WorldWideScience

Sample records for swedish nuclear power

  1. Education for the nuclear power industry: Swedish perspective

    International Nuclear Information System (INIS)

    Blomgren, J.

    2005-01-01

    In the Swedish nuclear power industry staff, very few newly employed have a deep education in reactor technology. To remedy this, a joint education company, Nuclear Training and Safety Center (KSU), has been formed. To ensure that nuclear competence will be available also in a long-term perspective, the Swedish nuclear power industry and the Swedish Nuclear Power Inspectorate (SKI) have formed a joint center for support of universities, the Swedish Nuclear Technology Center (SKC). The activities of these organisations, their links to universities, and their impact on the competence development for the nuclear power industry will be outlined. (author)

  2. Swedish Opinion on Nuclear Power 1986 - 2011

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Soeren

    2012-11-01

    This report contains the Swedish opinion on Nuclear Power and European Attitudes on Nuclear Power. It also includes European Attitudes Towards the Future of Three Energy Sources; Nuclear Energy, Wind Power and Solar Power - with a focus on the Swedish opinion. Results from measurements done by the SOM Inst. are presented.

  3. Safety Assessment - Swedish Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B. [Luleaa Univ. of Technology (Sweden)

    1996-12-31

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs.

  4. Safety Assessment - Swedish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kjellstroem, B.

    1996-01-01

    After the reactor accident at Three Mile Island, the Swedish nuclear power plants were equipped with filtered venting of the containment. Several types of accidents can be identified where the filtered venting has no effect on the radioactive release. The probability for such accidents is hopefully very small. It is not possible however to estimate the probability accurately. Experiences gained in the last years, which have been documented in official reports from the Nuclear Power Inspectorate indicate that the probability for core melt accidents in Swedish reactors can be significantly larger than estimated earlier. A probability up to one in a thousand operating years can not be excluded. There are so far no indications that aging of the plants has contributed to an increased accident risk. Maintaining the safety level with aging nuclear power plants can however be expected to be increasingly difficult. It is concluded that the 12 Swedish plants remain a major threat for severe radioactive pollution of the Swedish environment despite measures taken since 1980 to improve their safety. Closing of the nuclear power plants is the only possibility to eliminate this threat. It is recommended that until this is done, quantitative safety goals, same for all Swedish plants, shall be defined and strictly enforced. It is also recommended that utilities distributing misleading information about nuclear power risks shall have their operating license withdrawn. 37 refs

  5. Summary of operating experience at Swedish nuclear power plants in 1984

    International Nuclear Information System (INIS)

    1985-01-01

    The four owners on nuclear power plants in Sweden - The Swedish State Power Board, Forsmarks Kraftgrupp AB, Sydkraft AB and OKG AKTIEBOLAG - formed in 1980 the Nuclear Safety Board of the Swedish Utilities as a joint body for collaboration in safety matters. The Board participates in coordination of the safety work of the utilities and conducts its own safety projects, whereever this is more efficient than the utilities' working independently. The work of the Board shall contribute to optimizing safety in the operation of the Swedish nuclear power plants. The most important function of the Board is to collect, process and evaluate information on operational disturbances and incidents at Swedish and foreign nuclear power plants and then use the knowledge thus gained to improve the safety of the operation of the Swedish nuclear power plants (experience feedback). The work with Experience Feedback proceeds in three stages: Event follow-up, Fault analysis and Feedback of results. The Board runs a system for experience feedback (ERF). ERF is a computer-based information and communication system. ERF provides the Board with a daily update of operating experience in both Swedish and foreign nuclear power plants. Each Swedish nuclear power station supplies the ERF system with data on, among other things, operation and operational distrubances. Important experiences are thereby fed back to plant operation. Experience from foreign nuclear power stations can be of interest to the Swedish nuclear power plants. This information comes to RKS and is reviewed daily. The information that is considered relevant to Swedish plants is fed after analysis into the ERF system. Conversely, foreign nuclear power stations can obtain information from the operation of the Swedish plants. (author)

  6. Operating experience from Swedish nuclear power plants 2004

    International Nuclear Information System (INIS)

    2005-01-01

    2004 was somewhat of a record year for the Swedish nuclear power stations. No serious faults occurred, and production exceeded previous record outputs. Total output from the eleven nuclear power units during the year amounted to 75 TWh, which is the largest amount of power ever produced by nuclear power in Sweden. Corresponding figures for earlier years are 59 TWh (2003), 65 TWh (2002) and 69 TWh (2001). An important reason for this excellent result was the very high energy availability. Forsmark 1, for example, exceeded 97 % availability, while Forsmark 2 just reached 97 %. For all the Swedish nuclear power stations as a whole, availability in 2004 amounted to 91 %. In addition to the connection between production and energy availability, there is also a connection with safety. During the year, safety in the Swedish power stations has been high, not only in absolute terms but also in an international perspective. One measure of safety is to be found in the number of accidents, incidents, anomalies or deviations reported to the IAEA on a scale known as the International Nuclear Event Scale (INES). Sweden has undertaken to report all events in accordance with this international system. Three reports were submitted by the Swedish Nuclear Power Inspectorate, which is responsible for national reporting, during the year. None of them had any significance for reactor safety: all were categorised as incidents or minor deviations from the regulations. Summarising, 2004 has been an excellent year for nuclear power safety, which is also reflected by the record electricity production during the year

  7. Operating experience from Swedish nuclear power plants 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    2004 was somewhat of a record year for the Swedish nuclear power stations. No serious faults occurred, and production exceeded previous record outputs. Total output from the eleven nuclear power units during the year amounted to 75 TWh, which is the largest amount of power ever produced by nuclear power in Sweden. Corresponding figures for earlier years are 59 TWh (2003), 65 TWh (2002) and 69 TWh (2001). An important reason for this excellent result was the very high energy availability. Forsmark 1, for example, exceeded 97 % availability, while Forsmark 2 just reached 97 %. For all the Swedish nuclear power stations as a whole, availability in 2004 amounted to 91 %. In addition to the connection between production and energy availability, there is also a connection with safety. During the year, safety in the Swedish power stations has been high, not only in absolute terms but also in an international perspective. One measure of safety is to be found in the number of accidents, incidents, anomalies or deviations reported to the IAEA on a scale known as the International Nuclear Event Scale (INES). Sweden has undertaken to report all events in accordance with this international system. Three reports were submitted by the Swedish Nuclear Power Inspectorate, which is responsible for national reporting, during the year. None of them had any significance for reactor safety: all were categorised as incidents or minor deviations from the regulations. Summarising, 2004 has been an excellent year for nuclear power safety, which is also reflected by the record electricity production during the year.

  8. Report on the status of instrumentation and control in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Stroebeck, E.

    1992-01-01

    Nuclear power plants accounted for 46% of the total electric power production in Sweden in 1990. The availability of the Swedish reactors remains at a very high level. The oldest Swedish nuclear power plant has been in operation for nearly 20 years, and in the next 5 to 10 years a large portion of the NPP electrical equipment has to be replaced. The paper presents an overview of activities on control and instrumentation in the following: Future developments; implementation of computer-based systems; training simulators; nuclear safety research. The operating experience in Swedish nuclear power plants in 1991 is also presented. (author)

  9. Emergy Evaluation of a Swedish Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kindberg, Anna

    2007-03-01

    Today it is common to evaluate and compare energy systems in terms of emission of greenhouse gases. However, energy systems should not only reduce their pollution but also give a large energy return. One method used to measure energy efficiency is emergy (embodied energy, energy memory) evaluation, which was developed by the system ecologist Howard T. Odum. Odum defines emergy as the available energy of one kind previously used up directly and indirectly to make a service or product. Both work of nature and work of human economy in generating products and services are calculated in terms of emergy. Work of nature takes the form of natural resources and work of human economy includes labour, services and products used to transform natural resources into something of value to the economy. The quotient between work of nature and work of human economy gives the emergy return on investment of the investigated product. With this in mind the present work is an attempt to make an emergy evaluation of a Swedish nuclear power plant to estimate its emergy return on investment. The emergy return on investment ratio of a Swedish nuclear power plant is calculated to approximately 11 in this diploma thesis. This means that for all emergy the Swedish economy has invested in the nuclear power plant it gets 11 times more emergy in return in the form of electricity generated by nuclear power. The method used in this work may facilitate future emergy evaluations of other energy systems

  10. Emergy Evaluation of a Swedish Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kindberg, Anna

    2007-03-15

    Today it is common to evaluate and compare energy systems in terms of emission of greenhouse gases. However, energy systems should not only reduce their pollution but also give a large energy return. One method used to measure energy efficiency is emergy (embodied energy, energy memory) evaluation, which was developed by the system ecologist Howard T. Odum. Odum defines emergy as the available energy of one kind previously used up directly and indirectly to make a service or product. Both work of nature and work of human economy in generating products and services are calculated in terms of emergy. Work of nature takes the form of natural resources and work of human economy includes labour, services and products used to transform natural resources into something of value to the economy. The quotient between work of nature and work of human economy gives the emergy return on investment of the investigated product. With this in mind the present work is an attempt to make an emergy evaluation of a Swedish nuclear power plant to estimate its emergy return on investment. The emergy return on investment ratio of a Swedish nuclear power plant is calculated to approximately 11 in this diploma thesis. This means that for all emergy the Swedish economy has invested in the nuclear power plant it gets 11 times more emergy in return in the form of electricity generated by nuclear power. The method used in this work may facilitate future emergy evaluations of other energy systems.

  11. Technology and costs for decommissioning of Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs.

  12. Technology and costs for decommissioning of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs

  13. Operating experience from Swedish nuclear power plants 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The total production of electricity from Swedish nuclear power plants was 65.6 TWh during 2002, which is a decrease compared to 2001. The energy capability factor for the 11 Swedish reactors averaged 80.8%. The PWRs at Ringhals averaged 87.6%, while the BWRs, not counting Oskarshamn 1, reached 89.2%. No events, which in accordance to conventions should be reported to IAEA, have occurred during 2002. Operational statistics are presented for each Swedish reactor. The hydroelectric power was 66 TWh, 16% lower than 2000. Wind power contributed 0.5 TWh, and remaining production sources, mainly from solid fuel plants combined with district heating, contributed 10.9 TWh. The electricity generation totalled 143 TWh, considerably less than the record high 2001 figure of 158.7 TWh. The preliminary figures for export were 14.8 TWh and and for import 20.1 TWh.

  14. Quarterly report of the Swedish Nuclear Power Inspectorate

    International Nuclear Information System (INIS)

    1984-01-01

    The inspectorate is reporting on the departures of the nuclear power plants from normal operations. No safety incidents of importance occurred during the 4th quarter 1983. There have been 12 reactor trips for the 10 power units, 9 of those occurred on Dec. 27th, when the Southern Swedish power grid tripped.(P.Aa.)

  15. Operating experience from Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The total production of electricity from Swedish nuclear power plants was 70.5 TWh during 1998, which is the second highest yearly production ever. Production losses due to low demand totaled 5.1 TWh combined for all twelve units and production losses due to coastdown operation totaled an additional 0.5 TWh. The reason for this low power demand was a very good supply of water to the hydropower system. Hydroelectric power production was 73.6 TWh, an increase by roughly 5 TWh since 1997. Hence, the hydroelectric power production substantially exceeded the 64 TWh expected during a normal year, i.e. a year with average rainfall. Remaining production sources, mainly fossil fuel electricity production combined with district heating, contributed with 10 TWh. The total electricity production was 154.2 TWh, the highest yearly production ever. The total electricity consumption including transmission losses was 143.5 TWh. This is also the highest consumption ever and an increase by one percent compared to 1997. The preliminary net result of the electric power trade shows a net export by 10.7 TWh. The figures above are calculated from the preliminary production results. A comprehensive report on electric power supply and consumption in Sweden is given in the 1998 Annual Report from the Swedish Power Association. Besides Oskarshamn 1, all plants have periodically been operated in load-following mode, mostly because of the abundant supply of hydropower. The energy availability for the three boiling water reactors at Forsmark averaged 93.3 % and for the three pressure water reactors at Ringhals 91.0 %, both figures are the highest ever noted. In the section `Special Reports` three events of importance to safety that occurred during 1998 are reported. The events were all rated as level 1 according to the International Nuclear Event Scale (INES) Figs, tabs.; Also available in Swedish

  16. Quarterly report of the Swedish Nuclear Power Inspectorate April - June 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The inspectorate has the supervision of the nuclear power plants and other nuclear installations. The report includes statements of security inspections of the Swedish nuclear power plants and accounts of handling, transport and storing of fissionable materials. Safety problems in Studsvik and at ASEA- ATOM concerning nuclear fuel and nuclear waste are discussed. (G.B.)

  17. Changes in control room at Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Kecklund, Lena

    2005-09-01

    The Swedish nuclear power plants were commissioned during a period between 1972 and 1985 and the instrumentation and control equipment are basically from that period. For several years there have been plans made for changes in all the nuclear power plants and to a certain extent the changes in control equipment and monitoring rooms have also been implemented. The object of this project was to make a comprehensive review of the changes in control room design implemented in the Swedish nuclear power plants and to describe how the MTO- (Man-Technology-Organisation) and (Man-Machine-Interface) -issues have been integrated in the process. The survey is intended to give an overall picture of the changes in control room design and man-machine-interface made in the Swedish control rooms, in order to get a deeper knowledge of the change management process and its results as well as of the management of MTO-issues in these projects. The units included in this survey are: Oskarhamn reactor 2 and 3; Ringhals reactor 2, 3 and 4; Forsmark reactor 1, 2 and 3. The Oskarshamn 1 unit has not been included in this report as it has recently undergone an extensive modernisation program as well as a detailed inspection by the SKI (Swedish Nuclear Power Inspectorate). At Ringhals 2 the modernisation work is carried out at present and the unit is also subjected to extensive inspection activities carried out by SKI and is therefore not part of this survey. This report also includes a short description of relevant standards and requirements. Then follows a presentation of the results of the plant survey, presented as case studies for three companies OKG, Ringhals and FKA. Control room changes are summarized as well as the results on specific MTO issues which has been surveyed. In all the power companies there is a joint way of working with projects concerning plant modifications. This process is described for each company separately. In the concluding of the report the strengths and

  18. Operating experience from Swedish nuclear power plants 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The total production of electricity from Swedish nuclear power plants was 69.2 TWh during 2001, which is an increase of more than 25% compared to 2000. The hydroelectric power production increased to 78.3 TWh, 22% more than during a normal year, i.e. a year with average rainfall. Wind power contributed 0.5 TWh, and remaining production sources, mainly from solid fuel plants combined with district heating, contributed 9.6 TWh. The electricity generation totalled 157.6 TWh, the highest annual production to date. The preliminary figures for export were 18.5 TWh and and for import 11.1 TWh. Operational statistics are presented for each Swedish reactor. Two events, given INES level 1 rating, are reported from Barsebaeck 2 and Ringhals 2.

  19. Operating experience from Swedish nuclear power plants 2001

    International Nuclear Information System (INIS)

    2002-01-01

    The total production of electricity from Swedish nuclear power plants was 69.2 TWh during 2001, which is an increase of more than 25% compared to 2000. The hydroelectric power production increased to 78.3 TWh, 22% more than during a normal year, i.e. a year with average rainfall. Wind power contributed 0.5 TWh, and remaining production sources, mainly from solid fuel plants combined with district heating, contributed 9.6 TWh. The electricity generation totalled 157.6 TWh, the highest annual production to date. The preliminary figures for export were 18.5 TWh and and for import 11.1 TWh. Operational statistics are presented for each Swedish reactor. Two events, given INES level 1 rating, are reported from Barsebaeck 2 and Ringhals 2

  20. Insurance cost of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Kaellstrand, Aasa.

    1992-01-01

    What happens if a reactor accident occurs? Can victims of a nuclear accident be compensated for losses? The rights of a victim of a nuclear accident to be compensated for losses are governed by international conventions. These conventions make the licensee of a nuclear plant strictly liable. However, the maximum amount of compensation is limited. In Sweden the total liability of the plant-owner is maximized to 1.2 million Swedish Crowns, that is 0.02 oere/kWh. After the accidents of Harrisburg (1979) and Chernobyl (1986), it has become clear that the amounts of the various conventions are not at all sufficient to cover the damages caused by such an accident. In spite of these facts, there are a large number of reliable sources, who think that the insurance costs are negligible in the cost of production. A cost-benefit analysis based on a study performed by Ottinger et al. in 'Environmental costs of electricity' is therefore adopted to derive the costs of the external effects of nuclear plant operation and from releases to the environment during operation. The environmental externality costs of Swedish nuclear power plant operations are in this report estimated to 18.3 oere/kWh. This figure can be compared to the insurance cost, which for the present is 0.02 oere/kWh. The 'real' insurance cost including the external effects is calculated to approximately 1.12 billion Swedish Crowns] That is 900 times larger than the insurance premium, which the licensee of a nuclear plant faces] (au)

  1. Economical effect of nuclear power phase out. Swedish selection and dilemma

    International Nuclear Information System (INIS)

    Fujime, Kazuya

    1999-01-01

    Now, it is forecast that the nuclear power plant is not planned its new location except Japan and France among advanced industrial nations, and is fated to phase out at least on its duration year (life). In the ''World Energy Outlook, 1998'' of the International Energy Organization and the International Energy Outlook, 1999 of U.S. Department of Energy, it is also described that both capacities and power generations of nuclear power in the world would reduce after passing their peaks from 2010 to 2020. Dr. W.D. Nord house showed concretely in his ''Swedish Nuclear Dilemma'' that the nuclear power phase out brought a large economical loss to Swedish by a quantitative calculation for a question on if an electric source alternative to nuclear power could be obtained without economical loss. He proposed there that the nuclear power phase out brought a huge economical loss, was inconsistent to global warming prohibition policy, and was adequate to abolish only two out of twelve sets of already defuse determined nuclear power plants. It seems to be necessary to re-examine calmly a result of national vote in 1980, and to revise its orbit to more concrete and actual energy and environment political route. (G.K.)

  2. Failure data collection from a Swedish nuclear power plant

    International Nuclear Information System (INIS)

    Andersson, B.; Bhattacharyya, A.; Hilding, S.

    1975-01-01

    The Swedish nuclear utilities have formed a joint working group in the field of reliability data of thermal power plants, nuclear and fossil fuelled. The primary task of the working group is to create a standard procedure of collecting failure data from the Swedish nuclear power plants in operation. The failure data will be stored in a joint data bank. A first test collection of such data has been implemented on Oskarshamn I, and the experience with this work is discussed in this report. Reliability analysis of an engineering system is based on the availability of pertinent information on the system components. Right from the beginning within the Swedish nuclear industry the consensus has been that such data can be suitably obtained by monitoring the operating power stations. This has led to a co-operative arrangement between the vendor, ASEA-ATOM and a utility, Oskarshamnsverkets Kraftgrupp AB (OKG) to utilize information from component malfunctions in the reliability analysis. The utility prepares component failure reports which are sent to the vendor for further treatment. Experience gathered to date indicates that this arrangement is effective although many persons are involved in this process of information transmittal. The present set-up is flexible enough to accommodate necessary changes in view of problems which arise now and then in monitoring a complex system like a nuclear power station. This report briefly describes the structure of the failure data collection system. The way in which the raw data collection is done in the station by the owner and the subsequent data processing by the vendor is discussed. A brief status report of the information collected since 1971 is given. It can be concluded that valuable reliability data can be obtained by monitoring component failure reports from an operating power plant. Two requirements are, however, that all the parties involved in the arrangement follow given instructions carefully and that the assumed

  3. Fundamental design bases for independent core cooling in Swedish nuclear power reactors

    International Nuclear Information System (INIS)

    Jelinek, Tomas

    2015-01-01

    New regulations on design and construction of nuclear power plants came into force in 2005. The need of an independent core cooling system and if the regulations should include such a requirement was discussed. The Swedish Radiation Safety authority (SSM) decided to not include such a requirement because of open questions about the water balance and started to investigate the consequences of an independent core cooling system. The investigation is now finished and SSM is also looking at the lessons learned from the accident in Fukushima 2011. One of the most important measures in the Swedish national action plan is the implementation of an independent core cooling function for all Swedish power plants. SSM has investigated the basic design criteria for such a function where some important questions are the level of defence in depth and the acceptance criteria. There is also a question about independence between the levels of defence in depth that SSM have included in the criteria. Another issue that has to be taken into account is the complexity of the system and the need of automation where independence and simplicity are very strong criteria. In the beginning of 2014 a memorandum was finalized regarding fundamental design bases for independent core cooling in Swedish nuclear power reactors. A decision based on this memorandum with an implementation plan will be made in the first half of 2014. Sweden is also investigating the possibility to have armed personnel on site, which is not allowed currently. The result from the investigation will have impact on the possibility to use mobile equipment and the level of protection of permanent equipment. In this paper, SSM will present the memorandum for design bases for independent core cooling in Swedish nuclear power reactors that was finalized in March 20147 that also describe SSM's position regarding independence and automation of the independent core cooling function. This memorandum describes the Swedish

  4. Operating experience from Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1999-01-01

    The total production of electricity from Swedish nuclear power plants was 70.5 TWh during 1998, which is the second highest yearly production ever. Production losses due to low demand totaled 5.1 TWh combined for all twelve units and production losses due to coastdown operation totaled an additional 0.5 TWh. The reason for this low power demand was a very good supply of water to the hydropower system. Hydroelectric power production was 73.6 TWh, an increase by roughly 5 TWh since 1997. Hence, the hydroelectric power production substantially exceeded the 64 TWh expected during a normal year, i.e. a year with average rainfall. Remaining production sources, mainly fossil fuel electricity production combined with district heating, contributed with 10 TWh. The total electricity production was 154.2 TWh, the highest yearly production ever. The total electricity consumption including transmission losses was 143.5 TWh. This is also the highest consumption ever and an increase by one percent compared to 1997. The preliminary net result of the electric power trade shows a net export by 10.7 TWh. The figures above are calculated from the preliminary production results. A comprehensive report on electric power supply and consumption in Sweden is given in the 1998 Annual Report from the Swedish Power Association. Besides Oskarshamn 1, all plants have periodically been operated in load-following mode, mostly because of the abundant supply of hydropower. The energy availability for the three boiling water reactors at Forsmark averaged 93.3 % and for the three pressure water reactors at Ringhals 91.0 %, both figures are the highest ever noted. In the section 'Special Reports' three events of importance to safety that occurred during 1998 are reported. The events were all rated as level 1 according to the International Nuclear Event Scale (INES)

  5. Summary of personnel doses and discharge of radioactivity at Swedish nuclear power plants 1971-1975

    International Nuclear Information System (INIS)

    Malmqvist, L.; Persson, Aa.

    1977-01-01

    The report is a summary of personnel doses and activity discharges from Swedish nuclear power plants during the first five years of electric power production by nuclear plants. The personnel doses for the Sweedish plants are lower than the corresponding values for American plants. The highest Swedish value is o,13 manrem per MWE and year. The discharge of radioactivity to the atmosphere from the Swedish plants has been for below the maximum permissible limits. The discharge of radioactivity to the water recipients was less than 1 % of what is permissible

  6. Operating experience from Swedish nuclear power plants 2003

    International Nuclear Information System (INIS)

    2004-01-01

    In safety terms, operations of the Swedish nuclear power plants in 2003 can be summarized as having ben good, with a few exceptions: The thermal mixer problem at Barsebaeck-2; The Highest Permissible Limit Value excursion at OKG-3, which subjected the reactor pressure vessel to a too rapid temperature change; and An INES class 1 incident at Ringhals-1. The Barsebaeck and Ringhals events were not of such seriousness as to represent a threat to reactor safety, but they both had the effect of causing the Nuclear Power Inspectorate to question safety cultures at the plants. The mixer event resulted in a considerable production loss, with the reactor being shut down twice, making a total of five months. OKG-3 was shut down for almost two months during the autumn. Despite the above, production from Swedish NPPs was much the same as during 2002. Total electricity production amounted to 65 TWh (65.2 TWh in 2002). On the average the energy availability of the eleven reactors was 79%. The PWRs at Ringhals had an average energy availability of 89%, while the BWRs reached 76%

  7. Views on safety culture at Swedish and Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Hammar, L.; Wahlstroem, B.; Kettunen, J.

    2000-02-01

    The report presents the results of interviews about safety culture at Swedish and Finnish nuclear power plants. The aim is to promote the safety work and increase the debate about safety in nuclear power plants, by showing that the safety culture is an important safety factor. The interviews point out different threats, which may become real. It is therefor necessary that the safety aspects get support from of the society and the power plant owners. (EHS)

  8. A list of abnormal occurences at Swedish nuclear power stations

    International Nuclear Information System (INIS)

    McHugh, B.

    1974-08-01

    This report consists of a list of extracts from documents belonging to Statens Kaernkraftinspektion (SKI) in Sweden. It deals with non-routine occurrences at the Swedish nuclear power stations which are in operation or where test operations of components and systems have started. The investigation has included matter about the following nuclear power plants: Barsebaeck-1, Oskarshamn-1, Oskarshamn-2, Ringhals-1, Ringhals-2, Aagesta. In all cases from the start of the test operations up to latest the 1st of June 1974. (M.S.)

  9. Operating experience from Swedish nuclear power plants, 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The total generation of electricity from Swedish nuclear power plants was 70.1 TWh during 1999, which is slightly more than the mean value for the last five years. The total electricity consumption decreased by one percent, compared with 1998, to a total of 142.3 TWh, due to an unusually warm summer and autumn. The abundant supply of hydroelectric power resulted in comparatively extensive load-following operation by the nuclear plants during the year. Production losses due to low demand totalled 3.0 TWh. The closure of Barsebaeck 1 will result in a capacity reduction exceeding 4 TWh per year. The hydroelectric power production was 70 TWh, which was 6 TWh more than during a normal year, i.e. a year with average rainfall. The remaining production sources, mainly from solid fuel plants combined with district heating contributed 9 TWh. Electricity generation by means of wind power is still increasing. There are now about 470 wind power stations, which produced 0.3 TWh during the year. The total electricity generation totalled 149.8 TWh, a three percent decrease compared with 1998. The preliminary figures for export were 15.9 TWh and for import 8.4 TWh. The figures above are calculated from the preliminary production result. A comprehensive report on electric power supply and consumption in Sweden is provided in the 1999 Annual Report from the Swedish Power Association. The unit capability factor for the PWRs at Ringhals averaged 91%, while the BWRs averaged 82% mainly due to the extended outages. The BWR reactors at Forsmark averaged as much as 93%. Forsmark 1 experienced the shortest refuelling outage ever in Sweden, only 9 days and 20 hours. In May, Oskarshamn 2 passed a historical milestone - the unit produced 100 TWh since connection to the grid in 1974. The final production day for Barsebaeck 1, which had been in commercial operation since 1975, was on November 30 when a decision by the Swedish Government revoked the operating licence. Three safety-related events

  10. Quality assurance requirements for the operation of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1983-09-01

    An adaption of NRC's 10 CFR 50, Appendis B (Quality Assurance Criteria for Nuclear Power and Fuel Reprocessing Plants) to Swedish conditions is presented. No references are given to regulations standards etc that influence the requirements and their adaption to local conditions. (Aa)

  11. Phasing out nuclear power, the swedish experience

    International Nuclear Information System (INIS)

    Fredriksson, Y.

    2000-01-01

    This article presents the chronological steps in the phasing-out of nuclear energy in Sweden. In 1980 a consultative referendum was held and it was decided that: i) no further expansion of nuclear capacity beyond the 12 reactors in operation or already under construction, ii) all nuclear power plants should be decommissioned by the year 2010. In 1988, as a consequence of the Chernobyl nuclear accident, the Swedish parliament decided that one reactor should be closed down in 1995 and a second in 1996. In 1991 the parliament proposed a new energy program for a 5 year period. The main measure was a huge financial support for increasing energy efficiency and for developing environmental sound technologies. At the same time the parliament repealed the 1991 decision of closing 1 reactor in 1995 and made the phase-out process dependent on the results of the new energy policy. In 1994 a parliamentary Commission was appointed to estimate the results of 1991 energy policy. The results were meager and disappointing so the Commission considered that a number of objectives (the climate issue, employment, welfare and competitiveness) remained unresolved if all nuclear power generation should be phased out by 2010. However, the Commission also considered it important to start the phasing-out process at an early stage and stated that one reactor could be closed down without noticeably affecting the power balance. The Barsebaeck reactor is to be closed before the end of november 1999. (A.C.)

  12. Human factors in maintenance: Development and research in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Salo, I.; Svensson, Ola

    2001-11-01

    The present report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects

  13. Human factors in maintenance: development and research in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Salo, I.; Svenson, O.

    2001-11-01

    The report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects. (au)

  14. Human factors in maintenance: Development and research in Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Salo, I. [Lund Univ. (Sweden). Dept. of Psychology; Svensson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    2001-11-01

    The present report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects.

  15. Report on the status of instrumentation and control in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Blomberg, P.E.

    1990-01-01

    During 1988 the twelve nuclear power units in Sweden generated 69 TWh, which was 45% of the total electric power produced in Sweden. The production capacity of the nuclear power plants increased successively by upgrading the units to higher nominal power levels. The paper presents an overview of activities on control and instrumentation in the following: maintenance, renewal of the I and C systems, training. The operational data of Swedish reactor units are presented. (author). 1 tab

  16. Changes in control room at Swedish nuclear power plants; Kontrollrumsfoeraendringar vid svenska kaernkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    Kecklund, Lena [MTO Psykologi, Huddinge (Sweden)

    2005-09-15

    The Swedish nuclear power plants were commissioned during a period between 1972 and 1985 and the instrumentation and control equipment are basically from that period. For several years there have been plans made for changes in all the nuclear power plants and to a certain extent the changes in control equipment and monitoring rooms have also been implemented. The object of this project was to make a comprehensive review of the changes in control room design implemented in the Swedish nuclear power plants and to describe how the MTO- (Man-Technology-Organisation) and (Man-Machine-Interface) -issues have been integrated in the process. The survey is intended to give an overall picture of the changes in control room design and man-machine-interface made in the Swedish control rooms, in order to get a deeper knowledge of the change management process and its results as well as of the management of MTO-issues in these projects. The units included in this survey are: Oskarhamn reactor 2 and 3; Ringhals reactor 2, 3 and 4; Forsmark reactor 1, 2 and 3. The Oskarshamn 1 unit has not been included in this report as it has recently undergone an extensive modernisation program as well as a detailed inspection by the SKI (Swedish Nuclear Power Inspectorate). At Ringhals 2 the modernisation work is carried out at present and the unit is also subjected to extensive inspection activities carried out by SKI and is therefore not part of this survey. This report also includes a short description of relevant standards and requirements. Then follows a presentation of the results of the plant survey, presented as case studies for three companies OKG, Ringhals and FKA. Control room changes are summarized as well as the results on specific MTO issues which has been surveyed. In all the power companies there is a joint way of working with projects concerning plant modifications. This process is described for each company separately. In the concluding of the report the strengths and

  17. Deregulation and internationalisation - impact on the Swedish nuclear industry

    International Nuclear Information System (INIS)

    Haukeland, Sverre R.

    2010-01-01

    The deregulation of the Swedish electricity market in 1996 was well known in advance, and the nuclear power plants in Sweden, as well as their main suppliers, made early preparations for a this new situation. In a study - performed by the author at Malardalen University in Sweden - it is concluded that the electricity industry, including the nuclear power plants, was fundamentally transformed in conjunction with market liberalisation. Two large foreign companies, E-on and Fortum, entered the Swedish market and became part-owners of the nuclear plants. After deregulation, the electricity market in Sweden is dominated by these two companies and the large national company Vattenfall. Similarly, Vattenfall has recently grown into an international energy company, acquiring generation capacity in Northern Europe outside of Sweden, including nuclear power plants in Germany. Restructuring of the nuclear industry on the supplier side started in the 1980's, when the Swedish company ASEA and BBC of Switzerland merged to become ABB. Several years later the Swedish nuclear plant supplier ABB-Atom became part of Westinghouse Electric Company, today owned by Toshiba. The Swedish experience thus confirms an international trend of mergers and consolidation in the nuclear industry. (authors)

  18. Technology and costs for decommissioning the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1986-05-01

    The study shows that, from the viewpoint of radiological safety, a nuclear power plant can be dismantled immediately after it has been shut down and the fuel has been removed, which is estimated to take about one year. Most of the equipment that will be used in decommissioning is already available and is used routinely in maintenance and rebuilding work at the nuclear power plants. Special equipment need only be developed for dismantlement of the reactor vessel and for demolishing of heavy concrete structures. The dismantling of a nuclear power plant can be accomplished in about five years, with an average labour force of about 200 men. The maximum labour force required for Ringhals 1 has been estimated at about 500 men during the first years, when active systems are being dismantled in a number of fronts in the plant. During the last years when the buildings are being demolished, approximately 50 men are required. In order to limit the labour requirement and the dose burden to the personnel, the material is taken out in as large pieces as possible. The cost of decommissioning a boiling water reactor (BWR) of the size of Ringhals 1 has been estimated to be about MSEK 540 in January 1986 prices, and for a pressurized water reactor (PWR, Ringhals 2) about MSEK 460. The cost for the other Swedish nuclear power plants lie in the range of MSEK 410-760. These are the direct cost for the decommissioning work, to which must be added the costs of transportation and disposal of the decommissioning waste, about 100 000 m/sup3/. These costs have been estimated to be about MSEK 600 for the 12 Swedish reactors. (author)

  19. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    International Nuclear Information System (INIS)

    2006-05-01

    In 2005, no severe events occurred which challenged the safety at the Swedish nuclear power plants. However, some events have been given a special focus. The 'Gudrun' storm, which occurred in January 2005, affected the operation of the reactors at Ringhals and Barsebaeck 2. At Ringhals, the switchyards were affected by salt deposits and, at Barsebaeck, the 400kV grid was subjected to interruptions. The long-term trend is that the total number of fuel defects in Swedish reactors is decreasing. The damage that occurs nowadays has mainly been caused by small objects entering the fuel via the coolant and fretting holes in the cladding. To reduce the number of defects of this type, fuel with filters is successively being introduced to prevent debris from entering the fuel assemblies and cyclone filters in the facility which cleans the coolant. Since the mid-nineties, the pressurised water reactors, Ringhals 2, 3 and 4, have had problems with fuel rod bowing in excess of the safety analysis calculations. Ringhals AB (RAB) has adopted measures to rectify the bowing. Follow-up work shows that the fuel rod bowing is decreasing. The followup in 2005 of damaged tubes in the Ringhals 4 steam generators indicates a continued slow damage propagation. Tubes with defects of such a limited extent that there are adequate margins to rupture and loosening have been kept in operation. Damaged tubes with insufficient margins have plugged. During the year, previously observed minor leakage from the reactor containment in Ringhals 2 was investigated in greater detail and repaired. The investigations showed extensive corrosion attack caused by deficiencies in connection with containment construction. The ageing of electrical cables and other equipment in the I-C systems has been examined by SKI. Regulatory supervision has so far shown that these issues are largely handled in a satisfactory manner by the licensees but that certain supplementary investigations and other measures need to be

  20. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    In 2005, no severe events occurred which challenged the safety at the Swedish nuclear power plants. However, some events have been given a special focus. The 'Gudrun' storm, which occurred in January 2005, affected the operation of the reactors at Ringhals and Barsebaeck 2. At Ringhals, the switchyards were affected by salt deposits and, at Barsebaeck, the 400kV grid was subjected to interruptions. The long-term trend is that the total number of fuel defects in Swedish reactors is decreasing. The damage that occurs nowadays has mainly been caused by small objects entering the fuel via the coolant and fretting holes in the cladding. To reduce the number of defects of this type, fuel with filters is successively being introduced to prevent debris from entering the fuel assemblies and cyclone filters in the facility which cleans the coolant. Since the mid-nineties, the pressurised water reactors, Ringhals 2, 3 and 4, have had problems with fuel rod bowing in excess of the safety analysis calculations. Ringhals AB (RAB) has adopted measures to rectify the bowing. Follow-up work shows that the fuel rod bowing is decreasing. The followup in 2005 of damaged tubes in the Ringhals 4 steam generators indicates a continued slow damage propagation. Tubes with defects of such a limited extent that there are adequate margins to rupture and loosening have been kept in operation. Damaged tubes with insufficient margins have plugged. During the year, previously observed minor leakage from the reactor containment in Ringhals 2 was investigated in greater detail and repaired. The investigations showed extensive corrosion attack caused by deficiencies in connection with containment construction. The ageing of electrical cables and other equipment in the I-C systems has been examined by SKI. Regulatory supervision has so far shown that these issues are largely handled in a satisfactory manner by the licensees but that certain supplementary investigations and other measures

  1. Knowledge transfer in Swedish Nuclear Power Plants in connection with retirements

    International Nuclear Information System (INIS)

    Larsson, Annika; Ohlsson, Kjell; Roos, Anna

    2007-01-01

    This report displays how the Swedish nuclear power plants Forsmark, Oskarshamn and Ringhals work with knowledge management. The report also consists of a literature review of appropriate ways to extract tacit knowledge as well as methods to transfer competence. The report is made up of a smaller number of interviews at the nuclear power plants in combination with a questionnaire distributed to a larger number of people at the plants. The results of the interview study is that only one of the Swedish nuclear power plants have a programme to transfer knowledge from older staff to newer. This is, however, not a programme for everyone. Another plant has a programme for knowledge building, but only for their specialists. At both plants, which lack a programme, the interviewees request more structure in knowledge transfer; even though they feel the current way of transferring knowledge with mentors works well. Besides more structure, interviewees present a wish to have more time for knowledge transfer as well as the opportunity to recruit more than needed. Recruiting more than needed is however not very simple due to multiple causes such as nominal sizing departments and a difficulty of recruiting people to work far from larger cities. The way things are now, many feel too under-staffed and under a lot of time pressure daily to also have time for knowledge transfer besides their normal work

  2. Mitigation of severe accidents in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Soederman, E.

    1987-01-01

    Sweden is the first country to build filtered venting systems, the first one became operable at Barsebaeck nuclear power plant in 1985. In new concepts, now being installed in Sweden, an enhanced containment spray system is the basic element and the filtered venting is only the secondary mitigating system. The filter is a new design, a submerged multi venturi scrubber. The Swedish strategy has been built on three basics: improved knowledge through research; containment integrity through mitigating systems; and accident management to prevent severe accidents. 2 figs

  3. Reliability of diesel generators in the Finnish and Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Pulkkinen, U.; Huovinen, T.; Norros, L.; Vanhala, J.

    1989-10-01

    Diesel generators are used as emergency AC-power sources in nuclear power plants and they produce electric power for other emergency systems during accidents in which offsite power is lost. The reliability of diesel generators is thus of major concern for overall safety of nuclear power plants. In this study we consider the reliability of diesel generators in the Swedish and Finnish nuclear power plants on the basis of collected operational experience. We classify the occurred failures according to their functional criticality, type and cause. The failures caused by human errors in maintenance and testing are analysed in detail. We analyse also the reliability of the diesel generator subsystems. Further, we study the effect of surveillance test and the type of test on the reliability. Finally we construct an unavailability model for single diesel generator unit and discuss the findings of the study giving some practical recommendations

  4. European stress tests for nuclear power plants. The Swedish National Report

    International Nuclear Information System (INIS)

    2011-01-01

    On 11 March 2011, the Tohoku region in north Honshu, Japan, suffered a severe earthquake with an ensuing tsunami and an accident at the Fukushima Dai-ichi nuclear power plant. Due to the accident the Council of the European Union declared in late March that Member States were prepared to begin reviewing safety at nuclear facilities in the European Union by means of a comprehensive assessment of risk and safety ('stress testing'). On 25 May, SSM ordered the licensees of the nuclear power plants to conduct renewed analyses of the facilities' resilience against different kinds of natural phenomena. They were also to analyse how the facilities would be capable of dealing with a prolonged loss of electrical power, regardless of cause. On 31 October, the licensees reported on their stress tests to SSM. After reviewing these reports, SSM produced a summary stress test report, which was submitted to the Government on the 15 December. The present report is the national report on Swedish stress tests of nuclear power plants. The report will be submit to the European Commission no later than 31 December. Based on the review SSM has drawn the conclusion that the stress tests carried out by Swedish licensees are largely performed in accordance with the specification resolved within the European Union. The scope and depth of these analyses and assessments are essentially in accordance with ENSREG's definition of 'a comprehensive assessment of risk and safety'. The stress tests show that Swedish facilities are robust, but the tests also identify a number of opportunities to further strengthen the facilities' robustness. SSM will order the respective licensees to present an action plan for dealing with the results from the stress tests. The Authority will then examine the plans and adopt a standpoint on proposed measures as well as check that the necessary safety improvements are made. In a number of cases, the stress tests indicate deficiencies in relation to, or alternatively

  5. Preparedness against nuclear power accidents

    International Nuclear Information System (INIS)

    1985-01-01

    This booklet contains information about the organization against nuclear power accidents, which exist in the four Swedish counties with nuclear power plants. It is aimed at classes 7-9 of the Swedish schools. (L.E.)

  6. A vision of inexhaustible energy: The fast breeder reactor in Swedish nuclear power history 1945-80

    International Nuclear Information System (INIS)

    Fjaestad, Maja

    2010-01-01

    The fast breeder is a type of nuclear reactor that aroused much attention in the 1950s and 1960s. Its ability to produce more nuclear fuel than it consumes offered promises of cheap and reliable energy, and thereby connected it to utopian ideas about an eternal supply of energy, Furthermore. the ideas of breeder reactors were a vital part of the post-war visions about the nuclear future. This dissertation investigates the plans for breeder reactors in Sweden, connecting them to the contemporary development of nuclear power with heavy or light water and the discussions of nuclear weapons, as well as to the general visions of a prosperous technological future. The history of the Swedish breeder reactor is traced from high hopes in the beginning, via the fiasco of the Swedish heavy water program, partly focusing on the activities at the company AB Atomenergi and investigating how it planned and argued for its breeder program and how this was received by the politicians. The story continues into the intensive environmental movement in the 1970s, ending with the Swedish referendum on nuclear energy in 1980, which can be seen as the final point for the Swedish breeder. The thesis discusses how the nuclear breeder reactor was transformed from an argument for nuclear power to an argument against it. The breeder began as a part of the vision of a society with abundant energy, but was later seen as a threat against the new sustainable world. The nuclear breeder reactor is an example of a technological vision that did not meet its industrial expectations. But that does not prevent the fact that breeder was an influential technology in an age where important decisions about nuclear energy were made. The thesis argues that important decisions about the contemporary reactors were taken with the idea that they in a foreseeable future would be replaced with the efficient breeder. And the last word on the breeder reactor is not said - today, reactor engineers around the world are

  7. Results for WANO indicators for Swedish nuclear power plants 1998-2002

    International Nuclear Information System (INIS)

    Flodin, Yngve; Loennblad, Christer

    2004-01-01

    The objective of the SKI indicator project is to introduce safety performance indicators as a complement to the inspections carried out at the swedish nuclear facilities. The Performance Indicators defined by WANO are proven by the industry and should be included in a future indicator system. From the set of WANO-indicators, six have been chosen for evaluation in the project. The chosen indicators are: Collective Radiation Exposure (CRE), Fuel Reliability Index (FRI), Safety System Performance (SP1/2/5), Unplanned Automatic Scrams (UA7), Unit Capability Factor (UCF) and Unplanned Capability Loss Factor (UCL). The resulting indicator values for all the swedish nuclear power plants are presented in graphs for a 5-year period, 1998-2002. Data for the BWR and PWR-collectives are included for comparison. The type of graph used, a combined bar and curve chart, is considered to give the best representation of the data. As a guide when evaluating the results, explanations are provided for individual indicator values that deviate significantly from normal levels

  8. Human error as a source of disturbances in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Sokolowski, E.

    1985-01-01

    Events involving human errors at the Swedish nuclear power plants are registered and periodically analyzed. The philosophy behind the scheme for data collection and analysis is discussed. Human errors cause about 10% of the disturbances registered. Only a small part of these errors are committed by operators in the control room. These and other findings differ from those in other countries. Possible reasons are put forward

  9. Concrete containments in Swedish nuclear power plants. A review of construction and material

    International Nuclear Information System (INIS)

    Roth, Thomas; Silfwerbrand, Johan; Sundquist, Haakan

    2002-12-01

    attention. Current investigation shows that the documentation on the concrete containment structures of the Swedish nuclear power stations is fairly complete after the authors have obtained new information through a survey during 2001 and included these data in the report. The target group of this report are structural engineers and other people interested in knowing how the prestressed concrete containments in the Swedish nuclear power stations are designed, detailed and constructed. Uprising questions regarding the structural behaviour of the containment structures ought to be evaluated by using present material properties and not the data describing the used building materials at the design stage. The aim of this research project is to gain new knowledge on life span questions regarding prestressing steel in concrete structures, partly generally and partly with focus on Swedish nuclear power stations and Swedish bridges. The project covers both bonded and un bonded prestressing steel. This report describes the containment structures for all Swedish nuclear power stations. The information is both given in Chapters 5 through 16 and assembled in tables in Appendix A. The intention is that the documentation shall grow and be supplemented as soon as new information, either new data describing the containment structures or new measuring results, will be obtained or produced within current research project. Design and detailing of prestressed concrete structures are among others based on the knowledge of time-dependent material changes regarding concrete (creep and shrinkage) and prestressing steel (relaxation). The intention is that the following items will treated: general evaluation; testing of prestressing steel and concrete properties; assessment of the risk of a time-dependent increase of brittleness of the prestressing steel; comparisons with codes; modelling of steel relaxation; unidimensional modelling of prestressing losses; regard to elevated temperatures

  10. The Swedish Nuclear Power Inspectorate's Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RD and D Programme 2001

    International Nuclear Information System (INIS)

    2002-09-01

    According to the Act on Nuclear Activities, the holder of a licence to operate a nuclear reactor must adopt all necessary measures to manage and dispose of spent nuclear fuel and nuclear waste. The Act stipulates requirements on a research programme which is to be submitted to the competent regulatory authority once every three years. The Swedish Nuclear Power Inspectorate (SKI) is the competent authority that evaluates and reviews the programme. SKI distributes the programme to a wide circle of reviewing bodies for comment, including authorities, municipalities, universities and NGOs. The Swedish programme for final disposal of spent nuclear fuel started about 25 years ago. According to the Swedish Nuclear Waste Management Co. (SKB), the planned repository will not be closed until sometime in the 2050's. A series of decisions must be made before this goal is attained. The decision process can therefore be described as a multi-stage process. During each stages, safety will be evaluated and there is a possibility of taking additional time for development work or of selecting improved solutions. SKI's task is to ensure safety compliance throughout all of these stages. In its decision in January 2000, the Government explained that the Programme for Research, Development and Demonstration for the Treatment and Final Disposal of Nuclear Waste (RD and D Programme 98) complied with legislative requirements but that certain supplementary reporting should be conducted by SKB and submitted no later than when the next programme, in accordance with paragraph 12 of the Act on Nuclear Activities, was prepared (September 2001). The supplementary reporting requested by the Government, and which was submitted by SKB to SKI in December 2000, dealt with issues relating to method selection, site selection and the site investigation programme. SKI submitted its review of the supplement to the Government in June 2001 and the Government made a decision on the matter on November 1, 2001

  11. Safety and Radiation Protection at Swedish Nuclear Power Plants 2004

    International Nuclear Information System (INIS)

    2005-05-01

    In 2004, no severe events occurred which challenged the safety at Swedish nuclear power plants. Two events were classified as Level 1 events on the 7-point International Nuclear Event Scale. The events are described in the chapter Operating Experience. During the year, relatively little new degradation and deficiencies were detected in the reactor barriers. The number of fuel defects is constantly decreasing. The same applies to the number of defects in the pressure-bearing systems. On the other hand, SKI has observed that damage is beginning to occur in the reactor containment. Applied control programmes are effective and capture most of the damage at an early stage before safety is affected. However, individual defects have been detected in material where such degradation was not anticipated and which is currently not regularly checked. SKI will follow up these observations thoroughly in order to judge whether there is a need for increased inspections. During the year, two defects found in the reactor containment were reported. The damage and degradation that occurred indicate that the causes were mainly due to defects during construction, or during subsequent plant modification. Taking into account the difficulty of inspecting the reactor containments and other vital building structures reliably, it is important for the licensees to continue to study possible ageing and degradation mechanisms that can affect the integrity and safety of the components. SKI continuously follows the progress of the degradation in the mechanical devices and building structures that form the plant barriers and defence-in-depth system. This includes both overall evaluations of the progress of degradation as a whole and the progress of degradation in each facility. Furthermore, the occurrence of different degradation mechanisms is followed. The power companies have intensified the rate of investment in nuclear power plants. Modernization work and safety reviews stipulated by the

  12. Releases of radioactive substances from Swedish nuclear power plants (RAKU)

    Energy Technology Data Exchange (ETDEWEB)

    Ingemansson, T.; Bergstroem, C. [ALARA Engineering AB, Skultuna (Sweden)

    1997-04-01

    Releases of radioactivity to air and water from Swedish nuclear power plants have been studied and compared with those from foreign reactors. Averaged over the years from commissioning of the reactors to the last year data are available, the release of radioactive noble gas from the Swedish BWRs has been about the same as from comparable foreign reactors. The oldest Swedish BWRs, Oskarshamn 1 and 2 (O1 and O2) and Ringhals 1 (R1), have simple off-gas systems with only one delay volume. All BWRs in US, Germany, Japan and Switzerland are equipped with more sophisticated off-gas systems. It can be expected that O1, O2 and R1 therefore will have the highest release of noble gas activity at an international comparison if they do not modernize their off-gas system. BWRs in US, Germany and Japan are today equipped with recombiners and with one exception also charcoal columns. Japanese BWRs report zero releases to air. Releases of radioactivity to water after commissioning was about the same for most of the studied reactors. Some of the newest German plants have had low annual releases already at commissioning. Improvements of the treatment systems at old German, Swiss and US reactors have significantly lowered the releases. For most of the Swedish plants the annual releases to water have remained at the initial level. Forsmark 3 has succeeded in decreasing the release of radionuclides to water by a factor of almost one hundred compared to other Swedish reactors. Also O3 has managed to decrease the liquid effluents. Japanese plants have zero release of radioactivity excluding tritium to water. The release of tritium is about the same for all reactors of the same type in the world. 35 refs, 31 figs, 24 tabs.

  13. Nuclear power in rock. Principal report

    International Nuclear Information System (INIS)

    1977-06-01

    In September 1975 the Swedish Government directed the Swedish State Power Board to study the question of rock-siting nuclear power plants. The study accounted for in this report aims at clarifying the advantages and disadvantages of siting a nuclear power plant in rock, compared to siting on ground level, considering reactor safety, war protection and sabotage. The need for nuclear power production during war situations and the closing down of nuclear power plants after terminated operation are also dealt with. (author)

  14. Reliability of diesel generators at the Finnish and Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Pulkkinen, Urho [Technical Research Centre of Finland, Vuorimiehentie 5, SF-02150, Espoo (Finland)

    1986-02-15

    The operating experiences of 40 stand-by diesel generators at the Finnish and Swedish nuclear power plants have been analysed with special emphasis on the impact of the frequency of surveillance testing and of the test procedure on diesel generator reliability, the contribution of design, manufacturing, testing and maintenance errors and the potential and actual common cause failures, The results pf the analyses consisted both practical recommendations and mathematical reliability models and useful reliability data. (author)

  15. Technology and costs for dismantling a Swedish nuclear power plant

    International Nuclear Information System (INIS)

    1979-10-01

    Various estimates concerning the costs of decommissioning a redundant nuclear power reactor to the green fields state are given in the literature. The purpose of this study is to provide background material for the Swedish nuclear power utilities to estimate the costs and time required to dismantle an ASEA-ATOM Boiling Water Reactor. The units Oskarshamn II and Barsebeck 1, both with an installed capacity of approximately 600 MW, serve as reference plants. The time of operation before final shutdown is assumed to be 40 years. Dismantling operations are initiated one year after shutdown. When the dismantling of the plant is finished, the site is to be released for unrestricted use. The costs for dismantling and subsequent final disposal of the radioactive waste are estimated at approximately SEK 500 million (approximately US dollars 120 million) in terms of 1979 prices. The sum includes 25% contingency. The dismantling cost is equivalent to 10-15% of the installation cost of an equivalent new nuclear power plant. The exact percentage is dependent on the interest rate during the construction period. It is shown in the study that a total dismantling can be accomplished in less than five years. This report is a compilation of studies performed by ASEA-ATOM and VBB based on premises given by KBS. The reports from these studies are presented in appendices. (Auth.)

  16. Vitrified radwaste from reprocessing. Material concerning the examination by the Swedish Nuclear Power Inspectorate of the supplementary geology report from the KBS-project

    International Nuclear Information System (INIS)

    1979-01-01

    The Swedish Nuclear Power Inspectorate was designated by the Swedish Government to examine the supplementary geologic investigations performed by the utilities' KBS-project and to judge wheather the area investigated, Sternoe in southern Sweden, could be used for constructing a safe repository for radioactive wastes or not. This report contains material that was ordered by or sent to the Nuclear Power Inspectorate as well as the report by the Inspectorate to the Government. (L.E.)

  17. Radiation protection actions at Swedish nuclear power plants 1994-2002 and some reflections about the near future

    International Nuclear Information System (INIS)

    Erixon, Stig; Godaas, Tommy; Hofvander, Peter; Lund, Ingmar; Malmqvist, Lars; Thimgren, Ingela; Oelander-Guer, Hanna

    2003-12-01

    This report provides a summary of radiation protection experiences over the years 1994-2002 in the Swedish nuclear power industry. Actions to reduce radiation levels in reactor systems, occupational exposure results and some reflections about the near future are presented

  18. The Swedish Nuclear Power Inspectorate's evaluation of SKB's RD and D Program 98. Review report

    International Nuclear Information System (INIS)

    1999-04-01

    According to the Act (1984:3) on Nuclear Activities, the full responsibility for the safe management and final disposal of spent nuclear fuel and nuclear waste rests with the owners of the Swedish nuclear power reactors. In accordance with the Act (1992:1537) on the Financing of Future Expenses for Spent Nuclear Fuel etc., the owners are also responsible for ensuring that funds are set aside to cover the future expenses of the management and final disposal of spent nuclear fuel and nuclear waste. Furthermore, nuclear reactor owners must conduct, and every three years, submit a research and development programme for the management of the spent nuclear fuel and nuclear waste. The programme must also cover the measures which are necessary for the decommissioning and dismantling of the nuclear installations. SKI must submit the programme documents to the Government, along with its own statement. The owners of the nuclear power reactors have formed a joint company, SKB which, on behalf of the owners, fulfils the owners' statutory obligations with respect to the management and final disposal of spent nuclear fuel and nuclear waste and conducts related research and development. The programme now submitted by SKB is the latest in the series which started with RandD Programme 86. The current programme was submitted in September 1998 and is called RDandD Programme 98 (programme for Research, Development and Demonstration). In RDandD Programme 98, SKB has stated that it particularly welcomes viewpoints concerning: Whether deep disposal according to the KBS-3 method will continue to be the preferred method. The body of material that SKB is compiling in preparation for the selection of sites for site investigation. What is to be included in future Environmental Impact Statements (EIS). Compared to previous programmes, RDandD Programme 98 is focused to a greater extent on method and site selection and on issues relating to the decision-making process. In order to emphasise that

  19. Summary of operating experience in Swedish nuclear power plants 1994

    International Nuclear Information System (INIS)

    1995-01-01

    1994 was a record year for nuclear power in Sweden. For the second time, electricity generation from nuclear power exceeded 70 TWh (billions of kilowatt hours). Nuclear electricity generation corresponded to 51% of the total electricity generated in Sweden. Four units had an energy availability of more than 90%, while another five units had an availability of between 84 and 90%. This can be compared with an average international availability of 75%. Barsebaeck 2 was shut down during January to complete measures to correct a leak which was detected in the containment embedded steel plating in autumn 1993. During the year, a number of events occurred at Barsebaeck which were mainly caused by human error. A special evaluation of plant activities showed that the events occurred in connection with a reorganization which had been carried out. At year-end, it was discovered that the main steam line safety relief valves in Ringhals 2 were not correctly calibrated. The cause of the error was established and corrected and the safety relief valves at the other Ringhals PWRs were checked. Oskarshamn 1 was shut down for the whole year for a further inspection and modernization program. Manual inspections of the lower plenum of the reactor vessel were carried out for the first time ever in the world. The work methods, which have attracted considerable international interest, open up completely new dimensions for the maintenance and repair of reactor pressure vessels. The radiation doses to the personnel, which during 1993 were higher than usual, showed a marked decline in 1994. At the end of 1994, all of the Swedish nuclear power plants, apart from Oskarshamn 1, were in operation

  20. Swedish nuclear dilemma: Energy and the environment

    International Nuclear Information System (INIS)

    Nordhaus, W.D.

    1997-01-01

    One of the things that makes life both very frustrating and also very interesting is that accomplishing one objective frequently means backpedaling on another. Since economics is the study of tradeoffs, this means that there is generally plenty for economists to do. William Nordhaus is one of the best economists anywhere, and he has written a wonderful book about the tradeoffs faced by one country--Sweden--if and as it acts on a decision its citizens made in 1980 to phase out the use of nuclear power there. The author adds that this decision has been reaffirmed by the Swedish Parliament on several occasions since the 1980 referendum, though with some elusive qualifications. What will be both the environmental and also the economic implications of a Swedish phaseout of the use of nuclear power to generate electricity there. These are the two issues Nordhaus addresses in this book

  1. Analysis of human performance problems at the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Bento, J.P.

    1988-01-01

    The last five years of operation of all Swedish nuclear power plants have been studied with respect to human performance problems by analysing all scrams and licensee event reports (LERs). Thus, the study covers 165 scrams and 1318 LERs. As general results, 39% of the scrams and 27% of the LERs, as an average for the years 1983-1987, are caused by human performance problems. Among the items studied, emphasis has been put on the analysis of the causal categories involved in human performance problems resulting in plant events. The most significant causal categories appear to be Work organization, Procedures not followed, Work place ergonomics and Human variability

  2. Duties and responsibilities of the Nuclear Power Inspectorate and the National Radiation Protection Institute in connection with nuclear power plants

    International Nuclear Information System (INIS)

    Eckered, T.

    1977-01-01

    The two Swedish bodies competent for the control of nuclear energy are the Swedish Nuclear Power Inspectorate (SKI) and the National Swedish Institute on Radiation Protection (SSI). The duties of both bodies in respect of inspection stem from the provisions of the Atomic Energy Act and the Radiation Protection Act. The procedure to be followed for construction and operation of nuclear power plants is described from the viewpoint of the responsibilities entrusted to SKI and SSI. (NEA) [fr

  3. Operating experience from Swedish nuclear power plants, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    From a safety point of view, 2000 was - as were previous years - satisfactory. Total electricity production from the Swedish nuclear power stations amounted to 54.2 TWh, which was over 20% less than the 70.2 TWh produced in 1999. The two main reasons for the reduction were the closure of Barsebaeck 1 on 1st December 1999, and the cutback in output from all reactors due to the particularly good availability of hydro power in 2000. Some reactors were even shut down completely as a result of the low power demand, which has not happened previously. The quantity of unutilised production capacity as a result of these reductions amounted to 11.6 TWh. Costdown operation prior to the annual overhaul shutdowns, which makes better use of the fuel, represented a further 2.1 TWh of unutilised capacity. The average energy availability of the three PWRs at Ringhals was 82.0%, while that of the eight BWRs was 84.2%. Forsmark 3, Ringhals 3 and Oskarshamn 3 all had average availabilities of over 90%. Of five events with safety implications that occurred in the plants during the year, three are described under Special Reporting. One of them relates to the crack indications in welds that were found in an American PWR in the autumn, and which were subsequently also found in Ringhals 4.

  4. Operating experience from Swedish nuclear power plants, 2000

    International Nuclear Information System (INIS)

    2001-01-01

    From a safety point of view, 2000 was - as were previous years - satisfactory. Total electricity production from the Swedish nuclear power stations amounted to 54.2 TWh, which was over 20% less than the 70.2 TWh produced in 1999. The two main reasons for the reduction were the closure of Barsebaeck 1 on 1st December 1999, and the cutback in output from all reactors due to the particularly good availability of hydro power in 2000. Some reactors were even shut down completely as a result of the low power demand, which has not happened previously. The quantity of unutilised production capacity as a result of these reductions amounted to 11.6 TWh. Costdown operation prior to the annual overhaul shutdowns, which makes better use of the fuel, represented a further 2.1 TWh of unutilised capacity. The average energy availability of the three PWRs at Ringhals was 82.0%, while that of the eight BWRs was 84.2%. Forsmark 3, Ringhals 3 and Oskarshamn 3 all had average availabilities of over 90%. Of five events with safety implications that occurred in the plants during the year, three are described under Special Reporting. One of them relates to the crack indications in welds that were found in an American PWR in the autumn, and which were subsequently also found in Ringhals 4

  5. The Swedish police as a part of the security systems of nuclear material and other radioactive materials

    International Nuclear Information System (INIS)

    Nylen, L.

    2001-01-01

    Full text: In Sweden a special transport system has been developed for transport of nuclear substances and nuclear waste. This system in itself includes a high security level. Extraordinary circumstances can give cause for protective police measures and intervention. In concerned provinces an incident and emergency response planning take place of the police actions that may be needed at the following types of event: a) bomb threat; b) attack or threat of attack on transport vehicle; c) demonstrations. If a Swedish nuclear power plant is the subject of a bomb threat or other criminal assault, it is in Sweden, according to the Police Act, the task of the police to intervene, interrupt criminal acts and to restore order and security. The role of the Swedish police as regards the physical protection is, among other things, to carry out a certain control within protected area by special trained police personnel before a reactor is put into operation or restarted after revision or repair. Police authorities that have a nuclear power station within its jurisdiction should establish a plan for police actions at the nuclear power station in consultation with legal owner or management of the plant, the Swedish Nuclear Power Administration and the county administration. Special training and frequent practice of response personnel is crucial as well as co-training with key personnel at nuclear power stations. The National Criminal Investigation Department coordinates and commands police measures concerning different types of nuclear transports. Close co-operation with security and operational personnel at the nuclear power stations, operators of the transport system, the Swedish Nuclear Power Administration and the Swedish Radiation Protection Institute is very important. (author)

  6. The Swedish Nuclear Power Inspectorate's Regulations concerning Safety in connection with the Disposal of Nuclear Material and Nuclear Waste. General Recommendations concerning the Application of the Swedish Nuclear Power Inspectorate's Regulations above

    International Nuclear Information System (INIS)

    2002-06-01

    An english translation of the original Swedish regulations concerning the safety in disposal of nuclear wastes is published in this booklet, together with recommendations on how these regulations can be applied

  7. The research strategy of the Swedish Nuclear Power Inspectorate

    International Nuclear Information System (INIS)

    2002-06-01

    In its directive to the Swedish Nuclear Power Inspectorate for 2001 and 2002, the Government asked for a report on SKI's future research strategy. This report is meant to describe future needs for SKI's regulatory and supervisory work, the need for expertise in Sweden and the possibility of international co-operation. SKI's research currently focuses on a number of strategically important areas such as reactor technology, materials and fuel issues, human factors, nuclear waste and nuclear safeguards. Over the past decade, the nuclear infrastructure has changed considerably. The nuclear power companies' previous organisations with specialist expertise and resources have been successively closed down or converted into consulting companies. Furthermore, education and research in the nuclear area at universities have been considerably reduced and expertise, resources and interest in the area have thereby decreased. A review of the availability of expertise in Sweden shows that, in many areas, resources are adequate, but that SKI, in certain cases, needs to provide focused support in order to maintain the expertise that SKI needs for its regulatory and supervisory activities. The analysis highlights two areas without any real education and research: 'Materials testing and control' and 'Management, control and organisation'. Education and research in the latter area lacks a safety perspective. SKI intends to take the initiative to conduct work within both of these areas. Since national research resources are limited, SKI has, for a long time, actively participated in international research. SKI is prioritising co-operation on research conducted in the OECD/NEA and is participating in a large number of projects organised within this framework. Since Sweden joined the EU, the importance of joint European work has increased. SKI is itself also actively participating and supporting Swedish organisations participating in European Commission projects and intends to support

  8. The Swedish Dilemma: Nuclear Energy v. the Environment

    International Nuclear Information System (INIS)

    Nordhaus, W.D.

    1995-01-01

    A phaseout of nuclear power in Sweden is supposed to be accomplished by year 2010. This study is an economic analysis of the questions that are parts of the Swedish nuclear dilemma. Even though the economic questions are in focus, the important environmental, health and safety questions are also treated. The basic argument is that Sweden should choose an energy system that allows its citizens to maximize their consumption in a long-term perspective. Consumption is here given a meaning that includes elements outside the market, such as environmental, health and safety aspects valued in a reasonable way. Considerations must also be given to international aspects like global environment, a free and open system of trade and the value of a stable set of rules and proprietary rights. The study compares the economic pros and cons of different energy systems within this general frame. A detailed model of the Swedish energy and power sectors was developed for the study, called the Swedish Energy and Environment Policy (SEEP) model. The SEEP model is built on modern economic theory and includes energy and environmental factors in a uniform way. 51 refs, 36 tabs, 6 figs

  9. Evaluation of regulations and norms for concrete constructions in Swedish nuclear power plants; Utvaerdering av regler och normer foer betongkonstruktioner i svenska kaernkraftsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Jovall, Ola (Scanscot Technology AB, Lund (Sweden))

    2010-12-15

    In the SSM's regulations and recommendations, there are at present no specific requirements and adequate guidance on how concrete structures should be designed in case of new buildings or verification analyses of existing buildings. The result of the work presented in this report constitute the basis for SSM's ongoing regulatory project Investigation regarding requirements for construction, design, analysis and review of reactor containments and other safety-related building structures. The project includes the following: 1. Summary of the regulations and requirements that have been applied at the initial design and new construction of concrete structures at the Swedish nuclear power plants. 2. Comparison and evaluation of relevant regulations published by the European and North American authorities. 3. Comparison and evaluation of relevant codes, standards, guidelines etc. for load-bearing concrete structures in different countries. 4. Conclusions and recommendations to the regulatory framework for the design of load-bearing concrete structures at the Swedish nuclear power plants. Based on a comparison and evaluation of regulations from the U.S., Canada, France, the UK, Finland and Sweden, as well as guidelines established by the international organizations IAEA and EUR, the following general recommendations are provided as a regulatory framework for the design of load-bearing concrete structures at the Swedish nuclear power plants: 1. The Eurocodes will replace the BKR design rules of Swedish National Board of Housing, Building and Planning as the conventional building regulations on the construction of nuclear power plants. 2. A general review and updating of the existing industry standard Design rules for buildings at nuclear facilities DRB:2001 is implemented. Reference is made to the Eurocodes with regard to conditions of conventional design rules

  10. Swedish nuclear waste efforts

    International Nuclear Information System (INIS)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981

  11. The cleavable matter: Discursive orders in Swedish nuclear power politics 1972-1980

    International Nuclear Information System (INIS)

    Lindquist, P.

    1997-09-01

    This study applies a qualitative discourse-theoretical method to analyse the central argumentation in the parliamentary debate on nuclear power in Sweden during 1972-1980, reconstructed from official documents such as governmental and parliamentary bills, committee reports, parliamentary debate protocols, and official commission reports. Particular concern is directed to the process in which various discursive orders emerging within the political debate tend to have a structuring influence on the political argumentation regarding what can be said, by whom this can be said, and how this can be said. It is argued that these discursive orders have a profound, and in a systems theoretical sense self-dynamic influence, going beyond the original intentions of the political actors, on how the energy policy issue is interpreted and constructed. It is argued, furthermore, that these discursive orders actively exploit the political context of meaning by deliberately instrumentalising and incorporating competing argumentative elements into their own cognitive structure. In other words, the dominant political system incorporates the arguments of the political opposition and of the environmental and anti nuclear movements in order to consolidate its political power. The discourse theoretical analysis of the Swedish nuclear power debate in that sense unveils a deep resistance against a true political discourse, in the sense of Habermas, as a rational and domination-free process of reaching mutual understanding. 152 refs

  12. The Swedish Nuclear Power Inspectorate's Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RD and D Programme 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-09-01

    According to the Act on Nuclear Activities, the holder of a licence to operate a nuclear reactor must adopt all necessary measures to manage and dispose of spent nuclear fuel and nuclear waste. The Act stipulates requirements on a research programme which is to be submitted to the competent regulatory authority once every three years. The Swedish Nuclear Power Inspectorate (SKI) is the competent authority that evaluates and reviews the programme. SKI distributes the programme to a wide circle of reviewing bodies for comment, including authorities, municipalities, universities and NGOs. The Swedish programme for final disposal of spent nuclear fuel started about 25 years ago. According to the Swedish Nuclear Waste Management Co. (SKB), the planned repository will not be closed until sometime in the 2050's. A series of decisions must be made before this goal is attained. The decision process can therefore be described as a multi-stage process. During each stages, safety will be evaluated and there is a possibility of taking additional time for development work or of selecting improved solutions. SKI's task is to ensure safety compliance throughout all of these stages. In its decision in January 2000, the Government explained that the Programme for Research, Development and Demonstration for the Treatment and Final Disposal of Nuclear Waste (RD and D Programme 98) complied with legislative requirements but that certain supplementary reporting should be conducted by SKB and submitted no later than when the next programme, in accordance with paragraph 12 of the Act on Nuclear Activities, was prepared (September 2001). The supplementary reporting requested by the Government, and which was submitted by SKB to SKI in December 2000, dealt with issues relating to method selection, site selection and the site investigation programme. SKI submitted its review of the supplement to the Government in June 2001 and the Government made a decision on the matter on November

  13. The costs of nuclear power

    International Nuclear Information System (INIS)

    Vestenhaug, O.; Sauar, T.O.; Nielsen, P.O.

    1979-01-01

    A study has been made by Scandpower A/S of the costs of nuclear power in Sweden. It is based on the known costs of existing Swedish nuclear power plants and forecasts of the expected costs of the Swedish nuclear power programme. special emphasis has been put on the fuel cycle costs and future costs of spent fuel processing, waste disposal and decommissioning. Costs are calculated in 1978 Swedish crowns, using the retail price index. An actual interest rate of 4% is used, with depreciation period of 25 years and a plant lifetime of 30 years. Power production costs are estimated to be about 7.7 oere/kWh in 1978, rising to 10.5 oere/kWh in 2000. The cost is distributed with one third each to capital costs, operating costs and fuel costs, the last rising to 40% of the total at the end of the century. The main single factor in future costs is the price of uranium. If desired, Sweden can probably be self-sufficient in uranium in 2000 at a lower cost than assumed here. National research costs which, in Scandpower's opinion, can be debited to the commercial nuclear power programme are about 0.3 oere/kWh. (JIW)

  14. Status for cast stainless steel in older Swedish nuclear power plants, March 1996; Status foer gjutet rostfritt staal i aeldre svenska kaernkraftverk, mars 1996

    Energy Technology Data Exchange (ETDEWEB)

    Trolle, M.

    1996-04-01

    The purpose of this study is to compile what is known about larger cast components primarly in older BWR nuclear power plants with external circulation pumps. The work includes metallurgical data and a compilation on the material that the owner of Oskarshamn 1, OKG AB, has delivered to The Swedish Nuclear Power Inspectorate as a result of the investigation of these components. An overview of the investigations performed on the other Swedish plants of similar design during the annual outage 1995 is also described in this report. International experinece is also reported. The results from OKG AB show that there has been extensive cracking in both valves and pump casings and that they are probably resulting defects from the manufacturing process, but an environmental factor cannot be excluded. In order to get a complete picture of the situation in Swedish nuclear power plants a more extensive survey needs to be performed. Internationally the phenomenon of hot cracking in cast stainless steel is well known, but not as severe as in Oskarshamn 1. One question however that is discussed is the recommended amount of ferrite in these steels in order to avoid hot cracking without risking embrittlement of the ferrite phase. The Swedish utilities specify 3%, some European countries recommend 8%. Japan suggests ferrite contents up to 30%. 25 refs.

  15. Operating experience 1993 in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1995-01-01

    For many years, the Swedish nuclear power plants had a very good track record, compared with the international average. This trend was broken in 1993. During the year, six power plants were shut down for extended periods of time, for different safety-related reasons. During the autumn, a reactor containment leak was detected during scheduled containment leak rate testing at Barsebaeck 2. The unit was shut down for extensive investigation and corrective action for the rest of the year. Ringhals 2 was shut down last six months of the year as crack indications were found in a weld next to a control rod penetration in the reactor vessel head. Extensive tests and analyses revealed that the crack originated from the manufacturing of the vessel head and was of minor importance to safety. Oskarshamn 1 was shut down the whole year. Cracks in cold bent pipes in the residual heat removal system and cracks in the feedwater riser pipes lead to extensive replacement of piping, including pipes inside the reactor vessel. Decontamination of the reactor vessel was successful and attracted world wide interest. A programme for plant status verification was started in order to establish long-term operating conditions. Replacement of the pipe insulation and the inlet strainers in the core and containment spray systems solved the problems with clogging at certain failures in Barsebaeck, Ringhals 1 and Oskarshamn 1 and 2. Six of the reactors had an extremely high availability, of about 90 per cent and more. By year end, eleven of the twelve reactors were in full power operation

  16. The Swedish concept for disposal of waste arising from the operation of nuclear power plants

    International Nuclear Information System (INIS)

    Carlsson, J.

    1996-01-01

    The Swedish nuclear power programme consists of 12 reactors producing 50% of the electricity in Sweden. It is stated by law that a waste producer has to make sure a safe handling and disposal of his radioactive waste. SKB is performing necessary activities on behalf of the waste producers. A system is in operation today that will manage all the radioactive waste produced in the country. The system consists of a transportation system, a final repository for operational waste and an interim storage facility for spent fuel. What remains to be built is an encapsulation plant for the spent fuel and a deep repository for final disposal of spent fuel and other long lived waste. All costs for managing and disposal of radioactive waste is paid by the owners of the nuclear power utilities. (author) 9 figs

  17. Environmental effects of large discharges of cooling water. Experiences from Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Ehlin, Ulf; Lindahl, Sture; Neuman, Erik; Sandstroem, Olof; Svensson, Jonny

    2009-07-01

    Monitoring the environmental effects of cooling water intake and discharge from Swedish nuclear power stations started at the beginning of the 1960s and continues to this day. In parallel with long-term monitoring, research has provided new knowledge and methods to optimise possible discharge locations and design, and given the ability to forecast their environmental effects. Investigations into the environmental effects of cooling-water are a prerequisite for the issuing of power station operating permits by the environmental authorities. Research projects have been carried out by scientists at universities, while the Swedish Environmental Protection Agency, the Swedish Board of Fisheries, and the Swedish Meteorological and Hydrological Institute, SMHI, are responsible for the greater part of the investigations as well as of the research work. The four nuclear power plants dealt with in this report are Oskarshamn, Ringhals, Barsebaeck and Forsmark. They were taken into operation in 1972, 1975, 1975 and 1980 resp. - a total of 12 reactors. After the closure of the Barsebaeck plants in 2005, ten reactors remain in service. The maximum cooling water discharge from the respective stations was 115, 165, 50 and 135 m 3 /s, which is comparable to the mean flow of an average Swedish river - c:a 150 m 3 /s. The report summarizes studies into the consequences of cooling water intake and discharge. Radiological investigations made at the plants are not covered by this review. The strategy for the investigations was elaborated already at the beginning of the 1960s. The investigations were divided into pre-studies, baseline investigations and monitoring of effects. Pre-studies were partly to gather information for the technical planning and design of cooling water intake and outlet constructions, and partly to survey the hydrographic and ecological situation in the area. Baseline investigations were to carefully map the hydrography and ecology in the area and their natural

  18. Knowledge transfer in Swedish Nuclear Power Plants in connection with retirements; Kompetensoeverfoering paa svenska kaernkraftverk i samband med pensionsavgaangar

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Annika; Ohlsson, Kjell; Roos, Anna

    2007-12-13

    This report displays how the Swedish nuclear power plants Forsmark, Oskarshamn and Ringhals work with knowledge management. The report also consists of a literature review of appropriate ways to extract tacit knowledge as well as methods to transfer competence. The report is made up of a smaller number of interviews at the nuclear power plants in combination with a questionnaire distributed to a larger number of people at the plants. The results of the interview study is that only one of the Swedish nuclear power plants have a programme to transfer knowledge from older staff to newer. This is, however, not a programme for everyone. Another plant has a programme for knowledge building, but only for their specialists. At both plants, which lack a programme, the interviewees request more structure in knowledge transfer; even though they feel the current way of transferring knowledge with mentors works well. Besides more structure, interviewees present a wish to have more time for knowledge transfer as well as the opportunity to recruit more than needed. Recruiting more than needed is however not very simple due to multiple causes such as nominal sizing departments and a difficulty of recruiting people to work far from larger cities. The way things are now, many feel too under-staffed and under a lot of time pressure daily to also have time for knowledge transfer besides their normal work.

  19. The Swedish Nuclear Power Inspectorate's evaluation of SKB's RD and D Program 98. Review report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    According to the Act (1984:3) on Nuclear Activities, the full responsibility for the safe management and final disposal of spent nuclear fuel and nuclear waste rests with the owners of the Swedish nuclear power reactors. In accordance with the Act (1992:1537) on the Financing of Future Expenses for Spent Nuclear Fuel etc., the owners are also responsible for ensuring that funds are set aside to cover the future expenses of the management and final disposal of spent nuclear fuel and nuclear waste. Furthermore, nuclear reactor owners must conduct, and every three years, submit a research and development programme for the management of the spent nuclear fuel and nuclear waste. The programme must also cover the measures which are necessary for the decommissioning and dismantling of the nuclear installations. SKI must submit the programme documents to the Government, along with its own statement. The owners of the nuclear power reactors have formed a joint company, SKB which, on behalf of the owners, fulfils the owners' statutory obligations with respect to the management and final disposal of spent nuclear fuel and nuclear waste and conducts related research and development. The programme now submitted by SKB is the latest in the series which started with RandD Programme 86. The current programme was submitted in September 1998 and is called RDandD Programme 98 (programme for Research, Development and Demonstration). In RDandD Programme 98, SKB has stated that it particularly welcomes viewpoints concerning: Whether deep disposal according to the KBS-3 method will continue to be the preferred method. The body of material that SKB is compiling in preparation for the selection of sites for site investigation. What is to be included in future Environmental Impact Statements (EIS). Compared to previous programmes, RDandD Programme 98 is focused to a greater extent on method and site selection and on issues relating to the decision-making process. In order to emphasise

  20. Operating experience from Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    During 1997 the PWRs in Ringhals performed extremely well (capability factors 85-90%), the unit Ringhals 2 reached the best capability factor since commercial operation started in 1976. The BWRs made an average 76% capability, which is somewhat less than in 1996. The slightly reduced capability derives from ongoing modernization projects at several units. At the youngest plants, Forsmark 3 and Oskarshamn 3, capability and utilization were very high. Events and data for 1997 are given for each reactor, together with operational statistics for the years 1990-1997. A number of safety-related events are reported, which occurred st the Swedish plants during 1997. These events are classified as level 1 or higher on the international nuclear event scale (INES)

  1. Operating experience from Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    During 1997 the PWRs in Ringhals performed extremely well (capability factors 85-90%), the unit Ringhals 2 reached the best capability factor since commercial operation started in 1976. The BWRs made an average 76% capability, which is somewhat less than in 1996. The slightly reduced capability derives from ongoing modernization projects at several units. At the youngest plants, Forsmark 3 and Oskarshamn 3, capability and utilization were very high. Events and data for 1997 are given for each reactor, together with operational statistics for the years 1990-1997. A number of safety-related events are reported, which occurred st the Swedish plants during 1997. These events are classified as level 1 or higher on the international nuclear event scale (INES).

  2. Big problems for Swedish nuclear industry

    International Nuclear Information System (INIS)

    Holmstroem, Anton; Runesson, Linda

    2006-01-01

    A report of the problems for Swedish nuclear industry the summer of 2006. A detailed description of the 25th of July incident at Forsmark 1 is provided. The incident was classified as level two on the INIS scale. The other Swedish nuclear plants were subject to security evaluations in the aftermath, and at Forsmark 2 similar weaknesses were found in the security system (ml)

  3. Sweden, United States and nuclear energy. The establishment of a Swedish nuclear materials control 1945-1995

    International Nuclear Information System (INIS)

    Jonter, T.

    1999-05-01

    This report deals mainly with the United States nuclear energy policy towards Sweden 1945-1960. Although Sweden contained rich uranium deposits and retained high competence in the natural sciences and technology, the country had to cooperate with other nations in order to develop the nuclear energy. Besides developing the civil use of nuclear power, the Swedish political elite also had plans to start a nuclear weapons programme. From the beginning of the 1950s up to 1968, when the Swedish parliament decided to sign the non-proliferation treaty, the issue was widely debated. In this report, American policy is analyzed in two periods. In the first period, 1945-1953, the most important aim was to prevent Sweden from acquiring nuclear materials, technical know-how, and advanced equipment which could be used in the production of nuclear weapons. The Swedish research projects were designed to contain both a civil and military use of nuclear energy. The first priority of the American administration was to discourage the Swedes from exploiting their uranium deposits, especially for military purposes. In the next period, 1953-1960, the American policy was characterized by extended aid to the development of the Swedish energy programme. Through the 'Atoms for Peace'-programme, the Swedish actors now received previously classified technical information and nuclear materials. Swedish companies and research centers could now buy enriched uranium and advanced equipment from the United States. This nuclear trade was, however, controlled by the American Atomic Energy Commission (AEC). The American help was shaped to prevent the Swedes from developing nuclear weapons capability. From mid-50s Swedish politicians and defence experts realised that a national production of nuclear bombs would cost much more money than was supposed 4-5 years earlier. As a consequence, Swedish officials started to explore the possibilities of acquiring nuclear weapons from United States. The American

  4. The Swedish dilemma - Nuclear energy v. the environment

    International Nuclear Information System (INIS)

    Nordhaus, W.D.

    1995-11-01

    A phaseout of nuclear power in Sweden is supposed to be accomplished by year 2010. This study is an economic analysis of the questions that are parts of the nuclear dilemma. Even though the economic questions are in focus, the important environmental, health and safety questions are also treated. The basic argument is that Sweden should choose an energy system that allows its citizens to maximize their consumption in a long-term perspective. Consumption is here given a meaning that includes elements outside the market, such as environmental, health and safety aspects valued in a reasonable way. Considerations must also be given to international aspects like global environment, a free and open system of trade and the value of a stable set of rules and proprietary rights. The study compares the economic pros and cons of different energy systems within this general frame. A detailed model of the Swedish energy and power sectors was developed for the study, called the Swedish Energy and Environment Policy (SEEP) model. the SEEP model is built on modern economic theory and includes energy and environmental factors in a uniform way. 8 figs 16 tabs

  5. The Swedish dilemma - Nuclear energy v. the environment

    Energy Technology Data Exchange (ETDEWEB)

    Nordhaus, W D [Yale Univ. (United States)

    1995-11-01

    A phaseout of nuclear power in Sweden is supposed to be accomplished by year 2010. This study is an economic analysis of the questions that are parts of the nuclear dilemma. Even though the economic questions are in focus, the important environmental, health and safety questions are also treated. The basic argument is that Sweden should choose an energy system that allows its citizens to maximize their consumption in a long-term perspective. Consumption is here given a meaning that includes elements outside the market, such as environmental, health and safety aspects valued in a reasonable way. Considerations must also be given to international aspects like global environment, a free and open system of trade and the value of a stable set of rules and proprietary rights. The study compares the economic pros and cons of different energy systems within this general frame. A detailed model of the Swedish energy and power sectors was developed for the study, called the Swedish Energy and Environment Policy (SEEP) model. the SEEP model is built on modern economic theory and includes energy and environmental factors in a uniform way. 8 figs 16 tabs.

  6. The nuclear power situation in Finland

    International Nuclear Information System (INIS)

    Miettinen, J.K.

    1976-01-01

    and's limited choice of energy sources makes nuclear power especially lly attractive and it is estimated that in 1985 14% of the energy consumed will be nuclear, which will then be the second most important source after oil (49%). Four power reactors, Loviisa 1 and 2 and TVO 1 and 2, are at present under construction. The first two are Russian PWRs, the latter two Asea-Atom BWRs. Loviisa 3 and 4 are planned but not yet ordered, and plans for a 1000 MWe plant to the West of Helsinki exist. The nuclear controversy in Finland has mainly been repetitions of the US and Swedish debates since 1970. However, local opposition to the project W. of Helsinki, based on the sociological effects of the inflow of Finnish speaking workers into a rural Swedish speaking district has become apparent. In the long term 13 major nuclear power plants are envisaged by the year 2000. Finland is party to the NPT and the IAEA safeguard system. (JIW)

  7. Nuclear power phaseout - to the benefit of whom?

    International Nuclear Information System (INIS)

    Edin, K.A.

    1996-01-01

    The purpose of this book is to look beyond rhetorics and describe how the energy supply to the world and Sweden can develop in the long term and compare to the Swedish political goals of renewable energy and nuclear phaseout. The following questions are treated: For how long will oil, coal, gas and uranium last? Should Sweden use natural gas? Is the climatic threat real or not? How do other countries reduce the use of fossil fuels? What should Sweden do? Is nuclear power dangerous? What are the pros and cons of phasing out Swedish nuclear power? (Author)

  8. Comparison between Different Power Sources for Emergency Power Supply at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lenasson, Magnus

    2015-01-01

    Currently the Swedish nuclear power plants are using diesel generator sets and to some extent gas turbines as their emergency AC power sources and batteries as their emergency DC power sources. In the laws governing Swedish nuclear activity, no specific power sources are prescribed. On the other hand, diversification of safety functions should be considered, as well as simplicity and reliability in the safety systems. So far the choices of emergency power sources have been similar between different power plants, and therefore this project investigated a number of alternative power sources and if they are suitable for use as emergency power on nuclear power plants. The goals of the project were to: - Define the parameters that are essential for rending a power source suitable for use at a nuclear power plant. - Present the characteristics of a number of power sources regarding the defined parameters. - Compile the suitability of the different power sources. - Make implementation suggestions for the less conventional of the investigated power sources. (unconventional in the investigated application) 10 different power sources in total have been investigated and to various degrees deemed suitable Out of the 10 power sources, diesel generators, batteries and to some extent gas turbines are seen as conventional technology at the nuclear power plants. In relation to them the other power sources have been assessed regarding diversification gains, foremost with regards to external events. The power sources with the largest diversification gains are: Internal steam turbine, Hydro power, Thermoelectric generators. The work should first and foremost put focus on the fact that under the right circumstances there are power sources that can complement conventional power sources and yield substantial diversification gains. This paper is a shortened version of the report 'Comparison between different power sources for emergency power supply at nuclear power plants'. The

  9. Costs related to radioactive residues from nuclear power

    International Nuclear Information System (INIS)

    1988-06-01

    The nuclear power enterprises are responsible for proper actions for safe handling and final storage of spent nuclear fuel and radioactive waste from Swedish nuclear power facilities. The most important actions are to plan, build and operate necessary plants and systems. The nuclear power enterprises have designated Swedish Nuclear Fuel and Waste Management Co., (SKB), to perform these tasks. In this report calculations concerning costs to carry out these tasks are presented. The calculations are based upon a plan prepared by SKB. The plan is described in the report. As final storage of the long lived and highly radioactive waste is planned to take place in the 21st century continuing research and development may indicate new methods which may affect system design as well as costs in a simplifying way. Plants and systems already operational are: Transport systems for radioactive waste products; A central temporary storage for spent nuclear fuel, 'CLAB'; A final storage for radioactive waste from operating nuclear facilities, 'SFR 1'. (L.F.)

  10. 14C emission from Swedish nuclear power plants and its effect on the 14C levels in the environment

    International Nuclear Information System (INIS)

    Stenstroem, K.; Erlandsson, Bengt; Hellborg, R.; Kiisk, M.; Persson, Per; Mattsson, Soeren; Thornberg, C.; Skog, G.

    2000-02-01

    The radionuclide 14 C is produced in all types of nuclear reactors mainly by neutron induced reactions in oxygen ( 17 O), nitrogen ( 14 N) and carbon ( 13 C). Part of the 14 C created is continuously released during normal operation as airborne effluents in various chemical forms (such as CO 2 , CO and hydrocarbons) to the surroundings. Because of the biological importance of carbon and the long physical half-life of 14 C, it is of interest to measure the releases and their incorporation into living material. The 14 C activity concentrations in annual tree rings and air around two Swedish nuclear power plants (Barsebaeck and Forsmark) as well as the background 14 C activity levels from two reference sites in southern Sweden during 1973-1996 are presented in this report. In order to verify the reliability of the method some investigations have been conducted at two foreign nuclear sites, Sellafield fuel reprocessing plant in England, and Pickering nuclear generating station in Canada, where the releases of 14 C are known to be substantial. Furthermore, results from some measurements in the vicinity of Paldiski submarine training centre in Estonia are presented. The results of the 14 C measurements of air, vegetation and annual tree rings around the two Swedish nuclear power plants show very low enhancements of 14 C, if at all above the uncertainty of the measurements. Even if the accuracy of the measurements of the annual tree rings is rather good (1-2%) the contribution of 14 C from the reactors to the environment is so small that it is difficult to separate it from the prevailing background levels of 14 C . This is the case for all sampling procedures: in air and vegetation as well as in annual tree rings. Only on a few occasions an actual increase is observed. However, although the calculations suffer from rather large uncertainties, the calculated release rate from Barsebaeck is in fair agreement with reported release data. The results of this investigation show

  11. Bibliography: books and articles on nuclear waste, nuclear power and power supply during the years 1971-1987

    International Nuclear Information System (INIS)

    Djerf, M.; Hedberg, P.

    1988-06-01

    The bibliography provides a list of the supply published Swedish books and articles in periodicals on nuclear waste and nuclear power. Regarding book publication the bibliography comprises publications on questions of nuclear power and nuclear waste on the whole, whereas the bibliography on the periodical articles solely comprises nuclear waste questions. The book bibliography consists of a selective choice of publications, identified by a mapping of the total supply of information on energy- and nuclear power issues in articles and other publications in Sweden. The literature inventory as a whole is part of a grater research project aiming at a study of the role of mass media in forming public opinion about the nuclear power waste question. (O.S.)

  12. Assuring nuclear safety competence into the 21. century a swedish perspective

    International Nuclear Information System (INIS)

    Lowenhielm, G.; Svensson, G.; Tiren, IN

    2000-01-01

    Many initiatives have been taken and are being considered to maintain and develop competence in the nuclear field in Sweden. The number of qualified nuclear engineering staff at the plants and at the regulatory bodies appears to be rather small for all important tasks to be carried out. Nevertheless, the current programmes indicate that one can look at future recruitment and competence with some confidence-in spite of the age profile of qualified staff with many approaching retirement. The Swedish Nuclear Power Inspectorate, (SKI), the academic community, and the Industry are conducting several research projects that support the optimistic view expressed above. Examples include: Safety research at SKI and universities: Since many years, SKI is sponsoring research in safety analysis within the framework of its Research Programme. In this programme the regulator supports two professors, one in Nuclear Power Safety at KTH and the other in the Interaction of Man, Technology and Organisation at the University of Stockholm. Swedish Centre of Nuclear Technology: A main activity of the Centre is to support PhD candidates (with scientific advice and economy) in topics related to nuclear technology. The Industry also makes great efforts to support recruitment by various initiatives: Design reconstitution projects: Each one of the older operating plants was subject to a design review that engaged a large number of young staff at the utilities and the vendors. 'Young Generation': It constitutes a communication network among young engineers at European nuclear plants, regulators, and other organisations. (authors)

  13. Nuclear power plant and the host community

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, G

    1978-10-27

    A councillor from a small Swedish community (Kaevlinge) in the vicinity of the Barsebaeck nuclear power plant describes the effects which the plant has had on neighbouring communities. The effect on the labour market has been small at Kaevlinge, both during routine operation and construction phases. This is however, a fairly densely populated area with a population of half a million in a radius of 30 km. The situation is different at Oskarshamn or Oesthammar. Neither has there been any special economic benefit, due to Swedish taxation laws. There has been little local anxiety due to the proximity of the nuclear power plant. Certain local planning problems have been caused by restricted zones and power cables. Cooperation between the local authorities and the utility has been good.

  14. Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Lidberg, Maria; Soneryd, Linda; Sundqvist, Goeran

    2009-01-01

    This report analyses mediation and mediators in Swedish nuclear waste management. Mediation is about establishing agreement and building common knowledge. It is argued that demonstrations and dialogue are the two prominent approaches to mediation in Swedish nuclear waste management. Mediation through demonstration is about showing, displaying, and pointing out a path to safe disposal for inspection. It implies a strict division between demonstrator and audience. Mediation through dialogue on the other hand, is about collective acknowledgements of uncertainty and suspensions of judgement creating room for broader discussion. In Sweden, it is the Swedish Nuclear Fuel and Waste Management Co. (SKB) that is tasked with finding a method and a site for the final disposal of the nation's nuclear waste. Two different legislative frameworks cover this process. In accordance with the Act on Nuclear Activities, SKB is required to demonstrate the safety of its planned nuclear waste management system to the government, while in respect of the Swedish Environmental Code, they are obliged to organize consultations with the public. How SKB combines these requirements is the main question under investigation in this report in relation to materials deriving from three empirical settings: 1) SKB's safety analyses, 2) SKB's public consultation activities and 3) the 'dialogue projects', initiated by other actors than SKB broadening the public arena for discussion. In conclusion, an attempt is made to characterise the long- term interplay of demonstration and dialogue in Swedish nuclear waste management

  15. Review of national and international demands on fire protection in nuclear power plants and their application in the Swedish nuclear industry

    International Nuclear Information System (INIS)

    Fredholm, Lotta

    2010-02-01

    regarding fire safety at nuclear power plants that have been studied are regulation from USA, Finland, Great Britain, Canada, Germany and the international organisations IAEA and WENRA. The conclusion of this study is that the differences between the regulations mostly are differences in detailed fire safety design. Some differences can not easily be explained by national. Differences and the resulting effect on the overall fire safety is very difficult to evaluate. Regarding how to improve the Swedish regulations regarding fire safety at nuclear power plants there are different possibilities. One is to complement the regulations with acceptable solutions on how to design the fire protection. If this shall be done IAEAs Safety Guides seem to be the easiest of the more detailed fire requirements to adopt to Swedish conditions. Another way of improving the regulation is to give more guidance on how to proof that the rules are fulfilled. In this case the Canadian guidelines may be a good source of ideas and information

  16. Trends in nuclear power costs in Sweden

    International Nuclear Information System (INIS)

    Vesterhaugh, O.; Blomsnes, B.

    1979-01-01

    At the request of the Swedish Ministry of Industry, a study of the costs of nuclear power in Sweden was performed early this year. The main purpose of the study was to determine the real and projected costs of electricity produced by nuclear stations. The basis for the calculations of the study was the currently planned Swedish nuclear power programme consisting of 11 reactors of which six are operating, two waiting for start-up permission and the remainder are under construction. All cost components, relevant to the commercial programme were covered, with particular emphasis on future costs for handling of spent fuel, waste disposal and plant decommissioning. A capital depreciation time of 25 years and a 4 per cent effective annual interest rate (ie interest after correction for inflation) were assumed in the calculations given in December 1978 currency. The main result of the study is the average cost per kWh for the reactors. The results are in close agreement with the cost estimate given by the Swedish Energy Commission and now that the nuclear plants produce electricity considerably cheaper than other plants with the exception of some hydroelectric ones. (author)

  17. Captivated by nuclear power

    International Nuclear Information System (INIS)

    Kaageson, P.; Kjellstroem, B.

    1984-01-01

    The Swedish decision to discontinue nuclear power production is discussed. The basis of the referendum is presented. A number of cases where the decision to stop production in the year 2010 is counteracted, are described. The political and technical steps to facilitate the settlement are presented. (GB)

  18. The Swedish National Defence Research Establishment and the plans for Swedish nuclear weapons

    International Nuclear Information System (INIS)

    Jonter, Thomas

    2001-03-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish Government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid 50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the Parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the Parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The Prime Minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The Government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue. During this period

  19. Stakeholder involvement in Swedish nuclear waste management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2006-09-01

    raised about whether the European Union will become an important stakeholder in Swedish waste management, if climate change means new opportunities for nuclear power, if the national government and the Environmental Court will grow stronger as stakeholders, if environmental organisations will succeed in re-opening the big issues of method and site for a final repository, and if the strong social-technical divide will dissolve

  20. Stakeholder involvement in Swedish nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark; Sundqvist, Goeran [Goeteborg Univ. (Sweden). Section for Science and Technology Studies

    2006-09-15

    have been raised about whether the European Union will become an important stakeholder in Swedish waste management, if climate change means new opportunities for nuclear power, if the national government and the Environmental Court will grow stronger as stakeholders, if environmental organisations will succeed in re-opening the big issues of method and site for a final repository, and if the strong social-technical divide will dissolve.

  1. The nuclear waste issue in Swedish mass media

    International Nuclear Information System (INIS)

    Hedberg, P.

    1991-04-01

    This is an investigation of the representation given in the Swedish mass media of questions concerning the nuclear waste. The investigation covers the period from 1979 to 1989 of 8 newspapers of different political colours and the Swedish radio and television. (KAE)

  2. Objectives and limitations of scientific studies with reference to the Swedish R ampersand D programme 1992 for handling and final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Sjoeblom, R.; Dverstorp, B.; Wingefors, S.

    1994-01-01

    The Swedish Nuclear Power Inspectorate (SKI) has recently concluded its evaluation of the Swedish programme for the development of a system for the management of nuclear waste. The programme was compiled and issued by the Swedish Nuclear Fuel and Waste Management Company (SKB). In this process of programme formulation and review, considerable attention has been paid to the question of how scientific studies should be directed and performed in order to provide the support needed in the programme

  3. {sup 14}C emission from Swedish nuclear power plants and its effect on the {sup 14}C levels in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Stenstroem, K.; Erlandsson, Bengt; Hellborg, R.; Kiisk, M.; Persson, Per [Lund Univ. (Sweden). Dept. of Nuclear Physics; Mattsson, Soeren; Thornberg, C. [Lund Univ., Malmoe (Sweden). Dept. of Radiation Physics; Skog, G. [Lund Univ. (Sweden). Dept. of Quaternary Geology

    2000-02-15

    The radionuclide {sup 14}C is produced in all types of nuclear reactors mainly by neutron induced reactions in oxygen ({sup 17}O), nitrogen ({sup 14}N) and carbon ({sup 13}C). Part of the {sup 14}C created is continuously released during normal operation as airborne effluents in various chemical forms (such as CO{sub 2}, CO and hydrocarbons) to the surroundings. Because of the biological importance of carbon and the long physical half-life of {sup 14}C, it is of interest to measure the releases and their incorporation into living material. The {sup 14}C activity concentrations in annual tree rings and air around two Swedish nuclear power plants (Barsebaeck and Forsmark) as well as the background {sup 14}C activity levels from two reference sites in southern Sweden during 1973-1996 are presented in this report. In order to verify the reliability of the method some investigations have been conducted at two foreign nuclear sites, Sellafield fuel reprocessing plant in England, and Pickering nuclear generating station in Canada, where the releases of {sup 14}C are known to be substantial. Furthermore, results from some measurements in the vicinity of Paldiski submarine training centre in Estonia are presented. The results of the {sup 14}C measurements of air, vegetation and annual tree rings around the two Swedish nuclear power plants show very low enhancements of {sup 14}C, if at all above the uncertainty of the measurements. Even if the accuracy of the measurements of the annual tree rings is rather good (1-2%) the contribution of {sup 14}C from the reactors to the environment is so small that it is difficult to separate it from the prevailing background levels of {sup 14}C . This is the case for all sampling procedures: in air and vegetation as well as in annual tree rings. Only on a few occasions an actual increase is observed. However, although the calculations suffer from rather large uncertainties, the calculated release rate from Barsebaeck is in fair agreement

  4. How to interpret Swedish energy policy - Facts and analysis

    International Nuclear Information System (INIS)

    Rising, Agneta; Bohl, Torsten; Wikdahl, Carl-Erik

    1998-01-01

    The Swedish parliament decided on June 10, 1997 that one of the two reactors at the Barsebaeck nuclear power plant shall be closed before mid 1998 and the other until three years later. Some weeks before the 1998 PIME Conference (on December 18) the same parliament is planning to accept a new act, which will make it possible for the government to close any reactor in the future without ay reference to the level of safety. Sweden is known 'internationally to have a successful nuclear power programme and to be in the front line to develop safe nuclear waste methods. The decision in the Swedish parliament therefore came as a surprise not only in Sweden but to a large part of the nuclear power industry, all over the world. Nuclear power accounts for half the power generated in Sweden. here are twelve nuclear power units with a net output of 10 000 MW and an annual energy generation capacity of more than 70 TWh. Nuclear production in Sweden has proved to be technically, economically and environmentally highly successful. ne capacity factors have normally been high, the production costs are low and so are the releases of radioactivity and doses to the personnel. All twelve nuclear units are still highly competitive generators on the deregulated Nordic electricity market and a fe time of at least 40 years is expected for a the nuclear units, as they are being modernised continuously. The estimated safety standard of all twelve units is among the highest in the world. A dynamic nuclear waste programme has been launched. Swedish waste management techniques have achieved world leadership in several important areas. The main part of the explanation can be found in the skilful political strategy of one or two political parties which have been advocating the premature phase-out of the nuclear power programme since the mid 70's. The anti- nuclear policy was introduced in the Swedish parliament already in the 1976 general election, when the Centre Party with a strong antinuclear

  5. Crisis and Policy Reformcraft: Advocacy Coalitions and Crisis-induced Change in Swedish Nuclear Energy Policy

    Energy Technology Data Exchange (ETDEWEB)

    Nohrstedt, Daniel

    2007-04-15

    This dissertation consists of three interrelated essays examining the role of crisis events in Swedish nuclear energy policymaking. The study takes stock of the idea of 'crisis exceptionalism' raised in the literature, which postulates that crisis events provide openings for major policy change. In an effort to explain crisis-induced outcomes in Swedish nuclear energy policy, each essay explores and develops theoretical assumptions derived from the Advocacy Coalition Framework (ACF). The introduction discusses the ACF and other theoretical perspectives accentuating the role of crisis in policymaking and identifies three explanations for crisis-induced policy outcomes: minority coalition mobilization, learning, and strategic action. Essay 1 analyzes the nature and development of the Swedish nuclear energy subsystem. The results contradict the ACF assumption that corporatist systems nurture narrow subsystems and small advocacy coalitions, but corroborate the assumption that advocacy coalitions remain stable over time. While this analysis identifies temporary openings in policymaking venues and in the advocacy coalition structure, it is argued that these developments did not affect crisis policymaking. Essay 2 seeks to explain the decision to initiate a referendum on nuclear power following the 1979 Three Mile Island accident. Internal government documents and other historical records indicate that strategic considerations superseded learning as the primary explanation in this case. Essay 3 conducts an in-depth examination of Swedish policymaking in the aftermath of the 1986 Chernobyl accident in an effort to explain the government's decision not to accelerate the nuclear power phaseout. Recently disclosed government documents show that minority coalition mobilization was insufficient to explain this decision. In this case, rational learning and strategic action provided a better explanation. The main theoretical contribution derived from the three

  6. Crisis and Policy Reformcraft: Advocacy Coalitions and Crisis-induced Change in Swedish Nuclear Energy Policy

    International Nuclear Information System (INIS)

    Nohrstedt, Daniel

    2007-04-01

    This dissertation consists of three interrelated essays examining the role of crisis events in Swedish nuclear energy policymaking. The study takes stock of the idea of 'crisis exceptionalism' raised in the literature, which postulates that crisis events provide openings for major policy change. In an effort to explain crisis-induced outcomes in Swedish nuclear energy policy, each essay explores and develops theoretical assumptions derived from the Advocacy Coalition Framework (ACF). The introduction discusses the ACF and other theoretical perspectives accentuating the role of crisis in policymaking and identifies three explanations for crisis-induced policy outcomes: minority coalition mobilization, learning, and strategic action. Essay 1 analyzes the nature and development of the Swedish nuclear energy subsystem. The results contradict the ACF assumption that corporatist systems nurture narrow subsystems and small advocacy coalitions, but corroborate the assumption that advocacy coalitions remain stable over time. While this analysis identifies temporary openings in policymaking venues and in the advocacy coalition structure, it is argued that these developments did not affect crisis policymaking. Essay 2 seeks to explain the decision to initiate a referendum on nuclear power following the 1979 Three Mile Island accident. Internal government documents and other historical records indicate that strategic considerations superseded learning as the primary explanation in this case. Essay 3 conducts an in-depth examination of Swedish policymaking in the aftermath of the 1986 Chernobyl accident in an effort to explain the government's decision not to accelerate the nuclear power phaseout. Recently disclosed government documents show that minority coalition mobilization was insufficient to explain this decision. In this case, rational learning and strategic action provided a better explanation. The main theoretical contribution derived from the three essays is to posit

  7. Environmental monitoring around the Swedish Nuclear Facilities

    International Nuclear Information System (INIS)

    Bondesson, A.; Luening, M.; Wallberg, L.; Wijk, H.

    1999-01-01

    The environmental monitoring programme for the nuclear facilities has shown that the radioactive discharges increase the concentrations of some radionuclides in the local marine environment around the Swedish nuclear facilities. Samples from the terrestrial environment rarely show increased radionuclide concentrations. From a radiological point of view the most important nuclide in the environmental samples usually is CS-137. However, the largest part of the present concentrations of Cs-137 in the Swedish environment originate from the Chernobyl accident. The concentrations of radionuclides that can be found in biota around the nuclear facilities are much lower than the concentration levels that are known to give acute damage to organisms. The total radiation doses from the discharges of radionuclides are small. (au)

  8. The nuclear power plant and the host community

    International Nuclear Information System (INIS)

    Olsson, G.

    1978-01-01

    A councillor from a small Swedish community (Kaevlinge) in the vicinity of the Barsebaeck nuclear power plant describes the effects which the plant has had on neighbouring communities. The effect on the labour market has been small at Kaevlinge, both during routine operation and construction phases. This is however, a fairly densely populated area with a population of half a million in a radius of 30 km. The situation is different at Oskarshamn or Oesthammar. Neither has there been any special economic benefit, due to Swedish taxation laws. There has been little local anxiety due to the proximity of the nuclear power plant. Certain local planning problems have been caused by restricted zones and power cables. Cooperation between the local authorities and the utility has been good. (JIW)

  9. Facing the nuclear power phaseout - Swedish experiences of enterprise shutdown and organisational development

    International Nuclear Information System (INIS)

    Lundqvist, K.

    1998-02-01

    The aim of this study is to make an overview of problems and experiences connected to decommissioning and organisational changes of Swedish enterprises and public agencies from a safety perspective. The central point is the view of decommissioning of nuclear power plants as a process of change. In practice decommissioning includes both downsizing and organisational development. The question is which problems can arise and which strategy of change is most adequate from the standpoint of safety. The report starts with a summary of the most important experiences of the process of decommissioning of enterprises during the sixties to eighties concerning the consequences for the individuals and the labour market. After that follows the main results from earlier investigations of shut-down of nuclear power plants regarding the staff. The restructuring and downsizing of the public sector during the nineties have given rise to a large amount of material on staffing issues. The knowledge and experiences drawn from the organisational change processes of Swedish working life during the nineties are then summarised. At last some conclusions for decommissioning of nuclear power plants are discussed. The period before and after the termination of power generation is connected with great strain. The vulnerability of the staff increases and the faith in management can easily be destroyed, which can affect safety and the decommissioning work. The feeling of security increases if the staff continuously is kept informed and within certain limits can influence the course of events. A learning strategy is preferable in comparison to an expert oriented strategy because it is impossible to gain complete control over the technically and socially complex process of decommissioning. Instead of detailed and central planning of the process it will be safer to work in a participative way and to include all the staff in the preparations from the very beginning. By a learning way of working is

  10. Safety Management Characteristics Reflected in Interviews at Swedish Nuclear Power Plants: A System Perspective Approach

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Ilkka (Risk Analysis, Social and Decision Research Unit, Dept. of Psychology, Stockholm Univ., Stockholm (Sweden))

    2005-12-15

    The present study investigated safety management characteristics reflected in interviews with participants from two Swedish nuclear power plants. A document analysis regarding the plants' organization, safety policies, and safety culture work was carried out as well. The participants (n=9) were all nuclear power professionals, and the majority managers at different levels with at least 10 years of nuclear power experience. The interview comprised themes relevant for organizational safety and safety management, such as: organizational structures and organizational change, threats to safety, information feedback and knowledge transfer, safety analysis, safety policy, and accident and incident analysis and reporting. The results were in part modeled to important themes derived from a general system theoretical framework suggested by Svenson and developed by Svenson and Salo in relation to studies of 'non-nuclear' safety organizations. A primer to important features of the system theoretical framework is presented in the introductory chapter. The results from the interviews generated interesting descriptions about nuclear safety management in relation to the above themes. Regarding organizational restructuring, mainly centralizations of resources, several examples of reasons for the restructuring and related benefits for this centralization of resources were identified. A number of important reminders that ought to be considered in relation to reorganization were also identified. Regarding threats to the own organization a number of such was interpreted from the interviews. Among them are risks related to generation and competence change-over and risks related to outsourcing of activities. A thorough picture of information management and practical implications related to this was revealed in the interviews. Related to information feedback is the issue of organizational safety indicators and safety indicators in general. The interview answers indicated

  11. Safety Management Characteristics Reflected in Interviews at Swedish Nuclear Power Plants: A System Perspective Approach

    International Nuclear Information System (INIS)

    Salo, Ilkka

    2005-12-01

    The present study investigated safety management characteristics reflected in interviews with participants from two Swedish nuclear power plants. A document analysis regarding the plants' organization, safety policies, and safety culture work was carried out as well. The participants (n=9) were all nuclear power professionals, and the majority managers at different levels with at least 10 years of nuclear power experience. The interview comprised themes relevant for organizational safety and safety management, such as: organizational structures and organizational change, threats to safety, information feedback and knowledge transfer, safety analysis, safety policy, and accident and incident analysis and reporting. The results were in part modeled to important themes derived from a general system theoretical framework suggested by Svenson and developed by Svenson and Salo in relation to studies of 'non-nuclear' safety organizations. A primer to important features of the system theoretical framework is presented in the introductory chapter. The results from the interviews generated interesting descriptions about nuclear safety management in relation to the above themes. Regarding organizational restructuring, mainly centralizations of resources, several examples of reasons for the restructuring and related benefits for this centralization of resources were identified. A number of important reminders that ought to be considered in relation to reorganization were also identified. Regarding threats to the own organization a number of such was interpreted from the interviews. Among them are risks related to generation and competence change-over and risks related to outsourcing of activities. A thorough picture of information management and practical implications related to this was revealed in the interviews. Related to information feedback is the issue of organizational safety indicators and safety indicators in general. The interview answers indicated that the area

  12. Supervision of Waste Management and Environmental Protection at the Swedish Nuclear Facilities 2001

    CERN Document Server

    Persson, M

    2003-01-01

    The report summarizes the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Authority in 2001. A summary of the inspections and a description of important issues connected with the supervision of the nuclear facilities are given.The inspections during 2001 have focused on theme inspections of waste management, environmental inspections considering the environmental monitoring at the Swedish nuclear facilities and review safety analysis and research programs from the Swedish Nuclear Fuel and Waste Management Co.The Swedish Radiation Protection Authority finds that the operations are mainly performed according to current regulations

  13. Trend and pattern analysis of human performance problems at the swedish nuclear power plants

    International Nuclear Information System (INIS)

    Bento, J.P.

    1990-01-01

    The last six years of operation of all Swedish nuclear power plants have been studied with respect to human performance problems by analysing all scrams and licensee event reports (LERs). The present paper is an updated version of a previous report to which the analysis results of the year 1988's events have been added. The study covers 197 scrams and 1759 LERs. As general results, 38% of the scrams and 27% of the LERs, as an average for the years 1983-1988, are caused by human performance problems. Among the items studied, emphasis has been put on the analysis of the causal categories involved in human performance problems resulting in plant events. The most significant causal categories appear to be Work organization, Work place ergonomics, Procedures not followed, Training and Human variability. The trend and pattern of the dominating causal categories are discussed

  14. Atomic energy - Bombs and nuclear power. Drivers and controversies during 65 years

    International Nuclear Information System (INIS)

    Kaerrmarck, Urban

    2010-10-01

    Over the years, written books, scientific papers, conducted parliamentary inquiries and public discussions have been published to describe and explain the Swedish nuclear power program. There is probably no other more thoroughly debated area. Still question marks are piling up. The report provides a broad illumination over the subject and fills in a number of explanations. No new unknown facts are presented, however, a number of factors are highlighted, whose importance has not received attention. One such factor is the well known link between a Swedish nuclear weapons program and the nuclear power program. By combining the information, especially from the last 15 years on nuclear weapons development with the nuclear power program, a new and largely unknown picture emerges. This issue is only superficially touched upon earlier. The ambition to develop Swedish nuclear weapons was the basis for all development until Sweden ratified the CTBT. The handling of the nuclear issue especially during the 1960s created a crisis of confidence which still affects the decisions and attitude toward nuclear power. The report finds it likely that the over-sized nuclear program was not the result of a forecast failure, but a deliberate effort by the power industry to get a hegemony in the heating sector by replacing oil with electricity. The report also shows that the only practical, working tool for an early phase-out of nuclear power was to financially compensate the plant owners. A massive increase of renewable electricity generation or a program for raising the energy use efficiency was not sufficient to compete with the reactors. However, seen in a longer perspective, renewable electricity can compete with nuclear power. With the current ambitious expansion rate, conditions are right for such a competition. Parliament's decision in June 2010 authorizing the replacement of the present 10 reactors does not necessarily mean that the nuclear debate is terminated

  15. Nuclear power will stay - think Swedes in a SIFO opinion poll

    International Nuclear Information System (INIS)

    Udikas, M.

    1984-01-01

    The author outlines the results of a Swedish SIFO opinion poll on nuclear power. He reports that most Swedes think that nuclear power will remain a source of energy. 16% believed in scrapping nuclear power. 49% didn't think there were plans for decommissioning, but 30% thought that such plans existed. 29% consider nuclear power not good for the country as against 28% in 1983. 49% consider it a good investment 'with experience we have today'. (H.J.P.)

  16. Attitudes towards nuclear power in Sweden: a history of ups and downs

    International Nuclear Information System (INIS)

    Sokolowski, E.

    1994-01-01

    A brief description of Swedish nuclear program is given. The emphasis is stressed on the controversy aspects which haunted and paralyzed Swedish energy policy since early seventies. The political polarization and the TMI core-melt accident created instability in public opinion which led to announcing an advisory referendum in early 1980. The outcome of the referendum was 38.7% for the anti-nuclear line, 58.0% for a long term phase-out, and 3.3% blanks. After the referendum the energy issue faded into the background until the Chernobyl accident in April 1986 when a new wave of anti-nuclear sentiment swept over the country. But now public opinion recovered much faster than the politician had foreseen. The following facts contributed to that: electricity costs and unemployment had risen dramatically; the Chernobyl reactor had no relevance for the Swedish nuclear plants; nuclear power had met competition as a risk factor in opinion polls -only natural gas got a lower ranking. The politicians responded to the opinion change with a compromise: the early phase-out proposal was withdrawn in return for a development fund for renewable energy sources (bio-mass). Public acceptance of nuclear power culminated in 1990. After that there has again been a steady decline. As a whole, the future of the Swedish nuclear power program is uncertain. Yet in favour of it are the following: the new burdens on the economy due to the present recession; the lack of environmentally and economically acceptable alternatives; continued familiarization and education, together with improvement of safety. (I.P.)

  17. Market role, profitability and competitive features of thermal power plants in the Swedish future electricity market with high renewable integration

    OpenAIRE

    Llovera Bonmatí, Albert

    2017-01-01

    The Swedish energy market is currently undergoing a transition from fossil fuels to renewable energy sources, including a potential phase-out of nuclear power. The combination of a phase-out with expansion of intermittent renewable energy leads to the issue of increased fluctuations in electricity production. Energy-related organizations and institutions are projecting future Swedish energy scenarios with different possible transition pathways. In this study the market role of thermal power p...

  18. Model integration and the economics of nuclear power

    International Nuclear Information System (INIS)

    Lundgren, S.

    1985-01-01

    The author proposes and applies a specific approach to model integration, i.e. the merger of two or several independently developed models. The approach is intended for integrations of activity analysis sector models and applied general equilibrium models. Model integration makes it possible to extend the range of applicability of applied general equilibrium models by exploiting the information contained in sector models. It also makes it possible to evaluate the validity of the partial equilibrium analyses in which sector models often are employed. The proposed approach is used to integrate a sector model of electricity and heat production with a general equilibrium model of the Swedish economy. Both models have been constructed within the research programme. The author uses the integrated model to look at two issues concerning the role of nuclear power on the Swedish electricity market: What are the likely consequences of a nuclear power discontinuation and how does the nuclear power investment programme of the 1970's and the early 1980's compare with a socially efficient one. (Author)

  19. Radiation protection actions at Swedish nuclear power plants 1994-2002 and some reflections about the near future; Straalskydd vid svenska kaernkraftverk under perioden 1994-2002, samt reflexioner om kommande utveckling

    Energy Technology Data Exchange (ETDEWEB)

    Erixon, Stig; Godaas, Tommy; Hofvander, Peter; Lund, Ingmar; Malmqvist, Lars; Thimgren, Ingela; Oelander-Guer, Hanna

    2003-12-01

    This report provides a summary of radiation protection experiences over the years 1994-2002 in the Swedish nuclear power industry. Actions to reduce radiation levels in reactor systems, occupational exposure results and some reflections about the near future are presented.

  20. 1. Biologic monitoring at Barsebaeck nuclear power plant 1985-1997. 2. Biological monitoring at Swedish nuclear power plants in 1998. Annual report 1998

    International Nuclear Information System (INIS)

    Andersson, Jan; Mo, K.; Thoernqvist, S.

    1999-06-01

    This report gives an account for two studies on the ecological effects of effluents to the aquatic environment from the Swedish nuclear power plants: 1. The results of biological monitoring at the Barsebaeck nuclear power plant during the period 1985-1997 are summarised. Comparisons are made with a previous report from 1969-1983. The fish community was studied by fyke net test fishing in the cooling water effluent area along a gradient out to unaffected sites. The loss of young eels in the cooling water intake was estimated annually. Damage on female grey mullet oocyte development was analysed on samples of cooling water exposed fish. 2. The biological monitoring at the Swedish nuclear power plants during 1998 was with minor exceptions performed according to the established programmes. The monitoring at Forsmark is running in the enclosed Biotest basin at the cooling water outlet and in the surrounding archipelago. Reference data are collected at Finbo, NW Aaland, and in the nearby Graesoe archipelago. In 1998 as in previous years the benthic macro fauna abundance within the Biotest basin showed strong variations. In the beginning of the year abundance and biomass were low, in the autumn though, higher than average. Oskarshamn: The monitoring is performed in the small effluent bay, Hamnefjaerden bay, in the waters surrounding the cooling water plume and in a reference area, Kvaedoe-fjaerden, 100 km north of the power plant. Perch and roach catches have been high in the Hamnefjaerden bay since the late 1980's. In 1998 catches of perch were on a higher level than in 1997, both in spring and in summer. The changes for roach were small. A moderate decrease in eel catches took place in 1997 and 1998, indicating a reduced effect of stockings in the late 1980's. Ringhals: The monitoring is performed in the area close to the cooling water outlet, which is located at an open coast, and in a reference area. An attraction of yellow eel to the effluent area has been

  1. Digital Components in Swedish NPP Power Systems

    International Nuclear Information System (INIS)

    Karlsson, Mattias; Eriksson, Tage

    2015-01-01

    Swedish nuclear power plants have over the last 20 years of operation modernised or exchanged several systems and components of the electrical power system. Within these works, new components based on digital technology have been employed in order to realize functionality that was previously achieved by using electro-mechanical or analogue technology. Components and systems such as relay protection, rectifiers, inverters, variable speed drives and diesel-generator sets are today equipped with digital components. Several of the systems and components fulfil functions with a safety-role in the NPP. Recently, however, a number of incidents have occurred which highlight deficiencies in the design or HMI of the equipment, which warrants questions whether there are generic problems with some applications of digital components that needs to be addressed. The use of digital components has presented cost effective solutions, or even the only available solution on the market enabling a modernisation. The vast majority of systems using digital components have been operating without problems and often contribute to improved safety but the challenge of non-detectable, or non-identifiable, failure modes remain. In this paper, the extent to which digital components are used in Swedish NPP power systems will be presented including a description of typical applications. Based on data from maintenance records and fault reports, as well as interviews with designers and maintenance personnel, the main areas where problems have been encountered and where possible risks have been identified will be described. The paper intends to investigate any 'tell-tales' that could give signals of unwanted behaviour. Furthermore, particular benefits experienced by using digital components will be highlighted. The paper will also discuss the safety relevance of these findings and suggest measures to improve safety in the application of digital components in power systems. (authors)

  2. Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management. Deliverable D10

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran; Lidberg, Maria; Soneryd, Linda

    2008-10-01

    This report analyses mediation and mediators in Swedish nuclear waste management. Mediation is about establishing agreement and building common knowledge. It is argued that demonstrations and dialogue are the two prominent approaches to mediation in Swedish nuclear waste management. Mediation through demonstration is about showing, displaying, and pointing out a path to safe disposal for inspection. It implies a strict division between demonstrator and audience. Mediation through dialogue on the other hand, is about collective acknowledgements of uncertainty and suspensions of judgement creating room for broader discussion. In Sweden, it is the Swedish Nuclear Fuel and Waste Management Co. (SKB) that is tasked with finding a method and a site for the final disposal of the nation's nuclear waste. Two different legislative frameworks cover this process. In accordance with the Act on Nuclear Activities, SKB is required to demonstrate the safety of its planned nuclear waste management system to the government, while in respect of the Swedish Environmental Code, they are obliged to organize consultations with the public. How SKB combines these requirements is the main question under investigation in this report in relation to materials deriving from three empirical settings: 1) SKB's safety analyses, 2) SKB's public consultation activities and 3) the 'dialogue projects', initiated by other actors than SKB broadening the public arena for discussion. In conclusion, an attempt is made to characterise the long-term interplay of demonstration and dialogue in Swedish nuclear waste management

  3. Studies of activation products in the terrestrial environment of three swedish nuclear power stations

    International Nuclear Information System (INIS)

    Ingemansson, T.; Erlandsson, B.; Mattsson, S.

    1982-01-01

    Samples of sewage sludge, lichen (Cladonia alpestris), soil and ground level air have been analysed for activation products released to the atmosphere from the three Swedish nuclear power stations at Simpevarp near Oskarshamn, Ringhals and Barsebaeck. The activity concentration of the activation products in the sludge can be arranged in the following sequence: 60 Co > 65 Zn > 58 Co 54 Mn. There is agreement between the time variation of the activity concentration in the sludge and the reported releases to the air from the power stations. The measured activity ratio 58 Co/ 60 Co in sludge does not significantly differ from that reported in the releases to the air. The activity concentration in sludge sedimented from incoming waste water has been used to get better time resolution than using only digested sludge from the final step of the plant. These studies have shown that the activity concentration of 60 Co increases substantially with the first rain run-off that reaches the sewage plant and then falls off rapidly. Measurements on samples of lichen and underlying soil show that the radioactive cobalt isotopes ( 58 Co and 60 Co) have a short mean residence time in the lichen carpet compared to most fission products present in global fall-out. (author)

  4. Delegated Democracy. The Siting of Swedish Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia (Stockholm Univ., SCORE, SE-106 91 Stockholm (Sweden))

    2009-12-15

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  5. Delegated Democracy. The Siting of Swedish Nuclear Waste

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2009-12-01

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  6. Swedish experiences in implementing national and international safeguards

    International Nuclear Information System (INIS)

    Nilsson, A.; Elborn, M.; Grahn, P.

    1991-01-01

    This paper reports that international safeguards have been applied in Sweden since the early 70s. Experiences have been achieved from exclusive bilateral and trilateral control followed by NPT safeguards in 1975. The Swedish State System for accountancy and Control (SSAC) includes all regulations that follows from prevailing obligations regarding the peaceful uses of nuclear material. The system has been developed in cooperation between the national authority, the Swedish Nuclear Power Inspectorate (SKI) and the Swedish nuclear industry. The paper presents experiences from the practical implementation of the SSAC and the IAEA safeguards system, gained by the SKI and the nuclear industry, respectively. Joint approaches and solutions to some significant safeguards issues are presented. The cooperation between the nuclear industry and the authority in R and D activities, in particular with respect to the Swedish Support Program is highlighted, e.g. the use of nuclear facilities in development or training tasks. some of the difficulties encountered with the system are also touched upon

  7. Outline of Swedish activities on LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M [Studsvik Nuclear, Nykoeping (Sweden); Roennberg, G [OKG AB (Sweden)

    1997-12-01

    The presentation outlines the Swedish activities on LWR fuel and considers the following issues: electricity production; performance of operating nuclear power plants; nuclear fuel cycle and waste management; research and development in nuclear field. 4 refs, 4 tabs.

  8. Meddling in the KBS Programme and Swedish Success in Nuclear Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark (Univ. of Goeteborg, Goeteborg (Sweden)), e-mail: mark.elam@sts.gu.se; Sundqvist, Goeran (Univ. of Oslo, Oslo (Norway))

    2010-09-15

    production of nuclear waste facilities themselves which can be seen as firstly adding further weight and credibility to what has already been demonstrated. The materialization of solutions in terms of copper canisters that can be experimented on, or a 'dress rehearsal' repository that can be opened to the public, is important for maintaining and enlarging SKB's ability to demonstrate KBS within reach, but remains nothing that should be rushed into. When KBS becomes too close to hand, and starts to approximate an immutable mobile, it becomes harder to translate it into something else in the face of challenging circumstance. Thus, the remarkable success of Swedish nuclear waste management so far can be ultimately ascribed to an ability for continually producing signs of a definite end to the implementation of geological disposal in sight, while never sacrificing the capacity for showing this end undergoing necessary improvement and becoming otherwise. Bearing this in mind, the best way to read SKB's recent announcement of Oesthammar as their preferred site for a KBS 3 repository is as yet another powerful and compelling sign of the attainability of nuclear fuel safety, not to be confused with its attainment

  9. Meddling in the KBS Programme and Swedish Success in Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2010-09-01

    production of nuclear waste facilities themselves which can be seen as firstly adding further weight and credibility to what has already been demonstrated. The materialization of solutions in terms of copper canisters that can be experimented on, or a 'dress rehearsal' repository that can be opened to the public, is important for maintaining and enlarging SKB's ability to demonstrate KBS within reach, but remains nothing that should be rushed into. When KBS becomes too close to hand, and starts to approximate an immutable mobile, it becomes harder to translate it into something else in the face of challenging circumstance. Thus, the remarkable success of Swedish nuclear waste management so far can be ultimately ascribed to an ability for continually producing signs of a definite end to the implementation of geological disposal in sight, while never sacrificing the capacity for showing this end undergoing necessary improvement and becoming otherwise. Bearing this in mind, the best way to read SKB's recent announcement of Oesthammar as their preferred site for a KBS 3 repository is as yet another powerful and compelling sign of the attainability of nuclear fuel safety, not to be confused with its attainment

  10. Studies in Swedish Energy Opinion

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Soeren; Hedberg, Per

    2012-07-01

    the 1970s, energy production was politicized big time in the industrialized world. The birth of the environmental movement, the oil crises in 1973 - 74 and the beginning conflict surrounding civilian nuclear power, put energy issues center stage on the political agenda. Energy policies - especially related to the development of nuclear power - came to dominate election campaigns, like in Sweden in 1976 or be the subject of referendums, like in Austria in 1978 or in Sweden in 1980. Critical voices toward the peaceful use of nuclear power - having started in America before being exported to Europe - gained real strength and public support all over the Western world by the nuclear accident at the Three Mile Island plant in Harrisburg, Pennsylvania in 1979. The energy genie was out of the bottle and out to stay. Fueled by the nuclear meltdowns in Chernobyl in 1986 and in Fukushima in 2011 and supplemented by conflicts over how to reduce the use of oil and coal, how to sensibly exploit the waste gas reserves, and how to develop renewable energy sources based on sun, wind and waves – have made all kinds of energy issues the focal point of political contentions ever since the early 1970s. In Sweden, as in many other countries, energy policies - often with nuclear power in the center - have been one of the most fought-over policy areas during the last thirty-forty years. And the contentious character of energy policies is not limited to the elite level of politics - to politicians, to media pundits or to lobbyists. It is also manifest among ordinary citizens. Energy issues - nuclear power and wind power in particular - are highly polarizing among voters as well. Given this historic background, starting in the 1970s, it was rather natural that energy questions - featuring most prominently questions related to nuclear power - would be important parts of the voter surveys performed by the Swedish National Elections Studies (SNES) at the Univ. of Gothenburg. The first book

  11. Delegated democracy. Siting selection for the Swedish nuclear waste

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2008-11-01

    The present study concerns the siting of the Swedish nuclear waste repository. Four cases are examined: the feasibility studies in Nykoeping and Tierp (cases 1 and 2), as well as three public consultation meetings with conservationist and environmental organisations, and two study visits to nuclear facilities in Oskarshamn and Oesthammar, which were held during what is called the site-investigation phase (cases 3 and 4). The Swedish Nuclear Fuel and Waste Management Co (SKB) began the search for a nuclear waste site in the 1970s. Since 1992 SKB has conducted feasibility studies in eight municipalities, including in the four municipalities mentioned above. At the present time more comprehensive site investigations are underway in Oskarshamn and Oesthammar, two municipalities that already host nuclear power plants as well as storages for nuclear waste. In addition to SKB and the municipalities involved in the site-selection process, politicians, opinion groups, concerned members of the public, and oversight bodies are important actors. The analysis of the cases employs the concepts of 'sub-politics', 'boundary work', and 'expertise', together with the four models of democracy 'representative democracy', participatory democracy', 'deliberative democracy', and 'technocracy'. The aim of the study is to describe the characteristics of Swedish democracy in relation to the disposal of Swedish nuclear waste. The main questions of the study are: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? and Which democratic ideals were influential during the feasibility studies and in the consultation process? The study is based on qualitative methods, and the source materials consist of documents, interviews, and participant observations. In summary, the form of democracy that emerges in the four case studies can be described as delegated democracy. This means that a large

  12. Development, implementation, and experiences of the Swedish spent fuel and waste sea transportation system

    International Nuclear Information System (INIS)

    Gustafsson, B.; Dybeck, P.; Pettersson, S.

    1989-01-01

    In Sweden, electrical production from the first commercial nuclear plant commenced in 1972, i.e. 17 years ago. There are now 12 nuclear reactors in operation, the last two were connected to the grid in fall 1985. These 12 reactors produced about 50% of the present electrical demand in Sweden. The remaining 50% are mainly covered by hydro power stations. The operating record for the Swedish reactors has generally been very good. Nevertheles, the Swedish parliament has taken a decision, that nuclear power shall be phased out from the Swedish system not later than the year 2010. Many of them - to use a mild expression-question the wisdom of this decision. The efforts in the waste management area will, however, be given a continued high priority. The primary responsibility for the management of nuclear waste lies with the waste producer. In order to achieve a good coordination and an effective management the four Swedish nuclear power utilities have delegated these responsibilities to the jointly owned Swedish Nuclear Fuel and Waste Management Co., SKB. This means that SKB is responsible for measures required for the implementation of the national nuclear waste management program such as planning, design, construction and operation of waste facilities including the necessary R and D work. The responsibility of the nuclear power utilities also includes the financing of the waste management program. A special funding system, controlled by the authorities, has been established for this purpose

  13. Safety and radiation protection at the Swedish nuclear power plants 2000

    International Nuclear Information System (INIS)

    2001-04-01

    During 2000 no events occurred, or discoveries were made, that seriously affected the reactor safety at the Swedish nuclear plants. The basic safety strategy is designed so that hidden faults and deficiencies shall not lead to any serious consequences for the plants. It is of outmost importance that the safety work at the plants is performed with the best effort and quality in order to realize this strategy. Especially in the new economic situation of the utilities after deregulation of the electricity market. The total radiation dose to the personnel and contracted workers at the plants was the lowest ever recorded with all NPPs running (8.1 man Sv). Corrosion damages led to a stand-still of two reactors during a long period, and thorough analyses were performed before the Inspectorate allowed a restart

  14. Quarterly report - Swedish Nuclear Power Inspectorate. April - June 1982

    International Nuclear Information System (INIS)

    1982-01-01

    The inspectorate controls the realization of the instructions for the nuclear power plants. During the second quarter of 1982 nine plants have been in operation. Ringhals 4 has started with test runs. Different disturbances of the operation of the plants are reported on diagrams. The security at Studsvik and at the nuclear fuel fabrication of ASEA-Atom is dealt with and minor incidents are described. (G.B.)

  15. The present Swedish nuclear fuel and waste position in perspective

    International Nuclear Information System (INIS)

    Svenke, E.

    1983-01-01

    In Sweden current efforts are focussed on research and development of the management of all types of radioactive residues and on industrial projects for the implementation of a complete programme for the back-end of the fuel cycle, where, in fact, international commercial services scarcely exist. Another reason for this priority is the need to allay public anxiety on the subject. The paper describes the policy, planning, and development of the Swedish nuclear back-end as well as its organization and financing. In Sweden the licensee of a nuclear power facility assumes direct responsibility, technically and financially, for the nuclear waste he generates. To cover future costs with respect to the back-end, the utilities pay to the State a fee related to their production of nuclear electricity. The fee is kept in a fund administered by the State through an authority, the 'National Board for Spent Nuclear Fuel'. The technical implementation programme comprises a sea transportation system to be operational by the end of 1982 and a central facility for intermediate storage of spent reactor fuel to be operational by 1985. The third step in the Swedish waste programme is a central final storage facility for reactor wastes other than spent fuel (planned to be in operation by 1988). Broad research and development work is going on in a deep underground system for the isolation of highly active and long-lived wastes. A rock drilling programme is being carried out at several places and is planned to continue for a period of approximately ten years. Encapsulation of waste and the properties of buffer materials are being studied. The paper stresses the importance of achieving generally and multi-nationally accepted guidelines for waste isolation systems and also of proper demonstration of the performance of the various parts of such systems

  16. Decommissioning of Swedish nuclear power reactors. Technology and costs

    International Nuclear Information System (INIS)

    1994-06-01

    The main topics discussed are planning, technology and costs of decommissioning nuclear power reactors. Oskarshamn-3 (BWR) and Ringhals-4 (PWR) have been used as reference reactors. 29 refs, figs, tabs

  17. The Swedish Utilities joint approach to form common basis for design requirements for the future

    International Nuclear Information System (INIS)

    Hansson, B.

    1998-01-01

    The Owners of the Swedish Nuclear Power Plants have decided to form a document that should state the design principals and requirement for cost-effective and continuous development of the reactor safety in the future. The development of this document will be a part of the modernization and development of the Swedish Nuclear Power Plants. The basis for this document is an evaluation of Swedish and International standards and regulations as IAEA/INSAG, US-regulations, EUR etc. (author)

  18. How to balance the future in a small country with huge traditions of nuclear applications: the Swedish example

    International Nuclear Information System (INIS)

    Pazsit, Imre

    2005-01-01

    After a short historical perspective of how the Swedish energy situation has reached the present status, the paper says that the interplay of many beneficial circumstances put Sweden into the nuclear track toward the peaceful utilization of nuclear energy and technology at a very early stage of development in Europe. It adds then that the future of nuclear power in Sweden, just as in the previous decades, is not predictable in detail. It is however likely that nuclear power remains a significant contributor of electricity production in the coming decades, either at the same or an increased level, in the frame of a long-term agreement and consensus between industry and government. (S. Ohno)

  19. The Swedish system for funding of nuclear waste management

    International Nuclear Information System (INIS)

    Hedman, Tommy; Westerlind, Magnus

    2003-01-01

    Nuclear activities in Sweden goes back to early 1950's. Research and development on spent fuel disposal in Sweden started in earnest with the report of the AKA-commission 1976, which outlined a complete system for the management of spent fuel and associated waste, including how to handle the costs. Components of the system, mentioned in the AKA-report, such as a sea transportation (MS Sigyn), a central spent fuel storage facility (CLAB) and a final repository for operational waste (SFR) have since been constructed and taken in operation. The research and planning for the additional facilities needed for a complete system is in an advanced stage. A nuclear waste fund has also been created, based on a special fee on nuclear power production. During the 1970's the nuclear power utilities established their own internal funds for future waste management expenses. These funds were transferred to the government-run financing system established in 1981 when the Swedish parliament passed the Act on the Financing of Future Expenses for Spent Nuclear Fuel etc. The fees to be paid into the Fund are to be based on the assumption that each reactor generates electricity for 25 years. These fees, plus the interest on the money already deposited in the Fund, must meet all expenses for handling spent fuel, dismantling facilities and for dealing with radioactive decommissioning waste. A guarantee shall compensate for the eventuality of a nuclear power plant being closed before the end of the 25-year earning period. The type of guarantee must be available until all nuclear waste has been placed in a repository and must cover contingencies for the waste programme. This guarantee will be used if expenses for future nuclear waste management become higher than expected, if these expenses have to be met earlier than expected, or if the actual amount in the Fund is lower than was estimated. The process of yearly cost calculations, review and determination of fees and guarantees is well

  20. Sea transport of used nuclear fuel and radiactive disposals to a Swedish central store

    International Nuclear Information System (INIS)

    1977-10-01

    Sea transport of used nuclear fuel and radioactive disposals to a Swedish central store. A vessel for transporting used nuclear fuel and radioactive disposals from the power stations at Ringhals, Barsebaeck, Simpevarp and Forsmark to a central store has been projected. Safety aspects, technical and economical aspects have been taken into consideration with regard to the actual volume of goods to be transported. Three different types of vessels are presented and a specification is given for the main alternative. A safety study of the main alternative is shown, regarding collision safety, fire risks and fire extinguishing equipment. (author)

  1. Does nuclear power lead to nuclear weapons

    International Nuclear Information System (INIS)

    Prawitz, J.

    1977-01-01

    It is pointed out that 'reactor grade' plutonium usually contains about 30 % Pu240 and is unsuitable for weapons. While it is possible to obtain an explosion, it is more difficult to initiate one and its effect, which will be considerably less than with bomb grade plutonium, is difficult to predict. The critical mass will be larger and more cooling required. The proliferation problem is then discussed and the four aspects, vertical, horizontal, sub-national and revolutionary, mentioned. In connection with nuclear power it is the second and third aspects which are of interest. In discussing the possibility of terrorist groups obtaining plutonium, a study by the Swedish Defence Research Institute is quoted as estimating that 10-20 qualified specialists and several years secret preparation would be necessary to make a nuclear weapon. Other authors, e.g. Ted Taylor, have maintained that it would be much easier, but examples of 'student designs' are primitive and unlikely to detonate. Even so, it is emphasised that safeguards and physical security are necessary. Horizontal proliferation is a more real problem and the NPT and IAEA safeguards are discussed in this connection. In conclusion the question of whether the proliferation of nuclear weapons via nuclear power can be prevented cannot be answered with a clear yes or no. Certain states may use nuclear weapon potential as a bargaining factor. However the decision to acquire nuclear weapons is political and while a nuclear power industry would be of help, it would not be decisively so. (JIW)

  2. The Swedish National Defence Research Establishment and the plans for Swedish nuclear weapons; Foersvarets forskningsanstalt och planerna paa svenska kaernvapen

    Energy Technology Data Exchange (ETDEWEB)

    Jonter, Thomas [Uppsala Univ. (Sweden). Dept. of History

    2001-03-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish Government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid 50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the Parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the Parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The Prime Minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The Government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue

  3. The cleavable matter: Discursive orders in Swedish nuclear power politics 1972-1980; Det klyvbara aemnet. Diskursiva ordningar i svensk kaernkraftspolitik 1972-1980

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, P.

    1997-09-01

    This study applies a qualitative discourse-theoretical method to analyse the central argumentation in the parliamentary debate on nuclear power in Sweden during 1972-1980, reconstructed from official documents such as governmental and parliamentary bills, committee reports, parliamentary debate protocols, and official commission reports. Particular concern is directed to the process in which various discursive orders emerging within the political debate tend to have a structuring influence on the political argumentation regarding what can be said, by whom this can be said, and how this can be said. It is argued that these discursive orders have a profound, and in a systems theoretical sense self-dynamic influence, going beyond the original intentions of the political actors, on how the energy policy issue is interpreted and constructed. It is argued, furthermore, that these discursive orders actively exploit the political context of meaning by deliberately instrumentalising and incorporating competing argumentative elements into their own cognitive structure. In other words, the dominant political system incorporates the arguments of the political opposition and of the environmental and anti nuclear movements in order to consolidate its political power. The discourse theoretical analysis of the Swedish nuclear power debate in that sense unveils a deep resistance against a true political discourse, in the sense of Habermas, as a rational and domination-free process of reaching mutual understanding. 152 refs.

  4. The International Remote Monitoring Project: Results of the Swedish Nuclear Power Facility field trial

    International Nuclear Information System (INIS)

    Johnson, C.S.; af Ekenstam, G.; Sallstrom, M.

    1995-01-01

    The Swedish Nuclear Power Inspectorate (SKI) and the US Department of Energy (DOE) sponsored work on a Remote Monitoring System (RMS) that was installed in August 1994 at the Barseback Works north of Malmo, Sweden. The RMS was designed to test the front end detection concept that would be used for unattended remote monitoring activities. Front end detection reduces the number of video images recorded and provides additional sensor verification of facility operations. The function of any safeguards Containment and Surveillance (C/S) system is to collect information which primarily is images that verify the operations at a nuclear facility. Barseback is ideal to test the concept of front end detection since most activities of safeguards interest is movement of spent fuel which occurs once a year. The RMS at Barseback uses a network of nodes to collect data from microwave motion detectors placed to detect the entrance and exit of spent fuel casks through a hatch. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Stockholm, Sweden and Albuquerque, NM, USA. These remote monitoring stations operated by SKI and SNL respectively, can retrieve data and images from the RMS computer at the Barseback Facility. The data and images are encrypted before transmission. This paper presents details of the RMS and test results of this approach to front end detection of safeguard activities

  5. The Swedish Nuclear Power Inspectorate's evaluation of SKB's RD and D Program 98. Summary and conclusions

    International Nuclear Information System (INIS)

    1999-04-01

    Compared to previous programmes, RD and D Programme 98 is focused to a greater extent on method and site selection and on issues relating to the decision-making process. This is natural, since the programme is now approaching the stage where vital decisions will have to be made. The RD and D Programme 98 report is supplemented by a background report 'Detailed Programme for Research and Development 1999-2004' as well as a number of main references 'System Reporting', 'Alternative methods', 'Criteria for Site Evaluation' and the 'North-South/Coast-Interior' report. In addition, a number of references are available in the form of county-specific general siting studies, feasibility studies etc. SKI has distributed RD and D Programme 98 to sixty-three reviewing bodies for comment. The reviewing bodies include universities and institutes of technology, local safety committees, municipalities hosting nuclear facilities and municipalities participating in feasibility studies as well as many authorities. The comments of the reviewing bodies mainly focused on the decision-making process, including issues relating to method selection and site selection and, in particular, on the selection of sites for site investigation. Several reviewing bodies, particularly universities and institutes of technology, have also submitted comments of a more technical-scientific nature. SKI's evaluation has focused on determining whether SKB's programme can be considered to fulfil the requirements stipulated in the Act on Nuclear Activities that such a programme should be able to result in the implementation of solutions for the final disposal of the spent nuclear fuel from the Swedish nuclear power programme. Furthermore, SKI's evaluation has also focused on the conditions that SKI considers should apply to SKB's future work. Specific comments are made for the following areas: Decision-making process, Method selection and system analysis, Siting, Technical development, Safety assessments

  6. 2009 assessment of radiation safety in the Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Lennart

    2009-04-15

    The overall conclusion is that the radiation safety, nuclear safety, the physical protection including nuclear safeguards and radiation protection, in the Swedish nuclear power plants has been maintained at an acceptable level. Large investment programmes are being carried out to comply with the requirements imposed by the authority regarding modernisation. Management systems and internal audits have developed in a positive direction. 2008 has been an eventful year in many respects. The nuclear industry is in a very intensive period. Modernisations are under way, aimed at improving safety, and measures are being taken to strengthen the physical protection in order to make forced entry to the plants more difficult. In addition, preparations are in progress to increase the thermal power in most of the reactors. Four events have occurred in 2008 that required SSM's permission to restart the plant (Category 1, SSMFS 2008:1). One event occurred in each of Oskarshamn 1 and 3, Forsmark 3 and Ringhals 2. The events in Oskarshamn 3 and Forsmark 3 were the result of broken control rod shafts. In Oskarshamn 1 a perturbation was caused by lightening, and in Ringhals 2 the event was due to deficiencies in the auxiliary feedwater capacity. Five events have been classified and reported as level 1 on the International Nuclear Events Scale (INES). In all 14 scrams have occurred. This is a higher frequency than the reactors have set as their goal. During the year SSM has carried out five incident-related (RASK) inspections in order to collect information relating to how the licensees have responded to the events and which measures have been taken to prevent a recurrence. None of the events have led to threats to the safety of the surroundings. However several events have been classified at a higher level than has been normal in recent years. Modernisation is being carried out in the form of large projects lasting for several years. The work is either carried out during extended

  7. Supervision of waste management and environmental protection at the Swedish nuclear facilities 1999

    International Nuclear Information System (INIS)

    2000-03-01

    The report summarizes the supervision of waste management and environmental protection at the nuclear facilities that was carried out by the Swedish Radiation Protection Institute in 1999. A summary of the inspections during 1999 and a description of important issues connected with the supervision of the nuclear facilities are given. The inspections during 1999 have focused on the management of liquid discharges and components containing induced activity at some of the nuclear facilities. Also, routines for filing environmental samples, discharge water samples and documents were inspected at all the different nuclear facilities. The Swedish Radiation Protection Institute finds that the operations are mainly performed according to current regulations

  8. Air pollution emission from the Swedish energy system 1970-1990. What influence should a nuclear power phaseout have had on the emissions?. An analysis of actual outcome and phaseout alternatives

    International Nuclear Information System (INIS)

    Bostroem, C.Aa.; Grennfelt, P.; Johansson, M.; Loevblad, G.

    1994-09-01

    If the Swedish nuclear power plants had been phased out during the 1980s according to any of the two alternatives presented in 1978, the energy sectors emission of sulfur dioxide to air should have been four times greater today. For nitrogen oxides and carbon oxides the emission figures should now have been two to three times higher than the actual present values. The continued operation of nuclear power during 1980-1990 have resulted in a total reduction of sulfur dioxide emission of 500.000 tonnes, which corresponds to four years of the present total yearly emission in Sweden. For nitrogen oxides the difference is 200.000 tonnes and for carbon dioxide approximately 150 million tonnes. 17 refs

  9. Public hearing on the Barsebaeck nuclear power plant 27 Jan 1980

    International Nuclear Information System (INIS)

    1981-01-01

    Transcript of a hearing on possible consequences in Danish territory of an accident at the Swedish nuclear power plant at Barsebaeck. The hearing was arranged by OOA (Organization for Information about Atomic Power). Representatives from involved Danish authorities participated in the hearing. Subjects for discussions were health consequences, Danish emergency provisions, and radioactive land contamination. (BP)

  10. Operational Experience from Swedish nuclear power plants 1996

    International Nuclear Information System (INIS)

    1997-01-01

    A summary of two pages is given for each Swedish reactor with data on availability, scrams, radiation doses and important events during 1996. Special reports are presented on the following issues: Reactor core spray system inoperable at OKG-2, Containment pressure relief system incorrectly closed at Forsmark-1, Isolation condenser blocked for residual heat and continued operation with defective isolation valve at OKG-1; and Degraded pressure suppression function of the containment at Barsebaeck-2

  11. Subcontractors and Component Suppliers in the Swedish Wind Power Industry

    International Nuclear Information System (INIS)

    Takeuchi, Linn

    2003-05-01

    This paper studies the Swedish component suppliers in the wind power industry. This group has not received much attention so far, and today very little is known. This study addresses the fact that the Swedish component suppliers have not been able to penetrate the wind power market despite the Swedish industry's strength in mechanical and electrical engineering. The aims of this paper were to gather information regarding the existing production and to identify factors that affect the Swedish component suppliers' scope to penetrate the wind turbine market. To date, although Sweden has spent considerable amounts of money on projects involving wind turbines, there is no series production of large wind turbines in Sweden. The historical development of the wind turbine industry suggests this alone would have inhibited the development of component production in Sweden. Yet, the country's proximity and good access to large wind turbine producing countries should be an advantage. Various factors and issues are identified and discussed in this paper that are relevant for the Swedish component suppliers' scope to penetrate the wind turbine market. These include market and product development, buyer-supplier relationships, export and sourcing behaviors, and time of market entry. This is a first step towards increasing the knowledge of Swedish component production and it is recognized that more studies are required. Various areas where relevant knowledge is largely missing or scarce are identified and discussed as well, and should serve as relevant starting points for continued research

  12. Simulating conditions for combined heat and power in the Swedish district heating sector

    International Nuclear Information System (INIS)

    Knutsson, David

    2005-01-01

    The most important issues in the European energy sector today are how to increase competitiveness on the energy markets, reduce both CO2 emissions and dependence on imported fuels. These issues are also important aspects of Swedish energy policy. In Sweden, the district heating (DH) sector has commonly been used to achieve Swedish energy policy goals. However, the ongoing integration and deregulation of the energy markets in Europe now means that the Swedish DH sector can also play an important role in achieving international targets. This thesis investigates the extent to which the Swedish DH sector can contribute to compliance with current energy policy targets, both international and Swedish. The study consisted of simulations of the Swedish DH sector response to various policy instruments in a model that takes the local features of virtually all Swedish DH systems into account. The findings show, for example, that there is great potential for combined heat and power (CHP) generation in the Swedish DH sector. By exporting this CHP electricity to other European countries with less effective and fossil dependent power generation plants, the CO2 emissions from the European energy sector could be substantially reduced. This would also result in increased security of supply and competitiveness in the EU, since fuel use would be more effective. In Sweden, increased CHP generation would also be a way of maintaining an effective national security of supply of power

  13. Swedish support programme on nuclear non-proliferation in Central and Eastern Europe and Central Asia

    Energy Technology Data Exchange (ETDEWEB)

    Ek, P.; Andersson, Sarmite [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Wredberg, L. [ILG Consultant Ltd., Vienna (Austria)

    2000-06-15

    At the request of the Swedish Government, the Swedish Nuclear Power Inspectorate has established a support and co-operation programme in the area of nuclear non-proliferation with Russia and several of the republics of the former Soviet Union. The Programme was initiated in 1991 and an overall goal is to accomplish national means and measures for control and protection of nuclear material and facilities, in order to minimise the risk of proliferation of nuclear weapons and illicit trafficking of nuclear material and equipment. The objective of the Swedish Support Programme is to help each, so called, recipient State to be able to, independently and without help from outside, take the full responsibility for operating a national non-proliferation system and thereby fulfil the requirements imposed through the international legal instruments. This would include both the development and implementation of a modern nuclear legislation system, and the establishment of the components making up a national system for combating illicit trafficking. The support and co-operation projects are organised in five Project Groups (i.e. nuclear legislation, nuclear material control, physical protection, export/import control, and combating of illicit trafficking), which together cover the entire non-proliferation area. Up till June 2000, support and co-operation projects, completed and on-going, have been carried out in ten States, namely Armenia, Azerbaijan, Belarus, Georgia, Kazakstan, Latvia, Lithuania, Moldova, Russia and Ukraine. Furthermore, programmes have been initiated during the first part of 2000 with Estonia, Uzbekistan, Kyrgyzstan and Tajikistan. In addition, assistance has been given to Poland on a specific nuclear material accountancy topic. All projects are done on request by and in co-operation with these States. The total number of projects initiated during the period 1991 to June 2000 is 109, thereof 77 have been completed and 32 are currently on-going. It is the

  14. Swedish support programme on nuclear non-proliferation in Central and Eastern Europe and Central Asia

    International Nuclear Information System (INIS)

    Ek, P.; Andersson, Sarmite; Wredberg, L.

    2000-06-01

    At the request of the Swedish Government, the Swedish Nuclear Power Inspectorate has established a support and co-operation programme in the area of nuclear non-proliferation with Russia and several of the republics of the former Soviet Union. The Programme was initiated in 1991 and an overall goal is to accomplish national means and measures for control and protection of nuclear material and facilities, in order to minimise the risk of proliferation of nuclear weapons and illicit trafficking of nuclear material and equipment. The objective of the Swedish Support Programme is to help each, so called, recipient State to be able to, independently and without help from outside, take the full responsibility for operating a national non-proliferation system and thereby fulfil the requirements imposed through the international legal instruments. This would include both the development and implementation of a modern nuclear legislation system, and the establishment of the components making up a national system for combating illicit trafficking. The support and co-operation projects are organised in five Project Groups (i.e. nuclear legislation, nuclear material control, physical protection, export/import control, and combating of illicit trafficking), which together cover the entire non-proliferation area. Up till June 2000, support and co-operation projects, completed and on-going, have been carried out in ten States, namely Armenia, Azerbaijan, Belarus, Georgia, Kazakstan, Latvia, Lithuania, Moldova, Russia and Ukraine. Furthermore, programmes have been initiated during the first part of 2000 with Estonia, Uzbekistan, Kyrgyzstan and Tajikistan. In addition, assistance has been given to Poland on a specific nuclear material accountancy topic. All projects are done on request by and in co-operation with these States. The total number of projects initiated during the period 1991 to June 2000 is 109, thereof 77 have been completed and 32 are currently on-going. It is the

  15. Nuclear power in Sweden

    International Nuclear Information System (INIS)

    Wikdahl, C.E.

    1999-01-01

    Sweden uses 16,000 kWh of electricity per person, by far the highest consumption in EU. The reason is a well-developed electricity intensive industry and a cold climate with high share of electric heating. The annual power consumption has for several years been about 140 TWh and a normal year almost 50 per cent is produced by hydro and 50 percent by nuclear. A new legislation, giving the Government the right to ordering the closure nuclear power plants of political reasons without any reference to safety, has been accepted by the Parliament. The new act, in force since January 1, 1998, is a specially tailored expropriation act. Certain rules for the economical compensation to the owner of a plant to be closed are defined in the new act. The common view in the Swedish industry is that the energy conservation methods proposed by the Government are unrealistic. During the first period of about five years the import from coal fired plants in Denmark and Germany is the only realistic alternative. Later natural gas combi units and new bioenergy plants for co-production of heat and power (CHP) might be available. (orig.) [de

  16. Consequences of reduced production of electricity in nuclear power plants

    International Nuclear Information System (INIS)

    The Swedish Power Administration has assessed the possibilities of expanding electric power sources other than nuclear power plants for the years 1980 and 1985. Reports on costs in the form of loss of capital and increased operating costs involved in the dismantling of nuclear power plants are made in Supplement 1. The economics division of the Finance Department, starting with a long-range study model of the Swedish economy, has calculated the consequences of a cutback in electric power up to 1980 for Sweden's economy and employment in that year. The consequences of reduction of electricity supplies up to 1985 are summarized in Supplement 2 in this report. It is concluded that in order to be able to manage the problem of supplying electricity by 1985, it will be necessary to increase oil power above what was assumed in the energy policy program. There will have to be new oil-based power as well. According to the Power Administration, oil-power facilities can be expanded to varying degrees, depending upon when the decision is made. The Power Administration's calculations show that 125 TWh is possible in 1985 without nuclear power only if a decision for discontinuation is made in the fall of 1976. This is based on very optimistic assumptions about the time of execution of a program for oil-steam operation, and also on the assumption that extreme measures will be initiated to force expansion of both district-heating distribution and power + heat facilities. Oil consumption for production of electricity in such an electric power system would be about 9 million m 3 , which is about 5 times more than at present and about one-third of the present total consumption of petroleum products in Sweden

  17. Subcontractors and Component Suppliers in the Swedish Wind Power Industry

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Linn

    2003-05-01

    This paper studies the Swedish component suppliers in the wind power industry. This group has not received much attention so far, and today very little is known. This study addresses the fact that the Swedish component suppliers have not been able to penetrate the wind power market despite the Swedish industry's strength in mechanical and electrical engineering. The aims of this paper were to gather information regarding the existing production and to identify factors that affect the Swedish component suppliers' scope to penetrate the wind turbine market. To date, although Sweden has spent considerable amounts of money on projects involving wind turbines, there is no series production of large wind turbines in Sweden. The historical development of the wind turbine industry suggests this alone would have inhibited the development of component production in Sweden. Yet, the country's proximity and good access to large wind turbine producing countries should be an advantage. Various factors and issues are identified and discussed in this paper that are relevant for the Swedish component suppliers' scope to penetrate the wind turbine market. These include market and product development, buyer-supplier relationships, export and sourcing behaviors, and time of market entry. This is a first step towards increasing the knowledge of Swedish component production and it is recognized that more studies are required. Various areas where relevant knowledge is largely missing or scarce are identified and discussed as well, and should serve as relevant starting points for continued research.

  18. Swedish spent fuel management systems, facilities and operating experiences

    International Nuclear Information System (INIS)

    Vogt, J.

    1998-01-01

    About 50% of the electricity in Sweden is generated by means of nuclear power from 12 LWR reactors located at four sites and with a total capacity of 10,000 MW. The four utilities have jointly created SKB, the Swedish Nuclear Fuel and Waste Management Company, which has been given the mandate to manage the spent fuel and radioactive waste from its origin at the reactors to the final disposal. SKB has developed a system for the safe handling of all kinds of radioactive waste from the Swedish nuclear power plants. The keystones now in operation of this system are a transport system, a central interim storage facility for spent nuclear fuel (CLAB), a final repository for short-lived, low and intermediate level waste (SFR). The remaining, system components being planned are an encapsulation plant for spent nuclear fuel and a deep repository for encapsulated spent fuel and other long-lived radioactive wastes. (author)

  19. Sweden and the bomb. The Swedish plans to acquire nuclear weapons, 1945 - 1972

    Energy Technology Data Exchange (ETDEWEB)

    Jonter, T [Uppsala Univ. (Sweden). Dept. of History

    2001-09-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid-50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The prime minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue

  20. Sweden and the bomb. The Swedish plans to acquire nuclear weapons, 1945 - 1972

    International Nuclear Information System (INIS)

    Jonter, T

    2001-09-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid-50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The prime minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue. During this period

  1. Swedish Disarmament Policy

    OpenAIRE

    2012-01-01

    NPIHP Partners Host Conference on Swedish Disarmament Policy Dec 05, 2012 The Nuclear Proliferation International History Project is pleased to announce a conference on Swedish nuclear disarmament policy, organized and hosted by Stockholm University on 26 november 2012. Organized by Stockholm University Professor Thomas Jonter, Emma Rosengren, Goran Rydeberg, and Stellan Andersson under the aegis of the Swedish Disarmament Resaerch Project, the conference featured keynote addresses by Hans Bl...

  2. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The safety level of the plants is maintained at an acceptable level. SKI has in its regulatory supervision not found any known deficiencies in the barriers which could result in release of radioactive substances in excess of the permitted levels. SKI considers that improvements have been implemented during the year in the management, control and following up of safety work at the plants. In some cases, SKI has imposed requirements that improvements be made. Extensive measures are under way at the nuclear power plants to comply with the safety requirements in SKI's regulations, SKIFS 2004:2 concerning the design and construction of nuclear power reactors, and the stricter requirements regarding physical protection. Concurrently preparations are underway at eight of the ten units for thermal power increases. At the Forsmark plant considerable efforts have been during the year to correct the deficiencies in the safety culture and quality assurance system that became apparent in 2006. A programme to improve the execution of activities has been established in accordance with SKI's decision. SKI considers that the plant has developed in a positive direction but that there are further possibilities for improvement with regard to internal control. This is amongst other things concerns the areas internal auditing, independent safety review function, and working methods. SKI has had special supervision of the plant since 28 September, 2006. At the Oskarshamn plant work has been carried out to improve the organisation and routines in several areas. The plant has established routines which provide the basis to ensure that decisions are taken in a stringent manner. The quality assurance system has a clearer structure and there is a better defined division of work. Some measures remain to be dealt with in 2008. The Ringhals plant has also worked with attitudes to routines and internal control. SKI considers that the measures have good prerequisites to provide a

  3. To eliminate or not. The minute of truth for nuclear power

    International Nuclear Information System (INIS)

    Edin, K.A.

    1995-01-01

    The book describes the political situation concerning nuclear power in Sweden. After the referendum 1980 the Swedish parliament has made a declaration that nuclear power should be phased out by 2010 and replaced by renewable energy, but no legislation or schedules have been proposed. In the meantime targets for reducing carbon dioxide emission have been set, that seem to be in conflict with the phaseout. The book goes through all the decisions that have to be made by the parliament and the different alternatives that should be available when a phaseout is planned. Financial compensation for the reactor owners, and lack of economic alternative power sources are seen as major obstacles. The author pleads that detailed governmental propositions for an elimination of nuclear power (including plans for substitutional power sources) should be made public to facilitate a realistic debate. 19 figs

  4. The Swedish Nuclear Power Inspectorate`s evaluation of SKB`s RD and D Program 98. Summary and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    Compared to previous programmes, RD and D Programme 98 is focused to a greater extent on method and site selection and on issues relating to the decision-making process. This is natural, since the programme is now approaching the stage where vital decisions will have to be made. The RD and D Programme 98 report is supplemented by a background report `Detailed Programme for Research and Development 1999-2004` as well as a number of main references `System Reporting`, `Alternative methods`, `Criteria for Site Evaluation` and the `North-South/Coast-Interior` report. In addition, a number of references are available in the form of county-specific general siting studies, feasibility studies etc. SKI has distributed RD and D Programme 98 to sixty-three reviewing bodies for comment. The reviewing bodies include universities and institutes of technology, local safety committees, municipalities hosting nuclear facilities and municipalities participating in feasibility studies as well as many authorities. The comments of the reviewing bodies mainly focused on the decision-making process, including issues relating to method selection and site selection and, in particular, on the selection of sites for site investigation. Several reviewing bodies, particularly universities and institutes of technology, have also submitted comments of a more technical-scientific nature. SKI`s evaluation has focused on determining whether SKB`s programme can be considered to fulfil the requirements stipulated in the Act on Nuclear Activities that such a programme should be able to result in the implementation of solutions for the final disposal of the spent nuclear fuel from the Swedish nuclear power programme. Furthermore, SKI`s evaluation has also focused on the conditions that SKI considers should apply to SKB`s future work. Specific comments are made for the following areas: Decision-making process, Method selection and system analysis, Siting, Technical development, Safety assessments

  5. Proposed law concerning the phase-out of nuclear power

    International Nuclear Information System (INIS)

    1997-01-01

    This Government bill that will be presented to the Swedish Parliament, gives the Government the right to revoke the licence of operating a nuclear power plant at a certain time. The operator is given the right to a financial compensation when the licence is revoked, in line with the rules in the expropriation laws. Safety aspects of operation of nuclear installations are not regulated in this law, i.e. the law can not be used when the operating licence is revoked due to safety reasons

  6. Instructor training at the Swedish Nuclear Power Training and Safety Centre

    International Nuclear Information System (INIS)

    Persson, P.-E.

    1988-01-01

    In spite of the fact that full-scope simulators are very powerful training tools, the transfer of knowledge and skills to the trainees during simulator training is completely dependent on the instructors' technical competence and their ability to transfer it to the trainees by efficient use of these training tools. Accordingly, the instructor candidates must pass a technical training programme equivalent to that for shift supervisors and have at least a few months of experience in each operator position at a nuclear power plant. To be authorized, the instructors must also pass a teacher training programme consisting of four 2 week instructor courses. To stay authorized the instructors must pass an annual retraining programme consisting of at least two weeks of technical refresher and one week teacher retraining. The retraining programme also includes at least three weeks of operational practice at a nuclear power plant. (author)

  7. Nuclear power at present and in the future. Sweden and the rest of the world

    International Nuclear Information System (INIS)

    2010-06-01

    The report provides by no means a complete picture of nuclear power. There are a number of issues not covered, such as environmental impacts caused by the nuclear plants used (with the exception of the greenhouse gases that highlights some of report), the link with nuclear weapons and waste disposal. The share of nuclear power in Sweden in 2010 is higher than the average for the world The global net installed power of nuclear power in early 2010 was just over 370 GW e distributed over 436 nuclear power plants. In 2007, global electricity generation from nuclear power was about 14 percent of total electricity generation, compared with 44 percent in Sweden. The average availability for nuclear power plants was about 82 percent between 2005 and 2007. During the same period the availability in Swedish plants was lose to 84 percent. The Swedish availability has fallen, in 2004 the availability was comparable to that in Finland, which amounted to just over 94 percent between 2005 and 2007. The expansion of nuclear power may be limited by technical challenges in manufacturing infrastructure and a shortage of skilled labor. There is only a few reactor suppliers in the market and the quality demand of the material is much higher than for other major projects. Whether nuclear power is competitive with alternative investments or not is uncertain. The investment costs for building new reactors is high but the operational and maintenance costs are low compared to many other types of power sources. In an Emission Trading System nuclear power competitivity with fossil options increases. Nuclear power is a power source with low greenhouse gas emissions over its life cycle. Uranium is a limited resource and like other natural resources limited to a number of countries. Most nuclear reactors are also dependent on enrichment of the natural uranium. If an open or closed nuclear fuel cycle is used is crucial for how long the uranium reserves will last and how nuclear energy can grow

  8. Barsebaeck power plant - safety and emergency measures

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A Swedish-Danish Committee on safety at the Swedish nuclear power plant Barsebaeck was established in 1979 in order to evaluate the nuclear safety at Barsebaeck with a view to the reactor accident at the Three-Mile-Island nuclear power plant March 28, 1979. According to the committees mandate the investigations of the Kemeny Commission, the Rogouin investigation, investigations of the American Nuclear Regulatory Commission, and the Swedish report ''Safe nuclear power'' have been taken into consideration by the Committee. Furthermore, it has formed the basis for the Committees work that the authority responsibility for the safety at Barsebaeck lies with the Swedish authorities, and that these authorities have evaluated the safety aspects before the permissions for operation of the Barsebaeck power plant were given and hereafter currently in connection with the inspection of the power plant. The report prepared by the Commission treats aspects as: a) Nuclear safety at the Barsebaeck power plant, b) reactor safety and emergency provisions, c) common elements in the emergency provision situation in Sweden and Denmark, d) ongoing investigations on course of events during accidents and release limiting safety systems. (BP)

  9. Plan 96 - Costs for management of the radioactive waste from nuclear power production

    International Nuclear Information System (INIS)

    1996-06-01

    This report presents a calculation of the costs for implementing all measures needed to manage and dispose of spent nuclear fuel and radioactive wastes from the Swedish nuclear power reactors. The cost calculations include costs for R,D and D as well as for decommissioning and dismantling the reactor plants etc. The following facilities and systems are already in operation: Transportation system for radioactive waste products, Central interim storage facility for spent nuclear fuel, Final repository for radioactive operational wastes. Plans exist for: Encapsulation plant for spent nuclear fuel, Deep repository for spent fuel and other long-lived waste, Final repository for decommissioning waste. The total future costs, in Jan 1996 prices, for the Swedish waste system from 1997 have been calculated to be 42.2 billion SEK (about 6.4 billion USD). The total costs apply for the waste obtained from 25 years of operation of all Swedish reactors. It is estimated that 10.6 billion SEK in current money has been spent through 1996. Costs based on waste quantities from operation of the reactors for 40 years are also reported. 6 refs

  10. The use of algae in monitoring discharges of radionuclides. Experiences from the 1992 and 1993 monitoring programmes at the Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Snoeijs, P. [Uppsala Univ. (Sweden). Dept. of Ecological Botany; Simenstad, P. [Swedish Radiation Protection Inst., Stockholm (Sweden)

    1995-01-01

    All four Swedish nuclear power plants (Forsmark, Oskarshamn, Barsebaeck and Ringhals) use brackish water as coolant (Baltic Sea and Swedish west coast). Radionuclides are discharged together with the cooling water. The gamma spectra of monthly algal samples harvested in 1992 and 1993 close to the discharge points of these power plants were determined within the routine monitoring programmes. The main radionuclides detected in the algal samples were {sup 54}Mn, {sup 58}Co, {sup 60}Co and {sup 137}Cs. Most {sup 137}Cs in the samples from the northern Baltic Sea (Forsmark) still originated from the 1986 Chernobyl accident. Other radionuclides, notably {sup 51}Cr, {sup 65}Zn, {sup 95}Zr, {sup 95}Nb, {sup 110m}Ag, {sup 124}b, {sup 125}Sb and {sup 134}Cs, were regularly detected at s of the sites. Transfer factors from discharge to algae were generally in the order of 0.3-3 Bq kg{sup -1} per MBq discharge. For the major discharged radionuclides, significant linear relationships were in most cases found between discharges and concentrations in algal samples. Differences in transfer factors and regression coefficients were explained by location of the sampling sites and type of radionuclide. It is concluded that algal samples provide useful complements to water and sediment samples in the monitoring programmes since radionuclide concentrations are much higher in algal samples and proportional to the discharges. 21 refs, figs.

  11. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    International Nuclear Information System (INIS)

    2008-01-01

    The safety level of the plants is maintained at an acceptable level. SKI has in its regulatory supervision not found any known deficiencies in the barriers which could result in release of radioactive substances in excess of the permitted levels. SKI considers that improvements have been implemented during the year in the management, control and following up of safety work at the plants. In some cases, however, SKI has imposed requirements that improvements be made. Extensive measures are under way at the nuclear power plants to comply with the safety requirements in SKI's regulations, SKIFS 2004:2 concerning the design and construction of nuclear power reactors, and the stricter requirements regarding physical protection. Concurrently preparations are underway at eight of the ten units for thermal power increases. At the Forsmark plant considerable efforts have been during the year to correct the deficiencies in the safety culture and quality assurance system that became apparent in 2006. A programme to improve the execution of activities has been established in accordance with SKI's decision. SKI considers that the plant has developed in a positive direction but that there are further possibilities for improvement with regard to internal control. This is amongst other things concerns the areas internal auditing, independent safety review function, and working methods. SKI has had special supervision of the plant since 28 September, 2006. At the Oskarshamn plant work has been carried out to improve the organisation and routines in several areas. The plant has established routines which provide the basis to ensure that decisions are taken in a stringent manner. The quality assurance system has a clearer structure and there is a better defined division of work. Some measures remain however to be dealt with in 2008. The Ringhals plant has also worked with attitudes to routines and internal control. SKI considers that the measures have good prerequisites to provide a

  12. Sweden's fourth national report under the Convention on Nuclear Safety. Swedish implementation of the obligations of the Convention

    International Nuclear Information System (INIS)

    2007-01-01

    The national reports to the review meetings according to Article 5 of the Convention call for a self-assessment of each Contracting Party with regard to compliance with the obligations of the Convention. For Sweden this self-assessment has demonstrated compliance with all the obligations of the Convention, as shown in part B of this national report. The Swedish existing nuclear power programme is currently under strong development since a few years. Large amounts are being invested in the 10 remaining operating reactors to prepare for long term operation. The licensees as well as the regulatory bodies have also been challenged over the last years by events, especially the Forsmark event in July 2006, demonstrating the importance of having strong safety management in place and maintaining of a vital safety culture. Of particular importance is not only to develop good formal management systems, but also to monitor and follow up how the systems function in the daily work at the plants. The need for this attention is reinforced by the major programmes going on during a limited time period to upgrade and uprate the plants. These programmes will require a full effort of the operating organisations as well as of the regulatory bodies. An additional challenge is, during the same time period, to manage the transfer of knowledge to a new generation of engineers and specialists. A large number of key staff is due to retire within the next 10 years. The generally positive impression reported to earlier review meetings under the Convention still stands. Therefore, Sweden would like to point out the following as strong features in its national nuclear practice: The Swedish legal framework is well developed and the responsibility for safety is very well defined. The nuclear law also provides for public insight into the activities of the licensees. The regulatory bodies have maintained and increased their resources and are further developing their regulatory practices. There is an

  13. Action group for nuclear power information

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Following the nuclear power controversy in the Swedish general election of 1976, a group of technical employees of ASEA-Atom formed an action group for nuclear power information. This was a spontaneous move in which management was not involved. The object was to provide a balance to uninformed campaigns by 'environmental' action groups. The level of political activity among technical personnel is low, but once the threshold has been crossed the desire for information by the public has been shown to be great. It has however been difficult to obtain a hearing in radio, TV or the national press. The local press has on the other hand proved open. While no significant effect among the public can be demonstrated, there seems to have been some influence on politicians. There has been contact with corresponding organisations in Denmark, Finland and the UK, and in the Federal Republic of Germany in July 1978 a European Energy Association was formed to balance such organisations as European Environmental Bureau. (JIW)

  14. Design of alarm systems in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Thunberg, Anna; Osvalder, Anna-Lisa

    2008-04-01

    Research within the area of improving alarm system design and performance has mainly focused on new alarm systems. However, smaller modernisations of legacy systems are more common in the Swedish nuclear industry than design of totally new systems. This imposes problems when the new system should function together with the old system. This project deals with the special concerns raised by modernisation projects. The objective of the project has been to increase the understanding of the relationship between the operator's performance and the design of the alarm system. Of major concern has been to consider the cognitive abilities of the operator, different operator roles and work situations, and varying need of information. The aim of the project has been to complement existing alarm design guidance and to develop user-centred alarm design concepts. Different case studies have been performed in several industry sectors (nuclear, oil refining, pulp and paper, aviation and medical care) to identify best practice. Several empirical studies have been performed within the nuclear area to investigate the operator's need of information, performance and workload in different operating modes. The aspect of teamwork has also been considered. The analyses show that the operator has different roles in different work situations which affect both the type of information needed and how the information is processed. In full power operation, the interaction between the operator and the alarm system is driven by internal factors and the operator tries to maintain high situation awareness by actively searching for information. The operator wants to optimise the process and need detailed information with possibilities to follow-up and get historical data. In disturbance management, the operator is more dependent on external information presented by the alarm system. The new compilation of alarm guidance is based on the operator's varying needs in different working situations and is

  15. The closure of the Barsebaeck nuclear power plant. What is the experience so far?

    International Nuclear Information System (INIS)

    Palmqvist, R.

    2000-01-01

    On 30 November 1999, Unit 1 of the Barsebaeck Nuclear power plant was closed down due to the political decision. This was a disaster not only for all those employed at the plant but also for the Municipality of Kavlinge and the entire region. The government has given the employees five-year job security and the Municipality of Kavlinge a study showing the consequences of the closure and nothing else. The municipalities with Nuclear power plants in Sweden are quite isolated in their demands for help and compensation for the losses caused by closure of NPPs, although 80% of the Swedish population opposes premature phasing out of nuclear power

  16. Management by regulatory inspection authorities of experience gained from safety related occurrences in nuclear power plants

    International Nuclear Information System (INIS)

    Tore, E.; Nilsson, R.

    1977-01-01

    A short description is given of the system used by the Swedish Nuclear Power Inspectorate to collect information of events occurring in nuclear power plants. The standard forms used by the utilities when reporting the events are described and a motivation given to their lay-out. The evaluation routine is defined and statistics given of events which occurred during the period July 1 1974 to December 31 1976. (author)

  17. Quarterly report of the Swedish Nuclear Power inspectorate January-March 1982

    International Nuclear Information System (INIS)

    1982-01-01

    The inspectorate is reporting on the departures of the nuclear power plants from normal operations. The Ringhals-3 reactor has discontinued the operation since the 20th of Oct 1981. There have been 9 reactor trips for all nine power units. The turbine oil of the Oskarshamn-1 reactor caught fire the 18th of February 1982. No incidents are reported from Studsvik and the facilities of ASEA-ATOM. (G.B.)

  18. Procedures as a Contributing Factor to Events in the Swedish Nuclear Power Plants. Analysis of a Database with Licensee Event Reports 1995-1999

    International Nuclear Information System (INIS)

    Bento, Jean-Pierre

    2002-12-01

    The operating experience from the twelve Swedish nuclear power units has been reviewed for the years 1995 - 1999 with respect to events - both Scrams and Licensee Event Reports, LERs - to which deficient procedure has been a contributing cause. In the present context 'Procedure' is defined as all written documentation used for the planning, performance and control of the tasks necessary for the operation and maintenance of the plants. The study has used an MTO-database (Man - Technology - Organisation) containing, for the five years studied, 42 MTO-related scrams out of 87 occurred scrams, and about 800 MTO-related LERs out of 2000 reported LERs. On an average, deficient procedures contribute to approximately 0,2 scram/unit/ year and to slightly more than three LERs/unit/year. Presented differently, procedure related scrams amount to 15% of the total number of scrams and to 31% of the MTO-related scrams. Similarly procedure related LERs amount to 10% of the total number of LERs and to 25% of the MTO-related LERs. For the most frequent work types performed at the plants, procedure related LERs are - in decreasing order - associated with tasks performed during maintenance, modification, testing and operation. However, for the latest year studied almost as many procedure related LERs are associated with modification tasks as with the three other work types together. A further analysis indicates that 'Deficient procedure content' is, by far, the dominating underlying cause contributing to procedure related scrams and LERs. The study also discusses the coupling between procedure related scrams/LERs, power operation and refuelling outages, and Common Cause Failures, CCF. An overall conclusion is that procedure related events in the Swedish nuclear power plants do not, on a national scale, represent an alarming issue. Significant and sustained efforts have been and are made at most units to improve the quality of procedures. However, a few units exhibit a noticeable

  19. Decommissioning planning of Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, Gunnar; Bergh, Niklas [Westinghouse Electric Sweden AB, Vaesteraes (Sweden)

    2013-07-01

    The technologies required for the decommissioning work are for the most part readily proven. Taken into account that there will be many more years before the studied reactor units will undergo decommissioning, the techniques could even be called conventional at that time. This will help bring the decommissioning projects to a successful closure. A national waste fund is already established in Sweden to finance amongst others all dismantling and decommissioning work. This will assure that funding for the decommissioning projects is at hand when needed. All necessary plant data are readily available and this will, combined with a reliable management system, expedite the decommissioning projects considerably. Final repositories for both long- and short-lived LILW respectively is planned and will be constructed and dimensioned to receive the decommissioning waste from the Swedish NPP:s. Since the strategy is set and well thought-through, this will help facilitate a smooth disposal of the radioactive decommissioning waste. (orig.)

  20. Sweden's second national report under the Convention on nuclear safety. Swedish implementation of the obligations of the Convention

    International Nuclear Information System (INIS)

    2001-01-01

    The National Reports to the Review Meetings according to Article 5 of the Convention call for a self-assessment of each Contracting Party with regard to compliance with the obligations of the Convention. For Sweden this self-assessment has demonstrated full compliance with all the obligations of the Convention, as shown in detail in part B of this National Report. Sweden wishes to emphasise the incentive character of the Convention. In the opinion of Sweden, the Convention implies a commitment to continuous learning from experience and a proactive approach to safety improvement. Therefore, Sweden has found it important that a National Report highlights strong features in national nuclear practices as well as areas where special attention to the further development are needed. Since the first report to the Convention was issued, three major events have been experienced in the Swedish nuclear programme: Phase out of nuclear power started by the closing of one unit of a twin unit plant on 30 November 1999. The full effects of deregulation of the electricity market have been experienced. Together with increasing taxes on nuclear power, this has strongly affected the production economy of the nuclear industry resulting in efforts to reduce production costs and leaving less room for investments. The new general safety regulations came into force 1 July 1999, resulting in a more structured approach to inspection and safety assessment. These changes have created new challenges for the safety work of the licensees as well as for the regulatory bodies during the last three years. However, the generally positive impression reported to the first review meeting under the Convention still stands. Therefore, Sweden would like to point out the following as strong features in its national nuclear practice: The responsibility for safety is very well defined in the Swedish legal framework. In order not to dilute the responsibility of the licence holders, the Swedish regulations are

  1. Atomic energy - Bombs and nuclear power. Drivers and controversies during 65 years; Atomenergi - Bomber och kaernkraft. Drivkrafter och kontroverser under 65 aar

    Energy Technology Data Exchange (ETDEWEB)

    Kaerrmarck, Urban

    2010-10-15

    Over the years, written books, scientific papers, conducted parliamentary inquiries and public discussions have been published to describe and explain the Swedish nuclear power program. There is probably no other more thoroughly debated area. Still question marks are piling up. The report provides a broad illumination over the subject and fills in a number of explanations. No new unknown facts are presented, however, a number of factors are highlighted, whose importance has not received attention. One such factor is the well known link between a Swedish nuclear weapons program and the nuclear power program. By combining the information, especially from the last 15 years on nuclear weapons development with the nuclear power program, a new and largely unknown picture emerges. This issue is only superficially touched upon earlier. The ambition to develop Swedish nuclear weapons was the basis for all development until Sweden ratified the CTBT. The handling of the nuclear issue especially during the 1960s created a crisis of confidence which still affects the decisions and attitude toward nuclear power. The report finds it likely that the over-sized nuclear program was not the result of a forecast failure, but a deliberate effort by the power industry to get a hegemony in the heating sector by replacing oil with electricity. The report also shows that the only practical, working tool for an early phase-out of nuclear power was to financially compensate the plant owners. A massive increase of renewable electricity generation or a program for raising the energy use efficiency was not sufficient to compete with the reactors. However, seen in a longer perspective, renewable electricity can compete with nuclear power. With the current ambitious expansion rate, conditions are right for such a competition. Parliament's decision in June 2010 authorizing the replacement of the present 10 reactors does not necessarily mean that the nuclear debate is terminated

  2. Stade nuclear power station (KKS): four giants on tour

    International Nuclear Information System (INIS)

    Beverungen, M.; Viermann, J.

    2008-01-01

    The Stade nuclear power station was the first nuclear power plant in the Federal Republic of Germany to deliver heat in addition to electricity. Since 1984, district heat was distributed to a saltworks nearby. The power plant, which is situated on the banks of the river Elbe, was commissioned in 1972 after approximately 4 years of construction. Together with the Wuergassen plant, it was among the first commercial nuclear power plants in this country. E.ON Kernkraft holds a 2/3 interest, Vattenfall Europe a 1/3 interest in the nuclear power plant. The Stade nuclear power station was decommissioned on November 14, 2003 for economic reasons which, in part, were also politically motivated. In September 2005, the permit for demolition of the nuclear part was granted. The release from supervision under the Atomic Energy Act is expected for 2014. In the course of demolition, the 4 steam generators of the Stade nuclear power station were removed. These components, which have an aggregate weight of approx. 660 tons, are to be safely re-used in Sweden. In September 2007, the steam generators were loaded on board the Swedish special vessel, MS Sigyn, by means of a floating crane. After shipment to Sweden, heavy-duty trucks carried the components to the processing hall of Studsvik AB for further treatment. After 6 months of treatment, the contaminated inner surfaces of the tube bundles of the steam generators have been decontaminated successfully, among other items. This has increased the volume of material available for recycling and thus decreased the volume of residues. (orig.)

  3. Electricity consumption and electricity saving in the Swedish households

    Energy Technology Data Exchange (ETDEWEB)

    Bernstroem, B M; Eklund, Y; Sjoeberg, L

    1997-03-01

    The objective of the present study is to determine which factors influence electricity consumption behavior of Swedish households, the level of knowledge about electricity use and the willingness to pay for the use of electricity. In Sweden, as in many other developed countries, the need for electric power is constantly increasing. The major reason for this increase in electricity consumption is the lifestyle of a modern society. A feature in the nuclear power discussion is that the government in Sweden is having a hard time to establish how to phase-out all nuclear power plants by 2010. An additional major change in Swedish energy policy is the deregulation of the electricity market, which started in the beginning of 1996. There is an increased demand for strategies to save electricity among households. The results of this study stress the difficulties in reducing electricity consumption and to develop new electricity saving strategies in Sweden 125 refs, 6 figs, 21 tabs

  4. Assessment of the effects of neutron fluence on Swedish nuclear pressure vessels

    International Nuclear Information System (INIS)

    Rao, S.

    1980-11-01

    Nuclear pressure vessels are subject to neutron irradiation during service causing embrittlement. This is one important factor in the overall problem of reactor vessel integrity. At present the irradiation effects are mainly assessed by the Charpy V-notch test. Two measures of embrittlement are defined: the increase of the ductile/brittle transition temperature and the decrease in the upper-shelf energy. The object of the present work is to assess these changes for the Swedish nuclear pressure vessels. On the basis of data from irradiations carried out in other countries and Swedish surveillance programmes, the expected end of life embrittlement is estimated for Swedish vessels. The results show that the embrittlement of most reactor vessels is expected to be quite small. Oskarshamn 1 and PWR-vessels, however, will probably show moderate changes, the former due to the higher copper content, and the latter due to the high end of life fluences. Some of the vessel materials which exhibit marginal properties in the upper-shelf energy, as measured by the Charpy V-notch impact test, are identified. It is recommended that fracture mechanics analyses be applied in these cases. (author)

  5. Summary of operational experience in Swedish nuclear power plants 1995

    International Nuclear Information System (INIS)

    1996-01-01

    A summary of two pages for each Swedish reactor is given with availability, number of scrams, collective radiation doses and events for 1995. Special reports are presented on some specific issues: Bowed fuel assemblies at Ringhals, Incorrect opening pressure of the main safety valves at Ringhals, Measures to restore and upgrade safety at Oskarshamn 1, and the Decontamination of the reactor vessel at Oskarshamn 1. Figs

  6. Saving Swedish energy policy: the intelligence of public participation

    International Nuclear Information System (INIS)

    Loefstedt, R.E.

    1992-04-01

    Problems of future Swedish energy are considered in relation to the nuclear power phase-out, the 1988 Toronto carbon dioxide agreement, environmental issues of hydroelectricity, energy conservations, renewable sources and imports from abroad. Particular emphasis is on public opinion. (Quittner)

  7. Classification of scrap material from nuclear power plants as acceptable for recirculation

    International Nuclear Information System (INIS)

    Bergman, C.

    1983-06-01

    The Swedish National Institute of Radiation Protection has in a principal decision accepted that scrap material from nuclear power plants, that contains or may contain radioactive material, can be recirculated. The document is an English translation of the background material for the Board meeting decision and gives some guide-lines for the authority when dealing with this questions. (author)

  8. Modernization of turbines in nuclear power plants

    International Nuclear Information System (INIS)

    Harig, T.

    2005-01-01

    An ongoing goal in the power generation industry is to maximize the output of currently installed assets. This is most important at nuclear power plants due to the large capital investments that went into these plants and their base loaded service demands. Recent trends in the United States show a majority of nuclear plants are either obtaining, or are in the process of obtaining NRC approvals for operating license extensions and power uprates. This trend is evident in other countries as well. For example, all Swedish nuclear power plants are currently working on projects to extend their service life and maximize capacity through thermal uprate and turbine-generator upgrade with newest technology. The replacement of key components with improved ones is a means of optimizing the service life and availability of power plants. Economic advantages result from increased efficiency, higher output, shorter startup and shutdown times as well as reduced outage times and service costs. The rapid advances over recent years in the development of calculation programs enables adaptation of the latest blading technology to the special requirements imposed by steam turbine upgrading. This results in significant potential for generating additional output with the implementation of new technology, even without increased thermal power. In contrast to maintenance and investment in pure replacement or repair of a component with the primary goal of maintaining operability and reliability, the additional output gained by upgrading enables a return on investment to be reaped. (orig.)

  9. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    International Nuclear Information System (INIS)

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1

  10. Modernisation for maintaining and improving safety at Nordic nuclear power plants

    International Nuclear Information System (INIS)

    Hammer, L.; Wahlstroem, B.; Simola, K.

    1998-02-01

    The safety practices in Finland and Sweden are described and compared in regard of effecting modernisation for safety of the nuclear plants in the two countries, considering new technology and advancing safety requirements as proposed for new reactors. Particular attention is given to strategies for applying new safety requirements to reactors built to earlier standards, and to the interplay between the nuclear utilities and the safety authorities. Overviews are given of past and current modernisation of the nuclear power plants in Finland and Sweden. The management procedures in controlling the implementation of modifications to the nuclear power plants are described and discussed in regard of prevailing differences between Finnish and Swedish practices. A formal modelling technique (SADT) was applied for capture of the essential contents of the relevant documented procedures. Two examples of recent plant modifications in the Finnish nuclear plants in Olkiluoto and Loviisa are described and discussed in greater detail. Recommendations are given. (au)

  11. Facing the nuclear power phaseout - Swedish experiences of enterprise shutdown and organisational development; Infoer kaernkraftavveckling - svenska erfarenheter av foeretagsnedlaeggningar och foeraendringsarbete

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, K. [Castor AB, Stockholm (Sweden)

    1998-02-01

    The aim of this study is to make an overview of problems and experiences connected to decommissioning and organisational changes of Swedish enterprises and public agencies from a safety perspective. The central point is the view of decommissioning of nuclear power plants as a process of change. In practice decommissioning includes both downsizing and organisational development. The question is which problems can arise and which strategy of change is most adequate from the standpoint of safety. The report starts with a summary of the most important experiences of the process of decommissioning of enterprises during the sixties to eighties concerning the consequences for the individuals and the labour market. After that follows the main results from earlier investigations of shut-down of nuclear power plants regarding the staff. The restructuring and downsizing of the public sector during the nineties have given rise to a large amount of material on staffing issues. The knowledge and experiences drawn from the organisational change processes of Swedish working life during the nineties are then summarised. At last some conclusions for decommissioning of nuclear power plants are discussed. The period before and after the termination of power generation is connected with great strain. The vulnerability of the staff increases and the faith in management can easily be destroyed, which can affect safety and the decommissioning work. The feeling of security increases if the staff continuously is kept informed and within certain limits can influence the course of events. A learning strategy is preferable in comparison to an expert oriented strategy because it is impossible to gain complete control over the technically and socially complex process of decommissioning. Instead of detailed and central planning of the process it will be safer to work in a participative way and to include all the staff in the preparations from the very beginning. By a learning way of working is

  12. Nuclear waste - research and technique development. KASAMS's Review of the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RD and D Programme 2001

    International Nuclear Information System (INIS)

    2002-01-01

    This report is KASAM's review statement to the Government on the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RD and D Programme 2001. KASAM's review was primarily conducted through work by KASAM's members, special adviser, experts and secretary. In KASAM's opinion, the reactor owners, through RD and D Programme 2001, have complied with the requirements of paragraph 12 of the Act on Nuclear Activities. In KASAM's opinion, SKB's research and development programme shows great merit. This applies to both what SKB has done and what it intends to do. The report is well-structured and clear. RD and D Programme 2001 shows that there is still a considerable need for development work in a number of important technical areas. This applies, for example, to the fabrication and sealing of canisters as well as control methods for these activities. Within other areas, for example, geology, chemistry, hydrology, biology and rock mechanics, there is also a great need for further research and development work, and for practical demonstrations of technical applications. In KASAM's opinion, humanities and social science issues, that are of importance for the disposal of nuclear waste, should be accorded greater attention. In Chapter 14, KASAM has presented a proposal for how research in these areas can be organised and financed. KASAM emphasizes that future RD and D programmes should have a broad scientific basis in order to comply with the requirements of the Act on Nuclear Activities regarding comprehensiveness. In their review statements on RD and D Programme 2001, the Swedish Nuclear Power Inspectorate (SKI) and the Swedish Radiation Protection Authority (SSI) have proposed that SKB should be required to present a strategy document which should be kept updated. In KASAM's opinion, such a report of current strategic issues should be made available to the public and other parties concerned. KASAM also believes that such a documentation of strategy issues should be

  13. A review of scope and costs for the swedish system for management of nuclear waste

    International Nuclear Information System (INIS)

    1994-01-01

    From a financial analysis of the swedish nuclear waste management program it is deduced that a 25 year long operation of the swedish reactors will not create funds large enough to finance the program at the present fee level (0.019 SEK/kWh). The real interest rate is of great importance for the return from the fees. The cost estimates for decommissioning are much lower than that for comparable reactors in other countries (e.g. Trojan, USA vs Ringhals 2), possibly totaling up to 20 GSEK for all twelve swedish reactors. 3 figs., 12 tabs

  14. Convention on nuclear safety 2012 extra ordinary meeting. The Swedish National Report

    International Nuclear Information System (INIS)

    2012-01-01

    During the 5th Review Meeting of the Convention on Nuclear Safety (CNS), the Contracting Parties in attendance agreed to hold an Extraordinary Meeting in August 2012 with the aim to enhance safety through reviewing and sharing lessons learned and actions taken by Contracting Parties in response to events at TEPCO Fukushima Dai-ichi. It was agreed that a brief and concise National Report should be developed by each Contracting Party to support the Extraordinary Meeting. This report should be submitted three months prior to the meeting to the Secretariat via the Convention-secured website for peer review by other Contracting Parties. It was also agreed that the Contracting Parties should organize their reports by topics that cross the boundaries of multiple CNS Articles. Each National Report should provide specific information on these topics to address the lessons learned and activities undertaken by each Contracting Party. The National Report should include a description of the activities the Contracting Party has completed and any activities it intends to complete along with scheduled completion dates. The present report is therefore structured in accordance with the guidance given by the General Committee for CNS. In Chapter 0, a brief description of Swedish nuclear power plants is given with an emphasis on measures that have been taken gradually as a result of new knowledge and experience. The following chapters deal with the six topics, which are: 1) External events, 2) Design issues, 3) Severe accident management and recovery, 4) National organizations, 5) Emergency preparedness and response and post-accident management, and 6) International cooperation. Each chapter concludes with a table illustrating a high-level summary of the items identified. To clarify the relationship between the text and table contained in each chapter, the parts of the text appearing in the table are underlined. Furthermore, the text of some sections/subsections in different chapters

  15. Review of national and international demands on fire protection in nuclear power plants and their application in the Swedish nuclear industry; Oeversikt av nationell och internationell kravbild avseende brandskydd paa kaernkraftverk och hur dessa tillaempas i svensk kaernkraftindustri

    Energy Technology Data Exchange (ETDEWEB)

    Fredholm, Lotta (Tyrens AB, Malmoe (Sweden))

    2010-02-15

    regarding fire safety at nuclear power plants that have been studied are regulation from USA, Finland, Great Britain, Canada, Germany and the international organisations IAEA and WENRA. The conclusion of this study is that the differences between the regulations mostly are differences in detailed fire safety design. Some differences can not easily be explained by national. Differences and the resulting effect on the overall fire safety is very difficult to evaluate. Regarding how to improve the Swedish regulations regarding fire safety at nuclear power plants there are different possibilities. One is to complement the regulations with acceptable solutions on how to design the fire protection. If this shall be done IAEAs Safety Guides seem to be the easiest of the more detailed fire requirements to adopt to Swedish conditions. Another way of improving the regulation is to give more guidance on how to proof that the rules are fulfilled. In this case the Canadian guidelines may be a good source of ideas and information

  16. Preventive maintenance at the Forsmark Nuclear Power Plant

    International Nuclear Information System (INIS)

    Danielsson, H.

    1985-01-01

    The maintenance system at the Forsmark Nuclear Power Plant began in 1975, and was drawn up in co-operation with other power stations within the control of the Swedish State Power Board. Preventive maintenance (PM) is part of the system and has been in operation since 1978. Great efforts have been made to build up the system and to gather input data. Since 1981, the system has been in continuous use; follow-ups and system and quality improvements in database contents have been carried out. Great effort has also been devoted to maintaining a high quality of database contents and to the interplay between the different PM measures. We believe that PM plays an important role in the safety and economic operation of the power station and that it is essential that interest in PM should exist at all levels of the power company. (author)

  17. Investigation regarding the long-term security developments in the Swedish nuclear power and the response to the accident at Fukushima

    International Nuclear Information System (INIS)

    Skaanberg, Lars

    2012-01-01

    Swedish nuclear plants need to continue to work on analysis and actions in the plants, partly to meet the demands of legislation and agreed action plans, and partly due to additional security requirements on account of experiences from the Fukushima Dai-ichi accident, stress tests, security investigations and investigations relating to physical protection. It is also essential to continue with safety improvements to gradually increase margins against unforeseen events in aging plants during long-term operation

  18. Permit processes for nuclear power. International lessons

    International Nuclear Information System (INIS)

    Gaahlin, Emil; Nilsson, Isabelle; Pettersson, Maria; Soederholm, Patrik

    2010-01-01

    The overall objective of this report is to analyze and compare the legal permitting and planning process for (first and foremost) new nuclear power stations in a number of selected countries. In this way the report provides relevant knowledge that could form the basis for discussing the efficiency of various national licensing processes (include the Swedish one). The study builds heavily on the analysis of legal documents and regulations, and addresses both the formal requirements for licensing and territorial planning procedures as well as the issues of public participation and access to justice in the respective countries. In addition to this legal approach, however, we also adopt an investor's perspective on the legislation, i.e., an analysis of the legal rules can influence investment decisions in practice. Furthermore, the study relies largely on a synthesis of previous studies as well as interviews with researchers, electricity companies and government officials in Sweden and abroad. The countries that are compared include Sweden, Finland, France, Canada, Switzerland, Great Britain, USA and South Korea. These include those that currently invest in new nuclear power as well as those who have recently reformed their plant permitting processes. The analysis highlights important differences among the various countries, including issues such as the political influence on the licensing process, the allocation of political power between the national and local levels, means of interacting with regular citizens, and the overall transparency and predictability of the legislation. Some selected practical experiences of the current legislation are also presented. The report first provides a short background to the role and the status of nuclear power in the global energy system, and we then present a rather comprehensive comparison of the permitting processes in the above countries. Each country section comprises a short background, a presentation of the existing

  19. Operating Experience at the Aagesta Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, S [ed.

    1966-09-15

    Sweden's first nuclear power reactor Agesta, achieved criticality on July 17, 1963. Full power (65 MW{sub t}) was attained on March 20, 1964. Aagesta is a heavy water cooled and moderated pressure vessel reactor used for production of electricity as well as for district heating. The design, assembly and construction etc, of the reactor was described in detail in a staff report by AB Atomenergi, 'The Aagesta Nuclear Power Station' edited by B McHugh, which was published in September, 1964. In the book experiences from the commissioning and the first operation of the reactor were reported as well as findings from the extensive reactor physics studies made during this period. The report now presented is written by members of the operating team at Aagesta since its start. It reflects in general the experiences up to the end of 1965. The Aagesta Log, however, covers the period up to the normal summer stop 1966. The reactor has hitherto produced 506,000 MWh power of which 48,700 MWh have been electric power. In July 1965 the responsibility for the reactor operation was taken over by the Swedish State Power Board from AB Atomenergi, which company had started the reactor and operated it until the summer break 1965.

  20. Operating Experience at the Aagesta Nuclear Power Station

    International Nuclear Information System (INIS)

    Sandstroem, S.

    1966-09-01

    Sweden's first nuclear power reactor Agesta, achieved criticality on July 17, 1963. Full power (65 MW t ) was attained on March 20, 1964. Aagesta is a heavy water cooled and moderated pressure vessel reactor used for production of electricity as well as for district heating. The design, assembly and construction etc, of the reactor was described in detail in a staff report by AB Atomenergi, 'The Aagesta Nuclear Power Station' edited by B McHugh, which was published in September, 1964. In the book experiences from the commissioning and the first operation of the reactor were reported as well as findings from the extensive reactor physics studies made during this period. The report now presented is written by members of the operating team at Aagesta since its start. It reflects in general the experiences up to the end of 1965. The Aagesta Log, however, covers the period up to the normal summer stop 1966. The reactor has hitherto produced 506,000 MWh power of which 48,700 MWh have been electric power. In July 1965 the responsibility for the reactor operation was taken over by the Swedish State Power Board from AB Atomenergi, which company had started the reactor and operated it until the summer break 1965

  1. Operating Experience at the Aagesta Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, S. (ed.)

    1966-09-15

    Sweden's first nuclear power reactor Agesta, achieved criticality on July 17, 1963. Full power (65 MW{sub t}) was attained on March 20, 1964. Aagesta is a heavy water cooled and moderated pressure vessel reactor used for production of electricity as well as for district heating. The design, assembly and construction etc, of the reactor was described in detail in a staff report by AB Atomenergi, 'The Aagesta Nuclear Power Station' edited by B McHugh, which was published in September, 1964. In the book experiences from the commissioning and the first operation of the reactor were reported as well as findings from the extensive reactor physics studies made during this period. The report now presented is written by members of the operating team at Aagesta since its start. It reflects in general the experiences up to the end of 1965. The Aagesta Log, however, covers the period up to the normal summer stop 1966. The reactor has hitherto produced 506,000 MWh power of which 48,700 MWh have been electric power. In July 1965 the responsibility for the reactor operation was taken over by the Swedish State Power Board from AB Atomenergi, which company had started the reactor and operated it until the summer break 1965.

  2. Environmental effects of a preliminary phase out of nuclear power in Sweden

    International Nuclear Information System (INIS)

    Johansson, K.; Levander, T.; Liljelund, L.E.

    1986-01-01

    From an environmental point of view it is important that the Swedish phase out of nuclear power is realized in such a way that: - hydroelectric power will not expand - fossil firing will be limited in order to minimize the increase of atmospheric CO/sb2/ content. Natural gas is preferred to other fossil fuels. - a continuation of the necessary restrictions in the pollution by sulfur- and nitrogen oxides is accomplished. Furthermore individual wood burning in densely built-up areas should be limited. (G.B.)

  3. Views on quality assurance at Finnish and Swedish nuclear power plants and at Halden Reactor

    International Nuclear Information System (INIS)

    Hammar, L.; Lidh, B.; Wahlstroem, B.; Reiman, T.

    2001-06-01

    The paper reports on a study within the Nordic Nuclear Safety Research, NKS on quality systems at nuclear installations in Finland, Norway and Sweden. In the study a total of 74 people at the NPPs in Barsebaeck, Forsmark, Loviisa, Olkiluoto, Oskarshamn and Ringhals, and at the research reactor in Halden were interviewed in the period 30 August to 13 December 2000 concerning their views in regard of quality and quality systems. The study was concluded with a seminar held in the Ringhals nuclear power plant in Januar 2001. The study covered a number of aspects in regard of quality management, including the quality concept, quality systems, topical quality issues and approaches, rules and procedures, competency and training, the process approach to quality management, the promotion of quality consciousness and future prospects. The study reflects the significant progress made in the management of quality in nuclear power in the Nordic countries since the early phase in the seventies. The most distinctive characteristic of today's approach to quality is seen in that responsibility for the quality is assumed directly in conjunction with the working processes. It could be noted that the work patterns at the nuclear installations have been largely modified during the recent years as a result of persistent endeavours to continuously improve the quality of operation. Challenges were seen in currently reduced revenues due to descending electricity prices and the likely prospect of further increased regulatory safety requirements. The report is aimed for those working with quality issues at the nuclear power plants as well as for those interested in quality management in general or in the safety aspects of nuclear power in particular. (au)

  4. Practical experience and problems in the inspection work during test and routine operation of nuclear power plants

    International Nuclear Information System (INIS)

    Backstroem, T.

    1977-01-01

    A brief description is given of the Swedish Nuclear Power Inspectorate (SNPI) and its working methods in the field of licensing procedures and inspection activities. SNPI has introduced a system to be kept continuously informed about the operation of the nuclear power plants. This information is used in the preparation work preceding the inspections. Experience obtained from the inspection activities show that inspection frequency has been lower than planned. Documentation can be improved and that good relations between the authority and the utilities, including the operating personnel, is to the benefit of the nuclear safety. (author)

  5. Sweden: The Swedish nuclear archive regulations and projects related to corporate memory. Annex I-2

    International Nuclear Information System (INIS)

    2008-01-01

    The Swedish radiation protection authority regulations on Filing at Nuclear Plants, SSI FS 1997:1, apply to filing of documentation that has been drawn up or received in connection with practices at nuclear plants. The regulations set out: -The minimum level of documentation; - Archiving requirements; -Availability periods; - Choice of data carrier; - Timely transfer to new media; - Requirements regarding safe keeping of documents. The regulations require that, if the nuclear activity ceases, the archives must be transferred to the Swedish national archives. Examples of the availability periods required for records and environmental specimens are as follows: (a) Operations related measurements - 25 years; (b) Emergency response plan - 50 years; (c) Report of an unusual event - 50 years; (d) Documents relating to final disposal - long term; (e) Environmental specimens - 10 years; (f) Records of measurements on specimens - long term

  6. The Swedish nuclear industry way to approach higher demands on characterisation prior to clearance

    International Nuclear Information System (INIS)

    Larsson, Arne; Hellsten, Erik; Berglund, Malin; Larsson, Lars

    2012-01-01

    The Swedish Radiation Safety Authority (SSM) has introduced new regulations for clearance SSMFS 2011:2 'Regulations concerning clearance of material, rooms, buildings and soil from activities with ionizing radiation'. The new regulations came into force January 1, 2012. Compared to the previous regulations these new regulations have a broader scope and have introduced new conditions such as nuclide specific clearance levels. Clearance is practiced to reduce the amount of radioactive waste generated. Cleared material can be reused, recycled or if these two possibilities are not available, disposed of as conventional waste. To be able to meet the requirements for clearance the Swedish nuclear industry has jointly developed guidance for clearance in the form of a handbook and a training course covering the competence requirements in the new regulations. The handbook was developed by a team of representatives from the Swedish nuclear license holders managed by Studsvik on behalf of Swedish Nuclear Fuel and Waste Management Company (SKB). The training program was developed in co-operation between Nuclear Safety and training Company (KSU) and Studsvik on behalf of the Swedish nuclear license holders. A major challenge in the adoption to the new regulations is how to provide robust yet cost effective characterisation data. This is especially difficult for mobile materials and equipment which cannot be fully tracked but also for other materials and areas where the nuclide fingerprint has varied over the years. To be able to deal with these issues a lot of attention has to be paid to the historical inventory records and traceability in the clearance process. Materials, rooms and buildings have been divided in four categories with different requirements on frequency and requirements of measurements. The categories are named 'extremely small risk', 'small risk', 'risk' and 'known contamination above clearance levels'. The two day training course is dived into seven parts

  7. Putting risk analysis into perspective: a comparative review of major societal risk studies of nuclear power

    International Nuclear Information System (INIS)

    Dooley, J.E.; Hansson, B.; Kaspersson, R.; ORiordan, T.; Paschen, H.

    1983-04-01

    The emphasis in this final report of the project Evaluation of major Swedish energy risk assessments in an international perspective is shifted towards the comparative aspect. The comprehensive nuclear risk study has been used as an instrument to satisfy many needs simultaneously. The research consisted of an examination of existing risk studies of five nations, namely West Germany, UK, US, Canada and Sweden. The effect of nuclear risk studies on society at large and on public attitude towards nuclear power in particular is discussed. Finally, the effect on the nuclear establishment is analysed. (G.B.)

  8. Design and Evaluation of Public Hearings for Swedish Site Selection. A Report from the RISCOM II Project

    International Nuclear Information System (INIS)

    Andersson, Kjell; Wene, Clas-Otto; Drottz Sjoeberg, Britt-Marie

    2003-08-01

    Public hearings were held in the Swedish municipalities of Oesthammar, Tierp, Aelvkarleby, Hultsfred, Oskarshamn and in Nykoeping in February of 2001. The municipalities had taken part in feasibility studies, conducted by the Swedish Nuclear Fuel and Waste Management Co (SKB), in the previous years. The hearings were organised by the Swedish regulatory authorities, i.e. the Swedish Nuclear Power Inspectorate (SKI) and the Swedish Radiation Protection Authority (SSI), and aimed at complementing the authorities' reviews of SKB's work and plans, called FUD-K [1]. Central themes of the hearings were SKB's choice of municipalities for the next phase of the programme to build a spent nuclear fuel repository, and their choice of method for this work. Representatives of the municipalities participated in the planning of the hearings, which were guided by the RISCOM Model. In this report we give a background to the hearings, we introduce the RISCOM Model and how it was used to design the hearings, we then analyse the hearing context with a systems analysis approach. Finally, we describe the hearing agenda and evaluate the results with respect to transparency

  9. Environmental and health impacts of a policy to phase out nuclear power in Sweden

    OpenAIRE

    Qvist, Staffan A.; Brook, Barry W.

    2015-01-01

    Nuclear power faces an uncertain future in Sweden. Major political parties, including the Green party of the coalition-government have recently strongly advocated for a policy to decommission the Swedish nuclear fleet prematurely. Here we examine the environmental, health and (to a lesser extent) economic impacts of implementing such a plan. The process has already been started through the early shutdown of the Barsebäck plant. We estimate that the political decision to shut down Barsebäck ha...

  10. Future extension of the Swedish repository for low and intermediate level waste (SFR)

    International Nuclear Information System (INIS)

    Carlsson, Jan

    2006-01-01

    The existing Swedish repository for low and intermediate level waste (SFR) is licensed for disposal of short-lived waste originated from operation and maintenance of Swedish nuclear power plants. The repository is foreseen to be extended to accommodate short-lived waste from the future decommissioning of the Nuclear Power Plants. Long-lived waste from operation, maintenance and eventually decommissioning will be stored some years before disposal in a geological repository. This repository can be build either as a further extension of the SFR facility or as a separate repository. This paper discusses the strategy of a step-wise extended repository where the extensions are performed during operation of the existing parts of the repository. It describes the process for licensing new parts of the repository (and re-license of the existing parts). (author)

  11. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1.

  12. Experiences from the Swedish programme - heavy water and natural uranium in the Aagesta cogeneration plant

    International Nuclear Information System (INIS)

    Oestman, Alvar

    2002-11-01

    A short review of the Swedish programme for nuclear power in the 50's and the 60's is given, and in particular a description of the operating experiences of the Aagesta nuclear cogeneration plant, producing district heating for the south Stockholm area (12 MW el and 68 MW heat ). The original Swedish nuclear programme was built on heavy water and natural uranium and had the objective to construct small nuclear plants in the vicinity of some 10 large cities in south and middle Sweden. Aagesta was the only full-scale plant to be built according to this programme, as Sweden adopted the light-water reactor policy and eventually constructed 12 large reactors at four sites. The report is based on the experiences of the author from his work at the Aagesta plant in the sixties. In an appendix, the experiences from Vattenfall (the Swedish electric utility which took over the operating responsibility for the Aagesta plant), of the plant operation is reviewed

  13. Nuclear power now and in the future. In Sweden and the rest of the world; Kaernkraften nu och i framtiden. I Sverige och resten av vaerlden.

    Energy Technology Data Exchange (ETDEWEB)

    2010-06-15

    The global net installed nuclear power in early 2010 was just over 370 GWe distributed over 436 nuclear power plants. In 2007, the global electricity generation from nuclear power was about 14 percent of total electricity generation, compared with 44 percent in Sweden. The average availability for nuclear power was about 82 percent between 2005 and 2007. During the same period the Swedish availability was almost 84 percent. The Swedish availability have fallen. 2004, availability was almost comparable to that in Finland, which amounted to just over 94 percent between 2005 and 2007. The expansion of nuclear power may be limited by technical challenges in manufacturing infrastructure and a shortage of skilled labor. There is only a few reactor vendors on the market and the quality demand on the materials is much higher than for other major projects. Nuclear power's competitiveness against alternative investments is uncertain. The investment costs for building new reactors is high but the operational and maintenance costs are low compared with many other types of power. Emission trading systems increases the nuclear power competitiveness compared to fossil options. Nuclear power is a power source with low greenhouse gas emissions over its lifecycle. Uranium is a limited resource and other natural resources is limited to a number of countries. Most nuclear reactors are also dependent on the enrichment of the natural uranium. If an open or closed nuclear fuel cycle is used is crucial for how long the uranium reserves will last and how nuclear power can grow. With a closed cycle, reserves will last a long time, but society has to deal with plutonium

  14. Best Available Technique (BAT) as an Instrument for the Limitation of Radioactive Substances from Nuclear Power Reactors in Sweden

    International Nuclear Information System (INIS)

    Moberg, L.; Sundell-Bergman, S.; Sandwall, J.

    2004-01-01

    Traditionally, the concept of ALARA has been the basis for limitation and optimisation of releases of radioactive substances from nuclear power reactors in order to protect human health. In recent years, it has been discussed whether the ALARA principle can be applied also to protect the environment. For the protection of the environment, in particular for non-nuclear pollutants, the precautionary principle and the concept of Best Available Technique (BAT) have been applied. New Swedish regulations concerning the protection of human health and the environment from radioactive discharges from certain nuclear installations entered into force January 1st, 2002. The prime purpose of the regulations is to limit the radioactive releases. This limitation shall be based on the optimisation of radiation protection and shall be achieved by using BAT. In order to show compliance with the regulation and BAT, the concepts of reference values and target values have been introduced for nuclear power reactors. The reference value should be the release that is representative for optimum use and full functioning of systems of importance to the occurrence and limitation of radioactive releases from nuclear power reactors. The target value should show the level to which radioactive releases from nuclear power reactors can be reduced during a certain given period of time. Reference and target values have been determined for each nuclear power reactor in Sweden. Each year, the reactor licensees shall report to the Swedish Radiation Protection Authority (SSI) the measures that have been adopted or that are planned to be adopted to limit radioactive releases with the aim of achieving the target values. The first report has been submitted to the SSI in 2003. (Author) 8 refs

  15. After Chernobyl. Possibilities of phasing out nuclear power in Sweden

    International Nuclear Information System (INIS)

    1987-01-01

    According to the currently applicable Parliamentary decision, the phasing out of nuclear power in Sweden must be completed by the year 2010. The National Energy Administration has analyzed the following questions. If it were to become evident that operating several or all of the Swedish nuclear power plants entailed serious risks, what possibilities would there be of phasing them out in the short term or over a longer period. And what would the consequences be with regard to the national economy and the environment? First we report the consequences of a rapid phase-out. Here, it is assumed that several or all nuclear plants would be taken out of operation within a period of two years. Available compensatory resources would be limited to more intensive utilization of existing hydropower, back-pressure plants, combined power and heating plants and oil-fired plants. The second alternative is a phase-out in ten years. Moreover, a case is discussed in which phase-out is planned and implemented from 1987 to 2005. Such a plan would provide industry more time to adjust, while a number of alternative techniques and fuels could be used to replace nuclear power. The consequences of the different phase-out alternatives can be described only within a framework of certain assumptions regarding the worldwide development. Important factors here include fuel prices and economic trends. Environmental restrictions comprise another important prerequisite

  16. Swedish plans and experience regarding management of spent fuel and core components

    International Nuclear Information System (INIS)

    Grahn, P.H.; Hedin, G.

    2005-01-01

    In Sweden, the duties and responsibilities involved in handling radioactive waste were defined in the seventies. The 1976 Stipulation Law provides for the originator of the waste to be fully responsible for te waste arising in the course of plant operation. SKB, Swedish Nuclear Fuel and Waste Management Co., was founded by the Swedish operators of nuclear power plants in 1972 to take care of nuclear power plant waste management and radioactive waste treatment. In the eighties, the Finance Act was adopted which provides for the establishment of a fund to finance complete disposal of nuclear power plant waste, including radioactive waste and spent fuel. Over the past few years, there have been various developments in nuclear power plant waste management: - Reprocessing of spent fuel is no longer part of the waste management strategy. The fuel elements are stored in a central interim store, CLAB, which has been in operation since 1985 and now holds approx. 4 000 t of fuel elements. - A transport system for radioactive waste and spent fuel has been in operation successfully since 1985. - A repository for low- and medium-level waste has been in operation since 1985. - Work has been underway for the past twenty years in research, development, and construction of an underground repository for spent fuel. Development has now reached a stage which will allow a decision to be taken within the next five or ten years about the sites of the conditioning plant and the repository. (orig.)

  17. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  18. Cost for the radioactive wastes from nuclear power

    International Nuclear Information System (INIS)

    1989-06-01

    The future cost for handling, storing and disposing of radioactive wastes from the Swedish nuclear power plants are calculated in this report. The following plants and systems are already operating: - Transportsystem for radioactive wastes. - A control spent fuel intermediate storage plant. - A repository for low and medium level wastes. These are planned: - A treatment plant for used fuels. A repository for high-level wastes and repository for decommissioning wastes. The costs include Rand D and decommissioning. Total future costs from 1990 are estimated to be 43 billion SEK (6,5 billion dollars), during 60 years. Up to 1990 7,4 billion SEK (1,1 billion dollars) have been spent. (L.E.)

  19. A review of the scope and the cost of the Swedish nuclear waste management system

    International Nuclear Information System (INIS)

    1994-03-01

    A Swedish translation of this report appears as an appendix in SOU 1004:108 (ISBN 91-38-13755-0). The report is prepared for the Nuclear Fond Commission and Ministry of Environment and Natural Resources

  20. Nuclear power. Volume 2. Nuclear power project management

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 2 contains the following chapters: (1) review of nuclear power plants; (2) licensing procedures; (3) safety analysis; (4) project professional services; (5) quality assurance and project organization; (6) construction, scheduling, and operation; (7) nuclear fuel handling and fuel management; (8) plant cost management; and (9) conclusion

  1. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  2. Changes, Problems, and Challenges in Swedish Spatial Planning—An Analysis of Power Dynamics

    Directory of Open Access Journals (Sweden)

    Till Koglin

    2017-10-01

    Full Text Available During the past few decades, the Swedish spatial planning system has experienced numerous problems and challenges. In particular, there have been changes in legislation and an increased neoliberalisation of planning that gives private actors a larger influence over the planning processes in Sweden. In this article, we analyse these changes through the lenses of collaborative and neoliberal planning in order to illuminate the shifting power relations within spatial planning in Sweden. We analyse the changes of power relations from three dimensions of power based on interviews with different kinds of planners throughout Sweden. We show that power relations in the Swedish spatial planning system have shifted and that neoliberalisation and an increased focus on collaborative planning approaches have made spatial planning more complex in recent decades. This has led to a change of role for planners form actual planners to collaborators. We conclude that market-oriented planning (neoliberal planning and collaborative planning have made it more difficult for spatial planners in Sweden to work towards sustainable urban futures.

  3. Electrical and control equipment in nuclear power plants. Problems when replacing aging equipment

    International Nuclear Information System (INIS)

    Nordling, Anna; Haakansson, Goeran

    2012-01-01

    Interoperability between different technical systems is more complicated when old and new technology meet, such as between analog and digital technology. New electrical and I and C equipment is selected with consideration to simplify and improve the compatibility and interoperability. The original construction of nuclear power plants with electricity and I and C equipment had more natural interfaces. Generally experienced guidance, to the management of interoperability and interfaces, feels insufficient. Skills transfer programs are identified as a major need, as more and more important personnel are retiring and important information is lost with them. Lack of appropriate skills directly affects the ability to produce accurate and complete requirements specification. Failure modes of newer electrical and I and C equipment are perceived as more complex than the older equipment. When choosing equipment, attempts are made to minimize unnecessary features, to reduce the number of potential failure modes. There is a lack of consistent understanding of the meaning of robustness in electrical technology and I and C technology, in the nuclear plant engineering departments. The overall picture is that the robustness has worsened since the facilities were built. The Swedish nuclear power plants have an internal organizational structure with separated client and support organization. This splits the nuclear organization into two distinct parts which threaten to separate the two entities focus. Engineering departments at the Swedish nuclear power plants express a need for increased expertise in the client organization (blocks). Competence requested is for example, system knowledge to facilitate and enhance the quality of the initial analysis performed in the blocks. Suppliers receive more recently larger turnkey projects, both to minimize costs but also to minimize the interfaces and co-function problems. This, however, heightens demands for knowledge transfer between

  4. Proposed new regulations for the limitation of releases of radioactive substances from nuclear power stations with light water reactors

    International Nuclear Information System (INIS)

    1975-07-01

    In this publication the Swedish National Institute of Radiation Protection presents a proposed version of new regulations concerning the way in which the release of radioactive substances from nuclear power stations is to be limited. The regulations come into force on 1st January 1976. (Auth.)

  5. Location of Swedish wind power—Random or not? A quantitative analysis of differences in installed wind power capacity across Swedish municipalities

    International Nuclear Information System (INIS)

    Ek, Kristina; Persson, Lars; Johansson, Maria; Waldo, Åsa

    2013-01-01

    The amount of installed wind power varies significantly across municipalities although the financial support for wind power production and the technology available is identical in all Swedish municipalities. This study analyses how local differences between municipalities, such as local wind prerequisites and socioeconomic conditions, might explain the establishment of wind power. The analysis is carried out for a cross section of Swedish municipalities. The time periods before and after 2006 are analyzed separately; and results reveal that the factors affecting wind power establishments are different between the two periods. In the later time period we found a statistically significant positive relationship between good wind resources and the presence of wind power as well as with the amount of wind energy installed. This result is consistent with the idea that the first wind power investments in Sweden were highly affected by individual wind energy enthusiasts, while in the more recent large-scale investments market-based judgments about future profitability may have become increasingly important. In addition, previous experience seems to be a factor that in itself facilitates additional future wind power establishments, thereby pointing to the role of accumulated institutional capacity. - Highlights: ► Local differences in installed wind power capacity in Sweden is analysed. ► The amount of installed wind power capacity varies significantly in time and space. ► Results reveal different determinants of installed capacity before/after 2006. ► Good wind resources have become increasingly important over time. ► Previous experience of wind power has a positive impact on installed capacity

  6. Swedish subseabed store - phase 1 nears completion

    International Nuclear Information System (INIS)

    Daglish, James

    1987-01-01

    The paper concerns the storage of radioactive waste in the subseabed in Sweden. The wastes are low- and intermediate-level reactor wastes arising from the Swedish nuclear power programme. The repository is a cavern which has been excavated under the seabed in the Baltic Sea, about a kilometre out from shore. The specifications of the repository are given, along with the volume of the radioactive wastes to be stored in it. (UK)

  7. Literature study regarding fire protection in nuclear power plants. Part 2: Fire detection and -extinguishing systems

    International Nuclear Information System (INIS)

    Isaksson, S.

    1996-01-01

    This literature study has been made on behalf of the Swedish Nuclear Power Inspectorate. The aim is to describe different aspects of fire protection in nuclear power plants. Detection and extinguishing systems in Swedish nuclear power plants have only to a limited extent been designed after functional demands, such as a maximum acceptable damage or a maximum time to detect a fire. The availability of detection systems is difficult to assess, partly because of lack of statistics. The user interface is very important in complex systems as nuclear plants. An extinguishing system designed according to the insurance companies' regulations will only fulfill the basic demands. It should be noted that normal sprinkler design does not aim for extinguishing fires, the objective is to control fire until manual extinguishment is possible. There is a great amount of statistics on wet and dry pipe sprinkler systems, while statistics are more scarce for deluge systems. The statistics on the reliability of gaseous extinguishing systems have been found very scarce. A drawback of these systems is that they are normally designed for one shot only. There are both traditional and more recent extinguishing systems that can replace halons. From now on there will be a greater need for a thorough examination of the properties needed for the individual application and a quantification of the acceptable damage. There are several indications on the importance of a high quality maintenance program as well as carefully developed routines for testing and surveillance to ensure the reliability of detection and extinguishing systems. 78 refs, 8 figs, 10 tabs

  8. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  9. Financial Control and Safety. An investigation on how financial and safety aspects are integrated in the decision making at the Swedish nuclear power plants; Ekonomistyrning och saekerhet. En utredning om hur ekonomi- och saekerhetsaspekter integreras vid beslutsfattandet vid kaernkraftverken

    Energy Technology Data Exchange (ETDEWEB)

    Vaernild, Ola [OV Konsult i Vaesteraas AB, Vaesteraas (Sweden)

    2005-08-01

    The alleged inter-relationship between economy and nuclear safety has been investigated. Through interviews and review of instructions and other documents, information on how management at Swedish nuclear power plants integrates financial control and safety management has been compiled. Owners of nuclear power plants have well founded expectations on that the plants are profitable and that the operations are rationalized in order to reduce costs. This could allegedly threaten the nuclear safety. However, it is not to be expected that there are any obvious relationships between expenditures and safety. The quality of the safety management has to be judged in terms of how well safety requirements are met irrespective of the associated costs. The owners have imposed clear financial objectives on the nuclear power plants. At the same time they have also established policies for nuclear safety. The nuclear power plants have systems for operations management, which basically comprise separate parts for operations planning and quality management. Financial control and safety management are included in the operations planning and quality management respectively. The quality management impose restrictions to be adhered to in the operations planning. This means that from a formal point of view, the safety management is superior to the operations planning. There are examples of simple as well as advanced approaches to financial management at the nuclear power plants. In all cases the methods used are reasonably well adapted to the needs. Typical for all plants is the focus on long-term aspects. Investments are for example analysed in a plant life-time perspective. With regard to safety, profitability calculations are not required to the same extent for safety related investments as for other investments. A number of factors, which tend to warrant that safety aspects are given the appropriate attention in the decision making, have been identified. Examples of such factors are

  10. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  11. Site characterization activities at Stripa and other Swedish projects

    International Nuclear Information System (INIS)

    Ahlstroehm, P.E.

    1991-01-01

    The Swedish research programme concerning spent nuclear fuel disposal aims for submitting a siting license application around the year 2000. An important step towards that goal will be the detailed characterization of at least two potential sites in late 1990s. In preparation for such characterization several research projects are conducted. One is the international Stripa Project that includes a site characterization and validation project for a small size granite rock body. The Stripa work also includes further development of instrumentation and measurement techniques. Another project is the Finnsjoen Fracture Zone Project, which is characterizing a subhorizontal zone at depths from 100 to 350 meters. The third project is the new Swedish Hard Rock Laboratory planned at the site of the Oskarshamn nuclear power plant. The preinvestigations and construction of this laboratory include major efforts in development, application and validation of site characterization methodology. (author) 6 figs., 9 refs

  12. Cost for the radioactive wastes from nuclear power

    International Nuclear Information System (INIS)

    1992-06-01

    The future cost for handling, storing and disposing of radioactive wastes from the Swedish nuclear power plants are calculated in this report. The following plants and systems are already operating: * Transport system for radioactive wastes, * A control spent fuel intermediate storage plant, * A repository for low and medium level wastes. These are planned: * A treatment plant for used fuels, * A repository for high-level wastes, and * Repository for decommissioning wastes. The costs include R and D and decommissioning. Total future costs from 1993 are estimated to be 46.4 billion SEK (8.3 billion USD), during 60 years. Up to 1992 8.7 billion SEK (1.6 billion USD) have been spent

  13. Swedish Nuclear Waste Management from Theory to Practice

    International Nuclear Information System (INIS)

    Holmqvist, Magnus

    2008-01-01

    The programme has evolved from a project of a few experts drawing up the outline of what today is a comprehensive programme of research, development, demonstration, design, construction and operation of facilities for radioactive waste management. The Swedish programme was greatly influenced at an early stage by political actions, which included placing the responsibility with the reactor owners to demonstrate safe disposal of spent nuclear fuel and also to fund a disposal programme. The response of the reactor owners was to immediately start the KBS project. Its third report in 1983 described the KBS-3 concept, which is still the basis for SKB's deep geological repository system. Thus, this year is the 25th anniversary of the creation of the well-known KBS-3 concept. The SKB programme for nuclear waste management is today divided in two sub programmes; LILW Programme and the Nuclear Fuel Programme. The LILW Programme is entering into a new phase with the imminent site investigations for the expansion of the SFR LILW repository, which is in operation since 1988, to accept also decommissioning waste. The expansion of SFR is driven by a government decision urging SKB to investigate when a licensing of a repository for decommissioning waste can be made

  14. Demographic comparison of the Barsebaeck nuclear power plant with plants situated near large cities and national borders

    International Nuclear Information System (INIS)

    Walmod-Larsen, O.; Starcke, K.

    1984-06-01

    The Swedish-Danish Barsebaeck committee suggested in June 1983 that a demographic comparison of the Barsebaeck nuclear power plant be made with plants situated near other large cities and national borders. Sixteen other nuclear power plants: 13 in Western Europe, 2 in USA and 1 in Canada were chosen for the comparison. For five discrete distances out to 50 km, the population distributions have been found and compared. In addition the positions, related to the plants, of institutions, administrative centres, communication centres and other plants of public importance within the country or in neughbouring countries are described. Finally, the details of special agreements are given together with negotiations between neighbouring countries or internationally about nuclear power related matters. These include alarm and emergency procedures and agreements about liability in case of an accident in a neighbouring country. (author)

  15. A special information campaign on decommissioning of unit 1 at the Ignalina Nuclear Power Plant started in Lithuania

    International Nuclear Information System (INIS)

    Vitkiene, E.

    2000-01-01

    A lack of understanding is felt in Lithuania of the importance of informing the public about nuclear energy, its safety and decisions related with nuclear energy in general. our swedish colleagues have noticed this flaw in our work and a joined decision has been taken to start a series of publicity projects. It was decided to work along three lines: a series of programmes on the national TV, support to the media of the town of Visaginas and creating an Internet page on the Ignalina Nuclear Power Plant decommissioning

  16. A Swedish nuclear fuel facility and public acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bengt A [ABB Atom (Sweden)

    1989-07-01

    For more than ten years the ABB Atom Nuclear Fuel Facility has gained a lot of public attention in Sweden. When the nuclear power debate was coming up in the middle of the seventies, the Nuclear Fuel Facility very soon became a spectacular object. It provided a possibility to bring factual information about nuclear power to the public. Today that public interest still exists. For ABB Atom the Facility works as a tool of information activities in several ways, as a solid base for ABB Atom company presentations. but also as a very practical demonstration of the nuclear power technology to the public. This is valid especially to satisfy the local school demand for a real life object complementary to the theoretical nuclear technology education. Beyond the fact that the Nuclear Fuel Facility is a very effective fuel production plant, it is not too wrong to see it as an important resource for education as well as a tool for improved public relations.

  17. A Swedish nuclear fuel facility and public acceptance

    International Nuclear Information System (INIS)

    Andersson, Bengt A.

    1989-01-01

    For more than ten years the ABB Atom Nuclear Fuel Facility has gained a lot of public attention in Sweden. When the nuclear power debate was coming up in the middle of the seventies, the Nuclear Fuel Facility very soon became a spectacular object. It provided a possibility to bring factual information about nuclear power to the public. Today that public interest still exists. For ABB Atom the Facility works as a tool of information activities in several ways, as a solid base for ABB Atom company presentations. but also as a very practical demonstration of the nuclear power technology to the public. This is valid especially to satisfy the local school demand for a real life object complementary to the theoretical nuclear technology education. Beyond the fact that the Nuclear Fuel Facility is a very effective fuel production plant, it is not too wrong to see it as an important resource for education as well as a tool for improved public relations

  18. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  19. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  20. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  1. Nuclear power at present and in the future. Sweden and the rest of the world; Kaernkraften nu och i framtiden. I Sverige och resten av vaerlden

    Energy Technology Data Exchange (ETDEWEB)

    2010-06-15

    The report provides by no means a complete picture of nuclear power. There are a number of issues not covered, such as environmental impacts caused by the nuclear plants used (with the exception of the greenhouse gases that highlights some of report), the link with nuclear weapons and waste disposal. The share of nuclear power in Sweden in 2010 is higher than the average for the world The global net installed power of nuclear power in early 2010 was just over 370 GW{sub e} distributed over 436 nuclear power plants. In 2007, global electricity generation from nuclear power was about 14 percent of total electricity generation, compared with 44 percent in Sweden. The average availability for nuclear power plants was about 82 percent between 2005 and 2007. During the same period the availability in Swedish plants was lose to 84 percent. The Swedish availability has fallen, in 2004 the availability was comparable to that in Finland, which amounted to just over 94 percent between 2005 and 2007. The expansion of nuclear power may be limited by technical challenges in manufacturing infrastructure and a shortage of skilled labor. There is only a few reactor suppliers in the market and the quality demand of the material is much higher than for other major projects. Whether nuclear power is competitive with alternative investments or not is uncertain. The investment costs for building new reactors is high but the operational and maintenance costs are low compared to many other types of power sources. In an Emission Trading System nuclear power competitivity with fossil options increases. Nuclear power is a power source with low greenhouse gas emissions over its life cycle. Uranium is a limited resource and like other natural resources limited to a number of countries. Most nuclear reactors are also dependent on enrichment of the natural uranium. If an open or closed nuclear fuel cycle is used is crucial for how long the uranium reserves will last and how nuclear energy can

  2. The Nuclear Waste Fund Inquiry. Financing of nuclear waste management in Sweden and Finland and the cost control system in Sweden

    International Nuclear Information System (INIS)

    1994-01-01

    The report describes the Finnish system for financing nuclear waste management, and compares it to the swedish one. It gives an analysis of the economic effects for the waste management financing of an early shut-down of a nuclear power plant, and of a change to a new system for financing the waste management, more like the Finnish one. Finally the cost for the Swedish nuclear waste management, as estimated by SKB, is scrutinized. 25 refs

  3. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  4. Swedish earthquakes and acceleration probabilities

    International Nuclear Information System (INIS)

    Slunga, R.

    1979-03-01

    A method to assign probabilities to ground accelerations for Swedish sites is described. As hardly any nearfield instrumental data is available we are left with the problem of interpreting macroseismic data in terms of acceleration. By theoretical wave propagation computations the relation between seismic strength of the earthquake, focal depth, distance and ground accelerations are calculated. We found that most Swedish earthquake of the area, the 1904 earthquake 100 km south of Oslo, is an exception and probably had a focal depth exceeding 25 km. For the nuclear power plant sites an annual probability of 10 -5 has been proposed as interesting. This probability gives ground accelerations in the range 5-20 % for the sites. This acceleration is for a free bedrock site. For consistency all acceleration results in this study are given for bedrock sites. When applicating our model to the 1904 earthquake and assuming the focal zone to be in the lower crust we get the epicentral acceleration of this earthquake to be 5-15 % g. The results above are based on an analyses of macrosismic data as relevant instrumental data is lacking. However, the macroseismic acceleration model deduced in this study gives epicentral ground acceleration of small Swedish earthquakes in agreement with existent distant instrumental data. (author)

  5. Concerns when designing a safeguards approach for the back-end of the Swedish nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fritzell, Anni

    2006-03-01

    In Sweden, the construction of an encapsulation plant and a geological repository for the final disposal of spent nuclear fuel is planned to start within the next ten years. Due to Sweden's international agreements on non-proliferation, the Swedish safeguards regime must be extended to include these facilities. The geological repository has some unique features, which present the safeguards system with unprecedented challenges. These features include, inter alia, the long period of time that the facility will contain nuclear material and that the disposed nuclear material will be very difficult to access, implying that physical verification of its presence in the repository is not foreseen. This work presents the available techniques for creating a safeguards system for the backend of the Swedish nuclear fuel cycle. Important issues to consider in the planning and implementation of the safeguards system have been investigated, which in some cases has led to an identification of areas needing further research. The results include three proposed options for a safeguards approach, which have been evaluated on the basis of the safeguards authorities' requirements. Also, the evolution and present situation of the work carried out in connection to safeguards for geological repositories has been compiled

  6. The Swedish programme for radioactive waste management

    International Nuclear Information System (INIS)

    Bjurstroem, S.; Forsstroem, H.

    1986-10-01

    The following systems and facilities are currently in operation and under implementation: a sea transportation system for all kinds of nuclear waste, a central facility for interim storage of spent fuel (CLAB) and a central underground repository for final disposal of low and medium level reactor waste (SFR). For the remaining steps - final disposal of highly active and longlived radioactive residues - a concept, based on encapsulation of the fuel elements in copper canisters and final storage of the canisters in a repository situated 500 m down in crystalline rock (KBS-3), has been developed and approved by the government in accordance with the Swedish nuclear legislation. Although a feasible method for final disposal of the highly active residues has been shown, the Swedish legislation requires that research be carried out to reach the best possible base for the final decision around the year 2000. In parallel with this a geological investigation programme is carried out to find a suitable site for a final repository. The final site selection is foreseen at the end of the 1990's. All costs for the management of radioactive waste from the nuclear power plants are carried by a fee determined annually. The fee is 0.019 SEK/kWh for 1986

  7. Barsebaeck nuclear plant February-99

    International Nuclear Information System (INIS)

    Buch, Ann-Christin

    1999-01-01

    Barsebaeck should, according to the government decision, have been closed before the 1st of July 1998, but the Supreme Administrative Court ruled on Stay of Execution, after Barsebaeck Kraft had applied for judicial review. The Threat of a Phase out of Barsebaeck 1 started in 1980, due to the accident at Three Mile Island. Swedish opinion Opinion polls (Nov 97, March 98 and May 98) shows that about 80 percent of the Swedish population want to use nuclear power until the existing reactors have to be stopped for safety or economical reasons. About 20 percent of these want to develop nuclear power. Average or high confidence in Barsebaeck has 94 percent on the Swedish side and 74 percent in Copenhagen 1998. From February 1997 till August 1998 Barsebaeck personnel have executed several information activities to stress our message that Barsebaeck is necessary for the environment, the jobs and the economy

  8. After Chernobyl - Consequences for energy policy, nuclear safety, radiation and environmental protection. Report of the Expert Group for Nuclear Safety and the environment

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Chapter B contains a report on the current situation with regard to international nuclear power development, nuclear safety programmes. Swedish emergency preparedness planning, and the phasing out of nuclear power. Chapter C explains the causes of the Chernobyl accident and its course and effects in the Soviet Union. The chapter also contains a summary of earlier reactor accidents, a comparison between the Chernobyl reactor and Swedish reactors, and a discussion of the conclustions that can be drawn with respect to the Swedish reactor safety programme. Chapter D begins with an account of certain basic concepts related to radioactive substances and radiation, our radiological environment, and the effects of radiation. Then follows an account of the risks of nuclear power, and in particular the effects of the Chernobyl accident in Sweden. The Expert Group urges that careful consideration be given to the question of further reinforcement of and other measures concerning preparedness for nuclear power accidents on the basis of the material now available, including the evaluation of emergency operations after the Chernobyl accident. Twelve nuclear power blocks now in operation may be used insofar as safety criteria permit. The Expert Group presents the conditions for and consequences of some alternative, faster phase-out schedules. Chapter E begins with an account of the available substitutes for nuclear power. Different phase-out schedules are then presented. The chapter closes with an estimate of the consequences for the national economy. In Chapter F the Expert Group present a description of risks and environmental problems in relation to the alternative phase-out schedules. (authors).

  9. Strategy for Nuclear Technology Education at Uppsala University

    International Nuclear Information System (INIS)

    Osterlund, M.; Hakansson, A.; Tengborn, E.

    2010-01-01

    After the TMI accident 1979, and later the Tjernobyl accident, the future of nuclear power was vividly debated in Sweden. The negative public opinion governed a number of political decisions that marked an ambition to out-phase nuclear power prior to 2010. Due to this, the student's interest in nuclear technology ceased and together with the fact that public funding to nuclear technology was withdrawn, academic research and education within the field were effectively dismounted. In the beginning of 1990 it became clear to the society that nuclear power could not easily be closed down and the issue of the future competence supply to the nuclear industry was initiated. In the mid-nineties the situation became acute due to the fact that personnel in the nuclear industry started to retire in an increasing pace necessitating measures to be taken in order to secure the future operation of the nuclear power plants. In the year 2000, the Swedish nuclear power plants, Westinghouse Electric Sweden and the Swedish Radiation Safety Authority embarked a project together with the three major universities in the field, Uppsala University, The Royal Institute of Technology and Chalmers University of Technology. The aim of this project was to define a financial platform for reconstructing the Swedish research and education in nuclear technology. The project, named the Swedish Centre for Nuclear Technology (SKC), has during a decade been the major financier to nuclear technology research and education. Using funding from SKC, Uppsala University formulated a strategy along two tracks: 1) Instead of creating ambitious master programs in nuclear technology, the already existing engineering programs in a wide range of fields were utilized to expose as many students as possible to nuclear technology. 2) A program was initiated together with the nuclear industry aiming at educating newly employed personnel. The result is encouraging; starting from essentially zero, typically 100

  10. Strategy of nuclear power in Korea, non-nuclear-weapon state and peaceful use of nuclear power

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2005-01-01

    The nuclear power plant started at Kori in Korea in April, 1978. Korea has carried out development of nuclear power as a national policy. The present capacity of nuclear power plants takes the sixes place in the world. It supplies 42% total power generation. The present state of nuclear power plant, nuclear fuel cycle facility, strategy of domestic production of nuclear power generation, development of next generation reactor and SMART, strategy of export in corporation with industry, government and research organization, export of nuclear power generation in Japan, nuclear power improvement project with Japan, Korea and Asia, development of nuclear power system with nuclear diffusion resistance, Hybrid Power Extraction Reactor System, radioactive waste management and construction of joint management and treatment system of spent fuel in Asia are stated. (S.Y.)

  11. Delegated democracy. Siting selection for the Swedish nuclear waste; Demokrati paa delegation. Lokaliseringen av det svenska kaernavfallet

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia

    2008-11-15

    The present study concerns the siting of the Swedish nuclear waste repository. Four cases are examined: the feasibility studies in Nykoeping and Tierp (cases 1 and 2), as well as three public consultation meetings with conservationist and environmental organisations, and two study visits to nuclear facilities in Oskarshamn and Oesthammar, which were held during what is called the site-investigation phase (cases 3 and 4). The Swedish Nuclear Fuel and Waste Management Co (SKB) began the search for a nuclear waste site in the 1970s. Since 1992 SKB has conducted feasibility studies in eight municipalities, including in the four municipalities mentioned above. At the present time more comprehensive site investigations are underway in Oskarshamn and Oesthammar, two municipalities that already host nuclear power plants as well as storages for nuclear waste. In addition to SKB and the municipalities involved in the site-selection process, politicians, opinion groups, concerned members of the public, and oversight bodies are important actors. The analysis of the cases employs the concepts of 'sub-politics', 'boundary work', and 'expertise', together with the four models of democracy 'representative democracy', participatory democracy', 'deliberative democracy', and 'technocracy'. The aim of the study is to describe the characteristics of Swedish democracy in relation to the disposal of Swedish nuclear waste. The main questions of the study are: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? and Which democratic ideals were influential during the feasibility studies and in the consultation process? The study is based on qualitative methods, and the source materials consist of documents, interviews, and participant observations. In summary, the form of democracy that emerges in the four case

  12. The Swedish energy policy agreement in a nuclear perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bergloef, Carl [Swedish Nuclear Society, Stockholm (Sweden)

    2016-08-15

    Since the establishment of nuclear power in the 1970s and 1980s Sweden has been more or less fossil free when it comes to electricity production. Nuclear power production together with a large hydropower production is taking care of daily load variations. Sweden has found a receipt that many countries strive for. After decades of nuclear debate and unclear future it is now very satisfying to have a society based long term energy policy agreement for nuclear power. The Phase-out Act has been removed and will not be reinforced. New reactor constructions are allowed at existing nuclear sites, up to a maximum of ten reactors. The nuclear tax will be removed.

  13. The Swedish energy policy agreement in a nuclear perspective

    International Nuclear Information System (INIS)

    Bergloef, Carl

    2016-01-01

    Since the establishment of nuclear power in the 1970s and 1980s Sweden has been more or less fossil free when it comes to electricity production. Nuclear power production together with a large hydropower production is taking care of daily load variations. Sweden has found a receipt that many countries strive for. After decades of nuclear debate and unclear future it is now very satisfying to have a society based long term energy policy agreement for nuclear power. The Phase-out Act has been removed and will not be reinforced. New reactor constructions are allowed at existing nuclear sites, up to a maximum of ten reactors. The nuclear tax will be removed.

  14. The Swedish authorities' views on water chemistry in nuclear power plants

    International Nuclear Information System (INIS)

    Andersson, J.E.

    1988-01-01

    The Inspectorate puts great importance on the safety related chemical issues. These issues already comprise a large share of its research and development resources and an even larger share can be foreseen. It is of great importance for the safety of the nuclear power industry and for it's confidence in the public that the research on the safety issues is maintained and never become stagnant. For exchange of experiance, to get a so concordant view on the safety issues as possible and to make the best use of the resources the Inspectorate would with great satisfaction see a greater international cooperation, both on the industry side and at the authority side. (author)

  15. Diversion path analysis for the Swedish geological repository

    International Nuclear Information System (INIS)

    Fritzell, Anni; Meer, Klaas Van Der

    2008-02-01

    The Swedish strategy to handle the spent fuel from the nuclear power plants is direct disposal in a geological repository. The safeguards regime covering all nuclear material in the state will be expanded to cover the new repository, which will require a novel safeguards approach due mainly to the inaccessibility of the fuel after disposal. The safeguards approach must be able to provide a high level of assurance that the fuel in the repository not diverted, but must also be resource efficient. An attractive approach with regards to use of resources is to monitor only the access points to the repository, i.e. the openings. The implementation of such an approach can only be allowed if it is shown to be sufficiently secure. With the purpose of determining the applicability of this 'black box' approach, a diversion path analysis for the Swedish geological repository has been carried out. The result from the analysis shows that all credible diversion paths could be covered by the black-box safeguards approach provided that the identified boundary conditions can be met

  16. Diversion path analysis for the Swedish geological repository

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (Dept. of Physics and Astronomy, Uppsala Univ., Uppsala (Sweden)); Meer, Klaas Van Der (Belgian Nuclear Research Center SCK.CEN (BG))

    2008-02-15

    The Swedish strategy to handle the spent fuel from the nuclear power plants is direct disposal in a geological repository. The safeguards regime covering all nuclear material in the state will be expanded to cover the new repository, which will require a novel safeguards approach due mainly to the inaccessibility of the fuel after disposal. The safeguards approach must be able to provide a high level of assurance that the fuel in the repository not diverted, but must also be resource efficient. An attractive approach with regards to use of resources is to monitor only the access points to the repository, i.e. the openings. The implementation of such an approach can only be allowed if it is shown to be sufficiently secure. With the purpose of determining the applicability of this 'black box' approach, a diversion path analysis for the Swedish geological repository has been carried out. The result from the analysis shows that all credible diversion paths could be covered by the black-box safeguards approach provided that the identified boundary conditions can be met

  17. Environmental and health impacts of a policy to phase out nuclear power in Sweden

    International Nuclear Information System (INIS)

    Qvist, Staffan A.; Brook, Barry W.

    2015-01-01

    Nuclear power faces an uncertain future in Sweden. Major political parties, including the Green party of the coalition-government have recently strongly advocated for a policy to decommission the Swedish nuclear fleet prematurely. Here we examine the environmental, health and (to a lesser extent) economic impacts of implementing such a plan. The process has already been started through the early shutdown of the Barsebäck plant. We estimate that the political decision to shut down Barsebäck has resulted in ~2400 avoidable energy-production-related deaths and an increase in global CO 2 emissions of 95 million tonnes to date (October 2014). The Swedish reactor fleet as a whole has reached just past its halfway point of production, and has a remaining potential production of up to 2100 TWh. The reactors have the potential of preventing 1.9–2.1 gigatonnes of future CO 2 -emissions if allowed to operate their full lifespans. The potential for future prevention of energy-related-deaths is 50,000–60,000. We estimate an 800 billion SEK (120 billion USD) lower-bound estimate for the lost tax revenue from an early phase-out policy. In sum, the evidence shows that implementing a ‘nuclear-free’ policy for Sweden (or countries in a similar situation) would constitute a highly retrograde step for climate, health and economic protection. -- Highlights: •The Swedish reactor fleet has a remaining potential production of up to 2100 TWh. •Forced shut down would result in up to 2.1 Gt of additional CO 2 emissions •50,000–60,000 energy-related-deaths could be prevented by continued operation. •A nuclear phase-out would mean a retrograde step for climate, health and economy

  18. Mechanisms of Copper Corrosion in Aqueous Environments. A report from the Swedish National Council for Nuclear Waste's scientific workshop, on November 16, 2009

    International Nuclear Information System (INIS)

    2010-01-01

    In 2010 the Swedish Nuclear Fuel and Waste Management Company, SKB, plans to submit its license application for the final repository of spent nuclear fuel. The proposed method is the so-called KBS-3 method and implies placing the spent nuclear fuel in copper canisters, surrounded by a buffer of bentonite clay, at 500 m depth in the bedrock. The site selected by SKB to host the repository is located in the municipality of Oesthammar on the Swedish east coast. The copper canister plays a key role in the design of the repository for spent nuclear fuel in Sweden. The long-term physical and chemical stability of copper in aqueous environments is fundamental for the safety evolution of the proposed disposal concept. However, the corrosion resistance of copper has been questioned by results obtained under anoxic conditions in aqueous solution. These observations caused some head-lines in the Swedish newspapers as well as public and political concerns. Consequently, the Swedish National Council for Nuclear Waste organized a scientific workshop on the issue 'Mechanisms of Copper Corrosion in Aqueous Environments'. The purpose of the workshop was to address the fundamental understanding of the corrosion characteristics of copper regarding oxygen-free environments, and to identify what additional information is needed to assess the validity of the proposed corrosion mechanism and its implication on the containment of spent nuclear fuel in a copper canister. This seminar report is based on the presentations and discussions at the workshop. It also includes written statements by the members of the expert panel

  19. Summary of operating experience in Swiss nuclear power plants 1993

    International Nuclear Information System (INIS)

    1994-07-01

    In 1993 the Swiss nuclear power plants produced their third highest combined annual output. The contribution to the total electricity generation in the country was close to 37%. Replacement of the steam generators in Beznau Unit 1 resulted in a longer than usual annual outage. For the other four units the availability figures were close to, or exceeded, those of previous years. The energy utilization was, however, lowered due to load reduction in autumn resulting from unusually high production by the hydro-electric power plants. The steam generator replacement at Beznau enabled an increase in electrical power of about 2% without increase in reactor power. With the approval of the Swiss government in December 1992, the output of the Muehleberg power plant was increased in two stages by a total of 10%. The application for an unlimited operating license for Beznau Unit 2, and for a power uprate at the Leibstadt power plant, are still pending. The average number of scrams at the Swiss plants remained stable, at less than one scram per reactor year. As a result of experience in the Swedish nuclear power plant at Barsebaeck, the suction strainers of the emergency core cooling systems of the boiling water reactors at Muehleberg and Leibstadt were replaced by strainers with larger surface areas. The re-inspection of crack indications previously detected in the core shroud of the Muehleberg reactor and the penetration tubes in the reactor pressure vessel closure head of Beznau revealed no growth during the intervening operating periods. Following the completion of installation activities during the annual outages at Beznau Unit 1, Goesgen and Leibstadt, all Swiss nuclear power plants are now equipped with filtered containment venting systems. (author) figs., tabs

  20. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  1. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  2. Report on the contacts between Swedish and Danish authorities at the construction of the Barsebaeck NPP

    International Nuclear Information System (INIS)

    Nilsson, Tore

    2002-04-01

    The contacts between Danish and Swedish authorities before the building of the Barsebaeck nuclear power plants are reviewed. The information exchange started in 1968 (operation of the first reactor started in 1975) and the general optimistic view on nuclear power at the time was reflected on the positive view on the reactor installations from the Danish side. During the 1970s, the attitudes changed and a lot of efforts were made from the Danish authorities to analyze the safety aspects of the reactors

  3. The first Swedish nuclear reactor - from technical prototype to scientific instrument

    International Nuclear Information System (INIS)

    Fjaestad, M.

    2001-01-01

    The first Swedish reactor R1, constructed at the Royal Inst. of Technology in Stockholm, went critical in July 1954. This report presents historical aspects of the reactor, in particular about the reactor as a research instrument and a centre for physical science. The tensions between its role as a prototype and a step in the development of power reactors and that as a scientific instrument are especially focused

  4. Programme for the Environmental Control at the Swedish Nuclear Facilities, Revision

    International Nuclear Information System (INIS)

    Linden, Ann-Marie

    2004-12-01

    This report contains a revised version of the Environmental Monitoring Programme for the Swedish Nuclear Facilities. The revision is based on earlier experiences and evaluations. Some samples have been excluded. Some have been added, for example spruce cone and the food products apple and currant. The sediment samples of 2 cm length have been completed with samples of 10 cm length every fourth year to follow the migration of radio nuclides down the sediment layers over time. The revised Environmental Monitoring Programme is valid from the 1st of January 2005

  5. Concerns when designing a safeguards approach for the back-end of the Swedish nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (Uppsala Univ., Uppsala (Sweden))

    2008-03-15

    In Sweden, the construction of an encapsulation plant and a geological repository for the final disposal of spent nuclear fuel is planned to start within the next ten years. Due to Sweden's international agreements on non-proliferation, the Swedish safeguards regime must be extended to include these facilities. The geological repository has some unique features, which present the safeguards system with unprecedented challenges. These features include, inter alia, the long period of time that the facility will contain nuclear material and that the disposed nuclear material will be very difficult to access, implying that physical verification of its presence in the repository is not foreseen. This work presents the available techniques for creating a safeguards system for the backend of the Swedish nuclear fuel cycle. Important issues to consider in the planning and implementation of the safeguards system have been investigated, which in some cases has led to an identification of areas needing further research. The results include three proposed options for a safeguards approach, which have been evaluated on the basis of the safeguards authorities' requirements. Also, the evolution and present situation of the work carried out in connection to safeguards for geological repositories has been compiled

  6. Total quality approach at ABB Atom Nuclear Fuel - winner of the Swedish quality award 1994

    International Nuclear Information System (INIS)

    Moorlin, K.; Olsson, S.

    1995-01-01

    ABB Atom Nuclear Fuel Division received the Swedish Quality Award 1994. The company has since many years a reputation for high product quality and a well implemented quality assurance system. Since some years a total quality approach is applied. For ABB Atom, total quality means continuous improvement of all business processes keeping the customer in focus. This paper elaborates on the improvement tools used at the ABB Atom Nuclear Fuel Division and gives some detailed information of the experience. (author) 6 figs

  7. Sweden's third national report under the the Convention on Nuclear Safety. Swedish implementation of the obligations of the Convention

    International Nuclear Information System (INIS)

    2004-01-01

    The national reports to the review meetings according to Article 5 of the Convention call for a self-assessment of each Contracting Party with regard to compliance with the obligations of the Convention. For Sweden this self-assessment has demonstrated full compliance with all the obligations of the Convention, as shown in detail in part B of this national report. There is an open and constructive dialogue between the regulatory bodies and the licensees. The owner companies are well established with good corporate financial records. They demonstrate a commitment to maintain a high level of safety in their nuclear power plants. Not withstanding the increased competition, the licensees continue to co-operate in solving important safety issues. The regulators in Sweden are assessed as well qualified for their tasks and their resources have been maintained. The international co-operation networks of both regulators and utilities are well developed. From the safety and environmental impact point of view, the Swedish nuclear power plants are competitive internationally. However, Sweden would like to point out the following issues, where further development should be given special attention in relation to the obligations under the Convention: The compatibility of the Act on Nuclear Activities with the Environmental Code needs to be followed up in order to assure that the licensing process is fully consistent. The future supply of radiation protection specialists needs to be further investigated and measures may need to be taken, as has been done to ensure the supply or nuclear safety specialists. The ongoing concentration of vendors and service companies needs to be assessed, from the safety and availability point of view, and the licensees may need to implement their own joint solutions if the market can not supply the necessary services at acceptable conditions. The operating organisations need to assess their consolidation after several organisational changes following

  8. The control of nuclear proliferation: future challenges. Swedish Institute of International Affairs, Stockholm, 23 April 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document reproduces the text of the conference given by the Director General of the IAEA at the Swedish Institute of International Affairs in Stockholm on 23 April 1998. After a short presentation of the Agency's current verification activities, particularly in Iraq and Democratic People's Republic of Korea, the Director General focuses on the present and future role of the IAEA in the control of nuclear proliferation through its strengthened safeguards system, in the prevention of nuclear terrorism, and future challenges of controlling nuclear proliferation from both political and technical point of view

  9. Nuclear power controversy

    International Nuclear Information System (INIS)

    Murphy, A.W.

    1976-01-01

    Arthur W. Murphy in the introductory chapter cites the issues, pro and con, concerning nuclear power. In assessing the present stance, he first looks back to the last American Assembly on nuclear power, held October 1957 and notes its accomplishments. He summarizes the six papers of this book, which focus on nuclear power to the end of this century. Chapter I, Safety Aspects of Nuclear Energy, by David Bodansky and Fred Schmidt, deals with the technical aspects of reactor safety as well as waste storage and plutonium diversion. Chapter 2, The Economics of Electric Power Generation--1975-2000, by R. Michael Murray, Jr., focuses specifically on coal-fired and nuclear plants. Chapter 3, How Can We Get the Nuclear Job Done, by Fritz Heimann, identifies actions that must take place to develop nuclear power in the U.S. and who should build the reprocessing plants. Chapter 4, by Arthur Murphy, Nuclear Power Plant Regulation, discusses the USNRC operation and the Price-Anderson Act specifically. Chapter 5, Nuclear Exports and Nonproliferation Strategy, by John G. Palfrey, treats the international aspects of the problem with primary emphasis upon the situation of the U.S. as an exporter of technology. Chapter 6, by George Kistiakowsky, Nuclear Power: How Much Is Too Much, expresses doubt about the nuclear effort, at least in the short run

  10. Technology and costs for decommissioning Swedish nuclear power plants; Teknik och kostnader foer rivning av svenska kaernkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, Gunnar; Gustavsson, Boerje [Westinghouse Electric Sweden AB, Vaesteraas (Sweden); Carlsson, Jan [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-06-01

    SKB has already performed three studies on available technology and approximate costs for decommissioning Swedish NPPs (years 1986, 1994 and 2000). The present report is an update of the year 2000 report with emphasis on areas that have been studied since the publication of that report. The report also gives a review of the technologies that have been chosen for decommissioning the Swedish reactors. The cost-estimation has also been updated and indexed to the present monetary situation. Areas in need for further studies are pointed in the report.

  11. Financing nuclear power

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2009-01-01

    Global energy security and climate change concerns sparked by escalating oil prices, high population growth and the rapid pace of industrialization are fueling the current interest and investments in nuclear power. Globally, a significant number policy makers and energy industry leaders have identified nuclear power as a favorable alternative energy option, and are presently evaluating either a new or an expanded role for nuclear power. The International Atomic Energy Agency (IAEA) has reported that as of October 2008, 14 countries have plans to construct 38 new nuclear reactors and about 100 more nuclear power plants have been written into the development plans of governments for the next three decades. Hence as new build is expected to escalate, issues of financing will become increasingly significant. Energy supply, including nuclear power, considered as a premium by government from the socio-economic and strategic perspective has traditionally been a sector financed and owned by the government. In the case for nuclear power, the conventional methods of financing include financing by the government or energy entity (utility or oil company) providing part of the funds from its own resources with support from the government. As national financing is, as in many cases, insufficient to fully finance the nuclear power plants, additional financing is sourced from international sources of financing including, amongst others, Export Credit Agencies (ECAs) and Multilateral Development Institutions. However, arising from the changing dynamics of economics, financing and business model as well as increasing concerns regarding environmental degradation , transformations in methods of financing this energy sector has been observed. This paper aims to briefly present on financing aspects of nuclear power as well as offer some examples of the changing dynamics of financing nuclear power which is reflected by the evolution of ownership and management of nuclear power plants

  12. Nuclear power debate

    International Nuclear Information System (INIS)

    Hunwick, Richard

    2005-01-01

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  13. Safety-Related Contractor Activities at Nuclear Power Plants. New Challenges for Regulatory Oversight

    International Nuclear Information System (INIS)

    Chockie, Alan

    2005-09-01

    The use of contractors has been an integral and important part of the design, construction, operation, and maintenance of nuclear power plants. To ensure the safe and efficient completion of contracted tasks, each nuclear plant licensee has developed and refined formal contract management processes to meet their specific needs and plant requirements. Although these contract management processes have proven to be effective tools for the procurement of support and components tailored to the needs of nuclear power plants, contractor-related incidents and accidents have revealed some serious weaknesses with the implementation of these processes. Identifying and addressing implementation problems are becoming more complicated due to organizational and personnel changes affecting the nuclear power industry. The ability of regulators and licensees to effectively monitor and manage the safety-related performance of contractors will likely be affected by forthcoming organization and personnel changes due to: the aging of the workforce; the decline of the nuclear industry; and the deregulation of nuclear power. The objective of this report is to provide a review of current and potential future challenges facing safety-related contractor activities at nuclear power plants. The purpose is to assist SKI in establishing a strategy for the proactive oversight of contractor safety-related activities at Swedish nuclear power plants and facilities. The nature and role of contractors at nuclear plants is briefly reviewed in the first section of the report. The second section describes the essential elements of the contract management process. Although organizations have had decades of experience with the a contract management process, there remain a number of common implantation weaknesses that have lead to serious contractor-related incidents and accidents. These implementation weaknesses are summarized in the third section. The fourth section of the report highlights the

  14. Safety-Related Contractor Activities at Nuclear Power Plants. New Challenges for Regulatory Oversight

    Energy Technology Data Exchange (ETDEWEB)

    Chockie, Alan [Chockie Group International, Inc., Seattle, WA (United States)

    2005-09-15

    The use of contractors has been an integral and important part of the design, construction, operation, and maintenance of nuclear power plants. To ensure the safe and efficient completion of contracted tasks, each nuclear plant licensee has developed and refined formal contract management processes to meet their specific needs and plant requirements. Although these contract management processes have proven to be effective tools for the procurement of support and components tailored to the needs of nuclear power plants, contractor-related incidents and accidents have revealed some serious weaknesses with the implementation of these processes. Identifying and addressing implementation problems are becoming more complicated due to organizational and personnel changes affecting the nuclear power industry. The ability of regulators and licensees to effectively monitor and manage the safety-related performance of contractors will likely be affected by forthcoming organization and personnel changes due to: the aging of the workforce; the decline of the nuclear industry; and the deregulation of nuclear power. The objective of this report is to provide a review of current and potential future challenges facing safety-related contractor activities at nuclear power plants. The purpose is to assist SKI in establishing a strategy for the proactive oversight of contractor safety-related activities at Swedish nuclear power plants and facilities. The nature and role of contractors at nuclear plants is briefly reviewed in the first section of the report. The second section describes the essential elements of the contract management process. Although organizations have had decades of experience with the a contract management process, there remain a number of common implantation weaknesses that have lead to serious contractor-related incidents and accidents. These implementation weaknesses are summarized in the third section. The fourth section of the report highlights the

  15. Nuclear power prospects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  16. The planning of areas near nuclear power stations

    International Nuclear Information System (INIS)

    1977-01-01

    During the past five years national physical planning has been initiated by the Swedish Parliament. Guidelines have been given to the communities how to consider national interests when drawing up local planning and how to produce maps and descriptions of the planning. For the planning of the areas near the nuclear power stations the municipalities have certain guidelines from The Nuclear Power Inspectorate and The National Institute of Radiation Protection. It is advised to keep a low population density near the power plants, to avoid the type of harbour or industry which could have disturbing effects on the power plant and also to avoid to concentrate people, who are difficult to move from the area in case of an accident (i.e., homes for old people, maternity homes and prisons). The plants on the East Coast, Forsmark and Oskarshamn, are located in wooded areas with a very low population density. On the West Coast, near Ringhals and Barsebaeck, the population density is higher, and there is one village with about 2,000 inhabitants, situated at a distance of two (2) km from the Ringhals power plant. The Control Boards are now reluctant to concentrate more people in this village, where schools and shops were earlier planned for 3,000 inhabitants. The building activity near power plants is regulated by law. New buildings are prohibited within a distance of two (2) km from the plants. Some exeptions can be granted by the County Administrative Board after guidance from the Central Board. In a zone reaching 10 kilometers from the power plants there are no regulations by law about new buildings, except the earlier mentioned guidelines from the Central Boards to maintain a low population. (L.E.)

  17. Swedish Nuclear Power Inspectorate, Office of Reactor Safety. Research plans for the period 1997-1999

    International Nuclear Information System (INIS)

    1997-02-01

    Office of Reactor Safety research is carried out within the following areas: Safety evaluation, Safety analysis, MTO, Materials and chemistry, Non-Destructive Testing, Strength of materials, Thermohydraulics, Nuclear fuel, Serious accidents and Process control. Research is carried out to fulfill SKIs overall goals in accordance with the directives from the Swedish government and parliament, in particular to be a driving force in safety related work when justified by operating experience, research results and technical progress, towards licensees as well as in international cooperation in safety; to promote the maintenance and development of competence in the safety related work at the SKI as well as the licensees and generally in the country, and as a specific role for the Office of Reactor Safety as designated in the internal routines to take initiative to encourage and carry out research into areas of importance for the Office as well as ensuring that research results are disseminated and used both within SKI and in the general work concerning nuclear safety. Research efforts within the Office of Reactor safety are carried out in the form of separate projects which form part of the priority work plans. Project managers, the necessary personnel resources and the budget for each year are included in the Annual Plan and the work is followed up in the same manner as other efforts. Research is performed in different ways, that can vary from laboratory studies to more consultative efforts, and be organised in many different ways such as examination projects, post-graduate studies, work sponsored at research institutes and companies in Sweden and abroad, collaboration in larger international projects, and participation in conferences which provide an important contribution to keeping SKI personnel informed within their specialist areas

  18. Radioecological studies of activation products released from a nuclear power plant into the marine environment

    International Nuclear Information System (INIS)

    Mattsson, S.; Nilsson, M.; Holm, E.

    1980-01-01

    Since 1967 samples of Fucus serratus and Fucus vesi--culosus from the Swedish west-coast were collected for analysis of the concentration of fallout products, natural actinides and products released by the nuclear industry. During this time two nuclear power stations were built and began operation in this area, ''Ringhals'' in 1974 and ''Barseback'' in 1975. When detectable concentrations of Co-60 and other activation products were found in Fucus, the sampling program was intensified, both in the vicinity of ''Barseback'' and at localities up to 150 km north. Our studies have shown that measurements on Fucus can be used to map the distribution of various radionuclides from a nuclear power station in the marine environment. Knowledge of this distribution and of factors affecting it are needed to construct a radioecological model for the estimation of individual and collective dose equivalent commitment arising from intake of food and water from the marine environment of the south-west of Sweden. (H.K.)

  19. Future wind power forecast errors, need for regulating power, and costs in the Swedish system

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Fredrik [Vattenfall Research and Development AB, Stockholm (Sweden). Power Technology

    2011-07-01

    Wind power is one of the renewable energy sources in the electricity system that grows most rapid in Sweden. There are however two market challenges that need to be addressed with a higher proportion of wind power - that is variability and predictability. Predictability is important since the spot market Nord Pool Spot requires forecasts of production 12 - 36 hours ahead. The forecast errors must be regulated with regulating power, which is expensive for the actors causing the forecast errors. This paper has investigated a number of scenarios with 10 - 55 TWh of wind power installed in the Swedish system. The focus has been on a base scenario with 10 TWh new wind power consisting of 3,5 GW new wind power and 1,5 GW already installed power, which gives 5 GW. The results show that the costs for the forecast errors will increase as more intermittent production is installed. However, the increase can be limited by for instance trading on intraday market or increase quality of forecasts. (orig.)

  20. The nuclear question at the start of the '80s: the breeder reactor

    International Nuclear Information System (INIS)

    Owen, R.; Svensson, B.

    1980-01-01

    The four newspaper articles and the letter cover the following matters: general introduction about breeder reactors and the situation in Swedish politics; visit to Dounreay to discuss breeder reactors (breeding, safety, plutonium production, radiation protection); PuO 2 -UO 2 mixed fuel; description of breeder reactors; efficiency in use of U-235; DFR and PFR; breeder reactors in Swedish politics (arguments for and against nuclear power in general, breeder reactors in particular); discussion of the future of nuclear power in Sweden. (U.K.)

  1. The political challenges of nuclear waste

    International Nuclear Information System (INIS)

    Andren, Mats; Strandberg, Urban

    2005-01-01

    This anthology is made up of nine essays on the nuclear waste issue, both its political, social and technical aspects, with the aim to create a platform for debate and planning of research. The contributions are titled: 'From clean energy to dangerous waste - the regulatory management of nuclear power in the Swedish welfare society. An economic-historic review , 'The course of the high-level waste into the national political arena', 'The technical principles behind the Swedish repository for spent fuels', 'Waste, legitimacy and local citizenship', 'Nuclear issues in societal planning', 'Usefulness or riddance - transmutation or just disposal?', 'National nuclear fuel policy in an European Union?', 'Conclusion - the challenges of the nuclear waste issue', 'Final words - about the need for critical debate and multi-disciplinary research'

  2. Nuclear power in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Ronald E.

    1998-08-01

    Contains Executive Summary and Chapters on: Nuclear Energy in the Asian context; Types of nuclear power reactors used in Asia; A survey of nuclear power by country; The economics of nuclear power; Fuels, fuel cycles and reprocessing; Environmental issues and waste disposal; The weapons issues and nuclear power; Conclusions. (Author)

  3. Nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.

    1991-01-01

    Is a nuclear power renaissance likely to occur in the United States? This paper investigates the many driving forces that will determine the answer to that question. This analysis reveals some frequently overlooked truths about the current state of nuclear technology: An examination of the issues also produces some noteworthy insights concerning government regulations and related technologies. Public opinion will play a major role in the unfolding story of the nuclear power renaissance. Some observers are betting that psychological, sociological, and political considerations will hod sway over public attitudes. Others wager that economic and technical concerns will prevail. The implications for the nuclear power renaissance are striking

  4. Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident.

    Science.gov (United States)

    Alinaghizadeh, Hassan; Tondel, Martin; Walinder, Robert

    2014-08-01

    Sweden received about 5 % of the total release of (137)Cs from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of (137)Cs and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of (137)Cs from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of (137)Cs at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with the

  5. Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    Alinaghizadeh, Hassan; Tondel, Martin; Walinder, Robert

    2014-01-01

    Sweden received about 5 % of the total release of "1"3"7Cs from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of "1"3"7Cs and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of "1"3"7Cs from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of "1"3"7Cs at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with the lowest

  6. Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Alinaghizadeh, Hassan; Tondel, Martin; Walinder, Robert [Uppsala University, Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala (Sweden)

    2014-08-15

    Sweden received about 5 % of the total release of {sup 137}Cs from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of {sup 137}Cs and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of {sup 137}Cs from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of {sup 137}Cs at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with

  7. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Addinall, E.; Ellington, H.

    1982-01-01

    The subject is covered in chapters: (the nature of nuclear power) the atomic nucleus - a potential source of energy; how nuclear reactors work; the nuclear fuel cycle; radioactivity - its nature and biological effects; (why we need nuclear power) use of energy in the non-communist world -the changing pattern since 1950; use of energy - possible future scenarios; how our future energy needs might be met; (a possible long term nuclear strategy) the history of nuclear power; a possible nuclear power strategy for the Western World; (social and environmental considerations) the hazards to workers in the nuclear power industry; the hazards to the general public (nuclear power industry; reactor operation; transport of radioactive materials; fuel reprocessing; radioactive waste disposal; genetic hazards); the threat to democratic freedom and world peace. (U.K.)

  8. Mechanisms of Copper Corrosion in Aqueous Environments. A report from the Swedish National Council for Nuclear Waste's scientific workshop, on November 16, 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    In 2010 the Swedish Nuclear Fuel and Waste Management Company, SKB, plans to submit its license application for the final repository of spent nuclear fuel. The proposed method is the so-called KBS-3 method and implies placing the spent nuclear fuel in copper canisters, surrounded by a buffer of bentonite clay, at 500 m depth in the bedrock. The site selected by SKB to host the repository is located in the municipality of Oesthammar on the Swedish east coast. The copper canister plays a key role in the design of the repository for spent nuclear fuel in Sweden. The long-term physical and chemical stability of copper in aqueous environments is fundamental for the safety evolution of the proposed disposal concept. However, the corrosion resistance of copper has been questioned by results obtained under anoxic conditions in aqueous solution. These observations caused some head-lines in the Swedish newspapers as well as public and political concerns. Consequently, the Swedish National Council for Nuclear Waste organized a scientific workshop on the issue 'Mechanisms of Copper Corrosion in Aqueous Environments'. The purpose of the workshop was to address the fundamental understanding of the corrosion characteristics of copper regarding oxygen-free environments, and to identify what additional information is needed to assess the validity of the proposed corrosion mechanism and its implication on the containment of spent nuclear fuel in a copper canister. This seminar report is based on the presentations and discussions at the workshop. It also includes written statements by the members of the expert panel

  9. Optimization in the scale of nuclear power generation and the economy of nuclear power

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    1983-01-01

    In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)

  10. A swedish dose passport - contractors point of view

    International Nuclear Information System (INIS)

    Andersson, M.; Holmqvist, A.; Moller, J.

    2003-01-01

    Westinghouse Atom is situated in Vasteras approximately 100 km west from Stockholm. The company is owned by BNFL. The two largest divisions are the Nuclear Fuel Operations and The Global Reactor Services division. The Nuclear fuel operations manufacture fuel for BWR and PWR reactors. The raw material used is Uranium hexafluoride, which is converted to Uranium dioxide powder through wet AUC-process. The concession is 600 tonnes of UO 2 , per year. Last year the production. was approximately 900 fuel elements. There is also a control rod production line within the fuel factory. Last year the production of control rods was approximately 160. The Global Reactor Services Division performs tests on different types of equipments used in nuclear power plants. In addition there is also a well-established service structure that provides a wide range of field services, for instance sipping of fuel elements. The total amount of people working in Vasteras is currently around 800. The majority of those, work at the fuel factory. The purpose of this paper is to describe the somewhat awkward situation for our employees when working as external personnel on German nuclear installations. Our Swedish personnel are currently using German dose passports. Since Sweden joined the European Union in 1995 this is in contradiction to the EU-directives. Hence, Westinghouse Atom has applied for a license for the use of Swedish dose passports in Germany. The amount of people performing service jobs in Germany is approximately 80 persons. (authors)

  11. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  12. Green light from the Swedish parliament for a renaissance of nuclear energy

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    On the 17. June 2010, the Swedish parliament passed a law allowing the today's 10 operating reactors to be replaced by new ones at the end of their operational life. These 10 reactors generate half the electrical power of Sweden. The opposition has announced that they will reconsider this law if they win next election. This law will come into effect on the first January 2011. (A.C.)

  13. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  14. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.

    2009-06-01

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  15. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  16. Application of the Best Available Technique (BAT) in Swedish Nuclear Industry: Ringhals and Barsebaeck Nuclear Power Plants. Report to the Oslo and Paris Commissions in accordance with PARCOM Recommendation 91/4

    International Nuclear Information System (INIS)

    1996-01-01

    With regard to the general objectives of the Paris Convention, contracting parties have agreed, as stated in PARCOM Recommendation 91/4, to apply best available technique (BAT) to reduce radioactive releases from the nuclear industry. Progress in implementing BAT shall be reported to the Oslo and Paris Commissions every four years. This report contains the Swedish submission for the second round of implementation reports. Data are provided relevant to the Ringhals NPP, which discharged into Convention waters, and - for information -the Barsebaeck NPP which discharged into waters close to the Convention area. 20 tabs

  17. Application of the Best Available Technique (BAT) in Swedish Nuclear Industry: Ringhals and Barsebaeck Nuclear Power Plants. Report to the Oslo and Paris Commissions in accordance with PARCOM Recommendation 91/4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    With regard to the general objectives of the Paris Convention, contracting parties have agreed, as stated in PARCOM Recommendation 91/4, to apply best available technique (BAT) to reduce radioactive releases from the nuclear industry. Progress in implementing BAT shall be reported to the Oslo and Paris Commissions every four years. This report contains the Swedish submission for the second round of implementation reports. Data are provided relevant to the Ringhals NPP, which discharged into Convention waters, and - for information -the Barsebaeck NPP which discharged into waters close to the Convention area. 20 tabs.

  18. Nuclear power on unstable ground

    International Nuclear Information System (INIS)

    Morner, N.A.

    1982-01-01

    It is unacceptable scientifically to say that the problem of nuclear-waste disposal is solved today. The possibilities for future progress remain a question of subjective evaluation. Overoptimistic and careless predictions are not only meaningless but also dangerous factors for future failures and accidents. The Swedish KBS project is in all respects overoptimistic, and the Swedish Stipulation Law in all respects is not fulfilled. The geodynamics of the Fennoscandian bedrock are different from those claimed by KBS. There is a complex of forces and movements (including both novel factor and factors of uncertain or unknown origin) where the amounts and rates of movement are larger than previously realized. Intensive faulting, fracturing, and paleoseismicity are recorded during glacial periods. In this highly active bedrock medium, it is difficult to see how a safe closed deposition could ever be determined. As an emergency action for the time being in order to keep control and freedom of action, an 'open deposition' is recommended, while studies continue. (author)

  19. Guidance for emergency planning in nuclear power plants

    International Nuclear Information System (INIS)

    Magnusson, Tommy; Ekdahl, Maria

    2008-06-01

    Ringhals has been a model for this study, but the purpose has been to make the report applicable at all nuclear power plants in Sweden. The work has been done in close co-operation with the Swedish nuclear power plants and Rescue Services in the nuclear power municipalities Oesthammar, Oskarshamn, and Varberg. The internal fire brigade at the nuclear power plants has also been involved. A document will also be published as a further guidance at efforts of the type fires, which are mentioned in the enclosed document. After a fire in a switchgear room in 2005 the need of making the existing effort planning more effective at nuclear power plants was observed. The idea with the planning is to plan the effort in order to give the operational and emergency staff a good and actual support to come to a decision and to start the mission without delay. The risk information is showed by planning layouts, symbols and drawings as basis, give risk information and effort information. The effort information shows outer arrangements, manual action points, fire installations, passive fire safety etc. The risk information is shown by risk symbols. Their purpose is to give a fast overview of the existing risks. Reactor safety effects is the ruling influence if an effort has to be done in order to secure safety for a third person. In order to make an effort in an area personal risks for rescue staff, such as electricity risks, radiological risks, chemicals and gas bottles with compressed gases, has to be eliminated. For complicated missions detailed instructions are needed in order to handle specific risks. In a group discussion different people with pertinent knowledge has to value which problematic efforts need detailed instruction. Missions that have to be analyzed in a work group as above are: fire may affect the reactor safety, fire that may threaten the structural integrity, chemical discharge with big consequence on environment/third person and handling of gas system (compressed

  20. Nuclear power revisited

    International Nuclear Information System (INIS)

    Grear, B.

    2008-01-01

    Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues - high capital costs, the risks posed by nuclear wastes and accidents, and the proliferation of nuclear weaponry - that until recently hindered the expansion of nuclear power.

  1. Sewage sludge as a sensitive indicator for airborne radionuclides from nuclear power plants

    International Nuclear Information System (INIS)

    Ingemansson, T.

    1982-01-01

    Sewage sludge collected at waste water treatment plants located in the vicinity of nuclear power stations, has been shown to be a sensitive and convenient indicator for airborne locally released activation products, 60 Co, 65 Zn, 58 Co and 54 Mn. We have therefore been able to study the distribution and behaviour of these radionuclides in the terrestrial environment of three Swedish nuclear power stations. Comparative measurements on ground level air and on samples of lichen (Cladonia alpestris) and soil have also been performed. The variation by distance from the power station of 60 Co measured in sludge as well as on air-filters could be described by the same power function. The temporal variation of the activity concentration in sludge samples well reflects the variation of the reported release rate of airborne radionuclides from the power stations if the prevalent wind direction is taken into consideration. The relation between the activity ratio 60 Co/ 7 Be in air and in sludge was investigated and indicated that most of the detected 60 Co and part of 58 Co and 54 Mn activity is released from a local source and is dry deposited on the ground before it is washed off by rain. (Author)

  2. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    Cao Ruiding; Chen Guorong; Chen Xianfeng; Zhang Yishu

    1996-01-01

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  3. Calculation of additional costs in 2010 - for the demolition of the Swedish nuclear power plants and disposal of residues; Beraekning av merkostnader 2010 - foer rivning av de svenska kaernkraftsverken och omhaendertagande av restprodukter

    Energy Technology Data Exchange (ETDEWEB)

    Brewitz, Erica; Schoultz, Christian; Wetzel, Carina

    2010-09-15

    This report describes the SSM's calculation of additional costs for fee proposal for 2012-2014. The calculation is made pursuant to the Financing Act and includes all additional costs until the residue from the Swedish nuclear power plants is disposed of. According to current calculations, this should be done in 2069. Estimates of such a long time means a great deal of uncertainty and SSM uses, like SKB, the successive calculation method to estimate an expected value and tax association uncertainty. As a starting point for analysis, the SSM has made estimates of the future costs broken down into paragraphs in paragraph 2 Financing Act. The estimates were made after discussions within the organization and representatives of relevant external organizations. Assuming a total annual cost per worker of 1.24 million gave these estimates a total cost of over three billion. It should be emphasized that this sum is only a starting point for analysis and applies in particular circumstances. These circumstances critically reviewed the analysis and the reasonableness of assessments made by a analysis group. The analysis took place for 2.5 days in spring 2010. The analysis group consisted of 17 people including nine from the SSM. Lores Borg and Steen Lichtenberg were moderators. Via a brainstorming process, the analysis group presented a number of uncertainties and made a three-part assessment of their impact on the overall results (minimum, most likely and maximum). The result of the analysis: average in the 2010 monetary value was assessed to 4.24 billion Swedish crowns with a standard deviation of 920 million Swedish crowns. These values are undiscounted

  4. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2007-04-01

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  5. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    2005-03-01

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  6. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampman, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2006-03-01

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  7. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Choi, Chang Tong

    1996-01-01

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  8. The politics of nuclear power

    International Nuclear Information System (INIS)

    Elliott, D.

    1978-01-01

    The contents of the book are: introduction; (part 1, the economy of nuclear power) nuclear power and the growth of state corporatism, ownership and control - the power of the multi-nationals, economic and political goals - profit or control, trade union policy and nuclear power; (part 2, nuclear power and employment) nuclear power and workers' health and safety, employment and trade union rights, jobs, energy and industrial strategy, the alternative energy option; (part 3, political strategies) the anti-nuclear movement, trade unions and nuclear power; further reading; UK organisations. (U.K.)

  9. The reality of nuclear power

    International Nuclear Information System (INIS)

    Murphy, D.

    1979-01-01

    The following matters are discussed in relation to the nuclear power programmes in USA and elsewhere: siting of nuclear power plants in relation to a major geological fault; public attitudes to nuclear power; plutonium, radioactive wastes and transfrontier contamination; radiation and other hazards; economics of nuclear power; uranium supply; fast breeder reactors; insurance of nuclear facilities; diversion of nuclear materials and weapons proliferation; possibility of manufacture of nuclear weapons by developing countries; possibility of accidents on nuclear power plants in developing countries; radiation hazards from use of uranium ore tailings; sociological alternative to use of nuclear power. (U.K.)

  10. Similarities and differences between conventional power and nuclear power

    International Nuclear Information System (INIS)

    Wang Yingrong

    2011-01-01

    As the implementation of the national guideline of 'proactively promoting nuclear power development', especially after China decided in 2006 to introduce Westinghouse's AP1000 technology, some of the power groups specialized in conventional power generation, have been participating in the preliminary work and construction of nuclear power projects in certain degrees. Meanwhile, such traditional nuclear power corporations as China National Nuclear Corporation (CNNC) and China Guangdong Nuclear Power Corporation (CGNPC) have also employed some employees with conventional power generation experience. How can these employees who have long been engaged in conventional power generation successfully adapt to the new work pattern, ideology, knowledge, thinking mode and proficiency of nuclear power, so that they can fit in with the work requirements of nuclear power and become qualified as soon as possible? By analyzing the technological, managerial and cultural features of nuclear power, as well as some issues to be kept in mind when engaged in nuclear power, this paper intends to make some contribution to the nuclear power development in the specific period. (author)

  11. Summary of Swedish activities in the framework of the IWGATWR

    International Nuclear Information System (INIS)

    Pedersen, T.

    1991-01-01

    This summary starts with a brief review of the situation and outlook for nuclear power in Sweden from the political and industrial points of view, and to some extent from the public acceptance point of view. Then the Swedish activities in the field of advanced technologies for water-cooled reactors are outlined, the activities fall into three basic categories: activities related to operating plants, i.e. implementation of modern technology into these plants; development work on evolutionary type nuclear plants; and development work on more revolutionary or developmental type of reactors. Activities in the frameworks of the BWR 90 and PIUS projects are described. 3 figs, 1 tab

  12. Nuclear power in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Rim, C S [Radioactive Waste Management Centre, Korea Atomic Energy Research Institute, Taejon, Choong-Nam (Korea, Republic of)

    1990-07-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea.

  13. Nuclear power in Korea

    International Nuclear Information System (INIS)

    Rim, C.S.

    1990-01-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea

  14. Swedish Energy Research 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Swedish Energy Research 2009 provides a brief, easily accessible overview of the Swedish energy research programme. The aims of the programme are to create knowledge and skills, as needed in order to commercialise the results and contribute to development of the energy system. Much of the work is carried out through about 40 research programmes in six thematic areas: energy system analysis, the building as an energy system, the transport sector, energy-intensive industries, biomass in energy systems and the power system. Swedish Energy Research 2009 describes the overall direction of research, with examples of current research, and results to date within various thematic areas and highlights

  15. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  16. Nuclear Power in Korea

    International Nuclear Information System (INIS)

    Ha, Duk-Sang

    2009-01-01

    Full text: Korea's nuclear power program has been promoted by step-by-step approach; the first stage was 1970's when it depended on the foreign contractors' technology and the second was 1980's when it accumulated lots of technology and experience by jointly implementing the project. Lastly in the third stage in 1990's, Korea successfully achieved the nuclear power technological self-reliance and developed its standard nuclear power plant, so-called Optimized Power Reactor 1000 (OPR 1000). Following the development of OPR 1000, Korea has continued to upgrade the design, known as the Advanced Power Reactor 1400 (APR 1400) and APR+. Korea is one of the countries which continuously developed the nuclear power plant projects during the last 30 years while the other advanced countries ceased the project, and therefore, significant reduction of project cost and construction schedule were possible which benefits from the repetition of construction project. And now, its nuclear industry infrastructure possesses the strong competitiveness in this field.The electricity produced from the nuclear power is 150,958 MWh in 2008, which covers approximately 36% of the total electricity demand in Korea, while the installed capacity of nuclear power is 17,716 MW which is 24% of the total installed capacity. We are currently operating 20 units of nuclear power plants in Korea, and also are constructing 8 additional units (9,600 MW). Korea's nuclear power plants have displayed their excellent operating performance; the average plant capacity factor was 93.4% in 2008, which are about 15% higher than the world average of 77.8%. Moreover, the number of unplanned trips per unit was only 0.35 in 2008, which is the world top class performance. Also currently we are operating four CANDU nuclear units in Korea which are the same reactor type and capacity as the Cernavoda Units. They have been showing the excellent operating performance, of which capacity in 2008 is 92.8%. All the Korean

  17. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Royen, J.

    1981-01-01

    Worldwide nuclear power (WNP) is a companion volume to UPDATE. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of the Assistant Secretary for Nuclear Energy from reports obtained from foreign Embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data

  18. Radioactive discharges and environmental monitoring at the Swedish nuclear facilities 2001; Utslaepps- och omgivningskontroll vid de kaerntekniska anlaeggningarna 2001

    Energy Technology Data Exchange (ETDEWEB)

    Sandwall, Johanna

    2002-11-01

    This report contains an evaluation of the discharge and environmental programme for the Swedish nuclear facilities. It also contains the work on quality control performed by SSI. This is done as random sampling of discharge water and environmental samples.

  19. Radioiodine removal in nuclear facilities

    International Nuclear Information System (INIS)

    1980-01-01

    Technical means are reviewed available for the retention of radioiodine in nuclear power plants and fuel reprocessing plants, its immobilization, storage, and disposal. The removal of iodine species from gaseous effluents of nuclear power plants using impregnated activated charcoal is dealt with. Various scrubbing techniques for trapping iodine from the head-end and dissolver off-gases are discussed as well as solid adsorbents for iodine which may be used to clean up other gaseous streams. Current practices and activities for radioiodine treatment and management in Belgian, Dutch, Swedish, USSR and UK nuclear installations are presented

  20. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  1. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  2. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  3. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  4. Economics of nuclear power projects

    International Nuclear Information System (INIS)

    Chu, I.H.

    1985-01-01

    Nuclear power development in Taiwan was initiated in 1956. Now Taipower has five nuclear units in smooth operation, one unit under construction, two units under planning. The relatively short construction period, low construction costs and twin unit approach had led to the significant economical advantage of our nuclear power generation. Moreover betterment programmes have further improved the availability and reliability factors of our nuclear power plants. In Taipower, the generation cost of nuclear power was even less than half of that of oil-fired thermal power in the past years ever since the nuclear power was commissioned. This made Taipower have more earnings and power rates was even dropped down in March 1983. As Taiwan is short of energy sources and nuclear power is so well-demonstrated nuclear power will be logically the best choice for Taipower future projects

  5. Modification and backfitting at the Oskarshamn Nuclear Power Plant Unit 2 in safety related systems

    International Nuclear Information System (INIS)

    Karlsson, Leif; Nilsson, Ove; Lidh, B.

    1995-05-01

    This report is intended for use by the Swedish Nuclear Power Inspectorate. It has been published to enable comparison of modification and backfitting implemented at Oskarshamn-2, with those implemented at other plants, both domestic and abroad. The report summarizes the more notable modifications and backfitting carried out on any safety-related equipment, or software, at Barsebaeck, and covers the decade 1984 to 1994. Modifications to hardware, and to some extent to software, are catalogued, but not described in any detail. No general procedures (operational or maintenance) are dealt with. 3 refs

  6. Swedish CO2-emissions 1900-2010: an exploratory note

    International Nuclear Information System (INIS)

    Kristroem, Bengt; Lundgren, Tommy

    2005-01-01

    This paper projects Swedish CO 2 -emissions during the period 2000-2010 based on data covering 1900-1999. Swedish climate policy is currently based on the assumption that carbon emissions will increase, ceteris paribus, by 5-15% relative to the 1990 level. This forecast has motivated a number of policy measures, including carbon taxes, subsidies and an 'information package'. We find, however, that CO 2 -emissions may well be lower in the future. This outcome is broadly consistent with the literature on the Environmental Kuznets Curve, which portrays the relationship between emissions and GDP. The key contribution of this paper is that our analysis is based on a long time series. Current literature is invariably based on 'short' panel data sets, while we study a single country through several phases of development. Our analysis also sheds some light on the key importance played by nuclear power for carbon emission projections

  7. Lessons learned from application of the Swedish regulations for decommissioning of nuclear facilities - The regulator's perspective

    International Nuclear Information System (INIS)

    Efraimsson, Henrik; Amft, Martin; Leisvik, Mathias

    2016-01-01

    The paper presents an overview of the Swedish regulations for decommissioning of nuclear facilities. It describes some of the experiences that the Swedish Radiation Safety Authority has gained from the application of these regulations. The focus of the present paper lies on administrative aspects of the care and maintenance operation and on the safety related documentation that has to be prepared before dismantling commences. Lessons learned during recent years will be considered when revising the regulations for decommissioning. Also these lessons learned will help to streamline the administration of the large NPP decommissioning projects that are anticipated to commence in Sweden in the near future. (authors)

  8. Accelerating nuclear power standards development and promoting sound nuclear power development in China

    International Nuclear Information System (INIS)

    Yang Changli

    2008-01-01

    The paper expounds the importance of quickening establishment and perfection of nuclear power standard system in China, analyzes achievements made and problems existed during the development of nuclear power standards, put forward proposals to actively promote the work in this regard, and indicates that CNNC will further strengthen the standardization work, enhance coordination with those trades related to nuclear power standards, and jointly promote the development of nuclear power standards. (authors)

  9. Nuclear Power Today and Tomorrow

    International Nuclear Information System (INIS)

    Bychkov, Alexander

    2013-01-01

    Worldwide, with 437 nuclear power reactors in operation and 68 new reactors under construction, nuclear power's global generating capacity reached 372.5 GW(e) at the end of 2012. Despite public scepticism, and in some cases fear, which arose following the March 2011 Fukushima Daiichi nuclear accident, two years later the demand for nuclear power continues to grow steadily, albeit at a slower pace. A significant number of countries are pressing ahead with plans to implement or expand their nuclear power programmes because the drivers toward nuclear power that were present before Fukushima have not changed. These drivers include climate change, limited fossil fuel supply, and concerns about energy security. Globally, nuclear power looks set to continue to grow steadily, although more slowly than was expected before the Fukushima Daiichi nuclear accident. The IAEA's latest projections show a steady rise in the number of nuclear power plants in the world in the next 20 years. They project a growth in nuclear power capacity by 23% by 2030 in the low projection and by 100% in the high projection. Most new nuclear power reactors planned or under construction are in Asia. In 2012 construction began on seven nuclear power plants: Fuqing 4, Shidaowan 1, Tianwan 3 and Yangjiang 4 in China; Shin Ulchin 1 in Korea; Baltiisk 1 in Russia; and Barakah 1 in the United Arab Emirates. This increase from the previous year's figures indicates an on-going interest and commitment to nuclear power and demonstrates that nuclear power is resilient. Countries are demanding new, innovative reactor designs from vendors to meet strict requirements for safety, national grid capacity, size and construction time, which is a sign that nuclear power is set to keep growing over the next few decades.

  10. Licensing of nuclear power plants. The case of Sweden in an international comparison

    International Nuclear Information System (INIS)

    Michanek, Gabriel; Soederholm, Patrik

    2009-01-01

    Efficient power plant licensing procedures are essential for the functioning of deregulated electricity markets. The purpose of this paper is to review and analyse the licensing process for nuclear power plants in Sweden, and in part contrast the Swedish case with the corresponding approaches in a selection of other countries. This approach permits a discussion of how licensing processes can be altered and what the benefits and drawbacks of such changes are. The paper highlights and discusses a number of important legal issues and implications, including, for instance: (a) the role of political versus impartial decision-making bodies; (b) the tension between national policy goals and implementation at the local level; (c) public participation and access to justice; (d) consistency and clarity of the legal system; and (e) the introduction of license time limits. (author)

  11. T-book. Reliability data of components in Nordic nuclear power plants. 6. ed

    International Nuclear Information System (INIS)

    2005-01-01

    The main objective of the T-Book is to provide reliability data for the unavailability computations that are made for each component that is considered in the compulsory, probabilistic safety assessments (PSA) of nuclear power plants. As the use of PSA is large in the normal safety work at the NPPs, there is a need for easily accessible and reliable failure data. The failure characteristics presented in the T-Book are primarily based on the failure reports stored in the central database TUD and the Licensee Event Reports delivered to the Swedish Nuclear Power Inspectorate (SKI). Fortunately, the TUD database was started already in the middle of the seventies by the Swedish power companies. In 1981, the Finnish power company TVO, operating two reactor units of Swedish design, joined the data collection system. Before the TUD data are statistically treated they are carefully examined with respect to the consistency and correctness. This T-Book comprises only critical failures, i.e. failures that stops the function of components or leads to repair. The first edition of the T-Book was issued in 1982 encompassing operational statistics from 21 reactor years. The second edition was published 1985, based on operating data covering about 40 reactor years. The T-Book 3 was published in 1992 and included data up to the operating year 1987 (108 reactor years). Edition 4 was published 1994 containing information up to and including 1992 (178 reactor years). Edition 5 was published year 2000 containing information up to and including 1996 (234 reactor years). This edition 6 contains information including year 2002 (315 reactor years). At the same time as the amount of data has increased with the successive editions of the T-Book there has been a continuous work to improve the methods for the statistical inference and related program tools, required to derive the reliability parameters from the operational data in the database. Already in the initial edition there was a Bayesian

  12. Nuclear power and other energy

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    A comparison is made between nuclear power plants, gas-fuelled thermal power plants and oil-fired thermal power plants with respect to health factors, economy, environment and resource exploitation, with special reference to the choice of power source to supplement Norwegian hydroelectric power. Resource considerations point clearly to nuclear power, but, while nuclear power has an overall economic advantage, the present economic situation makes its heavy capital investment a disadvantage. It is maintained that nuclear power represents a smaller environmental threat than oil or gas power. Finally, statistics are given showing that nuclear power involves smaller fatality risks for the population than many other hazards accepted without question. (JIW)

  13. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  14. Comments from the Swedish Society for Nature Conservation, SSNC, and the Swedish NGO office for Nuclear Waste Review, MKG, on the industry's, SKB, research programme Fud-07

    International Nuclear Information System (INIS)

    2009-06-01

    The Swedish Society for Nature Conservation and the Swedish NGO Office for Nuclear Waste Review recommends in response to Fud-07 that: - The Government must in its forthcoming decision regarding the industry's 2007 research and development program set out requirements that are needed to bring order to the ongoing work on nuclear waste disposition - The Government must assure an effective quality control of the industry's work - The Government needs to review the industry's use of resources from the Swedish Nuclear Waste Fund and empower the Radiation Safety Authority to ensure their proper use - The Government must make it clear that a permit to establish a final repository for high-level waste will not be given until sufficient evidence is available that supports the chosen method and chosen location, and that provide for guaranteed long-term safety - The Government must instruct the Radiation Safety Authority to develop its own full and independent assessment tools and knowledge base to be able to review the industry's research and development work, with particular emphasis on weaker aspects of the industry's work. - The Government must expand the budget of the Radiation Safety Authority to enable the Authority to perform a thorough examination of the industry's forthcoming application to construct a repository. - The Government must ensure that currently outstanding issues and unsolved problems in the industry's research and development project are thoroughly investigated, and solutions arrived at, before permission to begin construction can be given. - The Government must see to it that work commences on drafting public policy that sets out the objectives and functions that a final repository shall fulfil. - The Government must make it clear that it will not be possible for the industry to neglect or avoid giving alternative methods serious consideration in its environmental impact statement (EIS). - The Government should instruct the Radiation Safety Authority

  15. Nuclear power costs

    International Nuclear Information System (INIS)

    1963-01-01

    A report prepared by the IAEA Secretariat and presented to the seventh session of the Agency's General Conference says that information on nuclear power costs is now rapidly moving from the domain of uncertain estimates to that of tested factual data. As more and more nuclear power stations are being built and put into operation, more information on the actual costs incurred is becoming available. This is the fourth report on nuclear power costs to be submitted to the IAEA General Conference. The report last year gave cost information on 38 nuclear power projects, 17 of which have already gone into operation. Certain significant changes in the data given last year are included-in the present report; besides, information is given on seven new plants. The report is divided into two parts, the first on recent developments and current trends in nuclear power costs and the second on the use of the cost data for economic comparisons. Both stress the fact that the margin of uncertainty in the basic data has lately been drastically reduced. At the same time, it is pointed out, some degree of uncertainty is inherent in the assumptions made in arriving at over-all generating cost figures, especially when - as is usually the case - a nuclear plant is part of an integrated power system

  16. Nuclear power experience

    International Nuclear Information System (INIS)

    1983-01-01

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  17. Agriculture and food production after a nuclear power accident

    International Nuclear Information System (INIS)

    Ulvsand, T.; Preuthun, J.; Rosen, K.; Svensson, Kettil

    1999-02-01

    In a situation with radioactive fall-out in agricultural areas in Sweden, many organisations will be engaged. The authorities in the field of agriculture and food will give advices and recommendations, the producers will see to their interests, the consumers will react and researchers and experts will be engaged. A combined game and seminar was carried through in the city of Huskvarna 17 - 18 March, 1998 with participation from the responsible authorities: Swedish Board of Agriculture, National Food Administration, Swedish Radiation Protection Institute and from producers, organisations and the government and with researchers and people from contract laboratories. The game and seminar was based upon a scenario with a release of radioactivity from the nuclear power plant of Ignalina in early July and focused on the threat phase and the time close to the deposition. The release and the weather condition resulted in a deposition of 137 Cs and 131 I in agricultural areas in southern Sweden. The biggest levels of deposition took place in the county of Oestergoetland, where the resulting levels were three times the highest levels in Sweden after the Chernobyl-accident The seminar combined lectures, group-work and discussions and actualised a great number of issues that should be further investigated. The report ends with a factual part about possible countermeasures in agriculture

  18. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Worldwide Nuclear Power (WNP) is a companion volume to Update. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government. Facts about the status of nuclear activities abroad should be available to those who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of Nuclear Energy from reports obtained from foreign embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. It consists of two types of information, tabular and narrative. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data. In general, complete U.S. information will be found in Update

  19. Nuclear power in Canada

    International Nuclear Information System (INIS)

    1980-01-01

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  20. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  1. Development of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  2. Development of nuclear power

    International Nuclear Information System (INIS)

    1962-01-01

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  3. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  4. Development of nuclear power

    International Nuclear Information System (INIS)

    1960-01-01

    The discussion on the development of nuclear power took place on 28 September 1960 in Vienna. In his opening remarks, Director General Cole referred to the widespread opinion that 'the prospect of cheap electricity derived from nuclear energy offers the most exciting prospect for improving the lot of mankind of all of the opportunities for uses of atomic energy'. He then introduced the four speakers and the moderator of the discussion, Mr. H. de Laboulaye, IAEA Deputy Director General for Technical Operations. n the first part of the discussion the experts addressed themselves in turn to four topics put forward by the moderator. These were: the present technical status of nuclear power, the present costs of nuclear power, prospects for future reductions in the cost of nuclear power, and applications of nuclear power in less-developed areas

  5. Digital Play as a Means to Develop Children's Literacy and Power in the Swedish Preschool

    Science.gov (United States)

    Marklund, Leif; Dunkels, Elza

    2016-01-01

    This paper presents different angles on the subject of digital play as a means to develop children's literacy and power, using an online ethnographical study of Swedish preschool teachers' discussions in informal online forums. Question posts (n = 239) were analysed using the Technological Pedagogical Knowledge framework and the Caring, Nurturing…

  6. Failures of knowledge production in nuclear power risk management

    International Nuclear Information System (INIS)

    Sanne, Johan M.

    2008-09-01

    Risks are ascribed in processes of knowledge production, where risk objects are defined and measures taken. This knowledge is also the basis for regulatory action. Thus, uncertainties in knowledge production, based upon choices of assumptions, methods, calculations and evidence criteria for reliable data create vulnerabilities for risk management and risk regulation. A recent incident in Swedish nuclear power plant provides an opportunity to develop theories of knowledge production in complex organizations. Knowledge modes within nuclear power can be characterized as either calculated logics where evidence claims need numbers, real time logics based upon subtle signals and tacit knowledge or as policy logics, navigating between internal and external demands for safety, trustworthiness and profit. The plant had neither foreseen the triggering event nor designed the plant to withstand it. I analyze how the plant and the regulator have interpreted the event, its significance and the measures taken to prevent similar events. I also discuss alternative interpretations, lack of knowledge and the generic deficiencies in knowledge production that the event indicates. First, the plant was not as robustly designed as expected. Deficiencies in diversification may have been caused by overconfidence in the reliability of its design. Second, inadequate design was ascribed to various deficient knowledge production processes: original design of the plant, reconstruction or caused by inadequate learning from previous events. The failures in knowledge production were probably caused by insufficient integration of different knowledge processes and limitations in engineering analysis. Knowledge about risks from nuclear power operations is mainly based upon calculations and simulations, not upon real events. But knowledge and design could be improved also without accidents. Control room operators and maintenance staff can provide invaluable knowledge and methods; to improve causal

  7. Failures of knowledge production in nuclear power risk management

    Energy Technology Data Exchange (ETDEWEB)

    Sanne, Johan M.

    2008-09-15

    Risks are ascribed in processes of knowledge production, where risk objects are defined and measures taken. This knowledge is also the basis for regulatory action. Thus, uncertainties in knowledge production, based upon choices of assumptions, methods, calculations and evidence criteria for reliable data create vulnerabilities for risk management and risk regulation. A recent incident in Swedish nuclear power plant provides an opportunity to develop theories of knowledge production in complex organizations. Knowledge modes within nuclear power can be characterized as either calculated logics where evidence claims need numbers, real time logics based upon subtle signals and tacit knowledge or as policy logics, navigating between internal and external demands for safety, trustworthiness and profit. The plant had neither foreseen the triggering event nor designed the plant to withstand it. I analyze how the plant and the regulator have interpreted the event, its significance and the measures taken to prevent similar events. I also discuss alternative interpretations, lack of knowledge and the generic deficiencies in knowledge production that the event indicates. First, the plant was not as robustly designed as expected. Deficiencies in diversification may have been caused by overconfidence in the reliability of its design. Second, inadequate design was ascribed to various deficient knowledge production processes: original design of the plant, reconstruction or caused by inadequate learning from previous events. The failures in knowledge production were probably caused by insufficient integration of different knowledge processes and limitations in engineering analysis. Knowledge about risks from nuclear power operations is mainly based upon calculations and simulations, not upon real events. But knowledge and design could be improved also without accidents. Control room operators and maintenance staff can provide invaluable knowledge and methods; to improve causal

  8. Nuclear power: European report

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In 2004, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 206 power reactors with a gross power of 181,941 MWe and a net power of 172,699 MWe were in operation at the end of the year. In 2004, one nuclear power plant was commissioned in Russia (Kalinin 3), two (Kmelnitzki 2 and Rowno 4) in Ukraine. Five nuclear power plants were decommissioned in Europe in the course of 2004. As announced in 2000, the Chapelcross 1 to Chapelcross 4 plants in Britain were shut down for economic reasons. In Lithuania, the Ignalina 1 unit was disconnected from the power grid, as had been demanded by the EU Commission within the framework of the negotiations about the country's accession to the EU. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.5 GW. In late 2004, four nuclear generating units were under construction in Finland (1), Romania (1), and Russia (2). 150 nuclear power plants were operated in thirteen states of the European Union (EU-25), which is sixteen more than the year before as a consequence of the accession of new countries. They had an aggregate gross power of 137,943 MWe and a net power of 131,267 MWe, generating approx. 983 billion gross kWh of electricity in 2003, thus again contributing some 32% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in Lithuania (80%), followed by 78% in France, 57% in the Slovak Republic, 56% in Belgium, and 46% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as

  9. SSI's Review of the RDandD Program 2004 of the Swedish Nuclear Fuel and Waste Management Co; SSI:s granskning av SKB:s Fud-program 2004

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Carl-Magnus; Hedberg, Bjoern; Wiebert, Anders [and others

    2005-06-01

    In this report the Swedish Radiation Protection Authority's (SSI) review of the Swedish Nuclear Fuel and Waste Management Company's (SKB) RDandD programme 2004 is presented. In the review SSI comments, among other things, SKB's plan of action and future direction of SKB's RDandD programme, need for different types of consultations, plans for demonstration of canister deposition and long term experiments, and strategies for dismantling of nuclear facilities.

  10. The future of nuclear power

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1987-01-01

    Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs

  11. Reviewing nuclear power

    International Nuclear Information System (INIS)

    Robinson, Colin

    1990-01-01

    The UK government has proposed a review of the prospects for nuclear power as the Sizewell B pressurized water reactor project nears completion in 1994. However, a delay in the completion of Sizewell B or a change of government could put off the review for some years beyond the mid 1990s. Anticipating, though, that such a review will eventually take place, issues which it should consider are addressed. Three broad categories of possible benefit claimed for nuclear power are examined. These are that nuclear power contributes to the security of energy supply, that it provides protection against long run fossil fuel price increases and that it is a means of mitigating the greenhouse effect. Arguments are presented which cost doubt over the reality of these benefits. Even if these benefits could be demonstrated, they would have to be set against the financial, health and accident costs attendant on nuclear power. It is concluded that the case may be made that nuclear power imposes net costs on society that are not justified by the net benefits conferred. Some comments are made on how a government review, if and when it takes place, should be conducted. (UK)

  12. Nuclear power and modern society

    International Nuclear Information System (INIS)

    Komarek, A.

    1999-01-01

    A treatise consisting of the following sections: Development of modern society (Origin of modern society; Industrial society; The year 1968; Post-industrial society; Worldwide civic society); Historic breaks in the development of the stationary power sector (Stationary thermal power; Historic breaks in the development of nuclear power); Czech nuclear power engineering in the globalization era (Major causes of success of Czech nuclear power engineering; Future of Czech nuclear power engineering). (P.A.)

  13. PLAN 98 - Costs for management of the radioactive waste from nuclear power production

    International Nuclear Information System (INIS)

    1998-06-01

    The nuclear utilities in Sweden are responsible for managing and disposing of spent nuclear fuel and radioactive waste from the nuclear power reactors in a safe manner. The most important measures are to plan, build and operate the facilities and systems needed, and to conduct related R and D. This report presents a calculation of the costs for implementing all of these measures. The following facilities and systems are in operation: Transportation system for radioactive waste products. Central interim storage facility for spent nuclear fuel, CLAB. Final repository for radioactive operational waste, SFR I. Plans also exist for: Encapsulation plant for spent nuclear fuel. Deep repository for spent fuel and other long-lived waste. Final repository for decommissioning waste. The cost calculations also include costs for research, development and demonstration, as well as for decommissioning and dismantling the reactor plants etc. At the end of 1995, certain amendments were made in the Financing Act which influence the calculations presented in this report. The most important amendment is that the reactor owners, besides paying a fee or charge on nuclear energy production, must also give guarantees as security for remaining costs. In this way the fee can be based on a probable cost for waste management. This cost includes uncertainties and variations that are normal for this type of project. Cost increases as a consequence of major changes, disruptions etc. can instead be covered via the given guarantees. The total future costs, in January 1998 prices, for the Swedish waste management system from 1999 onward has been calculated to be SEK 45.8 billion. The total costs apply for the waste obtained from 25 years of operation of all Swedish reactors. They will fall due over a total period of approximately 50 years up to the middle of the 2l st century, but the greater part will fall due during the next 20 years. It is estimated that SEK 12.1 billion in current money terms

  14. Radiation doses and ground contamination in Sweden after a major nuclear reactor accident. An enquiry performed by the Swedish Radiation Protection Institute in concert with the Swedish Nuclear Power Inspectorate, September 1995; Straaldoser och markbelaeggning i Sverige efter en stor kaernkraftolycka. En utredning utfoerd av SSI i samraad med SKI, september 1995

    Energy Technology Data Exchange (ETDEWEB)

    Baeverstam, U

    1995-12-01

    Consequences of radioactive emissions from a hypothetical severe accident at a Swedish nuclear power plant are estimated. Three different cases are studied; two cases where the systems for reduction of accident consequences work properly; and one case where they don`t - a `worst` case. The first case, where the security systems are supposed to work fully, give limited consequences: between a few and about 50 cancer deaths in Europe (integrated in time) depending on wind directions. Food production would be affected in an area within 10 km from the reactor, but not to a large extent. The second case, where the security system do not function to 100%, but 0.1% of the total activity is released, would give 20-100 extra cancer deaths in the normally prevailing winds for all Swedish sites. Under very unfavourable wind conditions this sum may rise to 200, for the Barsebaeck site perhaps to 500. Ground contamination of Iodine can be heavy within short distance, with repercussions for agriculture. For the last, worst case, severe consequences may follow, possibly with acute radiation deaths in an area closer than 5 km from the reactor. In favourable wind conditions cancer deaths can amount to a few hundred over 50 years, at normal conditions up to 2000-8000 and in the most unfavourable weather perhaps twice that amount. Emergency evacuation would be recommended, under the plume, at a distance up to 100-150 km. This will however not be possible, due to lack of time. The high level of contamination will cause a long-time evacuation from the area within distances of up to 50 km. 45 refs, 8 tabs, 5 figs.

  15. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  16. Role of nuclear power

    International Nuclear Information System (INIS)

    Eklund, S.

    1982-01-01

    A survey of world nuclear installations, the operating experiences of power reactors, and estimates of future nuclear growth leads to the conclusion that nuclear power's share of world electric power supply will grow slowly, but steadily during this decade. This growth will lead advanced countries to use the commercial breeder by the end of the century. Nuclear power is economically viable for most industrialized and many developing countries if public acceptance problems can be resolved. A restructuring of operational safety and regulations must occur first, as well as a resolution of the safeguards and technology transfer issue. 7 figures, 7 tables

  17. Role and position of Nuclear Power Plants Research Institute in nuclear power industry

    International Nuclear Information System (INIS)

    Metke, E.

    1984-01-01

    The Nuclear Power Plants Research Institute carries out applied and experimental research of the operating states of nuclear power plants, of new methods of surveillance and diagnosis of technical equipment, it prepares training of personnel, carries out tests, engineering and technical consultancy and the research of automated control systems. The main research programme of the Institute is the rationalization of raising the safety and operating reliability of WWER nuclear power plants. The Institute is also concerned with quality assurance of selected equipment of nuclear power plants and assembly works, with radioactive waste disposal and the decommissioning of nuclear power plants as well as with the preparation and implementation of the nuclear power plant start-up. The Research Institute is developing various types of equipment, such as equipment for the decontamination of the primary part of the steam generator, a continuous analyzer of chloride levels in water, a gas monitoring instrument, etc. The prospects are listed of the Research Institute and its cooperation with other CMEA member countries. (M.D.)

  18. Banning nuclear power at sea

    International Nuclear Information System (INIS)

    Handler, J.

    1993-01-01

    This article argues that now that the East-West conflict is over, nuclear-powered vessels should be retired. Nuclear-powered ships and submarines lack military missions, are expensive to build and operate, generate large amounts of long-lived deadly nuclear waste from their normal operations and when they are decommissioned, and are subject to accidents or deliberate attack which can result in the sinking of nuclear reactors and the release of radiation. With the costs of nuclear-powered vessels mounting, the time has come to ban nuclear power at sea. (author)

  19. The need for nuclear power

    International Nuclear Information System (INIS)

    1977-12-01

    This leaflet examines our energy future and concludes that nuclear power is an essential part of it. The leaflet also discusses relative costs, but it does not deal with social and environmental implications of nuclear power in any detail, since these are covered by other British Nuclear Forum publications. Headings are: present consumption; how will this change in future; primary energy resources (fossil fuels; renewable resources; nuclear); energy savings; availability of fossil fuels; availability of renewable energy resources; the contribution of thermal nuclear power; electricity; costs for nuclear power. (U.K.)

  20. Nuclear power statistics 1985

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1986-06-01

    In this report an attempt is made to collect literature data on nuclear power production and to present it on graphical form. Data is given not only for 1985, but for a number of years so that the trends in the development of nuclear power can be seen. The global capacity of nuclear power plants in operation and those in operation, under construction, or on order is considered. Further the average capacity factor for nuclear plants of a specific type and for various geographical areas is given. The contribution of nuclear power to the total electricity production is considered for a number of countries and areas. Finally, the accumulated years of commercial operation for the various reactor types up to the end of 1985 is presented. (author)

  1. Nuclear power economics

    International Nuclear Information System (INIS)

    Moynet, G.

    1987-01-01

    The economical comparison of nuclear power plants with coal-fired plants in some countries or areas are analyzed. It is not difficult to show that nuclear power will have a significant and expanding role to play in providing economic electricity in the coming decades. (Liu)

  2. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  3. The ethical justification of nuclear power

    International Nuclear Information System (INIS)

    Van Wyk, J.H.

    1985-01-01

    This study pamphlet deals with the questions of ethics, nuclear power and the ethical justification of nuclear power. Nuclear power is not only used for warfare but also in a peaceful way. Ethical questions deal with the use of nuclear weapons. Firstly, a broad discussion of the different types of ethics is given. Secondly, the peaceful uses of nuclear power, such as nuclear power plants, are discussed. In the last place the application of nuclear power in warfare and its disadvantages are discussed. The author came to the conclusion that the use of nuclear power in warfare is in contrary with all Christian ethics

  4. UP-report. The power system. Basis of the Development platform. Power to Swedish Energy Agency's strategy work FOKUS; UP-rapport. Kraftsystemet. Underlag fraan Utvecklingsplattformen. Kraft till Energimyndighetens strategiarbete FOKUS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    The report serves as input to to Swedish Energy Agency's strategies and priorities for research and innovation in the power system for the period 2011 - 2016. The report has been compiled by members of the development platform Kraft. This report provides background and circumstances for the power system theme, and proposed priorities and activities for future efforts in this area. The development platform has contributed with valuable experience and skills that enabled the Swedish Energy Agency to then develop a strategy that meets the needs of society and business.

  5. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-06-01

    The actualized version (June 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  6. Italian nuclear power industry after nuclear power moratorium: Current state and future prospects

    International Nuclear Information System (INIS)

    Adinolfi, R.; Previti, G.

    1992-01-01

    Following Italy's nuclear power referendum results and their interpretation, all construction and operation activities in the field of nuclear power were suspended by a political decision with consequent heavy impacts on Italian industry. Nevertheless, a 'nuclear presidium' has been maintained, thanks to the fundamental contribution of activities abroad, succeeding in retaining national know-how and developing the new technologies called for the new generation of nuclear power plants equipped with intrinsic and/or passive reactor safety systems

  7. Nuclear power in Pakistan

    International Nuclear Information System (INIS)

    Siddiqui, Z.H.; Qureshi, I.H.

    2005-01-01

    Pakistan started its nuclear power program by installing a 137 M We Canadian Deuterium Reactor (Candu) at Karachi in 1971 which became operational in 1972. The post-contract technical support for the Karachi Nuclear Power Plant (KANUPP) was withdrawn by Canada in 196 as a consequence of Indian nuclear device test in 1974. In spite of various difficulties PAEC resolved to continue to operate KANUPP and started a process for the indigenous fabrication of spare parts and nuclear fuel. The first fuel bundle fabricated in Pakistan was loaded in the core in 1980. Since then KANUPP has been operating on the indigenously fabricated fuel. The plant computer systems and the most critical instrumentation and Control system were also replaced with up-to date technology. In 2002 KANUPP completed its original design life of 30 year. A program for the life extension of the plant had already been started. The second nuclear power plant of 300 M We pressurized water reactor purchased from China was installed in Chashma in 1997, which started commercial operations in 2001. Another unit of 300 M We will be installed at Chashma in near future. These nuclear power plants have been operating under IAEA safeguards agreements. PAEC through the long-term performance of the two power plants has demonstrated its competence to safely and successfully operate and maintain nuclear power plants. Pakistan foresees an increasingly important and significant share of nuclear power in the energy sector. The Government has recently allocated a share of 8000 MWe for nuclear energy in the total energy scenario of Pakistan by the year 2025. (author)

  8. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1988-06-01

    The percentage of electricity generated by nuclear energy in each of the 26 countries that operated nuclear power plants in 1987 is given. The current policy and programs of some of these countries is described. News concerning uranium mining, enrichment, reprocessing and waste management is also included. Data in the form of a generalized status summary for all power reactors (> 30 MWEN) prepared from the nuclear power reactor data files of ANSTO is shown

  9. Without nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    The arguments put forward by the SPD point to the following: Backing out of nuclear power is a must, because of the awful quality of the hazards involved; because there can be no real separation guaranteed between civil and military utilisation of nuclear energy; for reasons of international responsibility; because we must not pass the buck on to the next generation; because social compatibility must be achieved; because the story of the 'cheap' nuclear generation of electricity is a fairy tale; because nuclear power pushes back coal as an energy source; because current ecological conditions call for abandonment of nuclear power, and economic arguments do not really contradict them. A reform of our energy system has to fulfill four requirements: Conserve energy; reduce and avoid environmental pollution; use renewable energy sources as the main sources; leave to the next generation the chance of choosing their own way of life. (HSCH) [de

  10. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  11. Nuclear power in Asia

    International Nuclear Information System (INIS)

    2007-01-01

    The Australian Uranium Association reports that Asia is the only region in the world where electricity generating capacity and specifically nuclear power is growing significantly. In East and South Asia, there are over 109 nuclear power reactors in operation, 18 under construction and plans to build about a further 100. The greatest growth in nuclear generation is expected in China, Japan, South Korea and India. As a member of the SE Asian community, Australia cannot afford to ignore the existence and growth of nuclear power generation on its door step, even if it has not, up to now, needed to utilise this power source

  12. Nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    ''Nuclear Power'' describes how a reactor works and examines the different designs including Magnox, AGR, RBMK and PWR. It charts the growth of nuclear generation in the world and its contributions to world energy resources. (author)

  13. Competitiveness of nuclear power generation

    International Nuclear Information System (INIS)

    Sumi, Yoshihiko

    1998-01-01

    In view of the various merits of nuclear power generation, Japanese electric utilities will continue to promote nuclear power generation. At the same time, however, it is essential to further enhance cost performance. Japanese electric utilities plan to reduce the cost of nuclear power generation, such as increasing the capacity factor, reducing operation and maintenance costs, and reducing construction costs. In Asia, nuclear power will also play an important role as a stable source of energy in the future. For those countries planning to newly introduce nuclear power, safety is the highest priority, and cost competitiveness is important. Moreover, financing will be an essential issue to be resolved. Japan is willing to support the establishment of nuclear power generation in Asia, through its experience and achievements. In doing this, support should not only be bilateral, but should include all nuclear nations around the Pacific rim in a multilateral support network. (author)

  14. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  15. Nuclear power 2005: European report

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In 2005, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 204 power reactors with a gross power of 181,030 MWe and a net power of 171,8479 MWe were in operation at the end of the year. In 2005, no nuclear power plant was commissioned. Two nuclear power plants were decommissioned in Europe in the course of 2005. In Germany the Obrigheim NPP and in Sweden the Barsebaeck 2 NPP have been permanently shut down due to political decisions. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.6 GW. In late 2005, five nuclear generating units were under construction in Finland (1), Romania (1), and Russia (3). 148 nuclear power plants were operated in thirteen states of the European Union (EU-25). They had an aggregate gross power of 137,023 MWe and a net power of 130,415 MWe, generating approx. 970 billion gross kWh of electricity in 2005, thus again contributing some 31% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in France (80%), followed by 72% in Lithuania, 55% in the Slovak Republic, 55% in Belgium, and 51% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as a result of electricity imports. (All statistical data in the country report apply to 2004 unless indicated otherwise. This is the year for which sound preliminary data are currently available for the states listed.) (orig.)

  16. Nuclear power development

    International Nuclear Information System (INIS)

    Povolny, M.

    1980-01-01

    The development and uses of nuclear power in Czechoslovakia and other countries are briefly outlined. In the first stage, the Czechoslovak nuclear programme was oriented to the WWER 440 type reactor while the second stage of the nuclear power plant construction is oriented to the WWER 10O0 type reactor. It is envisaged that 12 WWER 440 type reactors and four to five WWER 1000 type reactors will be commissioned till 1990. (J.P.)

  17. Nuclear power experience

    International Nuclear Information System (INIS)

    Daglish, J.

    1982-01-01

    A report is given of a recent international conference convened by the IAEA to consider the technical and economic experience acquired by the nuclear industry during the past 30 years. Quotations are given from a number of contributors. Most authors shared the opinion that nuclear power should play a major role in meeting future energy needs and it was considered that the conference had contributed to make nuclear power more viable. (U.K.)

  18. Nuclear power and nuclear safety 2011

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Aage, H.K.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2012-07-01

    The report is the ninth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2011 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the Fukushima accident. (LN)

  19. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Nystrup, P.E.; Thorlaksen, B.

    2010-05-01

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  20. The problem of nuclear power

    International Nuclear Information System (INIS)

    Heimbrecht, J.; Kade, G.; Krusewitz, K.; Moldenhauer, B.; Steinhaus, K.; Weish, P.

    1977-01-01

    The battle over the problems of nuclear power has gone on in the Federal Republic for several years. The Buergerinitiativen, which used to be small and largely unpolitical, have become a major social force during this time. Subjects: 1) Dangers of nuclear power - can the risk be justified; 2)The necessity of nuclear power; 3) The enforcement of nuclear power - political and economic background; 4) Limits of power generation - limits of growth or limits of the system. (orig./HP) [de

  1. Nuclear power renaissance or demise?

    Energy Technology Data Exchange (ETDEWEB)

    Dossani, Umair

    2010-09-15

    Nuclear power is going through a renaissance or demise is widely debated around the world keeping in mind the facts that there are risks related to nuclear technology and at the same time that is it environmentally friendly. My part of the argument is that there is no better alternative than Nuclear power. Firstly Nuclear Power in comparison to all other alternative fuels is environmentally sustainable. Second Nuclear power at present is at the dawn of a new era with new designs and technologies. Third part of the debate is renovation in the nuclear fuel production, reprocessing and disposal.

  2. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  3. Nuclear power. Volume 2: nuclear power project management

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The following topics are discussed: review of nuclear power plants; licensing procedures; safety analysis; project professional services; quality assurance and project organization; construction, scheduling and operation; construction, scheduling and operation; nuclear fuel handling and fuel management; and plant cost management. 116 references, 115 figures, 33 tables

  4. Development of Czechoslovak nuclear power complex

    International Nuclear Information System (INIS)

    Rajci, T.

    1986-01-01

    The research project ''Development of the Czechoslovak nuclear power complex'' was undertaken by several Czechoslovak institutions and was coordinated by the Research Institute of the Fuel and Power Complex in Bratislava. Involved in the project was a staff of 170 people. 274 reports were pulished and the cost approached 70 mill. Czechoslovak crowns. The results are characterized of all six partial tasks. Basic information was prepared for the forecast of the solution of fuel and power problems in Czechoslovakia up to the year 2000 and their prospects up to the year 2020. Program MORNAP was written for the development of nuclear power, which models the operation of a power generation and transmission system with a selectable number of nuclear power plants. Another partial task related to the fuel cycle of nuclear power plants with respect to long-term provision and management of nuclear fuel. Nuclear safety was split into three problem groups, viz.: system safety of nuclear power plant operation; radiation problems of nuclear power plant safety; quality assurance of nuclear power plant components. The two remaining tasks were devoted to nuclear power engineering and to civil engineering. (Z.M.). 3 tabs., 1 refs

  5. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  6. Modification and backfitting at the Barsebaeck Nuclear Power Plant Unit 1 and 2 in safety related systems

    International Nuclear Information System (INIS)

    Karlsson, Leif; Nilsson, Ove; Lidh, B.

    1995-05-01

    This report is intended for use by the Swedish Nuclear Power Inspectorate. It has been published to enable comparison of modification and backfitting implemented at Barsebaeck, with those implemented at other plants, both domestic and abroad. The report summarizes the more notable modifications and backfitting carried out on any safety-related equipment, or software, at Barsebaeck, and covers the decade 1984 to 1994. Modifications to hardware, and to some extent to software, are catalogued, but not described in any detail. No general procedures (operational or maintenance) are dealt with. 3 refs

  7. The abuse of nuclear power

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    Different aspects of possible abuse of nuclear power by countries or individuals are discussed. Special attention is paid to the advantage of nuclear power, despite the risk of weapon proliferation or terrorism. The concepts of some nuclear power critics, concerning health risks in the nuclear sector are rejected as untrue and abusive

  8. Deep ground water microbiology in Swedish granite rock and it's relevance for radio-nuclide migration from a Swedish high level nuclear waste repository

    International Nuclear Information System (INIS)

    Pedersen, Karsten

    1989-03-01

    Data on numbers, species and activity of deep ground water microbial populations in Swedish granite rock have been collected. Specific studies are performed on radio-nuclid uptake on bacteria judge to be probable inhabitants in Swedish nuclear waste repositories. An integrated mobile field laboratory was used for water sampling and for the immediate counting and inoculation of the samples from boreholes at levels between 129 and 860 m. A sampler adapted for the collection of undisturbed samples for gas analysis was used to collect samples for bacterial enumerations and enrichments. The sampler can be opened and closed from the surface at the actual sampling depth. The samples can subsequently be brought to the surface without contact with air and with the pressure at the actual sampling depth. The number of bacteria were determined in samples from the gas sampler when this was possible. Else numbers are determined in the water that is pumped up to the field lab. The average total number of bacteria is 3 x 10 5 bacterial ml -1 . The number of bacteria possible to recover with plate count arrays from 0.10 to 21.9%. (author)

  9. The nuclear power decisions

    International Nuclear Information System (INIS)

    Williams, R.

    1980-01-01

    Nuclear power has now become highly controversial and there is violent disagreement about how far this technology can and should contribute to the Western energy economy. More so than any other energy resource, nuclear power has the capacity to provide much of our energy needs but the risk is now seen to be very large indeed. This book discusses the major British decisions in the civil nuclear field, and the way they were made, between 1953 and 1978. That is, it spans the period between the decision to construct Calder Hall - claimed as the world's first nuclear power station - and the Windscale Inquiry - claimed as the world's most thorough study of a nuclear project. For the period up to 1974 this involves a study of the internal processes of British central government - what the author terms 'private' politics to distinguish them from the very 'public' or open politics which have characterised the period since 1974. The private issues include the technical selection of nuclear reactors, the economic arguments about nuclear power and the political clashes between institutions and individuals. The public issues concern nuclear safety and the environment and the rights and opportunities for individuals and groups to protest about nuclear development. The book demonstrates that British civil nuclear power decision making has had many shortcomings and concludes that it was hampered by outdated political and administrative attitudes and machinery and that some of the central issues in the nuclear debate were misunderstood by the decision makers themselves. (author)

  10. Governance of nuclear power

    International Nuclear Information System (INIS)

    Allison, G.; Carnesale, A.; Zigman, P.; DeRosa, F.

    1981-01-01

    Utility decisions on whether to invest in nuclear power plants are complicated by uncertainties over future power demand, regulatory changes, public perceptions of nuclear power, and capital costs. A review of the issues and obstacles confronting nuclear power also covers the factors affecting national policies, focusing on three institutional questions: regulating the industry, regulating the regulators, and regulatory procedures. The specific recommendations made to improve safety, cost, and public acceptance will still not eliminate uncertainties unless the suggested fundamental changes are made. 29 references

  11. Comments from the Swedish Society for Nature Conservation, SSNC, and the Swedish NGO office for Nuclear Waste Review, MKG, on the industry's, SKB, research programme Fud-07

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-15

    The Swedish Society for Nature Conservation and the Swedish NGO Office for Nuclear Waste Review recommends in response to Fud-07 that: - The Government must in its forthcoming decision regarding the industry's 2007 research and development program set out requirements that are needed to bring order to the ongoing work on nuclear waste disposition - The Government must assure an effective quality control of the industry's work - The Government needs to review the industry's use of resources from the Swedish Nuclear Waste Fund and empower the Radiation Safety Authority to ensure their proper use - The Government must make it clear that a permit to establish a final repository for high-level waste will not be given until sufficient evidence is available that supports the chosen method and chosen location, and that provide for guaranteed long-term safety - The Government must instruct the Radiation Safety Authority to develop its own full and independent assessment tools and knowledge base to be able to review the industry's research and development work, with particular emphasis on weaker aspects of the industry's work. - The Government must expand the budget of the Radiation Safety Authority to enable the Authority to perform a thorough examination of the industry's forthcoming application to construct a repository. - The Government must ensure that currently outstanding issues and unsolved problems in the industry's research and development project are thoroughly investigated, and solutions arrived at, before permission to begin construction can be given. - The Government must see to it that work commences on drafting public policy that sets out the objectives and functions that a final repository shall fulfil. - The Government must make it clear that it will not be possible for the industry to neglect or avoid giving alternative methods serious consideration in its environmental impact statement (EIS). - The Government should

  12. Ten years after the Chernobyl accident: reporting on nuclear and other hazards in six Swedish newspapers

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Aasa; Sjoeberg, L.; Waahlberg, A. af

    1997-07-01

    A European Commission sponsored study (RISKPERCOM) involving France, Norway, Spain, Sweden, and the UK, is concerned with surveying public perceptions of radiation related and other risks. This was partly done by distributing a questionnaire in each country at three different times in 1996: before, during and after the expected media attention given to the tenth anniversary of the Chernobyl accident. A selection of print media were analyzed, during a period of eight weeks - four weeks before the anniversary, and four weeks after - making it possible to contrast any changes between the three waves of the questionnaire with the results of the media study. The present report aims at providing a picture of the Swedish media coverage of different kinds of risks during the period referred to above. The purpose of the analysis is thus primarily of a descriptive nature; explanatory factors are only considered in an ad hoc manner while discussing the results and their possible implications. Naturally, the findings arising from this study cannot alone serve as a basis for making statements about the effects of risk related content on the Swedish newspaper readers. The risk stories included in the analysis were those dealing with one or more of the twenty different hazard items referred to in several of the questions in the RISKPERCOM questionnaire. Radiation and nuclear power energy were not the only issues of concern. The selection covered a wide range of other hazards as well, in order to provide for a wide risk panorama, thus making it possible to compare specific risk qualities etc., as these were presented in the media 70 refs, 40 refs

  13. Ten years after the Chernobyl accident: reporting on nuclear and other hazards in six Swedish newspapers

    International Nuclear Information System (INIS)

    Nilsson, Aasa; Sjoeberg, L.; Waahlberg, A. af

    1997-07-01

    A European Commission sponsored study (RISKPERCOM) involving France, Norway, Spain, Sweden, and the UK, is concerned with surveying public perceptions of radiation related and other risks. This was partly done by distributing a questionnaire in each country at three different times in 1996: before, during and after the expected media attention given to the tenth anniversary of the Chernobyl accident. A selection of print media were analyzed, during a period of eight weeks - four weeks before the anniversary, and four weeks after - making it possible to contrast any changes between the three waves of the questionnaire with the results of the media study. The present report aims at providing a picture of the Swedish media coverage of different kinds of risks during the period referred to above. The purpose of the analysis is thus primarily of a descriptive nature; explanatory factors are only considered in an ad hoc manner while discussing the results and their possible implications. Naturally, the findings arising from this study cannot alone serve as a basis for making statements about the effects of risk related content on the Swedish newspaper readers. The risk stories included in the analysis were those dealing with one or more of the twenty different hazard items referred to in several of the questions in the RISKPERCOM questionnaire. Radiation and nuclear power energy were not the only issues of concern. The selection covered a wide range of other hazards as well, in order to provide for a wide risk panorama, thus making it possible to compare specific risk qualities etc., as these were presented in the media

  14. Nuclear power flies high

    International Nuclear Information System (INIS)

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  15. China and nuclear power

    International Nuclear Information System (INIS)

    Fouquoire-Brillet, E.

    1999-01-01

    This book presents the history of nuclear power development in China from the first research works started in the 1950's for the manufacturing of nuclear weapons to the recent development of nuclear power plants. This study tries to answer the main questions raised by the attitude of China with respect to the civil and military nuclear programs. (J.S.)

  16. Personnel radiation safety in nuclear power plants

    International Nuclear Information System (INIS)

    Elkert, J.

    1979-05-01

    The principal contributions to the radiation doses of the Swedish power reactor personnel are identified. The possi bilities to reduce these doses are examined. The radiation doses are analyzed according to different personnel categories, specific maintenance operations or inspections and to different radiation activities. Suggestions are given for reducing the radiation doses. (L.E.)

  17. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  18. Nuclear power falling to pieces

    International Nuclear Information System (INIS)

    Moberg, Aa.

    1985-01-01

    The international development during the 80s is reviewed. It is stated that the construction of plants has come to a standstill. The forecasting of nuclear power as a simple and cheap source of energy has been erroneous because of cracks and leakage, unsolved waste problems and incidents. Nuclear power companies go into liquidation and reactors are for sale. Sweden has become the country with most nuclear power per capita mainly due to its controlled decommissioning. The civilian nuclear power makes the proliferation of nuclear weapons possible. With 324 reactors all over the world, a conventional war may cause disasters like Hiroshima. It is stated that the nuclear power is a dangerous and expensive source of energy and impossible to manage. (G.B.)

  19. Torness: proposed nuclear power station

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The need for and desirability of nuclear power, and in particular the proposed nuclear power station at Torness in Scotland, are questioned. Questions are asked, and answered, on the following topics: position, appearance and cost of the proposed Torness plant, and whether necessary; present availability of electricity, and forecast of future needs, in Scotland; energy conservation and alternative energy sources; radiation hazards from nuclear power stations (outside, inside, and in case of an accident); transport of spent fuel from Torness to Windscale; radioactive waste management; possibility of terrorists making a bomb with radioactive fuel from a nuclear power station; cost of electricity from nuclear power; how to stop Torness. (U.K.)

  20. Perspectives of nuclear power plants

    International Nuclear Information System (INIS)

    Vajda, Gy.

    2001-01-01

    In several countries the construction of nuclear power plants has been stopped, and in some counties several plants have been decommissioned or are planned to. Therefore, the question arises: have nuclear power plants any future? According to the author, the question should be reformulated: can mankind survive without nuclear power? To examine this challenge, the global power demand and its trends are analyzed. According to the results, traditional energy sources cannot be adequate to supply power. Therefore, a reconsideration of nuclear power should be imminent. The economic, environmental attractions are discussed as opposite to the lack of social support. (R.P.)

  1. Ecological problems of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Babaev, N S; Demin, V F; Kuz' min, I I; Stepanchikov, V I [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii

    1978-10-01

    Modern power sources including nuclear one are characterized. Basic information on radiation protection of man and biosphere is presented. Problems of radiation effect of nuclear fuel cycle enterprises on population and environment are discussed. Comparative evaluation of nuclear and thermal power effect on biosphere is made. It is shown that nuclear power is the safest power source at the present development state. The conclusion is drawn that the use of nuclear energy controlled and limited by scientifically founded norms does not present radiation hazard for population and environment.

  2. Nuclear power and the UK

    International Nuclear Information System (INIS)

    Murphy, St.

    2009-01-01

    This series of slides describes the policy of the UK government concerning nuclear power. In January 2008 the UK Government published the White Paper on the Future of Nuclear Power. The White Paper concluded that new nuclear power stations should have a role to play in this country's future energy mix. The role of the Government is neither to build nuclear power plants nor to finance them. The White Paper set out the facilitative actions the Government planned to take to reduce regulatory and planning risks associated with investing in new nuclear power stations. The White Paper followed a lengthy period of consultation where the UK Government sought a wide variety of views from stakeholders and the public across the country on the future of nuclear power. In total energy companies will need to invest in around 30-35 GW of new electricity generating capacity over the next two decades. This is equivalent to about one-third of our existing capacity. The first plants are expected to enter into service by 2018 or sooner. The Office for Nuclear Development (OND) has been created to facilitate new nuclear investment in the UK while the Nuclear Development Forum (NDF) has been established to lock in momentum to secure the long-term future of nuclear power generation in the UK. (A.C.)

  3. Nuclear power development: History and outlook

    International Nuclear Information System (INIS)

    Char, N.L.; Csik, B.J.

    1987-01-01

    The history of nuclear power development is briefly described (including the boosts from oil price shocks to the promotion of nuclear energy). The role of public opinion in relation to nuclear power is mentioned too, in particular in connection with accidents in nuclear plants. The recent trends in nuclear power development are described and the role of nuclear power is foreseen. Estimates of total and nuclear electrical generating capacity are made

  4. Nuclear power and nuclear safety 2012

    International Nuclear Information System (INIS)

    Lauritzen, B.; Nonboel, E.; Israelson, C.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2013-11-01

    The report is the tenth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is prepared in collaboration between DTU Nutech and the Danish Emergency Management Agency. The report for 2012 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the results of the EU stress test. (LN)

  5. Large-scale introduction of wind power stations in the Swedish grid: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, L

    1978-08-01

    This report describes a simulation study on the factors to be considered if wind power were to be introduced to the south Swedish power grid on a large scale. The simulations are based upon a heuristic power generation planning model, developed for the purpose. The heuristic technique reflects the actual running strategies of a big power company with suitable accuracy. All simulations refer to certain typical days in 1976 to which all wind data and system characteristics are related. The installed amount of wind power will not be subject to optimization. All differences between planned and real wind power generation is equalized by regulation of the hydro power. The simulations made differ according to how the installed amount of wind power is handled in the power generation planning. The simulations indicate that the power system examined could well bear an introduction of wind power up to a level of 20% of the total power installed. This result is of course valid only for the days examined and does not necessarily apply to the present day structure of the system.

  6. Nuclear power perspective in China

    International Nuclear Information System (INIS)

    Liu Xinrong; Xu Changhua

    2003-01-01

    China started developing nuclear technology for power generation in the 1970s. A substantial step toward building nuclear power plants was taken as the beginning of 1980 s. The successful constructions and operations of Qinshan - 1 NPP, which was an indigenous PWR design with the capacity of 300 MWe, and Daya Bay NPP, which was an imported twin-unit PWR plant from France with the capacity of 900 MWe each, give impetus to further Chinese nuclear power development. Now there are 8 units with the total capacity of 6100 MWe in operation and 3 units with the total capacity of 2600 MWe under construction. For the sake of meeting the increasing demand for electricity for the sustainable economic development, changing the energy mix and mitigating the environment pollution impact caused by fossil fuel power plant, a near and middle term electrical power development program will be established soon. It is preliminarily predicted that the total power installation capacity will be 750-800GWe by the year 2020. The nuclear share will account for at least 4.0-4.5 percent of the total. This situation leaves the Chinese nuclear power industry with a good opportunity but also a great challenge. A practical nuclear power program and a consistent policy and strategy for future nuclear power development will be carefully prepared and implemented so as to maintain the nuclear power industry to be healthfully developed. (author)

  7. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  8. On PA of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Present state of things relating to the nuclear power generation are described first, focusing on the Chernobyl accident, power control test, old-wave and new-wave antinuclear movements, move toward elimination of nuclear power plants, and trend in government-level argument concerning nuclear power generation. Then the importance of public relations activities for nuclear power generation is emphasized. It is stressed that information should be supplied positively to the public to obtain public understanding and confidence. Various activities currently made to promote public relations for nuclear power generation are also outlined, focusing on the improvement in the nuclear power public relations system and practical plans for these activities. Activities for improvement in the public relations system include the organization of public relations groups, establishment and effective implementation of an overall public relations plan, training of core workers for public relations, and management of the public relations system. Other practical activities include the encouragement of the public to come and see the power generation facilities and distribution of pamphlets, and use of the media. (N.K.)

  9. Recent development of seismic evaluation for Swedish NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Bennemo, L [Vattenfall Energisystem, Stockholm (Sweden)

    1997-03-01

    In Scandinavia seismic activity is generally low. Only a few incidents have been registered in historic time, which might have damaged an industrial plant of today. There has been no earthquakes in Sweden strong enough to affect a NPP during our nuclear era (and not for very long time before either). So the risk for an nuclear accident i Sweden, caused by an earthquake, may thus be considered to be low. The basis and the methodology used in the design of Forsmark 3 and Oskarshamn 3 with respect to seismic safety is not in all parts suited to be employed for the older reactors. The methods implies a number of simplifications which may be a practical approach in connection with a new design but which might cause too conservative judgements of existing designs. The development of methods is therefore a vital part in the analysis. The Swedish nuclear Power Inspectorate (SKI), Vattenfall AB, Sydkraft AB and Oskarshams Kraftgrupp AB (OKG) have performed such a development of methods in a joint research program: `Project Seismic Safety`. The aim of the project was to develop methods for calculating the ground response to be used in the safety analysis of nuclear power plants in Sweden, as well as to demonstrate its application to the power plants at Ringhals and Barseback. The study also included a survey of geological and seismological conditions in the regions around the power plants studied. Since the large scale geological and seismological conditions around the individual nuclear plant sites are not very different as regards their expected effects on the seismic ground motion, the results obtained for the `typical hard rock site` can be taken as a basis for the characterization of the ground motions at the individual sites, after appropriate transformations to account for specific load conditions, seismological as well as geological. (J.P.N.)

  10. Swedish CO{sub 2}-emissions 1900-2010: an exploratory note

    Energy Technology Data Exchange (ETDEWEB)

    Kristroem, Bengt; Lundgren, Tommy [Swedish Univ. of Agricultural Sciences, Dept. of Forest Economics, Umeaa (Sweden)

    2005-06-01

    This paper projects Swedish CO{sub 2}-emissions during the period 2000-2010 based on data covering 1900-1999. Swedish climate policy is currently based on the assumption that carbon emissions will increase, ceteris paribus, by 5-15% relative to the 1990 level. This forecast has motivated a number of policy measures, including carbon taxes, subsidies and an 'information package'. We find, however, that CO{sub 2}-emissions may well be lower in the future. This outcome is broadly consistent with the literature on the Environmental Kuznets Curve, which portrays the relationship between emissions and GDP. The key contribution of this paper is that our analysis is based on a long time series. Current literature is invariably based on 'short' panel data sets, while we study a single country through several phases of development. Our analysis also sheds some light on the key importance played by nuclear power for carbon emission projections. (Author)

  11. The future of nuclear power

    International Nuclear Information System (INIS)

    Corak, Z.

    2004-01-01

    Energy production and use will contribute to global warming through greenhouse gas emissions in the next 50 years. Although nuclear power is faced with a lot of problems to be accepted by the public, it is still a significant option for the world to meet future needs without emitting carbon dioxide (CO 2 ) and other atmospheric pollutants. In 2002, nuclear power provided approximately 17% of world energy consumption. There is belief that worldwide electricity consumption will increase in the next few years, especially in the developing countries followed by economic growth and social progress. Official forecasts shows that there will be a mere increase of 5% in nuclear electricity worldwide by 2020. There are also predictions that electricity use may increase at 75%. These predictions require a necessity for construction of new nuclear power plants. There are only a few realistic options for reducing carbon dioxide emissions from electricity generation: Increase efficiency in electricity generation and use; Expand use of renewable energy sources such as wind, solar, biomass and geothermal; Capture carbon dioxide emissions at fossil-fuelled electric generating plants and permanently sequester the carbon; Increase use of nuclear power. In spite of the advantages that nuclear power has, it is faced with stagnation and decline today. Nuclear power is faced with four critical problems that must be successfully defeat for the large expansion of nuclear power to succeed. Those problems are cost, safety, waste and proliferation. Disapproval of nuclear power is strengthened by accidents that occurred at Three Mile Island in 1979, at Chernobyl in 1986 and by accidents at fuel cycle facilities in Japan, Russia and in the United States of America. There is also great concern about the safety and security of transportation of nuclear materials and the security of nuclear facilities from terrorist attack. The paper will provide summarized review regarding cost, safety, waste and

  12. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  13. Conflict nuclear power. Theses for current supply with and without nuclear power

    International Nuclear Information System (INIS)

    Schwarz, E.

    2007-01-01

    In the context of a lecture at the 2nd Internationally Renewable Energy Storage Conference at 19th to 21st November, 2007, in Bonn (Federal Republic of Germany), the author of the contribution under consideration reports on theses for current supply with and without nuclear power. (1) Theses for current supply with nuclear energy: Due to a relative amount of 17 % of nuclear energy in the world-wide energy production and due to the present reactor technology, the supplies of uranium amount nearly 50 to 70 years. The security of the nuclear power stations is controversially judged in the public and policy. In a catastrophic accident in a nuclear power station, an amount of nearly 2.5 billion Euro is available for adjustment of damages (cover note). The disposal of radioactive wastes is not solved anywhere in the world. The politically demanded separation between military and civilian use of the nuclear energy technology is not possible. The exit from the nuclear energy is fixed in the atomic law. By any means, the Federal Republic of Germany is not insulated in the European Union according to its politics of nuclear exit. After legal adjustment of the exit from the nuclear energy the Federal Republic of Germany should unfold appropriate activities for the re-orientation of Euratom, Nuclear Energy Agency and the International Atomic Energy Agency. The consideration of the use of nuclear energy in relation to the risks has to result that its current kind of use is not acceptable and to be terminated as fast as possible. (2) Theses for current supply without nuclear energy: The scenario technology enables a transparency of energy future being deliverable for political decisions. In accordance with this scenario, the initial extra costs of the development of the renewable energies and the combined heat and power generation amount approximately 4 billion Euro per year. The conversion of the power generation to renewable energies and combined heat and power generation

  14. Management of safety and safety culture in regulatory work - The case of decommissioning of a Swedish plant

    International Nuclear Information System (INIS)

    Svensson, G.; Lekberg, A.

    2002-01-01

    The case of early closure of one of the units at a plant is one example of a situation where the regulator has to reflect on and choose its role in order to prevent an impairment of the safety culture at the plant. The strategy chosen by the Swedish Nuclear Power Inspectorate is presented and some conclusions are drawn. (author)

  15. TRIUMF - The Swedish data base system for radioactive waste in SFR

    International Nuclear Information System (INIS)

    Skogsberg, Marie; Andersson, Per-Anders

    2006-01-01

    All short lived LLW/ILW from the operation and maintenance of all Swedish Nuclear Power Plants are disposed in SFR, the Swedish final repository for radioactive operational waste. It is important to save all the information about radioactive waste that is needed now and in the future. To be secure that, we have developed a database system in Sweden called Triumf, consisting information about all the waste packages that are disposed in SFR. The waste producers register data concerning individual waste package during production. Before transport to SFR a data file with all information about the individual waste packages is transferred to Triumf. When transferred, the data are checked against accepted limitations before the waste can be loaded on the ship for transport to SFR. After disposal at SFR the deposition location in the repository is added to the database for each waste package. (author)

  16. Economic benefits of the nuclear power

    International Nuclear Information System (INIS)

    Sutherland, R.J.

    1985-01-01

    The historical and projected benefits of nuclear power are estimated as the cost differential between nuclear power and an alternative baseload generating source times the quantity of electricity generated. From 1976 through 1981 coal and nuclear power were close competitors in most regions, with nuclear power holding a small cost advantage overall in 1976 and 1977 that subsequently eroded. When nuclear power costs are contrasted to coal power costs, national benefits from nuclear power are estimated to be $336 million from 1976 to 1981, with an additional $1.8 billion for the present value of existing plants. Fuel oil has been the dominant source of baseload generation in California, Florida, and New England. When nuclear power costs are contrasted to those of fuel oil, the benefits of nuclear power in these three regions are estimated to be $8.3 billion and $28.1 billion in terms of present value. The present value of benefits of future nuclear plants is estimated to be $8.2 billion under a midcase scenario and $43 billion under an optimistic scenario. 18 references, 10 tables

  17. The nuclear power alternative

    International Nuclear Information System (INIS)

    Blix, H.

    1989-04-01

    The Director General of the IAEA stressed the need for energy policies and other measures which would help to slow and eventually halt the present build-up of carbon dioxide, methane and other so-called greenhouse gases, which are held to cause global warming. He urged that nuclear power and various other sources of energy, none of which contribute to global warming, should not be seen as alternatives, but should all be used to counteract the greenhouse effect. He pointed out that the commercially used renewable energies, apart from hydropower, currently represent only 0.3% of the world's energy consumption and, by contrast, the 5% of the world's energy consumption coming from nuclear power is not insignificant. Dr. Blix noted that opposition for nuclear power stems from fear of accidents and concern about the nuclear wastes. But no generation of electricity, whether by coal, hydro, gas or nuclear power, is without some risk. He emphasized that safety can never be a static concept, and that many new measures are being taken by governments and by the IAEA to further strengthen the safety of nuclear power

  18. Reasons for the nuclear power option

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Mauna, T.

    1994-01-01

    Technical, economical and social reasons, strongly supporting the nuclear power option are reviewed. The history of Romanian nuclear power program is outlined with a particular focus on the Cernavoda Nuclear Power Plant project. Finally the prospective of nuclear power in Romania are assessed

  19. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  20. Nuclear power publications

    International Nuclear Information System (INIS)

    1982-01-01

    This booklet lists 69 publications on nuclear energy available free from some of the main organisations concerned with its development and operation in the UK. Headings are: general information; the need for nuclear energy; the nuclear industry; nuclear power stations; fuel cycle; safety; waste management. (U.K.)

  1. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-04-01

    The actualized version (April 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear facilities, and radiation protection.

  2. Nuclear power in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S. (Sussex Univ., Brighton (UK). Science Policy Research Unit)

    1991-01-01

    The main aim of this article is that of illustrating the experience of the use of nuclear power in Eastern Europe in order to estimate the degree of adequacy or inadequacy of COMECON's nuclear technology. The author examines four areas of interest concerning: the feasibility of new orders for nuclear plants in Eastern Europe; the pros and cons of completing half-built nuclear power plants; current policy towards existing nuclear power plants; and a review of the available evidence on the operating performance of plants in Eastern Europe. The common belief that the nuclear power experience had by old COMECON countries is uniformly bad does not seem to be fully supported by the limited evidence available. In the author's opinion, the prospects for a successful nuclear power industry in these countries depends on a series on interdependent factors among which, human skills hold a prominent position.

  3. Local society and nuclear power stations

    International Nuclear Information System (INIS)

    1984-02-01

    This report was made by the expert committee on region investigation, Japan Atomic Industrial Forum Inc., in fiscal years 1981 and 1982 in order to grasp the social economic influence exerted on regions by the location of nuclear power stations and the actual state of the change due to it, and to search for the way the promotion of local community should be. The influence and the effect were measured in the regions around the Fukushima No. 1 Nuclear Power Station of Tokyo Electric Power Co., Inc., the Mihama Power Station of Kansai Electric Power Co., Inc., and the Genkai Nuclear Power Station of Kyushu Electric Power Co., Inc. The fundamental recognition in this discussion, the policy of locating nuclear power stations and the management of regions, the viewpoint and way of thinking in the investigation of the regions where nuclear power stations are located, the actual state of social economic impact due to the location of nuclear power stations, the connected mechanism accompanying the location of nuclear power stations, and the location of nuclear power stations and the acceleration of planning for regional promotion are reported. In order to economically generate electric power, the rationalization in the location of nuclear power stations is necessary, and the concrete concept of building up local community must be decided. (Kako, I.)

  4. Consideration of nuclear power

    International Nuclear Information System (INIS)

    Smart, I.

    1982-01-01

    Mr. Smart notes that the optimistic promise of nuclear energy for developing countries has not been met, but feels that nuclear power can still provide a growing share of energy during the transition from oil dependence. He observes that cost-benefit analyses vary for each country, but good planning and management can give nuclear power a positive future for those developing countries which can establish a need for it; have access to the economic, technological, and human resources necessary to develop and operate it; and can make nuclear power compatible with the social, economic, and cultural structure. 11 references

  5. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  6. Towards sustainable nuclear power development

    International Nuclear Information System (INIS)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S.

    2014-01-01

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  7. Towards sustainable nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhl, Obninsk, Kaluga Region (Russian Federation)

    2014-05-15

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  8. New approaches to nuclear power

    KAUST Repository

    Dewan, Leslie

    2018-01-21

    The world needs a cheap, carbon-free alternative to fossil fuels to feed its growing electricity demand. Nuclear power can be a good solution to the problem, but is hindered by issues of safety, waste, proliferation, and cost. But what if we could try a new approach to nuclear power, one that solves these problems? In this lecture, the CEO of Transatomic Power will talk about how their company is advancing the design of a compact molten salt reactor to support the future of carbon-free energy production. Can the designs of new reactor push the boundaries of nuclear technology to allow for a safe, clean, and affordable answer to humanityメs energy needs? Nuclear power involves capturing the energy produced in nuclear fission reactions, which emerges as heat. This heat is most frequently used to boil water into steam, which then drives a turbine to produce electricity in a nuclear power plant. Worldwide, there is a renaissance of new nuclear technology development -- a new generation of young engineers are racing to develop more advanced nuclear reactors for a better form of power generation. Transatomic Power, specifically, is advancing the design of an easily contained and controlled, atmospheric pressure, high power density molten salt reactor that can be built at low cost. The road to commercialization is long, and poses many challenges, but the benefits are enormous. These new reactors push the boundaries of technology to allow for better, safer ways to power the world.

  9. Nuclear power: Europa report

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Last year, 2003, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union (EU-15) nuclear power plants have been operation. In 7 of the 13 EU Candidate Countries (incl. Turkey) nuclear energy was used for power production. A total of 208 plants with an aggregate net capacity of 171 031 MWe and an aggregate gross capacity of 180 263 MWe were in operation at the end of 2003. No unit reached first criticality in 2003 or was connected to the grid. The unit Calder Hall 1 to Calder Hall 4 have been permanently shut down in Great Britain due to economical reasons and an earlier decision. In Germany the NPP Stade was closed. The utility E.ON has decided to shut down the plant due to the efforts of the liberalisation of the electricity markets. Last year, 8 plants were under construction in Romania (1), Russia (3), Slovakia (2 - suspended), and the Ukraine (2), that is only in East European Countries. The Finnish parliament approved plans for the construction of the country's fifth nuclear power reactor by a majority of 107 votes to 92. The consortium led by Framatome ANP was awarded the contract to build the new nuclear power plant (EPR, 1 600 MW) in Olkiluoto. In eight countries of the European Union 136 nuclear power plants have been operated with an aggregate gross capacity of 127 708 MWe and an aggregate net capacity of 121 709 MWe. Net electricity production in 2003 in the EU amounts to approx. 905 TWh gross, which means a share of about 33 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. They reach 80% in Lithuania, 78% in France, 57% in the Slovak Republic, 57% in Belgium, and 46% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. (orig.)

  10. Canadian attitudes to nuclear power

    International Nuclear Information System (INIS)

    Davies, J.E.O.

    1977-01-01

    In the past ten years, public interest in nuclear power and its relationship to the environment has grown. Although most Canadians have accepted nuclear power as a means of generating electricity, there is significant opposition to its use. This opposition has effectively forced the Canadian nuclear industry to modify its behaviour to the public in the face of growing concern over the safety of nuclear power and related matters. The paper reviews Canadian experience concerning public acceptance of nuclear power, with special reference to the public information activities of the Canadian nuclear industry. Experience has shown the need for scientific social data that will permit the nuclear industry to involve the public in a rational examination of its concern about nuclear power. The Canadian Nuclear Association sponsored such studies in 1976 and the findings are discussed. They consisted of a national assessment of public attitudes, two regional studies and a study of Canadian policy-makers' views on nuclear energy. The social data obtained were of a base-line nature describing Canadian perceptions of and attitudes to nuclear power at that time. This research established that Canadian levels of knowledge about nuclear power are very low and that there are marked regional differences. Only 56% of the population have the minimum knowledge required to indicate that they know that nuclear power can be used to generate electricity. Nevertheless, 21% of informed Canadians oppose nuclear power primarily on the grounds that it is not safe. Radiation and waste management are seen to be major disadvantages. In perspective, Canadians are more concerned with inflation than with the energy supply. About half of all Canadians see the question of energy supplies as a future problem (within five years), not a present one. A more important aspect of energy is seen by the majority of Canadians to be some form of energy independence. The use of data from these studies is no easy

  11. Progress of China's nuclear power programme

    International Nuclear Information System (INIS)

    Cai Jianping

    1997-01-01

    From a long-term point of view, nuclear power is the only solution for the shortage of energy resource. Nuclear power development strategy has been specified in China according to national condition: The electricity development of nuclear power optimizes the national energy structure and ensure the power supply, particularly in east China. China's first self-designed and self-constructed nuclear power plant--Qinshan Nuclear Power Plant (300MWe PWR) is now well under commercial operation. China is willing to cooperate with IAEA, other countries and regions in the field of nuclear energy for peaceful use on basis of mutual benefit. (author)

  12. Country nuclear power profiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA`s programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA`s programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ``profiles``, to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future. Refs, figs, tabs.

  13. Country nuclear power profiles

    International Nuclear Information System (INIS)

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA's programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA's programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ''profiles'', to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future

  14. Nuclear power in Europe

    International Nuclear Information System (INIS)

    Perera, J.

    2000-01-01

    Currently nuclear power accounts for more than 25% of total electricity production in Europe (including Eastern Europe and the former Soviet Union) However, significant new construction is planned in Central and Eastern Europe only, apart from some in France and, possibly in Finland. Many countries in Western Europe have put nuclear construction plans on hold and several have cancelled their nuclear programs. This report looks at the history of nuclear power and its current status in both Eastern and Western Europe. It provides an outline of nuclear fuel cycle facilities, from uranium procurement to final waste disposal. Economic and environmental issues are discussed, as well as the prospect of increased East-West trade and cooperation in the new poso-cold war world. Detailed profiles are provided of all the countries in Western Europe with significant nuclear power programs, as well as profiles of major energy and nuclear companies

  15. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Mishiro, M.

    2000-01-01

    This article describes the advantages of nuclear energy for Japan. In 1997 the composition of the total primary energy supply (TPES) was oil 52.7%, coal 16.5%, nuclear 16.1% and natural gas 10.7%. Nuclear power has a significant role to play in contributing to 3 national interests: i) energy security, ii) economic growth and iii) environmental protection. Energy security is assured because a stable supply of uranium fuel can be reasonably expected in spite of dependence on import from abroad. Economic growth implies the reduction of energy costs. As nuclear power is capital intensive, the power generation cost is less affected by the fuel cost, therefore nuclear power can realize low cost by favoring high capacity utilization factor. Fossil fuels have substantial impacts on environment such as global warming and acid rain by releasing massive quantities of CO 2 , so nuclear power is a major option for meeting the Kyoto limitations. In Japan, in 2010 nuclear power is expected to reach 17% of TPES and 45% of electricity generated. (A.C.)

  16. Ethical aspects of nuclear power

    International Nuclear Information System (INIS)

    Streithofen, H.B.

    1989-01-01

    The nuclear controversy comprises many ethical aspects, e.g. the waste disposal problem. Nuclear opponents should not neglect the environmental protection aspect; for example, the use of nuclear power alone brought about an 8% reduction of the CO 2 burden in 1987. Our responsibility towards nature and humans in the Third World leaves us no alternative to nuclear power. On the other hand, the nuclear power debate should not become a matter of religious beliefs. (DG) [de

  17. Alternative off-site power supply improves nuclear power plant safety

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Volkanovski, Andrija; Kančev, Duško; Čepin, Marko

    2014-01-01

    Highlights: • Additional power supply for mitigation of the station blackout event in NPP is used. • A hydro power plant is considered as an off-site alternative power supply. • An upgrade of the probabilistic safety assessment from its traditional use is made. • The obtained results show improvement of nuclear power plant safety. - Abstract: A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source

  18. The political challenges of nuclear waste; Kaernavfallets politiska utmaningar

    Energy Technology Data Exchange (ETDEWEB)

    Andren, Mats; Strandberg, Urban (eds.)

    2005-07-01

    This anthology is made up of nine essays on the nuclear waste issue, both its political, social and technical aspects, with the aim to create a platform for debate and planning of research. The contributions are titled: 'From clean energy to dangerous waste - the regulatory management of nuclear power in the Swedish welfare society. An economic-historic review{sup ,} 'The course of the high-level waste into the national political arena', 'The technical principles behind the Swedish repository for spent fuels', 'Waste, legitimacy and local citizenship', 'Nuclear issues in societal planning', 'Usefulness or riddance - transmutation or just disposal?', 'National nuclear fuel policy in an European Union?', 'Conclusion - the challenges of the nuclear waste issue', 'Final words - about the need for critical debate and multi-disciplinary research'.

  19. Nuclear power economics

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, Ian; Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-04-15

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  20. Nuclear power economics

    International Nuclear Information System (INIS)

    Emsley, Ian; Cobb, Jonathan

    2017-01-01

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  1. International nuclear power status 2001

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2002-04-01

    This report is the eighth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2001, the report contains: 1) General trends in the development of nuclear power; 2) Nuclear terrorism; 3) Statistical information on nuclear power production (in 2000); 4) An overview of safety-relevant incidents in 2001; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  2. Nuclear power - the Hydra's head

    Energy Technology Data Exchange (ETDEWEB)

    Bunyard, P

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead.

  3. Nuclear power for tomorrow

    International Nuclear Information System (INIS)

    Csik, B.J.; Konstantinov, L.V.; Dastidar, P.

    1989-09-01

    The evolution of nuclear power has established this energy source as a viable mature technology, producing at comparative costs more than 16% of the electricity generated world-wide. After outlining the current status of nuclear power, extreme future scenarios are presented, corresponding respectively to maximum penetration limited by technical-economic characteristics, and nuclear phase-out at medium term. The situation is complex and country specific. The relative perception of the importance of different factors and the compensation of advantages vs. disadvantages, or risk vs. benefits, has predominant influence. In order to proceed with an objective and realistic estimate of the future role of nuclear power worldwide, the fundamental factors indicated below pro nuclear power and against are assessed, including expected trends regarding their evolution: Nuclear safety risk; reduction to levels of high improbability but not zero risk. Reliable source of energy; improvements towards uniform standards of excellence. Economic competitiveness vs. alternatives; stabilization and possible reduction of costs. Financing needs and constraints; availability according to requirements. Environmental effects; comparative analysis with alternatives. Public and political acceptance; emphasis on reason and facts over emotions. Conservation of fossil energy resources; gradual deterioration but no dramatic crisis. Energy supply assurance; continuing concerns. Infrastructure requirements and availability; improvements in many countries due to overall development. Non-proliferation in military uses; separation of issues from nuclear power. IAEA forecasts to the year 2005 are based on current projects, national plans and policies and on prevailing trends. Nuclear electricity generation is expected to reach about 18% of total worldwide electricity generation, with 500 to 580 GW(e) installed capacity. On a longer term, to 2030, a stabilized role and place among available viable

  4. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  5. Nuclear power status 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives statistical information on nuclear power plants status in the world in 1999, including the number of reactors in operation or under construction, the electricity supplied by nuclear power reactors and the respective percentage of electricity produced by nuclear energy in 1999, and the total operating experience to 31 December 1999, by country

  6. The UK nuclear power industry

    International Nuclear Information System (INIS)

    Collier, J. G.

    1995-01-01

    In the United Kingdom, nuclear power plants are operated by three companies: Nuclear Electric (NE), Scottish Nuclear (SN), and British Nuclear Fuels plc (BNFL). The state-operated power industry was privatized in 1989 with the exception of nuclear power generation activities, which were made part of the newly founded (state-owned) NE and SN. At the same time, a moratorium on the construction of new nuclear power plants was agreed. Only Sizewell B, the first plant in the UK to be equipped with a pressurized water reactor, was to be completed. That unit was first synchronized with the power grid on February 14, 1995. Another decision in 1989 provided for a review to be conducted in 1994 of the future of the peaceful uses of nuclear power in the country. The results of the review were presented by the government in a white paper on May 9, 1995. Accordingly, NE and SN will be merged and privatized in 1996; the headquarters of the new holding company will be in Scotland. The review does not foresee the construction of more nuclear power plants. However, NE hopes to gain a competitive edge over other sources of primary energy as a result of this privatization, and advocates construction of a dual-unit plant identical with Sizewell B so as to avoid recurrent design and development costs. Outside the UK, the company plans to act jointly with the reactor vendor, Westinghouse, especially in the Pacific region; a bid submitted by the consortium has been shortisted by the future operator of the Lungmen nuclear power plant project in Taiwan. In upgrading the safety of nuclear power plants in Eastern Europe, the new company will be able to work through existing contacts of SN. (orig.) [de

  7. Nuclear power in India

    International Nuclear Information System (INIS)

    Bose, D.K.

    1980-01-01

    India has now nine years of experience with her in nuclear power generation. The system has been acclaimed on various grounds by the authority concerned with its organization in the country. The present paper intends to examine critically the claim for economic superiority of the nuclear power over the thermal power which is asserted often by the spokesmen for the former. Information about the cost of nuclear power that is available to researchers in India is very meagre. Whatever appears in official publications is hardly adequate for working out reasonable estimates for scrutiny. One is therefore left to depend on the public statements made by dignitaries from time to time to form an idea about the economics of nuclear power. Due to gaps in information we are constrained to rely on the foreign literature and make careful guesses about possible costs applicable to India

  8. No to nuclear power

    International Nuclear Information System (INIS)

    2006-01-01

    Kim Beazley has again stated a Labor Government would not pursue nuclear power because the economics 'simply don't stack up'. 'We have significant gas, coal and renewable energy reserves and do not have a solution for the disposal of low-level nuclear waste, let alone waste from nuclear power stations.' The Opposition Leader said developing nuclear power now would have ramifications for Australia's security. 'Such a move could result in our regional neighbours fearing we will use it militarily.' Instead, Labor would focus on the practical measures that 'deliver economic and environmental stability while protecting our national security'. Mr Beazley's comments on nuclear power came in the same week as Prime Minister John Howard declined the request of Indian Prime Minister Manmohan Singh for uranium exports, although seemingly not ruling out a policy change at some stage. The Prime Ministers held talks in New Delhi over whether Australia would sell uranium to India without it signing the Nuclear Non-Proliferation Treaty. An agreement reached during a visit by US President George W. Bush gives India access to long-denied nuclear technology and guaranteed fuel in exchange for allowing international inspection of some civilian nuclear facilities. Copyright (2006) Crown Content Pty Ltd

  9. Canada's nuclear power programme

    International Nuclear Information System (INIS)

    Peden, W.

    1976-01-01

    Although Canada has developed the CANDU type reactor, and has an ambitious programme of nuclear power plant construction, there has been virtually no nuclear controversy. This progress was seen as a means to bring Canada out of the 'resource cow' era, and onto a more equal footing with technologically elite nations. However the Indian nuclear explosion test, waste storage problems, contamination problems arising from use of uranium ore processing waste as land fill and subsidised sale of nuclear power plants to Argentina and South Korea have initiated public and parliamentary interest. Some economists have also maintained that Canada is approaching over-supply of nuclear power and over-investment in plant. Canada has no official overall energy production plan and alternative sources have not been evaluated. (JIW)

  10. Nuclear power for environmental protection

    International Nuclear Information System (INIS)

    Souza Marques de, J.A.; Bennett, L.L.

    1989-09-01

    Nuclear power does not produce CO 2 or other greenhouse gases, and also does not produce any SO 2 , NO x or other gases which contribute to acid rain. These characteristics of nuclear power are especially important in comparison to coal-fired generation of electricity. As an example, in comparison with a coal-fired power plant of the same size, with abatement systems, a 1300 MW(e) nuclear power plant eliminates annually emissions to the air of about: 2000 t of particulates; 8.5 million t of CO 2 : 12,000 t of SO 2 ; and 6,000 t of NO x , the precise quantities being dependent on coal quality, power plant design and thermal efficiency, and on the effectiveness of the abatement systems. Opponents of nuclear power concede these facts, but argue that nuclear power is such a small part of the world energy balance that it is insignificant to the big issue of CO 2 . This is hardly correct. Today, 16% of the world's electricity (and 5% of the world's total primary energy) is generated using nuclear power. If this electricity were to have been generated using coal, it would have resulted in about 1600 million tons of CO 2 annually. This is 8% of the 20,000 million tons of CO 2 now emitted annually from the burning of fossil fuels, an amount which the Toronto Conference proposed should be cut by 20% up to the year 2005. A further major difference in the two energy systems is that the relatively smaller amount of nuclear wastes is fully isolated from the environment. In addition to discussing the global contributions of nuclear power to environmental improvement, the paper presents actual results achieved in a number of countries, demonstrating the positive contribution which nuclear power has made to reducing the environmental impacts of electricity production. 7 figs, 12 tabs

  11. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    1979-01-01

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO [de

  12. Non-power application as an entry point to nuclear power program

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    2009-01-01

    Nuclear power is usually viewed as the flagship of nuclear technology. A nuclear power plant complex, visible and prominence, is iconic of the technology. That image makes its presence common knowledge to the extent that nuclear technology is equated almost totally with nuclear power by the general public. The downside of this visibility is that it becomes easy target in public misinformation programs. The non-power applications however are not visible, and devoid of icon. The non-power applications, therefore, can grow quite smoothly, attracting only little attention in the negative and in the positive senses. According to a study conducted in the USA in 2000 and in Japan in 2002, the socio-economic impact of non-power and power applications of nuclear technology are comparable. Involvement in non-power applications can be a good grounding for moving into power applications. This paper discusses the non-power nuclear technology applications and in what manner it can serve to prepare the introduction of nuclear power program. (Author)

  13. Current status of nuclear power development

    International Nuclear Information System (INIS)

    Dias, P.M.

    1994-01-01

    Nuclear power is not a viable energy source for Sri Lanka at present because of a number of reasons, the main reason being the non-availability of small and economically viable nuclear power plants. However several suppliers of nuclear power plants are in the process of developing small and medium power plants (SMPRs) which could be economically competitive with coal. The paper deals with past and future trends of nuclear power plants, their economics and safety. It also deals with environmental effects and public acceptance of nuclear power plants

  14. Local decision-making facing issues of national interest experiences from the swedish siting process for a spent nuclear fuel repository

    International Nuclear Information System (INIS)

    Soderberg, O.

    1998-01-01

    It is common knowledge that there are difficulties in convincing the general public and their democratically elected representatives that final disposal of spent nuclear fuel can be made in safe way. Special problems for the decision-makers are created by the demands put on today's generations to make a responsible risk assessment in a area with genuine uncertainties and characterised by any expressions of lack of confidence in social institutions. The current Swedish process for siting a deep repository for spent nuclear fuel has evolved during a period of many years, through inputs by the industry, Government, regulatory authorities and concerned municipalities. It is clear that the nuclear industry, represented by the Swedish Nuclear Fuel and Waste Management CO (SKB), has the full responsibility to find a solution to the waste management problem and to implement the solution - and to for this under the supervision of Government and regulating authorities. But, given the strong tradition of local self-government, the concerned municipalities, the local population in this process. this is simply the following fact: For people who have engaged themselves in local politics - and are prepared to take their responsibility for the well-being and development of their local community - the issue of a possible nuclear repository in the neighbourhood is difficult to handle. A relevant question is: Why should the nation as a whole expect these locally elected representatives to feel a responsibility for an issue of national importance? (author)

  15. Nuclear safeguards control in nuclear power stations

    International Nuclear Information System (INIS)

    Boedege, R.; Braatz, U.; Heger, H.

    1976-01-01

    The execution of the Non-Proliferation Treaty (NPT) has initiated a third phase in the efforts taken to ensure peace by limiting the number of atomic powers. In this phase it is important, above all, to turn into workable systems the conditions imposed upon technology by the different provisions of the Verification Agreement of the NPT. This is achieved mainly by elaborating annexes to the Agreement specifically geared to certain model plants, typical representatives selected for LWR power stations being the plants at Garigliano, Italy (BWR), and Stade, Federal Republic of Germany (PWR). The surveillance measures taken to prevent any diversion of special nuclear material for purposes of nuclear weapons manufacture must be effective in achieving their specific objective and must not impede the circumspect management of operations of the plants concerned. A VDEW working party has studied the technical details of the planned surveillance measures in nuclear power stations in the Federal Republic of Germany and now presents a concept of material balancing by units which meets the conditions imposed by the inspection authority and could also be accepted by the operators of nuclear power stations. The concept provides for uninterrupted control of the material balance areas of the nuclear power stations concerned, allows continuous control of the whole nuclear fuel cycle, is based exclusively on existing methods and facilities, and can be implemented at low cost. (orig.) [de

  16. Nuclear power in British politics

    International Nuclear Information System (INIS)

    Pocock, R.F.

    1987-01-01

    The paper concerns the subject of nuclear power in British politics in 1986. The policies of the major political parties towards nuclear power are briefly outlined, along with public attitudes to nuclear energy, Chernobyl, and the rise of the anti-nuclear campaigners. (UK)

  17. Nuclear power in western society

    International Nuclear Information System (INIS)

    Franklin, N.L.

    1977-01-01

    The degree to which problems of public acceptance have contributed to the slowdown in progress of nuclear power in Western European countries and the USA is discussed. Some of the effects on the nuclear power industry, i.e. the electrical utilities, the power station suppliers, and the fuel cycle contractors are described. The problem of the lack of public acceptance is examined by consideration of four areas: the position of the employee working in nuclear installations, opposition from the local community, the question of terrorism and its impact on nuclear policy, and finally, what is felt to constitute the greatest anxiety concerning nuclear power, that of proliferation. (U.K.)

  18. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  19. The future of nuclear power

    International Nuclear Information System (INIS)

    Burtak, F.

    1993-01-01

    Nuclear power in Germany at present is confronting two challenges: On the one hand, technical innovations are required in order to meet the expectations of nuclear proponents while, on the other hand, a public stand must be taken vis-a-vis the demand to opt out of nuclear power. This means that nuclear engineers not only must perform their technical functions, but increasingly also engage themselves socially. Neglecting just one of these two challenges is likely to impair severely the future of nuclear power in Germany. In the absence of a swing in public opinion it will not be possible to build a new nuclear plant, and nuclear power will be doomed to extinction, at least in a number of countries, within a matter of decades. In the absence of technical innovation, today's LWR technology will cause the fissile uranium available naturally to be consumed, thus killing nuclear power for lack of future fissile material. In responding to the two challenges, nuclear technology must safeguard its future by not retreating into an ivory tower of pure technology; on the other hand, technical innovation is a prerequisite for its continued existence. (orig.) [de

  20. The Swedish Concept for Disposal of Spent Nuclear Fuel: Differences Between Vertical and Horizontal Waste Canister Emplacement

    International Nuclear Information System (INIS)

    Bennett, D.G.; Hicks, T.W.

    2005-10-01

    The Swedish Nuclear Power Inspectorate (SKI) is preparing for the review of licence applications related to the disposal of spent nuclear fuel. The Swedish Nuclear Fuel and Waste Management Company (SKB) refers to its proposals for the disposal of spent nuclear fuel as the KBS-3 concept. In the KBS-3 concept, SKB plans that, after 30 to 40 years of interim storage, spent fuel will be disposed of at a depth of about 500 m in crystalline bedrock, surrounded by a system of engineered barriers. The principle barrier to radionuclide release is a cylindrical copper canister. Within the copper canister, the spent fuel is supported by a cast iron insert. Outside the copper canister is a layer of bentonite clay, known as the buffer, which is designed to provide mechanical protection for the canisters and to limit the access of groundwater and corrosive substances to their surfaces. The bentonite buffer is also designed to sorb radionuclides released from the canisters, and to filter any colloids that may form within the waste. SKB is expected to base its forthcoming licence applications on a repository design in which the waste canisters are emplaced in vertical boreholes (KBS-3V). However, SKB has also indicated that it might be possible and, in some respects, beneficial to dispose of the waste canisters in horizontal tunnels (KBS-3H). There are many similarities between the KBS-3V and KBS-3H designs. There are, however, uncertainties associated with both of the designs and, when compared, both possess relative advantages and disadvantages. SKB has identified many of the key factors that will determine the evolution of a KBS-3H repository and has plans for research and development work in many of the areas where the differences between the KBS-3V and KBS-3H designs mean that they could be significant in terms of repository performance. With respect to the KBS-3H design, key technical issues are associated with: 1. The accuracy of deposition drift construction. 2. Water

  1. Crunch time for nuclear power

    International Nuclear Information System (INIS)

    Edwards, Rob.

    1994-01-01

    The Federal Republic of Germany, one of the most advanced nations, technically has a thriving nuclear power industry. However there is stiff opposition to nuclear power from political parties and environmental groups. General elections due to be held in mid October hold the future of the nuclear industry in the balance. If the present opposition party comes to power, it is committed to a policy of phasing out nuclear power completely. At the centre of the political uproar is the Gorleben ''interim store'' which is intended to house Germany's spent fuel for at least the next forty years. The nuclear industry must resolve the issue of nuclear waste disposal to the voters' satisfaction if it is to have a viable future. (UK)

  2. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  3. Nuclear power ecology: comparative analysis

    International Nuclear Information System (INIS)

    Trofimenko, A.P.; Lips'ka, A.Yi.; Pisanko, Zh.Yi.

    2005-01-01

    Ecological effects of different energy sources are compared. Main actions for further nuclear power development - safety increase and waste management, are noted. Reasons of restrained public position to nuclear power and role of social and political factors in it are analyzed. An attempt is undertaken to separate real difficulties of nuclear power from imaginary ones that appear in some mass media. International actions of environment protection are noted. Risk factors at different energy source using are compared. The results of analysis indicate that ecological influence and risk for nuclear power are of minimum

  4. Safety Management in Non-Nuclear Contexts. Examples from Swedish Railway Regulatory and Company Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Ilkka; Svensson, Ola (Risk Analysis, Social and Decision Research Unit, Dept. of Psychology, Stockholm Univ., Stockholm (Sweden))

    2005-06-15

    Nuclear power operations demand safe procedures. In the context of this report, safety management is considered as a key instrument to achieve safety in technology, organization and operations. Outside the area of nuclear operations there exist a number of other technological areas that also demand safe operations. From the perspective of knowledge management, there exists an enormous pool of safety experiences that may be possible to shear or reformulate from one context to another. From this point of view, it seems highly relevant to make efforts to utilize, and try to understand how safety in general is managed in other contexts. There is much to gain from such an approach, not at least from economical, societal, and systems points of views. Because of the vast diversity between technological areas and their operations, a common framework that allow elaboration with common concepts for understanding, must be generated. In preceding studies a number of steps have been taken towards finding such a general framework for modeling safety management. In an initial step a system theoretical framework was outlined. In subsequent steps central concepts from this framework has been applied and evaluated in relation to a number of non-nuclear organizations. The present report brings this intention one step further, and for the first time, a complete analysis of a system consisting of both the regulator and the licensee was carried out, in the above respects. This report focused the Swedish railway system, and the organizations studied were the Swedish Rail Agency (SRA) and SJ (the main rail traffic operator). The data used for this report consisted of various documents about the organizations, and interview data. This report is basically structured around three, more or less, independent studies that are presented in separate chapters. They are: the system theoretical framework that in the following chapters is applied to the two organizations, and one chapter each for the

  5. Nuclear power - the Hydra's head

    International Nuclear Information System (INIS)

    Bunyard, Peter.

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead. (UK)

  6. International nuclear power status 2002

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2003-03-01

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  7. Nuclear power - a reliable future

    International Nuclear Information System (INIS)

    Valeca, Serban

    2002-01-01

    The Ministry of Education and Research - Department of Research has implemented a national Research and Development program taking into consideration the following: - the requirements of the European Union on research as a factor of development of the knowledge-based society; - the commitments to the assimilation and enforcement of the recommendations of the European Union on nuclear power prompted by the negotiations of the sections 'Science and Research' and ' Energy' of the aquis communautaire; - the major lines of interest in Romania in the nuclear power field established by National Framework Program of Cooperation with IAEA, signed on April 2001; - the short and medium term nuclear options of the Romanian Government; - the objectives of the National Nuclear Plan. The major elements of the nuclear research and development program MENER (Environment, Energy, Resources) supported by the Department of Research of the Ministry of Education and Research are the following: - reactor physics and nuclear fuel management; - operation safety of the Power Unit 1 of Cernavoda Nuclear Electric Power Station; - improved nuclear technological solutions at the Cernavoda NPP; - development of technologies for nuclear fuel cycle; - operation safety of the other nuclear plants in Romania; - assessment of nuclear risks and estimation of the radiological impact on the environment; - behavior of materials under the reactor service conditions and environmental conditions; - design of nuclear systems and equipment for the nuclear power stations and nuclear facilities; - radiological safety; - application of nuclear techniques and technologies in industry, agriculture, medicine and other fields of social life. Research to develop high performance methods and equipment for monitoring nuclear impact on environment are conducted to endorse the measures for radiation protection. Also mentioned are the research on implementing a new type of nuclear fuel cycle in CANDU reactors as well as

  8. Design of a Prototype Differential Die‐Away Instrument Proposed for Swedish Spent Nuclear Fuel Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Martinik, Tomas, E-mail: tomas.martinik@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Henzl, Vladimir [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Grape, Sophie; Jansson, Peter [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Swinhoe, Martyn T.; Goodsell, Alison V. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Tobin, Stephen J. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Swedish Nuclear Fuel and Waste Management Company, Blekholmstorget 30, Box 250, SE-101 24 Stockholm (Sweden)

    2016-06-11

    As part of the United States (US) Department of Energy's Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project, the traditional Differential Die-Away (DDA) method that was originally developed for waste drum assay has been investigated and modified to provide a novel application to characterize or verify spent nuclear fuel (SNF). Following the promising, yet largely theoretical and simulation based, research of physics aspects of the DDA technique applied to SNF assay during the early stages of the NGSI-SF project, the most recent effort has been focused on the practical aspects of developing the first fully functional and deployable DDA prototype instrument for spent fuel. As a result of the collaboration among US research institutions and Sweden, the opportunity to test the newly proposed instrument's performance with commercial grade SNF at the Swedish Interim Storage Facility (Clab) emerged. Therefore the design of this instrument prototype has to accommodate the requirements of the Swedish regulator as well as specific engineering constrains given by the unique industrial environment. Within this paper, we identify key components of the DDA based instrument and we present methodology for evaluation and the results of a selection of the most relevant design parameters in order to optimize the performance for a given application, i.e. test-deployment, including assay of 50 preselected spent nuclear fuel assemblies of both pressurized (PWR) as well as boiling (BWR) water reactor type.

  9. 2006 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    At the turn of 2006/2007, 437 nuclear power plants were available for energy supply, or were being commissioned, in 31 countries of the world. This is seven plants less than at the turn of 2005/2006. The aggregate gross power of the plants amounted to approx. 389.5 GWe, the aggregate net power, to 370.5 GWe. This indicates a slight decrease of gross power by some 0.15 GWe compared to the level the year before, while the available net power increased, also slightly, by approx. 0.2 GWe. The Tarapur 3 nuclear generating unit in India, a D 2 O PWR of 540 MWe gross power, was newly commissioned. In 2006, 8 nuclear power plants in Europe (4 in the United Kingdom, 2 in Bulgaria, 1 each in the Slovak Republic and in Spain) discontinued power operation for good. 29 nuclear generating units, i.e. 6 plants more than at the end of 2005, were under construction in late 2006 in 9 countries with an aggregate gross power of approx. 25.5 GWe. Worldwide, some 40 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases, contracts have already been signed. Net electricity generation in nuclear power plants worldwide in 2006 achieved another top ranking level of approx. 2,660 billion kWh (2005: approx. 2,750 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-1 fast breeder (USA) on December 20, 1951, cumulated gross production has reached approx. 56,875 billion kWh, and operating experience has grown to some 12,399 reactor years. (orig.)

  10. Nuclear power in the EC

    International Nuclear Information System (INIS)

    Charrault, J.C.

    1991-01-01

    Nuclear power accounts for some 35% of electricity production in the European Community (EC). Using a mathematical analysis, based on different scenarios, i.e. low/high electricity demand and nuclear moratorium/revival, various demand forecasts are made. A pragmatic approach, considering conventional power generation pollution problems, forecasts a revival of nuclear power

  11. The influence nuclear power has on corporate image and the effect of offering merit information of nuclear power

    International Nuclear Information System (INIS)

    Oiso, Shinichi

    2006-01-01

    Many electric power companies in Japan, irrespective of their nuclear power generation ratio's difference, have nuclear power plants. These days, corporate brand image is becoming more and more important. Therefore, a survey was carried out to study the effect that nuclear power (including comparison with the other type of industry besides electric power) has on the corporate image of an electric power company. Further more, the survey includes a research about the effect on people's attitude change towards nuclear power before and after discovering the merits or benefits of nuclear power. The possibility of enhancing the corporate brand image of electric power companies by providing merit information of nuclear power was studied. (author)

  12. History on foundation of Korea nuclear power

    International Nuclear Information System (INIS)

    Park, Ik Su

    1999-12-01

    This reports the history on foundation of Korea nuclear power from 1955 to 1980, which is divided ten chapters. The contents of this book are domestic and foreign affairs before foundation of nuclear power center, establishment of nuclear power and research center, early activity and internal conflict about nuclear power center, study for nuclear power business and commercialization of the studying ordeal over nuclear power administration and new phase, dispute for jurisdiction on nuclear power business and the process, permission for nuclear reactor, regulation and local administration, the process of deliberation and decision of reactor 3. 4 in Yonggwang, introduction of nuclear reprocessing facilities and activities for social organization.

  13. Some power uprate issues in nuclear power plants

    International Nuclear Information System (INIS)

    Tipping, Philip

    2008-01-01

    Issues and themes concerned with nuclear power plant uprating are examined. Attention is brought to the fact that many candidate nuclear power plants for uprating have anyway been operated below their rated power for a significant part of their operating life. The key issues remain safety and reliability in operation at all times, irrespective of the nuclear power plant's chronological or design age or power rating. The effects of power uprates are discussed in terms of material aspects and expected demands on the systems, structures and components. The impact on operation and maintenance methods is indicated in terms of changes to the ageing surveillance programmes. Attention is brought to the necessity checking or revising operator actions after power up-rating has been implemented

  14. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  15. 4. Nuclear power plant component failures

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear power plant component failures are dealt with in relation to reliability in nuclear power engineering. The topics treated include classification of failures, analysis of their causes and impacts, nuclear power plant failure data acquisition and processing, interdependent failures, and human factor reliability in nuclear power engineering. (P.A.). 8 figs., 7 tabs., 23 refs

  16. French lessons in nuclear power

    International Nuclear Information System (INIS)

    Valenti, M.

    1991-01-01

    In stark contrast to the American atomic power experience is that of the French. Even the disaster at Chernobyl in 1986, which chilled nuclear programs throughout Western Europe, did not slow the pace of the nuclear program of the state-owned Electricite de France (EDF), based in Paris. Another five units are under construction and are scheduled to be connected to the French national power grid before the end of 1993. In 1989, the EDF's 58 nuclear reactors supplied 73 percent of French electrical needs, a higher percentage than any other country. In the United States, for example, only about 18 percent of electrical power is derived from the atom. Underpinning the success of nuclear energy in France is its use of standardized plant design and technology. This has been an imperative for the French nuclear power industry since 1974, when an intensive program of nuclear power plant construction began. It was then, in the aftermath of the first oil embargo, that the French government decided to reduce its dependence on imported oil by substituting atomic power sources for hydrocarbons. Other pillars supporting French nuclear success include retrofitting older plants with technological or design advances, intensive training of personnel, using robotic and computer aids to reduce downtime, controlling the entire nuclear fuel cycle, and maintaining a comprehensive public information effort about the nuclear program

  17. Thai Nuclear Power Program

    International Nuclear Information System (INIS)

    Namwong, Ratanachai

    2011-01-01

    The Electricity Generating Authority of Thailand (EGAT), the main power producer in Thailand, was first interested in nuclear power as an electricity option in 1967 when the electricity demand increased considerably for the first time as a result of the economic and industrial growth. Its viability had been assessed several times during the early seventies in relation to the changing factors. Finally in the late 1970s, the proceeding with nuclear option was suspended for a variety of reasons, for instance, public opposition, economic repercussion and the uncovering of the indigenous petroleum resources. Nonetheless, EGAT continued to maintain a core of nuclear expertise. During 1980s, faced with dwindling indigenous fossil fuel resources and restrictions on the use of further hydro as an energy source, EGAT had essentially reconsidered introducing nuclear power plants to provide a significant fraction to the long term future electricity demand. The studies on feasibility, siting and environmental impacts were conducted. However, the project was never implemented due to economics crisis in 1999 and strong opposition by environmentalists and activists groups. The 1986 Chernobyl disaster was an important cause. After a long dormant period, the nuclear power is now reviewed as one part of the solution for future energy supply in the country. Thailand currently relies on natural gas for 70 percent of its electricity, with the rest coming from oil, coal and hydro-power. One-third of the natural gas consumed in Thailand is imported, mainly from neighbouring Myanmar. According to Power Development Plan (PDP) 2007 rev.2, the total installed electricity capacity will increase from 28,530.3 MW in 2007 to 44,281 MW by the end of plan in 2021. Significantly increasing energy demand, concerns over climate change and dependence on overseas supplies of fossil fuels, all turn out in a favor of nuclear power. Under the current PDP (as revised in 2009), two 1,000- megawatt nuclear

  18. Steps to nuclear power

    International Nuclear Information System (INIS)

    1975-01-01

    The recent increase in oil prices will undoubtedly cause the pace at which nuclear power is introduced in developing countries to quicken in the next decade, with many new countries beginning to plan nuclear power programmes. The guidebook is intended for senior government officials, policy makers, economic and power planners, educationalists and economists. It assumes that the reader has relatively little knowledge of nuclear power systems or of nuclear physics but does have a general technical or management background. Nuclear power is described functionally from the point of view of an alternative energy source in power system expansion. The guidebook is based on an idealized approach. Variations on it are naturally possible and will doubtless be necessary in view of the different organizational structures that already exist in different countries. In particular, some countries may prefer an approach with a stronger involvement of their Atomic Energy Commission or Authority, for which this guidebook has foreseen mainly a regulatory and licensing role. It is intended to update this booklet as more experience becomes available. Supplementary guidebooks will be prepared on certain major topics, such as contracting for fuel supply and fuel cycle requirements, which the present book does not go into very deeply

  19. The separation of nuclear power from nuclear proliferation

    International Nuclear Information System (INIS)

    Starr, C.

    1979-01-01

    There exists world wide a strong common desire to limit nuclear weapons proliferation so as to inhibit or remove the threat of nuclear warfare. While this is a primary international political objective, there has also developed a secondary objective to limit any potential contribution to such nuclear weapons proliferation which might arise by the diversion of weapons material from the civilian nuclear power fuel cycle. This secondary objective is the basis of the present US government policy to defer the reprocessing of nuclear fuels anywhere. This policy has been generally recognized as a temporary expedient to provide time for international reexamination of the problems of weapons proliferation associated with nuclear power. A successful development of the proposed combination of the Fast Breeder Reactor and the Civex fuel reprocessing facility would provide an economical nuclear power source for many centuries which inherently separates nuclear power from the issue of weapons material diversion and proliferation. Further, by so doing, it permits great flexibility in international and national planning for nuclear power, as the issues of fuel dependence and terrorist and subnational diversions disappear. In addition, the expansion of the FBR/Civex system would eat into the LWR spent fuel stockpile, diminishing steadily this relatively accessible plutonium source. And finally, a rapid development of the FBR/Civex for the above reasons would substantially reduce the worldwide concern as to the adequacy of uranium ore supply. (Auth.)

  20. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1980-01-01

    A few of the essential issues which arise when we consider nuclear power and development together in the context of energy policy are discussed. Ethical concerns must ultimately be expressed through policies and their impact on people. There are ethical issues associated with nuclear power in the developing countries which deserve our attention. Four aspects of the question of nuclear power in developing countries are considered: their energy situation; the characteristics of nuclear power which are relevant to them; whether developing countries will undertake nuclear power programmes; and finally the ethical implications of such programmes. It is concluded that what happens in developing countries will depend more on the ethical nature of major political decisions and actions than on the particular technology they use to generate their electricity. (LL)

  1. The nuclear power generation

    International Nuclear Information System (INIS)

    Serres, R.

    1999-01-01

    The French nuclear generating industry is highly competitive. The installations have an average age of fifteen years and are half way through their expected life. Nuclear power accounts for 70% of the profits of the French generating company, EDF. Nuclear generation has a minimal effect on the atmosphere and France has a level of CO 2 emissions, thought to be the main cause of the greenhouse effect, half that of Europe as a whole. The air in France is purer than in neighbouring countries, mainly because 75% of all electrical power is generated in nuclear plants and 15% in hydroelectric stations. The operations and maintenance of French nuclear power plants in the service and distribution companies out of a total of 100 000 employees in all, 90 % of whom are based in mainland France. (authors)

  2. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  3. Nuclear power plants in post-war thought

    International Nuclear Information System (INIS)

    Toya, Hiroshi

    2015-01-01

    This paper overviews how nuclear power plants have been talked about in the post-war thought. Science and technology sometimes significantly change the thinking way of humans, and nuclear power generation is an extreme technology. This paper overviews how nuclear power plants and humans are correlated. The following three points are discussed as the major issues of contemporary thought over nuclear power plants. First, on the danger of nuclear power plants, the risk of destructive power that nuclear energy has, and the danger of unreasoning development in science and technology civilization are discussed. Second, on the ethics issues surrounding nuclear power plants, the ethics that are based on unbalanced power relations, and democratic responsibility ethics based on discussion ethics are discussed. Third, on the issues of nuclear power plants and imagination, the limitations of democratic discussion surrounding nuclear power plants, the formation of imagination commensurate with the destructive power of nuclear power plants, and the formation of imagination that can represent the distant future are discussed. (A.O.)

  4. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Lane, J.A.; Covarrubias, A.J.; Csik, B.J.; Fattah, A.; Woite, G.

    1977-01-01

    This paper is intended to be a companion to similar papers by OECD/NEA and CMEA and will summarize the nuclear power system plans of developing Member States most likely to have nuclear programmes before the year 2000. The information that is presented is derived from various sources such as the Agency 1974 study of the market for nuclear power in developing countries, the annual publication, ''Power Reactors in Member States - 1976 Edition'', various nuclear power planning studies carried out by the Agency during the period 1975 and 1976, direct correspondence with selected Member States and published information in the open literature. A preliminary survey of the prospects for nuclear power in Member States not belonging to the OECD or having centrally planned economies indicates that about 27 of these countries may have operating nuclear power plants by the end of the century. In the 1974 Edition of the ''Market Survey'' it was estimated that the installed nuclear capacity in these countries might reach 24 GW by 1980, 157 GW by 1190 and 490 GW by the year 2000. It now appears that these figures are too high for a number of reasons. These include 1) the diminished growth in electrical demand which has occurred in many Member States during the last several years, 2) the extremely high cost of nuclear plant construction which has placed financial burdens on countries with existing nuclear programmes, 3) the present lack of commercially available small and medium power reactors which many of the smaller Member States would need in order to expand their electric power systems and 4) the growing awareness of Member States that more attention should be paid to exploitation of indigenous energy sources such as hydroelectric power, coal and lignite

  5. Nuclear power. Europe report

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Last year, 2001, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union nuclear power plants have been in operation. In 7 of the 13 EU Candidate Countries nuclear energy was used for power production. A total of 216 plants with an aggregate net capacity of 171 802 MWe and an aggregate gross capacity of 181 212 MWe were in operation. One unit, i.e. Volgodonsk-1 in Russia went critical for the first time and started test operation after having been connected to the grid. Volgodonsk-1 adds about 1 000 MWe (gross) nd 953 MWe (net) to the electricity production capacity. The operator of the Muehlheim-Kaerlich NPP field an application to decommission and dismantle the plant; this plant was only 13 months in operation and has been shut down since 1988 for legal reasons. Last year, 10 plants were under construction in Romania (1), Russia (4), Slovakia (2), the Czech Republic (1) and the Ukraine (2), that is only in East European Countries. In eight countries of the European Union 143 nuclear power plants have been operated with an aggregate gross capacity of 128 758 MWe and an aggregate net capacity of 122 601 MWe. Net electricity production in 2001 in the EU amounts to approx. 880.3 TWh gross, which means a share of 33,1 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 75.6% in France, 74.2% in Lithuania, 58.2% in Belgium, 53.2% in the Slovak Republic, and 47.4% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. On May 24th, 2002 the Finnish Parliament voted for the decision in principle to build a fifth nuclear power plant in the country. This launches the next stage in the nuclear power plant project. The electric output of the plant unit will be 1000-1600 MW

  6. The swedish challenge

    International Nuclear Information System (INIS)

    Tregouet, R.

    2006-01-01

    Sweden decided to be the first country without petroleum for 2020. The author presents the major energy policy axis implemented by the swedish government to delete the part of the produced energy by the petroleum: development of the renewable energies, research programs of the transportation sector concerning the alternative fuels for the motors, energy efficiency and development of the biomass to replace the nuclear energy. (A.L.B.)

  7. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Beckurts, K.H.

    1985-01-01

    On the occasion of the retirement of the Editor-in-chief of 'atomwirtschaft', the author gave a keynote speech on the development of nuclear power in the Federal Republic of Germany at the headquarters of the Handelsblatt Verlag in Duesseldorf on October 30, 1984. He subdivided the period under discussion into five phases, the first of which comprises the 'founding years' of 1955 to 1960. This was the time when activities in nuclear research and nuclear technology in Germany, which were permitted again in mid-1955, began with the establishment of the national research centers, the first Atomic Power Program, the promulgation of the Atomic Energy Act, the foundation of government organizations, including the Federal Ministry for Atomic Energy, etc. In the second phase, between 1960 and 1970, a solid foundation was laid for the industrial peaceful uses of nuclear power in the construction of the first LWR experimental nuclear power stations, the first successful export contracts, the beginnings of the first nuclear fuel cycle plants, such as the WAK reprocessing plant, the Asse experimental repository, the Almelo agreement on centrifuge enrichment. The third phase, between 1970 and 1975, was a period of euphoria, full of programs and forecasts of a tremendous boom in nuclear generating capacities, which were further enhanced by the 1973 oil squeeze. In 1973 and 1974, construction permits for ten nuclear power plants were applied for. The fourth phase, between 1975 and 1980, became a period of crisis. The fifth phase, the eighties, give rise to hope for a return to reason. (orig./UA) [de

  8. Notes on safety modernization of nuclear power plants in Sweden

    International Nuclear Information System (INIS)

    Hammar, L.

    1997-01-01

    Investment programmes are pursued for all reactor generations in the order of 70M USD per year and unit, despite the political decision to phase out nuclear power. 15-20% of this may be safety-related. Major redesign and replacements of piping and joints in the primary system of Ringhals-1 (1:st generation BWR, external pump loops) are under-way aimed at enhancing the barrier reliability at par with with the new reactors with internal circulation pumps. Major upgrading in process control are typically on the agenda, e.g. modern digital protection and control systems as installed in Ringhals 1 and 2 in 1995. Comprehensive modernization of the control rooms are planned for all Swedish reactors, commencing in 1997 with the Forsmark reactors. The needs for modernization in regard of safety are expected to be further clarified in the design basis reviews due for completion in 1998

  9. Nuclear power and sustainable development

    International Nuclear Information System (INIS)

    Sandklef, S.

    2000-01-01

    Nuclear Power is a new, innovative technology for energy production, seen in the longer historic perspective. Nuclear technology has a large potential for further development and use in new applications. To achieve this potential the industry needs to develop the arguments to convince policy makers and the general public that nuclear power is a real alternative as part of a sustainable energy system. This paper examines the basic concept of sustainable development and gives a quality review of the most important factors and requirements, which have to be met to quality nuclear power as sustainable. This paper intends to demonstrate that it is not only in minimising greenhouse gas emissions that nuclear power is a sustainable technology, also with respect to land use, fuel availability waste disposal, recycling and use of limited economic resources arguments can be developed in favour of nuclear power as a long term sustainable technology. It is demonstrated that nuclear power is in all aspects a sustainable technology, which could serve in the long term with minimal environmental effects and at minimum costs to the society. And the challenge can be met. But to achieve need political leadership is needed, to support and develop the institutional and legal framework that is the basis for a stable and long-term energy policy. Industry leaders are needed as well to stand up for nuclear power, to create a new industry culture of openness and communication with the public that is necessary to get the public acceptance that we have failed to do so far. The basic facts are all in favour of nuclear power and they should be used

  10. Nuclear power: achievement and prospects

    International Nuclear Information System (INIS)

    Roberts, L.E.J.

    1993-01-01

    History of nuclear power generation from the time it was a technological curiosity to the time when it developed into a mature, sizeable international industry is outlined. Nuclear power now accounts for 17% of the world's total electricity generated. However, it is noted that the presently installed capacity of nuclear power generation falls short of early expectations and nuclear power is not as cheap as it was hoped earlier. There is opposition to nuclear power from environmentalists and the public due to fear of radiation and the spread of radioactivity during accidents, even though nuclear reactors by and large have a good safety record. Taking into account the fact that electricity consumption is growing at the rate of 2-3% in the industrialized world and at over 5% in the rest of world and pollution levels are increasing due to burning of fossil fuels and subsequent greenhouse effect, the demand for power will have to be be met by increasing use of non-fossil fuels. One of the most promising non-fossil fuels is the nuclear fuel. In the next 30 years, the nuclear power generation capacity can be increased two to three times the present capacity by: (1) managing economics, (2) extending uranium resources by reprocessing spent fuel and recycling the recovered uranium and plutonium and by using fast reactor technology (3) getting public acceptance of and support for nuclear power by allaying the fear of radiation and the fear of large scale accidents through quantitative risk analysis and (4) establishing public confidence in waste disposal methods. (M.G.B.). 18 refs., 2 tabs

  11. The development of Chinese power industry and its nuclear power

    International Nuclear Information System (INIS)

    Zhou Dabin

    2002-01-01

    The achievements and disparity of Chinese power industry development is introduced. The position and function of nuclear power in Chinese power industry is described. Nuclear power will play a role in ensuring the reliable and safe supply of primary energy in a long-term and economic way. The development prospects of power source construction in Chinese power industry is presented. Challenge and opportunity in developing nuclear power in China are discussed

  12. Nuclear power infrastructure and planning

    International Nuclear Information System (INIS)

    2005-01-01

    There are several stages in the process of introducing nuclear power in a country. These include feasibility studies; technology evaluation; request for proposals and proposal evaluation; project and contracts development and financing; supply, construction, and commissioning; and finally operation. The IAEA is developing guidance directed to provide criteria for assessing the minimum infrastructure necessary for: a) a host country to consider when engaging in the implementation of nuclear power, or b) a supplier country to consider when assessing that the recipient country would be in an acceptable condition to begin the implementation of nuclear power. There are Member States that may be denied the benefits of nuclear energy if the infrastructure requirements are too large or onerous for the national economy. However if co-operation could be achieved, the infrastructure burden could be shared and economic benefits gained by several countries acting jointly. The IAEA is developing guidance on the potential for sharing of nuclear power infrastructure among countries adopting or extending nuclear power programme

  13. Safety Management in Non-Nuclear Contexts. Examples from Swedish Railway Regulatory and Company Perspectives

    International Nuclear Information System (INIS)

    Salo, Ilkka; Svensson, Ola

    2005-06-01

    Nuclear power operations demand safe procedures. In the context of this report, safety management is considered as a key instrument to achieve safety in technology, organization and operations. Outside the area of nuclear operations there exist a number of other technological areas that also demand safe operations. From the perspective of knowledge management, there exists an enormous pool of safety experiences that may be possible to shear or reformulate from one context to another. From this point of view, it seems highly relevant to make efforts to utilize, and try to understand how safety in general is managed in other contexts. There is much to gain from such an approach, not at least from economical, societal, and systems points of views. Because of the vast diversity between technological areas and their operations, a common framework that allow elaboration with common concepts for understanding, must be generated. In preceding studies a number of steps have been taken towards finding such a general framework for modeling safety management. In an initial step a system theoretical framework was outlined. In subsequent steps central concepts from this framework has been applied and evaluated in relation to a number of non-nuclear organizations. The present report brings this intention one step further, and for the first time, a complete analysis of a system consisting of both the regulator and the licensee was carried out, in the above respects. This report focused the Swedish railway system, and the organizations studied were the Swedish Rail Agency (SRA) and SJ (the main rail traffic operator). The data used for this report consisted of various documents about the organizations, and interview data. This report is basically structured around three, more or less, independent studies that are presented in separate chapters. They are: the system theoretical framework that in the following chapters is applied to the two organizations, and one chapter each for the

  14. Nuclear power: the turning tide

    International Nuclear Information System (INIS)

    Riley, P.J.; Warren, D.S.

    1981-01-01

    During 1980 and 1981, opposition to the expansion of the nuclear power generation programme grew from about 45% of the population to approximately 53%. Women, young people and labour voters are the most strongly opposed to nuclear power but among no section of the population is there a clear majority in favour of building more nuclear power stations. (author)

  15. Overview paper on nuclear power

    International Nuclear Information System (INIS)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power

  16. Nuclear power and other thermal power

    International Nuclear Information System (INIS)

    Bakke, J.

    1978-01-01

    Some philosophical aspects of mortality statistics are first briefly mentioued, then the environmental problems of, first, nuclear power plants, then fossil fuelled power plants are summarised. The effects of releases of carbon dioxide, sulphur dioxide and nitrogen oxides are briefly discussed. The possible health effects of radiation from nuclear power plants and those of gaseous and particulate effluents from fossil fuel plants are also discussed. It is pointed out that in choosing between alternative evils the worst course is to make no choice at all, that is, failure to install thermal power plants will lead to isolated domestic burning of fossil fuels which is clearly the worst situation regarding pollution. (JIW)

  17. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  18. Biological recipient control at the Ringhals nuclear power plant. Annual report for 2011

    International Nuclear Information System (INIS)

    Jansson, Maria; Gustavsson, Frida; Fagerholm, Bjoern

    2012-01-01

    The cooling system of the Ringhals nuclear power plant affects the fish community in two steps. In the first step, seawater is used to cool the system in the nuclear power plant. Fish eggs, larvae and small juveniles are carried by the incoming water and are exposed to risk of damage or mortality. In the second step the heated water is released back into the sea, where the fish is affected by the increase in temperature. Reactor 1 and reactor 3 at Ringhals nuclear power plant produced electricity during the major part of the year 2011, with exceptions for the annual audits, and shorter stops in production. Reactor 2 only operated between January and April, due to a fire which led to a shutdown and a thorough remediation work during the rest of the year. Reactor 4 was producing electricity from January to June, but was later shutdown due to a prolonged annual audit until November. Fish eggs and fish larvae are sampled in the incoming cooling water using a modified Bongo net to monitor losses of eggs and larvae in the nuclear power plant. The abundance of shorthorn sculpin larvae (Myoxocephalus scorpius) has decreased since the sampling period started, although it is still the most abundant larvae. Also the abundance of rock gunnel larvae (Pholis gunnellus) has decreased over the years. To sample juvenile fish a modified Isaacs-Kidd midwater-trawl is used. This sampling is mainly focused on glass eels (Anguilla anguilla). The abundance of glass eels have declined strongly since the beginning of the 1980's, but a minor increase was observed in 2011. The decline of the glass eel abundance is most probably due to a general decrease in recruitment and not to a local effect caused by the nuclear power plant. The effects of the heated water released into the sea are monitored by fykenet surveys in the recipient as well as in a reference area. These two areas are monitored in two seasons to compare differences between the two areas in naturally cold and warm water of the

  19. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  20. Public perception process of nuclear power risk and some enlightenment to public education for nuclear power acceptance

    International Nuclear Information System (INIS)

    Yang Bo

    2013-01-01

    This paper, based on the international research literatures on perception of risks, designs a conceptual model of public perception of nuclear power risk. In this model, it is considered that the public perception of nuclear power risk is a dynamic, complicate and closed system and is a process from subjective perception to objective risk. Based on the features of the public perception of nuclear power risk and multi-faceted dimension influences as discussed, suggestions for the public education for nuclear power acceptance are given in five aspects with indication that the public education for nuclear power acceptance plays an important role in maintaining the public perception of nuclear power risk system. (author)