prepared to begin reviewing safety at nuclear facilities in the European Union by means of a comprehensive assessment of risk and safety ('stress testing'). On 25 May, SSM ordered the licensees of the nuclear power plants to conduct renewed analyses of the facilities' resilience against different kinds of natural phenomena. They were also to analyse how the facilities would be capable of dealing with a prolonged loss of electrical power, regardless of cause. On 31 October, the licensees reported on their stress tests to SSM. After reviewing these reports, SSM produced a summary stress test report, which was submitted to the Government on the 15 December. The present report is the national report on Swedish stress tests of nuclear power plants. The report will be submit to the European Commission no later than 31 December. Based on the review SSM has drawn the conclusion that the stress tests carried out by Swedish licensees are largely performed in accordance with the specification resolved within the European Union. The scope and depth of these analyses and assessments are essentially in accordance with ENSREG's definition of 'a comprehensive assessment of risk and safety'. The stress tests show that Swedish facilities are robust, but the tests also identify a number of opportunities to further strengthen the facilities' robustness. SSM will order the respective licensees to present an action plan for dealing with the results from the stress tests. The Authority will then examine the plans and adopt a standpoint on proposed measures as well as check that the necessary safety improvements are made. In a number of cases, the stress tests indicate deficiencies in relation to, or alternatively

  12. Environmental effects of large discharges of cooling water. Experiences from Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Ehlin, Ulf; Lindahl, Sture; Neuman, Erik; Sandstroem, Olof; Svensson, Jonny

    2009-07-01

    Monitoring the environmental effects of cooling water intake and discharge from Swedish nuclear power stations started at the beginning of the 1960s and continues to this day. In parallel with long-term monitoring, research has provided new knowledge and methods to optimise possible discharge locations and design, and given the ability to forecast their environmental effects. Investigations into the environmental effects of cooling-water are a prerequisite for the issuing of power station operating permits by the environmental authorities. Research projects have been carried out by scientists at universities, while the Swedish Environmental Protection Agency, the Swedish Board of Fisheries, and the Swedish Meteorological and Hydrological Institute, SMHI, are responsible for the greater part of the investigations as well as of the research work. The four nuclear power plants dealt with in this report are Oskarshamn, Ringhals, Barsebaeck and Forsmark. They were taken into operation in 1972, 1975, 1975 and 1980 resp. - a total of 12 reactors. After the closure of the Barsebaeck plants in 2005, ten reactors remain in service. The maximum cooling water discharge from the respective stations was 115, 165, 50 and 135 m 3 /s, which is comparable to the mean flow of an average Swedish river - c:a 150 m 3 /s. The report summarizes studies into the consequences of cooling water intake and discharge. Radiological investigations made at the plants are not covered by this review. The strategy for the investigations was elaborated already at the beginning of the 1960s. The investigations were divided into pre-studies, baseline investigations and monitoring of effects. Pre-studies were partly to gather information for the technical planning and design of cooling water intake and outlet constructions, and partly to survey the hydrographic and ecological situation in the area. Baseline investigations were to carefully map the hydrography and ecology in the area and their natural

  13. Concrete containments in Swedish nuclear power plants. A review of construction and material

    International Nuclear Information System (INIS)

    Roth, Thomas; Silfwerbrand, Johan; Sundquist, Haakan

    2002-12-01

    attention. Current investigation shows that the documentation on the concrete containment structures of the Swedish nuclear power stations is fairly complete after the authors have obtained new information through a survey during 2001 and included these data in the report. The target group of this report are structural engineers and other people interested in knowing how the prestressed concrete containments in the Swedish nuclear power stations are designed, detailed and constructed. Uprising questions regarding the structural behaviour of the containment structures ought to be evaluated by using present material properties and not the data describing the used building materials at the design stage. The aim of this research project is to gain new knowledge on life span questions regarding prestressing steel in concrete structures, partly generally and partly with focus on Swedish nuclear power stations and Swedish bridges. The project covers both bonded and un bonded prestressing steel. This report describes the containment structures for all Swedish nuclear power stations. The information is both given in Chapters 5 through 16 and assembled in tables in Appendix A. The intention is that the documentation shall grow and be supplemented as soon as new information, either new data describing the containment structures or new measuring results, will be obtained or produced within current research project. Design and detailing of prestressed concrete structures are among others based on the knowledge of time-dependent material changes regarding concrete (creep and shrinkage) and prestressing steel (relaxation). The intention is that the following items will treated: general evaluation; testing of prestressing steel and concrete properties; assessment of the risk of a time-dependent increase of brittleness of the prestressing steel; comparisons with codes; modelling of steel relaxation; unidimensional modelling of prestressing losses; regard to elevated temperatures

  14. The cleavable matter: Discursive orders in Swedish nuclear power politics 1972-1980

    International Nuclear Information System (INIS)

    Lindquist, P.

    1997-09-01

    This study applies a qualitative discourse-theoretical method to analyse the central argumentation in the parliamentary debate on nuclear power in Sweden during 1972-1980, reconstructed from official documents such as governmental and parliamentary bills, committee reports, parliamentary debate protocols, and official commission reports. Particular concern is directed to the process in which various discursive orders emerging within the political debate tend to have a structuring influence on the political argumentation regarding what can be said, by whom this can be said, and how this can be said. It is argued that these discursive orders have a profound, and in a systems theoretical sense self-dynamic influence, going beyond the original intentions of the political actors, on how the energy policy issue is interpreted and constructed. It is argued, furthermore, that these discursive orders actively exploit the political context of meaning by deliberately instrumentalising and incorporating competing argumentative elements into their own cognitive structure. In other words, the dominant political system incorporates the arguments of the political opposition and of the environmental and anti nuclear movements in order to consolidate its political power. The discourse theoretical analysis of the Swedish nuclear power debate in that sense unveils a deep resistance against a true political discourse, in the sense of Habermas, as a rational and domination-free process of reaching mutual understanding. 152 refs

  15. The Swedish Nuclear Power Inspectorate's Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RD and D Programme 2001

    International Nuclear Information System (INIS)

    2002-09-01

    According to the Act on Nuclear Activities, the holder of a licence to operate a nuclear reactor must adopt all necessary measures to manage and dispose of spent nuclear fuel and nuclear waste. The Act stipulates requirements on a research programme which is to be submitted to the competent regulatory authority once every three years. The Swedish Nuclear Power Inspectorate (SKI) is the competent authority that evaluates and reviews the programme. SKI distributes the programme to a wide circle of reviewing bodies for comment, including authorities, municipalities, universities and NGOs. The Swedish programme for final disposal of spent nuclear fuel started about 25 years ago. According to the Swedish Nuclear Waste Management Co. (SKB), the planned repository will not be closed until sometime in the 2050's. A series of decisions must be made before this goal is attained. The decision process can therefore be described as a multi-stage process. During each stages, safety will be evaluated and there is a possibility of taking additional time for development work or of selecting improved solutions. SKI's task is to ensure safety compliance throughout all of these stages. In its decision in January 2000, the Government explained that the Programme for Research, Development and Demonstration for the Treatment and Final Disposal of Nuclear Waste (RD and D Programme 98) complied with legislative requirements but that certain supplementary reporting should be conducted by SKB and submitted no later than when the next programme, in accordance with paragraph 12 of the Act on Nuclear Activities, was prepared (September 2001). The supplementary reporting requested by the Government, and which was submitted by SKB to SKI in December 2000, dealt with issues relating to method selection, site selection and the site investigation programme. SKI submitted its review of the supplement to the Government in June 2001 and the Government made a decision on the matter on November 1, 2001

  16. Trend and pattern analysis of human performance problems at the swedish nuclear power plants

    International Nuclear Information System (INIS)

    Bento, J.P.

    1990-01-01

    The last six years of operation of all Swedish nuclear power plants have been studied with respect to human performance problems by analysing all scrams and licensee event reports (LERs). The present paper is an updated version of a previous report to which the analysis results of the year 1988's events have been added. The study covers 197 scrams and 1759 LERs. As general results, 38% of the scrams and 27% of the LERs, as an average for the years 1983-1988, are caused by human performance problems. Among the items studied, emphasis has been put on the analysis of the causal categories involved in human performance problems resulting in plant events. The most significant causal categories appear to be Work organization, Work place ergonomics, Procedures not followed, Training and Human variability. The trend and pattern of the dominating causal categories are discussed

  17. Occupational radiation protection at Swedish Nuclear Power Plants: Views on present status and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Ingemar; Erixon, Stig; Godaas, Thommy; Hofvander, Peter; Malmqvist, Lars; Thimgren, Ingela; Oelander Guer, Hanna [Department of Occupational and Medical Exposures, Swedish Radiation Protection Authority, SE-171 16 Stockholm (Sweden)

    2004-07-01

    The occupational radiation doses at Swedish NPPs have decreased with roughly a factor of two from the beginning of the 1990's until today. The average collective dose during the last five years is 10 manSv for eleven operating reactors. During the same period, the average annual individual dose to the personnel has decreased from 3 - 4 mSv/year to about 2 mSv/year. In this presentation, the measures taken to improve the radiological conditions at the NPPs are briefly reviewed and the present status is described. The expectations for the future are outlined. The SSI summarises past experiences and the prerequisites for preserving good radiation protection conditions by the following catch words: Competence, Experience Feedback, Preventive Measures, and Long-Term Planning. Finally, it is the view of the SSI that essential efforts to improve the radiation protection conditions at the Swedish nuclear power plants have been made. The radiation protection conditions are good, which is a result of long-term efforts on reducing radiation levels, improving work procedures as well as increasing the knowledge of, and the commitment to, radiation protection issues at the staff level. (authors)

  18. Safety Management Characteristics Reflected in Interviews at Swedish Nuclear Power Plants: A System Perspective Approach

    International Nuclear Information System (INIS)

    Salo, Ilkka

    2005-12-01

    The present study investigated safety management characteristics reflected in interviews with participants from two Swedish nuclear power plants. A document analysis regarding the plants' organization, safety policies, and safety culture work was carried out as well. The participants (n=9) were all nuclear power professionals, and the majority managers at different levels with at least 10 years of nuclear power experience. The interview comprised themes relevant for organizational safety and safety management, such as: organizational structures and organizational change, threats to safety, information feedback and knowledge transfer, safety analysis, safety policy, and accident and incident analysis and reporting. The results were in part modeled to important themes derived from a general system theoretical framework suggested by Svenson and developed by Svenson and Salo in relation to studies of 'non-nuclear' safety organizations. A primer to important features of the system theoretical framework is presented in the introductory chapter. The results from the interviews generated interesting descriptions about nuclear safety management in relation to the above themes. Regarding organizational restructuring, mainly centralizations of resources, several examples of reasons for the restructuring and related benefits for this centralization of resources were identified. A number of important reminders that ought to be considered in relation to reorganization were also identified. Regarding threats to the own organization a number of such was interpreted from the interviews. Among them are risks related to generation and competence change-over and risks related to outsourcing of activities. A thorough picture of information management and practical implications related to this was revealed in the interviews. Related to information feedback is the issue of organizational safety indicators and safety indicators in general. The interview answers indicated that the area

  19. The Swedish Nuclear Power Inspectorate's evaluation of SKB's RD and D Program 98. Summary and conclusions

    International Nuclear Information System (INIS)

    1999-04-01

    Compared to previous programmes, RD and D Programme 98 is focused to a greater extent on method and site selection and on issues relating to the decision-making process. This is natural, since the programme is now approaching the stage where vital decisions will have to be made. The RD and D Programme 98 report is supplemented by a background report 'Detailed Programme for Research and Development 1999-2004' as well as a number of main references 'System Reporting', 'Alternative methods', 'Criteria for Site Evaluation' and the 'North-South/Coast-Interior' report. In addition, a number of references are available in the form of county-specific general siting studies, feasibility studies etc. SKI has distributed RD and D Programme 98 to sixty-three reviewing bodies for comment. The reviewing bodies include universities and institutes of technology, local safety committees, municipalities hosting nuclear facilities and municipalities participating in feasibility studies as well as many authorities. The comments of the reviewing bodies mainly focused on the decision-making process, including issues relating to method selection and site selection and, in particular, on the selection of sites for site investigation. Several reviewing bodies, particularly universities and institutes of technology, have also submitted comments of a more technical-scientific nature. SKI's evaluation has focused on determining whether SKB's programme can be considered to fulfil the requirements stipulated in the Act on Nuclear Activities that such a programme should be able to result in the implementation of solutions for the final disposal of the spent nuclear fuel from the Swedish nuclear power programme. Furthermore, SKI's evaluation has also focused on the conditions that SKI considers should apply to SKB's future work. Specific comments are made for the following areas: Decision-making process, Method selection and system analysis, Siting, Technical development, Safety assessments

  20. Studies of activation products in the terrestrial environment of three swedish nuclear power stations

    International Nuclear Information System (INIS)

    Ingemansson, T.; Erlandsson, B.; Mattsson, S.

    1982-01-01

    Samples of sewage sludge, lichen (Cladonia alpestris), soil and ground level air have been analysed for activation products released to the atmosphere from the three Swedish nuclear power stations at Simpevarp near Oskarshamn, Ringhals and Barsebaeck. The activity concentration of the activation products in the sludge can be arranged in the following sequence: 60 Co > 65 Zn > 58 Co 54 Mn. There is agreement between the time variation of the activity concentration in the sludge and the reported releases to the air from the power stations. The measured activity ratio 58 Co/ 60 Co in sludge does not significantly differ from that reported in the releases to the air. The activity concentration in sludge sedimented from incoming waste water has been used to get better time resolution than using only digested sludge from the final step of the plant. These studies have shown that the activity concentration of 60 Co increases substantially with the first rain run-off that reaches the sewage plant and then falls off rapidly. Measurements on samples of lichen and underlying soil show that the radioactive cobalt isotopes ( 58 Co and 60 Co) have a short mean residence time in the lichen carpet compared to most fission products present in global fall-out. (author)

  1. Safety Management Characteristics Reflected in Interviews at Swedish Nuclear Power Plants: A System Perspective Approach

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Ilkka (Risk Analysis, Social and Decision Research Unit, Dept. of Psychology, Stockholm Univ., Stockholm (Sweden))

    2005-12-15

    The present study investigated safety management characteristics reflected in interviews with participants from two Swedish nuclear power plants. A document analysis regarding the plants' organization, safety policies, and safety culture work was carried out as well. The participants (n=9) were all nuclear power professionals, and the majority managers at different levels with at least 10 years of nuclear power experience. The interview comprised themes relevant for organizational safety and safety management, such as: organizational structures and organizational change, threats to safety, information feedback and knowledge transfer, safety analysis, safety policy, and accident and incident analysis and reporting. The results were in part modeled to important themes derived from a general system theoretical framework suggested by Svenson and developed by Svenson and Salo in relation to studies of 'non-nuclear' safety organizations. A primer to important features of the system theoretical framework is presented in the introductory chapter. The results from the interviews generated interesting descriptions about nuclear safety management in relation to the above themes. Regarding organizational restructuring, mainly centralizations of resources, several examples of reasons for the restructuring and related benefits for this centralization of resources were identified. A number of important reminders that ought to be considered in relation to reorganization were also identified. Regarding threats to the own organization a number of such was interpreted from the interviews. Among them are risks related to generation and competence change-over and risks related to outsourcing of activities. A thorough picture of information management and practical implications related to this was revealed in the interviews. Related to information feedback is the issue of organizational safety indicators and safety indicators in general. The interview answers indicated

  2. Facing the nuclear power phaseout - Swedish experiences of enterprise shutdown and organisational development

    International Nuclear Information System (INIS)

    Lundqvist, K.

    1998-02-01

    The aim of this study is to make an overview of problems and experiences connected to decommissioning and organisational changes of Swedish enterprises and public agencies from a safety perspective. The central point is the view of decommissioning of nuclear power plants as a process of change. In practice decommissioning includes both downsizing and organisational development. The question is which problems can arise and which strategy of change is most adequate from the standpoint of safety. The report starts with a summary of the most important experiences of the process of decommissioning of enterprises during the sixties to eighties concerning the consequences for the individuals and the labour market. After that follows the main results from earlier investigations of shut-down of nuclear power plants regarding the staff. The restructuring and downsizing of the public sector during the nineties have given rise to a large amount of material on staffing issues. The knowledge and experiences drawn from the organisational change processes of Swedish working life during the nineties are then summarised. At last some conclusions for decommissioning of nuclear power plants are discussed. The period before and after the termination of power generation is connected with great strain. The vulnerability of the staff increases and the faith in management can easily be destroyed, which can affect safety and the decommissioning work. The feeling of security increases if the staff continuously is kept informed and within certain limits can influence the course of events. A learning strategy is preferable in comparison to an expert oriented strategy because it is impossible to gain complete control over the technically and socially complex process of decommissioning. Instead of detailed and central planning of the process it will be safer to work in a participative way and to include all the staff in the preparations from the very beginning. By a learning way of working is

  3. A vision of inexhaustible energy: The fast breeder reactor in Swedish nuclear power history 1945-80

    International Nuclear Information System (INIS)

    Fjaestad, Maja

    2010-01-01

    The fast breeder is a type of nuclear reactor that aroused much attention in the 1950s and 1960s. Its ability to produce more nuclear fuel than it consumes offered promises of cheap and reliable energy, and thereby connected it to utopian ideas about an eternal supply of energy, Furthermore. the ideas of breeder reactors were a vital part of the post-war visions about the nuclear future. This dissertation investigates the plans for breeder reactors in Sweden, connecting them to the contemporary development of nuclear power with heavy or light water and the discussions of nuclear weapons, as well as to the general visions of a prosperous technological future. The history of the Swedish breeder reactor is traced from high hopes in the beginning, via the fiasco of the Swedish heavy water program, partly focusing on the activities at the company AB Atomenergi and investigating how it planned and argued for its breeder program and how this was received by the politicians. The story continues into the intensive environmental movement in the 1970s, ending with the Swedish referendum on nuclear energy in 1980, which can be seen as the final point for the Swedish breeder. The thesis discusses how the nuclear breeder reactor was transformed from an argument for nuclear power to an argument against it. The breeder began as a part of the vision of a society with abundant energy, but was later seen as a threat against the new sustainable world. The nuclear breeder reactor is an example of a technological vision that did not meet its industrial expectations. But that does not prevent the fact that breeder was an influential technology in an age where important decisions about nuclear energy were made. The thesis argues that important decisions about the contemporary reactors were taken with the idea that they in a foreseeable future would be replaced with the efficient breeder. And the last word on the breeder reactor is not said - today, reactor engineers around the world are

  4. Knowledge transfer in Swedish Nuclear Power Plants in connection with retirements; Kompetensoeverfoering paa svenska kaernkraftverk i samband med pensionsavgaangar

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Annika; Ohlsson, Kjell; Roos, Anna

    2007-12-13

    This report displays how the Swedish nuclear power plants Forsmark, Oskarshamn and Ringhals work with knowledge management. The report also consists of a literature review of appropriate ways to extract tacit knowledge as well as methods to transfer competence. The report is made up of a smaller number of interviews at the nuclear power plants in combination with a questionnaire distributed to a larger number of people at the plants. The results of the interview study is that only one of the Swedish nuclear power plants have a programme to transfer knowledge from older staff to newer. This is, however, not a programme for everyone. Another plant has a programme for knowledge building, but only for their specialists. At both plants, which lack a programme, the interviewees request more structure in knowledge transfer; even though they feel the current way of transferring knowledge with mentors works well. Besides more structure, interviewees present a wish to have more time for knowledge transfer as well as the opportunity to recruit more than needed. Recruiting more than needed is however not very simple due to multiple causes such as nominal sizing departments and a difficulty of recruiting people to work far from larger cities. The way things are now, many feel too under-staffed and under a lot of time pressure daily to also have time for knowledge transfer besides their normal work.

  5. 2009 assessment of radiation safety in the Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Lennart

    2009-04-15

    The overall conclusion is that the radiation safety, nuclear safety, the physical protection including nuclear safeguards and radiation protection, in the Swedish nuclear power plants has been maintained at an acceptable level. Large investment programmes are being carried out to comply with the requirements imposed by the authority regarding modernisation. Management systems and internal audits have developed in a positive direction. 2008 has been an eventful year in many respects. The nuclear industry is in a very intensive period. Modernisations are under way, aimed at improving safety, and measures are being taken to strengthen the physical protection in order to make forced entry to the plants more difficult. In addition, preparations are in progress to increase the thermal power in most of the reactors. Four events have occurred in 2008 that required SSM's permission to restart the plant (Category 1, SSMFS 2008:1). One event occurred in each of Oskarshamn 1 and 3, Forsmark 3 and Ringhals 2. The events in Oskarshamn 3 and Forsmark 3 were the result of broken control rod shafts. In Oskarshamn 1 a perturbation was caused by lightening, and in Ringhals 2 the event was due to deficiencies in the auxiliary feedwater capacity. Five events have been classified and reported as level 1 on the International Nuclear Events Scale (INES). In all 14 scrams have occurred. This is a higher frequency than the reactors have set as their goal. During the year SSM has carried out five incident-related (RASK) inspections in order to collect information relating to how the licensees have responded to the events and which measures have been taken to prevent a recurrence. None of the events have led to threats to the safety of the surroundings. However several events have been classified at a higher level than has been normal in recent years. Modernisation is being carried out in the form of large projects lasting for several years. The work is either carried out during extended

  6. 14C emission from Swedish nuclear power plants and its effect on the 14C levels in the environment

    International Nuclear Information System (INIS)

    Stenstroem, K.; Erlandsson, Bengt; Hellborg, R.; Kiisk, M.; Persson, Per; Mattsson, Soeren; Thornberg, C.; Skog, G.

    2000-02-01

    The radionuclide 14 C is produced in all types of nuclear reactors mainly by neutron induced reactions in oxygen ( 17 O), nitrogen ( 14 N) and carbon ( 13 C). Part of the 14 C created is continuously released during normal operation as airborne effluents in various chemical forms (such as CO 2 , CO and hydrocarbons) to the surroundings. Because of the biological importance of carbon and the long physical half-life of 14 C, it is of interest to measure the releases and their incorporation into living material. The 14 C activity concentrations in annual tree rings and air around two Swedish nuclear power plants (Barsebaeck and Forsmark) as well as the background 14 C activity levels from two reference sites in southern Sweden during 1973-1996 are presented in this report. In order to verify the reliability of the method some investigations have been conducted at two foreign nuclear sites, Sellafield fuel reprocessing plant in England, and Pickering nuclear generating station in Canada, where the releases of 14 C are known to be substantial. Furthermore, results from some measurements in the vicinity of Paldiski submarine training centre in Estonia are presented. The results of the 14 C measurements of air, vegetation and annual tree rings around the two Swedish nuclear power plants show very low enhancements of 14 C, if at all above the uncertainty of the measurements. Even if the accuracy of the measurements of the annual tree rings is rather good (1-2%) the contribution of 14 C from the reactors to the environment is so small that it is difficult to separate it from the prevailing background levels of 14 C . This is the case for all sampling procedures: in air and vegetation as well as in annual tree rings. Only on a few occasions an actual increase is observed. However, although the calculations suffer from rather large uncertainties, the calculated release rate from Barsebaeck is in fair agreement with reported release data. The results of this investigation show

  7. Design of alarm systems in Swedish nuclear power plants; Utformning av larmsystem i svenska kaernkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    Thunberg, Anna; Osvalder, Anna-Lisa (Dept. of Product and Production Development, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2008-04-15

    Research within the area of improving alarm system design and performance has mainly focused on new alarm systems. However, smaller modernisations of legacy systems are more common in the Swedish nuclear industry than design of totally new systems. This imposes problems when the new system should function together with the old system. This project deals with the special concerns raised by modernisation projects. The objective of the project has been to increase the understanding of the relationship between the operator's performance and the design of the alarm system. Of major concern has been to consider the cognitive abilities of the operator, different operator roles and work situations, and varying need of information. The aim of the project has been to complement existing alarm design guidance and to develop user-centred alarm design concepts. Different case studies have been performed in several industry sectors (nuclear, oil refining, pulp and paper, aviation and medical care) to identify best practice. Several empirical studies have been performed within the nuclear area to investigate the operator's need of information, performance and workload in different operating modes. The aspect of teamwork has also been considered. The analyses show that the operator has different roles in different work situations which affect both the type of information needed and how the information is processed. In full power operation, the interaction between the operator and the alarm system is driven by internal factors and the operator tries to maintain high situation awareness by actively searching for information. The operator wants to optimise the process and need detailed information with possibilities to follow-up and get historical data. In disturbance management, the operator is more dependent on external information presented by the alarm system. The new compilation of alarm guidance is based on the operator's varying needs in different working

  8. Quarterly report of the Swedish Nuclear Power inspectorate January-March 1982

    International Nuclear Information System (INIS)

    1982-01-01

    The inspectorate is reporting on the departures of the nuclear power plants from normal operations. The Ringhals-3 reactor has discontinued the operation since the 20th of Oct 1981. There have been 9 reactor trips for all nine power units. The turbine oil of the Oskarshamn-1 reactor caught fire the 18th of February 1982. No incidents are reported from Studsvik and the facilities of ASEA-ATOM. (G.B.)

  9. Activity concentration measurements of 14C in the surroundings of two Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Erlandsson, B.; Hellborg, R.; Stenstroem, K.; Mattsson, S.

    1999-01-01

    In the nature 14 C is continuously produced by cosmic ray bombardment of 13 N in the stratosphere. 14 C is also produced in nuclear reactors and part of it is released to the atmosphere in the form of CO 2 . Because of the biological importance of carbon and the long half-life of 14 C it is of interest to measure the releases and to follow their incorporation in living material. Around Forsmark nuclear power plant we have collected sallow leaves and pine tree rings and found an excess of 14 C up to 25 ± 5 Bq/kg C. The 14 C activity concentration, 0-4 Bq/kg C in annual tree rings around Barsebaeck nuclear power plant as well as the background 14 C activity levels from two reference sites in southern Sweden during 1973-1997 have been measured. Accelerator mass spectrometry (AMS), as well as decay counting have been used in this investigation. (au)

  10. Instructor training at the Swedish Nuclear Power Training and Safety Centre

    International Nuclear Information System (INIS)

    Persson, P.-E.

    1988-01-01

    In spite of the fact that full-scope simulators are very powerful training tools, the transfer of knowledge and skills to the trainees during simulator training is completely dependent on the instructors' technical competence and their ability to transfer it to the trainees by efficient use of these training tools. Accordingly, the instructor candidates must pass a technical training programme equivalent to that for shift supervisors and have at least a few months of experience in each operator position at a nuclear power plant. To be authorized, the instructors must also pass a teacher training programme consisting of four 2 week instructor courses. To stay authorized the instructors must pass an annual retraining programme consisting of at least two weeks of technical refresher and one week teacher retraining. The retraining programme also includes at least three weeks of operational practice at a nuclear power plant. (author)

  11. 1. Biologic monitoring at Barsebaeck nuclear power plant 1985-1997. 2. Biological monitoring at Swedish nuclear power plants in 1998. Annual report 1998

    International Nuclear Information System (INIS)

    Andersson, Jan; Mo, K.; Thoernqvist, S.

    1999-06-01

    This report gives an account for two studies on the ecological effects of effluents to the aquatic environment from the Swedish nuclear power plants: 1. The results of biological monitoring at the Barsebaeck nuclear power plant during the period 1985-1997 are summarised. Comparisons are made with a previous report from 1969-1983. The fish community was studied by fyke net test fishing in the cooling water effluent area along a gradient out to unaffected sites. The loss of young eels in the cooling water intake was estimated annually. Damage on female grey mullet oocyte development was analysed on samples of cooling water exposed fish. 2. The biological monitoring at the Swedish nuclear power plants during 1998 was with minor exceptions performed according to the established programmes. The monitoring at Forsmark is running in the enclosed Biotest basin at the cooling water outlet and in the surrounding archipelago. Reference data are collected at Finbo, NW Aaland, and in the nearby Graesoe archipelago. In 1998 as in previous years the benthic macro fauna abundance within the Biotest basin showed strong variations. In the beginning of the year abundance and biomass were low, in the autumn though, higher than average. Oskarshamn: The monitoring is performed in the small effluent bay, Hamnefjaerden bay, in the waters surrounding the cooling water plume and in a reference area, Kvaedoe-fjaerden, 100 km north of the power plant. Perch and roach catches have been high in the Hamnefjaerden bay since the late 1980's. In 1998 catches of perch were on a higher level than in 1997, both in spring and in summer. The changes for roach were small. A moderate decrease in eel catches took place in 1997 and 1998, indicating a reduced effect of stockings in the late 1980's. Ringhals: The monitoring is performed in the area close to the cooling water outlet, which is located at an open coast, and in a reference area. An attraction of yellow eel to the effluent area has been

  12. The Swedish Nuclear Power Inspectorate's Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RD and D Programme 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-09-01

    According to the Act on Nuclear Activities, the holder of a licence to operate a nuclear reactor must adopt all necessary measures to manage and dispose of spent nuclear fuel and nuclear waste. The Act stipulates requirements on a research programme which is to be submitted to the competent regulatory authority once every three years. The Swedish Nuclear Power Inspectorate (SKI) is the competent authority that evaluates and reviews the programme. SKI distributes the programme to a wide circle of reviewing bodies for comment, including authorities, municipalities, universities and NGOs. The Swedish programme for final disposal of spent nuclear fuel started about 25 years ago. According to the Swedish Nuclear Waste Management Co. (SKB), the planned repository will not be closed until sometime in the 2050's. A series of decisions must be made before this goal is attained. The decision process can therefore be described as a multi-stage process. During each stages, safety will be evaluated and there is a possibility of taking additional time for development work or of selecting improved solutions. SKI's task is to ensure safety compliance throughout all of these stages. In its decision in January 2000, the Government explained that the Programme for Research, Development and Demonstration for the Treatment and Final Disposal of Nuclear Waste (RD and D Programme 98) complied with legislative requirements but that certain supplementary reporting should be conducted by SKB and submitted no later than when the next programme, in accordance with paragraph 12 of the Act on Nuclear Activities, was prepared (September 2001). The supplementary reporting requested by the Government, and which was submitted by SKB to SKI in December 2000, dealt with issues relating to method selection, site selection and the site investigation programme. SKI submitted its review of the supplement to the Government in June 2001 and the Government made a decision on the matter on November

  13. Review of national and international demands on fire protection in nuclear power plants and their application in the Swedish nuclear industry

    International Nuclear Information System (INIS)

    Fredholm, Lotta

    2010-02-01

    regarding fire safety at nuclear power plants that have been studied are regulation from USA, Finland, Great Britain, Canada, Germany and the international organisations IAEA and WENRA. The conclusion of this study is that the differences between the regulations mostly are differences in detailed fire safety design. Some differences can not easily be explained by national. Differences and the resulting effect on the overall fire safety is very difficult to evaluate. Regarding how to improve the Swedish regulations regarding fire safety at nuclear power plants there are different possibilities. One is to complement the regulations with acceptable solutions on how to design the fire protection. If this shall be done IAEAs Safety Guides seem to be the easiest of the more detailed fire requirements to adopt to Swedish conditions. Another way of improving the regulation is to give more guidance on how to proof that the rules are fulfilled. In this case the Canadian guidelines may be a good source of ideas and information

  14. Deregulation and internationalisation - impact on the Swedish nuclear industry

    International Nuclear Information System (INIS)

    Haukeland, Sverre R.

    2010-01-01

    The deregulation of the Swedish electricity market in 1996 was well known in advance, and the nuclear power plants in Sweden, as well as their main suppliers, made early preparations for a this new situation. In a study - performed by the author at Malardalen University in Sweden - it is concluded that the electricity industry, including the nuclear power plants, was fundamentally transformed in conjunction with market liberalisation. Two large foreign companies, E-on and Fortum, entered the Swedish market and became part-owners of the nuclear plants. After deregulation, the electricity market in Sweden is dominated by these two companies and the large national company Vattenfall. Similarly, Vattenfall has recently grown into an international energy company, acquiring generation capacity in Northern Europe outside of Sweden, including nuclear power plants in Germany. Restructuring of the nuclear industry on the supplier side started in the 1980's, when the Swedish company ASEA and BBC of Switzerland merged to become ABB. Several years later the Swedish nuclear plant supplier ABB-Atom became part of Westinghouse Electric Company, today owned by Toshiba. The Swedish experience thus confirms an international trend of mergers and consolidation in the nuclear industry. (authors)

  15. Deregulation and internationalisation - impact on the Swedish nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Haukeland, Sverre R. [Swedish Nuclear Society, Vattenfall Research and Development, 162 89 Stockholm (Sweden)

    2010-07-01

    The deregulation of the Swedish electricity market in 1996 was well known in advance, and the nuclear power plants in Sweden, as well as their main suppliers, made early preparations for a this new situation. In a study - performed by the author at Malardalen University in Sweden - it is concluded that the electricity industry, including the nuclear power plants, was fundamentally transformed in conjunction with market liberalisation. Two large foreign companies, E-on and Fortum, entered the Swedish market and became part-owners of the nuclear plants. After deregulation, the electricity market in Sweden is dominated by these two companies and the large national company Vattenfall. Similarly, Vattenfall has recently grown into an international energy company, acquiring generation capacity in Northern Europe outside of Sweden, including nuclear power plants in Germany. Restructuring of the nuclear industry on the supplier side started in the 1980's, when the Swedish company ASEA and BBC of Switzerland merged to become ABB. Several years later the Swedish nuclear plant supplier ABB-Atom became part of Westinghouse Electric Company, today owned by Toshiba. The Swedish experience thus confirms an international trend of mergers and consolidation in the nuclear industry. (authors)

  16. The Swedish Nuclear Power Inspectorate's evaluation of SKB's RD and D Program 98. Review report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    According to the Act (1984:3) on Nuclear Activities, the full responsibility for the safe management and final disposal of spent nuclear fuel and nuclear waste rests with the owners of the Swedish nuclear power reactors. In accordance with the Act (1992:1537) on the Financing of Future Expenses for Spent Nuclear Fuel etc., the owners are also responsible for ensuring that funds are set aside to cover the future expenses of the management and final disposal of spent nuclear fuel and nuclear waste. Furthermore, nuclear reactor owners must conduct, and every three years, submit a research and development programme for the management of the spent nuclear fuel and nuclear waste. The programme must also cover the measures which are necessary for the decommissioning and dismantling of the nuclear installations. SKI must submit the programme documents to the Government, along with its own statement. The owners of the nuclear power reactors have formed a joint company, SKB which, on behalf of the owners, fulfils the owners' statutory obligations with respect to the management and final disposal of spent nuclear fuel and nuclear waste and conducts related research and development. The programme now submitted by SKB is the latest in the series which started with RandD Programme 86. The current programme was submitted in September 1998 and is called RDandD Programme 98 (programme for Research, Development and Demonstration). In RDandD Programme 98, SKB has stated that it particularly welcomes viewpoints concerning: Whether deep disposal according to the KBS-3 method will continue to be the preferred method. The body of material that SKB is compiling in preparation for the selection of sites for site investigation. What is to be included in future Environmental Impact Statements (EIS). Compared to previous programmes, RDandD Programme 98 is focused to a greater extent on method and site selection and on issues relating to the decision-making process. In order to emphasise

  17. {sup 14}C emission from Swedish nuclear power plants and its effect on the {sup 14}C levels in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Stenstroem, K.; Erlandsson, Bengt; Hellborg, R.; Kiisk, M.; Persson, Per [Lund Univ. (Sweden). Dept. of Nuclear Physics; Mattsson, Soeren; Thornberg, C. [Lund Univ., Malmoe (Sweden). Dept. of Radiation Physics; Skog, G. [Lund Univ. (Sweden). Dept. of Quaternary Geology

    2000-02-15

    The radionuclide {sup 14}C is produced in all types of nuclear reactors mainly by neutron induced reactions in oxygen ({sup 17}O), nitrogen ({sup 14}N) and carbon ({sup 13}C). Part of the {sup 14}C created is continuously released during normal operation as airborne effluents in various chemical forms (such as CO{sub 2}, CO and hydrocarbons) to the surroundings. Because of the biological importance of carbon and the long physical half-life of {sup 14}C, it is of interest to measure the releases and their incorporation into living material. The {sup 14}C activity concentrations in annual tree rings and air around two Swedish nuclear power plants (Barsebaeck and Forsmark) as well as the background {sup 14}C activity levels from two reference sites in southern Sweden during 1973-1996 are presented in this report. In order to verify the reliability of the method some investigations have been conducted at two foreign nuclear sites, Sellafield fuel reprocessing plant in England, and Pickering nuclear generating station in Canada, where the releases of {sup 14}C are known to be substantial. Furthermore, results from some measurements in the vicinity of Paldiski submarine training centre in Estonia are presented. The results of the {sup 14}C measurements of air, vegetation and annual tree rings around the two Swedish nuclear power plants show very low enhancements of {sup 14}C, if at all above the uncertainty of the measurements. Even if the accuracy of the measurements of the annual tree rings is rather good (1-2%) the contribution of {sup 14}C from the reactors to the environment is so small that it is difficult to separate it from the prevailing background levels of {sup 14}C . This is the case for all sampling procedures: in air and vegetation as well as in annual tree rings. Only on a few occasions an actual increase is observed. However, although the calculations suffer from rather large uncertainties, the calculated release rate from Barsebaeck is in fair agreement

  18. Stakeholder involvement in Swedish nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark; Sundqvist, Goeran [Goeteborg Univ. (Sweden). Section for Science and Technology Studies

    2006-09-15

    have been raised about whether the European Union will become an important stakeholder in Swedish waste management, if climate change means new opportunities for nuclear power, if the national government and the Environmental Court will grow stronger as stakeholders, if environmental organisations will succeed in re-opening the big issues of method and site for a final repository, and if the strong social-technical divide will dissolve.

  19. Stakeholder involvement in Swedish nuclear waste management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2006-09-01

    raised about whether the European Union will become an important stakeholder in Swedish waste management, if climate change means new opportunities for nuclear power, if the national government and the Environmental Court will grow stronger as stakeholders, if environmental organisations will succeed in re-opening the big issues of method and site for a final repository, and if the strong social-technical divide will dissolve

  20. Nuclear power in rock. Principal report

    International Nuclear Information System (INIS)

    1977-06-01

    In September 1975 the Swedish Government directed the Swedish State Power Board to study the question of rock-siting nuclear power plants. The study accounted for in this report aims at clarifying the advantages and disadvantages of siting a nuclear power plant in rock, compared to siting on ground level, considering reactor safety, war protection and sabotage. The need for nuclear power production during war situations and the closing down of nuclear power plants after terminated operation are also dealt with. (author)

  1. Bonus systems and their effects on safety: an interview-based pilot study at the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Torbioern, Ingemar; Mattson, Malin

    2009-03-01

    The aim of this pilot study has been to describe and analyse potential effects on safety-related behaviour and risks associated with the bonus systems currently used at Swedish nuclear plants. To this end and in order to establish a frame of reference several theories on motivation were consulted regarding the relevance of monetary rewards. In addition empirical evidence on effects upon behaviours in general and safety behaviours in particular was taken into consideration, as well as a systems and a rationalist perspective on organisations. The resulting frame of reference was used for a descriptive mapping of the bonus systems and for the formulation of a semi-structured interview schedule intended to capture the experiences of those concerned by the systems. A total of 15 interviews were performed with staff of different functions and organisational positions. Results of the study do not indicate any negative effects on safety-related behaviours. Rather they indicate that safety-behaviours may be promoted insofar as bonus rewards are linked to performance goals concerning safety. All of the bonus-systems may be characterised as low in incentive intensity, i.e. produce small effects on motivation and performance. Still, as the systems differ in design and in the way they are perceived, they also represent different challenges in order to function more efficiently as parameters

  2. The cleavable matter: Discursive orders in Swedish nuclear power politics 1972-1980; Det klyvbara aemnet. Diskursiva ordningar i svensk kaernkraftspolitik 1972-1980

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, P.

    1997-09-01

    This study applies a qualitative discourse-theoretical method to analyse the central argumentation in the parliamentary debate on nuclear power in Sweden during 1972-1980, reconstructed from official documents such as governmental and parliamentary bills, committee reports, parliamentary debate protocols, and official commission reports. Particular concern is directed to the process in which various discursive orders emerging within the political debate tend to have a structuring influence on the political argumentation regarding what can be said, by whom this can be said, and how this can be said. It is argued that these discursive orders have a profound, and in a systems theoretical sense self-dynamic influence, going beyond the original intentions of the political actors, on how the energy policy issue is interpreted and constructed. It is argued, furthermore, that these discursive orders actively exploit the political context of meaning by deliberately instrumentalising and incorporating competing argumentative elements into their own cognitive structure. In other words, the dominant political system incorporates the arguments of the political opposition and of the environmental and anti nuclear movements in order to consolidate its political power. The discourse theoretical analysis of the Swedish nuclear power debate in that sense unveils a deep resistance against a true political discourse, in the sense of Habermas, as a rational and domination-free process of reaching mutual understanding. 152 refs.

  3. Digital Components in Swedish NPP Power Systems

    International Nuclear Information System (INIS)

    Karlsson, Mattias; Eriksson, Tage

    2015-01-01

    Swedish nuclear power plants have over the last 20 years of operation modernised or exchanged several systems and components of the electrical power system. Within these works, new components based on digital technology have been employed in order to realize functionality that was previously achieved by using electro-mechanical or analogue technology. Components and systems such as relay protection, rectifiers, inverters, variable speed drives and diesel-generator sets are today equipped with digital components. Several of the systems and components fulfil functions with a safety-role in the NPP. Recently, however, a number of incidents have occurred which highlight deficiencies in the design or HMI of the equipment, which warrants questions whether there are generic problems with some applications of digital components that needs to be addressed. The use of digital components has presented cost effective solutions, or even the only available solution on the market enabling a modernisation. The vast majority of systems using digital components have been operating without problems and often contribute to improved safety but the challenge of non-detectable, or non-identifiable, failure modes remain. In this paper, the extent to which digital components are used in Swedish NPP power systems will be presented including a description of typical applications. Based on data from maintenance records and fault reports, as well as interviews with designers and maintenance personnel, the main areas where problems have been encountered and where possible risks have been identified will be described. The paper intends to investigate any 'tell-tales' that could give signals of unwanted behaviour. Furthermore, particular benefits experienced by using digital components will be highlighted. The paper will also discuss the safety relevance of these findings and suggest measures to improve safety in the application of digital components in power systems. (authors)

  4. Radiation protection actions at Swedish nuclear power plants 1994-2002 and some reflections about the near future; Straalskydd vid svenska kaernkraftverk under perioden 1994-2002, samt reflexioner om kommande utveckling

    Energy Technology Data Exchange (ETDEWEB)

    Erixon, Stig; Godaas, Tommy; Hofvander, Peter; Lund, Ingmar; Malmqvist, Lars; Thimgren, Ingela; Oelander-Guer, Hanna

    2003-12-01

    This report provides a summary of radiation protection experiences over the years 1994-2002 in the Swedish nuclear power industry. Actions to reduce radiation levels in reactor systems, occupational exposure results and some reflections about the near future are presented.

  5. Nuclear power

    OpenAIRE

    2005-01-01

    David Waller and Alan McDonald ask whether a nuclear renaissance can be predicted; Judith M. Greenwald discusses keeping the nuclear power option open; Paul Mobbs considers the availability of uranium and the future of nuclear energy.

  6. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  7. Comparison between environmental measurements and model calculations of radioactivity in fish at the Swedish nuclear power plants and Studsvik

    International Nuclear Information System (INIS)

    Karlberg, O.

    1995-02-01

    Doses to critical groups from the activity released from swedish reactors were modelled in 1983. In this report these calculations are compared to doses calculated (using the same assumptions as in the 1983 model) from the activity measured in the water recipient. The study shows that the model overestimates activity in biota and sediments, which was expected, since the model was constructed to be conservative. 13 refs, 5 figs, 6 tabs

  8. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  9. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  10. Environmental effects of large discharges of cooling water. Experiences from Swedish nuclear power plants; Miljoeeffekter av stora kylvattenutslaepp. Erfarenheter fraan de svenska kaernkraftverken

    Energy Technology Data Exchange (ETDEWEB)

    Ehlin, Ulf; Lindahl, Sture; Neuman, Erik; Sandstroem, Olof; Svensson, Jonny

    2009-07-15

    Monitoring the environmental effects of cooling water intake and discharge from Swedish nuclear power stations started at the beginning of the 1960s and continues to this day. In parallel with long-term monitoring, research has provided new knowledge and methods to optimise possible discharge locations and design, and given the ability to forecast their environmental effects. Investigations into the environmental effects of cooling-water are a prerequisite for the issuing of power station operating permits by the environmental authorities. Research projects have been carried out by scientists at universities, while the Swedish Environmental Protection Agency, the Swedish Board of Fisheries, and the Swedish Meteorological and Hydrological Institute, SMHI, are responsible for the greater part of the investigations as well as of the research work. The four nuclear power plants dealt with in this report are Oskarshamn, Ringhals, Barsebaeck and Forsmark. They were taken into operation in 1972, 1975, 1975 and 1980 resp. - a total of 12 reactors. After the closure of the Barsebaeck plants in 2005, ten reactors remain in service. The maximum cooling water discharge from the respective stations was 115, 165, 50 and 135 m3/s, which is comparable to the mean flow of an average Swedish river - c:a 150 m3/s. The report summarizes studies into the consequences of cooling water intake and discharge. Radiological investigations made at the plants are not covered by this review. The strategy for the investigations was elaborated already at the beginning of the 1960s. The investigations were divided into pre-studies, baseline investigations and monitoring of effects. Pre-studies were partly to gather information for the technical planning and design of cooling water intake and outlet constructions, and partly to survey the hydrographic and ecological situation in the area. Baseline investigations were to carefully map the hydrography and ecology in the area and their natural

  11. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  12. Facing the nuclear power phaseout - Swedish experiences of enterprise shutdown and organisational development; Infoer kaernkraftavveckling - svenska erfarenheter av foeretagsnedlaeggningar och foeraendringsarbete

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, K. [Castor AB, Stockholm (Sweden)

    1998-02-01

    The aim of this study is to make an overview of problems and experiences connected to decommissioning and organisational changes of Swedish enterprises and public agencies from a safety perspective. The central point is the view of decommissioning of nuclear power plants as a process of change. In practice decommissioning includes both downsizing and organisational development. The question is which problems can arise and which strategy of change is most adequate from the standpoint of safety. The report starts with a summary of the most important experiences of the process of decommissioning of enterprises during the sixties to eighties concerning the consequences for the individuals and the labour market. After that follows the main results from earlier investigations of shut-down of nuclear power plants regarding the staff. The restructuring and downsizing of the public sector during the nineties have given rise to a large amount of material on staffing issues. The knowledge and experiences drawn from the organisational change processes of Swedish working life during the nineties are then summarised. At last some conclusions for decommissioning of nuclear power plants are discussed. The period before and after the termination of power generation is connected with great strain. The vulnerability of the staff increases and the faith in management can easily be destroyed, which can affect safety and the decommissioning work. The feeling of security increases if the staff continuously is kept informed and within certain limits can influence the course of events. A learning strategy is preferable in comparison to an expert oriented strategy because it is impossible to gain complete control over the technically and socially complex process of decommissioning. Instead of detailed and central planning of the process it will be safer to work in a participative way and to include all the staff in the preparations from the very beginning. By a learning way of working is

  13. The Swedish Dilemma: Nuclear Energy v. the Environment

    International Nuclear Information System (INIS)

    Nordhaus, W.D.

    1995-01-01

    A phaseout of nuclear power in Sweden is supposed to be accomplished by year 2010. This study is an economic analysis of the questions that are parts of the Swedish nuclear dilemma. Even though the economic questions are in focus, the important environmental, health and safety questions are also treated. The basic argument is that Sweden should choose an energy system that allows its citizens to maximize their consumption in a long-term perspective. Consumption is here given a meaning that includes elements outside the market, such as environmental, health and safety aspects valued in a reasonable way. Considerations must also be given to international aspects like global environment, a free and open system of trade and the value of a stable set of rules and proprietary rights. The study compares the economic pros and cons of different energy systems within this general frame. A detailed model of the Swedish energy and power sectors was developed for the study, called the Swedish Energy and Environment Policy (SEEP) model. The SEEP model is built on modern economic theory and includes energy and environmental factors in a uniform way. 51 refs, 36 tabs, 6 figs

  14. Search for excellence: a progress report from the Swedish State Power Board

    International Nuclear Information System (INIS)

    Gustafsson, L.

    1985-01-01

    By international comparison, the availabilities of Swedish nuclear units are fairly high, and nuclear power generation is considered successful. Some of the factors that contribute to this success are management by objectives, functional administrative and information systems, reactor maintenance management, improvements in steam generator performance, successful fuel management, good nuclear safety records, research and development programs, and responsible radioactive waste management

  15. Duties and responsibilities of the Nuclear Power Inspectorate and the National Radiation Protection Institute in connection with nuclear power plants

    International Nuclear Information System (INIS)

    Eckered, T.

    1977-01-01

    The two Swedish bodies competent for the control of nuclear energy are the Swedish Nuclear Power Inspectorate (SKI) and the National Swedish Institute on Radiation Protection (SSI). The duties of both bodies in respect of inspection stem from the provisions of the Atomic Energy Act and the Radiation Protection Act. The procedure to be followed for construction and operation of nuclear power plants is described from the viewpoint of the responsibilities entrusted to SKI and SSI. (NEA) [fr

  16. The nuclear waste issue in Swedish mass media

    International Nuclear Information System (INIS)

    Hedberg, P.

    1991-04-01

    This is an investigation of the representation given in the Swedish mass media of questions concerning the nuclear waste. The investigation covers the period from 1979 to 1989 of 8 newspapers of different political colours and the Swedish radio and television. (KAE)

  17. The Swedish dilemma - Nuclear energy v. the environment

    Energy Technology Data Exchange (ETDEWEB)

    Nordhaus, W.D. [Yale Univ. (United States)

    1995-11-01

    A phaseout of nuclear power in Sweden is supposed to be accomplished by year 2010. This study is an economic analysis of the questions that are parts of the nuclear dilemma. Even though the economic questions are in focus, the important environmental, health and safety questions are also treated. The basic argument is that Sweden should choose an energy system that allows its citizens to maximize their consumption in a long-term perspective. Consumption is here given a meaning that includes elements outside the market, such as environmental, health and safety aspects valued in a reasonable way. Considerations must also be given to international aspects like global environment, a free and open system of trade and the value of a stable set of rules and proprietary rights. The study compares the economic pros and cons of different energy systems within this general frame. A detailed model of the Swedish energy and power sectors was developed for the study, called the Swedish Energy and Environment Policy (SEEP) model. the SEEP model is built on modern economic theory and includes energy and environmental factors in a uniform way. 8 figs 16 tabs.

  18. The Swedish dilemma - Nuclear energy v. the environment

    International Nuclear Information System (INIS)

    Nordhaus, W.D.

    1995-11-01

    A phaseout of nuclear power in Sweden is supposed to be accomplished by year 2010. This study is an economic analysis of the questions that are parts of the nuclear dilemma. Even though the economic questions are in focus, the important environmental, health and safety questions are also treated. The basic argument is that Sweden should choose an energy system that allows its citizens to maximize their consumption in a long-term perspective. Consumption is here given a meaning that includes elements outside the market, such as environmental, health and safety aspects valued in a reasonable way. Considerations must also be given to international aspects like global environment, a free and open system of trade and the value of a stable set of rules and proprietary rights. The study compares the economic pros and cons of different energy systems within this general frame. A detailed model of the Swedish energy and power sectors was developed for the study, called the Swedish Energy and Environment Policy (SEEP) model. the SEEP model is built on modern economic theory and includes energy and environmental factors in a uniform way. 8 figs 16 tabs

  19. Nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, P.

    1985-01-01

    The question 'Do we really need nuclear power' is tackled within the context of Christian beliefs. First, an estimate is made of the energy requirements in the future and whether it can be got in conventional ways. The dangers of all the ways of supplying energy (eg coal mining, oil and gas production) are considered scientifically. Also the cost of each source and its environmental effects are debated. The consequences of developing a new energy source, as well as the consequences of not developing it, are considered. Decisions must also take into account a belief about the ultimate purpose of life, the relation of men to each other and to nature. Each issue is raised and questions for discussion are posed. On the whole the book comes down in favour of nuclear power.

  20. The costs of nuclear power

    International Nuclear Information System (INIS)

    Vestenhaug, O.; Sauar, T.O.; Nielsen, P.O.

    1979-01-01

    A study has been made by Scandpower A/S of the costs of nuclear power in Sweden. It is based on the known costs of existing Swedish nuclear power plants and forecasts of the expected costs of the Swedish nuclear power programme. special emphasis has been put on the fuel cycle costs and future costs of spent fuel processing, waste disposal and decommissioning. Costs are calculated in 1978 Swedish crowns, using the retail price index. An actual interest rate of 4% is used, with depreciation period of 25 years and a plant lifetime of 30 years. Power production costs are estimated to be about 7.7 oere/kWh in 1978, rising to 10.5 oere/kWh in 2000. The cost is distributed with one third each to capital costs, operating costs and fuel costs, the last rising to 40% of the total at the end of the century. The main single factor in future costs is the price of uranium. If desired, Sweden can probably be self-sufficient in uranium in 2000 at a lower cost than assumed here. National research costs which, in Scandpower's opinion, can be debited to the commercial nuclear power programme are about 0.3 oere/kWh. (JIW)

  1. Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Lidberg, Maria; Soneryd, Linda; Sundqvist, Goeran

    2009-01-01

    This report analyses mediation and mediators in Swedish nuclear waste management. Mediation is about establishing agreement and building common knowledge. It is argued that demonstrations and dialogue are the two prominent approaches to mediation in Swedish nuclear waste management. Mediation through demonstration is about showing, displaying, and pointing out a path to safe disposal for inspection. It implies a strict division between demonstrator and audience. Mediation through dialogue on the other hand, is about collective acknowledgements of uncertainty and suspensions of judgement creating room for broader discussion. In Sweden, it is the Swedish Nuclear Fuel and Waste Management Co. (SKB) that is tasked with finding a method and a site for the final disposal of the nation's nuclear waste. Two different legislative frameworks cover this process. In accordance with the Act on Nuclear Activities, SKB is required to demonstrate the safety of its planned nuclear waste management system to the government, while in respect of the Swedish Environmental Code, they are obliged to organize consultations with the public. How SKB combines these requirements is the main question under investigation in this report in relation to materials deriving from three empirical settings: 1) SKB's safety analyses, 2) SKB's public consultation activities and 3) the 'dialogue projects', initiated by other actors than SKB broadening the public arena for discussion. In conclusion, an attempt is made to characterise the long- term interplay of demonstration and dialogue in Swedish nuclear waste management

  2. Delegated democracy. Siting selection for the Swedish nuclear waste

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2008-11-01

    The present study concerns the siting of the Swedish nuclear waste repository. Four cases are examined: the feasibility studies in Nykoeping and Tierp (cases 1 and 2), as well as three public consultation meetings with conservationist and environmental organisations, and two study visits to nuclear facilities in Oskarshamn and Oesthammar, which were held during what is called the site-investigation phase (cases 3 and 4). The Swedish Nuclear Fuel and Waste Management Co (SKB) began the search for a nuclear waste site in the 1970s. Since 1992 SKB has conducted feasibility studies in eight municipalities, including in the four municipalities mentioned above. At the present time more comprehensive site investigations are underway in Oskarshamn and Oesthammar, two municipalities that already host nuclear power plants as well as storages for nuclear waste. In addition to SKB and the municipalities involved in the site-selection process, politicians, opinion groups, concerned members of the public, and oversight bodies are important actors. The analysis of the cases employs the concepts of 'sub-politics', 'boundary work', and 'expertise', together with the four models of democracy 'representative democracy', participatory democracy', 'deliberative democracy', and 'technocracy'. The aim of the study is to describe the characteristics of Swedish democracy in relation to the disposal of Swedish nuclear waste. The main questions of the study are: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? and Which democratic ideals were influential during the feasibility studies and in the consultation process? The study is based on qualitative methods, and the source materials consist of documents, interviews, and participant observations. In summary, the form of democracy that emerges in the four case studies can be described as delegated democracy. This means that a large

  3. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  4. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  5. Stakeholder Involvement in Swedish Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2006-01-01

    investigations may change. A different understanding of what should be subject to stakeholder involvement is now on the table, but how exactly this will influence the process is still too early to say. The group most visible so far, the Swedish NGO Office for Nuclear Waste Review (MKG), has published, however, a thorough review of SKB's RandD programme from 2004. In this it is obvious that the Group wants to focus on a more strict assessment of a proposed final repository in relation to the requirements stated in the Environmental Code, that the suitability of a site should be determined by its ability to protect human health and the environment, which places substantial demands upon the site chosen. Moreover, according the Code the best available technology should be used and alternative technology presented. According to MKG, SKB are not fulfilling these requirements in respect of the Environmental Code. The KBS method as well as the two sites in Oskarshamn and Oesthammar are not chosen in relation to these requirements (MKG 2005). MKG, therefore, seems unwilling to proceed on the assumption that a final repository should be sited in either Oesthammar or Oskarshamn, without detailed comparisons with other sites being carried out. In this paper we have tried to show the changing patterns of stakeholder involvement, and also that the current pattern, often mentioned as stable, is not naturally given. Many uncertainties could be listed, but what we know for sure is that the nature of stakeholder involvement at any moment in time always remains contingent and fluid. Who the major and minor stakeholders are; which opportunities they have to act, and on what issues are continually shifting matters. While things can appear to be proceeding in a relatively orderly step-by-step fashion, the reality of stakeholder involvement is that things are continually on the verge of turning out otherwise

  6. Nuclear power in Sweden

    International Nuclear Information System (INIS)

    Wikdahl, C.E.

    1999-01-01

    Sweden uses 16,000 kWh of electricity per person, by far the highest consumption in EU. The reason is a well-developed electricity intensive industry and a cold climate with high share of electric heating. The annual power consumption has for several years been about 140 TWh and a normal year almost 50 per cent is produced by hydro and 50 percent by nuclear. A new legislation, giving the Government the right to ordering the closure nuclear power plants of political reasons without any reference to safety, has been accepted by the Parliament. The new act, in force since January 1, 1998, is a specially tailored expropriation act. Certain rules for the economical compensation to the owner of a plant to be closed are defined in the new act. The common view in the Swedish industry is that the energy conservation methods proposed by the Government are unrealistic. During the first period of about five years the import from coal fired plants in Denmark and Germany is the only realistic alternative. Later natural gas combi units and new bioenergy plants for co-production of heat and power (CHP) might be available. (orig.) [de

  7. Nuclear power

    International Nuclear Information System (INIS)

    d'Easum, Lille.

    1976-03-01

    An environmentalist's criticism of nuclear energy is given, on a layman's level. Such subjects as conflict of interest in controlling bodies, low-level radiation, reactor safety, liability insurance, thermal pollution, economics, heavy water production, export of nuclear technology, and the history of the anti-nuclear movement are discussed in a sensationalistic tone. (E.C.B.)

  8. Sweden, United States and nuclear energy. The establishment of a Swedish nuclear materials control 1945-1995

    International Nuclear Information System (INIS)

    Jonter, T.

    1999-05-01

    This report deals mainly with the United States nuclear energy policy towards Sweden 1945-1960. Although Sweden contained rich uranium deposits and retained high competence in the natural sciences and technology, the country had to cooperate with other nations in order to develop the nuclear energy. Besides developing the civil use of nuclear power, the Swedish political elite also had plans to start a nuclear weapons programme. From the beginning of the 1950s up to 1968, when the Swedish parliament decided to sign the non-proliferation treaty, the issue was widely debated. In this report, American policy is analyzed in two periods. In the first period, 1945-1953, the most important aim was to prevent Sweden from acquiring nuclear materials, technical know-how, and advanced equipment which could be used in the production of nuclear weapons. The Swedish research projects were designed to contain both a civil and military use of nuclear energy. The first priority of the American administration was to discourage the Swedes from exploiting their uranium deposits, especially for military purposes. In the next period, 1953-1960, the American policy was characterized by extended aid to the development of the Swedish energy programme. Through the 'Atoms for Peace'-programme, the Swedish actors now received previously classified technical information and nuclear materials. Swedish companies and research centers could now buy enriched uranium and advanced equipment from the United States. This nuclear trade was, however, controlled by the American Atomic Energy Commission (AEC). The American help was shaped to prevent the Swedes from developing nuclear weapons capability. From mid-50s Swedish politicians and defence experts realised that a national production of nuclear bombs would cost much more money than was supposed 4-5 years earlier. As a consequence, Swedish officials started to explore the possibilities of acquiring nuclear weapons from United States. The American

  9. The Swedish National Defence Research Establishment and the plans for Swedish nuclear weapons

    International Nuclear Information System (INIS)

    Jonter, Thomas

    2001-03-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish Government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid 50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the Parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the Parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The Prime Minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The Government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue. During this period

  10. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  11. Delegated Democracy. The Siting of Swedish Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia [Stockholm Univ., SCORE, SE-106 91 Stockholm (Sweden)

    2009-12-15

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?.

  12. Delegated Democracy. The Siting of Swedish Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia (Stockholm Univ., SCORE, SE-106 91 Stockholm (Sweden))

    2009-12-15

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  13. Delegated Democracy. The Siting of Swedish Nuclear Waste

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2009-12-01

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  14. Subcontractors and Component Suppliers in the Swedish Wind Power Industry

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Linn

    2003-05-01

    This paper studies the Swedish component suppliers in the wind power industry. This group has not received much attention so far, and today very little is known. This study addresses the fact that the Swedish component suppliers have not been able to penetrate the wind power market despite the Swedish industry's strength in mechanical and electrical engineering. The aims of this paper were to gather information regarding the existing production and to identify factors that affect the Swedish component suppliers' scope to penetrate the wind turbine market. To date, although Sweden has spent considerable amounts of money on projects involving wind turbines, there is no series production of large wind turbines in Sweden. The historical development of the wind turbine industry suggests this alone would have inhibited the development of component production in Sweden. Yet, the country's proximity and good access to large wind turbine producing countries should be an advantage. Various factors and issues are identified and discussed in this paper that are relevant for the Swedish component suppliers' scope to penetrate the wind turbine market. These include market and product development, buyer-supplier relationships, export and sourcing behaviors, and time of market entry. This is a first step towards increasing the knowledge of Swedish component production and it is recognized that more studies are required. Various areas where relevant knowledge is largely missing or scarce are identified and discussed as well, and should serve as relevant starting points for continued research.

  15. Subcontractors and Component Suppliers in the Swedish Wind Power Industry

    International Nuclear Information System (INIS)

    Takeuchi, Linn

    2003-05-01

    This paper studies the Swedish component suppliers in the wind power industry. This group has not received much attention so far, and today very little is known. This study addresses the fact that the Swedish component suppliers have not been able to penetrate the wind power market despite the Swedish industry's strength in mechanical and electrical engineering. The aims of this paper were to gather information regarding the existing production and to identify factors that affect the Swedish component suppliers' scope to penetrate the wind turbine market. To date, although Sweden has spent considerable amounts of money on projects involving wind turbines, there is no series production of large wind turbines in Sweden. The historical development of the wind turbine industry suggests this alone would have inhibited the development of component production in Sweden. Yet, the country's proximity and good access to large wind turbine producing countries should be an advantage. Various factors and issues are identified and discussed in this paper that are relevant for the Swedish component suppliers' scope to penetrate the wind turbine market. These include market and product development, buyer-supplier relationships, export and sourcing behaviors, and time of market entry. This is a first step towards increasing the knowledge of Swedish component production and it is recognized that more studies are required. Various areas where relevant knowledge is largely missing or scarce are identified and discussed as well, and should serve as relevant starting points for continued research

  16. Nuclear power in Canada

    International Nuclear Information System (INIS)

    1980-01-01

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  17. Crisis and Policy Reformcraft: Advocacy Coalitions and Crisis-induced Change in Swedish Nuclear Energy Policy

    Energy Technology Data Exchange (ETDEWEB)

    Nohrstedt, Daniel

    2007-04-15

    This dissertation consists of three interrelated essays examining the role of crisis events in Swedish nuclear energy policymaking. The study takes stock of the idea of 'crisis exceptionalism' raised in the literature, which postulates that crisis events provide openings for major policy change. In an effort to explain crisis-induced outcomes in Swedish nuclear energy policy, each essay explores and develops theoretical assumptions derived from the Advocacy Coalition Framework (ACF). The introduction discusses the ACF and other theoretical perspectives accentuating the role of crisis in policymaking and identifies three explanations for crisis-induced policy outcomes: minority coalition mobilization, learning, and strategic action. Essay 1 analyzes the nature and development of the Swedish nuclear energy subsystem. The results contradict the ACF assumption that corporatist systems nurture narrow subsystems and small advocacy coalitions, but corroborate the assumption that advocacy coalitions remain stable over time. While this analysis identifies temporary openings in policymaking venues and in the advocacy coalition structure, it is argued that these developments did not affect crisis policymaking. Essay 2 seeks to explain the decision to initiate a referendum on nuclear power following the 1979 Three Mile Island accident. Internal government documents and other historical records indicate that strategic considerations superseded learning as the primary explanation in this case. Essay 3 conducts an in-depth examination of Swedish policymaking in the aftermath of the 1986 Chernobyl accident in an effort to explain the government's decision not to accelerate the nuclear power phaseout. Recently disclosed government documents show that minority coalition mobilization was insufficient to explain this decision. In this case, rational learning and strategic action provided a better explanation. The main theoretical contribution derived from the three

  18. Crisis and Policy Reformcraft: Advocacy Coalitions and Crisis-induced Change in Swedish Nuclear Energy Policy

    International Nuclear Information System (INIS)

    Nohrstedt, Daniel

    2007-04-01

    This dissertation consists of three interrelated essays examining the role of crisis events in Swedish nuclear energy policymaking. The study takes stock of the idea of 'crisis exceptionalism' raised in the literature, which postulates that crisis events provide openings for major policy change. In an effort to explain crisis-induced outcomes in Swedish nuclear energy policy, each essay explores and develops theoretical assumptions derived from the Advocacy Coalition Framework (ACF). The introduction discusses the ACF and other theoretical perspectives accentuating the role of crisis in policymaking and identifies three explanations for crisis-induced policy outcomes: minority coalition mobilization, learning, and strategic action. Essay 1 analyzes the nature and development of the Swedish nuclear energy subsystem. The results contradict the ACF assumption that corporatist systems nurture narrow subsystems and small advocacy coalitions, but corroborate the assumption that advocacy coalitions remain stable over time. While this analysis identifies temporary openings in policymaking venues and in the advocacy coalition structure, it is argued that these developments did not affect crisis policymaking. Essay 2 seeks to explain the decision to initiate a referendum on nuclear power following the 1979 Three Mile Island accident. Internal government documents and other historical records indicate that strategic considerations superseded learning as the primary explanation in this case. Essay 3 conducts an in-depth examination of Swedish policymaking in the aftermath of the 1986 Chernobyl accident in an effort to explain the government's decision not to accelerate the nuclear power phaseout. Recently disclosed government documents show that minority coalition mobilization was insufficient to explain this decision. In this case, rational learning and strategic action provided a better explanation. The main theoretical contribution derived from the three essays is to posit

  19. Nuclear power of Korea

    International Nuclear Information System (INIS)

    Chun Bee-Ho

    2011-01-01

    National nuclear is presented. Nuclear energy safety after Fukushima, international cooperation in nuclear energy is discussed. Nuclear projects with the United Arab Emirates have been developed to build 4 nuclear power plants in the UAE - APR 1400. At the Korea-Bulgaria Industrial Committee Meeting in Sofia (March 2011) Korean side proposed Nuclear Safety Training Program in Korea for Bulgarian government officials and experts transfer of know-how and profound expertise on world-class nuclear technology and nuclear safety

  20. Assuring nuclear safety competence into the 21. century a swedish perspective

    International Nuclear Information System (INIS)

    Lowenhielm, G.; Svensson, G.; Tiren, IN

    2000-01-01

    Many initiatives have been taken and are being considered to maintain and develop competence in the nuclear field in Sweden. The number of qualified nuclear engineering staff at the plants and at the regulatory bodies appears to be rather small for all important tasks to be carried out. Nevertheless, the current programmes indicate that one can look at future recruitment and competence with some confidence-in spite of the age profile of qualified staff with many approaching retirement. The Swedish Nuclear Power Inspectorate, (SKI), the academic community, and the Industry are conducting several research projects that support the optimistic view expressed above. Examples include: Safety research at SKI and universities: Since many years, SKI is sponsoring research in safety analysis within the framework of its Research Programme. In this programme the regulator supports two professors, one in Nuclear Power Safety at KTH and the other in the Interaction of Man, Technology and Organisation at the University of Stockholm. Swedish Centre of Nuclear Technology: A main activity of the Centre is to support PhD candidates (with scientific advice and economy) in topics related to nuclear technology. The Industry also makes great efforts to support recruitment by various initiatives: Design reconstitution projects: Each one of the older operating plants was subject to a design review that engaged a large number of young staff at the utilities and the vendors. 'Young Generation': It constitutes a communication network among young engineers at European nuclear plants, regulators, and other organisations. (authors)

  1. The review of the Swedish R and D programme 1992 for the handling and final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Sjoeblom, R.; Andersson, J.; Norrby, S.

    1993-01-01

    The Swedish Act on Nuclear Activities states that it is the owners of the nuclear power reactors that bear the responsibility-technically and financially-for the safe disposal of radioactive waste (including the spent fuel). In summary, the act imposes the following on the owners of the nuclear power stations: - To ensure that the necessary measures are taken in order to safely handle and finally dispose of the nuclear waste generated, and to decommission and dismantle the nuclear power plants in a safe manner. - To ensure that the comprehensive research and development activities required to carry out these activities are conducted, including studies of alternative methods for the handling and final disposal of the waste. - To submit, for approval, a programme of research, development and other appropriate measures-including an account of results of completed research-every third year starting in 1986. In response to these demands, the nuclear power companies have formed a jointly owned company, the Swedish Nuclear Fuel and Waste Management Company (SKB) and commissioned it to carry out these tasks. The Swedish Nuclear Power Inspectorate is responsible for the review and evaluation of the SKB programme since July 1st, 1992. The purpose of the present paper is to present a few of the SKI conclusions that may be of general interest. Although the SKB RD and D Programme 92 deals with both spent fuel and other long-lived waste, this paper is limited in scope to spent fuel. (author). 11 refs., 1 fig

  2. China and nuclear power

    International Nuclear Information System (INIS)

    Fouquoire-Brillet, E.

    1999-01-01

    This book presents the history of nuclear power development in China from the first research works started in the 1950's for the manufacturing of nuclear weapons to the recent development of nuclear power plants. This study tries to answer the main questions raised by the attitude of China with respect to the civil and military nuclear programs. (J.S.)

  3. Nuclear power revisited

    International Nuclear Information System (INIS)

    Grear, B.

    2008-01-01

    Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues - high capital costs, the risks posed by nuclear wastes and accidents, and the proliferation of nuclear weaponry - that until recently hindered the expansion of nuclear power.

  4. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Addinall, E.; Ellington, H.

    1982-01-01

    The subject is covered in chapters: (the nature of nuclear power) the atomic nucleus - a potential source of energy; how nuclear reactors work; the nuclear fuel cycle; radioactivity - its nature and biological effects; (why we need nuclear power) use of energy in the non-communist world -the changing pattern since 1950; use of energy - possible future scenarios; how our future energy needs might be met; (a possible long term nuclear strategy) the history of nuclear power; a possible nuclear power strategy for the Western World; (social and environmental considerations) the hazards to workers in the nuclear power industry; the hazards to the general public (nuclear power industry; reactor operation; transport of radioactive materials; fuel reprocessing; radioactive waste disposal; genetic hazards); the threat to democratic freedom and world peace. (U.K.)

  5. Supervision of Waste Management and Environmental Protection at the Swedish Nuclear Facilities 2001

    CERN Document Server

    Persson, M

    2003-01-01

    The report summarizes the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Authority in 2001. A summary of the inspections and a description of important issues connected with the supervision of the nuclear facilities are given.The inspections during 2001 have focused on theme inspections of waste management, environmental inspections considering the environmental monitoring at the Swedish nuclear facilities and review safety analysis and research programs from the Swedish Nuclear Fuel and Waste Management Co.The Swedish Radiation Protection Authority finds that the operations are mainly performed according to current regulations

  6. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-06-01

    The actualized version (June 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  7. Submarine nuclear power plants

    International Nuclear Information System (INIS)

    Horton, C.C.

    1984-01-01

    The submarine nuclear power plant has revolutionised the strategy and tactics of under-sea warfare. Present day submarine nuclear power plants are discussed, as well as future developments. The endurance, speed, noise and diving depth of nuclear submarines are also outlined. (U.K.)

  8. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-04-01

    The actualized version (April 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear facilities, and radiation protection.

  9. Financing nuclear power projects

    International Nuclear Information System (INIS)

    Frost, N.C.

    1989-01-01

    The purpose of this paper is: (1) To provide an historical framework for understanding why it is difficult to finance nuclear power projects in the U.S.; (2) To mention briefly certain financing techniques utilized by companies to finance nuclear investments; and (3) To set forth the requirements investors will need before taking on the risks associated with nuclear power projects

  10. Nuclear power publications

    International Nuclear Information System (INIS)

    1982-01-01

    This booklet lists 69 publications on nuclear energy available free from some of the main organisations concerned with its development and operation in the UK. Headings are: general information; the need for nuclear energy; the nuclear industry; nuclear power stations; fuel cycle; safety; waste management. (U.K.)

  11. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  12. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Royen, J.

    1981-01-01

    Worldwide nuclear power (WNP) is a companion volume to UPDATE. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of the Assistant Secretary for Nuclear Energy from reports obtained from foreign Embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data

  13. Nuclear Power Feasibility 2007

    OpenAIRE

    Aragonés Beltrán, José María; Hill, Barrie Frederick; Kadak, Andrew C.; Shultz, Donald F.; Spitalnik, Jorge

    2008-01-01

    Nuclear power is a proven technology and has the potential to generate virtually limitless energy with no significant greenhouse gas emissions. Nuclear power can become one of the main options to contribute to substantial cuts in global greenhouse gas emissions. Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues -high capital costs, the risks posed by ...

  14. Nuclear power flies high

    International Nuclear Information System (INIS)

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  15. Nuclear power in Asia

    International Nuclear Information System (INIS)

    2007-01-01

    The Australian Uranium Association reports that Asia is the only region in the world where electricity generating capacity and specifically nuclear power is growing significantly. In East and South Asia, there are over 109 nuclear power reactors in operation, 18 under construction and plans to build about a further 100. The greatest growth in nuclear generation is expected in China, Japan, South Korea and India. As a member of the SE Asian community, Australia cannot afford to ignore the existence and growth of nuclear power generation on its door step, even if it has not, up to now, needed to utilise this power source

  16. Nuclear power in Korea

    International Nuclear Information System (INIS)

    Rim, C.S.

    1990-01-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea

  17. Deep geological disposal of nuclear waste in the Swedish crystalline bedrock

    International Nuclear Information System (INIS)

    Thegerstroem, Claes; Laarouchi Engstroem, Saida

    2013-01-01

    Nuclear power companies in Sweden jointly established the Swedish Nuclear Fuel and Waste Management Company (SKB) in the 1970s. SKB's assignment is to manage and dispose of all radioactive waste from Swedish nuclear power plants in such a way as to secure maximum safety for human beings and the environment. Since 1992 a stepwise process has been under way, aiming at finding a site for a final repository for spent nuclear fuel. This process was based on our view that a successful work requires that the safety of the site finally selected is met and that the municipality is in favour of the siting. SKB's record of communication related activities includes a wide variety of experiences, and we have learned from all of them. Over time we have identified a number of basic conditions, which are fundamental for a stable and successful siting process. - The siting process shall be transparent and based on voluntary participation. - It's important to maintain a constant dialogue and to express it in comprehensible terms. - A clear division of responsibilities between stakeholders is a key question. - Give the process the time that is needed - try to avoid being in too much of a hurry. - A step-wise and adaptive approach to the implementation of the disposal system. - Despite all non-technical aspects of communication, the continued good performances of operating facilities and of R and D work to guarantee top-quality technical systems are a must. (orig.)

  18. Swedish support programme on nuclear non-proliferation in Central and Eastern Europe and Central Asia

    International Nuclear Information System (INIS)

    Ek, P.; Andersson, Sarmite; Wredberg, L.

    2000-06-01

    At the request of the Swedish Government, the Swedish Nuclear Power Inspectorate has established a support and co-operation programme in the area of nuclear non-proliferation with Russia and several of the republics of the former Soviet Union. The Programme was initiated in 1991 and an overall goal is to accomplish national means and measures for control and protection of nuclear material and facilities, in order to minimise the risk of proliferation of nuclear weapons and illicit trafficking of nuclear material and equipment. The objective of the Swedish Support Programme is to help each, so called, recipient State to be able to, independently and without help from outside, take the full responsibility for operating a national non-proliferation system and thereby fulfil the requirements imposed through the international legal instruments. This would include both the development and implementation of a modern nuclear legislation system, and the establishment of the components making up a national system for combating illicit trafficking. The support and co-operation projects are organised in five Project Groups (i.e. nuclear legislation, nuclear material control, physical protection, export/import control, and combating of illicit trafficking), which together cover the entire non-proliferation area. Up till June 2000, support and co-operation projects, completed and on-going, have been carried out in ten States, namely Armenia, Azerbaijan, Belarus, Georgia, Kazakstan, Latvia, Lithuania, Moldova, Russia and Ukraine. Furthermore, programmes have been initiated during the first part of 2000 with Estonia, Uzbekistan, Kyrgyzstan and Tajikistan. In addition, assistance has been given to Poland on a specific nuclear material accountancy topic. All projects are done on request by and in co-operation with these States. The total number of projects initiated during the period 1991 to June 2000 is 109, thereof 77 have been completed and 32 are currently on-going. It is the

  19. Swedish support programme on nuclear non-proliferation in Central and Eastern Europe and Central Asia

    Energy Technology Data Exchange (ETDEWEB)

    Ek, P.; Andersson, Sarmite [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Wredberg, L. [ILG Consultant Ltd., Vienna (Austria)

    2000-06-15

    At the request of the Swedish Government, the Swedish Nuclear Power Inspectorate has established a support and co-operation programme in the area of nuclear non-proliferation with Russia and several of the republics of the former Soviet Union. The Programme was initiated in 1991 and an overall goal is to accomplish national means and measures for control and protection of nuclear material and facilities, in order to minimise the risk of proliferation of nuclear weapons and illicit trafficking of nuclear material and equipment. The objective of the Swedish Support Programme is to help each, so called, recipient State to be able to, independently and without help from outside, take the full responsibility for operating a national non-proliferation system and thereby fulfil the requirements imposed through the international legal instruments. This would include both the development and implementation of a modern nuclear legislation system, and the establishment of the components making up a national system for combating illicit trafficking. The support and co-operation projects are organised in five Project Groups (i.e. nuclear legislation, nuclear material control, physical protection, export/import control, and combating of illicit trafficking), which together cover the entire non-proliferation area. Up till June 2000, support and co-operation projects, completed and on-going, have been carried out in ten States, namely Armenia, Azerbaijan, Belarus, Georgia, Kazakstan, Latvia, Lithuania, Moldova, Russia and Ukraine. Furthermore, programmes have been initiated during the first part of 2000 with Estonia, Uzbekistan, Kyrgyzstan and Tajikistan. In addition, assistance has been given to Poland on a specific nuclear material accountancy topic. All projects are done on request by and in co-operation with these States. The total number of projects initiated during the period 1991 to June 2000 is 109, thereof 77 have been completed and 32 are currently on-going. It is the

  20. Nuclear power debate

    International Nuclear Information System (INIS)

    Hunwick, Richard

    2005-01-01

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  1. A Swedish nuclear fuel facility and public acceptance

    International Nuclear Information System (INIS)

    Andersson, Bengt A.

    1989-01-01

    For more than ten years the ABB Atom Nuclear Fuel Facility has gained a lot of public attention in Sweden. When the nuclear power debate was coming up in the middle of the seventies, the Nuclear Fuel Facility very soon became a spectacular object. It provided a possibility to bring factual information about nuclear power to the public. Today that public interest still exists. For ABB Atom the Facility works as a tool of information activities in several ways, as a solid base for ABB Atom company presentations. but also as a very practical demonstration of the nuclear power technology to the public. This is valid especially to satisfy the local school demand for a real life object complementary to the theoretical nuclear technology education. Beyond the fact that the Nuclear Fuel Facility is a very effective fuel production plant, it is not too wrong to see it as an important resource for education as well as a tool for improved public relations

  2. The nuclear power decisions

    International Nuclear Information System (INIS)

    Williams, R.

    1980-01-01

    Nuclear power has now become highly controversial and there is violent disagreement about how far this technology can and should contribute to the Western energy economy. More so than any other energy resource, nuclear power has the capacity to provide much of our energy needs but the risk is now seen to be very large indeed. This book discusses the major British decisions in the civil nuclear field, and the way they were made, between 1953 and 1978. That is, it spans the period between the decision to construct Calder Hall - claimed as the world's first nuclear power station - and the Windscale Inquiry - claimed as the world's most thorough study of a nuclear project. For the period up to 1974 this involves a study of the internal processes of British central government - what the author terms 'private' politics to distinguish them from the very 'public' or open politics which have characterised the period since 1974. The private issues include the technical selection of nuclear reactors, the economic arguments about nuclear power and the political clashes between institutions and individuals. The public issues concern nuclear safety and the environment and the rights and opportunities for individuals and groups to protest about nuclear development. The book demonstrates that British civil nuclear power decision making has had many shortcomings and concludes that it was hampered by outdated political and administrative attitudes and machinery and that some of the central issues in the nuclear debate were misunderstood by the decision makers themselves. (author)

  3. Neutron and nuclear power

    International Nuclear Information System (INIS)

    Petros'yants, A.M.

    1982-01-01

    History of neutron discovery and its role in the world nuclear power engineering development are considered. Factors promoting the growth of the specific weight of electric power generated by NPPs and the problems slowing the nuclear power development are under discussion. Data on the state and prospects of nuclear power development in the USSR are presented. Solar and geothermal plants are considered as alternative power soUrces. It is noted that in 1982 in 24 countries more than 260 NPPs were exploited, which generated about 8% of the world electric power. A part of electric power generated by NPPs will achieve 30-40% by 2000. A conclusion is drawn that nuclear energy exceeds all previously used energy sources by its capabilities

  4. Financing nuclear power

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2009-01-01

    Global energy security and climate change concerns sparked by escalating oil prices, high population growth and the rapid pace of industrialization are fueling the current interest and investments in nuclear power. Globally, a significant number policy makers and energy industry leaders have identified nuclear power as a favorable alternative energy option, and are presently evaluating either a new or an expanded role for nuclear power. The International Atomic Energy Agency (IAEA) has reported that as of October 2008, 14 countries have plans to construct 38 new nuclear reactors and about 100 more nuclear power plants have been written into the development plans of governments for the next three decades. Hence as new build is expected to escalate, issues of financing will become increasingly significant. Energy supply, including nuclear power, considered as a premium by government from the socio-economic and strategic perspective has traditionally been a sector financed and owned by the government. In the case for nuclear power, the conventional methods of financing include financing by the government or energy entity (utility or oil company) providing part of the funds from its own resources with support from the government. As national financing is, as in many cases, insufficient to fully finance the nuclear power plants, additional financing is sourced from international sources of financing including, amongst others, Export Credit Agencies (ECAs) and Multilateral Development Institutions. However, arising from the changing dynamics of economics, financing and business model as well as increasing concerns regarding environmental degradation , transformations in methods of financing this energy sector has been observed. This paper aims to briefly present on financing aspects of nuclear power as well as offer some examples of the changing dynamics of financing nuclear power which is reflected by the evolution of ownership and management of nuclear power plants

  5. Balakovo nuclear power station

    International Nuclear Information System (INIS)

    1996-01-01

    A key means of improving the safety and reliability of nuclear power plants is through effective training of plant personnel. The goal of this paper is to show the progress of the training at the Balakovo Nuclear Power Plant, and the important role that international cooperation programs have played in that progress

  6. Talk About Nuclear Power

    Science.gov (United States)

    Tremlett, Lewis

    1976-01-01

    Presents an overview of the relation of nuclear power to human health and the environment, and discusses the advantages and disadvantages of nuclear power as an energy source urging technical educators to inculcate an awareness of the problems associated with the production of energy. Describes the fission reaction process, the hazards of…

  7. Nuclear power: Pt. 3

    International Nuclear Information System (INIS)

    Van Wyk, A.

    1985-01-01

    The use of nuclear power in warfare is viewed from the point of use usefullness, essentiality and demolition. The effects of a H-bomb explosion are discussed as well as the use of nuclear power in warfare, with a Christian ethical background

  8. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  9. Consideration of nuclear power

    International Nuclear Information System (INIS)

    Smart, I.

    1982-01-01

    Mr. Smart notes that the optimistic promise of nuclear energy for developing countries has not been met, but feels that nuclear power can still provide a growing share of energy during the transition from oil dependence. He observes that cost-benefit analyses vary for each country, but good planning and management can give nuclear power a positive future for those developing countries which can establish a need for it; have access to the economic, technological, and human resources necessary to develop and operate it; and can make nuclear power compatible with the social, economic, and cultural structure. 11 references

  10. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  11. The nuclear power station

    International Nuclear Information System (INIS)

    Plettner, B.

    1987-04-01

    The processes taking place in a nuclear power plant and the dangers arising from a nuclear power station are described. The means and methods of controlling, monitoring, and protecting the plant and things that can go wrong are presented. There is also a short discourse on the research carried out in the USA and Germany, aimed at assessing the risks of utilising nuclear energy by means of the incident tree analysis and probability calculations. (DG) [de

  12. Nuclear power statistics 1985

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1986-06-01

    In this report an attempt is made to collect literature data on nuclear power production and to present it on graphical form. Data is given not only for 1985, but for a number of years so that the trends in the development of nuclear power can be seen. The global capacity of nuclear power plants in operation and those in operation, under construction, or on order is considered. Further the average capacity factor for nuclear plants of a specific type and for various geographical areas is given. The contribution of nuclear power to the total electricity production is considered for a number of countries and areas. Finally, the accumulated years of commercial operation for the various reactor types up to the end of 1985 is presented. (author)

  13. Nuclear Power in Space

    Science.gov (United States)

    1994-01-01

    In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.

  14. Nuclear power: European report

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In 2004, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 206 power reactors with a gross power of 181,941 MWe and a net power of 172,699 MWe were in operation at the end of the year. In 2004, one nuclear power plant was commissioned in Russia (Kalinin 3), two (Kmelnitzki 2 and Rowno 4) in Ukraine. Five nuclear power plants were decommissioned in Europe in the course of 2004. As announced in 2000, the Chapelcross 1 to Chapelcross 4 plants in Britain were shut down for economic reasons. In Lithuania, the Ignalina 1 unit was disconnected from the power grid, as had been demanded by the EU Commission within the framework of the negotiations about the country's accession to the EU. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.5 GW. In late 2004, four nuclear generating units were under construction in Finland (1), Romania (1), and Russia (2). 150 nuclear power plants were operated in thirteen states of the European Union (EU-25), which is sixteen more than the year before as a consequence of the accession of new countries. They had an aggregate gross power of 137,943 MWe and a net power of 131,267 MWe, generating approx. 983 billion gross kWh of electricity in 2003, thus again contributing some 32% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in Lithuania (80%), followed by 78% in France, 57% in the Slovak Republic, 56% in Belgium, and 46% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as

  15. Commercial nuclear power 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs

  16. Swedish perspective on the accelerator driven nuclear system

    International Nuclear Information System (INIS)

    Gudowski, W.; Conde, H.

    1997-01-01

    Accelerator-driven nuclear systems can become an important complement for nuclear reactors, opening new options for the nuclear fuel cycle and furthermore, in countries like Sweden, where of conventional nuclear power has no future prospects, these systems can make nuclear energy an attractive source of environmentally friendly energy again. Also the idea of burning weapon grade Plutonium in accelerator driven systems has a lot of advantages. Intensive international cooperation and common efforts to build the first demonstration facility are the best ways to achieve these goals

  17. Meddling in the KBS Programme and Swedish Success in Nuclear Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark (Univ. of Goeteborg, Goeteborg (Sweden)), e-mail: mark.elam@sts.gu.se; Sundqvist, Goeran (Univ. of Oslo, Oslo (Norway))

    2010-09-15

    production of nuclear waste facilities themselves which can be seen as firstly adding further weight and credibility to what has already been demonstrated. The materialization of solutions in terms of copper canisters that can be experimented on, or a 'dress rehearsal' repository that can be opened to the public, is important for maintaining and enlarging SKB's ability to demonstrate KBS within reach, but remains nothing that should be rushed into. When KBS becomes too close to hand, and starts to approximate an immutable mobile, it becomes harder to translate it into something else in the face of challenging circumstance. Thus, the remarkable success of Swedish nuclear waste management so far can be ultimately ascribed to an ability for continually producing signs of a definite end to the implementation of geological disposal in sight, while never sacrificing the capacity for showing this end undergoing necessary improvement and becoming otherwise. Bearing this in mind, the best way to read SKB's recent announcement of Oesthammar as their preferred site for a KBS 3 repository is as yet another powerful and compelling sign of the attainability of nuclear fuel safety, not to be confused with its attainment

  18. Swedish Nuclear Waste Management from Theory to Practice

    International Nuclear Information System (INIS)

    Holmqvist, Magnus

    2008-01-01

    The programme has evolved from a project of a few experts drawing up the outline of what today is a comprehensive programme of research, development, demonstration, design, construction and operation of facilities for radioactive waste management. The Swedish programme was greatly influenced at an early stage by political actions, which included placing the responsibility with the reactor owners to demonstrate safe disposal of spent nuclear fuel and also to fund a disposal programme. The response of the reactor owners was to immediately start the KBS project. Its third report in 1983 described the KBS-3 concept, which is still the basis for SKB's deep geological repository system. Thus, this year is the 25th anniversary of the creation of the well-known KBS-3 concept. The SKB programme for nuclear waste management is today divided in two sub programmes; LILW Programme and the Nuclear Fuel Programme. The LILW Programme is entering into a new phase with the imminent site investigations for the expansion of the SFR LILW repository, which is in operation since 1988, to accept also decommissioning waste. The expansion of SFR is driven by a government decision urging SKB to investigate when a licensing of a repository for decommissioning waste can be made

  19. Nuclear power in West Germany

    International Nuclear Information System (INIS)

    Tempel, K.G.

    1981-01-01

    The nuclear power is set as an example to show the problems which are in relation with the development and utilization of such a technology: the motives and measures of the government and the economy for the promotion of nuclear power, the power economical border conditions and the power political objectives, the technological problems of the nuclear power development, the advantages of the nuclear power for power- and political economy, the risks of nuclear power for environment, society and international policy, the discussion on nuclear power in political parties and social groups, the international perspectives of nuclear power. (orig./HP) [de

  20. Development of nuclear power

    International Nuclear Information System (INIS)

    1962-01-01

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  1. Without nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    The arguments put forward by the SPD point to the following: Backing out of nuclear power is a must, because of the awful quality of the hazards involved; because there can be no real separation guaranteed between civil and military utilisation of nuclear energy; for reasons of international responsibility; because we must not pass the buck on to the next generation; because social compatibility must be achieved; because the story of the 'cheap' nuclear generation of electricity is a fairy tale; because nuclear power pushes back coal as an energy source; because current ecological conditions call for abandonment of nuclear power, and economic arguments do not really contradict them. A reform of our energy system has to fulfill four requirements: Conserve energy; reduce and avoid environmental pollution; use renewable energy sources as the main sources; leave to the next generation the chance of choosing their own way of life. (HSCH) [de

  2. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  3. Nuclear power experience

    International Nuclear Information System (INIS)

    1983-01-01

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  4. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    Cao Ruiding; Chen Guorong; Chen Xianfeng; Zhang Yishu

    1996-01-01

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  5. Nuclear power industry, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    The intent of this publication is to provide a single volume of resource material that offers a timely, comprehensive view of the nuclear option. Chapter 1 discusses the development of commercial nuclear power from a historical perspective, reviewing the factors and events that have and will influence its progress. Chapters 2 through 5 discuss in detail the nuclear powerplant and its supporting fuel cycle, including various aspects of each element from fuel supply to waste management. Additional dimension is brought to the discussion by Chapters 6 and 7, which cover the Federal regulation of nuclear power and the nuclear export industry. This vast body of thoroughly documented information offers the reader a useful tool in evaluating the record and potential of nuclear energy in the United States

  6. The future of nuclear power

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1987-01-01

    Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs

  7. Nuclear power plant construction

    International Nuclear Information System (INIS)

    Lima Moreira, Y.M. de.

    1979-01-01

    The legal aspects of nuclear power plant construction in Brazil, derived from governamental political guidelines, are presented. Their evolution, as a consequence of tecnology development is related. (A.L.S.L.) [pt

  8. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  9. Commercial nuclear power 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report presents historical data on commercial nuclear power in the United States, with projections of domestic nuclear capacity and generation through the year 2020. The report also gives country-specific projections of nuclear capacity and generation through the year 2010 for other countries in the world outside centrally planned economic areas (WOCA). Information is also presented regarding operable reactors and those under construction in countries with centrally planned economies. 39 tabs

  10. Focus on nuclear power

    International Nuclear Information System (INIS)

    Kahlert, J.

    1982-01-01

    The conditions of political education at school are discussed and illustrated by a teaching lesson on nuclear power. The book is detailed enough to enable also non-expert teachers to discuss the following subjects in their teaching lessons: Boundary conditions in energy policy - scientific and technical fundamentals - radiological activities of nuclear power plants - safety engineering and its consequences. Worksheets and transparencies will be published separately. (orig./HP) [de

  11. Nuclear power and acceptation

    International Nuclear Information System (INIS)

    Speelman, J.E.

    1990-01-01

    In 1989 a workshop was held organized by the IAEA and the Argonne National Laboratory. The purpose was to investigate under which circumstances a large-scale extension of nuclear power can be accepted. Besides the important technical information, the care for the environment determined the atmosphere during the workshop. The opinion dominated that nuclear power can contribute in tackling the environment problems, but that the social and political climate this almost makes impossible. (author). 7 refs.; 1 fig.; 1 tab

  12. No to nuclear power

    International Nuclear Information System (INIS)

    2006-01-01

    Kim Beazley has again stated a Labor Government would not pursue nuclear power because the economics 'simply don't stack up'. 'We have significant gas, coal and renewable energy reserves and do not have a solution for the disposal of low-level nuclear waste, let alone waste from nuclear power stations.' The Opposition Leader said developing nuclear power now would have ramifications for Australia's security. 'Such a move could result in our regional neighbours fearing we will use it militarily.' Instead, Labor would focus on the practical measures that 'deliver economic and environmental stability while protecting our national security'. Mr Beazley's comments on nuclear power came in the same week as Prime Minister John Howard declined the request of Indian Prime Minister Manmohan Singh for uranium exports, although seemingly not ruling out a policy change at some stage. The Prime Ministers held talks in New Delhi over whether Australia would sell uranium to India without it signing the Nuclear Non-Proliferation Treaty. An agreement reached during a visit by US President George W. Bush gives India access to long-denied nuclear technology and guaranteed fuel in exchange for allowing international inspection of some civilian nuclear facilities. Copyright (2006) Crown Content Pty Ltd

  13. Nuclear power and leukaemia

    International Nuclear Information System (INIS)

    Grimston, M.

    1991-03-01

    This booklet describes the nature of leukaemia, disease incidence in the UK and the possible causes. Epidemiological studies observing rates of leukaemia near nuclear power stations in the UK and other parts of the world are discussed. Possible causes of leukaemia excesses near nuclear establishments include radioactive discharges into the environment, paternal radiation exposure and viral causes. (UK)

  14. Nuclear power for beginners

    International Nuclear Information System (INIS)

    Croall, S.; Sempler, K.

    1978-01-01

    A 'comic strip' account of nuclear power, covering weapons and weapons proliferation, reactor accidents involving human errors, radiation hazards, radioactive waste management and the fuel cycle, fast breeder reactors and plutonium, security, public relations and sociological aspects, energy consumption patterns, energy conservation and alternative energy sources, environmental aspects and anti-nuclear activities. (U.K.)

  15. World status - nuclear power

    International Nuclear Information System (INIS)

    Holmes, A.

    1984-01-01

    The problems of nuclear power are not so much anti-nuclear public opinion, but more the decrease of electricity consumption growth rate and the high cost of building reactors. Because of these factors, forecasts of world nuclear capacity have had to be reduced considerably over the last three years. The performance of reactors is considered. The CANDU reactor remains the world's best performer and overall tends to out-perform larger reactors. The nuclear plant due to come on line in 1984 are listed by country; this shows that nuclear capacity will increase substantially over a short period. At a time of stagnant demand this will make nuclear energy an important factor in the world energy balance. Nuclear power stations in operation and under construction in 1983 are listed and major developments in commercial nuclear power in 1983 are taken country by country. In most, the report is the same; national reactor ordering cut back because the expected increase in energy demand has not happened. Also the cost-benefit of nuclear over other forms of energy is no longer as favourable. The export opportunities have also declined as many of the less developed countries are unable to afford reactors. (U.K.)

  16. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  17. Nuclear power for tomorrow

    International Nuclear Information System (INIS)

    Csik, B.J.; Konstantinov, L.V.; Dastidar, P.

    1989-09-01

    The evolution of nuclear power has established this energy source as a viable mature technology, producing at comparative costs more than 16% of the electricity generated world-wide. After outlining the current status of nuclear power, extreme future scenarios are presented, corresponding respectively to maximum penetration limited by technical-economic characteristics, and nuclear phase-out at medium term. The situation is complex and country specific. The relative perception of the importance of different factors and the compensation of advantages vs. disadvantages, or risk vs. benefits, has predominant influence. In order to proceed with an objective and realistic estimate of the future role of nuclear power worldwide, the fundamental factors indicated below pro nuclear power and against are assessed, including expected trends regarding their evolution: Nuclear safety risk; reduction to levels of high improbability but not zero risk. Reliable source of energy; improvements towards uniform standards of excellence. Economic competitiveness vs. alternatives; stabilization and possible reduction of costs. Financing needs and constraints; availability according to requirements. Environmental effects; comparative analysis with alternatives. Public and political acceptance; emphasis on reason and facts over emotions. Conservation of fossil energy resources; gradual deterioration but no dramatic crisis. Energy supply assurance; continuing concerns. Infrastructure requirements and availability; improvements in many countries due to overall development. Non-proliferation in military uses; separation of issues from nuclear power. IAEA forecasts to the year 2005 are based on current projects, national plans and policies and on prevailing trends. Nuclear electricity generation is expected to reach about 18% of total worldwide electricity generation, with 500 to 580 GW(e) installed capacity. On a longer term, to 2030, a stabilized role and place among available viable

  18. Country nuclear power profiles

    International Nuclear Information System (INIS)

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA's programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA's programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ''profiles'', to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future

  19. Nuclear power in 2016

    International Nuclear Information System (INIS)

    Wagner, Vladimír

    2016-01-01

    Nuclear reactors go on line on a regular basis in China now and new constructions are also started. Nuclear renaissance has taken place in Asia. Extensive development of renewables continues not only in China. The chances that China succeeds in passing to emission-free energy sources and phasing out coal are thereby increased. The first generation III+ nuclear reactors are being completed in South Korea, China and Russia. The expected slow comeback of nuclear as an important player in the power sector has also begun in Japan. (orig.)

  20. A review of the scope and the cost of the Swedish nuclear waste management system

    International Nuclear Information System (INIS)

    1994-03-01

    A Swedish translation of this report appears as an appendix in SOU 1004:108 (ISBN 91-38-13755-0). The report is prepared for the Nuclear Fond Commission and Ministry of Environment and Natural Resources

  1. The nuclear power alternative

    International Nuclear Information System (INIS)

    Blix, H.

    1989-04-01

    The Director General of the IAEA stressed the need for energy policies and other measures which would help to slow and eventually halt the present build-up of carbon dioxide, methane and other so-called greenhouse gases, which are held to cause global warming. He urged that nuclear power and various other sources of energy, none of which contribute to global warming, should not be seen as alternatives, but should all be used to counteract the greenhouse effect. He pointed out that the commercially used renewable energies, apart from hydropower, currently represent only 0.3% of the world's energy consumption and, by contrast, the 5% of the world's energy consumption coming from nuclear power is not insignificant. Dr. Blix noted that opposition for nuclear power stems from fear of accidents and concern about the nuclear wastes. But no generation of electricity, whether by coal, hydro, gas or nuclear power, is without some risk. He emphasized that safety can never be a static concept, and that many new measures are being taken by governments and by the IAEA to further strengthen the safety of nuclear power

  2. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  3. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1980-01-01

    The nuclear power debate hinges upon three major issues: radioactive waste disposal, reactor safety and proliferation. An alternative strategy for waste disposal is advocated which involves disposing of the radwaste (immobilized in SYNROC, a titanate ceramic waste form) in deep (4 km) drill-holes widely dispersed throughout the entire country. It is demonstrated that this strategy possesses major technical (safety) advantages over centralized, mined repositories. The comparative risks associated with coal-fired power generation and with the nuclear fuel cycle have been evaluated by many scientists, who conclude that nuclear power is far less hazardous. Considerable improvements in reactor design and safety are readily attainable. The nuclear industry should be obliged to meet these higher standards. The most hopeful means of limiting proliferation lies in international agreements, possibly combined with international monitoring and control of key segments of the fuel cycle, such as reprocessing

  4. Nuclear power economics

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, Ian; Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-04-15

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  5. Nuclear power prospects

    International Nuclear Information System (INIS)

    Staebler, K.

    1994-01-01

    The technical, economic and political prospects of nuclear power are described with regard to ecological aspects. The consensus talks, which failed in spite of the fact that they were stripped of emotional elements and in spite of major concessions on the part of the power industry, are discussed with a view to the political and social conditions. (orig.) [de

  6. Nuclear power in Japan

    International Nuclear Information System (INIS)

    Kishida, J.

    1990-01-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations

  7. Steps to nuclear power

    International Nuclear Information System (INIS)

    1975-01-01

    The recent increase in oil prices will undoubtedly cause the pace at which nuclear power is introduced in developing countries to quicken in the next decade, with many new countries beginning to plan nuclear power programmes. The guidebook is intended for senior government officials, policy makers, economic and power planners, educationalists and economists. It assumes that the reader has relatively little knowledge of nuclear power systems or of nuclear physics but does have a general technical or management background. Nuclear power is described functionally from the point of view of an alternative energy source in power system expansion. The guidebook is based on an idealized approach. Variations on it are naturally possible and will doubtless be necessary in view of the different organizational structures that already exist in different countries. In particular, some countries may prefer an approach with a stronger involvement of their Atomic Energy Commission or Authority, for which this guidebook has foreseen mainly a regulatory and licensing role. It is intended to update this booklet as more experience becomes available. Supplementary guidebooks will be prepared on certain major topics, such as contracting for fuel supply and fuel cycle requirements, which the present book does not go into very deeply

  8. Nuclear power generating costs

    International Nuclear Information System (INIS)

    Srinivasan, M.R.; Kati, S.L.; Raman, R.; Nanjundeswaran, K.; Nadkarny, G.V.; Verma, R.S.; Mahadeva Rao, K.V.

    1983-01-01

    Indian experience pertaining to investment and generation costs of nuclear power stations is reviewed. The causes of investment cost increases are analysed and the increases are apportioned to escalation, design improvements and safety related adders. The paper brings out the fact that PHWR investment costs in India compare favourably with those experienced in developed countries in spite of the fact that the programme and the unit size are relatively much smaller in India. It brings out that in India at current prices a nuclear power station located over 800 km from coal reserves and operating at 75% capacity factor is competitive with thermal power at 60% capacity factor. (author)

  9. Commercial nuclear power 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  10. Space technology needs nuclear power

    International Nuclear Information System (INIS)

    Leidinger, B.J.G.

    1993-01-01

    Space technology needs nuclear power to solve its future problems. Manned space flight to Mars is hardly feasible without nuclear propulsion, and orbital nuclear power lants will be necessary to supply power to large satellites or large space stations. Nuclear power also needs space technology. A nuclear power plant sited on the moon is not going to upset anybody, because of the high natural background radiation level existing there, and could contribute to terrestrial power supply. (orig./HP) [de

  11. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    Last year, 2002, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union nuclear power plants have been in operation. In 7 of the 13 EU Candidate Countries nuclear energy was used for power production. A total of 213 plants with an aggregate net capacity of 171 814 MWe and an aggregate gross capacity of 181 135 MWe were in operation. One unit, i.e. Temelin-2 in the Czech Republic went critical for the first time and started test operation after having been connected to the grid. Temelin-2 adds about 1 000 MWe (gross) and 953 MWe (net) to the electricity production capacity. The operator of the Bradwell A-1 and Bradwell A-2 power plants in the United Kingdom decided to permanently shut down the plants due to economical reasons. The units Kozloduj-1 and Kozloduj-2 in Bulgaria were permanently shut down due to a request of the European Union. Last year, 9 plants were under construction in Romania (1), Russia (4), Slovakia (2), and the Ukraine (2), that is only in East European Countries. The Finnish parliament approved plans for the construction of the country's fifth nuclear power reactor by a majority of 107 votes to 92. It is the first decision to build a new nuclear power plant in Western Europe since ten years. In eight countries of the European Union 141 nuclear power plants have been operated with an aggregate gross capacity of 128 580 MWe and an aggregate net capacity of 122 517 MWe. Net electricity production in 2002 in the EU amounts to approx. 887.9 TWh gross, which means a share of about 34 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. They reach 81% in Lithuania, 78% in France, 58% in Belgium, 55% in the Slovak Republic, and 47% in Sweden. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy

  12. Nuclear power's burdened future

    International Nuclear Information System (INIS)

    Flavin, C.

    1987-01-01

    Although governments of the world's leading nations are reiterating their faith in nuclear power, Chernobyl has brought into focus the public's overwhelming feeling that the current generation of nuclear technology is simple not working. Despite the drastic slowdown, however, the global nuclear enterprise is large. As of mid-1986, the world had 366 nuclear power plants in operation, with a generating capacity of 255,670 MW. These facilities generate about 15% of the world's electricity, ranging from 65% in France to 31% in West Germany, 23% in Japan, 16% in the United States, 10% in the Soviet Union, and non in most developing nations. Nuclear development is clearly dominated by the most economically powerful and technologically advanced nations. The United States, France, the Soviet Union, Japan, and West Germany has 72% of the world's generating capacity and set the international nuclear pace. The reasons for scaling back nuclear programs are almost as diverse as the countries themselves. High costs, slowing electricity demand growth, technical problems, mismanagement, and political opposition have all had an effect. Yet these various factors actually form a complex web of inter-related problems. For example, rising costs usually represent some combination of technical problems and mismanagement, and political opposition often occurs because of safety concerns or rising costs. 13 references

  13. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  14. Nuclear Power after Fukushima

    International Nuclear Information System (INIS)

    Bigot, B.

    2011-01-01

    On 11 March 2011 Japan suffered an earthquake of very high magnitude, followed by a tsunami that left thousands dead in the Sendai region, the main consequence of which was a major nuclear disaster at the Fukushima power station. The accident ranked at the highest level of severity on the international scale of nuclear events, making it the biggest since Chernobyl in 1986. It is still impossible to gauge the precise scope of the consequences of the disaster, but it has clearly given rise to the most intense renewed debates on the nuclear issue. Futuribles echoes this in the 'Forum' feature of this summer issue which is entirely devoted to energy questions. Bernard Bigot, chief executive officer of the technological research organization CEA, looks back on the Fukushima disaster and what it changes (or does not change) so far as the use of nuclear power is concerned, particularly in France. After recalling the lessons of earlier nuclear disasters, which led to the development of the third generation of power stations, he reminds us of the currently uncontested need to free ourselves from dependence on fossil fuels, which admittedly involves increased use of renewables, but can scarcely be envisaged without nuclear power. Lastly, where the Fukushima disaster is concerned, Bernard Bigot shows how it was, in his view, predominantly the product of a management error, from which lessons must be drawn to improve the safety conditions of existing or projected power stations and enable the staff responsible to deliver the right response as quickly as possible when an accident occurs. In this context and given France's high level of dependence on nuclear power, the level of use of this energy source ought not to be reduced on account of the events of March 2011. (author)

  15. France without nuclear power

    International Nuclear Information System (INIS)

    Charmant, A.; Devezeaux, J.G.; Ladoux, N.; Vielle, M.

    1991-01-01

    As coal production declined and France found herself in a condition of energy dependency, the country decided to turn to nuclear power and a major construction program was undertaken in 1970. The consequences of this step are examined in this article, by imagining where France would be without its nuclear power. At the end of the sixties, fuel-oil incontestably offered the cheapest way of producing electricity; but the first petroleum crisis was to upset the order of economic performance, and coal then became the more attractive fuel. The first part of this article therefore presents coal as an alternative to nuclear power, describing the coal scenario first and then comparing the relative costs of nuclear and coal investment strategies and operating costs (the item that differs most is the price of the fuel). The second part of the article analyzes the consequences this would have on the electrical power market, from the supply and demand point of view, and in terms of prices. The third part of the article discusses the macro-economic consequences of such a step: the drop in the level of energy dependency, increased costs and the disappearance of electricity exports. The article ends with an analysis of the environmental consequences, which are of greater and greater concern today. The advantage here falls very much in favor of nuclear power, if we judge by the lesser emissions of sulfur dioxide, nitrogen oxides and especially carbon dioxide. 22 refs.; 13 figs.; 10 tabs

  16. Nuclear power production costs

    International Nuclear Information System (INIS)

    Erramuspe, H.J.

    1988-01-01

    The economic competitiveness of nuclear power in different highly developed countries is shown, by reviewing various international studies made on the subject. Generation costs (historical values) of Atucha I and Embalse Nuclear Power Plants, which are of the type used in those countries, are also included. The results of an international study on the economic aspects of the back end of the nuclear fuel cycle are also reviewed. This study shows its relatively low incidence in the generation costs. The conclusion is that if in Argentina the same principles of economic racionality were followed, nuclear energy would be economically competitive in the future, as it is today. This is of great importance in view of its almost unavoidable character of alternative source of energy, and specially since we have to expect an important growth in the consumption of electricity, due to its low share in the total consumption of energy, and the low energy consumption per capita in Argentina. (Author) [es

  17. Nuclear power: the alternative

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    South Africa has only two resources for large-scale generation of energy, namely coal and uranium. The petrochemical industry uses more and more coal to provide internal combustion engines of fuel. Until an alternative for nuclear energy is found, the country will have to rely on nuclear energy to provide in the energy needs. According to mr. John Maree, former chairman of the Atomic Energy Corporation of South Africa, the last coal power station will be built more or less in the year 2030. Sites for the building of future nuclear power stations are already identified. The West Coast is ideally suited for this purpose mainly because of the geological stability of the area and the lack of industrial development. The development of the nuclear industry in South Africa is reviewed

  18. Nuclear power and other energy

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    A comparison is made between nuclear power plants, gas-fuelled thermal power plants and oil-fired thermal power plants with respect to health factors, economy, environment and resource exploitation, with special reference to the choice of power source to supplement Norwegian hydroelectric power. Resource considerations point clearly to nuclear power, but, while nuclear power has an overall economic advantage, the present economic situation makes its heavy capital investment a disadvantage. It is maintained that nuclear power represents a smaller environmental threat than oil or gas power. Finally, statistics are given showing that nuclear power involves smaller fatality risks for the population than many other hazards accepted without question. (JIW)

  19. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  20. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Schaefer, A.

    1990-01-01

    I want to give some ideas on the situation of public and utility acceptance of nuclear power in the Federal Republic of Germany and perhaps a little bit on Europe. Let me start with public perception. I think in Germany we have a general trend in the public perception of technology during the last decade that has been investigated in a systematic manner in a recent study. It is clear that the general acceptance of technology decreased substantially during the last twenty years. We can also observe during this time that aspects of the benefits of technology are much less reported in the media, that most reporting by the media now is related to the consequences of technologies, such as negative environmental consequences. hat development has led to a general opposition against new technological projects, in particular unusual and large. That trend is related not only to nuclear power, we see it also for new airports, trains, coal-fired plants. here is almost no new technological project in Germany where there is not very strong opposition against it, at least locally. What is the current public opinion concerning nuclear power? Nuclear power certainly received a big shock after Chernobyl, but actually, about two thirds of the German population wants to keep the operating plants running. Some people want to phase the plants out as they reach the end-of-life, some want to substitute newer nuclear technology, and a smaller part want to increase the use of nuclear power. But only a minority of the German public would really like to abandon nuclear energy

  1. Nuclear power safety

    International Nuclear Information System (INIS)

    1988-01-01

    The International Atomic Energy Agency, the organization concerned with worldwide nuclear safety has produced two international conventions to provide (1) prompt notification of nuclear accidents and (2) procedures to facilitate mutual assistance during an emergency. IAEA has also expanded operational safety review team missions, enhanced information exchange on operational safety events at nuclear power plants, and planned a review of its nuclear safety standards to ensure that they include the lessons learned from the Chernobyl nuclear plant accident. However, there appears to be a nearly unanimous belief among IAEA members that may attempt to impose international safety standards verified by an international inspection program would infringe on national sovereignty. Although several Western European countries have proposed establishing binding safety standards and inspections, no specific plant have been made; IAEA's member states are unlikely to adopt such standards and an inspection program

  2. Nuclear power plant exports

    International Nuclear Information System (INIS)

    Degot, D.

    1987-01-01

    Framatome export expertise is discussed. Framatome can accept different types of contracts - for the supply of nuclear steam supply systems or for nuclear islands (both of which can be produced solely by Framatome) or for complete plants. Cooperation with the local industry is possible -this can involve technology transfer. Examples of exports in the following countries are given; Belgium (where there is close cooperation between Framatome and two major companies), South Africa (where Framatome has been involved in the building of a two-992 MWe unit at Koeberg), South Korea (where Framatome is building two-900 MWe nuclear islands in cooperation with Korean industry, Knu 9 and Knu 10) and China (where Framatome is to build two-1000 MWe class pressurized water reactors at Daya Bay). As well as supplying the French domestic nuclear market Framatome is a major force in the future of nuclear power in the world. (UK)

  3. Comparison between Different Power Sources for Emergency Power Supply at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lenasson, Magnus

    2015-01-01

    Currently the Swedish nuclear power plants are using diesel generator sets and to some extent gas turbines as their emergency AC power sources and batteries as their emergency DC power sources. In the laws governing Swedish nuclear activity, no specific power sources are prescribed. On the other hand, diversification of safety functions should be considered, as well as simplicity and reliability in the safety systems. So far the choices of emergency power sources have been similar between different power plants, and therefore this project investigated a number of alternative power sources and if they are suitable for use as emergency power on nuclear power plants. The goals of the project were to: - Define the parameters that are essential for rending a power source suitable for use at a nuclear power plant. - Present the characteristics of a number of power sources regarding the defined parameters. - Compile the suitability of the different power sources. - Make implementation suggestions for the less conventional of the investigated power sources. (unconventional in the investigated application) 10 different power sources in total have been investigated and to various degrees deemed suitable Out of the 10 power sources, diesel generators, batteries and to some extent gas turbines are seen as conventional technology at the nuclear power plants. In relation to them the other power sources have been assessed regarding diversification gains, foremost with regards to external events. The power sources with the largest diversification gains are: Internal steam turbine, Hydro power, Thermoelectric generators. The work should first and foremost put focus on the fact that under the right circumstances there are power sources that can complement conventional power sources and yield substantial diversification gains. This paper is a shortened version of the report 'Comparison between different power sources for emergency power supply at nuclear power plants'. The

  4. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  5. Nuclear power: Pt. 6

    International Nuclear Information System (INIS)

    Janse van Rensburg, H.J.

    1985-01-01

    Based on the annual growthrate of 2,5% in the need for energy and the present coal, oil, gas and uranium reserves, it is expected that there will be an energy deficiency early in the twentieth century. Coal-fired power stations have the disadvantage of pollution and a high water consumption. The use of nuclear power in South Africa is backed-up by its uranium reserves

  6. Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management. Deliverable D10

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran; Lidberg, Maria; Soneryd, Linda

    2008-10-01

    This report analyses mediation and mediators in Swedish nuclear waste management. Mediation is about establishing agreement and building common knowledge. It is argued that demonstrations and dialogue are the two prominent approaches to mediation in Swedish nuclear waste management. Mediation through demonstration is about showing, displaying, and pointing out a path to safe disposal for inspection. It implies a strict division between demonstrator and audience. Mediation through dialogue on the other hand, is about collective acknowledgements of uncertainty and suspensions of judgement creating room for broader discussion. In Sweden, it is the Swedish Nuclear Fuel and Waste Management Co. (SKB) that is tasked with finding a method and a site for the final disposal of the nation's nuclear waste. Two different legislative frameworks cover this process. In accordance with the Act on Nuclear Activities, SKB is required to demonstrate the safety of its planned nuclear waste management system to the government, while in respect of the Swedish Environmental Code, they are obliged to organize consultations with the public. How SKB combines these requirements is the main question under investigation in this report in relation to materials deriving from three empirical settings: 1) SKB's safety analyses, 2) SKB's public consultation activities and 3) the 'dialogue projects', initiated by other actors than SKB broadening the public arena for discussion. In conclusion, an attempt is made to characterise the long-term interplay of demonstration and dialogue in Swedish nuclear waste management

  7. Japan's nuclear power tightrope

    International Nuclear Information System (INIS)

    Cross, M.

    1991-01-01

    This paper reports that early in February, just as Japan's nuclear energy program was regaining a degree of popular support after three years of growing opposition, an aging pressurized-water reactor at Mihama in western Japan sprang a leak in its primary cooling system. The event occasioned Japan's first nontest use of an emergency core-cooling system. It also elicited a forecast of renewed public skepticism about nuclear power form the Ministry of International Trade and Industry (MITI), the Government body responsible for promoting and regulating Japan's ambitious nuclear power program. Public backing for this form of energy has always been a delicate flower in Japan, where virtually every school child visits the atomic bomb museums at Hiroshima and Nagasaki. Yet the country, which imports 80 percent of its energy and just about all its oil, is behind only the United States, France, and the Soviet Union in installed nuclear capacity. In fiscal 1989, which started in April, Japan's 39 nuclear power stations accounted for 25.5 percent of electricity generated - the largest contribution - followed b coal and natural gas. Twelve more plants are under construction

  8. Simulating conditions for combined heat and power in the Swedish district heating sector

    International Nuclear Information System (INIS)

    Knutsson, David

    2005-01-01

    The most important issues in the European energy sector today are how to increase competitiveness on the energy markets, reduce both CO2 emissions and dependence on imported fuels. These issues are also important aspects of Swedish energy policy. In Sweden, the district heating (DH) sector has commonly been used to achieve Swedish energy policy goals. However, the ongoing integration and deregulation of the energy markets in Europe now means that the Swedish DH sector can also play an important role in achieving international targets. This thesis investigates the extent to which the Swedish DH sector can contribute to compliance with current energy policy targets, both international and Swedish. The study consisted of simulations of the Swedish DH sector response to various policy instruments in a model that takes the local features of virtually all Swedish DH systems into account. The findings show, for example, that there is great potential for combined heat and power (CHP) generation in the Swedish DH sector. By exporting this CHP electricity to other European countries with less effective and fossil dependent power generation plants, the CO2 emissions from the European energy sector could be substantially reduced. This would also result in increased security of supply and competitiveness in the EU, since fuel use would be more effective. In Sweden, increased CHP generation would also be a way of maintaining an effective national security of supply of power

  9. Aspect of nuclear power

    International Nuclear Information System (INIS)

    Haghighi Oskoei, R.; Raeis Hosseiny, N.

    2004-01-01

    Over the next 50 years, unless patterns change dramatically, energy production and use will contribute to global warming through large-scale greenhouse gas emissions-hundreds of billions of tonnes of carbon in the form of carbon dioxide. Nuclear power would be one option for reducing carbon emissions. At present, however, this is unlikely: nuclear power faces stagnation and decline. We decided to study the future of nuclear power because we believe this technology , despite the changes it faces, is an important option for the world to meet future energy needs without emitting carbon dioxide and other atmospheric pollutants. Other options include increased efficiency, renewable and sequestration. We believe that all options should be preserved as nations develop strategies at provide energy while meeting important environmental challenges. The nuclear power option will only be exercised, however if the technology demonstrates better economics, improved safety, successful waste management, and low proliferation risk, and if public policies place a significant value on electricity production that does not produce carbon dioxide

  10. Nuclear Power in Japan.

    Science.gov (United States)

    Powell, John W.

    1983-01-01

    Energy consumption in Japan has grown at a faster rate than in any other major industrial country. To maintain continued prosperity, the government has embarked on a crash program for nuclear power. Current progress and issues/reactions to the plan are discussed. (JN)

  11. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  12. Nuclear power and safety

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Some aspects of safety of nuclear power with special reference to Indian nuclear power programme are discussed. India must develop technology to protect herself from the adverse economic impact arising out of the restrictive regime which is being created through globalization of safety and environmental issues. Though the studies done and experience gained so far have shown that the PHWR system adopted by India has a number of superior safety features, research work is needed in the field of operation and maintenance of reactors and also in the field of reactor life extension through delaying of ageing effects. Public relations work must be pursued to convince the public at large of the safety of nuclear power programme. The new reactor designs in the second stage of evolution are based on either further improvement of existing well-proven designs or adoptions of more innovative ideas based on physical principles to ensure a higher level of safety. The development of Indian nuclear power programme is characterised by a balanced approach in the matter of assuring safety. Safety enforcement is not just looked upon as a pure administrative matter, but experts with independent minds are also involved in safety related matters. (M.G.B.)

  13. Safe nuclear power

    International Nuclear Information System (INIS)

    Cady, K.B.

    1992-01-01

    Nearly 22 percent of the electricity generated in the United States already comes from nuclear power plants, but no new plants have been ordered since 1978. This paper reports that the problems that stand in the way of further development have to do with complexity and perceived risk. Licensing, construction management, and waste disposal are complex matters, and the possibility of accident has alienated a significant portion of the public. But a national poll conducted by Bruskin/Goldring at the beginning of February shows that opposition to nuclear energy is softening. Sixty percent of the American people support (strongly or moderately) the use of nuclear power, and 18 percent moderately oppose it. Only 15 percent remain obstinately opposed. Perhaps they are not aware of recent advances in reactor technology

  14. Nuclear power plants in electric power system

    International Nuclear Information System (INIS)

    Leicman, J.; Vokurka, F.

    1985-01-01

    The paper analyzes the demands placed by the power system on operating qualities of nuclear power plants with regard to the prospective tasks of nuclear power in the Czechoslovak power system. The characteristics of the operation of Czechoslovak nuclear plants are given taking into account the frequency and voltage deviations of the network, operating and control properties of nuclear power plants with WWER-440 and WWER-1000 reactors considering the technical conditions of operation, the required operating schedule of a nuclear power plant unit. For comparison, the demands are summed up of foreign power systems as are the control properties of foreign nuclear power units in regulating output, regulating delivered electric power and in emergency states of the system. Recommendations for further research and development are drawn from the data. (author)

  15. LDC nuclear power: Philippines

    International Nuclear Information System (INIS)

    Scherr, S.J.

    1982-01-01

    The US created the need for nuclear power in the Phillipines and then provided the means to fill it, but the 20-year nuclear program was reversed in 1976 because of public opposition to heavy-handed government policies. The situation illustrates the overriding importance of foreign influence and political judgment. Despite substantial investments in the training of Filipino nuclear scientists and technicians, nuclear energy continues to be viewed as an alien technology by the people. Even the protracted debate over the first reactor has been dominated by US experts and advisers because the traditional transnational cooperation was extended beyond government to nongovernmental citizen organizations when Filipno protestors sought help from US groups. 120 references

  16. Nuclear power. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, W.C.

    1983-01-01

    Lay language brings an understanding of nuclear technology and nuclear politics to the non-specialist reader. The author notes that there has been little change in the technology during the four decades of the nuclear age, but mankind has still to learn how to live with it. Part One explains how reactors work, identifies different reactor types, and describes the fuel cycle. Part two follows research developments during the pre-Manhatten Project days, the war effort, and the decision to pursue commercial nuclear power. He traces the development of policies to secure fission materials and international efforts to prevent the proliferation of weapons grade material and the safe handling of radioactive wastes on a global as well as national scale. There are four appendices, including an annotated reference to other publications. 9 figures.

  17. Nuclear-powered submarines

    International Nuclear Information System (INIS)

    Curren, T.

    1989-01-01

    The proposed acquisition of nuclear-powered submarines by the Canadian Armed Forces raises a number of legitimate concerns, including that of their potential impact on the environment. The use of nuclear reactors as the propulsion units in these submarines merits special consideration. Radioactivity, as an environmental pollutant, has unique qualities and engenders particular fears among the general population. The effects of nuclear submarines on the environment fall into two distinct categories: those deriving from normal operations of the submarine (the chief concern of this paper), and those deriving from a reactor accident. An enormous body of data must exist to support the safe operation of nuclear submarines; however, little information on this aspect of the proposed submarine program has been made available to the Canadian public. (5 refs.)

  18. Is nuclear power competitive

    International Nuclear Information System (INIS)

    Brandfon, W.W.

    1984-01-01

    The first phase of a two-phase study of the competitiveness of electricity from new coal and nuclear plants with oil and natural gas in common markets concludes that, with few exceptions throughout the country, overall levelized nuclear generating cost could be lower than coal generating costs by more than 40%. The study shows a wider margin of economic superiority for nuclear than has been seen in other recent studies. Capital and fuel costs are the major determinants of relative nuclear and coal economics. The only substantial difference in the input assumptions has related to a shorter lead time for both coal and nuclear units, which reduces capital costs. The study gives substance to the charge that delaying tactics by intervenors and an unstable licensing environment drove up lifetime costs of both coal and nuclear plants. This caused an increase in electric rates and affected the entire economy. The study shows that nuclear power is competitive when large baseload capacity is required. 14 figures

  19. Economics of nuclear power

    International Nuclear Information System (INIS)

    Reichle, L.F.C.

    1977-01-01

    Mr. Reichle feels that the economic advantages of pursuing nuclear power should prompt Congress and the administration to seek ways of eliminating undue delays and enabling industry to proceed with the design, construction, and management of nuclear plants and facilities. Abundant, low-cost energy, which can only be supplied by coal and nuclear, is vital to growth in our gross national product, he states. While conservation efforts are commendable, we must have more energy if we are to maintain our standard of living. Current energy resources projections into the next century indicate an energy gap of 42 quads with a 3 percent growth and 72 quads with a 4 percent growth. Comparisons of fuel prices, plant capital investment, and electric generation costs are developed for both coal and nuclear energy; these show that nuclear energy has a clear advantage economically as long as light water reactors are supplemented by breeder reactor development and the nuclear industry can demonstrate that these reactors are safe, reliable, and compatible with the environment. Mr. Reichle says excessive regulation and legal challenges combined with public apathy toward developing nuclear energy are delaying decisions and actions that should be taken now

  20. Space Nuclear Power Systems

    Science.gov (United States)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  1. Mexico's nuclear power program

    International Nuclear Information System (INIS)

    Eibenschutz, J.

    1984-01-01

    The mood in the world seems to be changing a bit and several countries are initiating or reinitiating their nuclear power programs. The additional benefits of the Mexican programs may override any adverse reaction. The jobs that would become available from the nuclear program, the technological development that it will promote, the impact on industry of quality assurance requirements, or highly skilled training, will have to be balanced against possible arguments concerning safety or proliferation or the general arguments that have been used against nuclear power. There are obviously several prerequisites for a venture of this nature to be successful, and perhaps the most important is steady support by the Government. In this respect the country has made remarkable progress, since the major programs have been supported with the logical changes that are imposed upon them by the new people in charge. In the case of nuclear power, as the specialists well know, it is important that enough understanding exists so that on the basic issues no compromises are made

  2. The nuclear power debate

    International Nuclear Information System (INIS)

    Woerndl, B.

    1992-01-01

    This material-intensive analysis of the public dispute about nuclear power plants uses the fundamental thoughts of the conflict theory approach by Georg Simmel, linking them to results of recent value change research. Through the medium of a qualitative content analysis of arguments in favour of and against nuclear energy it is shown how values are expressed and move, how they differentiate and get modified, in conflicting argumentation patterns. The first part reconstructs the history of the nuclear power conflict under the aspect of its subject priorities changing from time to time. The second part shows, based on three debate priorities, how social value patterns recognized for the moment changed in and by the conflict: the argumentation is that the nuclear power controversy has led to a relativization of its scientific claim for recognition; it has created a problem awareness with regard to purely quantitatively oriented growth objectives and developed criteria of an ecologically controlled satisfaction of needs; the debate has paved the way, in the area of political regulation models, for the advancement of basic democratic elements within a representative democracy. (orig./HP) [de

  3. How to balance the future in a small country with huge traditions of nuclear applications: the Swedish example

    International Nuclear Information System (INIS)

    Pazsit, Imre

    2005-01-01

    After a short historical perspective of how the Swedish energy situation has reached the present status, the paper says that the interplay of many beneficial circumstances put Sweden into the nuclear track toward the peaceful utilization of nuclear energy and technology at a very early stage of development in Europe. It adds then that the future of nuclear power in Sweden, just as in the previous decades, is not predictable in detail. It is however likely that nuclear power remains a significant contributor of electricity production in the coming decades, either at the same or an increased level, in the frame of a long-term agreement and consensus between industry and government. (S. Ohno)

  4. Ireland and nuclear power

    OpenAIRE

    Duffy, Tomas

    2018-01-01

    The Republic of Ireland does not possess nuclear power and is also deeply committed to its policy of neutrality. Probably because of this neutral stance, Ireland was in a position to play an important international part in the 1950s and 60s, in the negotiations which led to the signing of the Non-Proliferation treaty in 1968. In more recent years, its position concerning nuclear energy has partly been dictated by the State of Irish public opinion. But in the present European context, it is no...

  5. Economics of nuclear power

    International Nuclear Information System (INIS)

    Marwah, O.S.

    1982-01-01

    There can be no precise economic measures, in the abstract, of the costs of nuclear power production in the less-developed countries (LDCs). The conditions that affect the calculations have to be evaluated specifically for each country and individually for each nuclear-related project in that country. These conditions are a combination of internal and external factors, and their mix for one project can change during the course of construction. The author lists 21 factors that may vary according to individual national costs. 6 references, 4 tables

  6. Bibliography: books and articles on nuclear waste, nuclear power and power supply during the years 1971-1987

    International Nuclear Information System (INIS)

    Djerf, M.; Hedberg, P.

    1988-06-01

    The bibliography provides a list of the supply published Swedish books and articles in periodicals on nuclear waste and nuclear power. Regarding book publication the bibliography comprises publications on questions of nuclear power and nuclear waste on the whole, whereas the bibliography on the periodical articles solely comprises nuclear waste questions. The book bibliography consists of a selective choice of publications, identified by a mapping of the total supply of information on energy- and nuclear power issues in articles and other publications in Sweden. The literature inventory as a whole is part of a grater research project aiming at a study of the role of mass media in forming public opinion about the nuclear power waste question. (O.S.)

  7. Bonus systems and their effects on safety: an interview-based pilot study at the Swedish nuclear power plants; Bonussystem och dess inverkan paa saekerheten: en intervjubaserad pilotstudie vid de svenska kaernkraftverken

    Energy Technology Data Exchange (ETDEWEB)

    Torbioern, Ingemar; Mattson, Malin (Inst. of Psychology, Stockholm Univ., Stockholm (Sweden))

    2009-03-15

    The aim of this pilot study has been to describe and analyse potential effects on safety-related behaviour and risks associated with the bonus systems currently used at Swedish nuclear plants. To this end and in order to establish a frame of reference several theories on motivation were consulted regarding the relevance of monetary rewards. In addition empirical evidence on effects upon behaviours in general and safety behaviours in particular was taken into consideration, as well as a systems and a rationalist perspective on organisations. The resulting frame of reference was used for a descriptive mapping of the bonus systems and for the formulation of a semi-structured interview schedule intended to capture the experiences of those concerned by the systems. A total of 15 interviews were performed with staff of different functions and organisational positions. Results of the study do not indicate any negative effects on safety-related behaviours. Rather they indicate that safety-behaviours may be promoted insofar as bonus rewards are linked to performance goals concerning safety. All of the bonus-systems may be characterised as low in incentive intensity, i.e. produce small effects on motivation and performance. Still, as the systems differ in design and in the way they are perceived, they also represent different challenges in order to function more efficiently as parameters

  8. Making nuclear power sustainable

    International Nuclear Information System (INIS)

    Barre, B

    2003-01-01

    According to the present data, we must double our energy production while dividing by a factor of two the greenhouse gases emissions, knowing that today, 80% of our energy comes from the combustion of coal, gas and oil, all of which produce CO, released in the atmosphere. This is the toughest challenge facing us in the next few decades, and I include the water challenge, since producing drinking water will also increase our energy needs. This formidable challenge will not be easily met. No magic bullet is in sight, not even a nuclear bullet. To have any chance of success, we must actually implement all the available measures, and invent some more. In fact, we shall certainly need a three-pronged approach: Increase energy efficiency to limit energy consumption in our developed countries; Diversify our energy mix to reduce the share supplied by fossil fuels and that translates into increasing nuclear and renewable energy source; Trap and sequester CO 2 wherever and whenever economically possible. This article focuses on the nuclear issue. According to International Energy Agency (lEA) statistics, nuclear energy accounts today for 6.8% of the world energy supply. Is it realistic to expect this share to grow, when many forecasts (including lEA's own) predict a slow reduction? The future is not engraved in marble, it is ours to make; the future role of nuclear power will depend on the results of our present efforts to expand or overcome its limitations. It is quite possible that, within four decades, 40% of the electric power generated in all OECD countries, plus Russia, China, India and Brazil, comes from nuclear reactors. It is not far-fetched, when you consider that it took only two decades for France to increase its nuclear share of electricity from 8% to 80%. More ambitious, let's assume that in the same time frame and within the same countries 15% of the fuels for transportation come from nuclear produced hydrogen and that 10% of the space heating is supplied by

  9. Nuclear power system

    International Nuclear Information System (INIS)

    Yampolsky, J.S.; Cavallaro, L.; Paulovich, K.F.; Schleicher, R.W.

    1989-01-01

    This patent describes an inherently safe modular nuclear power system for producing electrical power at acceptable efficiency levels using working fluids at relatively low temperatures and pressures. The system comprising: a reactor module for heating a first fluid; a heat exchanger module for transferring heat from the first fluid to a second fluid; a first piping system effecting flow of the first fluid in a first fluid circuit successively through the reactor module and the heat exchanger module; a power conversion module comprising a turbogenerator driven by the second fluid, and means for cooling the second fluid upon emergence thereof from the turbogenerator; a second piping system comprising means for effecting flow of the second fluid in a second fluid circuit successively through the heat exchanger module and the power conversion module; and a plurality of pits for receiving the modules

  10. Nuclear power and ethics

    International Nuclear Information System (INIS)

    Schwery, H.

    1998-01-01

    The author can see no sense in demanding an ethical regime to be applied exclusively to nuclear power but rather calls for an approach that discusses nuclear power as one constituent of the complex energy issue in a way spanning all dimensions involved, as e.g. the technological, economic, cultural, humanitarian, and humanistic aspects. An ethical approach does not question scientific research, or science or technology, but examines their relation to man and the future of humanity, so that an ethical approach will first of all demand that society will bring forward conscientious experts as reliable partners in the process of discussing the ethical implications of progress and development in a higly industrialised civilisation. (orig./CB) [de

  11. Ardennes nuclear power plant

    International Nuclear Information System (INIS)

    1974-12-01

    The SENA nuclear power plant continued to operate, as before, at authorized rated power, namely 905MWth during the first half year and 950MWth during the second half year. Net energy production:2028GWh; hours phased to the line: 7534H; availability factor: 84%; utilization factor: 84%; total shutdowns:19; number of scrams:10; cost per KWh: 4,35 French centimes. Overall, the plant is performing very satisfactory. Over the last three years net production has been 5900GWh, corresponding to in average utilization factor of 83%

  12. Nuclear power in Italy

    International Nuclear Information System (INIS)

    Santarossa, G.

    1990-01-01

    As is known to most of this audience in November of 1987 a referendum determined a rejection of nuclear power in Italy. The referendum may be taken into consideration here as a large scale experiment which offers points of interest to this conference and problems to be aware of, in approaching a severe confrontation with the public. To give a synopsis of the Italian perspective I will examine: first the public acceptance in the situation before Chernobyl, then the most disturbing and sensitive factors of Chernobyl's consequences; how the opposition to nuclear energy worked with the support of most media and the strong pressures of an anti-nuclear political party, the syllogism of the opponents and the arguments used, the causes of major weakness of the defenders and how a new perception of nuclear risk was generated in the public. I will come to the topic of utility acceptance by mentioning that ENEL, as the National Utility, in its role is bound to a policy of compliance with Government decisions. It is oriented today to performance of feasibility studies and development of requirements for the next generation of reactors in order to maintain an updated proposal for a future recovery of the nuclear option. I will then try to identify in general terms the factors determining the future acceptance of nuclear power. They will be determined in the interdisciplinary area of politics, media and public interactions with the utilities the uses of the technology are forced to follow, by political constraints, two main directives: working only in new projects to achieve, if possible, new safety goals

  13. Nuclear power: Year 2000

    International Nuclear Information System (INIS)

    Siegel, J.R.

    1984-01-01

    This paper offers a contrary view on the future of nuclear power in the U.S. Contrarian, in that it argues that it is quite possible that the installed U.S. nuclear capacity in the year 2000 will be in the range of 250GWe. This projection is based on the longer view - a 20-30 year picture - of the price trends of the fuels commercially available to make electricity. And on the belief that other projections of nuclear capacity for the year 2000, while generally acknowledging the need to add significant amounts of new electricity capacity, are essentially discounting nuclear power. And thus, are ignoring fundamental economics. The logic for the projected 250 GWe follows: The demand for electricity is continuing to grow, albeit at a slower rate than that experienced prior to 1973; The excess generating capacity in the construction pipeline, which developed during the 1970s as economic growth rates came in at half the projections made in 1973, has been worked off; in fact, the pendulum has swung past the mid-point; U.S. utilities need to order an additional 200-350 GWe of capacity for service between 1992 and 2000; The real capital costs of plants, particularly nuclear plants, ordered in the 1980s will be less than that being completed today, as this new plant will be completed on a more expedient basis for reliability reasons, and built in an improved financial climate for utilities; Owing primarily to more favorable economics, but also to environmental considerations, at least half of new generating capacity will be nuclear

  14. A nuclear power renaissance?

    OpenAIRE

    Guidolin, Mariangela; Guseo, Renato

    2011-01-01

    Nuclear energy has been experiencing a revival in many countries, since it is considered to be a possible substitute for fossil fuels for electricity generation. This calls for a focused analysis, in order to evaluate whether conditions exist for its wide employment. While typical aspects against this option have to do with waste management, security of power plants and related health concerns, other issues less frequently considered by politics, mass media, and public opinion seem particular...

  15. Nuclear power plant

    International Nuclear Information System (INIS)

    Schabert, H.P.; Laurer, E.

    1976-01-01

    The invention concerns a quick-acting valve on the main-steam pipe of a nuclear power plant. The engineering design of the valve is to be improved. To the main valve disc, a piston-operated auxiliary valve disc is to be assigned closing a section of the area of the main valve disc. This way it is avoided that the drive of the main valve disc has to carry out different movements. 15 sub-claims. (UWI) [de

  16. Vietnam and nuclear power

    International Nuclear Information System (INIS)

    Nguyen, N.T.; Hong, L.V.

    1997-01-01

    Economy of Vietnam is developing fast and the electricity demand is growing drastically, last five years about 12.5% per year. The Government puts high target for the future with GDP rating about 8% per year up to 2020. In this case, the electricity demand in 2020 will be tenfold bigger in comparison with 1995's level. The deficient of domestic resources and the security of energy supply invoke the favorable consideration on nuclear power. (author)

  17. Nuclear power generation device

    International Nuclear Information System (INIS)

    Sugai, Hideto.

    1993-01-01

    In a PWR type reactor, a free piston type stirling engine is disposed instead of a conventional steam generator and a turbine. Since the stirling engine does not cause radiation leakage in view of the structure, safety and reliability of the nuclear power generation are improved. Further, the thermal cycle, if it operates theoretically, is equivalent with a Carnot cycle having the highest thermodynamical heat efficiency, thereby enabling to obtain a high heat efficiency in an actual engine. (N.H.)

  18. Modernization of turbines in nuclear power plants

    International Nuclear Information System (INIS)

    Harig, T.

    2005-01-01

    An ongoing goal in the power generation industry is to maximize the output of currently installed assets. This is most important at nuclear power plants due to the large capital investments that went into these plants and their base loaded service demands. Recent trends in the United States show a majority of nuclear plants are either obtaining, or are in the process of obtaining NRC approvals for operating license extensions and power uprates. This trend is evident in other countries as well. For example, all Swedish nuclear power plants are currently working on projects to extend their service life and maximize capacity through thermal uprate and turbine-generator upgrade with newest technology. The replacement of key components with improved ones is a means of optimizing the service life and availability of power plants. Economic advantages result from increased efficiency, higher output, shorter startup and shutdown times as well as reduced outage times and service costs. The rapid advances over recent years in the development of calculation programs enables adaptation of the latest blading technology to the special requirements imposed by steam turbine upgrading. This results in significant potential for generating additional output with the implementation of new technology, even without increased thermal power. In contrast to maintenance and investment in pure replacement or repair of a component with the primary goal of maintaining operability and reliability, the additional output gained by upgrading enables a return on investment to be reaped. (orig.)

  19. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1988-06-01

    The percentage of electricity generated by nuclear energy in each of the 26 countries that operated nuclear power plants in 1987 is given. The current policy and programs of some of these countries is described. News concerning uranium mining, enrichment, reprocessing and waste management is also included. Data in the form of a generalized status summary for all power reactors (> 30 MWEN) prepared from the nuclear power reactor data files of ANSTO is shown

  20. Nuclear power in British politics

    International Nuclear Information System (INIS)

    Pocock, R.F.

    1987-01-01

    The paper concerns the subject of nuclear power in British politics in 1986. The policies of the major political parties towards nuclear power are briefly outlined, along with public attitudes to nuclear energy, Chernobyl, and the rise of the anti-nuclear campaigners. (UK)

  1. Final Disposal of Nuclear Waste. The Swedish National Council for Nuclear Waste's Review of the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RDandD Programme 2007

    International Nuclear Information System (INIS)

    2009-01-01

    The Swedish National Council for Nuclear Waste finds that the RDandD programme 2007 fulfils the requirements set forth in the Nuclear Activities Act. However, the Council has identified a number of questions and deficiencies to which the Council wishes to draw attention. The Council finds that there are many unclear points regarding buffer, backfill and closure at this stage. The most important properties of the buffer material should be specified and limit values should be determined with respect to swelling potential, retention capacity for radionuclides, chemical stability, hydraulic diffusion, resistance to erosion and level of impurities. Mechanical strength and chemical stability must be guaranteed for compacted components in the buffer. Models should be set up for transport of the most important radioactive isotopes through the bentonite. SKB must also be able to show that the buffer and backfill conform to the initial states assumed by the safety assessment. Special research is required on the interfaces between backfill and buffer and between backfill and rock. SKB needs to consider the problems that can arise during the expected climate change, probably already during the construction period. The final design of the closure should be determined by the properties of the rock with respect to e.g. fractures at different depths and salinity. However, this presumes knowledge of what properties different materials - and mixtures of materials - have and how they can interact to best effect. The Swedish National Council for Nuclear Waste considers it imperative that SKB give a clear account of the judgements underlying site selection. The Council is troubled by the fact that successful rock stress measurements performed so far in Forsmark are too few in number and uncertain at planned repository depth. The Council would also like to emphasize the internal role of safety assessment within SKB as a tool for both following up repository safety during construction

  2. Nuclear power proliferation

    International Nuclear Information System (INIS)

    Johnson, B.

    1977-01-01

    The nuclear industry is experiencing a multiple crisis in which economic, technical and ethical aspects are blended inextricably. Nuclear hardware costs have everywhere soared far beyond inflation in the last five years, largely as a result of delays in programme completion arising from problems of reactor and fuel cycle. Meanwhile, partly as a result of this cost escalation, there is widespread and growing doubt as to whether capital will be available to finance the electricity generating levels projected by the industry and by governments for the 1990s. The nuclear industry is now in trouble at every stage of the fuel cycle. The industry's difficulties have also revealed a lack of overall - but particularly nuclear - energy strategy at either national or international levels, and a lack of will to create regulations and institutional machinery at either of these levels which might reassure both concerned publics and the energy industries themselves. This paper appraises some of the present limitations of international institutions in achieving control and management of nuclear power. (author)

  3. The Swedish National Defence Research Establishment and the plans for Swedish nuclear weapons; Foersvarets forskningsanstalt och planerna paa svenska kaernvapen

    Energy Technology Data Exchange (ETDEWEB)

    Jonter, Thomas [Uppsala Univ. (Sweden). Dept. of History

    2001-03-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish Government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid 50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the Parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the Parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The Prime Minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The Government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue

  4. Report Card on Nuclear Power

    Science.gov (United States)

    Novick, Sheldon

    1974-01-01

    Problems facing the nuclear power industry include skyrocketing construction costs, technical failures, fuel scarcity, power plant safety, and the disposal of nuclear wastes. Possible solutions include: reductions in nuclear power plant construction, a complete moratorium on new plant construction, the construction of fast breeder reactors and the…

  5. Nuclear power in the EC

    International Nuclear Information System (INIS)

    Charrault, J.C.

    1991-01-01

    Nuclear power accounts for some 35% of electricity production in the European Community (EC). Using a mathematical analysis, based on different scenarios, i.e. low/high electricity demand and nuclear moratorium/revival, various demand forecasts are made. A pragmatic approach, considering conventional power generation pollution problems, forecasts a revival of nuclear power

  6. Overview paper on nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

  7. Overview paper on nuclear power

    International Nuclear Information System (INIS)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power

  8. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  9. Banning nuclear power at sea

    International Nuclear Information System (INIS)

    Handler, J.

    1993-01-01

    This article argues that now that the East-West conflict is over, nuclear-powered vessels should be retired. Nuclear-powered ships and submarines lack military missions, are expensive to build and operate, generate large amounts of long-lived deadly nuclear waste from their normal operations and when they are decommissioned, and are subject to accidents or deliberate attack which can result in the sinking of nuclear reactors and the release of radiation. With the costs of nuclear-powered vessels mounting, the time has come to ban nuclear power at sea. (author)

  10. The need for nuclear power

    International Nuclear Information System (INIS)

    1977-12-01

    This leaflet examines our energy future and concludes that nuclear power is an essential part of it. The leaflet also discusses relative costs, but it does not deal with social and environmental implications of nuclear power in any detail, since these are covered by other British Nuclear Forum publications. Headings are: present consumption; how will this change in future; primary energy resources (fossil fuels; renewable resources; nuclear); energy savings; availability of fossil fuels; availability of renewable energy resources; the contribution of thermal nuclear power; electricity; costs for nuclear power. (U.K.)

  11. Nuclear power renaissance or demise?

    Energy Technology Data Exchange (ETDEWEB)

    Dossani, Umair

    2010-09-15

    Nuclear power is going through a renaissance or demise is widely debated around the world keeping in mind the facts that there are risks related to nuclear technology and at the same time that is it environmentally friendly. My part of the argument is that there is no better alternative than Nuclear power. Firstly Nuclear Power in comparison to all other alternative fuels is environmentally sustainable. Second Nuclear power at present is at the dawn of a new era with new designs and technologies. Third part of the debate is renovation in the nuclear fuel production, reprocessing and disposal.

  12. Nuclear power regional analysis

    International Nuclear Information System (INIS)

    Parera, María Delia

    2011-01-01

    In this study, a regional analysis of the Argentine electricity market was carried out considering the effects of regional cooperation, national and international interconnections; additionally, the possibilities of insertion of new nuclear power plants in different regions were evaluated, indicating the most suitable areas for these facilities to increase the penetration of nuclear energy in national energy matrix. The interconnection of electricity markets and natural gas due to the linkage between both energy forms was also studied. With this purpose, MESSAGE program was used (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts), promoted by the International Atomic Energy Agency (IAEA). This model performs a country-level economic optimization, resulting in the minimum cost for the modelling system. Regionalization executed by the Wholesale Electricity Market Management Company (CAMMESA, by its Spanish acronym) that divides the country into eight regions. The characteristics and the needs of each region, their respective demands and supplies of electricity and natural gas, as well as existing and planned interconnections, consisting of power lines and pipelines were taken into account. According to the results obtained through the model, nuclear is a competitive option. (author) [es

  13. Torness: proposed nuclear power station

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The need for and desirability of nuclear power, and in particular the proposed nuclear power station at Torness in Scotland, are questioned. Questions are asked, and answered, on the following topics: position, appearance and cost of the proposed Torness plant, and whether necessary; present availability of electricity, and forecast of future needs, in Scotland; energy conservation and alternative energy sources; radiation hazards from nuclear power stations (outside, inside, and in case of an accident); transport of spent fuel from Torness to Windscale; radioactive waste management; possibility of terrorists making a bomb with radioactive fuel from a nuclear power station; cost of electricity from nuclear power; how to stop Torness. (U.K.)

  14. Operational successes in nuclear power

    International Nuclear Information System (INIS)

    Palmer, F.A.

    1984-01-01

    This paper presents several positive indicators that demonstrate the growing success of the nuclear power program in the United States. Nuclear power plant performance data such as availability and capacity factor will be discussed along with several examples of outstanding performance that demonstrate the viability of the nuclear option. Since operational nuclear safety is the number one objective of every nuclear power plant, the NRC Licensing Event Report (LER) analysis program performed by a division of the Institute of Nuclear Power Operations (INPO) will be discussed along with the analysis and evaluation of event significance over the past few years. The impact of INPO on nuclear power plant operations and their programs that have contributed to the growing success of nuclear power operations such as operating plant evaluations, construction evaluations, corporate evaluations, assistance visits and training program accreditation are discussed

  15. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  16. Nuclear Power Today and Tomorrow

    International Nuclear Information System (INIS)

    Bychkov, Alexander

    2013-01-01

    Worldwide, with 437 nuclear power reactors in operation and 68 new reactors under construction, nuclear power's global generating capacity reached 372.5 GW(e) at the end of 2012. Despite public scepticism, and in some cases fear, which arose following the March 2011 Fukushima Daiichi nuclear accident, two years later the demand for nuclear power continues to grow steadily, albeit at a slower pace. A significant number of countries are pressing ahead with plans to implement or expand their nuclear power programmes because the drivers toward nuclear power that were present before Fukushima have not changed. These drivers include climate change, limited fossil fuel supply, and concerns about energy security. Globally, nuclear power looks set to continue to grow steadily, although more slowly than was expected before the Fukushima Daiichi nuclear accident. The IAEA's latest projections show a steady rise in the number of nuclear power plants in the world in the next 20 years. They project a growth in nuclear power capacity by 23% by 2030 in the low projection and by 100% in the high projection. Most new nuclear power reactors planned or under construction are in Asia. In 2012 construction began on seven nuclear power plants: Fuqing 4, Shidaowan 1, Tianwan 3 and Yangjiang 4 in China; Shin Ulchin 1 in Korea; Baltiisk 1 in Russia; and Barakah 1 in the United Arab Emirates. This increase from the previous year's figures indicates an on-going interest and commitment to nuclear power and demonstrates that nuclear power is resilient. Countries are demanding new, innovative reactor designs from vendors to meet strict requirements for safety, national grid capacity, size and construction time, which is a sign that nuclear power is set to keep growing over the next few decades.

  17. Convention on nuclear safety 2012 extra ordinary meeting. The Swedish National Report

    International Nuclear Information System (INIS)

    2012-01-01

    During the 5th Review Meeting of the Convention on Nuclear Safety (CNS), the Contracting Parties in attendance agreed to hold an Extraordinary Meeting in August 2012 with the aim to enhance safety through reviewing and sharing lessons learned and actions taken by Contracting Parties in response to events at TEPCO Fukushima Dai-ichi. It was agreed that a brief and concise National Report should be developed by each Contracting Party to support the Extraordinary Meeting. This report should be submitted three months prior to the meeting to the Secretariat via the Convention-secured website for peer review by other Contracting Parties. It was also agreed that the Contracting Parties should organize their reports by topics that cross the boundaries of multiple CNS Articles. Each National Report should provide specific information on these topics to address the lessons learned and activities undertaken by each Contracting Party. The National Report should include a description of the activities the Contracting Party has completed and any activities it intends to complete along with scheduled completion dates. The present report is therefore structured in accordance with the guidance given by the General Committee for CNS. In Chapter 0, a brief description of Swedish nuclear power plants is given with an emphasis on measures that have been taken gradually as a result of new knowledge and experience. The following chapters deal with the six topics, which are: 1) External events, 2) Design issues, 3) Severe accident management and recovery, 4) National organizations, 5) Emergency preparedness and response and post-accident management, and 6) International cooperation. Each chapter concludes with a table illustrating a high-level summary of the items identified. To clarify the relationship between the text and table contained in each chapter, the parts of the text appearing in the table are underlined. Furthermore, the text of some sections/subsections in different chapters

  18. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  19. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Nystrup, P.E.; Thorlaksen, B.

    2010-05-01

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  20. Floating nuclear power plants

    International Nuclear Information System (INIS)

    Kindt, J.W.

    1983-01-01

    This article examines the legal regime for floating nuclear power plants (FNPs), in view of the absence of specific US legislation and the very limited references to artificial islands in the Law of the Sea Convention. The environmental impacts of FNPs are examined and changes in US regulation following the Three Mile Island accident and recent US court decisions are described. References in the Law of the Sea Convention relevant to FNPs are outlined and the current status of international law on the subject is analysed. (author)

  1. On nuclear power plant uprating

    International Nuclear Information System (INIS)

    Ho, S. Allen; Bailey, James V.; Maginnis, Stephen T.

    2004-01-01

    Power uprating for commercial nuclear power plants has become increasingly attractive because of pragmatic reasons. It provides quick return on investment and competitive financial benefits, while involving low risks regarding plant safety and public objection. This paper briefly discussed nuclear plant uprating guidelines, scope for design basis analysis and engineering evaluation, and presented the Salem nuclear power plant uprating study for illustration purposes. A cost and benefit evaluation of the Salem power uprating was also included. (author)

  2. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  3. International nuclear power status 1999

    International Nuclear Information System (INIS)

    Hoejerup, C.F.; Oelgaard, P.L.

    2000-03-01

    This report is the sixth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 1999, the report contains: General trends in the development of nuclear power; The past and possible future of Barsebaeck Nuclear Power Plant; Statistical information on nuclear power production (in 1998); An overview of safety-relevant incidents in 1999; The development in Sweden; The development in Eastern Europe; The development in the rest of the world; Trends in the development of reactor types; Trends in the development of the nuclear fuel cycle. (au)

  4. Nuclear power in western society

    International Nuclear Information System (INIS)

    Franklin, N.L.

    1977-01-01

    The degree to which problems of public acceptance have contributed to the slowdown in progress of nuclear power in Western European countries and the USA is discussed. Some of the effects on the nuclear power industry, i.e. the electrical utilities, the power station suppliers, and the fuel cycle contractors are described. The problem of the lack of public acceptance is examined by consideration of four areas: the position of the employee working in nuclear installations, opposition from the local community, the question of terrorism and its impact on nuclear policy, and finally, what is felt to constitute the greatest anxiety concerning nuclear power, that of proliferation. (U.K.)

  5. Nuclear Power Division

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The 1981-85 research program planned by the Nuclear Power Division of EPRI places major emphasis on the assurance of safety and realiability of light water reactors (LWRs). Of high priority is a better knowledge of LWR-system behavior undeer abnormal conditions and the behavior of structural materials used for pressure vessels, piping, and large nuclear-plant components. Strong emphasis is also placed on achieving the most-effective performance and utilization of nuclear fuels and improving the corrosion resistance of pressurized-water-reactor steam generators. Efforts are underway to reduce radiation exposure and outage duration and to investigate the human factors involved in plant operation and maintenance. Substantial emphasis is placed on short-range goals designed to achieve useful results in the next two to seven years. The Division's mid- and long-range goal is to improve the use of fissionable and fertile materials and aid in the realization of other reactor systems. A series of general goals, categorized into three time frames and planned expenditures shows the trend of work to be undertaken. 53 figures

  6. Making nuclear power work

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.; Gyftopoulos, E.P.; Golay, M.; Lester, R.; Winje, D.; Beckjord, E.

    1989-02-01

    Utility managers and outside analysts alike often say that the U.S. nuclear industry is in trouble because of the grave disadvantages it faces compared with it counterparts abroad. In this view. overzealous safety regulators and public critics hamper U.S. managers' ability to run their plants. The large number of utilities, reactor vendors, and suppliers results in a fragmented industry that prevents operators from learning from one another's mistakes. This study of nuclear operations from 1975 to 1984 shows that these factors are not unique to the United States. Utilities in Japan, Sweden, France, Switzerland, and West Germany outperformed those in the United States despite strict regulatory climates as well as great variety in reactor design, utility ownership, and relationships with suppliers. And although public opinion can affect the overall climate for nuclear power, public opposition is not unique to the United States and did not influence reactor performance during the decade of the study. The authors found that the best U.S. reactors performed as well as any of their counterparts abroad. But the worst did significantly worse, dragging down the overall average performance of the U.S. industry. Moreover, many other countries experienced difficulties with their reactors and were able to turn their records around.

  7. Nuclear power in Spain

    International Nuclear Information System (INIS)

    Koryakin, Yu.I.

    1977-01-01

    The present states of nuclear power in Spain is shortly surveyed. Data are provided on NPPs currently in operation, under construction, designed and planned. In line with the 10-year ''National programme of electricity supply'' a major and all increasing part of the electricity generation growth is to be ensured by NPPs and to account for more than 50% by the end of the period (1987). Out of the 7 units of NPPs now under construction, 6 units utilize PWR reactors and only 1 unit- a BWR reactor. The roles of private and public sectors are noted. Main characteristics of the ''ENSA'' plant now under construction are provided where components of NPPs with PWR and BWR reactors will be fabricated. Major developments in the fields of mining, milling and extraction of U from lignites, U enrichment, fuel fabrication and spent fuel reprocessing are considered. Measures now taken to improve the licensing procedure, surveillance of NPPs and personnel training are to advance the nuclear power development programme in the country

  8. Nuclear hydrogen power stations

    International Nuclear Information System (INIS)

    Eroshov, M.E.

    1976-01-01

    Short information about investigations on hydrogen energetics being carried out in the USSR as well as a review of the world literature on this subject are given. Combined cycles of thermochemical and electrochemical reactions applied for hydrogen and oxigen production from water are shown to be of interest, as a number of reactions in a cycle may be reduced to two, and the temperature of processes may be decreased to the temperature range specific to modern reactors. Construction features of nuclear-hydrogen power stations producing hydrogen through the use of thermo-electro-chemical cycles are considered. It is shown that at this stage it is possible to reduce time and expenses needed for realization of hydrogen production on a wide scale as compared to other reaction cycles requiring high temperatures and consequently, construction of high-temperature reactors. The conditions of energy and water transport at great distances by using hydrogen lines and the possibilities of development of desert and arid lands by using this mode of operation are considered. Possible ecological effect of hydrogen energetics development on the environment is pointed out, in particular, when power complexes are concentrated on a limited area. It is shown that it is reasonable to locate nuclear-hydrogen stations on shores

  9. Nuclear hydrogen power stations

    International Nuclear Information System (INIS)

    Eroshov, M.E.

    1976-01-01

    Short information about investigations on hydrogen energetics being carried out in the USSR as well as a review of the world literature on this subject are given. Combined cycles of thermochemical and electrochemical reactions applied for hydrogen and oxygen production from water are shown to be of interest, as a number of reactions in a cycle may be reduced to two, and the temperature of processes may be decreased to the temperature range specific to modern reactors. Construction features of nuclear-hydrogen power stations producing hydrogen through the use of thermo-electrochemical cycles are considered. It is shown that at this stage it is possible to reduce time and expenses needed for realization of hydrogen production on a wide scale as compared to other reaction cycles requiring high temperatures and consequently, construction of high-temperature reactors. The conditions of energy and water transport at great distances by using hydrogen lines and the possibilities of development of desert and arid lands by using this mode of operation are considered. Possible ecological effect of hydrogen energetics development on the environment is pointed out, in particular, when power complexes are concentrated on a limited area. It is shown that it is reasonable to locate nuclear-hydrogen stations on shores

  10. Nuclear power: how and why

    International Nuclear Information System (INIS)

    1982-10-01

    The subject is discussed, with special reference to the United Kingdom, under the headings: the need for nuclear power; Britain's experience (nuclear reactors); the nuclear process; how fuel is made; recycling fuel; wastes and their treatment; decommissioning; fast reactors; nuclear fusion; safety and radiation. (U.K.)

  11. Obrigheim nuclear power plant

    International Nuclear Information System (INIS)

    1976-05-01

    The gross output of the 345MWe pressurized water nuclear power station at Obrigheim, operation on base load, amounted to about 2.57TWh in 1974, the net power fed to the grid being about 2.44TWh. The core was used to its full capacity until 10 May 1974. Thereafter, the reactor was on stretch-out operation with steadily decreasing load until refuelled in August 1974. Plant availability in 1974 amounted to 92.1%. Of the 7.9% non-availability, 7.87% was attributable to the refuelling operation carried out from 16 August to 14 September and to the inspection, overhaul and repair work and the routine tests performed during this period. The plant was in good condition. Only two brief shutdowns occurred in 1974, the total outage time being 21/2 hours. From the beginning of trial operation in March 1969 to the end of 1974, the plant achieved an availability factor of 85.2%. The mean core burnup at the end of the fifth cycle was 19600 MWd/tonne U, with one fuel element that had been used for four cycles achieving a mean burnup of 39000 MWd/tonne U. The sipping test on the fuel elements revealed defective fuel-rods in a prototype plutonium fuel element, a high-efficiency uranium fuel element and a uranium fuel element. The quantities of radioactive substances released to the environment in 1974 were far below the officially permitted values. In july 1974, a reference preparation made up in the nuclear power station in October 1973 was discovered by outsiders on the Obrigheim municipality rubbish tip. The investigations revealed that this reference preparation had very probably been abstracted from the plant in October 1973 and arrived at the rubbish tip in a most irregular manner shortly before its discovery

  12. Nuclear power: a British view

    International Nuclear Information System (INIS)

    Shaw, G.

    1985-01-01

    The subject is covered in sections, entitled: importance of nuclear power; the problems; fuel availability (uranium purchasing policy; uranium market; longer-term demand; enrichment market; fast reactor); non-proliferation and nuclear export policy; public acceptability. (U.K.)

  13. Fields of nuclear power application

    International Nuclear Information System (INIS)

    Laue, H.J.

    1975-01-01

    The paper deals with nuclear power application in fields different from electricity generation, i.e. district heating, sea water desalination, coal gasification and nuclear splitting of water. (RW) [de

  14. Services for nuclear power stations

    International Nuclear Information System (INIS)

    Fremann, M.; Ryckelynck

    1987-01-01

    This article gives an information as complete as possible about the activities of the french nuclear industry on the export-market. It describes the equipment and services available in the field of services for nuclear power stations [fr

  15. The benefits of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This article briefly outlines the benefits of nuclear power. Nuclear electricity generation is compared with fossil-fuel generated electricity in terms of environmental pollution and accidents and disease hazards

  16. Nuclear power in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S. (Sussex Univ., Brighton (UK). Science Policy Research Unit)

    1991-01-01

    The main aim of this article is that of illustrating the experience of the use of nuclear power in Eastern Europe in order to estimate the degree of adequacy or inadequacy of COMECON's nuclear technology. The author examines four areas of interest concerning: the feasibility of new orders for nuclear plants in Eastern Europe; the pros and cons of completing half-built nuclear power plants; current policy towards existing nuclear power plants; and a review of the available evidence on the operating performance of plants in Eastern Europe. The common belief that the nuclear power experience had by old COMECON countries is uniformly bad does not seem to be fully supported by the limited evidence available. In the author's opinion, the prospects for a successful nuclear power industry in these countries depends on a series on interdependent factors among which, human skills hold a prominent position.

  17. Nuclear power plants

    International Nuclear Information System (INIS)

    Ushijima, Susumu.

    1984-01-01

    Purpose: To enable to prevent the degradation in the quality of condensated water in a case where sea water leakage should occur in a steam condenser of a BWR type nuclear power plant. Constitution: Increase in the ion concentration in condensated water is detected by an ion concentration detector and the leaking factor of sea water is calculated in a leaking factor calculator. If the sea water leaking factor exceeds a predetermined value, a leak generation signal is sent from a judging device to a reactor power control device to reduce the reactor power. At ehe same tiem, the leak generation signal is also sent to a steam condenser selection and isolation device to interrupt the sea water pump of a specified steam condenser based on the signal from the ion concentration detector, as well as close the inlet and outlet valves while open vent and drain valves to thereby forcively discharge the sea water in the cooling water pipes. This can keep the condensate desalting device from ion breaking and prevent the degradation in the quality of the reactor water. (Horiuchi, T.)

  18. Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Analia Bonelli

    2012-01-01

    Full Text Available A description of the results for a Station Black-Out analysis for Atucha 2 Nuclear Power Plant is presented here. Calculations were performed with MELCOR 1.8.6 YV3165 Code. Atucha 2 is a pressurized heavy water reactor, cooled and moderated with heavy water, by two separate systems, presently under final construction in Argentina. The initiating event is loss of power, accompanied by the failure of four out of four diesel generators. All remaining plant safety systems are supposed to be available. It is assumed that during the Station Black-Out sequence the first pressurizer safety valve fails stuck open after 3 cycles of water release, respectively, 17 cycles in total. During the transient, the water in the fuel channels evaporates first while the moderator tank is still partially full. The moderator tank inventory acts as a temporary heat sink for the decay heat, which is evacuated through conduction and radiation heat transfer, delaying core degradation. This feature, together with the large volume of the steel filler pieces in the lower plenum and a high primary system volume to thermal power ratio, derives in a very slow transient in which RPV failure time is four to five times larger than that of other German PWRs.

  19. Nuclear power. Volume 2. Nuclear power project management

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 2 contains the following chapters: (1) review of nuclear power plants; (2) licensing procedures; (3) safety analysis; (4) project professional services; (5) quality assurance and project organization; (6) construction, scheduling, and operation; (7) nuclear fuel handling and fuel management; (8) plant cost management; and (9) conclusion

  20. Ten years after the Chernobyl accident: reporting on nuclear and other hazards in six Swedish newspapers

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Aasa; Sjoeberg, L.; Waahlberg, A. af

    1997-07-01

    A European Commission sponsored study (RISKPERCOM) involving France, Norway, Spain, Sweden, and the UK, is concerned with surveying public perceptions of radiation related and other risks. This was partly done by distributing a questionnaire in each country at three different times in 1996: before, during and after the expected media attention given to the tenth anniversary of the Chernobyl accident. A selection of print media were analyzed, during a period of eight weeks - four weeks before the anniversary, and four weeks after - making it possible to contrast any changes between the three waves of the questionnaire with the results of the media study. The present report aims at providing a picture of the Swedish media coverage of different kinds of risks during the period referred to above. The purpose of the analysis is thus primarily of a descriptive nature; explanatory factors are only considered in an ad hoc manner while discussing the results and their possible implications. Naturally, the findings arising from this study cannot alone serve as a basis for making statements about the effects of risk related content on the Swedish newspaper readers. The risk stories included in the analysis were those dealing with one or more of the twenty different hazard items referred to in several of the questions in the RISKPERCOM questionnaire. Radiation and nuclear power energy were not the only issues of concern. The selection covered a wide range of other hazards as well, in order to provide for a wide risk panorama, thus making it possible to compare specific risk qualities etc., as these were presented in the media 70 refs, 40 refs

  1. Ten years after the Chernobyl accident: reporting on nuclear and other hazards in six Swedish newspapers

    International Nuclear Information System (INIS)

    Nilsson, Aasa; Sjoeberg, L.; Waahlberg, A. af

    1997-07-01

    A European Commission sponsored study (RISKPERCOM) involving France, Norway, Spain, Sweden, and the UK, is concerned with surveying public perceptions of radiation related and other risks. This was partly done by distributing a questionnaire in each country at three different times in 1996: before, during and after the expected media attention given to the tenth anniversary of the Chernobyl accident. A selection of print media were analyzed, during a period of eight weeks - four weeks before the anniversary, and four weeks after - making it possible to contrast any changes between the three waves of the questionnaire with the results of the media study. The present report aims at providing a picture of the Swedish media coverage of different kinds of risks during the period referred to above. The purpose of the analysis is thus primarily of a descriptive nature; explanatory factors are only considered in an ad hoc manner while discussing the results and their possible implications. Naturally, the findings arising from this study cannot alone serve as a basis for making statements about the effects of risk related content on the Swedish newspaper readers. The risk stories included in the analysis were those dealing with one or more of the twenty different hazard items referred to in several of the questions in the RISKPERCOM questionnaire. Radiation and nuclear power energy were not the only issues of concern. The selection covered a wide range of other hazards as well, in order to provide for a wide risk panorama, thus making it possible to compare specific risk qualities etc., as these were presented in the media

  2. Nuclear power 2005: European report

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In 2005, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 204 power reactors with a gross power of 181,030 MWe and a net power of 171,8479 MWe were in operation at the end of the year. In 2005, no nuclear power plant was commissioned. Two nuclear power plants were decommissioned in Europe in the course of 2005. In Germany the Obrigheim NPP and in Sweden the Barsebaeck 2 NPP have been permanently shut down due to political decisions. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.6 GW. In late 2005, five nuclear generating units were under construction in Finland (1), Romania (1), and Russia (3). 148 nuclear power plants were operated in thirteen states of the European Union (EU-25). They had an aggregate gross power of 137,023 MWe and a net power of 130,415 MWe, generating approx. 970 billion gross kWh of electricity in 2005, thus again contributing some 31% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in France (80%), followed by 72% in Lithuania, 55% in the Slovak Republic, 55% in Belgium, and 51% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as a result of electricity imports. (All statistical data in the country report apply to 2004 unless indicated otherwise. This is the year for which sound preliminary data are currently available for the states listed.) (orig.)

  3. Discharges from nuclear power stations

    International Nuclear Information System (INIS)

    1991-02-01

    HM Inspectorate of Pollution commissioned, with authorising responsibilities in England and Wales, a study into the discharges of radioactive effluents from Nuclear Power Stations. The study considered arisings from nuclear power stations in Europe and the USA and the technologies to treat and control the radioactive discharges. This report contains details of the technologies used at many nuclear power stations to treat and control radioactive discharges and gives, where information was available, details of discharges and authorised discharge limits. (author)

  4. Manpower development for nuclear power

    International Nuclear Information System (INIS)

    1980-01-01

    This Guidebook provides policy-makers and managers of nuclear power programmes with information and guidance on the role, requirements, planning and implementation of manpower development programmes. It presents and discusses the manpower requirements associated with the activities of a nuclear power programme, the technical qualifications of this manpower and the manpower development corresponding to these requirements and qualifications. The Guidebook also discusses the purpose and conditions of national participation in the activities of a nuclear power programme

  5. Nuclear power plant

    International Nuclear Information System (INIS)

    Schabert, H.P.

    1976-01-01

    A nuclear power plant is described which includes a steam generator supplied via an input inlet with feedwater heated by reactor coolant to generate steam, the steam being conducted to a steam engine having a high pressure stage to which the steam is supplied, and which exhausts the steam through a reheater to a low pressure stage. The reheater is a heat exchanger requiring a supply of hot fluid. To avoid the extra load that would be placed on the steam generator by using a portion of its steam output as such heating fluid, a portion of the water in the steam generator is removed and passed through the reheater, this water having received at least adequate heating in the steam generator to make the reheater effective, but not at the time of its removal being in a boiling condition

  6. Nuclear power plant

    International Nuclear Information System (INIS)

    Uruma, Hiroshi

    1998-01-01

    In the first embodiment of the present invention, elements less activated by neutrons are used as reactor core structural materials placed under high neutron irradiation. In the second embodiment of the present invention, materials less activated by neutrons when corrosive materials intrude to a reactor core are used as structural materials constituting portions where corrosion products are generated. In the third embodiment, chemical species comprising elements less activated by neutrons are used as chemical species to be added to reactor water with an aim of controlling water quality. A nuclear power plant causing less radioactivity can be provided by using structural materials comprising a group of specific elements hardly forming radioactivity by activation of neutrons or by controlling isotope ratios. (N.H.)

  7. Wuergassen nuclear power plant

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The decision of the Federal Court of Administration concerns an application for immediate decommissioning of a nuclear power plant (Wuergassen reactor): The repeal of the permit granted. The decision dismisses the appeal for non-admission lodged by the plaintiffs against the ruling of the Higher Court of Administration (OVG) of North-Rhine Westphalia of December 19th 1988 (File no. 21 AK 8/88). As to the matter in dispute, the Federal Court of Administration confirms the opinion of the Higher Court of Administration. As to the headnotes, reference can be made to that decision. Federal Court of Administration, decision of April 5th 1989 - 7 B 47.89. Lower instance: OVG NW, Az.: 21 AK 8/88. (orig./RST) [de

  8. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    Barjon, Robert

    1975-01-01

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude [fr

  9. Nuclear power ecology: comparative analysis

    International Nuclear Information System (INIS)

    Trofimenko, A.P.; Lips'ka, A.Yi.; Pisanko, Zh.Yi.

    2005-01-01

    Ecological effects of different energy sources are compared. Main actions for further nuclear power development - safety increase and waste management, are noted. Reasons of restrained public position to nuclear power and role of social and political factors in it are analyzed. An attempt is undertaken to separate real difficulties of nuclear power from imaginary ones that appear in some mass media. International actions of environment protection are noted. Risk factors at different energy source using are compared. The results of analysis indicate that ecological influence and risk for nuclear power are of minimum

  10. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    International Nuclear Information System (INIS)

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1

  11. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  12. Nuclear power - the Hydra's head

    International Nuclear Information System (INIS)

    Bunyard, Peter.

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead. (UK)

  13. Nuclear power and the UK

    International Nuclear Information System (INIS)

    Murphy, St.

    2009-01-01

    This series of slides describes the policy of the UK government concerning nuclear power. In January 2008 the UK Government published the White Paper on the Future of Nuclear Power. The White Paper concluded that new nuclear power stations should have a role to play in this country's future energy mix. The role of the Government is neither to build nuclear power plants nor to finance them. The White Paper set out the facilitative actions the Government planned to take to reduce regulatory and planning risks associated with investing in new nuclear power stations. The White Paper followed a lengthy period of consultation where the UK Government sought a wide variety of views from stakeholders and the public across the country on the future of nuclear power. In total energy companies will need to invest in around 30-35 GW of new electricity generating capacity over the next two decades. This is equivalent to about one-third of our existing capacity. The first plants are expected to enter into service by 2018 or sooner. The Office for Nuclear Development (OND) has been created to facilitate new nuclear investment in the UK while the Nuclear Development Forum (NDF) has been established to lock in momentum to secure the long-term future of nuclear power generation in the UK. (A.C.)

  14. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  15. New approaches to nuclear power

    KAUST Repository

    Dewan, Leslie

    2018-01-21

    The world needs a cheap, carbon-free alternative to fossil fuels to feed its growing electricity demand. Nuclear power can be a good solution to the problem, but is hindered by issues of safety, waste, proliferation, and cost. But what if we could try a new approach to nuclear power, one that solves these problems? In this lecture, the CEO of Transatomic Power will talk about how their company is advancing the design of a compact molten salt reactor to support the future of carbon-free energy production. Can the designs of new reactor push the boundaries of nuclear technology to allow for a safe, clean, and affordable answer to humanityメs energy needs? Nuclear power involves capturing the energy produced in nuclear fission reactions, which emerges as heat. This heat is most frequently used to boil water into steam, which then drives a turbine to produce electricity in a nuclear power plant. Worldwide, there is a renaissance of new nuclear technology development -- a new generation of young engineers are racing to develop more advanced nuclear reactors for a better form of power generation. Transatomic Power, specifically, is advancing the design of an easily contained and controlled, atmospheric pressure, high power density molten salt reactor that can be built at low cost. The road to commercialization is long, and poses many challenges, but the benefits are enormous. These new reactors push the boundaries of technology to allow for better, safer ways to power the world.

  16. Sweden and the bomb. The Swedish plans to acquire nuclear weapons, 1945 - 1972

    International Nuclear Information System (INIS)

    Jonter, T

    2001-09-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid-50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The prime minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue. During this period

  17. Nuclear power - the international market

    International Nuclear Information System (INIS)

    1986-02-01

    The 19 essays collected in this book are composed of the following 5 fields: 1) International status and perspective of nuclear energy, 2) Nuclear power plants and components, 3) Fuel cycle, 4) Framing conditions of exposits, 5) German nuclear engineering in exports. This characterizes the main topics. (UA) [de

  18. Nuclear power: Unexpected health benefits

    Science.gov (United States)

    Shellenberger, Michael

    2017-04-01

    Public fears of nuclear power are widespread, especially in the aftermath of accidents, yet their benefits are rarely fully considered. A new study shows how the closure of two nuclear power plants in the 1980s increased air pollution and led to a measurable reduction in birth weights, a key indicator of future health outcomes.

  19. Social aspects of nuclear power

    International Nuclear Information System (INIS)

    Koryakin, Yu.I.

    1990-01-01

    Social aspects of nuclear power crisis in the USSR are considered. It is shown that the system of economic and social stimulation and different compensations widely used abroad when locating nuclear power plants, is the effective factor, providing loyal attitude to them

  20. Competitive economics of nuclear power

    International Nuclear Information System (INIS)

    Hellman, R.

    1981-01-01

    Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics

  1. Nuclear power in the US

    International Nuclear Information System (INIS)

    Judson, Tim

    2018-01-01

    The Trump government promotes the further operation of aging nuclear power plants in the US by governmental support although several operators close their nuclear power plants due to economic reasons. The Trump government is also repowering the Yucca-Mountain-Project for radioactive waste disposal that was stopped by the Obama government based on geological problems in the region.

  2. Nuclear power - the moral question

    International Nuclear Information System (INIS)

    Searby, P.

    1978-01-01

    Nuclear power has raised moral and ethical as well as technological issues and the British Council of churches, recognising this, has participated in the UK nuclear power debate. In this short article, Mr Philip Searby, Secretary of the UKAEA, considers some of the views adopted by the Council. (author)

  3. International nuclear power status 2000

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2001-03-01

    This report is the seventh in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2000, the report contains: 1. General trends in the development of nuclear power. 2. Deposition of low-level radioactive waste. 3. Statistical information on nuclear power production (in 1999). 4. An overview of safety-relevant incidents in 2000. 5. The development in Sweden. 6. The development in Eastern Europe. 7. The development in the rest of the world. 8. Trends in the development of reactor types. 9. Trends in the development of the nuclear fuel cycle. (au)

  4. Nuclear power and the environment

    International Nuclear Information System (INIS)

    Blix, H.

    1989-11-01

    The IAEA Director General pointed out that continued and expanded use of nuclear power must be one among several measures to restrain the use of fossil fuels and thereby limit the emissions of greenhouse gases. With regards to future trends in world electricity demands, the Director General emphasized the existing gap between the frequent claims as to what conservation can achieve and actual energy plans. The objections to nuclear power which are related to safety, waste disposal and the risk of proliferation of nuclear weapons are also discussed. His conclusion is that nuclear power can help significantly to meet growing needs of electricity without contributing to global warming, acid rains or dying forests, responsible management and disposal of nuclear wastes is entirely feasible, and the safety of nuclear power must be continuously strengthened through technological improvement and methods of operation

  5. Ontario's commitment to nuclear power

    International Nuclear Information System (INIS)

    Parkinson, E.A.

    1991-01-01

    The title of this paper, 'Ontario's commitment to nuclear power', is significant because, as a publicly-owned company, Ontario Hydro will not be committed to nuclear power unless the Ontario public is also committed to nuclear power. In developing our strategic plan for generating electricity over the next 25 years, public acceptance was the big issue that we had to face, and it will be the underlying theme throughout this paper. In Ontario uranium is an indigenous fuel, and that is one of the reasons why Ontario adopted nuclear power in the first place, because it provides energy security. The uranium business is important to Canada, and to Ontario where we are 50% dependent on nuclear power at the current time. (author)

  6. Solid-State Nuclear Power

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  7. Strategy for utilizing nuclear power

    International Nuclear Information System (INIS)

    Martens, E.J.

    1977-01-01

    One of the national goals is to achieve independence in the area of energy supplies in the next few years. It is believed that attaining this goal will require extensive utilization of nuclear power in conventional fission reactors. It is proposed that the best way to develop the nuclear resource is through government ownership of the reactors. It is argued that this will minimize the risks associated with the nuclear-power option and clear the way for its exploitation

  8. Canadian attitudes to nuclear power

    International Nuclear Information System (INIS)

    Davies, J.E.O.

    1977-01-01

    In the past ten years, public interest in nuclear power and its relationship to the environment has grown. Although most Canadians have accepted nuclear power as a means of generating electricity, there is significant opposition to its use. This opposition has effectively forced the Canadian nuclear industry to modify its behaviour to the public in the face of growing concern over the safety of nuclear power and related matters. The paper reviews Canadian experience concerning public acceptance of nuclear power, with special reference to the public information activities of the Canadian nuclear industry. Experience has shown the need for scientific social data that will permit the nuclear industry to involve the public in a rational examination of its concern about nuclear power. The Canadian Nuclear Association sponsored such studies in 1976 and the findings are discussed. They consisted of a national assessment of public attitudes, two regional studies and a study of Canadian policy-makers' views on nuclear energy. The social data obtained were of a base-line nature describing Canadian perceptions of and attitudes to nuclear power at that time. This research established that Canadian levels of knowledge about nuclear power are very low and that there are marked regional differences. Only 56% of the population have the minimum knowledge required to indicate that they know that nuclear power can be used to generate electricity. Nevertheless, 21% of informed Canadians oppose nuclear power primarily on the grounds that it is not safe. Radiation and waste management are seen to be major disadvantages. In perspective, Canadians are more concerned with inflation than with the energy supply. About half of all Canadians see the question of energy supplies as a future problem (within five years), not a present one. A more important aspect of energy is seen by the majority of Canadians to be some form of energy independence. The use of data from these studies is no easy

  9. Climate change and nuclear power

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  10. French lessons in nuclear power

    International Nuclear Information System (INIS)

    Valenti, M.

    1991-01-01

    In stark contrast to the American atomic power experience is that of the French. Even the disaster at Chernobyl in 1986, which chilled nuclear programs throughout Western Europe, did not slow the pace of the nuclear program of the state-owned Electricite de France (EDF), based in Paris. Another five units are under construction and are scheduled to be connected to the French national power grid before the end of 1993. In 1989, the EDF's 58 nuclear reactors supplied 73 percent of French electrical needs, a higher percentage than any other country. In the United States, for example, only about 18 percent of electrical power is derived from the atom. Underpinning the success of nuclear energy in France is its use of standardized plant design and technology. This has been an imperative for the French nuclear power industry since 1974, when an intensive program of nuclear power plant construction began. It was then, in the aftermath of the first oil embargo, that the French government decided to reduce its dependence on imported oil by substituting atomic power sources for hydrocarbons. Other pillars supporting French nuclear success include retrofitting older plants with technological or design advances, intensive training of personnel, using robotic and computer aids to reduce downtime, controlling the entire nuclear fuel cycle, and maintaining a comprehensive public information effort about the nuclear program

  11. Radioactive discharges and environmental monitoring at the Swedish nuclear facilities 2001; Utslaepps- och omgivningskontroll vid de kaerntekniska anlaeggningarna 2001

    Energy Technology Data Exchange (ETDEWEB)

    Sandwall, Johanna

    2002-11-01

    This report contains an evaluation of the discharge and environmental programme for the Swedish nuclear facilities. It also contains the work on quality control performed by SSI. This is done as random sampling of discharge water and environmental samples.

  12. The control of nuclear proliferation: future challenges. Swedish Institute of International Affairs, Stockholm, 23 April 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document reproduces the text of the conference given by the Director General of the IAEA at the Swedish Institute of International Affairs in Stockholm on 23 April 1998. After a short presentation of the Agency's current verification activities, particularly in Iraq and Democratic People's Republic of Korea, the Director General focuses on the present and future role of the IAEA in the control of nuclear proliferation through its strengthened safeguards system, in the prevention of nuclear terrorism, and future challenges of controlling nuclear proliferation from both political and technical point of view

  13. Nuclear power, economy and environment

    International Nuclear Information System (INIS)

    Stoffaes, C.

    1994-01-01

    The explanations in this article aim at clarifying the background of the problem of nuclear energies. Why did countries give up developing nuclear energy? Which roles do economic political and psychological factors play in making energy political decisions? How could a balance be found in using the various energy sources which must meet the constantly increasing demand for electric power? Which preconditions must be fulfilled to return to nuclear energy world-wide (as using coal is connected with many environmental risks) and how long would it take? If, however, nuclear power is even to be included in the energy-political discussions of the governments and the public opinions in each country, there are a number of sensitive topics waiting for an answer: Safety and costs of power plants; recycling and storing nuclear wastes; the relationship between civil energy and the availability of nuclear weapons and the future plutonium economy. (orig./UA) [de

  14. The economics of nuclear power

    International Nuclear Information System (INIS)

    Hunt, H.; Betteridge, G.

    1978-01-01

    It is stated that nuclear power stations throughout the world are now providing consumers with substantially the cheapest electricity, except in areas with extensive hydro-power or cheap, clean, local coal. Thermal nuclear power stations will continue to provide economic electricity until the cost of uranium rises to several times the present level; fast reactors have the potential to continue to stabilise the cost of electricity and by moderating demand for other fuels will keep down their cost also. Headings of this paper include -The historical perspective; methods of comparing nuclear and fossil generating costs; historical comparisons of UK nuclear and fossil generating costs; waste storage and decommissioning; future changes in costs; criteria for future investment in nuclear power; alternative methods of comparison; total system cost analysis; the economics of fast reactors; and the ultimate role of fast reactors. 13 references. (author)

  15. Towards sustainable nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhl, Obninsk, Kaluga Region (Russian Federation)

    2014-05-15

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  16. Public hearing on the Barsebaeck nuclear power plant 27 Jan 1980

    International Nuclear Information System (INIS)

    1981-01-01

    Transcript of a hearing on possible consequences in Danish territory of an accident at the Swedish nuclear power plant at Barsebaeck. The hearing was arranged by OOA (Organization for Information about Atomic Power). Representatives from involved Danish authorities participated in the hearing. Subjects for discussions were health consequences, Danish emergency provisions, and radioactive land contamination. (BP)

  17. Digital Play as a Means to Develop Children's Literacy and Power in the Swedish Preschool

    Science.gov (United States)

    Marklund, Leif; Dunkels, Elza

    2016-01-01

    This paper presents different angles on the subject of digital play as a means to develop children's literacy and power, using an online ethnographical study of Swedish preschool teachers' discussions in informal online forums. Question posts (n = 239) were analysed using the Technological Pedagogical Knowledge framework and the Caring, Nurturing…

  18. Nuclear power - a reliable future

    International Nuclear Information System (INIS)

    Valeca, Serban

    2002-01-01

    The Ministry of Education and Research - Department of Research has implemented a national Research and Development program taking into consideration the following: - the requirements of the European Union on research as a factor of development of the knowledge-based society; - the commitments to the assimilation and enforcement of the recommendations of the European Union on nuclear power prompted by the negotiations of the sections 'Science and Research' and ' Energy' of the aquis communautaire; - the major lines of interest in Romania in the nuclear power field established by National Framework Program of Cooperation with IAEA, signed on April 2001; - the short and medium term nuclear options of the Romanian Government; - the objectives of the National Nuclear Plan. The major elements of the nuclear research and development program MENER (Environment, Energy, Resources) supported by the Department of Research of the Ministry of Education and Research are the following: - reactor physics and nuclear fuel management; - operation safety of the Power Unit 1 of Cernavoda Nuclear Electric Power Station; - improved nuclear technological solutions at the Cernavoda NPP; - development of technologies for nuclear fuel cycle; - operation safety of the other nuclear plants in Romania; - assessment of nuclear risks and estimation of the radiological impact on the environment; - behavior of materials under the reactor service conditions and environmental conditions; - design of nuclear systems and equipment for the nuclear power stations and nuclear facilities; - radiological safety; - application of nuclear techniques and technologies in industry, agriculture, medicine and other fields of social life. Research to develop high performance methods and equipment for monitoring nuclear impact on environment are conducted to endorse the measures for radiation protection. Also mentioned are the research on implementing a new type of nuclear fuel cycle in CANDU reactors as well as

  19. Nuclear reactor power supply

    International Nuclear Information System (INIS)

    Cook, B.M.

    1984-01-01

    The redundant signals from the sensor assemblies measuring the process parameters of a nuclear reactor power supply are transmitted each in its turn to a protection system which operates to actuate the protection apparatus for signals indicating off-process conditions. Each sensor assembly includes a number of like sensors measuring the same parameters. The protection system has a number of separate protection units, each unit receiving the process signals from the like sensors of each assembly in its turn. The sets of process signals derived from the sensor parameter assemblies are each in its turn transmitted from the protection system to the control system which impresses control signals on the reactor or its components to counteract the tendency for conditions to drift off-normal status requiring operation of the protection system. A parameter signal selector is interposed between the protection system and the control system. This selector prevents a parameter signal of a set of signals, which differs from the other parameter signals of the set by more than twice the allowable variation of the sensors which produce the set, from passing to the control system. The connection between the protection units and the selector is four separate fiber optic channels so that electrical interaction between the protection units and the selector or control system is precluded. The selectors include a pair of signal selection units, one unit sending selected process signals to primary control channels and the other sending selected process signals to back-up control channels. Test signals are periodically impressed on a selected pair of a selected unit and control channels. When test signals are so impressed the selected control channel is disabled from transmitting control signals to the reactor and/or its associated components

  20. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Lane, J.A.; Covarrubias, A.J.; Csik, B.J.; Fattah, A.; Woite, G.

    1977-01-01

    This paper is intended to be a companion to similar papers by OECD/NEA and CMEA and will summarize the nuclear power system plans of developing Member States most likely to have nuclear programmes before the year 2000. The information that is presented is derived from various sources such as the Agency 1974 study of the market for nuclear power in developing countries, the annual publication, ''Power Reactors in Member States - 1976 Edition'', various nuclear power planning studies carried out by the Agency during the period 1975 and 1976, direct correspondence with selected Member States and published information in the open literature. A preliminary survey of the prospects for nuclear power in Member States not belonging to the OECD or having centrally planned economies indicates that about 27 of these countries may have operating nuclear power plants by the end of the century. In the 1974 Edition of the ''Market Survey'' it was estimated that the installed nuclear capacity in these countries might reach 24 GW by 1980, 157 GW by 1190 and 490 GW by the year 2000. It now appears that these figures are too high for a number of reasons. These include 1) the diminished growth in electrical demand which has occurred in many Member States during the last several years, 2) the extremely high cost of nuclear plant construction which has placed financial burdens on countries with existing nuclear programmes, 3) the present lack of commercially available small and medium power reactors which many of the smaller Member States would need in order to expand their electric power systems and 4) the growing awareness of Member States that more attention should be paid to exploitation of indigenous energy sources such as hydroelectric power, coal and lignite

  1. 2006 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    At the turn of 2006/2007, 437 nuclear power plants were available for energy supply, or were being commissioned, in 31 countries of the world. This is seven plants less than at the turn of 2005/2006. The aggregate gross power of the plants amounted to approx. 389.5 GWe, the aggregate net power, to 370.5 GWe. This indicates a slight decrease of gross power by some 0.15 GWe compared to the level the year before, while the available net power increased, also slightly, by approx. 0.2 GWe. The Tarapur 3 nuclear generating unit in India, a D 2 O PWR of 540 MWe gross power, was newly commissioned. In 2006, 8 nuclear power plants in Europe (4 in the United Kingdom, 2 in Bulgaria, 1 each in the Slovak Republic and in Spain) discontinued power operation for good. 29 nuclear generating units, i.e. 6 plants more than at the end of 2005, were under construction in late 2006 in 9 countries with an aggregate gross power of approx. 25.5 GWe. Worldwide, some 40 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases, contracts have already been signed. Net electricity generation in nuclear power plants worldwide in 2006 achieved another top ranking level of approx. 2,660 billion kWh (2005: approx. 2,750 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-1 fast breeder (USA) on December 20, 1951, cumulated gross production has reached approx. 56,875 billion kWh, and operating experience has grown to some 12,399 reactor years. (orig.)

  2. On PA of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Present state of things relating to the nuclear power generation are described first, focusing on the Chernobyl accident, power control test, old-wave and new-wave antinuclear movements, move toward elimination of nuclear power plants, and trend in government-level argument concerning nuclear power generation. Then the importance of public relations activities for nuclear power generation is emphasized. It is stressed that information should be supplied positively to the public to obtain public understanding and confidence. Various activities currently made to promote public relations for nuclear power generation are also outlined, focusing on the improvement in the nuclear power public relations system and practical plans for these activities. Activities for improvement in the public relations system include the organization of public relations groups, establishment and effective implementation of an overall public relations plan, training of core workers for public relations, and management of the public relations system. Other practical activities include the encouragement of the public to come and see the power generation facilities and distribution of pamphlets, and use of the media. (N.K.)

  3. Dictionary of nuclear power. upd. ed.

    International Nuclear Information System (INIS)

    Koelzer, W.

    2011-10-01

    The updated dictionary on nuclear power contains definitions and explanations on nuclear physics, nuclear engineering, nuclear power, radiation effects and radiation protection in alphabetic order. Attachments on units, their conversion and physical constants are included.

  4. Partner of nuclear power plants

    International Nuclear Information System (INIS)

    Gribi, M.; Lauer, F.; Pauli, W.; Ruzek, W.

    1992-01-01

    Sulzer, the Swiss technology group, is a supplier of components and systems for nuclear power plants. Important parts of Swiss nuclear power stations, such as containments, reactor pressure vessels, primary pipings, are made in Winterthur. Sulzer Thermtec AG and some divisions of Sulzer Innotec focus their activities on servicing and backfitting nuclear power plants. The European market enjoys priority. New types of valves or systems are developed as economic solutions meeting more stringent criteria imposed by public authorities or arising from operating conditions. (orig.) [de

  5. Greenfield nuclear power for Finland

    Energy Technology Data Exchange (ETDEWEB)

    Saarenpaa, Tapio

    2010-09-15

    In Finland, licensing for new nuclear power is ongoing. The political approval is to be completed in 2010. Fennovoima's project is unique in various ways: (i) the company was established only in 2007, (ii) its ownership includes a mixture of local energy companies, electricity-intensive industries and international nuclear competence through E.ON, and (iii) it has two alternative greenfield sites. There are five prerequisites for a successful nuclear power project in a transparent democracy of today: (1) need for additional power capacity, (2) actor prepared to invest, (3) established competence, (4) available site, (5) open communications, and (6) favorable public opinion.

  6. Proposed law concerning the phase-out of nuclear power

    International Nuclear Information System (INIS)

    1997-01-01

    This Government bill that will be presented to the Swedish Parliament, gives the Government the right to revoke the licence of operating a nuclear power plant at a certain time. The operator is given the right to a financial compensation when the licence is revoked, in line with the rules in the expropriation laws. Safety aspects of operation of nuclear installations are not regulated in this law, i.e. the law can not be used when the operating licence is revoked due to safety reasons

  7. Nuclear power stations licensing

    International Nuclear Information System (INIS)

    Solito, J.

    1978-04-01

    The judicial aspects of nuclear stations licensing are presented. The licensing systems of the United States, Spain, France and Federal Republic of Germany are focused. The decree n 0 60.824 from July 7 sup(th), 1967 and the following legislation which define the systematic and area of competence in nuclear stations licensing are analysed [pt

  8. Action group for nuclear power information

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Following the nuclear power controversy in the Swedish general election of 1976, a group of technical employees of ASEA-Atom formed an action group for nuclear power information. This was a spontaneous move in which management was not involved. The object was to provide a balance to uninformed campaigns by 'environmental' action groups. The level of political activity among technical personnel is low, but once the threshold has been crossed the desire for information by the public has been shown to be great. It has however been difficult to obtain a hearing in radio, TV or the national press. The local press has on the other hand proved open. While no significant effect among the public can be demonstrated, there seems to have been some influence on politicians. There has been contact with corresponding organisations in Denmark, Finland and the UK, and in the Federal Republic of Germany in July 1978 a European Energy Association was formed to balance such organisations as European Environmental Bureau. (JIW)

  9. Nuclear power: An evolving scenario

    International Nuclear Information System (INIS)

    ElBaradei, Mohamed

    2004-01-01

    The past two years have found the IAEA often in the spotlight - primarily because of our role as the world's 'nuclear watchdog', as we are sometimes referred to on the evening news. The most visible, and often controversial, peaceful nuclear application is the generation of electricity, the focus of this article largely from a European perspective. At the end of last year there were 440 nuclear power units operating worldwide. Together, they supply about 16% of the world's electricity. That percentage has remained relatively steady for almost 20 years. Expansion and growth prospects for nuclear power are centred in Asia. Of the 31 units under construction worldwide, 18 are located in India, Japan, South Korea and China, including Taiwan. Twenty of the last 29 reactors to be connected to the grid are also in the Far East and South Asia. That is probably more active construction than most Europeans would guess, given how little recent growth has occurred in the West. For Western Europe and North America, nuclear construction has been a frozen playing field - the last plant to be completed being Civaux-2 in France in 1999. That should raise a question: with little to no new construction, how has nuclear power been able to keep up with other energy sources, to maintain its share of electricity generation? Interestingly enough, the answer is tied directly to efforts to improve safety performance. The accident at Chernobyl in 1986 prompted the creation of the World Association of Nuclear Operators (WANO), and revolutionized the IAEA approach to nuclear power plant safety. Some analysts believe the case for new nuclear construction in Europe is gaining new ground, for a number of reasons: efforts to limit greenhouse gas emissions and reduce the risk of climate change; security of energy supply; Comparative Public Health Risk; different set of variables when choosing Each country's and region energy strategy. Looking to the future, certain key challenges are, of direct

  10. The economics of nuclear power

    International Nuclear Information System (INIS)

    Monto, Geethanjali

    2011-01-01

    Nuclear power is seen by some as a partial solution to climate change. The obvious supporters include nuclear establishments, but the 'surprising' supporters comprise some environmentalists like James Lovelock. One of the 15 strategies proposed by Stephen Pacala and Robert Socolow as part of their wedge model is to substitute nuclear power for coal power. The addition of 700 GW of nuclear power, i.e. roughly twice the current global capacity, would constitute one wedge and could reduce one billion tonnes of carbon by mid-century. (The other 14 strategies include: efficient vehicles; reduced use of vehicles; efficient buildings; efficient baseload coal plants; gas baseload power for coal baseload power capture CO 2 at baseload power plant capture CO 2 at H 2 plant; capture CO 2 at coal-to-synfuels plant and geological storage; wind power for coal power; PV power for coal power; wind H 2 in fuel-cell car for gasoline in hybrid car; biomass fuel for fossil fuel; reduced deforestation, plus reforestation, afforestation, and new plantations, and conservation tillage

  11. Current status of nuclear power

    International Nuclear Information System (INIS)

    Behnke, W.B.

    1984-01-01

    The decision to devote the 1984 conference to nuclear power is timely and appropriate. Illinois has a long, and distinguished history in the development of civilian nuclear power. The concept was born at the University of Chicago, developed at Argonne National Laboratory and demonstrated on the Commonwealth Edison system at our pioneer Dresden Nuclear Station. Today, Illinois ranks number one in the nation in nuclear generation. With over a quarter century of commercial operating experience, nuclear power has proven its worth and become a significant and growing component of electric power supply domestically and throughout the world. Despite its initial acceptance, however, the nuclear power industry in the U.S. is now in the midst of a difficult period of readjustment stemming largely from the economic and regulatory problems of the past decade. As a result, the costs of plants under construction have increased dramatically, causing serious financial difficulties for several projects and their owners. At the same time, the U.S. is facing hard choices concerning its future energy supplies. Conferences such as this have an important role in clarifying the issues and helping to find solutions to today's pressing energy problems. This paper summarizes the status of nuclear power both here and abroad, discussing the implications of current events in the context of national energy policy and economic development here in Illinois

  12. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Mishiro, M.

    2000-01-01

    This article describes the advantages of nuclear energy for Japan. In 1997 the composition of the total primary energy supply (TPES) was oil 52.7%, coal 16.5%, nuclear 16.1% and natural gas 10.7%. Nuclear power has a significant role to play in contributing to 3 national interests: i) energy security, ii) economic growth and iii) environmental protection. Energy security is assured because a stable supply of uranium fuel can be reasonably expected in spite of dependence on import from abroad. Economic growth implies the reduction of energy costs. As nuclear power is capital intensive, the power generation cost is less affected by the fuel cost, therefore nuclear power can realize low cost by favoring high capacity utilization factor. Fossil fuels have substantial impacts on environment such as global warming and acid rain by releasing massive quantities of CO 2 , so nuclear power is a major option for meeting the Kyoto limitations. In Japan, in 2010 nuclear power is expected to reach 17% of TPES and 45% of electricity generated. (A.C.)

  13. Nuclear power and sustainable development

    International Nuclear Information System (INIS)

    Sandklef, S.

    2000-01-01

    Nuclear Power is a new, innovative technology for energy production, seen in the longer historic perspective. Nuclear technology has a large potential for further development and use in new applications. To achieve this potential the industry needs to develop the arguments to convince policy makers and the general public that nuclear power is a real alternative as part of a sustainable energy system. This paper examines the basic concept of sustainable development and gives a quality review of the most important factors and requirements, which have to be met to quality nuclear power as sustainable. This paper intends to demonstrate that it is not only in minimising greenhouse gas emissions that nuclear power is a sustainable technology, also with respect to land use, fuel availability waste disposal, recycling and use of limited economic resources arguments can be developed in favour of nuclear power as a long term sustainable technology. It is demonstrated that nuclear power is in all aspects a sustainable technology, which could serve in the long term with minimal environmental effects and at minimum costs to the society. And the challenge can be met. But to achieve need political leadership is needed, to support and develop the institutional and legal framework that is the basis for a stable and long-term energy policy. Industry leaders are needed as well to stand up for nuclear power, to create a new industry culture of openness and communication with the public that is necessary to get the public acceptance that we have failed to do so far. The basic facts are all in favour of nuclear power and they should be used

  14. Sweden's second national report under the Convention on nuclear safety. Swedish implementation of the obligations of the Convention

    International Nuclear Information System (INIS)

    2001-01-01

    The National Reports to the Review Meetings according to Article 5 of the Convention call for a self-assessment of each Contracting Party with regard to compliance with the obligations of the Convention. For Sweden this self-assessment has demonstrated full compliance with all the obligations of the Convention, as shown in detail in part B of this National Report. Sweden wishes to emphasise the incentive character of the Convention. In the opinion of Sweden, the Convention implies a commitment to continuous learning from experience and a proactive approach to safety improvement. Therefore, Sweden has found it important that a National Report highlights strong features in national nuclear practices as well as areas where special attention to the further development are needed. Since the first report to the Convention was issued, three major events have been experienced in the Swedish nuclear programme: Phase out of nuclear power started by the closing of one unit of a twin unit plant on 30 November 1999. The full effects of deregulation of the electricity market have been experienced. Together with increasing taxes on nuclear power, this has strongly affected the production economy of the nuclear industry resulting in efforts to reduce production costs and leaving less room for investments. The new general safety regulations came into force 1 July 1999, resulting in a more structured approach to inspection and safety assessment. These changes have created new challenges for the safety work of the licensees as well as for the regulatory bodies during the last three years. However, the generally positive impression reported to the first review meeting under the Convention still stands. Therefore, Sweden would like to point out the following as strong features in its national nuclear practice: The responsibility for safety is very well defined in the Swedish legal framework. In order not to dilute the responsibility of the licence holders, the Swedish regulations are

  15. Consequences of reduced production of electricity in nuclear power plants

    International Nuclear Information System (INIS)

    The Swedish Power Administration has assessed the possibilities of expanding electric power sources other than nuclear power plants for the years 1980 and 1985. Reports on costs in the form of loss of capital and increased operating costs involved in the dismantling of nuclear power plants are made in Supplement 1. The economics division of the Finance Department, starting with a long-range study model of the Swedish economy, has calculated the consequences of a cutback in electric power up to 1980 for Sweden's economy and employment in that year. The consequences of reduction of electricity supplies up to 1985 are summarized in Supplement 2 in this report. It is concluded that in order to be able to manage the problem of supplying electricity by 1985, it will be necessary to increase oil power above what was assumed in the energy policy program. There will have to be new oil-based power as well. According to the Power Administration, oil-power facilities can be expanded to varying degrees, depending upon when the decision is made. The Power Administration's calculations show that 125 TWh is possible in 1985 without nuclear power only if a decision for discontinuation is made in the fall of 1976. This is based on very optimistic assumptions about the time of execution of a program for oil-steam operation, and also on the assumption that extreme measures will be initiated to force expansion of both district-heating distribution and power + heat facilities. Oil consumption for production of electricity in such an electric power system would be about 9 million m 3 , which is about 5 times more than at present and about one-third of the present total consumption of petroleum products in Sweden

  16. Nuclear power in the Philippines

    International Nuclear Information System (INIS)

    1965-01-01

    The first United Nations project of its kind, where the prospects of using nuclear power in a developing country are being analysed, is being carried out in the Philippines. It is entitled, 'Pre-Investment Study on Power, including Nuclear Power, in Luzon'; it is a United Nations Special Fund project, for which the International Atomic Energy Agency is acting as the executing body. Although directed specifically at the situation of the Luzon grid, the approach and the methods evolved should be useful in other countries also. The project was initiated in early 1964 and is expected to be completed by the end of 1965. The Philippines have substantial reserves of hydro capacity, but very little of fossil fuels. The country has been interested for quite some time in the possibility of using nuclear power. In 1956 a study was made of a small nuclear power plant for the Manila area, but such a plant would not have been able to compete with the fossil fuel-fired station. The Philippine Government had in mind the development of Luzon Island, which is the largest and most industrialized part of the Philippines, accounting for 50 per cent of the population and 80 per cent of the power demand. In 1960, the Government invited an Agency mission, whose report entitled, 'The Prospects of Nuclear Power for the Philippines', indicated that the possibilities of using a reasonably large nuclear plant in the Luzon grid deserved serious consideration

  17. Nuclear power: Siting and safety

    International Nuclear Information System (INIS)

    Openshaw, S.

    1986-01-01

    By 2030, half, or even two-thirds, of all electricity may be generated by nuclear power. Major reactor accidents are still expected to be rare occurrences, but nuclear safety is largely a matter of faith. Terrorist attacks, sabotage, and human error could cause a significant accident. Reactor siting can offer an additional, design-independent margin of safety. Remote geographical sites for new plants would minimize health risks, protect the industry from negative changes in public opinion concerning nuclear energy, and improve long-term public acceptance of nuclear power. U.K. siting practices usually do not consider the contribution to safety that could be obtained from remote sites. This book discusses the present trends of siting policies of nuclear power and their design-independent margin of safety

  18. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Sugawara, A.

    1994-01-01

    The energy situation in Japan is briefly outlined. Vulnerability in energy structure of the country is shown by a comparison of primary energy supply patterns of Japan and Western countries. Japan's energy policy consists in reducing dependence on oil, promoting efficient use of energy and increasing use of non-fossil fuels. Nuclear power is a core of alternative energy for petroleum because of stable supply of nuclear fuel, low detrimental emissions and less dependence on the fuel. A short historical review of nuclear power development in Japan is presented. Some future issues as development of entire nuclear fuel cycle, social acceptance, reactor safety and nuclear power economics are also discussed. 6 figs. (R.T.)

  19. The debate on nuclear power

    International Nuclear Information System (INIS)

    Bethe, H.A.

    1977-01-01

    The need for nuclear power is pointed out. The Study Group on Nuclear Fuel Cycles of the American Physical Society has studied the problem of waste disposal in detail and has found that geological emplacement leads to safe waste disposal. The relation between nuclear power and weapons proliferation is discussed. The problem of preventing proliferation is primarily a political problem, and the availability of nuclear power will contribute little to the potential for proliferation. However, to further reduce this contribution, it may be desirable to keep fast-breeder reactors under international control and to use only converters for national reactors. The desirable converter is one which has a high conversion ratio, probably one using the thorium cycle, 233 U, and heavy water as the moderator. The nuclear debate in the United States of America is discussed. Work on physical and technical safeguards in the USA against diversion of fissile materials is mentioned. (author)

  20. History on foundation of Korea nuclear power

    International Nuclear Information System (INIS)

    Park, Ik Su

    1999-12-01

    This reports the history on foundation of Korea nuclear power from 1955 to 1980, which is divided ten chapters. The contents of this book are domestic and foreign affairs before foundation of nuclear power center, establishment of nuclear power and research center, early activity and internal conflict about nuclear power center, study for nuclear power business and commercialization of the studying ordeal over nuclear power administration and new phase, dispute for jurisdiction on nuclear power business and the process, permission for nuclear reactor, regulation and local administration, the process of deliberation and decision of reactor 3. 4 in Yonggwang, introduction of nuclear reprocessing facilities and activities for social organization.

  1. Nuclear power after Copenhagen

    International Nuclear Information System (INIS)

    Adam, G.

    2010-01-01

    The presentation discusses the problems of carbon dioxide emissions and advantages of nuclear technology as the only non-carbon technology with a proven track record that can make a significant contribution on the scale that will be required. The nuclear technology also has the potential to produce carbon free heat, and a further potential to produce hydrogen for the transport sector and possibly also for desalination projects. Nuclear energy also helps to reduce the serious health effects resulting from fossil fuel combustion which particularly affects women

  2. Innovation in nuclear power

    International Nuclear Information System (INIS)

    Blomgren, J.

    2017-01-01

    Institute for Nuclear Business Excellence Roots in Sweden and Finland in Global operation Services on nuclear business leadership: Independent advice, Executive training and Build-up of emerging nuclear countries. Plant construction and safety Plant construction: Plants are larger more complex with increased redundancy. Projects Failure in large technology is due to Corruption, Licensing mis-communication and Unclear roles and responsibilities. The chain of knowledge Design → construction→ operation → lifetime management → waste handling→ decommissioning. Maintenance and ageing start at the drawing table. Plant health monitoring. Today: Sensors are cheap Digital readout Enormous read out capacity''Internet of things''

  3. The future of nuclear power

    International Nuclear Information System (INIS)

    Corak, Z.

    2004-01-01

    Energy production and use will contribute to global warming through greenhouse gas emissions in the next 50 years. Although nuclear power is faced with a lot of problems to be accepted by the public, it is still a significant option for the world to meet future needs without emitting carbon dioxide (CO 2 ) and other atmospheric pollutants. In 2002, nuclear power provided approximately 17% of world energy consumption. There is belief that worldwide electricity consumption will increase in the next few years, especially in the developing countries followed by economic growth and social progress. Official forecasts shows that there will be a mere increase of 5% in nuclear electricity worldwide by 2020. There are also predictions that electricity use may increase at 75%. These predictions require a necessity for construction of new nuclear power plants. There are only a few realistic options for reducing carbon dioxide emissions from electricity generation: Increase efficiency in electricity generation and use; Expand use of renewable energy sources such as wind, solar, biomass and geothermal; Capture carbon dioxide emissions at fossil-fuelled electric generating plants and permanently sequester the carbon; Increase use of nuclear power. In spite of the advantages that nuclear power has, it is faced with stagnation and decline today. Nuclear power is faced with four critical problems that must be successfully defeat for the large expansion of nuclear power to succeed. Those problems are cost, safety, waste and proliferation. Disapproval of nuclear power is strengthened by accidents that occurred at Three Mile Island in 1979, at Chernobyl in 1986 and by accidents at fuel cycle facilities in Japan, Russia and in the United States of America. There is also great concern about the safety and security of transportation of nuclear materials and the security of nuclear facilities from terrorist attack. The paper will provide summarized review regarding cost, safety, waste and

  4. Investor perceptions of nuclear power

    International Nuclear Information System (INIS)

    Hewlett, J.G.

    1984-05-01

    Evidence is provided that investor concerns about nuclear power have recently been reflected in the common stock returns of all utilities with such facilities and have resulted in a risk premium. In particular, over the 1978-1982 period, three nuclear-related events occurred at the same time as, and therefore appear to have caused, significant drops in the market values of nuclear utilities relative to their non-nuclear counterparts. The three events were as follows: the accident at TMI, which occurred in March 1979; the realization in the summer of 1980 that an accident of the magnitude of TMI could result in cleanup costs of over $1 billion, which are not completely insurable and could therefore result in substantial losses; and the summer 1982 decision by the Tennessee Valley Authority (TVA) to cancel some if its nuclear power plant construction projects, and the Nuclear Regulatory Commission (NRC) decision to stop work on the construction of the Zimmer reactor, followed by a warning that it might close the Indian Point 2 and 3 reactors. If an individual had invested $100 in an average nuclear utility on the day before the TMI accident and reinvested all dividends, the value of this investment would have fallen by 10% relative to an identical investment in the average non-nuclear utility. The risk of investments in nuclear power versus conventional generating technologies shows nuclear power to be a relatively risky investment. However, relative to all investments, nuclear power was less risky in terms of the type of risk that would cause investors to require a premium before purchasing their securities. 6 figures, 6 tables

  5. Space nuclear reactor power plants

    International Nuclear Information System (INIS)

    Buden, D.; Ranken, W.A.; Koenig, D.R.

    1980-01-01

    Requirements for electrical and propulsion power for space are expected to increase dramatically in the 1980s. Nuclear power is probably the only source for some deep space missions and a major competitor for many orbital missions, especially those at geosynchronous orbit. Because of the potential requirements, a technology program on space nuclear power plant components has been initiated by the Department of Energy. The missions that are foreseen, the current power plant concept, the technology program plan, and early key results are described

  6. Safety Management in Non-Nuclear Contexts. Examples from Swedish Railway Regulatory and Company Perspectives

    International Nuclear Information System (INIS)

    Salo, Ilkka; Svensson, Ola

    2005-06-01

    Nuclear power operations demand safe procedures. In the context of this report, safety management is considered as a key instrument to achieve safety in technology, organization and operations. Outside the area of nuclear operations there exist a number of other technological areas that also demand safe operations. From the perspective of knowledge management, there exists an enormous pool of safety experiences that may be possible to shear or reformulate from one context to another. From this point of view, it seems highly relevant to make efforts to utilize, and try to understand how safety in general is managed in other contexts. There is much to gain from such an approach, not at least from economical, societal, and systems points of views. Because of the vast diversity between technological areas and their operations, a common framework that allow elaboration with common concepts for understanding, must be generated. In preceding studies a number of steps have been taken towards finding such a general framework for modeling safety management. In an initial step a system theoretical framework was outlined. In subsequent steps central concepts from this framework has been applied and evaluated in relation to a number of non-nuclear organizations. The present report brings this intention one step further, and for the first time, a complete analysis of a system consisting of both the regulator and the licensee was carried out, in the above respects. This report focused the Swedish railway system, and the organizations studied were the Swedish Rail Agency (SRA) and SJ (the main rail traffic operator). The data used for this report consisted of various documents about the organizations, and interview data. This report is basically structured around three, more or less, independent studies that are presented in separate chapters. They are: the system theoretical framework that in the following chapters is applied to the two organizations, and one chapter each for the

  7. Close down nuclear power plants. Materials for nuclear power phaseout

    International Nuclear Information System (INIS)

    1986-07-01

    This is a brochure presented by the Greens in the Parliament of Baden-Wuerttemberg, Stuttgart, to document that it is possible for Baden-Wuerttemberg and, moreover, the entire Federal Republic of Germany to opt out of nuclear power immediately, and to show how this can be done. Most prominent in this context is a study worked out in connection with the bill for the nuclear-test ban. That study calculates the figures for two scenarios: scenario A is based on the immediate close-down of all nuclear power plants in 1986/87; the concept of scenario B is the immediate close-down of all nuclear power plants put into operation in 1980 at the latest, as well as the speedy closing-down step-by-step of all the remaining nuclear power plants until the beginning of the nineties. Opting out of nuclear energy must be accompanied also by changes in the energy economy in legal and structural regards. For that purpose, the programme for 'democratization and recommunalization of the energy economy' was designed. Opting out of nuclear energy finally presupposes a commitment to energy conservation techniques and to non-polluting, renewable energy sources. (orig./HSCH) [de

  8. Nuclear power and CO2

    International Nuclear Information System (INIS)

    Chawla, R.

    2005-01-01

    Temperatures in the atmosphere have risen by nearly one degree in the twentieth century. To contain changes in global climate and their consequences, worldwide emissions of CO 2 need to be curbed drastically in the future. Even if CO 2 emissions are not taken into account, nuclear power has no economic disadvantages compared to fossil fuels. On the basis of an amount of money per ton of carbon emitted, nuclear power is cheaper than coal and, in most cases, also than natural gas. Actually, the worldwide CO 2 problem and energy generation are part of the ongoing 'sustainability' debate. The following arguments, among others, used in the discussion show the sustainable character of nuclear power: - Comparison of the risks associated with major accidents for various sources of energy show nuclear power to be relatively free from hazard. - The introduction of fast breeders and other technical factors will make it possible to use nuclear fission as an important source of energy for many centuries. - The radiotoxicity of waste over very long periods of time can be influenced, for instance, by transmutation. The need to further develop CO 2 -free nuclear power has been recognized by many countries, among them Switzerland. The Generation IV International Forum (GIF) works towards developing a new generation of nuclear power plants by 2030. It will be the symbiosis of the new types of reactors with today's modern plants which finally will establish CO 2 -free nuclear fission as a sustainable cornerstone of energy generation worldwide. That nuclear power has this potential for further development must be acknowledged generally. (orig.)

  9. International nuclear power status 1994

    International Nuclear Information System (INIS)

    Hoejerup, C.F.; Majborn, B.; Oelgaard, P.L.

    1995-02-01

    This report is the first in a planned series of annual reports covering the international development in the field of nuclear power. The report deals with: statistical information on the electricity produced by nuclear power plants; major safety-related incidents in 1994; the development in Sweden, Eastern Europe, and the rest of the world; the trends of development of a number of reactor types; the trends of development in the fuel cycle. (au)

  10. Nuclear power: Issues and misunderstandings

    International Nuclear Information System (INIS)

    Rosen, M.

    2000-01-01

    A sizeable sector of the public remains hesitant or opposed to the use of nuclear power. With other groups claiming nuclear power has a legitimate role in energy programs, there is a need to openly and objectively discuss the concerns limiting its acceptance: the perceived health effects, the consequences of severe accidents, and the disposal of high level waste. This paper discusses these concerns using comparisons with other energy sources. (author)

  11. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-01-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics. (author)

  12. Is nuclear power safe enough

    International Nuclear Information System (INIS)

    Selberg, A.

    1979-01-01

    The vice-chairman of the Nuclear Power Safety Commission presents here the background for the Commission's work. He summarises informally the conclusions reached and quotes the minority dissensions. He also criticises many of the arguments made by anti-nuclear organisations. (JIW)

  13. The Swedish nuclear industry way to approach higher demands on characterisation prior to clearance

    International Nuclear Information System (INIS)

    Larsson, Arne; Hellsten, Erik; Berglund, Malin; Larsson, Lars

    2012-01-01

    The Swedish Radiation Safety Authority (SSM) has introduced new regulations for clearance SSMFS 2011:2 'Regulations concerning clearance of material, rooms, buildings and soil from activities with ionizing radiation'. The new regulations came into force January 1, 2012. Compared to the previous regulations these new regulations have a broader scope and have introduced new conditions such as nuclide specific clearance levels. Clearance is practiced to reduce the amount of radioactive waste generated. Cleared material can be reused, recycled or if these two possibilities are not available, disposed of as conventional waste. To be able to meet the requirements for clearance the Swedish nuclear industry has jointly developed guidance for clearance in the form of a handbook and a training course covering the competence requirements in the new regulations. The handbook was developed by a team of representatives from the Swedish nuclear license holders managed by Studsvik on behalf of Swedish Nuclear Fuel and Waste Management Company (SKB). The training program was developed in co-operation between Nuclear Safety and training Company (KSU) and Studsvik on behalf of the Swedish nuclear license holders. A major challenge in the adoption to the new regulations is how to provide robust yet cost effective characterisation data. This is especially difficult for mobile materials and equipment which cannot be fully tracked but also for other materials and areas where the nuclide fingerprint has varied over the years. To be able to deal with these issues a lot of attention has to be paid to the historical inventory records and traceability in the clearance process. Materials, rooms and buildings have been divided in four categories with different requirements on frequency and requirements of measurements. The categories are named 'extremely small risk', 'small risk', 'risk' and 'known contamination above clearance levels'. The two day training course is dived into seven parts

  14. Nuclear power in our societies

    International Nuclear Information System (INIS)

    Fardeau, J.C.

    2011-01-01

    Hiroshima, Chernobyl, Fukushima Daiichi are the well known sad milestones on the path toward a broad development of nuclear energy. They are so well known that they have blurred certainly for long in a very unfair way the positive image of nuclear energy in the public eye. The impact of the media appetite for disasters favours the fear and puts aside all the achievements of nuclear sciences like nuclear medicine for instance and all the assets of nuclear power like the quasi absence of greenhouse gas emission or its massive capacity to produce electricity or heat. The unique solution to enhance nuclear acceptance is the reduction of the fear through a better understanding of nuclear sciences by the public. (A.C.)

  15. Climate change and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  16. Nuclear power: levels of safety

    International Nuclear Information System (INIS)

    Lidsky, L.M.

    1988-01-01

    The rise and fall of the nuclear power industry in the United States is a well-documented story with enough socio-technological conflict to fill dozens of scholarly, and not so scholarly, books. Whatever the reasons for the situation we are now in, and no matter how we apportion the blame, the ultimate choice of whether to use nuclear power in this country is made by the utilities and by the public. Their choices are, finally, based on some form of risk-benefit analysis. Such analysis is done in well-documented and apparently logical form by the utilities and in a rather more inchoate but not necessarily less accurate form by the public. Nuclear power has failed in the United States because both the real and perceived risks outweigh the potential benefits. The national decision not to rely upon nuclear power in its present form is not an irrational one. A wide ranging public balancing of risk and benefit requires a classification of risk which is clear and believable for the public to be able to assess the risks associated with given technological structures. The qualitative four-level safety ladder provides such a framework. Nuclear reactors have been designed which fit clearly and demonstrably into each of the possible qualitative safety levels. Surprisingly, it appears that safer may also mean cheaper. The intellectual and technical prerequisites are in hand for an important national decision. Deployment of a qualitatively different second generation of nuclear reactors can have important benefits for the United States. Surprisingly, it may well be the nuclear establishment itself, with enormous investments of money and pride in the existing nuclear systems, that rejects second generation reactors. It may be that we will not have a second generation of reactors until the first generation of nuclear engineers and nuclear power advocates has retired

  17. Real issue with nuclear power

    International Nuclear Information System (INIS)

    Simpson, J.W.

    1976-01-01

    The voter referendums on nuclear power planned in some states can affect the energy supply and economic health of the public at large more than it affects the industry that provides nuclear power, the author states. He makes the point that those responsible for energy supplies in the U. S.--the President and all relevant Federal agencies, the majority of Congress, the national utility industry, major laboratories, universities and consulting firms, and other energy industries--all favor nuclear power. The complex U.S. energy situation is reviewed, and the hope of alternative energy sources, practice of energy conservation, and benefits of nuclear power are summarized. Specifically, the California Initiative and its three conditions which it says should dictate the future of nuclear power are reviewed. The author does not believe that the reasons that are usually given in opposing nuclear power are the real reasons. He states that ''it seems clear that the principal philosophy behind the initiatives is one of halting economic growth by striking at the energy source that would make that growth possible.'' Attention is called to the morality of nuclear power by asking where is the morality: in leaving future generations an insufficient amount of energy, limiting their abilities to solve the economic and employment problems; in squandering our finite supply of fossil fuels while ignoring nuclear fuels; in forcing the nation into further dependence on unpredictable foreign nations for its energy supply; in expecting other states to provide California with the energy that it does not want to generate itself; and in allowing an arbitrary limit on growth to be set by groups of political activists

  18. Hydrogen and nuclear power

    International Nuclear Information System (INIS)

    Holt, D.J.

    1976-12-01

    This study examines the influence that the market demand for hydrogen might have on the development of world nuclear capacity over the next few decades. In a nuclear economy, hydrogen appears to be the preferred energy carrier over electricity for most purposes, due to its ready substitution and usage for all energy needs, as well as its low transmission costs. The economic factors upon which any transition to hydrogen fuelling will be largely based are seen to be strongly dependent on the form of future energy demand, the energy resource base, and on the status of technology. Accordingly, the world energy economy is examined to identify the factors which might affect the future demand price structure for energy, and a survey of current estimates of world energy resources, particularly oil, gas, nuclear, and solar, is presented. Current and projected technologies for production and utilization of hydrogen are reviewed, together with rudimentary cost estimates. The relative economics are seen to favour production of hydrogen from fossil fuels far into the foreseeable future, and a clear case emerges for high temperature nuclear reactors in such process heat applications. An expanding industrial market for hydrogen, and near term uses in steelmaking and aircraft fuelling are foreseen, which would justify an important development effort towards nuclear penetration of that market. (author)

  19. Safety Management in Non-Nuclear Contexts. Examples from Swedish Railway Regulatory and Company Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Ilkka; Svensson, Ola (Risk Analysis, Social and Decision Research Unit, Dept. of Psychology, Stockholm Univ., Stockholm (Sweden))

    2005-06-15

    Nuclear power operations demand safe procedures. In the context of this report, safety management is considered as a key instrument to achieve safety in technology, organization and operations. Outside the area of nuclear operations there exist a number of other technological areas that also demand safe operations. From the perspective of knowledge management, there exists an enormous pool of safety experiences that may be possible to shear or reformulate from one context to another. From this point of view, it seems highly relevant to make efforts to utilize, and try to understand how safety in general is managed in other contexts. There is much to gain from such an approach, not at least from economical, societal, and systems points of views. Because of the vast diversity between technological areas and their operations, a common framework that allow elaboration with common concepts for understanding, must be generated. In preceding studies a number of steps have been taken towards finding such a general framework for modeling safety management. In an initial step a system theoretical framework was outlined. In subsequent steps central concepts from this framework has been applied and evaluated in relation to a number of non-nuclear organizations. The present report brings this intention one step further, and for the first time, a complete analysis of a system consisting of both the regulator and the licensee was carried out, in the above respects. This report focused the Swedish railway system, and the organizations studied were the Swedish Rail Agency (SRA) and SJ (the main rail traffic operator). The data used for this report consisted of various documents about the organizations, and interview data. This report is basically structured around three, more or less, independent studies that are presented in separate chapters. They are: the system theoretical framework that in the following chapters is applied to the two organizations, and one chapter each for the

  20. Nuclear Power and Sustainable Development

    International Nuclear Information System (INIS)

    2016-09-01

    Transforming the energy system is at the core of the dedicated sustainable development goal on energy within the new United Nations development agenda. This publication explores the possible contribution of nuclear energy to addressing the issues of sustainable development through a large selection of indicators. It reviews the characteristics of nuclear power in comparison with alternative sources of electricity supply, according to economic, social and environmental pillars of sustainability. The findings summarized in this publication will help the reader to consider, or reconsider, the contribution that can be made by the development and operation of nuclear power plants in contributing to more sustainable energy systems

  1. Power laws for nuclear observables

    Science.gov (United States)

    Peterson, R. J.

    2018-01-01

    Often mass-dependent nuclear observables are summarized by fits to a power law in the nuclear mass A , as proportional to Aα. In this work a simple justification of this usage is presented, also providing a simple expression for the exponent α , with one known parameter being the beam-nucleon total cross section and another parameter being a nuclear size r0A1 /3 . Measured power-law exponents α for total and reaction cross sections are near this simple formulation using r0=1.6 fm , whereas quasifree observables are near the simple expression using r0=1.2 fm .

  2. Canadian attitudes to nuclear power

    International Nuclear Information System (INIS)

    Davies, J.E.O.; Dobson, J.K.; Baril, R.G.

    1977-05-01

    A national assessment was made of public attitudes towards nuclear power, along with regional studies of the Maritimes and mid-western Canada and a study of Canadian policy-makers' views on nuclear energy. Public levels of knowledge about nuclear power are very low and there are marked regional differences. Opposition centers on questions of safety and is hard to mollify due to irrational fear and low institutional credibility. Canadians rate inflation as a higher priority problem than energy and see energy shortages as a future problem (within 5 years) and energy independence as a high priority policy. (E.C.B.)

  3. Nuclear power and public opinion

    International Nuclear Information System (INIS)

    1984-01-01

    The diversity of factors involved in nuclear power development and the complexity of public attitudes towards this source of energy have raised the nuclear debate to a topic of national significance in all the OECD countries with nuclear programmes and even in some countries which have not embarked on the nuclear course. This study examines the different experiences of seventeen member countries and underlines basic approaches and practices aimed at winning greater public acceptance for nuclear power. The first part of the study is a country-by-country presentation of public acceptance activities and the role of the various public or private bodies involved. There is also a description of the background energy situation and the place of nuclear power, the evolution of the nuclear debate and a review of present public and political attitudes to nuclear energy. In the second part, some of the notable factors which determine public attitudes to, and perception of, nuclear energy have been assembled. The study points, in particular, to a number of general principles which require continuous implementation, not least because they contribute to placing nuclear energy in its proper context for the public. Vigorous government leadership in making energy choices, long term efforts in energy education, and open information policies can go a long way towards resolving many doubts about nuclear energy in the public mind. But, perhaps, above all, it is the continuing demonstration of the safe and efficient industrial operation of plants in the nuclear fuel cycle which will have the strongest influence on public opinion. In addition to these basic principles, the study calls attention to some of the most successful means of improving communication between the authorities and the public, notably at the local level. The contribution to the decision-making process of public participation is also evaluated in the light of recent national experiences

  4. Nuclear power without joy

    International Nuclear Information System (INIS)

    Baetjer, K.; Hartmeier, H.D.

    1978-01-01

    A partial report against the peaceful application of nuclear energy without exact details of literature quotation. Escape rates from NPPs and WAAs are changed with slogans such as 'enourmously big' or 'the radioactivity escaping into the air and water an increasing extermination is threatening the peoples of the world'. The end with the words 'one of the pre-conditions is the elimination of the distinguishing between knowing and unknowing people and the exploitation of both as a privilege of the ruling persons' shows that it is not the authors' concern to show the problems of nuclear energy in an objective way but to knowingly raise emotions. This is a contribution to the nuclear controversy which makes the gap between pros and cons even bigger. (GL) [de

  5. Women and nuclear power

    International Nuclear Information System (INIS)

    Aegerter, Irene

    1989-01-01

    Surveys in most countries show, that women's attitude towards nuclear energy differ quite a bit from that of men. Why is this so and what can be done about it? The difference is that a cigarette is a familiar risk. But only few women are familiar with nuclear risks, especially radioactivity, be it scientifically or emotionally. Women in general are less inclined to technical subjects. Technical matters still are male. Technical issues are - by education and in schools - (at least in Switzerland) no female subjects. Therefore we have to change this in order to change women's attitudes towards technical subjects. How can women become more technology-oriented?

  6. Nuclear power and public opinion

    International Nuclear Information System (INIS)

    Kazanikov, I.A.; Klykov, S.A.

    2000-01-01

    The public opinion on Nuclear Power is not favorable. A purposeful work with public perception is necessary. One way to create a positive image of the nuclear industry is to improve public radiological education. This challenge can be resolved in the close cooperation with state school and preschool education. The formation about nuclear power should be simple and symbolical. Our society can be divided into 4 parts which can be called as target groups: First group - People from the nuclear industry with special education working at nuclear facilities or related to the industry. Second group - People working in the fields connected with nuclear power. Third group - People not related to nuclear power or even with negative impression to the industry. This group is the largest and the work required is the most difficult. Fourth group - The number of this group's members is the least, but it has strong influence on public opinion. 'Greens' and a broad spectrum of ecological organizations can be included in this group. (Authors)

  7. Risk assessment and nuclear power

    International Nuclear Information System (INIS)

    Bodansky, D.

    1982-01-01

    The range of risk perceptions involving nuclear power is so great that there is little hope of bridging extreme positions, but a consensus based upon reasoned discussion among uncommitted people could determine a sensible path. Our concerns over the uncertainties of risk assessment have made it increasingly difficult to make responsible decisions fast enough to deal with modern needs. The result is an immobility in energy matters that can point to a 2% reduction in oil use as its only triumph. The risk of nuclear war as a result of military action over energy issues suggests to some that the solution is to abolish nuclear power (however impractical) and to others that a rapid spread of nuclear power will eliminate energy as an incentive for war. If nuclear war is the major risk to consider, risk assessments need to include the risks of war, as well as those of carbon dioxide buildup and socio-economic disruptions, all of which loom larger than the risks of nuclear-plant accidents. Energy choices should be aimed at diminishing these major risks, even if they include the use of nuclear power. 26 references

  8. The ethical justification of nuclear power

    International Nuclear Information System (INIS)

    Van Wyk, J.H.

    1985-01-01

    This study pamphlet deals with the questions of ethics, nuclear power and the ethical justification of nuclear power. Nuclear power is not only used for warfare but also in a peaceful way. Ethical questions deal with the use of nuclear weapons. Firstly, a broad discussion of the different types of ethics is given. Secondly, the peaceful uses of nuclear power, such as nuclear power plants, are discussed. In the last place the application of nuclear power in warfare and its disadvantages are discussed. The author came to the conclusion that the use of nuclear power in warfare is in contrary with all Christian ethics

  9. Delegated democracy. Siting selection for the Swedish nuclear waste; Demokrati paa delegation. Lokaliseringen av det svenska kaernavfallet

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia

    2008-11-15

    The present study concerns the siting of the Swedish nuclear waste repository. Four cases are examined: the feasibility studies in Nykoeping and Tierp (cases 1 and 2), as well as three public consultation meetings with conservationist and environmental organisations, and two study visits to nuclear facilities in Oskarshamn and Oesthammar, which were held during what is called the site-investigation phase (cases 3 and 4). The Swedish Nuclear Fuel and Waste Management Co (SKB) began the search for a nuclear waste site in the 1970s. Since 1992 SKB has conducted feasibility studies in eight municipalities, including in the four municipalities mentioned above. At the present time more comprehensive site investigations are underway in Oskarshamn and Oesthammar, two municipalities that already host nuclear power plants as well as storages for nuclear waste. In addition to SKB and the municipalities involved in the site-selection process, politicians, opinion groups, concerned members of the public, and oversight bodies are important actors. The analysis of the cases employs the concepts of 'sub-politics', 'boundary work', and 'expertise', together with the four models of democracy 'representative democracy', participatory democracy', 'deliberative democracy', and 'technocracy'. The aim of the study is to describe the characteristics of Swedish democracy in relation to the disposal of Swedish nuclear waste. The main questions of the study are: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? and Which democratic ideals were influential during the feasibility studies and in the consultation process? The study is based on qualitative methods, and the source materials consist of documents, interviews, and participant observations. In summary, the form of democracy that emerges in the four case

  10. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Laue, H.J.; Bennett, L.L.; Skjoeldebrand, R.

    1984-01-01

    Experience clearly indicates that most developing countries actively planning and implementing nuclear power require broad-scope assistance if their use of nuclear technology is to be safe, economic, and reliable. The IAEA's assistance is directed both to general planning, and to the development of supporting structures and is based on an assessment of needs which cannot be satisfied by other means. The Agency's Division of Nuclear Power has the technical background and tools to support a comprehensive programme of assistance in nuclear power assessment, planning, and implementation. The overall objective of such a programme is to help strengthen national capabilities of executing the following tasks: Analysis of overall energy and electricity demand and supply projections; planning the possible role of nuclear power in electricity supply, through determining the economically optimal extent and schedule for the introduction of nuclear power plants; assessing the available infrastructures and the need, constraints, and possibilities for their development; and developing master schedules, programmes, and recommendations for action. Proposed programmes must be reviewed periodically, and one of the Agency's aims is to ensure that national competence to carry out such reviews exists or can be developed. Training of local staff is therefore one of the most important objectives

  11. Climate change and nuclear power

    International Nuclear Information System (INIS)

    2000-11-01

    Today, the nuclear power industry is an established, experienced industry that generates one sixth of the world's electricity, one fifth of the USA's, and almost one third of Western Europe's. The recent SIRES scenarios highlight that, even in the absence of policies to limit GHG emissions, meeting the energy needs and economic development aspirations of the 21st century will require the full range of energy supply options available including nuclear power. None of the world's available energy supplies should be excluded. Fossil, nuclear, and renewable resources are all large, and the future evolution of the world's energy system is less likely to be determined by resource constraints than by active choices made by governments, the private sector, and individuals. Nuclear power has the potential to fill a substantial part of the gap between where emissions from Annex I countries are now headed, and where they are required to be in 2008-2012 according to the Kyoto Protocol. If the CDM is taken into account, nuclear power's potential approximately doubles. And if the path charted by the Kyoto Protocol is to continue beyond the 2008-2012 commitment window, the potential importance of nuclear power only grows. The best chance for sustainable development - for meeting the needs of the present generation without compromising the ability of future generations to meet their needs - lies in allowing all energy supply options to compete, improve, and contribute on a level playing field directly on the basis of cost-effectiveness, environmental protection, and safety

  12. Nuclear power for developing countries

    International Nuclear Information System (INIS)

    Kendall, J.; Kupitz, J.; Rogner, H. H.

    2000-01-01

    Nuclear power is a proven technology which currently makes a large contribution to the electricity supply in a number of countries and, to a much less extent, to heat supply in some countries. Nuclear power is economically competitive with fossil fuels for base load electricity generation in many countries, and is one of the commercially proven energy supply options that could be expanded in the future to reduce environmental burdens, especially greenhouse gas emissions, from the electricity sector. Over the past five decades, nearly ten thousand reactor-years of operating experience have been accumulated with current nuclear power plants. Building upon this background of success and applying lessons learned from the experience of operating plants, new generations of nuclear power plants have been, or are being developed. Improvements incorporated into these advance designs include features that will allow operators more time to perform equipment protection and safety actions in response to equipment failures and other off normal operating conditions, and that will reduce and simplify the actions required. Great attention is also paid to making new plants simpler to operate, inspect, maintain and repair, thus increasing their overall cost efficiency and their compatibility with the infrastructure of developing countries. The paper provides a discussion of future world energy supply and demand projections, current status and prospects for nuclear power, a short summary of advanced reactor concepts and non-electrical applications of nuclear energy for developing countries, and a review of the role of the IAEA. (author)

  13. Nuclear Power and Sustainable Development

    International Nuclear Information System (INIS)

    2006-04-01

    Any discussion of 21st century energy trends must take into account the global energy imbalance. Roughly 1.6 billion people still lack access to modern energy services, and few aspects of development - whether related to living standards, health care or industrial productivity - can take place without the requisite supply of energy. As we look to the century before us, the growth in energy demand will be substantial, and 'connecting the unconnected' will be a key to progress. Another challenge will be sustainability. How can we meet these growing energy needs without creating negative side effects that could compromise the living environment of future generations? Nuclear power is not a 'fix-all' option. It is a choice that has a place among the mix of solutions, and expectations for the expanding use of nuclear power are rising. In addition to the growth in demand, these expectations are driven by energy security concerns, nuclear power's low greenhouse gas emissions, and the sustained strong performance of nuclear plants. Each country must make its own energy choices; one size does not fit all. But for those countries interested in making nuclear power part of their sustainable development strategies, it is important that the nuclear power option be kept open and accessible

  14. On Gas Versus Nuclear Power

    International Nuclear Information System (INIS)

    Volkanovski, A.

    2002-01-01

    To be a sustainable source of energy, nuclear energy will have to compete with the alternatives. Deregulation in the electricity sector and the advent of low-cost high-efficiency gas turbines that can be placed into service in a few years represent formidable competition for nuclear power plants. In this paper is given evaluation between gas and nuclear power plants as a options for future development of electricity production sector, taking account capital costs, fuel costs, environmental issues and current situation on world electricity generation market and future development of it. Paper compares these generation candidates as a future development options for Macedonian power system. Macedonia as a small continental country with limited reserves of domestic fossil fuels has very small choice of energy resources. Therefore, the competitive between natural gas and nuclear option will be the only solution for the base electricity generation in Macedonia for the first few decades in this century. (author)

  15. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    1997-11-01

    Although there is an awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favoured option in a sustainable energy future. A sizeable sector of public opinion remains hesitant or opposed to its increased use, some even to a continuation at present levels. With various groups calling for a role for nuclear power, there is a need openly and objectively to discuss the concerns that limit its acceptance: the perceived health effects, the consequences of severe accidents, the disposal of high level waste and nuclear proliferation. This brochure discusses these concerns, and also the distinct advantages of nuclear power. Extensive comparisons with other energy sources are made

  16. Seawater desalination with nuclear power

    International Nuclear Information System (INIS)

    2005-01-01

    Nuclear power helps reduce costs for energy-intensive processes such as seawater desalination. A new generation of innovative small and medium nuclear power plants could co-generate electricity and potable water from seawater, both safely and at competitive prices in today's market. The IAEA provides technical support to Member States facing water shortage problems, on assessing the viability of nuclear power in seawater desalination. The support, usually channelled through national Technical Cooperation (TC) projects, can take several forms, ranging from educational training and technical advice on feasibility studies to design and safety review of demonstration projects. The IAEA offers a software tool (DEEP) that can be used to evaluate the economics of the different desalination and heat source configurations, including nuclear and fossil options

  17. Public attitudes to nuclear power

    International Nuclear Information System (INIS)

    Hill, John.

    1981-06-01

    The public is influenced against nuclear power by fear of a large accident, fear of radiation, worry about nuclear waste, and by the fact that it is a symbol of the bureaucratic, impersonal aspects of industrialized society. The nuclear industry must do several things to overcome this public concern. It must be more articulate in speaking to the public in a language the public understands and not in nuclear jargon; it must be strictly accurate and truthful in all statements, and if it believes the case it is putting forward is sound, it should defend the proposal and not promise to do even more to buy off criticism. Acceptance of nuclear power will either have to wait until the energy situation is desperate, or until the industry puts enough effort into presenting and defending its case to convince all objective people

  18. Nuclear waste - research and technique development. KASAMS's Review of the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RD and D Programme 2001

    International Nuclear Information System (INIS)

    2002-01-01

    This report is KASAM's review statement to the Government on the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RD and D Programme 2001. KASAM's review was primarily conducted through work by KASAM's members, special adviser, experts and secretary. In KASAM's opinion, the reactor owners, through RD and D Programme 2001, have complied with the requirements of paragraph 12 of the Act on Nuclear Activities. In KASAM's opinion, SKB's research and development programme shows great merit. This applies to both what SKB has done and what it intends to do. The report is well-structured and clear. RD and D Programme 2001 shows that there is still a considerable need for development work in a number of important technical areas. This applies, for example, to the fabrication and sealing of canisters as well as control methods for these activities. Within other areas, for example, geology, chemistry, hydrology, biology and rock mechanics, there is also a great need for further research and development work, and for practical demonstrations of technical applications. In KASAM's opinion, humanities and social science issues, that are of importance for the disposal of nuclear waste, should be accorded greater attention. In Chapter 14, KASAM has presented a proposal for how research in these areas can be organised and financed. KASAM emphasizes that future RD and D programmes should have a broad scientific basis in order to comply with the requirements of the Act on Nuclear Activities regarding comprehensiveness. In their review statements on RD and D Programme 2001, the Swedish Nuclear Power Inspectorate (SKI) and the Swedish Radiation Protection Authority (SSI) have proposed that SKB should be required to present a strategy document which should be kept updated. In KASAM's opinion, such a report of current strategic issues should be made available to the public and other parties concerned. KASAM also believes that such a documentation of strategy issues should be

  19. LDC nuclear power: Indonesia

    International Nuclear Information System (INIS)

    Poneman, D.B.

    1982-01-01

    Indonesia's five-year plan to develop a research reactor is still in the feasibility stage of a policy to minimize domestic oil consumption. The evolution of a nuclear program in Indonesia illustrates the importance of strong political leadership in developing countries which lack technical skills and political and economic stability and the need for strong international support. 39 references

  20. Topics in nuclear power

    International Nuclear Information System (INIS)

    Budnitz, Robert J.

    2015-01-01

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of 'significant events' since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its 'lessons learned' have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come

  1. Nuclear power: in perspective

    International Nuclear Information System (INIS)

    Agnew, H.M.

    1980-01-01

    Dr. Agnew, former director of Los Alamos Scientific Lab., observes that modern communications have made the over-populated and less-developed countries impatient to have the energy-intensive living standards enjoyed by Europe and the US. More cartels can be expected, he feels, to give these people economic leverage unless they are supplied with cheap, available energy. He notes that all energy sources, including nuclear, have a role and must be developed. The economic and environmental impacts of nuclear energy compare favorably with other major energy sources, but the public neds to be given factual rather than sensational information about nuclear energy so that realistic comparisons can be made. Dr. Agnew points to new types of reactors for land-based facilities that can be designed and that will be safer than the water-cooled design and eliminate some risks. He also finds fuel reprocessing removing some risks, in contrast to the failing nonproliferation policy. He admonishes opponents of nuclear energy to recognize that their position has serious social and economic implications for developing countries and possibly grave political and security repercussions for the US

  2. The first Swedish nuclear reactor - from technical prototype to scientific instrument

    International Nuclear Information System (INIS)

    Fjaestad, M.

    2001-01-01

    The first Swedish reactor R1, constructed at the Royal Inst. of Technology in Stockholm, went critical in July 1954. This report presents historical aspects of the reactor, in particular about the reactor as a research instrument and a centre for physical science. The tensions between its role as a prototype and a step in the development of power reactors and that as a scientific instrument are especially focused

  3. Permit processes for nuclear power. International lessons

    International Nuclear Information System (INIS)

    Gaahlin, Emil; Nilsson, Isabelle; Pettersson, Maria; Soederholm, Patrik

    2010-01-01

    The overall objective of this report is to analyze and compare the legal permitting and planning process for (first and foremost) new nuclear power stations in a number of selected countries. In this way the report provides relevant knowledge that could form the basis for discussing the efficiency of various national licensing processes (include the Swedish one). The study builds heavily on the analysis of legal documents and regulations, and addresses both the formal requirements for licensing and territorial planning procedures as well as the issues of public participation and access to justice in the respective countries. In addition to this legal approach, however, we also adopt an investor's perspective on the legislation, i.e., an analysis of the legal rules can influence investment decisions in practice. Furthermore, the study relies largely on a synthesis of previous studies as well as interviews with researchers, electricity companies and government officials in Sweden and abroad. The countries that are compared include Sweden, Finland, France, Canada, Switzerland, Great Britain, USA and South Korea. These include those that currently invest in new nuclear power as well as those who have recently reformed their plant permitting processes. The analysis highlights important differences among the various countries, including issues such as the political influence on the licensing process, the allocation of political power between the national and local levels, means of interacting with regular citizens, and the overall transparency and predictability of the legislation. Some selected practical experiences of the current legislation are also presented. The report first provides a short background to the role and the status of nuclear power in the global energy system, and we then present a rather comprehensive comparison of the permitting processes in the above countries. Each country section comprises a short background, a presentation of the existing

  4. Pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Ogura, Shiro

    1979-01-01

    16 nuclear power plants are in commercial operation in Japan, and nuclear power generation holds the most important position among various substitute energies. Hereafter also, it is expected that the construction of nuclear power stations will continue because other advantageous energy sources are not found. In this paper, the outline of the pumps used for BWR plants is described. Nuclear power stations tend to be large scale to reduce the construction cost per unit power output, therefore the pumps used are those of large capacity. The conditions to be taken in consideration are high temperature, high pressure, radioactive fluids, high reliability, hydrodynamic performances, aseismatic design, relevant laws and regulations, and quality assurance. Pumps are used for reactor recirculation system, control rod driving hydraulic system, boric acid solution injecting system, reactor coolant purifying system, fuel pool cooling and purifying system, residual heat removing system, low pressure and high pressure core spraying systems, and reactor isolation cooling system, for condensate, feed water, drain and circulating water systems of turbines, for fresh water, sea water, make-up water and fire fighting services, and for radioactive waste treating system. The problems of the pumps used for nuclear power stations are described, for example, the requirement of high reliability, the measures to radioactivity and the aseismatic design. (Kako, I.)

  5. Environmental aspects of nuclear power

    International Nuclear Information System (INIS)

    Ward, D.P.

    1987-01-01

    Nuclear power provides the world with an important option for generating electricity. To successfully and safely utilize this power, engineering and environmental factors should be carefully considered throughout a nuclear power plant project, especially during the planning stages. This paper discusses the major environmental aspects of a nuclear power plant project from site selection to retirement. During the site selection process, both engineering and environmental resources must be identified and evaluated. Environmental resources include areas that support agricultural or aquatic commercial activities, habitats for commercial or endangered species, population centers, transportation systems, and recreational areas. Also, during the site selection process, the potential impacts of both construction and operating activities must be considered. In addition to the area actually disturbed by construction, construction activities also affect local services, such as transportation systems, housing, school systems, and other social services. Since nuclear power plants use a 'clean fuel,' generally the most significant operating activity having a potential environmental impact is the discharge of cooling water. The potential effect of this discharge on commercial activities and sensitive habitats should be thoroughly evaluated. Lastly, the method of decommissioning can affect long-range land use planning and should therefore be considered during the planning process. With appropriate planning, nuclear power plants can be constructed and operated with minimum environmental impact. (author)

  6. Starting of nuclear power stations

    International Nuclear Information System (INIS)

    Kotyza, V.

    1988-01-01

    The procedure is briefly characterized of jobs in nuclear power plant start-up and the differences are pointed out from those used in conventional power generation. Pressure tests are described oriented to tightness, tests of the secondary circuit and of the individual nodes and facilities. The possibility is shown of increased efficiency of such jobs on an example of the hydraulic tests of the second unit of the Dukovany nuclear power plant where the second and the third stages were combined in the so-colled integrated hydraulic test. (Z.M.). 5 figs

  7. Nuclear power: the future reassessed

    International Nuclear Information System (INIS)

    Roberts, L.

    1991-01-01

    In recommending that consent be given for the construction of a further Pressurized Water Reactor at Hinkley Point in Somerset, UK, the Inspector at the Public Inquiry underlined two major benefits: (i) the contribution an additional large nuclear plant would make to the strategic objective of diversity of supply, and (ii) the environmental benefits of nuclear power compared to many alternative forms of electricity generation. The major environmental advantages of nuclear power over fossil fuel combustion arise both because of the small amounts of fuel required - 1/18,000 compared to coal - thus minimizing transport needs and land use, and because of the virtual absence of atmospheric emissions from nuclear stations. Nuclear reactors emit no acid gases and the nuclear fuel cycle gives rise to only small amounts of carbon dioxide. An expansion of the nuclear option is often opposed on three grounds; the need to dispose of radioactive waste; the danger of the proliferation of nuclear weapons and the risk of a large scale accident. However all these doubts can be answered and the arguments supporting nuclear safety are summarized. It is argued that the contribution to primary energy demand in Europe could be doubled or trebled by 2020 with considerable benefits in overall safety environmental impacts at no extra cost. (author)

  8. Supervision of Waste Management and Environmental Protection at the Swedish Nuclear Facilities 2001; Avfall och miljoe vid de kaerntekniska anlaeggningarna. Tillsynsrapport 2001

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Monica [and others

    2003-01-01

    The report summarizes the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Authority in 2001. A summary of the inspections and a description of important issues connected with the supervision of the nuclear facilities are given.The inspections during 2001 have focused on theme inspections of waste management, environmental inspections considering the environmental monitoring at the Swedish nuclear facilities and review safety analysis and research programs from the Swedish Nuclear Fuel and Waste Management Co.The Swedish Radiation Protection Authority finds that the operations are mainly performed according to current regulations.

  9. Nuclear power in Sweden today

    International Nuclear Information System (INIS)

    Tarasov, V.M.

    1989-01-01

    Realization of the Sweden program concerning the elimination by 2010 of the nuclear power (NP) is discussed. NP rejection causes a 50% increase in cost of electric power for the population and a 100% one - for industrial enterpoises. The power industry structure is going to change. Minor fossil fuel TPPs and wind plants will be mainly developed. The state economy will also be changed as the NP rejection results in NPP decommissioning in industrial regions of Sweden

  10. Management by regulatory inspection authorities of experience gained from safety related occurrences in nuclear power plants

    International Nuclear Information System (INIS)

    Tore, E.; Nilsson, R.

    1977-01-01

    A short description is given of the system used by the Swedish Nuclear Power Inspectorate to collect information of events occurring in nuclear power plants. The standard forms used by the utilities when reporting the events are described and a motivation given to their lay-out. The evaluation routine is defined and statistics given of events which occurred during the period July 1 1974 to December 31 1976. (author)

  11. 2010 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    At the end of 2010, 443 nuclear power plants were available for energy supply in 30 countries of the world. This are 6 plants more than at the end of 2009. The aggregate gross power of the plants amounted to approx. 396,118 MWe, the aggregate net power, to 375,947 MWe. This capacity numbers are a little bit more than one year before (gross: 391,551 MWe, net: 371,331 MWe). Six unites were commissioned in 2010; 2 units in China and India each and one unit in the Republic of Korea and Russia each. One unit, the Fast Breeder Pilot Reactor Monju in Japan, was connected to the grid after a long-term shutdown. One nuclear power plant, the Prototype Fast Breeder Reactor Phenix in France, was shut down permanently in 2010. 62 nuclear generating units, i.e. 9 plants more than at the end of 2009, were under construction in late 2010 in 15 countries with an aggregate gross power of approx. 63,998 MWe. Worldwide, some 90 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 120 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2010 achieved another reasonable ranking level of approx. 2,627.5 billion kWh (2009: approx. 2,558 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 63,100 billion kWh, and operating experience has grown to some 14,400 reactor years. (orig.)

  12. Church and nuclear power

    International Nuclear Information System (INIS)

    Stoll, W.; Seif, K.P.

    1982-01-01

    This position paper is the result of talks conducted by natural scientists and engineers with ethical specialists and theologists in 1980/81. To cope with the difficulty of the authenticity of ecclesiastical statements, the report was worked out as an independent paper giving not only a negative response to past ecclesiastical pronouncements but taking a stand regarding nuclear energy from the point of view of the natural sciences respectively technology. As it was not possible to reach agreement in all points, the partners in the talks consider this position paper to be a statement on nuclear energy by natural scientists and engineers grown from the discussions with ethical specialists and theologists. The partners in the discussions agree that this can only be a first step. (orig./HSCH) [de

  13. Nuclear power and health

    International Nuclear Information System (INIS)

    Borsch, P.; Muench, E.; Paschke, M.

    1988-01-01

    In the focus of the nuclear energy discussion in the FRG was and still is the damaging effect of ionizing radiation on the life and health of man which, in the population, is an indistinct fear. In the foreground mostly is the possible exposure to radiation of personnel and people living near nuclear plants. The booklet contains statements, often also from the medical sector, and their analysis by radiation biologists and physicists. In order to verify these statement, an extensive bibliography is given. For argumentation important tables and illustrations were taken from the sources and appended to the individual analyses. For quick reference to interesting topics an extensive index was set up. It is the aim of the booklet to provide physicians and those interested with information and with the possibility of weighing arguments, evaluating scientific results and forming individual opinions. (orig./HSCH) [de

  14. LDC nuclear power: Venezuela

    International Nuclear Information System (INIS)

    Roche, M.

    1982-01-01

    Venezuela had an aggressive nuclear program when it was under a dictatorship in the 1950s, but it is currently assuming a wait-and-see stance. The country has one small research reactor, but it may have a reactor on-line in the mid-1990s. CONADIN, Venezuela's nuclear energy planning agency, has commissioned feasibility studies and requested proposals for a reactor-siting survey. A recent study for the Venezuelan state oil company suggests tha a natural-uranium, gas-cooled reactor could provide process steam to extract oil from the bituminous tar sands of the Orinoco Basin. Venezuela is also exploring for uranium reserves. 23 references, 1 figure, 2 tables

  15. Nuclear power and hydrogen

    International Nuclear Information System (INIS)

    Welch, Robert.

    1982-06-01

    Ontario has been using CANDU reactors to produce electricity since 1962. The province does not have an electricity shortage, but it does have a shortage of liquid fuels. The government of Ontario is encouraging research into the production of hydrogen using electricity generated by a dedicated nuclear plant, and the safe and economical use of hydrogen both in the production of synthetic petroleum fuels and as a fuel in its own right

  16. Nuclear power and the public

    International Nuclear Information System (INIS)

    Mueller, W.D.

    1977-01-01

    On the occasion of the 1976 Assembly of the Members of the Deutsches Atomforum at Bonn the Editor-in-chief of the atomwirtschaft, W.D. Mueller, was awarded the Karl Winnacker Prize for special services rendered to promote public understanding of the peaceful uses of atomic energy. In his speech the prizewinner discussed basic problems of the relations between the public and nuclear power. In his analysis he pointed out that the nuclear community itself was to blame for much of the deterioration of relations compared with the early years of nuclear power, because it had offered factual information only as instruction and education. Nuclear power would be accepted by the public only if confidence could be restored in the men working for the utilization of nuclear power. This could not be done by public relations activities only but, above all, by a dedicated effort of all those responsible for the uses of nuclear energy in science and technology, in the utilities and in industry, and also in government organizations. (orig.) [de

  17. The abuse of nuclear power

    International Nuclear Information System (INIS)

    Hill, J.

    1976-01-01

    This paper reproduces an address by Sir John Hill, Chairman of the United Kingdom Atomic Energy Authority, at a conference in London organised by the Financial Times in July 1976. Actions that, in the author's view, could be regarded as constituting abuse of nuclear power are first summarised, and the various aspects of the use and abuse of nuclear power are discussed. The author considers that achieving the maximum degree of acceptance of the Non-Proliferation Treaty is the most important political objective in nuclear power, but considers that nuclear terrorism would be abortive and that, so far as the UK is concerned, the present precautions are adequate and will remain so. It is considered that much abuse of nuclear power arises from the prevalence of its critics, particularly with reference to Pu hazards, the health of nuclear employees, and possible damage to the health of the public. The Pu problem is considered to be far more emotive than rational. The possibility of lung cancer and leukaemia is discussed. It is concluded that atomic energy is one of the best of industries in which to work, both from the health and interest points of view. (U.K.)

  18. World nuclear power plant capacity

    International Nuclear Information System (INIS)

    1991-01-01

    This report provides the background information for statistics and analysis developed by NUKEM in its monthly Market Report on the Nuclear Fuel Cycle. The assessments in this Special Report are based on the continuous review of individual nuclear power plant projects. This Special Report begins with tables summarizing a variety of nuclear power generating capacity statistics for 1990. It continues with a brief review of the year's major events regarding each country's nuclear power program. The standard NUKEM Market Report tables on nuclear plant capacity are given on pages 24 and 25. Owing to space limitations, the first year shown is 1988. Please refer to previous Special Reports for data covering earlier years. Detailed tables for each country list all existing plants as well as those expected by NUKEM to be in commercial operation by the end of 2005. An Appendix containing a list of abbreviations can be found starting on page 56. Only nuclear power plants intended for civilian use are included in this Special Report. Reactor lifetimes are assumed to be 35 years for all light water reactors and 30 years for all other reactor types, unless other data or definite decommissioning dates have been published by the operators. (orig./UA) [de

  19. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  20. Nuclear power data; Kernenergie in Zahlen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    The report ''nuclear power data'' includes data on the following issues: nuclear power plants in Germany including their operational characteristics, gross data on electricity generation in Germany, primary energy consumption in Germany, nuclear power plants worldwide, top ten nuclear power plants worldwide with respect to electricity generation in 2012.

  1. Nuclear power: a year of incongruities

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    An increase in nuclear power production in 1986, 5% ahead of 1985's record production, must be weighted against the April 1986 accident at the Soviet nuclear reactor at Chernobyl, the worst accident in the history of commercial nuclear power

  2. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  3. The future of nuclear power

    International Nuclear Information System (INIS)

    Maichel, G.

    2001-01-01

    The market and competition, political boundary conditions, ecological boundary conditions, science and technology as well as international aspects are factors decisive in the future use of nuclear power. The agreement reached between the federal government and the power utilities in June 2000 represents a workable compromise - without winners or losers - in a situation in which action was urgently required. Once the agreement has been put into effect by legislators and the executive, operation of the nuclear power plants still on stream can be continued on a long term basis under safe boundary conditions. This requires an amendment to the Atomic Energy Act reflecting the sense of the agreement reached, the constructive inclusion of the federal states, and the immediate, legally assured execution of necessary transports of spent fuel and the construction of on-site stores for spent fuel. In the common interest, the question of final storage should not suffer from politically motivated delays. Factors favoring the further use of nuclear power continue to be mainly ecological and economic ones. The economic performance of plants is being documented very clearly, especially in the course of the deregulation of the electricity market, and the objective of finding a power supply system which protects the climate seems to be attainable only by nuclear power also in countries other than Germany. In the course of globalization, and in the light of thoughts about building new nuclear power plants also in European countries, it must also be in the public interest to preserve competence in nuclear technology, together with a capable infrastructure, in Germany. In addition, strengthening research and development is important in securing the future technical performance capability of Germany. (orig.) [de

  4. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  5. Model integration and the economics of nuclear power

    International Nuclear Information System (INIS)

    Lundgren, S.

    1985-01-01

    The author proposes and applies a specific approach to model integration, i.e. the merger of two or several independently developed models. The approach is intended for integrations of activity analysis sector models and applied general equilibrium models. Model integration makes it possible to extend the range of applicability of applied general equilibrium models by exploiting the information contained in sector models. It also makes it possible to evaluate the validity of the partial equilibrium analyses in which sector models often are employed. The proposed approach is used to integrate a sector model of electricity and heat production with a general equilibrium model of the Swedish economy. Both models have been constructed within the research programme. The author uses the integrated model to look at two issues concerning the role of nuclear power on the Swedish electricity market: What are the likely consequences of a nuclear power discontinuation and how does the nuclear power investment programme of the 1970's and the early 1980's compare with a socially efficient one. (Author)

  6. Nuclear power's changing picture

    International Nuclear Information System (INIS)

    ElBaradei, Mohamed; )

    2007-01-01

    Energy is essential for development. Nearly every aspect of development - from reducing poverty to improving health-care requires reliable access to modern energy services. When these developments needs remain unaddressed, the resulting misery often leads to conflict and violence, which in turn affect development efforts and impact on regional and global stability. In this context, it is important to consider the global energy imbalance. Naturally, nuclear energy alone is not a panacea, but it is likely in the near future to have an increasing role as part of the global energy mix

  7. Nuclear stopping power of antiprotons

    Science.gov (United States)

    Nordlund, Kai; Sundholm, Dage; Pyykkö, Pekka; Zambrano, Daniel Martinez; Djurabekova, Flyura

    2017-10-01

    The slowing down of energetic ions in materials is determined by the nuclear and electronic stopping powers. Both of these have been studied extensively for ordinary-matter ions. For antiprotons, however, there are numerous studies of the electronic stopping power, but none of the nuclear stopping power. Here, we use quantum-chemical methods to calculate interparticle potentials between antiprotons and different atoms, and derive from these the nuclear stopping power of antiprotons in solids. The results show that the antiproton nuclear stopping powers are much stronger than those of protons, and can also be stronger than the electronic stopping power at the lowest energies. The interparticle potentials are also implemented in a molecular dynamics ion range calculation code, which allows us to simulate antiproton transmission through degrader foil materials. Foil transmission simulations carried out at experimentally relevant conditions show that the choice of antiproton-atom interaction model has a large effect on the predicted yield of antiprotons slowed down to low (a few keV) energies.

  8. Recent space nuclear power systems

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Yasuda, Hideshi; Hishida, Makoto

    1991-01-01

    For the advance of mankind into the space, the power sources of large output are indispensable, and it has been considered that atomic energy is promising as compared with solar energy and others. Accordingly in USA and USSR, the development of the nuclear power generation systems for space use has been carried out since considerable years ago. In this report, the general features of space nuclear reactors are shown, and by taking the system for the SP-100 project being carried out in USA as the example, the contents of the recent design regarding the safety as an important factor are discussed. Moreover, as the examples of utilizing space nuclear reactors, the concepts of the power source for the base on the moon, the sources of propulsive power for the rockets used for Mars exploration and others, the remote power transmission system by laser in the space and so on are explained. In September, 1988, the launching of a space shuttle of USA was resumed, and the Jupiter explorer 'Galileo' and the space telescope 'Hubble' were successfully launched. The space station 'Mir' of USSR has been used since February, 1986. The history of the development of the nuclear power generation systems for space use is described. (K.I.)

  9. The cost of nuclear power

    International Nuclear Information System (INIS)

    Guinness, J.R.S.; Myerscough, C.J.; Curran, D.; Wilcock, C.C.

    1990-01-01

    This paper starts with a memorandum sent in February 1990 from the Department of Energy to the government's select committee of energy about the cost of nuclear power in the United Kingdom (UK) and the reasons behind the government's decision to withdraw the UK's nuclear generating capacity from the electricity privatization scheme. The remainder of the paper refers to evidence from officials at the Department of Energy, to the select committee. They differ from Lord Marshall, latterly of the Central Electricity Generating Board, on the ''obligation to supply'' issue and the question of risks versus rewards. Officials were closely questioned as to why they had failed to monitor rising costs within the nuclear industry when it was still in the private sector and make that information available to Ministers, and as to how huge changes in the published costs of nuclear power had come about. (UK)

  10. Nuclear power and environmental policy

    International Nuclear Information System (INIS)

    Pershing, J.

    2000-01-01

    Nuclear power, which presently accounts for approximately 20% of global electricity generation is still beset with environmental problems. Such problems are found throughout the fuel cycle - from mining and milling to processing, to plant operation and finally to waste disposal. While projected radioactive releases for normal operation is extremely low, much of the environmental risk comes from the potential for accidents. A list of the most significant nuclear accidents that occurred between 1966 and 1999 is given. On the other hand nuclear power offers great environmental benefits particularly when compared to other energy sources: all along the fuel cycle comparatively very few wastes are produced. In a world becoming more and more aware of environmental problems, it seems that there is no definitive conclusion about nuclear energy. (A.C.)

  11. American acceptance of nuclear power

    International Nuclear Information System (INIS)

    Barrett, W.

    1980-01-01

    The characteristic adventurous spirit that built American technology will eventually lead to American acceptance of nuclear power unless an overpowering loss of nerve causes us to reject both nuclear technology and world leadership. The acceptance of new technology by society has always been accompanied by activist opposition to industralization. To resolve the debate between environmental and exploitive extremists, we must accept with humility the basic premise that human accomplishment is a finite part of nature

  12. Nuclear power and the environment

    International Nuclear Information System (INIS)

    Pavelescu, Margarit; Pavelescu, Alexandru; Sandulescu, Aurel

    2005-01-01

    At the beginning of their development, the use of railroads, the streetcars, the subway, the automobile, the airplane, all raised not only a great skepticism, but also a strong fear or even hostility on the part of the general public, the media and some officials. Contrary to the development of other technologies, in the beginning there was even support and enthusiasm about the possibilities of the wide uses of nuclear energy. However, the voices against the use of nuclear power increased with time. Now the future of nuclear power is dependent on reversing this situation. The present paper addresses the role of nuclear power in the global energy sector in a broader context, that of sustainable social and economic development and the environmental impacts arising from the use of different sources of energy. The main objective of this paper is to provide clear and complete information and to demonstrate that nuclear power is a mature technology that has environmental advantages. The paper is destined to the energy community, energy policy and decision makers, environmentalists and the wider public in order to understand and accept the benefits of nuclear as a fundamental energy source toward sustainable development and a better standard of life. The decisive fact that nuclear power is environmentally benign, makes it an energy source consistent with the goals of sustainable development and environmental protection that should be taken into consideration in discussing the future energy mix in different countries. A special attention is accorded in the paper on the subject of radioactive waste management disposal where are provided top-level information, because this seems to be the warmest subject of the moment. (authors)

  13. Atomic energy - Bombs and nuclear power. Drivers and controversies during 65 years

    International Nuclear Information System (INIS)

    Kaerrmarck, Urban

    2010-10-01

    Over the years, written books, scientific papers, conducted parliamentary inquiries and public discussions have been published to describe and explain the Swedish nuclear power program. There is probably no other more thoroughly debated area. Still question marks are piling up. The report provides a broad illumination over the subject and fills in a number of explanations. No new unknown facts are presented, however, a number of factors are highlighted, whose importance has not received attention. One such factor is the well known link between a Swedish nuclear weapons program and the nuclear power program. By combining the information, especially from the last 15 years on nuclear weapons development with the nuclear power program, a new and largely unknown picture emerges. This issue is only superficially touched upon earlier. The ambition to develop Swedish nuclear weapons was the basis for all development until Sweden ratified the CTBT. The handling of the nuclear issue especially during the 1960s created a crisis of confidence which still affects the decisions and attitude toward nuclear power. The report finds it likely that the over-sized nuclear program was not the result of a forecast failure, but a deliberate effort by the power industry to get a hegemony in the heating sector by replacing oil with electricity. The report also shows that the only practical, working tool for an early phase-out of nuclear power was to financially compensate the plant owners. A massive increase of renewable electricity generation or a program for raising the energy use efficiency was not sufficient to compete with the reactors. However, seen in a longer perspective, renewable electricity can compete with nuclear power. With the current ambitious expansion rate, conditions are right for such a competition. Parliament's decision in June 2010 authorizing the replacement of the present 10 reactors does not necessarily mean that the nuclear debate is terminated

  14. Nuclear power in Japan and the USA

    International Nuclear Information System (INIS)

    Titterton, E.

    1979-06-01

    The development of the nuclear power industry in Japan and the USA is discussed. The author lists the number of nuclear power plants operating, under construction and planned and considers the contribution made by nuclear power stations to the total electricity generated. The advantages of nuclear power to both countries are outlined and forecasts are made of the role to be played by nuclear power in future years

  15. The future of nuclear power

    International Nuclear Information System (INIS)

    Greenhalgh, G.

    1988-01-01

    The desire for safe and plentiful forms of energy led to the rapid development of the nuclear power industry in the years following the Second World War. Although initially embraced as the answer to the dwindling supply of non-renewable fuel resources, plans to expand nuclear power generation have met with growing public resistance as investigations point to the possible harmful effects of radiation, an unavoidable by-product of the process. This book presents the case for nuclear power in the light of the increasing amount of controversy surrounding the issue. Diverse and often contradicting nuclear policies in different countries are examined with reference to the political, historical and economic factors which account for these wide variations in public sentiment. A detailed analysis is given of the growth of world energy demand, energy vs economic growth and alternative energies, and particular emphasis is given to aspects of the environment, pollution, safety, health hazards and the measurement and control of radiation. The role of public attitudes and awareness also receives special attention: a fuller and less emotional public understanding of nuclear power is necessary to assess the various benefits and risks which accompany this important source of energy

  16. Organizing nuclear power plant operation

    International Nuclear Information System (INIS)

    Adams, H.W.; Rekittke, K.

    1987-01-01

    With the preliminary culmination in the convoy plants of the high standard of engineered safeguards in German nuclear power plants developed over the past twenty years, the interest of operators has now increasingly turned to problems which had not been in the focus of attention before. One of these problems is the organization of nuclear power plant operation. In order to enlarge the basis of knowledge, which is documented also in the rules published by the Kerntechnischer Ausschuss (Nuclear Technology Committee), the German Federal Minister of the Interior has commissioned a study of the organizational structures of nuclear power plants. The findings of that study are covered in the article. Two representative nuclear power plants in the Federal Republic of Germany were selected for the study, one of them a single-unit plant run by an independent operating company in the form of a private company under German law (GmbH), the other a dual-unit plant operated as a dependent unit of a utility. The two enterprises have different structures of organization. (orig.) [de

  17. Future developments in nuclear power

    International Nuclear Information System (INIS)

    Phillips, G.J.

    1978-12-01

    To date, the peaceful application of nuclear energy has been largely restricted to the generation of electricity. Even with such an application there is potential for wider use of the nuclear energy generated in providing heat for dwellings, control of climate for the production of vegetables and providing warm water for fish and lobster farming. It is possible to envisage specific applications of nuclear power reactors to process industries requiring large blocks of energy. These and other future developments are reviewed in this report. (author)

  18. Fear of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Higson, D.J. [Paddington, NSW (Australia)

    2014-07-01

    Communicating the benefits of nuclear power generation, although essential, is unlikely to be sufficient by itself to counter the misconceptions which hinder the adoption of this technology, viz: that it is unsafe, generates intractable waste, facilitates the proliferation of nuclear weapons, etc. Underlying most of these objections is the fear of radiation, engendered by misunderstandings of the effects of exposure - not the actual risks of radiation exposure themselves. Unfortunately, some aspects of current radiation protection practices promote the misconception that there is no safe dose. A prime purpose of communications from the nuclear industry should be to dispel these misconceptions. (author)

  19. Nuclear power: Questions and answers

    International Nuclear Information System (INIS)

    1988-01-01

    In 1988, the Uranium Institute, a London-based international association of industrial enterprises in the nuclear industry, published a report entitled The Safety of Nuclear Power Plants. Based on an assessment by an international group of senior nuclear experts from eight countries, the report provides an authoritative explanation, for non-specialists of the basic principles of reactor safety, their application, and their implications. Some questions and answers are selected from that report; they address only a few of the subjects that the report itself examines in greater detail

  20. Generation 'Next' and nuclear power

    International Nuclear Information System (INIS)

    Sergeev, A.A.

    2001-01-01

    My generation was labeled by Russian mass media as generation 'Next.' My technical education is above average. My current position is as a mechanical engineer in the leading research and development institute for Russian nuclear engineering for peaceful applications. It is noteworthy to point out that many of our developments were really first-of-a-kind in the history of engineering. However, it is difficult to grasp the importance of these accomplishments, especially since the progress of nuclear technologies is at a standstill. Can generation 'Next' be independent in their attitude towards nuclear power or shall we rely on the opinions of elder colleagues in our industry? (authors)

  1. Soviet Union's Nuclear Power Program

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Glasnost has dramatically increased the availability of information about the Soviet Union's nuclear industry. In the future, even more information is likely to become known as Soviet participation in international forums increases. Not only is much more general information now available, but up-to-date details are regularly provided, including information such as the Soviet nuclear industry's strategic direction and goals, recent reactor design changes, safety inspection results, and reports of public opposition and protest. This article summarizes the current status of the Soviet nuclear power program, reconciling the often conflicting reports from various public sources

  2. The costs of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The cost effectiveness of the Magnox reactors is challenged. Tabulated data show that both Magnox and AGR reactors are nearly 10% more expensive to run than coal-fired stations. The costs are considered in some detail. The situation for AGRs in general is considered first, then for the Torness reactor in Scotland. The economic arguments presented on behalf of PWR type reactors are also questioned as well as the more fundamental questions of whether the electricity demand justifies more nuclear power plants being built. The economics of nuclear power in the USA and France is also considered. (UK)

  3. Iran's nuclear power programme revisited

    International Nuclear Information System (INIS)

    Mossavar-Rahmani, B.

    1980-01-01

    Iran's new government has not yet made a final decision about the fate of that country's once ambitious nuclear power programme. If the programme is kept alive, it will be limited to the completion of at most one or two of the reactors that were already well underway when the revolution broke out. The author traces the origins and growth of the Iranian nuclear power programme between 1974 and 1978, summarizes the principal economic, infrastructural, and political criticisms of the programme as originally planned, discusses the potential for greater use of natural gas as an alternative and, finally, recommends a long, detailed reassessment of Iran's energy options. (author)

  4. The future of nuclear power

    CERN Document Server

    Mahaffey, James

    2012-01-01

    Newly conceived, safer reactor designs are being built in the United States (and around the world) to replace the 104 obsolete operating nuclear power reactors in this country alone. The designs--which once seemed exotic and futuristic--are now 40 years old, and one by one these vintage Generation II plants will reach the end of productive service in the next 30 years. The Future of Nuclear Power examines the advanced designs, practical concepts, and fully developed systems that have yet to be used. This book introduces readers to the traditional, American system of units, with some archaic te

  5. The controversy about nuclear power

    International Nuclear Information System (INIS)

    Bethe, H.A.

    1977-01-01

    A short review of the events of the past several years in the conflict in the USA between the groups supporting or opposing nuclear power. Reference is made to publications on both sides of the controversy which the author considers to be well reasoned and useful sources of information. Mention is also made of the legal and legislative actions taken by both sides. The arguments against nuclear power are summarized and solutions to the problems which are the source of these arguments are suggested

  6. Nuclear power policy

    International Nuclear Information System (INIS)

    Kitschelt, H.

    1980-01-01

    The author gives an overlapping socialpolitical history of the decision-making process on nuclear energy in the Federal Republic of Germany. He follows the path on which within about two decades an investment strategy planned in the long term by a few international multis has become the issue of the century at all political and economic levels and instances. The study analyses the conditions of the fact that a conflict has arisen, and of the conflict development within the political system of the Federal Republic of Germany. As a result, the author shows that the present conflict has been provoked by the systematic ruling-out of all those concerned who have contrary interests. The escalation of the conflict during the 70s has led to a paralysis of the political decision-making process, because neither existing policies nor distinct alternatives could be ca rried through. (HSCH) [de

  7. Nuclear power, society and environment

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This rubric reports on 12 short notes about sociological and environmental aspects of nuclear power in France and other countries: the epidemiological inquiry widened to all French nuclear sites; the sanitary and radioecological effects of nuclear activities in Northern Cotentin (France); the WONUC (World National Council of Nuclear Workers) anger with the French government about the shutdown of Superphenix reactor; the new more informative promotional campaign of Electricite de France (EdF) for nuclear power; the scientific and research prices attributed by the French Atomic Energy Commission (CEA) to its searchers; the creation of a committee of inquiry in the French senate for the careful examination of the economical, social and financial consequences of the shutdown of Superphenix; the 31.2% increase of CEA-Industrie benefits for 1997; the decrease of nuclear contestation in Germany; the French-German communication efficiency during the Fessenheim accident simulation in October 7, 1997; the 3.5% increase of CO 2 emissions in the USA; the decommissioning of 3 Russian reactors for military plutonium production; Greenpeace condemnation for abusive purposes against British Nuclear Fuel plc (BNFL) and its activities at Sellafield (UK). (J.S.)

  8. Implementation of hearings in the Swedish process for siting a spent nuclear fuel repository

    International Nuclear Information System (INIS)

    Westerlind, Magnus; Wiklund, Aasa

    2001-01-01

    The problem of bringing all stakeholders on the scene to penetrate an issue of great complexity is not unique for nuclear waste management. There are an increasing number of site selection processes for disposal of nuclear waste around the world. During the 90's many of these siting processes have gone into a more decisive phase where public participation and transparency get more and more attention. Municipalities, NGOs and the public do no longer accept ready-made solutions but have legitimate claims to be part of the decision making and siting processes at an early stage. The attempts to increase the level of transparency and public involvement differ from country to country and depend e.g. on culture, history and societal conditions as well as on the precise phase in the siting process. However, many processes include public hearings as one tool to enhance transparency. In general, Sweden has not a long history of using hearings in decision making. In the area of nuclear waste management and disposal hearings have so far been rarely used. In 1997 and 1998 two public hearings were arranged by the Swedish Nuclear Power Inspectorate, SKI, in conjunction with the licensing of the enlargement of the Central Interim Storage for Spent Nuclear Fuel, CLAB. These hearings showed that hearings could improve the decision making process. SKI and SSI strongly believe the effort was worthwhile and that hearings will continue to be used in the nuclear waste programme. The hearings provided a forum for local stakeholders to pose questions and stretch both the implementer and to some extent also the authorities. The hearings managed to focus on relevant issues at this stage of the siting process and gave the audience a chance to evaluate and challenge the trustworthiness of the implementer and authorities. In this respect the hearings contributed to transparent and democratic decision making. Some of the keys to the success were: Unbiased and skilled moderators with capacity to

  9. Nuclear power and public health

    International Nuclear Information System (INIS)

    1974-01-01

    The nuclear power industry has always emphasized the health and safety aspects of the various stages of power production. Nevertheless, the question of public acceptance is becoming increasingly important in the expansion of nuclear power programmes. Objections may arise partly from the tendency to accept familiar hazards but to react violently to unfamiliar ones such as radiation, which is not obvious to the senses and may result in delayed adverse effects, sometimes manifested only in the descendants of the individuals subjected to the radiation. The public health authorities therefore have an important role in educating the public to overcome these fears. However, they also have the duty to reassure the public and convince it that proper care has been taken to protect man and his environment. This duty can be fulfilled by means of independent evaluation and control to ensure that safe nuclear facilities are built, care is taken with their siting, they are operated safely, and the effects of possible accidents are minimized. The selection and development of a nuclear power facility should be carried out with a sound understanding of the factors involved. WHO has collaborated with the International Atomic Energy Agency (IAEA) in the preparation of a booklet summarizing the available information on the subject. It deals with the role of atomic energy in meeting future power needs, radiation protection standards, the safe handling of radioactive materials, disturbances of the environment arising from plant construction and ancillary operations, and the public health implications

  10. Environmental aspects of nuclear power

    International Nuclear Information System (INIS)

    Ward, D.P.

    1988-01-01

    Nuclear power provides the world with an important option for generating electricity. To successfully and safely utilize this power, engineering and environmental factors should be carefully considered throughout a nuclear power plant project, especially during the planning stages. This paper discusses the major environmental aspects of a nuclear power plant project from site selection to retirement. During the site selection process, both engineering and environmental resources must be identified and evaluated. Environmental resources include areas that support agricultural or aquatic commercial activities, habitats for commercial or endangered species, population centers, transportation systems, and recreational areas. Also during the site selection process, the potential impacts of both construction and operating activities must be considered. In addition to the area actually disturbed by construction, construction activities also affect local services, such as transportation systems, housing, school systems, and other social services. Since nuclear power plants use a ''clean fuel,'' generally the most significant operating activity having a potential environmental impact is the discharge of cooling water. The potential effect of this discharge on commercial activities and sensitive habitats should be thoroughly evaluated. Lastly, the method of decommissioning can affect long-range land use planning and should therefore be considered during the planning process

  11. Sweden and the bomb. The Swedish plans to acquire nuclear weapons, 1945 - 1972

    Energy Technology Data Exchange (ETDEWEB)

    Jonter, T [Uppsala Univ. (Sweden). Dept. of History

    2001-09-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid-50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The prime minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue

  12. Nuclear power and the environment

    International Nuclear Information System (INIS)

    Matthews, R.R.

    1976-01-01

    A brief statement is presented of the nuclear power reactor programme in the United Kingdom and of the statutory and other organisations for ensuring reactor safety. The possible effects of the programme on the environment are dealt with under three heads: (1) discharge of radioactive effluents during normal operation of the power plants; (2) storage and disposal of radioactive waste; (3) reactor safety. Radiological protection of operating staff is also described briefly. (U.K.)

  13. Operation of nuclear power plants

    International Nuclear Information System (INIS)

    Severa, P.

    1988-04-01

    The textbook for training nuclear power plant personnel is centred on the most important aspects of operating modes of WWER-440 reactors. Attention is devoted to the steady state operation of the unit, shutdown, overhaul with refuelling, physical and power start-up. Also given are the regulations of shift operation and the duties of individual categories of personnel during the shift and during the change of shifts. (Z.M.). 3 figs., 1 tab

  14. Nuclear power generation cost methodology

    International Nuclear Information System (INIS)

    Delene, J.G.; Bowers, H.I.

    1980-08-01

    A simplified calculational procedure for the estimation of nuclear power generation cost is outlined. The report contains a discussion of the various components of power generation cost and basic equations for calculating that cost. An example calculation is given. The basis of the fixed-charge rate, the derivation of the levelized fuel cycle cost equation, and the heavy water charge rate are included as appendixes

  15. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  16. Personnel radiation safety in nuclear power plants

    International Nuclear Information System (INIS)

    Elkert, J.

    1979-05-01

    The principal contributions to the radiation doses of the Swedish power reactor personnel are identified. The possi bilities to reduce these doses are examined. The radiation doses are analyzed according to different personnel categories, specific maintenance operations or inspections and to different radiation activities. Suggestions are given for reducing the radiation doses. (L.E.)

  17. QA programs in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1976-01-01

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  18. Nuclear power systems: Their safety

    International Nuclear Information System (INIS)

    Myers, L.C.

    1993-01-01

    Mankind utilizes energy in many forms and from a variety of sources. Canada is one of a growing number of countries which have chosen to embrace nuclear-electric generation as a component of their energy systems. As of August 1992 there were 433 power reactors operating in 35 countries and accounting for more than 15% of the world's production of electricity. In 1992, thirteen countries derived at least 25% of their electricity from nuclear units, with France leading at nearly 70%. In the same year, Canada produced about 16% of its electricity from nuclear units. Some 68 power reactors are under construction in 16 countries, enough to expand present generating capacity by close to 20%. No human endeavour carries the guarantee of perfect safety and the question of whether or not nuclear-electric generation represents an 'acceptable' risk to society has long been vigorously debated. Until the events of late April 1986, nuclear safety had indeed been an issue for discussion, for some concern, but not for alarm. The accident at the Chernobyl reactor in the USSR has irrevocably changed all that. This disaster brought the matter of nuclear safety back into the public mind in a dramatic fashion. This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents which have occurred to date. (author). 7 refs

  19. Nuclear Power and the Environment.

    Science.gov (United States)

    Dukert, Joseph M.

    Described are the major environmental effects resulting from the production of electricity by nuclear power plants. Discussed are effects of waste heat, radioactivity, radioactive waste elimination, costs, and future prospects. Included are diagrams illustrating cooling tower operation, effects of thermal discharge into water systems, radioactive…

  20. Nuclear power - its indirect benefits

    International Nuclear Information System (INIS)

    Crocker, V.S.

    1990-01-01

    This paper traces the scientific and technological benefits which have accompanied the development of nuclear power, particularly from one of the products of fission - neutrons. Neutron beams are now used extensively for applications in medicine, non-destructive testing, radiography, the electronics industry and even in jewellery manufacture, as well as in direct scientific applications. (author)

  1. Underwater nuclear power plant structure

    International Nuclear Information System (INIS)

    Severs, S.; Toll, H.V.

    1982-01-01

    A structure for an underwater nuclear power generating plant comprising a triangular platform formed of tubular leg and truss members upon which are attached one or more large spherical pressure vessels and one or more small cylindrical auxiliary pressure vessels. (author)

  2. A renaissance in nuclear power

    International Nuclear Information System (INIS)

    Lambertini, Antonio C.F.

    2009-01-01

    This paper presents an analysis of the worldwide evolution of the fleet of nuclear power plants until the 1980s; the reasons why in the same era this contingent was rejected in various developed countries due to a complete lack of public acceptance, being condemned to a phaseout planned to eliminate more than half of the operating power plants by 2020; and finally, what are the reasons for this competent base-load power source to silently resist for more than a quarter of a century, having been the focus of studies and improvements in the most renowned research centers in the world and the most traditional universities of the developed countries, resurging as one of the main allies of worldwide sustainable development, even with all the difficulties of deployment, ecological risks, and nuclear proliferation. However, after more than 30 years of intense debates involving a wide variety of interrelated problems, scientists have collected irrefutable proof that the actions of humankind have caused climate changes that represent an imminent threat to the survival of the human species on Earth, requiring coordinated international action that seeks to determine the economic aspects of the stabilization of levels of GHGs (greenhouse gases) in the atmosphere. The transition to a worldwide low-carbon economy presents political challenges, where, the most complex political question, is the supply of energy which would depends on a change in the supply of energy from fossil fuels to renewable, hydro and nuclear. Undoubtedly the nuclear power plants are, by far, the most controversial. (author)

  3. How safe is nuclear power

    International Nuclear Information System (INIS)

    1983-02-01

    The subject is discussed, with particular reference to nuclear power in the UK, as follows: ionising radiations; components of the radiation dose to which on average each person in the UK is exposed; regulation and control; mining; reactor operations - accidents, safety; transport of spent fuel; radioactive wastes; fast reactors and plutonium; insurance. (U.K.)

  4. Decommissioning of nuclear power stations

    International Nuclear Information System (INIS)

    Gregory, A.R.

    1988-01-01

    In the United Kingdom the Electricity Boards, the United Kingdom Atomic Energy Authority (UKAEA) and BNFL cooperate on all matters relating to the decommissioning of nuclear plant. The Central Electricity Generating Board's (CEGB) policy endorses the continuing need for nuclear power, the principle of reusing existing sites where possible and the building up of sufficient funds during the operating life of a nuclear power station to meet the cost of its complete clearance in the future. The safety of the plant is the responsibility of the licensee even in the decommissioning phase. The CEGB has carried out decommissioning studies on Magnox stations in general and Bradwell and Berkeley in particular. It has also been involved in the UKAEA Windscale AGR decommissioning programme. The options as to which stage to decommission to are considered. Methods, costs and waste management are also considered. (U.K.)

  5. The future for nuclear power

    International Nuclear Information System (INIS)

    Marshall of Goring, Lord.

    1989-01-01

    Lord Marshall explains how the situation for nuclear power in late 1989 in the United Kingdom had come about. Despite warnings that for a successful nuclear programme a large generator which has the obligation to supply in a defined geographical area should operate, this is not what will happen under the plans to privatise the electricity supply industry in the UK. Under these no body will have the obligation to supply electricity and the distribution Company will not have the obligation to supply after the first few years. Other problems with the privatisation plans are discussed. The implications of the government's decisions on nuclear power, first to maintain the Magnox stations in the government sector, second to abandon the full PWR construction programme and thirdly not to transfer the AGRs to the private sector, are discussed. (UK)

  6. Nuclear power: Financing big projects

    International Nuclear Information System (INIS)

    Raabe, G.

    1992-01-01

    Since the early seventies, the Dresdner Bank AG has been intensively engaged in financing nuclear power plants, e.g., the Muelheim-Kaerlich Nuclear Power Station currently down because of legal technicaltities. The bank has also been involved in other large-scale projects in the energy sector and, in addition, has conceptually accompanied the stages of the nuclear fuel cycle, such as enrichment, fuel element fabrication, and reprocessing. However, for political reasons it has not been possible to carry out these projects and finance them in the Federal Republic. With appropriate modifications, these financial models can also be transferred to international projects; after all, the enrichment sector has always been characterized by trilateral ventures. (orig.) [de

  7. Nuclear power and its alternatives

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    For nuclear power to contribute significantly to the alleviation of demands for increased electricity by the year 2000, a further obstacle must be overcome, namely the present nuclear phobia of the American public. This phobia can be addressed only through public education leading to a balanced perspective of the benefits and hazards of nuclear power compared with those of alternate sources of energy and to the risks associated with an insufficient supply of energy in a few years. Also to be considered in a public education effort should be the precarious and capricious nature of this country's continued reliance on energy sources imported from politically unstable countries, as well as the risk this importation poses for the nation's economic, social and military security

  8. Safety goals for nuclear power

    International Nuclear Information System (INIS)

    Fischhoff, B.

    1984-02-01

    The key policy question in managing hazardous technologies is often some variant of How safe is safe enough. The US Nuclear Regulatory Commission has recently broached this topic by adopting safety goals defining acceptable risk levels for nuclear power plants. These goals are analyzed here with a general theory of standard setting (Fischhoff, 1983) which asks: (1) Are standards an appropriate policy tool in this case. (2) Can the Commission's safety philosophy be defended. (3) Do the operational goals capture that philosophy. The anlaysis shows the safety goals proposal to be sophisticated in some respects, incomplete in others. More generally, it points to difficulties with the concept of acceptable risk and any attempt to build policy instruments around it. Although focused on the NRC's safety goals, the present analysis is a prototype of what can be learned by similarly detailed consideration of other standards, not only for nuclear power but also for other hazardous technologies, as well as for issues unrelated to safety

  9. The development of Chinese power industry and its nuclear power

    International Nuclear Information System (INIS)

    Zhou Dabin

    2002-01-01

    The achievements and disparity of Chinese power industry development is introduced. The position and function of nuclear power in Chinese power industry is described. Nuclear power will play a role in ensuring the reliable and safe supply of primary energy in a long-term and economic way. The development prospects of power source construction in Chinese power industry is presented. Challenge and opportunity in developing nuclear power in China are discussed

  10. Nuclear power: tomorrow's energy source

    International Nuclear Information System (INIS)

    2002-01-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  11. Global Protest Against Nuclear Power

    DEFF Research Database (Denmark)

    Kirchhof, Astrid Mignon; Meyer, Jan-Henrik

    2014-01-01

    in taking protest to the international and European level. However, as opposed to contemporary rhetoric of grass-roots transnational solidarity, such cooperation was limited to a small, highly skilled and committed group of mediators - often semi-professional activists - who managed to overcome......Protest against nuclear power plants, uranium mining and nuclear testing played a pivotal role in the rise of a mass environmental movement around the globe in the 1970s and 1980s. Nevertheless, the history of anti-nuclear activism has largely been told from a strictly national perspective....... This focus issue approaches the phenomenon from a transnational perspective for the first time. Against the backdrop of the debate on transnational history, this article develops a framework of analysis, and contextualizes anti-nuclear protest in a broader postwar perspective. The contributions show...

  12. Where are we now on nuclear power?

    International Nuclear Information System (INIS)

    Oppenheimer, A.

    1991-01-01

    Discussion at the March 1991 Conference of the institute of Energy 'Where are we now on Nuclear Power' is summarized. Speakers from the Institution of Nuclear Engineers, Nuclear Electric, the European Commission Energy Directorate, British Nuclear Fuels, Scottish Nuclear and others looked at the economic aspects and the safety and pollution record of nuclear power in the United Kingdom. Technically, nuclear power is doing well although political problems remain. There was a problem of retaining skilled people in the absence of an assured construction programme. However there was a mood of cautious optimism over the future of nuclear power in the UK. (UK)

  13. Towards the end of nuclear power

    International Nuclear Information System (INIS)

    Benn, Tony

    1986-01-01

    The factors that have changed public attitudes towards the use of nuclear power are reviewed. These are seen as the link between nuclear weapons and nuclear power, radiation leaks and reactor accidents and the uneconomic nature of nuclear power. These aspects have resulted in the growth of the anti-nuclear movement. The strength of the nuclear lobby and the trades unions are considered. A programme for action to end the use of nuclear power in the UK is outlined. It is hoped that a major nuclear accident will not provide the final argument. (U.K.)

  14. Nuclear power and energy planning

    International Nuclear Information System (INIS)

    Jones, P.

    1990-11-01

    With the rapid depletion of conventional energy sources such as coal and oil and the growing world demand for energy the question of how to provide the extra energy needed in the future is addressed. Relevant facts and figures are presented. Coal and oil have disadvantages as their burning contributes to the greenhouse gases and they will become scarcer and more expensive. Renewable sources such as wind and wave power can supply some but not all future energy requirements. The case made for nuclear power is that it is the only source which offers the long term prospect of meeting the growing world energy demand whilst keeping energy costs close to present levels and which does not add to atmospheric pollution. Reassurance as to the safety of nuclear power plants and the safe disposal of radioactive wastes is given. (UK)

  15. Nuclear power indices and safety

    International Nuclear Information System (INIS)

    Bennet, L.L.; Fizher, D.; Nechaev, A.

    1987-01-01

    Problems discussed at the IAEA International Conference on nuclear power indices and safety held in Vienna from 28 September to 2 October, 1987 are considered. Representatives from 40 countries and 12 international organizations participated in the conference. It is marked that by the end of this century nuclear power plant capacities in developing countries will increase by more than twice. In developed countries increase of installed capacity by 65 % is forecasted. It is stressed that competently constructed and operated NPPs will be successfully competing with coal-fueled power plants in the majority of the world regions. Much attention was paid to reports on measures taken after Chernobyl' accident and its radiation effects on people helth. It is shown that parallel with fundamental theoretical studies on NPP safety as a complex engineering system much attention is paid to some problems of designing and operation of such facilities. Fuel cycle problems, radioactive waste and spent fuel storage and disposal in particular, are considered

  16. The closure of the Barsebaeck nuclear power plant. What is the experience so far?

    International Nuclear Information System (INIS)

    Palmqvist, R.

    2000-01-01

    On 30 November 1999, Unit 1 of the Barsebaeck Nuclear power plant was closed down due to the political decision. This was a disaster not only for all those employed at the plant but also for the Municipality of Kavlinge and the entire region. The government has given the employees five-year job security and the Municipality of Kavlinge a study showing the consequences of the closure and nothing else. The municipalities with Nuclear power plants in Sweden are quite isolated in their demands for help and compensation for the losses caused by closure of NPPs, although 80% of the Swedish population opposes premature phasing out of nuclear power

  17. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  18. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  19. Progress of China's nuclear power programme

    International Nuclear Information System (INIS)

    Cai Jianping

    1997-01-01

    From a long-term point of view, nuclear power is the only solution for the shortage of energy resource. Nuclear power development strategy has been specified in China according to national condition: The electricity development of nuclear power optimizes the national energy structure and ensure the power supply, particularly in east China. China's first self-designed and self-constructed nuclear power plant--Qinshan Nuclear Power Plant (300MWe PWR) is now well under commercial operation. China is willing to cooperate with IAEA, other countries and regions in the field of nuclear energy for peaceful use on basis of mutual benefit. (author)

  20. Sweden year 2000: thoughts about human factors on the closure of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lund, I. [SSI Swedish Radiation Protection Inst., Stockholm (Sweden)

    2000-07-01

    On November 30, 1999 the nuclear power plant Barsebaeck 1 was finally shut down and disconnected from the grid as a result of a voluntary agreement between the plant owner Sydkraft AB and the Swedish State. However, the preludium, the decision in the Swedish Parliament in 1997 to start the nuclear phase-out, was followed by several political and legal figures before the last accord was struck. Barsebaeck 1 is the first of twelve Swedish NPP's to be closed and later this year it will be decided if the remaining unit at Barsebaeck, Barsebaeck 2, will be closed on the 1 July 2001. It is clear to me that it will take many years before the last of the Swedish NPP's is closed - verbal escapism cannot replace the actual power consumption. Nevertheless, a first step is now taken and we may ask ourselves - what will happen with the staff at the power plants? Will the closure of nuclear power plants and the loss of job opportunities influence other fields of radiation protection? (orig.)

  1. Design of a Prototype Differential Die‐Away Instrument Proposed for Swedish Spent Nuclear Fuel Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Martinik, Tomas, E-mail: tomas.martinik@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Henzl, Vladimir [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Grape, Sophie; Jansson, Peter [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Swinhoe, Martyn T.; Goodsell, Alison V. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Tobin, Stephen J. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Swedish Nuclear Fuel and Waste Management Company, Blekholmstorget 30, Box 250, SE-101 24 Stockholm (Sweden)

    2016-06-11

    As part of the United States (US) Department of Energy's Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project, the traditional Differential Die-Away (DDA) method that was originally developed for waste drum assay has been investigated and modified to provide a novel application to characterize or verify spent nuclear fuel (SNF). Following the promising, yet largely theoretical and simulation based, research of physics aspects of the DDA technique applied to SNF assay during the early stages of the NGSI-SF project, the most recent effort has been focused on the practical aspects of developing the first fully functional and deployable DDA prototype instrument for spent fuel. As a result of the collaboration among US research institutions and Sweden, the opportunity to test the newly proposed instrument's performance with commercial grade SNF at the Swedish Interim Storage Facility (Clab) emerged. Therefore the design of this instrument prototype has to accommodate the requirements of the Swedish regulator as well as specific engineering constrains given by the unique industrial environment. Within this paper, we identify key components of the DDA based instrument and we present methodology for evaluation and the results of a selection of the most relevant design parameters in order to optimize the performance for a given application, i.e. test-deployment, including assay of 50 preselected spent nuclear fuel assemblies of both pressurized (PWR) as well as boiling (BWR) water reactor type.

  2. Nuclear power, nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    1991-01-01

    The following topics are discussed in 5 chapters: nuclear power, nuclear fuel cycle, radioactive waste management, special events, highlights of the IAEA's work. In the field of nuclear power, the status of nuclear energy generation at the end of 1990 is presented, as well as power plant performance, nuclear power costs, power plant aging and life extension, advanced reactor systems, quality management and quality assurance, automation and human action in nuclear power plant operation and finally the trends of nuclear power to 2010. The following aspects concerning nuclear fuel cycle are discussed: uranium exploration, resources, supply and demand, refining and conversion, enrichment, reactor fuel technology, spent fuel management, economics of the nuclear fuel cycle and trends for the near future. In the field of radioactive waste management, problems concerning treatment and conditioning of radioactive waste, radioactive waste disposal, decontamination and decommissioning and trends for the near future are discussed. Refs, figs and tabs

  3. Climate policy and the social cost of power generation: Impacts of the Swedish national emissions target

    International Nuclear Information System (INIS)

    Soederholm, Patrik; Pettersson, Fredrik

    2008-01-01

    The purpose of this paper is to discuss how the design of climate policy in a small open economy may affect the internalization of carbon-related external costs and ultimately the social choice between different power generation technologies. Empirically we focus on the Swedish case and analyze three climate policy regimes, out of which two represent different national goal formulations and thus compliance strategies. The results show that the social choice between power generation technologies in Sweden will be significantly influenced by the choice of climate policy regime. Most notably, if Sweden would abandon its present national target for carbon dioxide emissions and instead make full use of the country's participation in international emissions trading, natural gas-fired power would replace onshore wind power as the power generation source with the lowest social cost

  4. Nuclear floating power desalination complexes

    International Nuclear Information System (INIS)

    Panov, Y.K.; Polunichev, V.I.; Zverev, K.V.

    1998-01-01

    Russia is a single country in the world which possesses a powerful ice-breaker transport fleet that allows a solution of important social-economic tasks of the country's northern regions by maintaining a year-round navigation along the Arctic sea route. A total operating record of the marine nuclear reactors up until till now exceeds 150 reactor-years, with their main equipment operating life reacting 120 thousand hours. Design and constructional progresses have been made continuously during forty years of nuclear-powered ships construction in Russia. Well proven technology of all components experienced in the marine nuclear reactors give grounds to recommend marine NSSSs of KLT-40 type as energy sources for the heat and power co-generation plants and the sea water desalination complexes, particularly as a floating installation. Co-generation stations are considered for deployment in the extreme Northern Region of Russia. Nuclear floating desalination complexes can be used for drinkable water production in the coastal regions of Northern Africa, the Near East, India etc. (author)

  5. Nuclear power, society and environment

    International Nuclear Information System (INIS)

    Fouchet, N.

    1997-01-01

    This rubric reports on 12 short notes about scientific facts, and sociological, political and environmental aspects of nuclear power in France and other countries: a new micro-beam line for the nuclear micro-probe of Pierre Sue laboratory; the French government gives permission for the filling up of the Carnet swampy site for the possible sitting of a future nuclear power plant in the Loire river estuary; incident simulation exercise at Chooz B1 in January 1997: radioactive leak and population under shelter; about Superphenix, 'Le Monde' newspaper disseminates false information; the anti-Superphenix lobby; Georges Charpak's opinion about anti-nuclear propaganda; gamma radiation in the help of cultural heritage; a new ionizing particle detector developed by the CEA; dismantling of the FR-2 experimental reactor (Karlsruhe, Germany) and the safe confinement of the reactor vessel; the Russian specialists' proposal for the transformation of Tchernobyl's sarcophagus into a monolith of concrete; Cogema's support to scientific research devoted to environment and public health; three new member countries in the World Council of Nuclear Workers (WONUC). (J.S.)

  6. Power conditioning devices in nuclear power plants

    International Nuclear Information System (INIS)

    Shida, Toichi.

    1979-01-01

    Purpose: To automatically prevent the liquid level from lowering in a reactor even if a feedwater adjusting valve is locked in a bwr type nuclear power plant. Constitution: Where a feedwater adjusting valve should be locked, and if the mismatching degree between the main steam flow rate and the feedwater flow rate exceeds a predetermined value and the mismatched state continues for a certain period, the value set to a main control for setting the recycling flow rate is changed corresponding to the mismatching degree to compensate the same thereby preventing the liquid level from lowering in the reactor. (Ikeda, J.)

  7. Stade nuclear power station (KKS): four giants on tour

    International Nuclear Information System (INIS)

    Beverungen, M.; Viermann, J.

    2008-01-01

    The Stade nuclear power station was the first nuclear power plant in the Federal Republic of Germany to deliver heat in addition to electricity. Since 1984, district heat was distributed to a saltworks nearby. The power plant, which is situated on the banks of the river Elbe, was commissioned in 1972 after approximately 4 years of construction. Together with the Wuergassen plant, it was among the first commercial nuclear power plants in this country. E.ON Kernkraft holds a 2/3 interest, Vattenfall Europe a 1/3 interest in the nuclear power plant. The Stade nuclear power station was decommissioned on November 14, 2003 for economic reasons which, in part, were also politically motivated. In September 2005, the permit for demolition of the nuclear part was granted. The release from supervision under the Atomic Energy Act is expected for 2014. In the course of demolition, the 4 steam generators of the Stade nuclear power station were removed. These components, which have an aggregate weight of approx. 660 tons, are to be safely re-used in Sweden. In September 2007, the steam generators were loaded on board the Swedish special vessel, MS Sigyn, by means of a floating crane. After shipment to Sweden, heavy-duty trucks carried the components to the processing hall of Studsvik AB for further treatment. After 6 months of treatment, the contaminated inner surfaces of the tube bundles of the steam generators have been decontaminated successfully, among other items. This has increased the volume of material available for recycling and thus decreased the volume of residues. (orig.)

  8. Nuclear power options for Australia

    International Nuclear Information System (INIS)

    Irwin, Tony

    2015-01-01

    Australia is slowly transitioning to low emissions technologies for electricity generation. International pressure for greenhouse gas reductions and community expectations are starting to speed up this process. Nuclear power would make a useful contribution to low emissions generation in Australia, as it does in more than 30 countries, but deployment will have to take into account local factors. 1) Australia does not have any experience of nuclear power. For many people the image they have of nuclear is the explosion at Fukushima. Safety is a concern and a modern reactor type with full natural (passive) safety features using only gravity and natural circulation for ultimate cooling is more likely to be acceptable. 2) The unit size will have to be compatible with the existing generation system. The largest single unit in the NEM (National Electricity Market) is 750 MWe (Kogan Creek, Queensland) and in many States even 750 MWe is too large. A 600 MWe single unit could probably be accommodated in certain areas but Small Modular Reactor (SMR) units of up to 200 MWe would allow more choice of location. 3) The nuclear power plant will have to be capable of backing up the increasing non-scheduled generation from renewable energy sources particularly wind and solar. The turbine generator of a nuclear power plant provides the rotating inertia necessary for frequency control. SMRs can load follow at typically 10%/min. 4) Australia does not have experience of licensing a nuclear power plant. The time to complete the licensing process will be minimised if the nuclear power plant was of a type that has been extensively licensed worldwide, e.g. a PWR or BWR. It would also assist licensing if the reactor had a generic design approval. Molten salt reactors or fast neutron reactors have attractive features, but licensing in an Australian context would be more difficult. 5) The nuclear power plant has to be economically viable in the Australian electricity market. Due to the current

  9. Economic competitiveness of nuclear power in China

    International Nuclear Information System (INIS)

    Hu Chuanwen

    2005-01-01

    Development of nuclear power in China has made a good progress. Currently, economic competitiveness of nuclear power compared to fossil-fuelled power plants is one of the major problems which hamper its development. This article presents the economic competitiveness of nuclear power in China with two-level analyses. First, levelized lifetime cost method is adopted for electricity generation cost comparisons. Important factors influencing economic competitiveness of nuclear power are described. Furthermore, a broad economic evaluation of the full fuel chain of nuclear power and fossil-fuelled plants is discussed concerning macro social-economic issues, environmental and health impacts. The comprehensive comparative assessment would be carried out for decision making to implement nuclear power programme. In consideration of external costs and carbon value, the economic competitiveness of nuclear power would be further improved. Facing swift economic growth, huge energy demand and heavy environmental burden, nuclear power could play a significant role in sustainable development in China. (authors)

  10. Nuclear power a reference handbook

    CERN Document Server

    Henderson, Harry R

    2014-01-01

    In the 21st century, nuclear power has been identified as a viable alternative to traditional energy sources to stem global climate change, and condemned as risky to human health and environmentally irresponsible. Do the advantages of nuclear energy outweigh the risks, especially in light of the meltdown at the Fukushima plant in 2011? This guide provides both a comprehensive overview of this critical and controversial technology, presenting reference tools that include important facts and statistics, biographical profiles, a chronology, and a glossary. It covers major controversies and proposed solutions in detail and contains contributions by experts and important stakeholders that provide invaluable perspective on the topic.

  11. Nuclear power in New Brunswick

    International Nuclear Information System (INIS)

    O'Connor, A.J.

    1984-06-01

    New Brunswick Power is a medium-utility with gross production for the past fiscal year for domestic and external sales of about 16.5 billion kilowatt hours. Of this figure 33.5% was supplied through nuclear generation. The financial risks involved with the production of the Point Lepreau nuclear generating station were discussed. Further, questions of assurances given for schedule and cost, licencing, and long-term plant performance of the Point Lepreau no. 2 unit were addressed. These were discussed with particular emphasis on the competition for the New England market

  12. Exposures from nuclear power production

    International Nuclear Information System (INIS)

    1988-01-01

    In the UNSCEAR 1982 Report the Committee carried out a thorough assessment of the exposures to the public from nuclear power production. In this Report the same basic assumptions and environmental transport models are used to carry out a revised assessment based on discharge data for the quin quennium 1980-1984. Occupational exposures from the various stages in the fuel cycle are reviewed in this Annex in association with the other exposures from released radioactive materials. Normalized collective effective dose equivalent commitments from the nuclear fuel cycle and the long-term releases from solid waste disposal are summarized. Refs, 2 figs, 74 tabs

  13. Nuclear power at Ontario Hydro

    International Nuclear Information System (INIS)

    Tapon, F.; Osborne, T.J.

    1980-01-01

    This case study shows that the diffusion of nuclear power in the electric public utility industry in Canada approximates the logistic growth curve, in agreement with previous results on technological innovation diffusion in the U.S. private sector. Many of the economic variables that affect this diffusion in the private sectors in the U.S. and Canada are also significant in the public sector in Canada. Too few utilities have adopted nuclear technology to permit using regression analysis to study the effect of environmental and regulatory factors on the growth of Ontario Hydro. Thus, cost-benefit analysis for each province might be more effective

  14. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1.

  15. Nuclear powered electrodyalysis for desalination

    International Nuclear Information System (INIS)

    Hitchcock, A.; Minken, A.A.L.; Minken, J.W.

    1966-01-01

    The paper is concerned to compare electrodyalysis and flash distillation as means for the production of water when a nuclear reactor also producing power is the heat source. Special attention is paid to the flexibility introduced by the possibility of diverting electric power from the primary load to electrodyalysis plant. On the basis of the costs taken, and assuming that adequate reliability can be obtained from both processes, it is confirmed that electrodyalysis is not an economic process as compared with flash distillation for the desalination of sea water but is fully competitive with salt contents up to 5000 ppm. (Use of nuclear power does not affect the situation). In the case where a nuclear reactor is supplying an isolated economy with power and water and the electric load factor is less than the reactor availability, it can be economic to use off-peak electricity to produce fresh water by high-current electrodyalysis of brackish water (up to 10,000 ppm). At the higher salt contents the amount of water which can be produced in this way is comparatively small, but it rises rapidly as the initial salt concentration falls. If additional water is needed, it is best produced by base-load distillation. (author). Abstract only

  16. Transfer of 137Cs from Chernobyl debris and nuclear weapons fallout to different Swedish population groups.

    Science.gov (United States)

    Rääf, C L; Hubbard, L; Falk, R; Agren, G; Vesanen, R

    2006-08-15

    Data from measurements on the body burden of (134)Cs, (137)Cs and (40)K in various Swedish populations between 1959 and 2001 has been compiled into a national database. The compilation is a co-operation between the Departments of Radiation Physics in Malmö and Göteborg, the National Radiation Protection Authority (SSI) and the Swedish Defense Research Agency (FOI). In a previous study the effective ecological half time and the associated effective dose to various Swedish populations due to internal contamination of (134)Cs and (137)Cs have been assessed using the database. In this study values of human body burden have been combined with data on the local and regional ground deposition of fallout from nuclear weapons tests (only (137)Cs) and Chernobyl debris (both (134)Cs and (137)Cs), which have enabled estimates of the radioecological transfer in the studied populations. The assessment of the database shows that the transfer of radiocesium from Chernobyl fallout to humans varies considerably between various populations in Sweden. In terms of committed effective dose over a 70 y period from internal contamination per unit activity deposition, the general (predominantly urban) Swedish population obtains 20-30 microSv/kBq m(-2). Four categories of populations exhibit higher radioecological transfer than the general population; i.) reindeer herders ( approximately 700 microSv/kBq m(-2)), ii.) hunters in the counties dominated by forest vegetation ( approximately 100 microSv/kBq m(-2)), iii.) rural non-farming populations living in sub-arctic areas (40-150 microSv/kBq m(-2)), and iv.) farmers ( approximately 50 microSv/kBq m(-2)). Two important factors determine the aggregate transfer from ground deposition to man; i.) dietary habits (intakes of foodstuff originating from natural and semi-natural ecosystems), and ii.) inclination to follow the recommended food restriction by the authorities. The transfer to the general population is considerably lower

  17. Ukrainian 'greens' and nuclear power

    International Nuclear Information System (INIS)

    Sappa, Nikolai

    1993-01-01

    At the First Constituent Congress of the Ukrainian Ecology Association 'Zelenyj svit' started in 1989 under antinuclear banners the as an organization of 'greens'. Since a great many of the Ukrainian citizens shared the attitude of the 'greens' to the Chernobyl accident, we faced the problem to stand our ground at least on our 'territory', i,e. the towns-NPP satellites. It is this factor that specified the urgent tasks for our activities at the regional level, carried out in cooperation with public relations services at the NPP. He arranged giving lectures in these towns, sent the public relations services all kind of information which sight be of use for efficient work, and performed sociological studies, which included: i) clearing up the attitude of the public to different aspects of nuclear energy industry, the level of public knowledge concerning the problem involved, ii) finding the channels and most preferable forms of disseminating information on nuclear power, and iii) developing recommendations for NPP administration and public relations services. He started our work three years ago. it may be noted that at the end of the last year there was a conference in Kiev 'The power industry of independent Ukraine and ecology', held by the Union of power engineers and Z elenyj svit . It is rather significant that at this conference, for the first time in the history of the ecological movement in the Ukraine, the 'greens' have admitted the possibility of having a creative dialogue with power engineers on nuclear power problems. Re consider it to be a serious progress in the perception of our opponents may be noted that at the end of the last year there was a conference in Kiev T he power industry of independent Ukraine and ecology , held by the Union of power engineers and Z elenyj svit . It is rather significant that at this conference, for the first time in the history of the ecological movement in the Ukraine, the 'greens' have admitted the possibility of having

  18. Changes, Problems, and Challenges in Swedish Spatial Planning—An Analysis of Power Dynamics

    Directory of Open Access Journals (Sweden)

    Till Koglin

    2017-10-01

    Full Text Available During the past few decades, the Swedish spatial planning system has experienced numerous problems and challenges. In particular, there have been changes in legislation and an increased neoliberalisation of planning that gives private actors a larger influence over the planning processes in Sweden. In this article, we analyse these changes through the lenses of collaborative and neoliberal planning in order to illuminate the shifting power relations within spatial planning in Sweden. We analyse the changes of power relations from three dimensions of power based on interviews with different kinds of planners throughout Sweden. We show that power relations in the Swedish spatial planning system have shifted and that neoliberalisation and an increased focus on collaborative planning approaches have made spatial planning more complex in recent decades. This has led to a change of role for planners form actual planners to collaborators. We conclude that market-oriented planning (neoliberal planning and collaborative planning have made it more difficult for spatial planners in Sweden to work towards sustainable urban futures.

  19. Changing world of nuclear power

    International Nuclear Information System (INIS)

    Godlewski, N.Z.; Payne, J.; Tompkins, B.

    1987-01-01

    Efforts to integrate the Washington meetings of the American Nuclear Society and the Atomic Industrial Forum included joint plenary sessions and combined criticism of DOE actions regarding the selection of a second repository for radioactive wastes. The meetings also looked beyond the Chernobyl accident to point out that some countries can no longer reject nuclear power, but the industry must develop post-accident plans for plants in order to reduce risks. Speakers warned against over-reacting and the need to keep emergency planning flexible. Other speakers concluded that the Chernobyl design was not so much at fault as the decision to build larger versions of the standardized design. The pursuit of excellence in plant design and performance, the need to resolve regulatory problems involving the inclusion of nuclear plants in utility rate bases, and the economics of low-level waste disposal, were other topics covered

  20. Nuclear power: A competitive option? Annex 3

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2002-01-01

    Because the future development of nuclear power will depend largely on its economic performance compared to alternatives, the OECD Nuclear Energy Agency (NEA) investigates continuously the economic aspects of nuclear power. This paper provides key findings from a series of OECD studies on projected costs of generating electricity and other related NEA activities. It addresses the cost economics necessary for nuclear units to be competitive, and discusses the challenges and opportunities currently faced by nuclear power. (author)

  1. Alternative institutional arrangements for nuclear power

    International Nuclear Information System (INIS)

    Bussard, D.

    1980-08-01

    This paper investigates how alternative organizations of nuclear power generation would effect the regulatory environment for nuclear power production, how it would effect financial constraints on new construction, and what governmental barriers to such reorganization exist

  2. New Zealand code for nuclear powered shipping

    International Nuclear Information System (INIS)

    1976-06-01

    This report recommends guidelines for the safety precautions and procedures to be implemented when New Zealand ports and approaches are used by nuclear powered merchant ships and nuclear powered naval ships

  3. Improved and safer nuclear power.

    Science.gov (United States)

    Taylor, J J

    1989-04-21

    Recent progress in advanced nuclear power development in the United States is revealing high potential for nuclear reactor systems that are smaller and easier to operate than the present generation. Passive, or intrinsic, characteristics are applied not only to provide inherent stability of the chain reaction but also to ensure continued cooling of the fuel and its containment systems even if a major breakdown of the normal cooling and control functions were to occur. The chance of a severe accident is thereby substantially reduced. The plant designs that are emerging are simpler and more rugged, have a longer life span, and place less burden on equipment and operating personnel. Modular design concepts and design standardization are also used to reduce construction time and engineering costs, giving promise that the cost of generating power from these systems will be competitive with alternative methods.

  4. ALARA at nuclear power plants

    International Nuclear Information System (INIS)

    Baum, J.W.

    1991-01-01

    Implementation of the ALARA principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed through a variety of dose reduction techniques. Initiatives by the ICRP, NCRP, NRC, INPO, EPRI, and BNL ALARA Center have all contributed to a heightened interest and emphasis on dose reduction. The NCRP has formed Scientific Committee 46-9 which is developing a report on ALARA at Nuclear Power Plants. It is planned that this report will include material on historical aspects, management, valuation of dose reduction ($/person-Sv), quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report

  5. Licensing of nuclear power plants

    International Nuclear Information System (INIS)

    Witt, S. de.

    1984-01-01

    De Witt, who as an advocate represents the interests of citizen's initiatives in lawsuits concerning nuclear power plants, contests an independent scope of discretion of the administration and criticizes the reduction of the control density of courts which can be noticed recently. The shift of emphasis from the courts to the administration would not only change the balance within the constitutional separation of powers but could also lead to a weakening of the protection of fundamental rights. When assessing the technical risks he wants above all to take into account the possible extent of the damage. De Witt also shows that - beyond the discretion of refusal according to section 7 of the Atomic Energy Act and the exertion of influence of the executive on public utilities - it could be possible to develop means - not used until now - to control the social impacts of nuclear energy. (orig./HSCH) [de

  6. Ergonomics and nuclear power generation

    International Nuclear Information System (INIS)

    Beyers, C.J.; Bogie, K.D.

    1986-01-01

    The design and construction of nuclear power plants are executed to rigorous standards of safety and reliability. Similarly the human interface within the nuclear power plant must meet very high standards, and these must be demonstrated to be maintained and assured through time. The control room, as the operating nerve-centre of the plant, carries a large part of this responsibility. It is the work space dimension within which the operator-instrumentation interface must function as efficiently as possible. This paper provides an overview of how ergonomics has been used as a major tool in reshaping the man-machine interface within the control room in the interest of safety and reliability. Topics covered in the paper include workspace design, control panel layout, demarcation and labelling, switch and meter types, and annunciated and unannunciated alarms

  7. Monitoring of nuclear power stations

    International Nuclear Information System (INIS)

    Ull, E.; Labudda, H.J.

    1987-01-01

    The purpose of the invention is to create a process for undelayed automated detection and monitoring of accidents in the operation of nuclear power stations. According to the invention, this problem is solved by the relevant local measurements, such as radiation dose, components and type of radiation and additional relevant meteorological parameters being collected by means of wellknown data collection platforms, these being transmitted via transmission channels by means of satellites to suitable worldwide situated receiving stations on the ground, being processed there and being evaluated to recognise accidents. The local data collection platforms are used in the immediate vicinity of the nuclear power station. The use of aircraft, ships and balloons as data collection systems is also intended. (HWJ)

  8. Adoption of nuclear power generation

    International Nuclear Information System (INIS)

    Sommers, P.

    1980-01-01

    This article develops a model of the innovation-adoption decision. The model allows the economic situation of a utility and its perception of uncertainty associated with an innovation to affect the probability of adopting it. This model is useful when uncertainties affecting decisions about adoption persist throughout the diffusion process, thereby making the usual adoption model implicit in rate-of-diffusion studies inappropriate. An empirical test of the model finds that firm size, power pool size, and selected aspects of uncertainty about the innovation are significant predictors of US utility companies' decisions on whether or not to adopt nuclear power generation. 17 references, 2 tables

  9. Owners of nuclear power plants

    International Nuclear Information System (INIS)

    Wood, R.S.

    1979-12-01

    The following list indicates percentage ownership of commercial nuclear power plants by utility companies as of December 1, 1979. The list includes all plants licensed to operate, under construction, docketed for NRC safety and envionmental reviews, or under NRC antitrust review. It does not include those plants announced but not yet under review or those plants formally cancelled. In many cases, ownership may be in the process of changing as a result of antitrust license conditions and hearings, altered financial conditions, changed power needs, and other reasons. However, this list reflects only those ownership percentages of which the NRC has been formally notified

  10. Composite type nuclear power system

    International Nuclear Information System (INIS)

    Nakamoto, Koichiro.

    1993-01-01

    The present invention realizes a high thermal efficiency by heating steams at the exit of a steam generator of a nuclear power plant to high temperature by a thermal super-heating boiler. That is, a thermal superheating boiler is disposed between the steam generator and a turbogenerator to heat steams from the steam generator and supply them to the turbogenerator. In this case, it may be possible that feedwater superheating boiler pipelines to the steam generator are caused to pass through the thermal superheating boiler so that they also have a performance of heating feedwater. If the system of the present invention is used, it is possible to conduct base load operation by nuclear power and a load following operation by controlling the thermal superheating boiler. Further, a hydrogen producing performance is applied to the thermal superheating boiler to produce hydrogen when electric power load is lowered. An internally sustaining type operation method can be conducted of burning hydrogen by the superheating boiler upon increased electric power load. As a result, a power generation system which has an excellent economical property and can easily cope with the load following operation can be attained. (I.S.)

  11. Nuclear power plants and environment

    International Nuclear Information System (INIS)

    Agudo, E.G.; Penteado Filho, A.C.

    1980-01-01

    The question of nuclear power plants is analysed in details. The fundamental principles of reactors are described as well as the problems of safety involved with the reactor operation and the quantity and type of radioactive released to the environment. It shows that the amount of radioactive is very long. The reactor accidents has occurred, as three mile island, are also analysed. (M.I.A.)

  12. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    Rosen, M.

    2000-01-01

    The substantial increase in global energy consumption in coming decades will be driven principally by the developing world. Although there is some awareness on both the technical and political levels of the advantages of nuclear power, it is not a globally favored option in a sustainable energy future. This paper, after discussion of rising energy consumption, concentrates on a comparison of the environmental impacts of the available energy options. (author)

  13. G. Nuclear power plant siting

    International Nuclear Information System (INIS)

    1976-01-01

    The selection of a site for a nuclear power site is a complex process involving considerations of public health and safety, engineering design, economics, and environmental impact. Although policies adopted in various countries differ in some details, a common philosophy usually underlies the criteria employed. The author discusses the basic requirements, as they relate to New Zealand, under the headings: engineering and economics; health and safety; environmental factors

  14. Nuclear power plants; security strategy

    International Nuclear Information System (INIS)

    Sidorenko, V.A.

    1989-01-01

    Safety standards and approaches to NPPs safety resulting from multilayer experience are presented. It is stressed that sufficiency and efficiency of reactor safety measures should be payed constant attention. Real evolution of accidents reqires unlimited development of new safety means. It is evident that in nuclear power there should exist high s afety culture . NPPs safety should be guaranteed by joint measures of both specialists ans public

  15. Sabotage at Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  16. Nuclear power hazard control policy

    International Nuclear Information System (INIS)

    Chicken, J.C.

    1982-01-01

    This study presents an analysis of the factors that appear to have influenced the formation and form of nuclear power hazard control policy in Britain. A simple account is given of the technical nature of nuclear hazards and of the legal and administrative framework that has been constructed to control them. The subsequent analysis concentrates primarily on the influence exerted by social and political factors. Particular attention is directed to those political groups which have developed a special interest in the problems of nuclear power, and to the interplay between organised groupings and public opinion generally. The metamorphosis of these groupings is traced from the origins of the nuclear industry in the Second World War to their prominent role during the Windscale Inquiry. Attention is given to the policy constraint imposed by increased expectations in the form of demands for higher standards of living, and improvements in the quality of the environment. The study is concerned with both policy-making and with policy implementation; with interest articulation as well as with the functioning of formal institutions. The evolution of policy takes place in an atmosphere of keen economic debate and conflicting moral perceptions. A model of the policy-making system is postulated. (author)

  17. Cost escalation in nuclear power

    International Nuclear Information System (INIS)

    Montomery, W.D.; Quirk, J.P.

    1978-01-01

    This report is concerned with the escalation of capital costs of nuclear central station power plants between the early 1960s and the present. The report presents an historical overview of the development of the nuclear power industry and cost escalation in the industry, using existing data on orders and capital costs. New data are presented on regulatory delays in the licensing process, derived from a concurrent study being carried on in the Social Science group at Caltech. The conclusions of the study are that nuclear capital costs have escalated more rapidly than the GNP deflator or the construction industry price index. Prior to 1970, cost increases are related to bottleneck problems in the nuclear construction and supplying industries and the regulatory process; intervenors play only a minor role in cost escalation. After 1970, generic changes introduced into the licensing process by intervenors (including environmental impact reviews, antitrust reviews, more stringent safety standards) dominate the cost escalation picture, with bottlenecks of secondary importance. Recent increases in the time from application for a construction permit to commercial operation are related not only to intervenor actions, but also to suspensions, cancellations or postponements of construction by utilities due to unfavorable demand or financing conditions

  18. Sabotage at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Purvis, James W.

    1999-01-01

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented

  19. Atucha I nuclear power plant transients analysis

    International Nuclear Information System (INIS)

    Castano, J.; Schivo, M.

    1987-01-01

    A program for the transients simulation thermohydraulic calculation without loss of coolant (KWU-ENACE development) to evaluate Atucha I nuclear power plant behaviour is used. The program includes systems simulation and nuclear power plants control bonds with real parameters. The calculation results show a good agreement with the output 'protocol' of various transients of the nuclear power plant, keeping the error, in general, lesser than ± 10% from the variation of the nuclear power plant's state variables. (Author)

  20. Nuclear power development in the Far East

    International Nuclear Information System (INIS)

    Hsu, W.C.

    1990-01-01

    The nuclear power development of selected Far Eastern countries is presented in this paper. This paper consists of three sections. Section 1 describes the current power/nuclear power status of Japan, South Korea, Taiwan and China. The first three countries already have operating nuclear power units, while mainland China will have a nuclear power commissioned this year according to their schedule. The power development plan for these countries is also presented. All of them have included nuclear power as part of their energy sources for the future. Section 2 briefly describes the nuclear power industry in these countries which basically covers design, manufacturing and R and D activities. Public Acceptance programs (PAPs) will play a significant role in the future of nuclear power. Section 3 discusses the PAPs of these countries. (author)

  1. Current status of nuclear power development

    International Nuclear Information System (INIS)

    Dias, P.M.

    1994-01-01

    Nuclear power is not a viable energy source for Sri Lanka at present because of a number of reasons, the main reason being the non-availability of small and economically viable nuclear power plants. However several suppliers of nuclear power plants are in the process of developing small and medium power plants (SMPRs) which could be economically competitive with coal. The paper deals with past and future trends of nuclear power plants, their economics and safety. It also deals with environmental effects and public acceptance of nuclear power plants

  2. Robots for nuclear power plants

    International Nuclear Information System (INIS)

    Moore, T.

    1985-01-01

    In many industrial applications of robots, the objective is to replace human workers with machines that are more productive, efficient, and accurate. But for nuclear applications, the objective is not so much to replace workers as it is to extend their presence - for example, to project their reach into areas of a nuclear plant where the thermal or radiation environment prohibits or limits a human presence. The economic motivation to use robots for nuclear plant inspection and maintenance is centered on their potential for improving plant availability; a by-product is the potential for reducing the occupational radiation exposure of plant personnel. Robotic equipment in nuclear applications may be divided into two broad categories: single-purpose devices with limited ability to perform different operations, and reprogrammable, multi-purpose robots with some degree of computer-based artificial intelligence. Preliminary assessments of the potential for applying robotics in nuclear power plants - mainly at surveillance and inspection tasks - have been carried out. Future developments are considered

  3. Nuclear power and political conflict

    International Nuclear Information System (INIS)

    Kitschelt, H.

    1979-01-01

    The paper is limited to the first phase of conflict up to 1977. The various forms of controversy on the issue of nuclear energy are examined. The conflict is explained as being the result of relevant research and (energy) infrastructure policies. The first task of such an investigation is to analyse the depoliticization of nuclear energy policy which took place over a period of nearly 20 years (1955-1973/4). This depoliticization and non-decisionmaking on the social consequences of nuclear energy have laid the foundations for the development of the conflict which occured in the first cycle of the nuclear energy conflict. The second task is to highlight the social structure of the opposition movement, its forms of struggle, and the response of the state apparatus, The crisis of the nuclear power policy has led to a more or less distinct paralysis of the state apparatus because the political and industrial decisionmaking processes in this area were not designed to cope with social conflicts. In fact, their very structure had excluded the possibility of political opposition to a specific technology. (orig./HP) [de

  4. Guangdong Daya Bay nuclear power station project

    International Nuclear Information System (INIS)

    Zeng Wen Xing

    1994-01-01

    Daya Bay Nuclear Power Station is the largest joint-venture project which is also the largest commercial nuclear power plant currently under construction in China mainland. Organized and executed strictly in accordance with international standards, the Daya Bay project is seen as the first step taken by China in the development programme of large-capacity commercial nuclear power units

  5. Public enlightment seminar on nuclear power. Proceedings

    International Nuclear Information System (INIS)

    Yildirim, N.

    1997-01-01

    The seminar considered different aspects of nuclear power development, including the following issues: electricity generation, power supply and demand, energy sources, consumption of electricity, energy outlook in Europe, comparative analysis of energy options, safety of modern nuclear power plants, radiation and human health, radioactive waste management, nuclear techniques to promote world food security, public information issues

  6. The Swedish Concept for Disposal of Spent Nuclear Fuel: Differences Between Vertical and Horizontal Waste Canister Emplacement

    International Nuclear Information System (INIS)

    Bennett, D.G.; Hicks, T.W.

    2005-10-01

    The Swedish Nuclear Power Inspectorate (SKI) is preparing for the review of licence applications related to the disposal of spent nuclear fuel. The Swedish Nuclear Fuel and Waste Management Company (SKB) refers to its proposals for the disposal of spent nuclear fuel as the KBS-3 concept. In the KBS-3 concept, SKB plans that, after 30 to 40 years of interim storage, spent fuel will be disposed of at a depth of about 500 m in crystalline bedrock, surrounded by a system of engineered barriers. The principle barrier to radionuclide release is a cylindrical copper canister. Within the copper canister, the spent fuel is supported by a cast iron insert. Outside the copper canister is a layer of bentonite clay, known as the buffer, which is designed to provide mechanical protection for the canisters and to limit the access of groundwater and corrosive substances to their surfaces. The bentonite buffer is also designed to sorb radionuclides released from the canisters, and to filter any colloids that may form within the waste. SKB is expected to base its forthcoming licence applications on a repository design in which the waste canisters are emplaced in vertical boreholes (KBS-3V). However, SKB has also indicated that it might be possible and, in some respects, beneficial to dispose of the waste canisters in horizontal tunnels (KBS-3H). There are many similarities between the KBS-3V and KBS-3H designs. There are, however, uncertainties associated with both of the designs and, when compared, both possess relative advantages and disadvantages. SKB has identified many of the key factors that will determine the evolution of a KBS-3H repository and has plans for research and development work in many of the areas where the differences between the KBS-3V and KBS-3H designs mean that they could be significant in terms of repository performance. With respect to the KBS-3H design, key technical issues are associated with: 1. The accuracy of deposition drift construction. 2. Water

  7. Maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Migaud, D.; Hutin, J.P.; Jouette, I.; Eymond, P.; Devie, P.; Cudelou, C.; Magnier, S.; Frydman, M.

    2016-01-01

    This document gathers different articles concerning the maintenance of the French nuclear power plants. The first article analyses the impact of the recent law on the energetic transition that sets the share of nuclear power at 50% of the electricity produced by 2025. A consequence may be the decommissioning of 17 to 20 reactors by 2025 and the huge maintenance program called 'Grand Carenage' whose aim is to extend operating life over 40 years will have to be re-considered in order to avoid useless expenses. The second article shows that in 2015 the French nuclear reactor fleet got very good results in terms of availability and safety. There were 49 scheduled outages and among them some ended ahead of time. The third article describes the specificities of the maintenance of a nuclear power plant, for instance the redundancy of some systems implies that maintenance has to deal with systems that have never functioned but must be ready to operate at any moment. Another specificity is the complexity of a nuclear power plant that implies an essential phase of preparation for maintenance operations. Because of safety requirements any maintenance operation has to be controlled, checked and may provide feedback. The fourth article presents the 'Grand Carenage' maintenance program that involves the following operations: the replacement of steam generators, the re-tubing of condensers, the replacement of the filtering drums used for cooling water, the testing of the reactor building, the hydraulic test of the primary circuit and the inspection of the reactor vessel. The fifth article focuses on the organization of the work-site for maintenance operations and the example of the Belleville-sur-Loire is described in the sixth article. Important maintenance operations like 'Grand Carenage' requires a strong collaboration with a network of specialized enterprises and as no reactor (except Flamanville EPR) is being built in France, maintenance

  8. Nuclear power newsletter. Vol. 1, no. 1

    International Nuclear Information System (INIS)

    2004-09-01

    This first issue of newsletter describes the Nuclear Power Division of the Department of Nuclear Energy responsible for implementation of the IAEA programme on Nuclear Power. The mission of the Division is to increase the capability of interested Member States to implement and maintain competitive and sustainable nuclear power programmes and to develop and apply advanced nuclear technologies. The topics covered in this publication are: Engineering and Management Support for Competitive Nuclear Power; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; The International Conference on 'Fifty Years of Nuclear Power - the Next Fifty Years'. A list of documents published recently by the Nuclear Power Division in enclosed

  9. After Chernobyl. Possibilities of phasing out nuclear power in Sweden

    International Nuclear Information System (INIS)

    1987-01-01

    According to the currently applicable Parliamentary decision, the phasing out of nuclear power in Sweden must be completed by the year 2010. The National Energy Administration has analyzed the following questions. If it were to become evident that operating several or all of the Swedish nuclear power plants entailed serious risks, what possibilities would there be of phasing them out in the short term or over a longer period. And what would the consequences be with regard to the national economy and the environment? First we report the consequences of a rapid phase-out. Here, it is assumed that several or all nuclear plants would be taken out of operation within a period of two years. Available compensatory resources would be limited to more intensive utilization of existing hydropower, back-pressure plants, combined power and heating plants and oil-fired plants. The second alternative is a phase-out in ten years. Moreover, a case is discussed in which phase-out is planned and implemented from 1987 to 2005. Such a plan would provide industry more time to adjust, while a number of alternative techniques and fuels could be used to replace nuclear power. The consequences of the different phase-out alternatives can be described only within a framework of certain assumptions regarding the worldwide development. Important factors here include fuel prices and economic trends. Environmental restrictions comprise another important prerequisite

  10. Nuclear power program and environment

    International Nuclear Information System (INIS)

    Subramanya, S.K.; Gupta, J.P.

    2012-01-01

    Access to energy is one of the basic requirements for human development. To meet these growing energy needs without creating negative side effects is a challenge. The possibility of global climate change resulting from an increase in GHG concentrations in the atmosphere due to developmental activities is a major global concern. India is passing through the process of economic growth. Although India has not created the problem of climate change, India stands ready to be a part of the solution. The largest chunk of emissions was from electricity generation amounting to 65 percent of the total CO 2 equivalent emissions from the energy sector. Nuclear energy and renewables stand as sources for electricity with minimum GHG emission. Production of electricity from any form of primary energy has some environmental effect. A balanced assessment is needed. Nuclear power is of importance to India because it has potentially unlimited resource base, does not emit GHGs and, depending on location, has potentially favourable economics versus coal. In the long term, if we are to preserve the environment, it will be necessary to tap this source to the maximum extent feasible, In nuclear power stations, all its wastes are contained. India being home to nearly a third of the entire world's thorium, the strategies for large scale deployment of nuclear energy is focused towards utilization of thorium. The electricity potential of 3-stage programme is estimated to be about 2 lakh GWe-yr. Nuclear Power Corporation of India Limited is currently operating 20 reactors and has accumulated more than 337 reactor-years of experience in safe operation. A defence-in-depth approach is at the heart of safety philosophy, where there are several lines of defence, one backing another. Radiation is relevant for nuclear, coal, oil, gas and geothermal power plants. The essential task is to prevent excessive amounts now or in the future. One of the guiding principles adopted is to ensure that radiation

  11. Role of nuclear power in the Philippine power development program

    International Nuclear Information System (INIS)

    Aleta, C.R.

    1994-01-01

    The reintroduction of nuclear power in the Philippines is favored by several factors such as : the inclusion of nuclear energy in the energy sector of the science and technology agenda for national development; the large gap between electricity demand and available local supply for the medium-term power development plan; the relatively lower health risks in nuclear power fuel cycle systems compared to the already acceptable power systems; the lower environmental impacts of nuclear power system compared to fossil fuelled systems and the availability of a regulatory framework and trained personnel who could form a core for implementing a nuclear power program. It is estimated that the electricity supply gap of 9600 MW for the period 1993-2005 could be partly supplied by nuclear power. The findings of a recent study are described, as well as the issues that have to be addressed in the reintroduction of nuclear power. 6 refs

  12. Ecological economics of the Swedish Baltic empire: An essay on energy and power, 1560-1720

    International Nuclear Information System (INIS)

    Sundberg, U.

    1992-01-01

    Sweden rose from relative obscurity to become the most powerful nation in Northern Europe during the period 1560-1720 based on its prosperous metal industry: silver, copper, and steel. This essay addresses this period of history from an energy perspective and suggests, as others have, that the surplus energy of a nation is its basis for power. Sweden's energy came mainly from its forests which supplied its mines with wood and its metal-works with charcoal. This energy system, including hydropower, animal and man power, is analyzed using one of the thousands of charcoal-burners as a model for the main energy input: charcoal. The principles of sustainable use of Swedish forests are also addressed in a historical perspective. 6 figs., 9 tabs., 1 app., 40 refs

  13. Merchant marine nuclear-powered vessels

    International Nuclear Information System (INIS)

    Khlopkin, N.S.; Zotov, A.P.

    1997-01-01

    The history of civil nuclear-powered vessels development in Russia is highlighted. Advantages of nuclear propulsion for icebreakers operating in the Arctic are discussed. The operation of nuclear-powered icebreakers and the nuclear lighters-aboard ship in the Arctic has changed the situation on the Northern Sea Way. The all year round navigation there now is a reality. The reliability, safety and ecological cleanness of nuclear-powered vessels are discussed. The necessity of internationally recognized standards, rules and codes for safe operation of nuclear-powered trade vessels is underlined. (orig.)

  14. NGOs Participation in the Swedish EIA Process to Establish a Nuclear Waste Disposal

    International Nuclear Information System (INIS)

    Holmstrand, Olov

    2006-01-01

    Swedish environmental NGOs have no complete consensus on the issue of nuclear waste management. However, concerning the demands on the the EIA process most of the opinions coincide. The following standpoints generally reflect those represented by MKG as interpreted by the author Continuation of nuclear waste production, also in connection with uranium mining, is inconsistent with sustainable development. The problems of nuclear waste management must be dealt with now and not left to an undecided future. However, this does not automatically mean that any final solution needs be implemented within a short period of time. Irrespective of storage or disposal method nuclear waste is a possible source for nuclear weapons for a very long time and must therefore be subject to long-term safeguards. Any storage or disposal must be designed considering the risk of intention or unintentional intrusion. The management of nuclear waste is a national task. The thus be performed on a national scale, not as now in the municipal and to some extent regional scale. The choice of method should precede the choice of site. The choice of method should be made according to a systematic process and considering functional conditions set up in advance. Different alternatives should be evaluated and compared according to strict long-term environmental standards that comply with sustainable development. This demands extensive information on more than one possible method. The choice of site should also be made according to a systematic process considering functional conditions set up in advance. A clear and understandable sieving process at a national scale should be performed to find the best possible site considering environmental conditions. Changes have to be made so that an independent body supervises the EIA process instead of the nuclear industry. This increases the chance that the choice of method and site gain legitimacy and acceptance in the eyes of ordinary citizens

  15. Similarities and differences between conventional power and nuclear power

    International Nuclear Information System (INIS)

    Wang Yingrong

    2011-01-01

    As the implementation of the national guideline of 'proactively promoting nuclear power development', especially after China decided in 2006 to introduce Westinghouse's AP1000 technology, some of the power groups specialized in conventional power generation, have been participating in the preliminary work and construction of nuclear power projects in certain degrees. Meanwhile, such traditional nuclear power corporations as China National Nuclear Corporation (CNNC) and China Guangdong Nuclear Power Corporation (CGNPC) have also employed some employees with conventional power generation experience. How can these employees who have long been engaged in conventional power generation successfully adapt to the new work pattern, ideology, knowledge, thinking mode and proficiency of nuclear power, so that they can fit in with the work requirements of nuclear power and become qualified as soon as possible? By analyzing the technological, managerial and cultural features of nuclear power, as well as some issues to be kept in mind when engaged in nuclear power, this paper intends to make some contribution to the nuclear power development in the specific period. (author)

  16. Renewable and nuclear power: A common future?

    International Nuclear Information System (INIS)

    Verbruggen, Aviel

    2008-01-01

    Nuclear power and renewable energy are the main options to bring down the carbon intensity of commercial energy supply. What technology is unlimited backstop supply depends on its performance on the sustainability criteria: democratic decided, globally accessible, environmental benign, low risk, affordable. Renewable power meets all criteria, with affordability under debate. Maximizing energy efficiency as prerequisite, the affordable sustainable option in fact is the twin efficiency/renewable power. Nuclear power falls short on the sustainability criteria and its public acceptance is low. Nuclear proponents now propose nuclear and renewable energy as a suitable couple to address the climate change challenge. The two antagonists however are mutually exclusive on the five major directions of future power systems. First, nuclear power has been architect of the expansive 'business-as-usual' energy economy since the 1950s. Second, add-on by fossil-fuelled power plants is bulky and expansive for nuclear power, but is distributed, flexible and contracting over time for renewable power. Third, power grids for spreading bulky nuclear outputs are other than the interconnection between millions of distributed power sources requires. Fourth, risks and externalities and the proper technology itself of nuclear power limit its development perspectives, while efficiency/renewable power are still in their infancy. Fifth, their stalemate for R and D resources and for production capacities will intensify. Nuclear power and renewable power have no common future in safeguarding 'Our Common Future'

  17. Nuclear Power and the Climate Change

    International Nuclear Information System (INIS)

    Hovsenius, Gunnar

    2007-01-01

    wind power, nuclear power (further developed from present day designs) and coal fired plants with CO 2 separation can be considered in the long term. However, in practice, coal based generation systems can never be entirely CO 2 free. In this respect, such systems are less desirable than the other two alternatives, and can also be expected to have costs of the order of 20-25 % higher. Environmentally, wind power is an excellent generation source, but cannot be expanded indefinitely to more or less any size. This is because generation ceases, not only in the absence of wind, but also during times of high winds, which requires some suitable form of standby generation capacity. Even with such a relatively modest contribution as about 10 TWh/year to the Swedish electricity system, this would mean that there must be about 600-800 MW of standby capacity available. In a life cycle perspective, nuclear power would probably have a somewhat lower total CO 2 emission than that of wind power. In addition, nuclear power generation costs are expected to be lower than those of wind power, with a superior generation potential

  18. The economics of nuclear power

    Science.gov (United States)

    Horst, Ronald L.

    We extend economic analysis of the nuclear power industry by developing and employing three tools. They are (1) compilation and unification of operating and accounting data sets for plants and sites, (2) an abstract industry model with major economic agents and features, and (3) a model of nuclear power plant operators. We build a matched data set to combine dissimilar but mutually dependant bodies of information. We match detailed information on the activities and conditions of individual plants to slightly more aggregated financial data. Others have exploited the data separately, but we extend the sets and pool available data sets. The data reveal dramatic changes in the industry over the past thirty years. The 1980s proved unprofitable for the industry. This is evident both in the cost data and in the operator activity data. Productivity then improved dramatically while cost growth stabilized to the point of industry profitability. Relative electricity prices may be rising after nearly two decades of decline. Such demand side trends, together with supply side improvements, suggest a healthy industry. Our microeconomic model of nuclear power plant operators employs a forward-looking component to capture the information set available to decision makers and to model the decision-making process. Our model includes features often overlooked elsewhere, including electricity price equations and liability. Failure to account for changes in electricity price trends perhaps misled earlier scholars, and they attributed to other causes the effects on profits of changing price structures. The model includes potential losses resulting from catastrophic nuclear accidents. Applications include historical simulations and forecasts. Nuclear power involves risk, and accident costs are borne both by plant owners and the public. Authorities regulate the industry and balance conflicting desires for economic gain and safety. We construct an extensible model with regulators, plant

  19. Country Nuclear Power Profiles - 2013 Edition

    International Nuclear Information System (INIS)

    2013-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The CNPP summarizes organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. This 2013 edition, issued on CD-ROM and Web pages, contains updated country information for 51 countries

  20. Country Nuclear Power Profiles. 2016 Edition

    International Nuclear Information System (INIS)

    2016-12-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The publication summarizes organizational and industrial aspects of nuclear power programmes and provides information about the relevant legislative, regulatory and international framework in each State. Its descriptive and statistical overview of the overall economic, energy and electricity situation in each State and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programmes throughout the world. This 2016 edition, issued on CD-ROM, contains updated country information for 51 States.